
© Xephon Inc 2005

August 2005

154

In this issue

3 DB2 UDB for LUW 8.2 – an
INSERT/SELECT/DELETE
scenario

6 DB2 Stinger and HADR
16 Managing DB2 for z/OS through

WAP and Web environments –
part 2

31 DB2 Web services
51 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50 elsewhere.
In all cases the price includes postage. Individual
issues, starting with the January 2000 issue, are
available separately to subscribers for $33.75
(£22.50) each including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon. com/
db2; you will need to supply a word from the
printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, and other contents of this journal before
making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 UDB for LUW 8.2 – an INSERT/SELECT/
DELETE scenario

This article looks at the INSERT/SELECT/DELETE command,
which was introduced in DB2 UDB V8.2.

There has always been a requirement to take rows from one
table, insert them into another table, and delete those records
from the first table. Before DB2 UDB V8.2 this was a two-step
process, with all the inherent dangers of that. Now, I can
achieve all of this with just one SQL statement.

So let’s look at an example. If you follow all the commands,
you should be able to reproduce the example. All the SQL was
issued on a Windows 2000 Professional system running DB2
UDB 8.2.2.

We have a table, tabts, containing the following rows:

create table tabts (id int, name char(1Ø));

insert into tabts values(1,'Anita');

insert into tabts values(2,'Helen');

insert into tabts values(3,'Chantal');

insert into tabts values(4,'Fred');

insert into tabts values(5,'John');

insert into tabts values(6,'Harry');

insert into tabts values(7,'Carrie');

insert into tabts values(8,'Scott');

And we need to create the output table:

create table newtab (id int, name char(1Ø));

Now we want to write an INSERT/SELECT/DELETE statement
to move the lines from table tabts, where the id value is
between 3 and 5 inclusive, to table newtab. The statement
would look like:

with fred (id,name) as

(

 select id,name from old table

 (delete from db2admin.tabts where id between 3 and 5)

)

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

select count(*) from new table

(insert into db2admin.newtab select id,name from fred);

Let’s look at this statement in more detail. We use the same
construct as with temporary tables – the with … as construct.
We populate this ‘temporary’ table with rows from our ‘from’
table based on a predicate where id is between 3 and 5, and
then we delete these rows. We finally insert the rows from our
temporary table into our ‘to’ table (db2admin.newtab). We
need an expression after the definition of the temporary table
– I have used select count(*) to give me some idea of how
many rows I am moving. If I wanted to see those rows, I could
replace the count(*) with id,name.

If I had a timestamp in my tabts table I could move rows based
on the timestamp value, or if I wanted to populate my ‘to’ table
with a 10 minute delay, then my predicate would be current
timestamp -10 minutes.

I put the above SQL in a file called sel01.sql and ran it as:

>db2 –tvf sqlØ1.sql

1

 3

You see that the SQL returns the number of rows that it moved,
and if we now look at table tabts, we see that we do not have
the rows with an id of 3, 4, and 5:

>db2 select * from tabts

ID NAME

---------- ----------

 1 Anita

 2 Helen

 6 Harry

 7 Carrie

 8 Scott

 5 record(s) selected.

And if we look at table newtab, we see the three rows we have
moved:

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

>db2 select * from newtab

ID NAME

---------- ----------

 3 Chantal

 4 Fred

 5 John

 3 record(s) selected.

You can see that we have achieved our aim – in one SQL
statement we have moved rows from one table (our ‘from’
table) to another table (our ‘to’ table) and deleted those rows
from the ‘from’ table.

So could I have used the MERGE statement to achieve a
similar result? A single MERGE statement could not have
achieved both the move operation and the delete operation.
We would have to write two statements – a MERGE statement
and a DELETE statement. Let’s use our original tables, tabts
and newtab, and see what our two statements would look like.
The MERGE statement would look like:

merge into newtab t1

using (select * from tabts where id between 3 and 5) t2

on (t1.id = t2.id)

when not matched then insert (id,name) values(t2.id,t2.name);

And the DELETE statement would look like:

delete from tabts where id between 3 and 5;

The first statement would copy the lines where the id is
between 3 and 5 from our ‘from’ table to our ‘to’ table, but the
rows would not be deleted – therefore we have to write our
delete statement, which brings us back to our two SQL
statement process. The reason we can’t put the delete
operation in the MERGE statement is that you can specify
DELETE only for matched rows and we are copying non-
matched rows.

I hope I have shown the power of the INSERT/SELECT/
DELETE statement and how it has considerably improved our

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DB2 Stinger and HADR

DB2 Universal Database V8.2 (formerly ‘Stinger’) has a broad
range of enhancements in the areas of autonomic computing,
high availability, and improved performance. This article
explores IBM’s High Availability Disaster Recovery (HADR)
and automatic client reroute, which come as another aid in
enabling the 24x7 information availability and resilience
required by enterprises.

BEFORE HADR

DB2 UDB has been offering various features towards meeting
the recovery and availability requirements that are essential
for any critical database server. While recovery aims at
avoiding any data loss through system failures, high availability
is aimed at achieving 24x7 information availability, which is
fast becoming a norm, rather than an exception, in our
Internet-based global village.

Before HADR, typically two distinct solutions were used to
address high availability and disaster recovery requirements.
High availability exploited the operating system’s clustering
services, while database features like log shipping, data
replication, shadow copying, etc, were used for disaster
recovery.

WHAT IS HADR AND AUTOMATIC CLIENT REROUTE?

DB2 UDB V8.2 for Linux, Unix, and Windows provides HADR

processing ability over the old two-step INSERT, SELECT,
and DELETE statements.

C Leonard
Freelance Consultant (UK) © Xephon 2005

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

as a single integrated hybrid solution that addresses both
availability and recovery.

DB2 HADR is yet another replication-based solution – similar
to SQL replication and Q Replication – and is supposed to
have borrowed heavily from technologies available in the
Informix Dynamix Server.

Automatic client reroute is another availability enhancement
that reroutes the client connections to the standby database
when the connection to the primary database fails. Automatic
client reroute is supported only with TCP/IP. To enable this
feature for a specific database, the alternate server hostname
and the port number should be specified in the database
directory catalog.

The HADR option is included at no extra charge with DB2 ESE
and is also available as an add-on product for DB2 Express,
DB2 WSE, and DB2 WSUE servers

HOW DOES HADR WORK?

DB2 UDB HADR is a database replication feature that protects
against data loss by replicating the changes from the source
(or primary) database to the target (or standby) database.

Applications access the primary database only and updates
are made to this database both at the data structure level
(using DDL) as well as the data level (using DML). The log data
that is generated on the primary database is shipped to the
standby database and is used to update the standby database
accordingly.

Log shipping via user exits has been asynchronous and hence
there was a potential for data loss when the active logs of the
primary server had not been shipped successfully when a
failure occurred. HADR overcomes this limitation by
implementing three synchronization modes – synchronous,
near synchronous, and asynchronous.

Without HADR, customers had to implement high availability

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

solutions based primarily on the clustering services provided
by the operating systems. Now, by using the automatic client
reroute feature with HADR, it can be ensured that the client
application connections automatically failover to the standby
server (which acts as a primary server for a certain period) and
then failback to the primary server when it gets reactivated.

HADR uses TCP/IP for communicating between the primary
and standby databases and hence these databases can be
situated in different locations – in completely separate and
independent storage. This can be used as an effective disaster
recovery solution where your standby database is located in
a different city or even a different country. The set-up is
illustrated in Figure 1.

The Manage HADR interface in the DB2 Control Center lets
you manage and check HADR status. This window will notify
you if there are any problems with the HADR configuration.

Figure 1: DB2 with HADR and automatic reroute

Client

Application
server

Standby
database
server

Primary
database
server

Automatic
rerouter

HADR

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

HADR DATA PROTECTION LEVELS

HADR offers three synchronization modes – synchronous,
near-synchronous, and asynchronous – which control how log
writing is managed between the primary and standby
databases. This in turn provides an option for choosing the
level of protection against potential data losses.

In synchronous mode, as the name suggests, the log writes
are considered successful only after the primary database
receives acknowledgement from the standby database that
the logs have also been written to the log files on the standby
database. Because the log data is guaranteed to be stored on
both sides, this option provides the greatest protection. On the
negative side, this mode results in the longest transaction
response time.

Slightly less protection is offered by the near-synchronous
mode, which also results in shorter response times. In this
mode, the log writes are considered successful only after the
primary database receives an acknowledgement from the
standby database that the logs have also been written to main
memory on the standby system. If the standby database
crashes before it can copy the log records from memory, the
log records will be lost. When the standby database restarts,
it can get the log records again from the primary database.
Data loss can occur only if both sides fail simultaneously
before the standby copies all the log records from memory.

Asynchronous mode offers the least protection and also has
the shortest transaction response time among the three
modes. In this mode, the log write is considered successful
once the log records have been delivered to the TCP layer of
the primary system’s host machine. The primary system
doesn’t wait for any acknowledgement from the standby. Log
files in transit can be lost under a lot of conditions including
failure of the primary database’s host machine, the network,
or on the standby database. If failover is needed when there
are missing log files, permanent loss of transactions can
occur.

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DATABASE CONFIGURATION FOR HADR

IBM recommends that the database and the database manager
configuration be identical on the primary and standby databases
to ensure optimal performance.

As HADR depends on log-shipping, non-logged operations
like database configuration parameter changes, changes to
the recovery history file etc are not replicated in the standby
database. Though this restriction may seem obvious, it is
essential that this key factor be kept in mind when establishing
processes for maintaining both the databases.

Changes to the configuration parameters on the primary
database must be replicated manually in the standby database
also. While the dynamic parameters become effective
immediately, the non-dynamic ones would require that the
standby database be restarted.

To guarantee that the log file size of the standby is always the
same as the primary one, IBM has designed the standby
database to ignore the local LOGFILSIZ configuration and
create the local log files to match the LOGFILSIZ configuration
on the primary database.

The log receive buffer size (LOGBUFSZ) of the standby
database is, by default, twice that of the value specified for the
primary database. Though this size should be in general
sufficient, there are times when there could be temporary
peaks. With HADR in asynchronous mode and when the
primary database experiences a high transaction load, the log
shipping operation may stall, resulting in a larger buffer
requirement on the standby side. Under such circumstances,
the administrator can increase the standby log buffer size by
modifying the DB2_HADR_BUF_SIZE registry variable.

The new database configuration parameters that support
HADR include:

1 HADR_LOCAL_HOST – the local host name of the primary
database must be same as the remote host name of the
standby database.

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

2 HADR_LOCAL_SVC – the TCP service name or port
number for which the local HADR process accepts
connections.

3 HADR_REMOTE_HOST – the remote host name of the
primary database must be same as the local host name of
the standby database.

4. HADR_REMOTE_SVC – the TCP service name or port
number that will be used by the remote HADR node.

5 HADR_SYNCMODE – HADR synchronization mode that
determines how primary log writes are synchronized with
the standby. Values are SYNC, NEARSYNC, and ASYNC.

6 HADR_TIMEOUT – specifies the time that the HADR
process waits before considering that the communication
attempt has failed.

The following are some of the key observations related to the
HADR parameters:

• When the connection is established, a consistency check
for the local and remote host names is performed to
ensure that the remote host specified is the expected
node.

• The synchronization and timeout parameters should be
identical in both the primary and standby databases.
When a HADR pair establishes the connection, a
consistency check for this is performed.

• Usually the standby database is started first. If the primary
database is started first and if the standby is not started
within the HADR timeout limit specified, the start-up
procedure will fail.

• Though the local host name and service name are relevant
only for the primary database, it is essential that they be
set appropriately in the standby database so that the
standby is ready to take over when required.

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Changes made to HADR parameters are not effective
until the database is shut down and restarted.

IBM has provided the set-up HADR wizard in the DB2 Control
Center, which lets you easily configure primary and standby
database servers with HADR.

HADR COMMANDS

The following commands are provided to control the HADR:

• START HADR – starts HADR operations for a database.
If specified as primary and with the ‘NO FORCE’ option,
the HADR primary database will not wait for the standby
database to connect to it. If started as standby, the
database will attempt to connect to the primary database
until the connection is successfully established.

• STOP HADR – used to convert the HADR database to a
standard one. Stops HADR operations for a database. If
this command is issued for an active primary database, it
stops shipping logs to the standby and the database role
changes to standard and remains online. This command
returns errors when issued on an active standby database
because it is necessary to deactivate the standby before
converting it to standard.

• TAKEOVER HADR – used to switch the roles of the
primary and standby databases. Instructs a HADR standby
database to take over as the new HADR primary database
for the HADR pair. The command can be issued only on
the standby database.

LOAD OPERATIONS AND HADR

If the load operation is executed on the primary database with
the COPY YES option, the command will execute on the
primary database and the data will be replicated to the standby
database. It has to be ensured that the device or directory

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

specified in the load command can be accessed by the
standby database using the same path, device, or load library.
Otherwise, the standby table space in which the table is stored
is marked as bad and any future log records to this tablespace
get skipped.

Similarly, if the load operation is executed with the
NONRECOVERABLE option, the table on the standby
database is marked bad and the future log records get
skipped.

Load operations with the COPY NO option specified are not
supported in HADR. The load operation with the COPY NO
can be automatically converted to COPY YES by setting the
DB2_LOAD_COPY_NO_OVERRIDE registry in the primary
database.

CLUSTER MANAGERS AND HADR

The availability of a database can be enhanced by using
HADR with the operating system cluster managers.

One way of configuring this is to set up a HADR pair such that
the same cluster manager services the primary and standby
databases. This configuration is most suited when the primary
and standby databases are located at the same site and the
fastest possible failover is required. The cluster manager can
benefit from HADR to quickly detect the problem and initiate
the take-over operation without waiting for failover to occur on
the volume.

The other option is to set up a HADR pair where the primary
and standby databases are not serviced by the same cluster
manager. This is more suited to high availability under disaster
recovery (in the event of complete site failure) where the
databases are located at different sites.

RESTRICTIONS WITH HADR

The following are the HADR restrictions:

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 HADR is not supported when multiple database partitions
are used. In a partitioned database environment, though
the HADR configuration parameters are visible and can
be changed, they are ignored.

2 Reads on the standby database are not supported and
hence the clients cannot connect directly to the standby.

3 Log archiving can be performed only by the primary
database.

4 Back-up operations are not supported on the standby
database.

5 Use of data links is not supported.

6 HADR does not interface with the DB2 Fault Monitor,
which can be used to automatically restart a failed
database.

7 HADR does not replicate stored procedures and UDF
objects and library files. You must create the files on
identical paths on both the primary and standby databases.

RECOMMENDATIONS FOR EFFECTIVE USE OF HADR

IBM recommends the following to make HADR effective:

• Use identical computers and operating system versions
including patch levels for both the primary and standby
databases. This would ensure that the behaviour of the
standby server during failover is as expected.

• A TCP/IP interface is a must, between the HADR host
machines, while a high-speed high-capacity network is
recommended.

• Use the same level of resources (hardware and software)
for both the primary and standby database servers. This
would ensure that there are no performance issues in the
case of failover situations.

• Make sure that the database versions of the primary and

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

standby databases as well as the bit sizes of the database
(32 or 64) are identical. During rollover upgrades, the
version on the standby server can be later than that of the
primary database. You should never have the primary
database version higher than the standby database version.

• Allocate the same amount of space for the log files on both
the database servers.

• Ensure that the table spaces type (DMS or SMS), size,
container path, container size, and container file type (raw
device or file system) are identical on both the databases.
If they are not, the log replay may fail with OUT OF SPACE
or TABLE SPACE CONTAINER NOT FOUND error
conditions, making the standby table space unavailable
for takeover.

• Use relative container paths, which allow the same relative
path to map to different absolute container paths on the
primary and standby databases.

• It is necessary that the amounts of memory are the same
on both the servers, because the bufferpool operations
are also replayed on the standby databases.

• For HADR databases, set the LOGINDEXBUILD parameter
to ON to ensure that the index creation, recreation, or
reorganization information is logged. Although this would
result in a longer index build time and more log space in
the primary database, the indexes will be rebuilt on the
standby system during log replay and will be available
when the failover takes place.

C Sasirekha
Tata Consultancy Services (India) © Xephon 2005

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Managing DB2 for z/OS through WAP and Web
environments – part 2

This month we conclude the code to manage DB2 from WAP
and Web environments.

Const adRecInvalid = &HØØØØØ1Ø

Const adRecMultipleChanges = &HØØØØØ4Ø

Const adRecPendingChanges = &HØØØØØ8Ø

Const adRecCanceled = &HØØØØ1ØØ

Const adRecCantRelease = &HØØØØ4ØØ

Const adRecConcurrencyViolation = &HØØØØ8ØØ

Const adReegrityViolation = &HØØØ1ØØØ

Const adRecMaxChangesExceeded = &HØØØ2ØØØ

Const adRecObjectOpen = &HØØØ4ØØØ

Const adRecOutOfMemory = &HØØØ8ØØØ

Const adRecPermissionDenied = &HØØ1ØØØØ

Const adRecSchemaViolation = &HØØ2ØØØØ

Const adRecDBDeleted = &HØØ4ØØØØ

'---- GetRowsOptionEnum Values ----

Const adGetRowsRest = -1

'---- PositionEnum Values ----

Const adPosUnknown = -1

Const adPosBOF = -2

Const adPosEOF = -3

'---- AffectEnum Values ----

Const adAffectCurrent = 1

Const adAffectGroup = 2

Const adAffectAll = 3

'---- FilterGroupEnum Values ----

Const adFilterNone = Ø

Const adFilterPendingRecords = 1

Const adFilterAffectedRecords = 2

Const adFilterFetchedRecords = 3

'---- PropertyAttributesEnum Values ----

Const adPropNotSupported = &HØØØØ

Const adPropRequired = &HØØØ1

Const adPropOptional = &HØØØ2

Const adPropRead = &HØ2ØØ

Const adPropWrite = &HØ4ØØ

'---- ErrorValueEnum Values ----

Const adErrInvalidArgument = &Hbb9

Const adErrNoCurrentRecord = &Hbcd

Const adErrIllegalOperation = &Hc93

Const adErrInTransaction = &Hcae

Const adErrFeatureNotAvailable = &Hcb3

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Const adErrItemNotFound = &Hcc1

Const adErrObjectNotSet = &Hd5c

Const adErrDataConversion = &Hd5d

Const adErrObjectClosed = &He78

Const adErrObjectOpen = &He79

Const adErrProviderNotFound = &He7a

Const adErrBoundToCommand = &He7b

'---- ParameterAttributesEnum Values ----

Const adParamSigned = &HØØ1Ø

Const adParamNullable = &HØØ4Ø

Const adParamLong = &HØØ8Ø

'---- ParameterDirectionEnum Values ----

Const adParamUnknown = &HØØØØ

Const adParamInput = &HØØØ1

Const adParamOutput = &HØØØ2

Const adParamInputOutput = &HØØØ3

Const adParamReturnValue = &HØØØ4

'---- CommandTypeEnum Values ----

Const adCmdUnknown = Ø

Const adCmdText = &HØØØ1

Const adCmdTable = &HØØØ2

Const adCmdStoredProc = &HØØØ4

%>

DB0TWLM3

//***

//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES

//* ADDRESS SPACE

//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.

//* DB2SSN -- THE DB2 SUBSYSTEM NAME.

//* NUMTCB -- THE NUMBER OF TCBS USED TO PROCESS

//* END USER REQUESTS.

//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT

//* SUPPORTED BY THIS JCL PROCEDURE.

//*

//***

//DBØTWLM3 PROC RGN=ØK,APPLENV=DBØTWLM3,DB2SSN=&IWMSSNM,NUMTCB=8

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM='&DB2SSN,&NUMTCB,&APPLENV'

//STEPLIB DD DISP=SHR,DSN=DSN71Ø.RUNLIB.LOAD

// DD DISP=SHR,DSN=CEE.SCEERUN

// DD DISP=SHR,DSN=DSN71Ø.SDSNEXIT

// DD DISP=SHR,DSN=DSN71Ø.SDSNLOAD

// DD DISP=SHR,DSN=TØØØ.COMM.SPLOADBA

//SYSEXEC DD DISP=SHR,DSN=SØØØ.COMM.REXX

// DD DISP=SHR,DSN=DØØØ.COMM.CLIB

//TRANFILE DD DISP=SHR,DSN=TCPIP.TCPIPT.STANDARD.TCPXLBIN

//SYSPRINT DD SYSOUT=*

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSMDUMP DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

DB2COMMA
/* REXX */

/* PARSE ARG SSID COMMAND */ /* Get the SSID to connect to */

 /* and the DB2 command to be */

 /* executed */

SSID = 'DBØT'

COMMAND = '-DISPLAY DDF'

 /**/

 /* Set up the host command environment for SQL calls. */

 /**/

$SUBCOM DSNREXX$ /* Host cmd env available? */

IF RC THEN /* No--make one */

 S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

 /**/

 /* Connect to the DB2 subsystem. */

 /**/

/* ADDRESS DSNREXX $CONNECT$ SSID */

say 'a1'

/*IF SQLCODE <> Ø THEN CALL SQLCA */

say 'a2'

PROC = 'COMMAND'

RESULTSIZE = 327Ø3

RESULT = LEFT(' ',RESULTSIZE,' ')

 /**/

 /* Call the stored procedure that executes the DB2 command. */

 /* The input variable (COMMAND) contains the DB2 command. */

 /* The output variable (RESULT) will contain the return area */

 /* from the IFI COMMAND call after the stored procedure */

 /* executes. */

 /**/

ADDRESS DSNREXX $EXECSQL$,

$CALL$ DB2REXX $(:COMMAND, :RESULT)$

say 'a3'

IF SQLCODE < Ø THEN CALL SQLCA

/*SAY 'RETCODE ='RETCODE */

/*SAY 'SQLCODE ='SQLCODE */

/*SAY 'SQLERRMC ='SQLERRMC */

/*SAY 'SQLERRP ='SQLERRP */

/*SAY 'SQLERRD ='SQLERRD.1',', */

/* || SQLERRD.2',', */

/* || SQLERRD.3',', */

/* || SQLERRD.4',', */

/* || SQLERRD.5',', */

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* || SQLERRD.6 */

/*SAY 'SQLWARN ='SQLWARN.Ø',', */

/* || SQLWARN.1',', */

/* || SQLWARN.2',', */

/* || SQLWARN.3',', */

/* || SQLWARN.4',', */

/* || SQLWARN.5',', */

/* || SQLWARN.6',', */

/* || SQLWARN.7',', */

/* || SQLWARN.8',', */

/* || SQLWARN.9',', */

/* || SQLWARN.1Ø */

/* SAY 'SQLSTATE='SQLSTATE */

/* SAY C2X(RESULT) $'$||RESULT||$'$ */

 /**/

 /* Display the IFI return area in hexadecimal. */

 /**/

OFFSET = 4+1

TOTLEN = LENGTH(RESULT)

MYOUTPUT=$$

DO WHILE (OFFSET < TOTLEN)

 LEN = C2D(SUBSTR(RESULT,OFFSET,2))

 SAY SUBSTR(RESULT,OFFSET+4,LEN-4-1)

 MYOUTPUT = MYOUTPUT || SUBSTR(RESULT,OFFSET+4,LEN-4-1)

 OFFSET = OFFSET + LEN

END

/*MYOUTPUT = 11 */

/* MYOUTPUT =1234567891234567 */

RETURN MYOUTPUT

 /**/

 /* Routine to display the SQLCA */

 /**/

SQLCA:

TRACE O

SAY 'SQLCODE ='SQLCODE

SAY 'SQLERRMC ='SQLERRMC

SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6

SAY 'SQLWARN ='SQLWARN.Ø',',

 || SQLWARN.1',',

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 || SQLWARN.6',',

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø

SAY 'SQLSTATE='SQLSTATE

/* EXIT 99 */

DB2COMME
/* REXX */

 PARSE ARG SSID_COMMAND /* Get the SSID to connect to */

 SAY 'SSID_COMMAND=' || SSID_COMMAND /* and the DB2 command to be */

 SSID = LEFT(SSID_COMMAND,4) /* executed */

 say 'SSID=' || SSID

 COMMAND = SUBSTR(SSID_COMMAND,5,1ØØ)

 say 'COMMAND=' || COMMAND

/* SSID = 'DBØT' */

/* COMMAND = '-DISPLAY GROUP' */

 /**/

 /* Set up the host command environment for SQL calls. */

 /**/

$SUBCOM DSNREXX$ /* Host cmd env available? */

IF RC THEN /* No--make one */

 S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

 /**/

 /* Connect to the DB2 subsystem. */

 /**/

/* ADDRESS DSNREXX $CONNECT$ SSID */

say 'a1'

/*IF SQLCODE <> Ø THEN CALL SQLCA */

say 'a2'

PROC = 'COMMAND'

RESULTSIZE = 327Ø3

RESULT = LEFT(' ',RESULTSIZE,' ')

 /**/

 /* Call the stored procedure that executes the DB2 command. */

 /* The input variable (COMMAND) contains the DB2 command. */

 /* The output variable (RESULT) will contain the return area */

 /* from the IFI COMMAND call after the stored procedure */

 /* executes. */

 /**/

ADDRESS DSNREXX $EXECSQL$,

$CALL$ DB2REXX $(:COMMAND, :RESULT)$

say 'a3'

IF SQLCODE < Ø THEN CALL SQLCA

/*SAY 'RETCODE ='RETCODE */

/*SAY 'SQLCODE ='SQLCODE */

/*SAY 'SQLERRMC ='SQLERRMC */

/*SAY 'SQLERRP ='SQLERRP */

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/*SAY 'SQLERRD ='SQLERRD.1',', */

/* || SQLERRD.2',', */

/* || SQLERRD.3',', */

/* || SQLERRD.4',', */

/* || SQLERRD.5',', */

/* || SQLERRD.6 */

/*SAY 'SQLWARN ='SQLWARN.Ø',', */

/* || SQLWARN.1',', */

/* || SQLWARN.2',', */

/* || SQLWARN.3',', */

/* || SQLWARN.4',', */

/* || SQLWARN.5',', */

/* || SQLWARN.6',', */

/* || SQLWARN.7',', */

/* || SQLWARN.8',', */

/* || SQLWARN.9',', */

/* || SQLWARN.1Ø */

/* SAY 'SQLSTATE='SQLSTATE */

/* SAY C2X(RESULT) $'$||RESULT||$'$ */

 /**/

 /* Display the IFI return area in hexadecimal. */

 /**/

OFFSET = 4+1

TOTLEN = LENGTH(RESULT)

MYOUTPUT=$$

DO WHILE (OFFSET < TOTLEN)

 LEN = C2D(SUBSTR(RESULT,OFFSET,2))

 SAY SUBSTR(RESULT,OFFSET+4,LEN-4-1)

 MYOUTPUT = MYOUTPUT || SUBSTR(RESULT,OFFSET+4,LEN-4-1) ||$@$

 OFFSET = OFFSET + LEN

END

/*MYOUTPUT = 11 */

/* MYOUTPUT =1234567891234567 */

RETURN MYOUTPUT

 /**/

 /* Routine to display the SQLCA */

 /**/

SQLCA:

TRACE O

SAY 'SQLCODE ='SQLCODE

SAY 'SQLERRMC ='SQLERRMC

SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6

SAY 'SQLWARN ='SQLWARN.Ø',',

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 || SQLWARN.1',',

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 || SQLWARN.6',',

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø

SAY 'SQLSTATE='SQLSTATE

/* EXIT 99 */

DB2COMME_DB2_CREATE_PROCEDURE
//DB2COMME JOB ,'DB2-DYNAMIC-SQL',MSGLEVEL=(1,1),MSGCLASS=X,USER=SDBA1

//*

//STEP1 EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSTSIN DD *

 DSN SYSTEM(DB1T)

 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP71) LIB('DSN71Ø.RUNLIB.LOAD')

//SYSIN DD *

DROP PROCEDURE SYSPROC.DB2COMME RESTRICT;

COMMIT;

CREATE PROCEDURE SYSPROC.DB2COMME

(

 IN MYINPUT1 CHAR (1Ø4),

 OUT MYOUTPUT VARCHAR (327Ø3)

)

DYNAMIC RESULT SET 1

EXTERNAL NAME DB2COMME

LANGUAGE REXX

PARAMETER STYLE GENERAL

NOT DETERMINISTIC

FENCED

CALLED ON NULL INPUT

MODIFIES SQL DATA

NO DBINFO

WLM ENVIRONMENT DBØTWLM3

STAY RESIDENT NO

PROGRAM TYPE MAIN

SECURITY DB2

COMMIT ON RETURN NO

;

COMMIT;

GRANT EXECUTE ON PROCEDURE SYSPROC.DB2COMME TO PUBLIC;

COMMIT;

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DB2COMME2.ASP
<%

session("aktifortam")=request.form("ortam")

session("aktifcommand")=request.form("mycommand1")

session("aktifdb2")=request.form("myssid")

if session("aktifortam")="" then session("aktifortam")="TEST"

if session("aktifdb2")="" then session("aktifdb2")="DB1T"

if session("aktifcommand")="" then session("aktifcommand")="DISPLAY

DB(DTGNL*) SP(*) USE LIMIT(*)"

%>

<|DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<title>Akbank T.A.S© 2ØØ4</title>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-

1254">

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-9">

<META HTTP-EQUIV="content-language" content="TR">

<META HTTP-EQUIV="Copyright" CONTENT="Akbank T.A.S© 2ØØ4">

<META NAME="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="cache-control" CONTENT="no-cache">

<style>

 .tarih{ font-size: 7pt; font-family: Courier New; color:blue }

 .tarih{ font-size: 8pt; font-family: Arial; color:blue }

 .firstcol{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue }

 .firstcol1{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue}

 .tarih1{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue }

 .tarih2{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue }

</style>

<script LANGUAGE="JavaScript">

<|--

function radioClick (f,i) {

 f.mycommand1.value = f.komut[i].value;

 f.myhidden.value=i;

 return true;

}

//-->

</script>

</HEAD>

<body bgcolor=white text="blue">

<form action="db2comme2.asp" method="post" name="myform">

<p align="left">

<input TYPE="hidden" VALUE="Ø" NAME="myhidden">

Choose the environment:

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

<input TYPE="radio" VALUE="TEST" NAME="ortam"

<%if session("aktifortam")="TEST" then response.write "CHECKED"%> >

TEST ENVIRONMENT

<input TYPE="radio" VALUE="PRODUCTION" NAME="ortam"

<%if session("aktifortam")="PRODUCTION" then response.write "CHECKED"%>

> PRODUCTION ENVIRONMENT

Enter the name of DB2 datasharing group :

<input size="4" maxlength="4" name="myssid" value="<%response.write

session("aktifdb2")%>" >

You can either CLICK ON or WRITE DOWN the DB2 command that you would

like to run

<% response.write session("selectedradiobutton") %>

<TABLE BORDER=1 width="6Ø%">

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY DB(DTGNL*) SP(*) USE LIMIT(*)"

NAME="komut"

 onclick="return radioClick (document.forms[Ø],Ø)"

 <%if cint(request.form("myhidden"))=Ø then response.write "CHECKED"%> >

 DISPLAY DB(DTGNL*) SP(*) USE LIMIT(*)

<input TYPE="radio" VALUE="START DB(DTGNLØ1) SP(STGNLGØ1) ACCESS(FORCE)"

NAME="komut"

onclick="return radioClick (document.forms[Ø],1)"

<%if cint(request.form("myhidden"))=1 then response.write "CHECKED"%> >

START DB(DTGNLØ1) SP(STGNLGØ1) ACCESS(FORCE)

<input TYPE="radio" VALUE="DISPLAY DB(*) SP(*) RESTRICT LIMIT(*)"

NAME="komut"

onclick="return radioClick (document.forms[Ø],2)"

<%if cint(request.form("myhidden"))=2 then response.write "CHECKED"%> >

DISPLAY DB(*) SP(*) RESTRICT LIMIT(*)

</TD></TR>

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY UTILITY(*)" NAME="komut"

onclick="return radioClick (document.forms[Ø],3)"

<%if cint(request.form("myhidden"))=3 then response.write "CHECKED"%> >

DISPLAY UTILITY(*)

<input TYPE="radio" VALUE="TERM UTILITY(TGNLLOAD)" NAME="komut"

onclick="return radioClick (document.forms[Ø],4)"

<%if cint(request.form("myhidden"))=4 then response.write "CHECKED"%> >

TERM UTILITY(TGNLLOAD)

</TD></TR>

<TR><TD>

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

<input TYPE="radio" VALUE="DISPLAY PROCEDURE" NAME="komut"

onclick="return radioClick (document.forms[Ø],5)"

<%if cint(request.form("myhidden"))=5 then response.write "CHECKED"%> >

DISPLAY PROCEDURE

<input TYPE="radio" VALUE="DISPLAY DDF" NAME="komut"

onclick="return radioClick (document.forms[Ø],6)"

<%if cint(request.form("myhidden"))=6 then response.write "CHECKED"%> >

DISPLAY DDF

<input TYPE="radio" VALUE="DISPLAY GROUP" NAME="komut" onclick="return

radioClick (document.forms[Ø],7)" <%if cint(request.form("myhidden"))=7

then response.write "CHECKED"%> > DISPLAY GROUP

</TD></TR>

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY THREAD(*) TYPE(*)" NAME="komut"

onclick="return radioClick (document.forms[Ø],8)"

<%if cint(request.form("myhidden"))=8 then response.write "CHECKED"%> >

DISPLAY THREAD(*) TYPE(*)

<input TYPE="radio" VALUE="DISPLAY THREAD (*) TYPE(INDOUBT)"

NAME="komut"

onclick="return radioClick (document.forms[Ø],9)"

<%if cint(request.form("myhidden"))=9 then response.write "CHECKED"%> >

DISPLAY THREAD (*) TYPE(INDOUBT)

<input TYPE="radio" VALUE="RECOVER INDOUBT (CICSTSA1) ACTION(ABORT)

ID(ENTRTTOHØØØ1)" NAME="komut"

onclick="return radioClick (document.forms[Ø],1Ø)"

<%if cint(request.form("myhidden"))=1Ø then response.write "CHECKED"%> >

RECOVER INDOUBT (CICSTSA1) ACTION(ABORT) ID(ENTRTTOHØØØ1)

</TD></TR>

</TABLE>

DB2 Command that will run:

<input size="1ØØ" maxlength="1ØØ" name="mycommand1"

value="<%response.write session("aktifcommand")%>" >

<input type="submit" name="submit" value="RUN THE DB2 COMMAND"></p>

</p>

</form>

<|-- #include file="constans.inc" -->

<%

if cstr(request.form("submit"))="RUN THE DB2 COMMAND" then

'beginnig of the result

Set Connvs = Server.CreateObject("ADODB.Connection")

MYCOMMAND=request.form("mycommand1")

MYSSID=request.form("myssid")

if session("aktifortam")="PRODUCTION" then

 Session("ConnectionString") =

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

"DSN=DB2PRODUCTION;UID=akbank;PWD=btvyg"

else

if cstr(UCASE(MYSSID))="DBØT" then Session("ConnectionString") =

"DSN=DB2MVS;UID=akbank;PWD=btvyg"

if cstr(UCASE(MYSSID))="DB1T" then Session("ConnectionString") =

"DSN=DB2MVS;UID=akbank;PWD=btvyg"

if cstr(UCASE(MYSSID))="DB2T" then Session("ConnectionString") =

"DSN=DB2DB3TS;UID=akbank;PWD=btvyg"

if cstr(UCASE(MYSSID))="DB3T" then Session("ConnectionString") =

"DSN=DB2DB3TS;UID=akbank;PWD=btvyg"

end if

Connvs.Open Session("ConnectionString")

set cmd = Server.CreateObject("ADODB.Command")

cmd.ActiveConnection = Connvs

set rs = Server.CreateObject("adodb.recordset")

RS.CursorType = 1

RS.LockType = 3

CMD.CommandText = "SYSPROC.DB2COMME"

CMD.CommandType = adCmdStoredProc

myinputoutputvar="STORED PROCEDURE OUTPUT RESULT WILL BE STORED IN THIS

VARIABLE"

MYINPUT1 = MYSSID & "-" & MYCOMMAND

set ADO_Parm1 = CMD.CreateParameter("parm1", adChar, adParamInput, 1Ø4,

MYINPUT1)

set ADO_Parm2 = CMD.CreateParameter("parm2", adChar,

adParamOutput,327Ø3,myinputoutputvar)

CMD.Parameters.Append ADO_Parm1

CMD.Parameters.Append ADO_Parm2

cmd.Execute ()

response.write "
"

response.write "RESULT OF THE DB2 COMMAND THAT'S JUST BEEN RUN"

response.write "
"

response.write "
"

%>

<table border="Ø" width="1ØØ%" >

<TR class=tarih align=left><td>

<%

 stringtowrite = cmd.parameters(1)

 i=1

 while i<= len(stringtowrite)-1

 if mid(stringtowrite,i,1)="@" then response.write "
"

 if mid(stringtowrite,i,1)=" " then response.write " "

 if mid(stringtowrite,i,1)<>"@" then response.write

mid(stringtowrite,i,1)

 i=i+1

 wend

'end of the result

 end if

 %>

 </td></tr></table>

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

</body>

</html>

DB2REXX
/* REXX */

PARSE UPPER ARG CMD /* Get the DB2 command text */

 /* Remove enclosing quotes */

IF LEFT(CMD,2) = $$'$ & RIGHT(CMD,2) = $'$$ THEN

CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)

ELSE

IF LEFT(CMD,2) = $$$'$ & RIGHT(CMD,2) = $'$$$ THEN

CMD = SUBSTR(CMD,3,LENGTH(CMD)-4)

COMMAND = SUBSTR($COMMAND$,1,18,$ $)

 /**/

 /* Set up the IFCA, return area, and output area for the */

 /* IFI COMMAND call. */

 /**/

IFCA = SUBSTR('ØØ'X,1,18Ø,'ØØ'X)

IFCA = OVERLAY(D2C(LENGTH(IFCA),2),IFCA,1+Ø)

IFCA = OVERLAY($IFCA$,IFCA,4+1)

RTRNAREASIZE = 262144 /*1Ø48572*/

RTRNAREA = D2C(RTRNAREASIZE+4,4)LEFT(' ',RTRNAREASIZE,' ')

OUTPUT = D2C(LENGTH(CMD)+4,2)||'ØØØØ'X||CMD

BUFFER = SUBSTR($ $,1,16,$ $)

 /**/

 /* Make the IFI COMMAND call. */

 /**/

ADDRESS LINKPGM $DSNWLIR COMMAND IFCA RTRNAREA OUTPUT$

WRC = RC

RTRN= SUBSTR(IFCA,12+1,4)

REAS= SUBSTR(IFCA,16+1,4)

TOTLEN = C2D(SUBSTR(IFCA,2Ø+1,4))

 /**/

 /* Set up the host command environment for SQL calls. */

 /**/

$SUBCOM DSNREXX$ /* Host cmd env available? */

IF RC THEN /* No--add host cmd env */

 S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

 /**/

 /* Set up SQL statements to insert command output messages */

 /* into a temporary table. */

 /**/

SQLSTMT='INSERT INTO SYSIBM.SYSPRINT(SEQNO,TEXT) VALUES(?,?)'

ADDRESS DSNREXX $EXECSQL DECLARE C1 CURSOR FOR S1$

IF SQLCODE <> Ø THEN CALL SQLCA

ADDRESS DSNREXX $EXECSQL PREPARE S1 FROM :SQLSTMT$

IF SQLCODE <> Ø THEN CALL SQLCA

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /**/

 /* Extract messages from the return area and insert them into */

 /* the temporary table. */

 /**/

SEQNO = Ø

OFFSET = 4+1

DO WHILE (OFFSET < TOTLEN)

 LEN = C2D(SUBSTR(RTRNAREA,OFFSET,2))

 SEQNO = SEQNO + 1

 TEXT = SUBSTR(RTRNAREA,OFFSET+4,LEN-4-1)

 ADDRESS DSNREXX $EXECSQL EXECUTE S1 USING :SEQNO,:TEXT$

 IF SQLCODE <> Ø THEN CALL SQLCA

 OFFSET = OFFSET + LEN

END

 /**/

 /* Set up a cursor for a result set that contains the command */

 /* output messages from the temporary table. */

 /**/

SQLSTMT='SELECT SEQNO,TEXT FROM SYSIBM.SYSPRINT ORDER BY SEQNO'

ADDRESS DSNREXX $EXECSQL DECLARE C2 CURSOR FOR S2$

IF SQLCODE <> Ø THEN CALL SQLCA

ADDRESS DSNREXX $EXECSQL PREPARE S2 FROM :SQLSTMT$

IF SQLCODE <> Ø THEN CALL SQLCA

 /**/

 /* Open the cursor to return the message output result set to */

 /* the caller. */

 /**/

ADDRESS DSNREXX $EXECSQL OPEN C2$

IF SQLCODE <> Ø THEN CALL SQLCA

S_RC = RXSUBCOM('DELETE','DSNREXX','DSNREXX') /* REMOVE CMD ENV */

EXIT SUBSTR(RTRNAREA,1,TOTLEN+4)

 /**/

 /* Routine to display the SQLCA */

 /**/

SQLCA:

SAY 'SQLCODE ='SQLCODE

SAY 'SQLERRMC ='SQLERRMC

SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6

SAY 'SQLWARN ='SQLWARN.Ø',',

 || SQLWARN.1',',

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 || SQLWARN.6',',

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø

SAY 'SQLSTATE='SQLSTATE

SAY 'SQLCODE ='SQLCODE

EXIT 'SQLERRMC ='SQLERRMC';' ,

|| 'SQLERRP ='SQLERRP';' ,

|| 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6';' ,

|| 'SQLWARN ='SQLWARN.Ø',',

 || SQLWARN.1',',

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 || SQLWARN.6',',

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø';' ,

|| 'SQLSTATE='SQLSTATE';'

WMLDB2COMME.ASP
<|-- #include file="constans.inc" -->

<% Response.ContentType = "text/vnd.wap.wml" %>

<?xml version="1.Ø"?>

<|DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" "http://

www.wapforum.org/DTD/wml_1.1.xml">

<wml>

 <template>

 <do type="prev">

 <noop/>

 </do>

 </template>

 <do type="options" label="Copyright">

 <go href="#copyright"/>

 </do>

 <p align="center">

<%

Set Connvs = Server.CreateObject("ADODB.Connection")

Session("ConnectionString") = "DSN=DB2MVS;UID=akbank;PWD=btvyg"

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Connvs.Open Session("ConnectionString")

set cmd = Server.CreateObject("ADODB.Command")

cmd.ActiveConnection = Connvs

set rs = Server.CreateObject("adodb.recordset")

RS.CursorType = 1

RS.LockType = 3

CMD.CommandText = "SYSPROC.DB2COMME"

CMD.CommandType = adCmdStoredProc

myinputoutputvar="STORED PROCEDURE OUTPUT RESULT WILL BE STORED IN THIS

VARIABLE"

MYCOMMAND="DISPLAY UTILITY(*)"

MYSSID="DB1T"

MYINPUT1 = MYSSID & "-" & MYCOMMAND

set ADO_Parm1 = CMD.CreateParameter("parm1", adChar, adParamInput, 1Ø4,

MYINPUT1)

set ADO_Parm2 = CMD.CreateParameter("parm2", adChar,

adParamOutput,327Ø3,myinputoutputvar)

CMD.Parameters.Append ADO_Parm1

CMD.Parameters.Append ADO_Parm2

cmd.Execute ()

response.write "CALISTIRILAN KOMUT:DISPLAY UTILITY(*)"

stringtowrite = cmd.parameters(1)

i=1

while i<= len(stringtowrite)-1

 if mid(stringtowrite,i,1)<>"@" then response.write

mid(stringtowrite,i,1)

 i=i+1

 wend

%>

</p>

 </card>

 <card id="copyright">

 <onevent type="ontimer">

 <prev/>

 </onevent>

 <timer value="25"/>

 <p align="center">

 <small>Copyright© 2ØØ4
Akbank T.A.S.
All rights

reserved.</small>

 </p>

 </card>

</wml>

Kadir Güray Meriç
DB2 Systems Programmer
Akbank (Turkey) © Kadir Güray Meriç 2005

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 Web services

Web services represent the next level of function and efficiency
in e-business. The Web services infrastructure is based on
the eXtensible Mark-up Language (XML). Web services are a
series of standards and evolving standards that are being
designed and specified by the Worldwide Web Consortium
(W3C) to foster cross-platform program-to-program
communications. More specifically, the W3C has currently
specified a template (Web Services Description Language –
WSDL) and a procedure call protocol (a programmatic interface
called Simple Object Access Protocol – SOAP) as ‘official’
Web services standards.

The Web services architecture describes a framework in
which e-business services may be described, published,
discovered, and invoked dynamically in a distributed computing
environment. Services (which are defined as a collection of
operations that carry out some type of task) are implemented
and published by service providers. They are discovered and
invoked by service requesters. Information about a service
may be kept within a service registry.

The three fundamental operations can be described in the

Service registry

Publish

Bind

Find

Service provider Service requestor

Figure 1: Web services architecture

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

following way:

• Publish – performed by the service provider to advertise
the existence and capabilities of a service.

• Find – performed by the service requester to locate a
service that meets a particular need or technology
fingerprint.

• Bind – performed by the service requester to invoke the
service being provided by the service provider.

A Web service can be defined as a modular application that
can be:

• Described using Web Services Description Language
(WSDL).

• Published using Uniform Description, Discovery, and
Integration (UDDI).

• Found using UDDI.

• Bound using Simple Object Access Protocol (SOAP) .

• Invoked using SOAP.

• Composed with other services into new services using
Web Services Flow Language (WSFL).

Web services often need to be integrated with relational data.
To accomplish this, applications must access both Web
services and database management systems.

DB2 AS A WEB SERVICE PROVIDER

Web services Object Runtime Framework (WORF), which is
shipped with DB2 V8.1, provides an environment to easily
create simple Web services that access DB2. WORF uses
Apache Simple Object Access Protocol (SOAP) 2.2 or later
and the Document Access Definition Extension (DADX). A
DADX document specifies how to create a Web service using
a set of operations that are defined by SQL statements

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

(including stored procedure calls) and, optionally, XML Extender
DAD files. The Web services that are created from a DADX file
are called DADX Web services or DB2 Web services.

WORF requires JDBC 2.0, which is the default in DB2 UDB
Version 8. For DB2 UDB versions earlier than Version 8, select
JDBC 2.0 by running the C:\Program
Files\SQLLIB\java12\usejdbc2.bat file. To install WORF on
WAS (WebSphere Application Server 5.0.2), complete the
following steps:

1 Ensure that you have soap.jar in C:\Program
Files\IBM\WebSphere\AppServer\lib.

2 Locate dxxworf.zip in your C:\Program
Files\IBM\SQLLIB\samples\java\Websphere directory.

3 Unzip the dxxworf.zip to a directory, such as C:\worf.

4 Copy C:\worf\l ib\worf.jar to C:\Program
Files\IBM\WebSphere\AppServer\li directory.

5 Copy C:\worf\lib\worf-servlet.jar to C:\WORFSamp\WEB-

Figure 2: WORF configuration files

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

INF\lib directory (see Figure 2).

6 Start the WebSphere Administration Server.

A DADX file defines a Web service by specifying a set of
operations. The definition of an operation consists of a list of
parameters and an action to be performed. The action to
perform is defined using SQL statements or DAD file
references. DADX follows XML syntax to define the Web
service. The operations in a DADX Web service can be
defined by the following operation types:

• SQL operations:

<query> – queries the database.

<update> – performs an update, insert, or delete operation.

<call> – calls stored procedures.

• XML collection operations (requires DB2 XML Extender):

<retrieveXML> – generates XML documents.

<storeXML> – stores XML documents.

For each set of related Web services (Web services that
access the same database), we need to create a group and,
as part of the group, we also create a connection configuration
for the database (see group.properties file). The DADX file is
stored in the directory defined for this group (List.dadx).

For each group we need to create a servlet (the role of this
servlet is to inform the Web server at run-time where the
appropriate DADX document is). This servlet is an instance of
the DxxInvoker servlet that is part of worf-servlets.jar. The
name of this servlet instance should be the same as the name
of the Web service group, which is SampGroup in our case.

To associate the index.html file as the welcome file for the
Web application insert the following lines into your web.xml
file between the <webapp> and </webapp> tags:

<welcome-file-list>

 <welcome-file>index.html</welcome-file>

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

</welcome-file-list>

We can now proceed to package the Web application as a
Web archive or war file by entering the following command.
You will need to be in the WORFSamp directory:

c:\WORFSamp>"c:\Program Files\IBM\websphere\appserver\java\bin\jar" -cvf

SampleWorf.war *

Now you have created the Web application that can be
deployed on an Application Server, start the WebSphere
Administrative Web client by typing the following URL in the
Web browser’s address bar: http://localhost:9090/admin
(assuming you have accepted the default option of port 9090
for the WebSphere Application Server admin server while
installing Application Server and that the admin server is
currently started).

Enter the system user id and login to administer your Application
Server.

1 Click on the Install New Applications link listed under
Applications and provide the following values on the
appropriate screens:

• Local path: c:\WORFSamp\SampleWorf.war

• Context Root: SampleWorf

• Virtual Host: default_host

• Application Name: SampleWorf_war

• Reload Interval in Seconds: 0

• Put a tick in the box SampleWorf.war (Map Virtual
Hosts...)

• Put a tick in the box SampleWorf.war (Map modules
to application...)

• Click on the Finish push button

• After successfully installing the application, click on
the link Save to Master Configuration and then click
on the Save button.

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2 Before we can start the application we need to ensure that
the db2 JDBC drivers are included as part of the
CLASSPATH. To do this, first click on the Application
Servers link under Servers and then click on server1.

On the next screen you will need to scroll down the page
and click on the Process definition link. You will need to
scroll down the next page as well and click on the Java
Virtual Machine link. In the CLASSPATH field, enter
C:\Program Files\IBM\SQLLIB\java\db2java.zip.

Once you have done this you will need to scroll down the
screen and click OK. This will return you to a previous
screen, where you will need to click on Save to apply the
changes to the master configuration.

3 Click on the Enterprise Applications link listed under
Applications. Select the SampleWORF_war and click on
the start button. You should be able to see that the red
cross has changed to a green arrow, indicating that the
Web application has started.

4 Open a new Web browser window and type the following
URL in the address bar: http://localhost/SampleWorf/.

If you analyse the definition of our servlet ‘SampGroup’ you
will see that the urspattern for this servlet is /sample/*. Hence
when Application Server gets the request for /sample/List.dadx,
it invokes the SampGroup servlet. This servlet instance looks
for a directory called SampGroup (its own name) under /WEB-
INF/classes/groups directory. In this directory it searches for
List.dadx and invokes the Web service operation.

If you want to add another operation to the same Web service,
all you need to do is add another operation element into the
List.dadx file and save the file. WORF will automatically pick
up the new operation when you invoke it. Also, if you want to
create another related Web service with one or more operations
in it, you can create a new DADX file similar to this one and
place it under the directory in which the deployed List.dadx is
placed (for example if your WAS root is C:\Program

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Files\IBM\WebSphere\AppServer, this directory would be
C:\Program Files\IBM\WebSphere\AppServer\
i n s t a l l e d A p p s \ < Y O U R - N O D E -
N A M E > \ S a m p l e W O R F _ w a r . e a r \
SampleWORF.war\WEB-INF\classes\groups\SampGroup.
You need not redeploy your Web application. WORF will pick
up the new DADX automatically when the DADX is invoked).

Now look at the requirements DADX has to allow us to call a
stored procedure.

We need to consider that stored procedures can return one or
more result sets. You can include them in the output message.
Metadata for a stored procedure result set must be defined
explicitly in the DADX using the <result_set_metadata>
element. At run-time, you obtain the metadata of the result set.
The metadata must match the definition contained in the
DADX file. Therefore, you can invoke only stored procedures
that have result sets with fixed metadata. This restriction is
necessary in order to have a well-defined WSDL file for the
Web service. A single result set metadata definition can be
referenced by several <call> operations, using the <result_set>
element. The result set metadata definitions are global to the
DADX and must precede all of the operation definition elements.

First look at the <result_set_metadata> element:

• Attributes:

– name – identifies the root element for the result set.

– Rowname – used as the element name for each row
of the result set.

• Children:

– <column> – defines the column. The order of the
columns must match that of the result set returned by
the stored procedure. Each column has a name, type,
and nullability, which must match the result set.

– Attributes:

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

o name – required. This specifies the name of the
column.

o type – required if you do not specify element. It
specifies the type of column.

o element – required if you do not specify type. It
specifies the element of the column.

o as – optional. This provides a name for a column.

o nullable – optional. Nullable is either true or false.
It indicates whether column values can be null.

Next we can look at the <operation> element (the operation
element and its children specify the name of an operation, and
the type of operation the Web service performs):

• Attribute:

– name – a unique string that identifies the operation.
The string must be unique within the DADX file.

• Children (document the operation with the following
element):

– <documentation> – specifies a comment or statement
about the purpose and content of the operation.

– <call> – specifies a call to a stored procedure.

– <SQL_call> – specifies a stored procedure call.

– <parameter> – required when referencing a parameter
in an <SQL_call> element. This specifies a parameter
for an operation. Use a separate parameter element
for each parameter referenced in the operation. Each
parameter name must be unique within the operation.

– Attributes:

o name – the unique name of the parameter.

o type – use the type attribute to specify a simple
type.

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

o kind – specifies whether a parameter passes
input data, returns output data, or does both. The
valid values for this attribute are in, out, and in/out.

o <result_set> – this defines a result set and must
follow any <parameter> elements. The result set
element has a name that must be unique among
all the parameters and result sets of the operation.
It must refer to a <result_set_metadata> element.
One <result_set> element must be defined for
each result set returned from the stored procedure

o Attributes:

i name – a unique identifier for the result sets in
the SOAP response.

ii Metadata – a result set metadata definition in
the DADX file. The identifier must refer to the
name of an element.

To invoke a stored procedure we need to do the following three
things:

• Edit the DADX document.

• Create the stored procedure.

• Edit the index.html welcome page so that we can execute
the new stored procedure.

DB2 AS A WEB SERVICE CONSUMER

Web service consumer User-Defined Functions (UDFs) are
provided as part of fix pack 2 for DB2 V8. These UDFs enable
databases to directly invoke Web services using SQL. This
eliminates the need to transfer data between Web services
and the database, so the result is better performance. The
Web services consumer converts existing WSDL interfaces
into DB2 table or scalar functions.

The prerequisite is to enable DB2 XML Extender and register

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

five user-defined functions. From the DB2 Command Window
enter:

• db2 connect to sample

• dxxadm enable_db sample

• db2enable_soap_udf -n SAMPLE -u db2admin -p
db2admin.

To make sure that you enabled the database correctly ensure
that you have the following UDFs defined:

• db2xml.soaphttpv (VARCHAR(256), VARCHAR(256),
VARCHAR(3072))

• db2xml.soaphttpv (VARCHAR(256), VARCHAR(256),
CLOB(1M))

• db2xml.soaphttpc (VARCHAR(256), VARCHAR(256),
varchar(3072))

• db2xml.soaphttpc (VARCHAR(256), VARCHAR(256),
CLOB(1M))

• db2xml.soaphttpcl (VARCHAR(256), VARCHAR(256),
varchar(3072)).

Also ensure that db2soapudf.dll is copied to the sqllib/function
directory of your DB2 installation.

The db2xml.soaphttp() is a DB2 UDF that composes a SOAP
request, posts the request to the service endpoint, receives
the SOAP response, and returns the content of the SOAP
body. The function depends on the SOAP body being a
VARCHAR() or a CLOB().

· db2xml.soaphttpv returns VARCHAR():

db2xml.soaphttpv (endpoint_url VARCHAR(256),

 soap_action VARCHAR(256),

 soap_body VARCHAR(3Ø72)) | CLOB(1M))

 RETURNS VARCHAR(3Ø72)

· db2xml.soaphttpc returns CLOB():

db2xml.soaphttpc (endpoint_url VARCHAR(256),

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 soapaction VARCHAR(256),

 soap_body VARCHAR(3Ø72) | CLOB(1M))

 RETURNS CLOB(1M)

· db2xml.soaphttpcl returns CLOB() as locator:

db2xml.soaphttpcl(endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 soap_body varchar(3Ø72))

 RETURNS CLOB(1M) as locator

DB2 requires the following information to build a SOAP
request and receive a SOAP response:

• Service endpoint, eg http://services.xmethods.net/soap/
servlet/rpcrouter.

• SOAP action URI reference (it is optional and may be null
string, ie ‘’).

• XML content of SOAP body, which is name of operation
with request namespace URI, encoding style, and input
arguments.

HOW TO MAP THE ELEMENTS OF WSDL TO PARAMETERS OF
WEB SERVICE CONSUMER FUNCTIONS

The WSDL for the ‘Delayed Stock Quote Request’ Web
service is available at http://services.xmethods.net/soap/
urn:xmethods-delayed-quotes.wsdl and we will use this file.

The service section of the WSDL contains the port definition
for the SOAP interface:

<port name='net.xmethods.services.stockquote.StockQuotePort'

binding='tns:net.xmethods.services.stockquote.StockQuoteBinding'>

 <soap:address location='http://64.124.14Ø.3Ø:9Ø9Ø/soap'/>

</port>

The location of soap:address shows the service endpoint of
the Web service. This is the first parameter of the Web service
consumer functions . If there are multiple ports for different
bindings, you have to find the port with a SOAP binding:

<soap:binding transport=http://schemas.xmlsoap.org/soap/http .../>.

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The binding section of the WSDL lists all the operations of the
service.

<binding name='net.xmethods.services.stockquote.StockQuoteBinding'

type='tns:net.xmethods.services.stockquote.StockQuotePortType'>

 <soap:binding style='rpc'transport='http://schemas.xmlsoap.org/soap/

http'/>

 <operation name='getQuote'>

<soap:operation soapAction='urn:xmethods-delayedquotes#getQuote'/>

...

...

 </operation>

</binding>

The soapAction of the desired Web service operation is the
value of the second parameter of the Web service consumer
functions.

The portType definition provides the structure of the soap
body. The portType may define many operations. Each
operation typically contains an input and an output message
element. Occasionally it may contain fault elements too.

<portType name='net.xmethods.services.stockquote.StockQuotePortType'>

 <operation name='getQuote' parameterOrder='symbol'>

 <input message='tns:getQuoteRequest1'/>

 <output message='tns:getQuoteResponse1'/>

 </operation>

</portType>

You can construct the structure of the soap body using the
operation element of the portType. The name of the operation
becomes the top-level node. You then need to flatten out the
input or output message element to get the rest of the
structure. Thus in our case the getQuote forms the top-level
element and the flattening of input message getQuoteRequest1
yields the second level element symbol. In many cases this
flattening of the input or output message may yield quite a
complex structure. Thus in our case the structure of the soap
body becomes:

<stock:getQuote xmlns:stock="urn:xmethods-delayed-quotes"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <symbol xsi:type="xsd:string"> SYMBOL name to be supplied</symbol>

</stock:getQuote>

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

This is the third parameter of the Web service consumer
functions for our example. Similarly you can find out the
structure of the result by flattening out the output message
element. In our case it looks as follows:

<n:getQuoteResponse xmlns:n="urn:xmethods-delayed-quotes">

 <Result xsi:type="xsd:float">QUOTE VALUE RETURNED</Result>

</n:getQuoteResponse>

The list below provides hints for finding the different parameter
values for the Web service consumer functions. It specifies
the parameter and the Xpath to look for:

1 Service endpoint URL – /definition/port/soap:address/
@location.

2 SOAP action – /definitions/binding/soap:binding/operation/
soap:operation/@soapAction.

3 SOAP body – /definitions/portType/operation.

So, the Web service consumer function for accessing the
stock quote of IBM is:

DB2 VALUES db2xml.soaphttpv (

'http://64.124.14Ø.3Ø:9Ø9Ø/soap',

'urn:xmethods-delayed-quotes#getQuote',

varchar ('<stock:getQuote xmlns:stock="urn:xmethods-delayed-quotes"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<symbol xsi:type="xsd:string">IBM</symbol>

</stock:getQuote>'));

If you are running DB2 UDB Version 8.1 you may as well use
SQL/XML query to construct the SOAP body. The following
example is the same as the previous one except that it is
written in SQL/XML and uses the overloaded soaphttpv function
that takes the soap body as a CLOB:

DB2 VALUES db2xml.soaphttpv (

'http://64.124.14Ø.3Ø:9Ø9Ø/soap',

'urn:xmethods-delayed-quotes#getQuote',

xml2clob(XMLElement(name "getQuote",

XMLAttributes('urn:xmethods-delayed-quotes' AS "xmlns:stock"),

XMLElement(name "symbol",'IBM'))));

Instead of calling the db2xml.sopahttpv(...) every time we

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

make a stock quote request, we create a wrapper UDF that
takes only the stock symbol as a parameter and internally
calls the db2xml.soaphttpv(...). Let us define our wrapper
UDF getStockQuote, which takes only one parameter, namely
symbol, as a VARCHAR(256) and returns Result as FLOAT.
The result of the call to db2xml.soaphttpv is a CLOB. Hence
we extract the value contained in the Result element pointed
to by the Xpath ‘/*/Result’.

CREATE FUNCTION db2admin.getStockQuote (symbol VARCHAR(1ØØ))

RETURNS DECIMAL(5,2) SPECIFIC xmethods_getQuote

LANGUAGE SQL CONTAINS SQL

EXTERNAL ACTION NOT DETERMINISTIC

RETURN

db2xml.extractREAL(

db2xml.xmlclob(

db2xml.soaphttpv(

'http://64.124.14Ø.3Ø:9Ø9Ø/soap',

'urn:xmethods-delayed-quotes#getQuote',

varchar('<m:getQuote xmlns:m="urn:xmethods-delayed-quotes"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<symbol xsi:type="xsd:string">' || symbol || '</symbol> </m:getQuote>'

))), '/*/Result');

This UDF can be invoked in the DB2 command line as follows:

DB2 VALUES db2admin.getStockQuote('IBM')

DB2 also allows the writing of UDFs that invoke Web services
returning multiple results. In such cases we return a table with
each row containing one result element.

In all the examples above we have used a text editor to create
the DADX, XML, HTML, and properties files. There are,
however, tools that can be used to make these tasks a little
easier, namely WebSphere Studio Application Developer
(WSAD).

WSAD can create the DADX files for you as well as check the
WSDL to verify the external Web services. It can also be used
to create the wrapper UDF. Also, it is worth noting that
currently DB2 Web services are supported only with
WebSphere Application Server and the Apache Tomcat
Application Server.

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Why choose DB2 Web services? You will be able to:

• Integrate data between two organizations without having
to develop complex applications.

• Access a Web service from SQL.

• Consolidate Web services output in a DB2 database.

• Access Web services from any programming language
that supports SQL – for example C, PL/I, COBOL.

SOURCE CODE

Table.txt (sample data for import in demo table)
"DB2",105,2001-07-01,"Nikola Lazovic","Simplifying Occasional, Regular

and Periodic Tasks of Database Administrator","One of main requirements

at our installation is full availability of data to our customers at

24x7 schedule.

 Under these conditions 'maintenance window' is really narrow and is

limited to the periods of the lowest system activity..."

"DB2",118,2002-08-01,"Nikola Lazovic","DB2 for OS390 V5 and Federated

Systems","A DB2 federated system is a special type of database

management system (DBMS) that provides heterogeneous distributed query

capability. With DB2 UDB V7.2 and separate product DB2 Relational

Connect, it is possible with single SQL query to access data located on

different platforms, both IBM and non-IBM. Distributed query can

reference data from multiple sources such as DB2 family database, OLE DB

source, Oracle, Sybase and/or Microsoft SQL Server database..."

"DB2",119,2002-09-01,"Nikola Lazovic","DB2 Recovery Log - Detailed

Analysis of User Update Activities","Our computer system serves large

number of customers, so online transactions triggered from a wide

network of classic terminals, Internet, and devices like answering

machines and ATMs, are processed round-the-clock, and the large-scale

batch work is carried out as well. In this environment there are times

when the need arises to find out who and when changed some concrete

data..."

"CICS",196,2002-03-01,"Nikola Lazovic","Maintenance of CICS DB2 entries

and transactions","At our installation we have CICS Transaction Server

for OS/390 V 1.2 and DB2 V 5.1. We have developed tool for

administration of DB2 entries and transactions. The REXX execs store

information from CSD file into DB2 tables, prepare job for migration

purposes and use generated ISPF tables allowing online update of CICS

resource definitions..."

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Table.sql
-- Before proceeding, you should:

-- Start the database manager (with the db2start command).

-- Create the "sample" database (with the db2sampl command).

-- This file can be invoked from Command Window with the following

command:

-- db2 -tvf Table.sql

CONNECT TO SAMPLE;

CREATE TABLE DB2ADMIN.XEPHON (JOURNAL CHARACTER (1Ø) NOT NULL ,

JOURNAL_NO

SMALLINT NOT NULL , JOURNAL_DATE DATE NOT NULL , AUTHOR CHARACTER (3Ø)

NOT

 NULL , TITLE CHARACTER (1ØØ) NOT NULL , ABSTRACT VARCHAR (8ØØ) NOT

NULL) ;

COMMENT ON TABLE DB2ADMIN.XEPHON IS 'Test table for web service';

COMMENT ON DB2ADMIN.XEPHON (AUTHOR IS 'Contributor name', JOURNAL IS

'Kind of

 journal (DB2, CICS, ...)', JOURNAL_DATE IS 'When journal was published

(mm-Ø1-

yyyy)', ABSTRACT IS 'Abstract of article', TITLE IS 'Title of article',

JOURNAL_NO IS 'Journal number') ;

GRANT SELECT,INSERT,UPDATE,DELETE ON TABLE DB2ADMIN.XEPHON TO PUBLIC;

IMPORT FROM Table.txt OF DEL MODIFIED BY CHARDEL"" COLDEL, DATESISO

DECPT.

METHOD P (1, 2, 3, 4, 5, 6) MESSAGES Table.msg INSERT INTO

DB2ADMIN.XEPHON

(JOURNAL, JOURNAL_NO, JOURNAL_DATE, AUTHOR, TITLE, ABSTRACT);

CONNECT RESET;

listauthor.sql
-- This file can be invoked from Command Window with the following

commands:

-- db2 connect to sample

-- db2 -td@ -vf listauthor.sql

-- db2 connect reset

CREATE PROCEDURE DB2ADMIN.listauthor (IN AUTHOR CHAR(3Ø))

SPECIFIC DB2ADMIN.listauthor

DYNAMIC RESULT SETS 1

LANGUAGE SQL

--

-- SQL Stored Procedure

--

P1: BEGIN

-- Declare cursor

DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT JOURNAL, JOURNAL_NO, JOURNAL_DATE, TITLE, ABSTRACT

FROM DB2ADMIN.XEPHON

WHERE AUTHOR = listauthor.AUTHOR

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

ORDER BY JOURNAL ASC, JOURNAL_NO ASC;

-- Cursor left open for client application

OPEN cursor1;

END P1 @

index.html
<! *** >

<! DB2 as a Web Service provider – welcome page >

<! Folder: C:\WORFSamp >

<! *** >

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.Ø1 Transitional//EN">

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=windows-

125Ø">

<META name="GENERATOR" content="IBM WebSphere Studio Homepage Builder

V6.Ø.Ø Trial for Windows">

<META http-equiv="Content-Style-Type" content="text/css">

<title> DB2 as a Web Service provider </title>

</head>

<body>

<H1 align="center"> DB2 as a Web service provider </H1>

<HR width="1ØØ%">

<p>

1. Test the "List Xephon" Web Service</

B> >

 list_Xephon

<FORM method="post" action="sample/List.dadx/insertXephon">

 <TABLE border="1">

 <TBODY>

 <TR>

 <TD colspan=6>2. Test the "Insert

Xephon" Web Service

 (enter a Journal, Journal number, Journal

 date, Author, Title and Abstract and click the Execute

 button)

 </TD>

 </TR>

 <TR>

 <TD>Journal</TD>

 <TD>Journal number</TD>

 <TD>Journal date</TD>

 <TD>Author</TD>

 <TD>Title</TD>

 <TD>Abstract</TD>

 </TR>

 <TR>

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

<TD height="25" valign="top"><INPUT type="text" name="journal" size="1Ø"

 maxlength="1Ø" value="DB2"></TD>

 <TD height="25" valign="top"><INPUT type="text" name="journalno"

size="5"

 maxlength="5" value="666"></TD>

 <TD height="25" valign="top"><INPUT type="text" name="journaldate"

 size="1Ø" maxlength="1Ø" value="2ØØ5-Ø1-Ø1"></TD>

 <TD height="25" valign="top"><INPUT type="text" name="author" size="3Ø"

 maxlength="3Ø" value="Nikola Lazovic"></TD>

 <TD height="25" valign="top"><TEXTAREA rows="2" cols="3Ø"

name="title">DB2

 Web Services</TEXTAREA></TD>

 <TD height="25" valign="top"><TEXTAREA rows="5" cols="5Ø"

 name="abstract">Web services represent the next level of function

 and efficiency in e-business. The Web services infrastructure is

 based on the eXtensible Markup Language (XML). Web services are a

 series of standards and evolving standards that are being designed

and specified by the Worldwide Web Consortium (W3C) to foster

cross-platform program-to-program communications. More pecifically,

the W3C has currently specified a template (Web Services

Description Language - WSDL) and a procedure call protocol (a

programmatic interface called Simple Object Access Protocol - SOAP)

as 'official' Web services standards...

</TEXTAREA></TD>

 </TR>

 <TR>

 <TD height="35"><INPUT type="submit" name="Submit"

 value="Execute"><INPUT type="reset" value="Reset"></TD>

 </TR>

 </TBODY>

 </TABLE>

</FORM>

<FORM method="post" action="sample/List.dadx/ListAuthor">

 <TABLE border="1">

 <TBODY>

 <TR>

 <TD>3. Test the "List Author" Web

 Service
 (enter a name of a

 contributor and click the Execute button)</TD>

 </TR>

 <TR>

 <TD height="25"><INPUT type="text" name="author" size="3Ø"

 maxlength="3Ø" value="Nikola Lazovic"></TD>

 </TR>

 <TR>

 <TD height="35"><INPUT type="submit" name="Submit"

 value="Execute"><INPUT type="reset" value="Reset"></TD>

 </TR>

 </TBODY>

 </TABLE>

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

</FORM>

<FORM method="post" action="sample/List.dadx/updateXephon">

 <TABLE border="1">

 <TBODY>

 <TR>

 <TD colspan=4>4. Test the "Update

 Xephon" Web Service

 (enter a Abstract, a Journal, a Journal

number, a Author and click the Execute button)</TD>

 </TR>

 <TR>

 <TD>Abstract</TD>

 <TD>Journal</TD>

 <TD>Journal number</TD>

 <TD>Author</TD>

 </TR>

 <TR>

 <TD height="25" valign="top"><TEXTAREA rows="5" cols="5Ø"

 name="abstract">Web services represent the next level of function

 and efficiency in e-business. The Web services infrastructure is

 based on the eXtensible Markup Language (XML). Web services are a

 series of standards and evolving standards that are being designed

 and specified by the Worldwide Web Consortium (W3C) to foster

 cross-platform program-to-program communications. More

 specifically, the W3C has currently specified a template (Web

 Services Description Language - WSDL) and a procedure call protocol

 (a programmatic interface called Simple Object Access Protocol –

 SOAP) as 'official' Web services standards...

</TEXTAREA></TD>

 <TD height="25" valign="top"><INPUT type="text" name="journal"

 size="1Ø" maxlength="1Ø" value="DB2"></TD>

 <TD height="25" valign="top"><INPUT type="text" name="journalno"

 size="5" maxlength="5" value="666"></TD>

 <TD height="25" valign="top"><INPUT type="text" name="author"

 size="3Ø" maxlength="3Ø" value="Nikola Lazovic"></TD>

 </TR>

 <TR>

 <TD height="35"><INPUT type="submit" name="Submit"

 value="Execute"><INPUT type="reset" value="Reset"></TD>

 </TR>

 </TBODY>

 </TABLE>

</FORM>

<FORM method="post" action="sample/List.dadx/deleteXephon">

 <TABLE border="1">

 <TBODY>

 <TR>

 <TD colspan=3>5. Test the "Delete

 Xephon" Web Service

 (enter a Journal, a Journal number, a

 50 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 Author and click the Execute button)</TD>

 </TR>

 <TR>

 <TD>Journal</TD>

 <TD>Journal number</TD>

 <TD>Author</TD>

 </TR>

 <TR>

 <TD height="25"><INPUT type="text" name="journal" size="1Ø"

 maxlength="1Ø" value="DB2"></TD>

 <TD height="25"><INPUT type="text" name="journalno" size="5"

 maxlength="5" value="666"></TD>

Editor’s note: this article will be concluded next month.

Nikola Lazovic
DB2 System Administrator
Postal Savings Bank (Serbia and Montenegro) © Xephon 2005

IBM has introduced DB2 Anonymous
Resolution, which allows corporate users to
share information with each other and
government agencies without having to reveal
private details. The technology is designed to
address the broad range of security problems
involved in handling personal information in
markets such as health care, financial services,
and national security.

The technology is an extension of IBM’s
analytics software, which uses irreversible
digital signatures and other techniques for
correlating the data while it remains in an
“anonymized” form. This enhances privacy and
prevents data from being observed in its original
form.

For further information contact:
URL: www-306.ibm.com/software/data/db2/
eas/anonymous.

* * *

AdventNet has announced an update for its
Web applications management software,
ManageEngine Applications Manager, which
provides support for DB2 monitoring and JBoss
4 monitoring.

Applications Manager is Web application
management software providing integrated
application, server, and systems monitoring. It
provides in-depth monitoring of application
servers (WebLogic, WebSphere, JBoss,
Tomcat), databases (DB2, SQL Server,
Oracle, MySQL), custom Java, JMX, J2EE
applications, and Web sites with fault
management and notification capabilities.

Applications Manager is available in three
editions: a free edition, which can manage ten
applications; a professional edition, which helps

DB2 news

small and medium sized businesses; and an
enterprise edition with an unlimited users pack.

For further information contact:
URL: manageengine.adventnet.com/products/
applications_manager/download.html.

* * *

HiT Software has announced Version 4.1 of
Allora, its bidirectional database to XML
transformation engine.

New in Allora 4.1 is a multiple SELECT feature.
Moving on from XML transformations using a
single SQL query, it now offers an option to
work with multiple sub-maps that are then
joined in real-time with XSL, a W3C language
for transforming XML documents.

Allora 4.1 is certified to work with over 20
different databases, including DB2

For further information contact:
URL: www.hitsw.com/products_services/
xmlplatform.html.

* * *

SoftTree Technologies has released Version
2.5 of DB Mail for DB2, Oracle, Microsoft
SQL Server, Sybase ASE, and Sybase ASA
databases.

DB Mail automates common e-business
functions and provides a unified messaging
platform for sending e-mail, voice, fax, network,
and SMS messages. It enables messages to be
sent directly from a database system.

For further information contact:
URL: www.softtreetech.com.

* * *

x xephon

	DB2 UDB for LUW 8.2 - an INSERT/SELECT/DELETE scenario
	DB2 Stinger and HADR
	Managing DB2 for z/OS through WAP and Web environments - part 2
	DB2 Web services
	DB2 news

