
© Xephon plc 1998

October 1998

72

3 Preparing for DB2 Version 6
9 Peculiarities of the CREATE

statement clauses
24 Simulating a production

environment – part 2
45 Character versus numeric data

types
46 January 1995 – October 1998 index
48 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38030
From USA: 01144 1635 38030
E-mail: xephon@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
Articles published in DB2 Update are paid
for at the rate of £170 ($250) per 1000 words
and £90 ($140) per 100 lines of code for
original material. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors.

DB2 Update on-line
Code from DB2 Update can be downloaded
from our Web site at http://www.xephon.
com; you will need the user-id shown on
your address label.

© Xephon plc 1998. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Robert Burgess

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£245.00 in the UK; $365.00 in the USA and
Canada; £251.00 in Europe; £257.00 in
Australasia and Japan; and £255.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1994 issue, are available separately
to subscribers for £21.00 ($31.00) each
including postage.

 3© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

Preparing for DB2 Version 6

IBM announced DB2 Version 6 at the International DB2 User Group
in May1998. As a part of this announcement, IBM is renaming the
product DB2 Universal Database for OS/390, for the sake of
consistency across its DB2 product line. IBM is planning a general
availability date of June 1999.

This new release includes many new and exciting features including
large objects, triggers, user-defined functions, user-defined data types,
and more. However, an important item for every DB2 shop to
understand is what is not in DB2 Version 6. For the first time IBM is
removing features from DB2 – and you will need to prepare your DB2
subsystems for Version 6 by removing the soon-to-be-unsupported
features from your installation. Let’s examine each of the features that
will be removed as from DB2 Version 6.

INDEXES

Two types of index are available to DB2 – type 1 and type 2.
Type 2 indexes were introduced with DB2 Version 4 and should be the
standard index type implemented in your shop. Most organizations
already favour the creation of type 2 indexes over type 1 indexes
because:

• Type 2 indexes eliminate index locking (the predominant cause
of contention in most pre-Version 4 DB2 applications).

• Type 2 indexes do not use index subpages.

• Type 2 indexes are the only type supported for ASCII encoded
tables.

• Many newer DB2 features cannot be used unless Type 2 indexes
are used. These features include: row-level locking, data sharing,
full partition independence, uncommitted reads, UNIQUE
WHERE NOT NULL, and CPU and sysplex parallelism.

From DB2 Version 6, type 1 indexes will no longer be supported by
DB2. All your indexes must be type 2 before migrating to DB2
Version 6. It is wise to begin this migration as soon as possible because

 4 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

of the benefits outlined above. If you are on DB2 Version 3 or an
earlier release you cannot implement type 2 indexes because they are
not supported. In this case you should move to DB2 Version 4 or a later
release as soon as possible to begin migrating your indexes to type 2
in preparation for DB2 Version 6.

To find all type 1 indexes, issue the following SQL statement:

SELECT CREATOR, NAME
FROM SYSIBM.SYSINDEXES
WHERE INDEXTYPE = ' ';

SHARED READ-ONLY DATA

Shared Read-Only Data (SROD) was provided as a new feature of
DB2 in Version 2.3. SROD provided a way for the same DB2 database
to be read by multiple DB2 subsystems without implementing
distributed data or sysplex data sharing. However, the shared object
must be started ACCESS(RO) and all data access is read-only. When
the data needs to be updated only one of the subsystems, the one
marked as the owner, can update the data.

SROD is complex to implement, limited in functionality, and not
frequently implemented. From DB2 Version 6, SROD support is
removed. To support SROD-like functionality you will need to
convert to data distribution or data sharing. To find all SROD
databases, issue the following SQL statement:

SELECT NAME, BPOOL, ROSHARE
FROM SYSIBM.SYSDATABASE
WHERE ROSHARE IN ('O', 'R');

RECOVER INDEX

Through DB2 Version 5, the RECOVER INDEX utility is used to re-
create indexes from current data. RECOVER INDEX scans the table
on which the index is based and regenerates the index based on the
actual data. Indexes are always recovered from actual table data, not
from image copy and log data.

With DB2 Version 6, the function of the RECOVER INDEX utility
changes. Instead of rebuilding indexes from the current data,
RECOVER INDEX will actually recover the index by reading an
image copy of the index dataset. So, with DB2 Version 6 you can use

 5© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

the COPY utility to make back-ups of DB2 indexes and the RECOVER
utility to restore them.

To provide equivalent functionality for re-creating an index from the
current data, IBM provides a new utility called REBUILD INDEX.
The REBUILD INDEX utility works in exactly the same way as the
RECOVER INDEX used to function.

Organizations should begin changing all of their current RECOVER
INDEX jobs to use REBUILD INDEX syntax instead. The REBUILD
INDEX syntax is available in DB2 Version 5 and Version 4 (with PTF
PQ09842). After you migrate to DB2 Version 6, the RECOVER
INDEX utility will cease to function if the proper index back-up
copies are not available to use during recovery.

HOST VARIABLES WITHOUT COLONS

DB2 programmers know that host variables used in SQL statements
in a program should be preceded by a colon. So, if a host variable is
named ‘HV’, it should be coded in the SQL statement as ‘:HV’.
However, many programmers do not know that, through Version 5,
DB2 programs tolerate host variables that are not preceded by a colon.
This feature ends as of DB2 Version 6.

The reasoning from IBM for eliminating this feature is that it is getting
too difficult for DB2 to differentiate host variables from SQL. This is
because of the rising complexity of SQL and the new features being
added to DB2. Therefore, for DB2 Version 6 and onward, all host
variables must be prefixed with a colon.

This change should not impact many programs because most
organizations have DB2 standards that dictate all host variables will
begin with a colon. However, because DB2 has tolerated host variables
without a colon through DB2 Version 5, you should inspect all DB2
SQL statements in application programs to ensure compliance prior
to migrating to DB2 Version 6.

DATASET PASSWORDS

A little-used feature of DB2 is the ability to provide security via
dataset passwords. Using the DSETPASS key word of the CREATE

 6 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

TABLESPACE and CREATE INDEX statement, it is possible to
password-protect DB2 datasets.

This feature disappears with DB2 Version 6. If you need to protect
your DB2 datasets outside DB2 security, you can use RACF,
CA-ACF2, CA-Top Secret, or whatever security package you have
installed at your site to accomplish this.

To find datasets that are password-protected using DSETPASS, issue
the following SQL statement:

SELECT 'INDEX ', CREATOR, NAME
FROM SYSIBM.SYSINDEXES
WHERE DSETPASS <> ' '
UNION ALL
SELECT 'TSPACE', DBNAME, NAME
FROM SYSIBM.SYSTABLESPACE
WHERE DSETPASS <> ' '

STORED PROCEDURE REGISTRATION

After coding a stored procedure, you must register information about
that stored procedure in the DB2 system catalog. This process is in
sharp contrast to the manner in which other database objects are
recorded in the system catalog. Typically, when an object is created,
DB2 automatically stores the meta-data description of that object in
the appropriate DB2 Catalog tables. For example, to create a new table
the CREATE TABLE statement is issued and DB2 automatically
records the information in multiple system catalog tables
(SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and possibly
SYSIBM.SYSFIELDS).

Because stored procedures are not created within DB2, nor are they
created using DDL, the database administrator must use SQL INSERT
statements to populate the SYSIBM.SYSPROCEDURES system
catalog table with the meta-data for the stored procedure.

The following SQL provides an example of an INSERT to register a
stored procedure:

INSERT INTO SYSIBM.SYSPROCEDURES
 (PROCEDURE, AUTHID, LUNAME, LOADMOD, LINKAGE,
 COLLID, LANGUAGE, ASUTIME, STAYRESIDENT,
 IBMREQD, RUNOPTS, PARMLIST, RESULT_SETS,
 WLM_ENV, PGM_TYPE, EXTERNAL_SECURITY,

 7© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 COMMIT_ON_RETURN)
 VALUES
 ('PROCNAME', ' ', ' ', 'LOADNAME', ' ',
 'COLLØØØ1', 'COBOL', Ø, 'Y',
 'N', ' ', 'NAME CHAR(2Ø) INOUT', 1,
 ' ', 'M', 'N', 'N');

This SQL statement registers a stored procedure written in COBOL
and named PROCNAME with a load module named LOADNAME.
It uses a package with a collection-id of COLL0001. Any location can
execute this procedure. The program stays resident and uses the DB2
SPAS (not Workload Manager), and no limit is set on the amount of
time it can execute before being cancelled. Furthermore, the stored
procedure uses one input/output parameter, and the parameter cannot
be null.

This method of registering stored procedures changes in DB2
Version 6. Instead of the INSERT statement, CREATE and ALTER
statements are provided for registering stored procedures to the DB2
system catalog. Additionally, a new catalog table named
SYSIBM.SYSROUTINES replaces SYSIBM.SYSPROCEDURES.
This new table will store information on triggers, user-defined
functions, and stored procedures. The meta-data for all these ‘routines’
will be provided to the system catalog by means of DDL statements.

A number of organizations have implemented processes for creating
and updating stored procedures that include registration. These
processes will need to be modified for DB2 Version 6. Additionally,
if your organization uses a third party tool to register or change stored
procedure information, be sure that it will be changed to support the
new DB2 Version 6 DDL syntax.

DB2 PRIVATE PROTOCOL DISTRIBUTED DATA

Distributed data support was added to DB2 as of Version 2.2. At that
time, IBM had not formulated its DRDA framework. In DB2 Version
2.2, Distributed Unit of Work (DUW) capability was provided solely
through a private protocol which did not support any industry standards.
As of DB2 Version 3, both the private protocol DUW and full DRDA
DUW is supported. Private protocol is also referred to as system-
directed access and DRDA protocol is also referred to as application-
directed access.

 8 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Application-directed data access is the more powerful of the two
options. With application-directed access, explicit connections are
required. Furthermore, application-directed distributed access
conforms to the DRDA standard.

However, DB2 also provides system-directed access to distributed
DB2 data. The system-directed access is less flexible than application-
directed access because:

• It does not use the open, DRDA protocol, but instead uses a DB2-
only private protocol.

• It is viable for DB2-to-DB2 distribution only.

• Connections cannot be explicitly requested, but are implicitly
performed when distributed requests are initiated.

Although system-directed access does not conform to DRDA, it does
provide the same levels of distributed support as application-directed
access – remote request, RUW, and DUW. System-directed access is
requested using three-part table names.

As of DB2 Version 6, three part names can be used with DRDA. This
provides static SQL support for distributed requests using three-part
names. DB2 private protocol distribution is still available with DB2
Version 6, but IBM has indicated that it will be removed in a future
release – as such, you should consider migrating away from DB2
private protocol distribution.

SYNOPSIS

Version 6 is the first release of DB2 to take features out of the product.
Organizations must understand what is being removed, know how to
provide similar functionality with other DB2 features, and develop a
plan to migrate away from the non-supported features. It is not too
early to begin planning and migration now. The sooner you remove
the old technology, the sooner you can move to the latest and greatest
version of DB2 when it becomes available.

Craig S Mullins
VP Operations
PLATINUM Technology (USA) © Craig S Mullins 1998

 9© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

Peculiarities of the CREATE statement clauses

This article will discuss the peculiarities of the CREATE statement
clauses in DB2 for MVS Versions 4.1 and 5.1 that should be taken into
consideration by the DBA. In addition, environmental considerations
(such as DASD device geometry) as they pertain to the CREATE
clauses will be presented.

DB2/MVS Version 4.1 and 5.1 are very similar in functionality and
features. Version 5.1 has several SQL changes but only a few of these
are directly related to indexes and tablespaces. In DB2/MVS Version
5.1, specific changes of interest were introduced to the following:

• The LARGE clause for the CREATE TABLESPACE statement.

• The PIECESIZE clause for the ALTER and CREATE INDEX
statements.

• The CCSID clause for the CREATE DATABASE and CREATE
TABLESPACE statements.

The most important clauses, and the peculiarities to be observed while
creating DB2 tablespaces and/or indexspaces, are discussed below.

THE USING CLAUSE

The USING clause in the CREATE tablespace/indexspace statements
indicates whether the dataset(s) that will support the tablespace/
indexspace are to be defined by the DBA (user) or by DB2 itself. This
is accomplished by specifying either a USING clause with the VCAT
parameter (for user defined datasets) or the STOGROUP parameter
(for DB2 managed datasets). If DB2 is to define the dataset(s), the
USING STOGROUP clause could be followed with space allocation
parameters (PRIQTY, SECQTY) and an ERASE rule. If the USING
clause is not specified at all, DB2 will define the dataset(s) using the
default STOGROUP for the database, with default values for PRIQTY,
SECQTY, and ERASE.

Most MVS installations use IBM’s DFSMS/SMS, a product with
multiple functional components such asDFSMS/DFP, DFSMS/DSS,

 10 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

and DFSMS/HSM. This subsystem and its components can manage
all or part of the DB2 datasets in your installation, depending on how
it is implemented.

All VSAM Linear Datasets (LDSs) are processed by the VSAM part
of DFSMS/DFP. When the USING clause is followed by the VCAT
parameter, the DBA (user) is responsible for requesting the allocation
of the required VSAM LDS using IDCAMS statements. When the
USING clause is followed by the STOGROUP parameter, the DB2
DBMS will allocate the required VSAM LDS – applying the parameters
specified in the USING clause, such as the PRIQTY and SECQTY.

There are a couple of potential advantages of using user-defined
datasets, such as having the certainty of knowing where the datasets
are being placed (which can be crucial for performance expectations),
as well as having a tighter control on DASD utilization. These
potential advantages can be reproduced with a careful implementation
of DB2-managed datasets in connection with DFSMS.

DB2-managed datasets have two flavours – non-SMS-managed and
SMS-managed. Non-SMS-managed implies that specific DASD
volumes are assigned to DB2 storage groups (STOGROUPs). These
specific DASD volumes have to be monitored by the DBA to ensure
that sufficient space is available for application growth and normal
operations, such as execution of the REORG utility, which deletes and
recreates the underlying VSAM LDS.

SMS-managed implies that there are certain ‘agreements’ between
DB2 and SMS on how to allocate and expand DB2 VSAM LDSs.
These ‘agreements’ are supported by the DFSMS ACS routines,
usually under the jurisdiction of your storage administration friends.

DB2 datasets managed by SMS is the environment that should be used
in medium to large DB2 shops – although it may feel a bit uncomfortable
not knowing where your DB2 datasets are placed out there in the
DASD farm. It is also difficult to predict, monitor, and control dataset
performance in an ever-changing environment. But having SMS-
managed DB2 datasets certainly takes away a lot of the mundane work
associated with dataset placement and space administration. It is also
important to keep in mind that IBM and third-party companies are

 11© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

continuously improving the functionality and capabilities of DFSMS
and related system software.

The peculiarity of this item is that, for user-defined DB2 tablespaces
and indexspaces, no PRIQTY or SECQTY values can be specified in
the DDL. Thus, in addition to creating the DDL, the DBA must
generate the IDCAMS statements necessary to create the VSAM
LDSs that correspond to the CREATE DDL statements. For additional
information on user-defined VSAM LDS, refer to the IBM publication
DB2 Administration Guide, Volume 1, as well as the Define Cluster
command in DFSMS/MVS: Access Method Services for the Integrated
Catalog.

TYPES OF TABLESPACES

DB2/MVS has three types of tablespace – simple, segmented, and
partitioned. The presence of the SEGSIZE or NUMPARTS clauses, or
neither of them, determines the tablespace type. When neither the
SEGSIZE nor NUMPARTS clause is specified, the tablespace to be
created is a simple one. When the SEGSIZE is specified, the tablespace
to be created is a segmented one. When NUMPARTS is specified, the
tablespace to be created is partitioned.

In DB2 Version 4.1, the maximum size for all these tablespaces is
64GB. The type of tablespace to be used will dictate the maximum
VALID primary quantity (PRIQTY) value that can be specified in the
CREATE statement. In DB2/MVS Version 4.1, simple and segmented
(non-partitioned) tablespaces can use a maximum PRIQTY value of
2GB; partitioned tablespaces can use a maximum PRIQTY value
ranging from one to four gigabytes, depending on the number of
partitions specified (from one to 64 partitions).

In DB2 Version 5.1, with the introduction of the CREATE LARGE
TABLESPACE, the maximum number of partitions for a partitioned
tablespace (only) has changed from 64 to 256, and the maximum size
of each partition now can be 4GB, regardless of the number of
partitions. These changes allow DB2 large partitioned tablespaces to
be 1TB in size.

The peculiarity for this item is that, regardless of the type of tablespace

 12 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

you are creating, you can specify a PRIQTY of 4GB (this can happen
in both DB2 Version 4.1 and Version 5.1). Assuming that you have
DASD devices with enough space, DFSMS will allocate a 4GB
VSAM LDS, but DB2 will only use what it is supposed to. For
example, for a non-partitioned tablespace, if you specify a PRIQTY
of 3GB, DB2 will only use the first two gigabytes of the VSAM LDS
– the rest will always remain unused. This waste will be compounded
every time DB2 requests a new primary extent on another DASD
volume with the 3GB PRIQTY. As you can see, this peculiarity can be
very costly and can easily go undetected. I have been told that this
problem will be corrected in DB2/MVS Version 6.

The following SQL query against the DB2 catalog will show whether
you have any tablespaces that were created with improper PRIQTY
values on a DB2 Version 4.1 subsystem:

SELECT A.DBNAME, A.NAME, A.PARTITIONS, A.SEGSIZE, B.PARTITION, B.PQTY,
B.SQTY
 FROM SYSIBM.SYSTABLESPACE A, SYSIBM.SYSTABLEPART B
 WHERE ((A.DBNAME = B.DBNAME) AND (A.NAME = B.TSNAME)) AND
 (((A.PARTITIONS BETWEEN 17 AND 32) AND (PQTY*4 > 2Ø97152)) OR
 ((A.PARTITIONS BETWEEN 33 AND 64) AND (PQTY*4 > 1Ø48576)) OR
 ((A.PARTITIONS = Ø) AND (PQTY*4 > 2Ø97152))
)
 ORDER BY A.DBNAME, A.NAME, B.PARTITION
 FOR FETCH ONLY;

The following SQL query against the DB2 catalog will show whether
you have any indexspaces that were created with improper PRIQTY
values on a DB2 Version 4.1 subsystem:

SELECT A.IXCREATOR, A.IXNAME, A.PARTITION, A.PQTY
 FROM SYSIBM.SYSINDEXPART A
 WHERE
 ((A.PQTY*4 > 2Ø97152) AND
 (17 <= (SELECT MAX(PARTITION) FROM SYSIBM.SYSINDEXPART B
 WHERE (A.IXCREATOR = B.IXCREATOR) AND (A.IXNAME = B.IXNAME))
 AND
 32 >= (SELECT MAX(PARTITION) FROM SYSIBM.SYSINDEXPART B
 WHERE (A.IXCREATOR = B.IXCREATOR) AND (A.IXNAME = B.IXNAME))
)
)
 UNION
SELECT A.IXCREATOR, A.IXNAME, A.PARTITION, A.PQTY
 FROM SYSIBM.SYSINDEXPART A

 13© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 WHERE
 ((A.PQTY*4 > 1Ø48576) AND
 (33 <= (SELECT MAX(PARTITION) FROM SYSIBM.SYSINDEXPART B
 WHERE (A.IXCREATOR = B.IXCREATOR) AND (A.IXNAME = B.IXNAME))
 AND
 64 >= (SELECT MAX(PARTITION) FROM SYSIBM.SYSINDEXPART B
 WHERE (A.IXCREATOR = B.IXCREATOR) AND (A.IXNAME = B.IXNAME))
)
)
UNION
SELECT A.IXCREATOR, A.IXNAME, A.PARTITION, A.PQTY
 FROM SYSIBM.SYSINDEXPART A
 WHERE
 ((A.PQTY*4 > 2Ø97152) AND
 (Ø = (SELECT MAX(PARTITION) FROM SYSIBM.SYSINDEXPART B
 WHERE (A.IXCREATOR = B.IXCREATOR) AND (A.IXNAME = B.IXNAME))
)
)
ORDER BY 1, 2, 3
FOR FETCH ONLY;

The following SQL query will show whether there are any tablespaces
that were created with an incorrect PRIQTY value on a DB2 Version
5.1 subsystem:

SELECT A.DBNAME, A.NAME, A.PARTITIONS, A.SEGSIZE, B.PARTITION, B.PQTY,
B.SQTY
 FROM SYSIBM.SYSTABLESPACE A,
 SYSIBM.SYSTABLEPART B
 WHERE ((A.DBNAME = B.DBNAME) AND (A.NAME = B.TSNAME)) AND
 (A.TYPE NOT = 'L') AND
 (((A.PARTITIONS BETWEEN 17 AND 32) AND (PQTY*4 > 2Ø97152)) OR
 ((A.PARTITIONS BETWEEN 33 AND 64) AND (PQTY*4 > 1Ø48576)) OR
 ((A.PARTITIONS = Ø) AND (PQTY*4 > 2Ø97152))
)
 ORDER BY A.DBNAME, A.NAME, B.PARTITION
 FOR FETCH ONLY;

In DB2/MVS Version 5.1, you can specify the maximum amount of
DASD space that will be used by DB2 for non-partitioned indexes
using the PIECESIZE clause. The previously listed query for Version
4.1 indexes will run on a DB2 Version 5.1 subsystem, but it will not
take the PIECESIZE clause into consideration.

I believe there is no hard-and-fast rule on how you should choose
between single, segmented, or partitioned tablespaces. The following

 14 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

items are provided for your consideration when choosing which type
of tablespace to use:

• Very small tables (fewer than 32 pages) with low update activity
can be stored in segmented tablespaces with other small tables.
Storing multiple tables on the same tablespace will reduce DB2
overhead at run-time (fewer datasets are opened). Possible
drawbacks are that a load replace on a table will clear all other
tables in the same tablespace, and that any operations/utilities
that affect a single tablespace will affect all tables within it.

• Segmented tablespaces should be used for medium-sized tables
of less than 2GB. The reasoning for this is that a single dataset can
hold all of the data, reducing DB2 overhead. Segmented
tablespaces have advantages over simple tablespaces, such as:

– A mass delete of all rows of a table operates faster.

– A COPY utility will not copy empty pages.

– At insertion time, some read operations are avoided because
the space map contains the required information.

A drawback to using segmented tablespaces is the additional
overhead of maintaining the tablespace space map. Note that
performance requirements may push a medium size table to be
implemented using a partitioned tablespace schema, where I/O
parallelism could be engaged to improve DASD I/O throughput.

• Partitioned tablespaces should be used for large tables. Large is
a term relative your specific installation – I would suggest that
large is any multi-million row table or any tablespace with over
10GB. Partitioned tablespaces should also be used for any tables
with high-performance requirements where I/O parallelism (and
potentially, CPU parallelism) could be utilized.

There are several advantages to using partitioned tablespaces, as
well as some disadvantages. These are well documented in
several publications, including the DB2 Administration Guide.
Recently, there have been several articles and technical papers
promoting the widespread use of partitioned tablespaces,
regardless of tablespace size, in order to allow the DB2 Optimizer

 15© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

to choose multiple I/O operations against the tablespaces/index-
spaces.

Suffice to say, for large volumes of data or high-performance
requirements, partitioned tablespaces should be the first choice to
consider for implementation.

THE SEGSIZE CLAUSE

The presence of the SEGSIZE clause of the CREATE TABLESPACE
statement indicates to DB2 that the tablespace is to be segmented. It
also specifies how many pages are to be assigned to each segment. A
segment is a logical grouping of physical pages of the tablespace that
will store rows for a single table. Multiple tables can be stored in the
same segmented tablespace. SEGSIZE values range from four to 64
in multiples of four.

In choosing a segment size for a tablespace, take into consideration
the number of pages that will be used by each one of the tables to be
stored in the tablespace, as well as the geometry of the DASD device
where you are placing the tablespace. In addition, the SEGSIZE value
influences the way DB2 reads pages while doing sequential prefetch
(as documented in the DB2 Administration Guide, Tablespace scans
of Segmented Tablespaces).

Assuming the tablespace is managed by DB2, DB2 will allocate the
tablespace using the PRIQTY and SECQTY values specified in the
DDL. At the time the tablespace is created, DB2 initializes the first
two pages of the tablespace (the header page, and the space map page)
– no other pages in the tablespace are processed. At the time a new
table is created in the tablespace, DB2 will obtain the amount of space
necessary to store a segment, this space being equal to the tablespace
page size multiplied by the SEGSIZE clause (let’s call this value the
segment space value).

One of the peculiarities for this item is that the segment space value
can interfere with the way DB2 allocates space. For example, if you
specify a SEGSIZE of sixty-four 4KB pages, but only specify a
PRIQTY of 48KB, when DB2 needs to allocate a segment, the
segment space required will be 256KB. Because 256 is not evenly

 16 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

divisible by 48, there will be some space allocated but never used. The
net result will be some wasted DASD between segments. This
problem can be alleviated by having a PRIQTY value specified that
is larger than the segment space value, or by ensuring that the PRIQTY
and/or SECQTY values will allocate space in tracks or cylinder
boundaries.

I recommend that PRIQTY and SECQTY values for segmented
tablespaces take three factors into consideration:

• The SEGSIZE value itself (because of the prefetch implications
mentioned in the previous paragraph).

• The DASD device geometry.

• The tablespace page size (4KB or 32KB).

The relationship between DASD device geometry and the tablespace
page size in reference to the SEGSIZE value has a relatively minor
impact on the actual database design. It could have a significant
impact on DASD utilization and/or database performance. The tables
in Figure 1 and Figure 2 show the lowest common denominator in
kilobytes between the segment space value (page size multiplied by
SEGSIZE value) and the track and cylinder capacity for 3380 and
3390 devices, for each possible SEGSIZE value. These values represent
the amount of space required to ensure that a segment is allocated in
a track or cylinder boundary, thus reducing the chance of wasting
DASD space between segments. Note that these values do not take
into consideration the header page nor the space map page at the
beginning of the tablespace, which amount to 8KB or 128KB depending
on the page size.

The tables can be used as follows. Let us say, for example, you need
to create a tablespace to store 800,000KB of data. You want to use a
segmented tablespace, using buffer pool BP1 (4KB in size), and you
know that you will be using 3390 devices. You choose the SEGSIZE
that you think will be best for your application requirements, let’s say
32, because you know you will be doing lots of tablespace scans
(sequential prefetch reads). From the 3390 DASD table (Figure 2), the
QTY value to ensure cylinder boundary utilization for a SEGSIZE of
32 is 5,760KB. Divide 800,000 by 5,760 and the result is 138.88. This

 17© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1: Amount of space required on 3380 device

cy
lin

de
rs

 4

 1
6

 8
0

 1

20
0

 1
28

64

0

 9

60
0

*S
E

G
S

IZ
E

*S
E

G
S

IZ
E

va
lu

e

48

 1

92

 9

60

48

00

 1

53
6

76
80

38
40

0
44

 1
76

 8
80

 1

32
00

 1
40

8

70

40

 1
05

60
0

40

 1

60

 1

60

24

00

 1

28
0

64
00

19
20

0
36

 1
44

 7
20

36
00

 1
15

2

57

60

28

80
0

32

 1

28

 6

40

96

00

 1

02
4

51
20

76
80

0
28

 1
12

 5
60

84
00

89

6

44

80

67

20
0

24

 9
6

48
0

 2

40
0

 7
68

 3
84

0

 1
92

00
20

 8

0

 8

0

 1
20

0

 6

40

 3

20
0

 9
60

0
16

 6

4

32

0

 4
80

0

 5

12

 2

56
0

 3

84
00

12

 4
8

24
0

 1

20
0

 3
84

 1
92

0

 9

60
0

64

 2

56

 1
28

0

19
20

0

20

48

 1
02

40

 1
53

60
0

60

 2

40

 2

40

12

00

 1

92
0

96
00

 9
60

0
56

 2
24

 1

12
0

16

80
0

17
92

 8
96

0

13
44

00
52

 2
08

 1

04
0

15

56
0

16
64

 8
32

0

12
44

80

 8

 3
2

16
0

 2

40
0

 2
56

 1
28

0

 1
92

00

cy
lin

de
rs

 3

38
0

D
A

S
D

 d
ev

ic
e

ge
om

et
ry

 (
40

K
B

/tr
ac

k,
 6

00
K

B
/c

yl
in

de
r)

 4
K

B
 p

ag
es

 3

2K
B

 p
ag

es

S
E

G
S

IZ
E

 P

ag
e

si
ze

 Q

T
Y

 fo
r

tr
ac

ks

 Q

T
Y

 fo
r

 P
ag

e
si

ze

Q

T
Y

 fo
r

tr
ac

ks

 Q

T
Y

 fo
r

 18 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Figure 2: Amount of space required on 3390 device

cy
lin

de
rs

 4

 1
6

 4
8

 7
20

12

8

 3

84

 5

76
0

*S
E

G
S

IZ
E

*S
E

G
S

IZ
E

va
lu

e

48

 1

92

 5

76

28

80

 1

53
6

46
08

69
12

0
44

 1
76

 5
28

79
20

 1
40

8

42

24

63

36
0

40

 1

60

 4

80

14

40

 1

28
0

38
40

57
60

0
36

 1
44

 4
32

21
60

 1
15

2

34

56

51

84
0

32

 1

28

 3

84

57

60

 1

02
4

30
72

46
08

0
28

 1
12

 3
36

50
40

89

6

26

28

40

32
0

24

 9
6

28
8

 1

44
0

 7
68

 2
30

4

 3
45

60
20

 8

0

24

0

 7

20

64
0

19
20

28
80

0
16

 6

4

19

2

 2
88

0

 5

12

 1

53
6

 2

30
40

12

 4
8

 4
8

 7
20

38

4

 3

84

 5

76
0

64

 2

56

 7

68

 1
15

20

 2

04
8

61
44

92
16

0
60

 2
40

 7
20

 7
20

 1
92

0

57

60

86

40
0

56

 2

24

 6

72

 1
00

80

 1

79
2

53
76

80
64

0
52

 2
08

 6
24

93
60

 1
66

4

49

92

74

88
0

 8

 3
2

 9
6

 1

44
0

 2
56

76

8

 1
15

20

cy
lin

de
rs

 3

39
0

D
A

S
D

 d
ev

ic
e

ge
om

et
ry

 (
48

K
B

/tr
ac

k,
 7

20
K

B
/c

yl
in

de
r)

 4
K

B
 p

ag
es

 3

2K
B

 p
ag

es

S
E

G
S

IZ
E

 P

ag
e

si
ze

 Q

T
Y

 fo
r

tr
ac

ks

 Q

T
Y

 fo
r

 P
ag

e
si

ze

Q

T
Y

 fo
r

tr
ac

ks

 Q

T
Y

 fo
r

 19© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

is not an even number and therefore you should use 140 – multiply
back by 5,760 and your new QTY value is 806,400.

THE PRIQTY CLAUSE

The PRIQTY clause will determine the minimum primary space to be
allocated for a DB2-managed object, be it a tablespace or an indexspace.
DB2 knows the page-size corresponding to the buffer pool being used
in the CREATE statement, whether it is 4KB or 32KB, and computes
the smallest multiple of the page-size not less than the PRIQTY value
specified as the amount of space to be requested for the VSAM LDS
allocation. For example, if the PRIQTY is 50, the buffer pool specified
is BP0, and page-size is 4KB; 50 divided by four equals 12.5, so DB2
uses 13 * 4 = 52 as the value to pass to DFSMS/DFP for the allocation
of the VSAM LDS.

The resulting space allocated by DFSMS could be greater than the
space requested by DB2, because DFSMS/DFP allocates VSAM LDS
in track or cylinder boundaries depending on the primary and secondary
amounts requested for the allocation. Following the above example,
assuming the VSAM LDS is to be created on a DASD device with
3380 geometry where each track can store ten 4KB pages, 52KB will
require two tracks for storage. Two tracks represent 80KB, but DB2
is only using 52KB. The net result is some DASD wastage.

The PRIQTY value has minimum restrictions. The minimum
requirements are dependent on the page-size of the tablespace,
determined by the type of buffer pool specified in the CREATE
statement. Specifically, for tablespaces and indexspaces that will use
a 4KB size buffer pool (BP0 through BP49), the minimum amount of
space that can be requested is 12KB. If you specify less than the
minimum, DB2 will automatically adjust the value at allocation time.

Tablespaces are the only DB2 objects than can use the 32KB buffer
pools (BP32K, BP32K1-BP32K9). The minimum amount of space
that can be requested for a tablespace using 32KB size buffer pool is
96KB. Again, if you specify less than the minimum, DB2 will
automatically adjust the value at allocation time.

The PRIQTY value also has maximum restrictions, as previously

 20 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

discussed. For additional information refer to the SQL Reference
manual for the specific DB2 version in use.

The PRIQTY value also has a close relationship with the SEGSIZE
clause, as previously discussed. I suggest that you spend a couple of
hours at your installation, experimenting with different PRIQTY
values and SEGSIZE values to get a clear idea of the relationship of
these two clauses.

An external factor that you could specify that has an influence on the
PRIQTY values is the DFSMS/DFP limitation that VSAM datasets
can’t exceed 123 extents across multiple volumes. For DB2, the
number of extents is reduced to 118, because either the primary space
allocation, or each secondary space allocation, of a VSAM dataset
could be fulfilled by DFSMS/DFP using up to five DASD extents.
DB2 needs the five extents cushion to avoid the potential problem of
having an excessive number of extents on a dataset. For additional
information, refer to the Define Cluster command in the DFSMS/
MVS: Access Method Services for VSAM catalog.

Additionally, the PRIQTY value itself will have an impact on how
much space DFSMS/DFP will allocate for the VSAM LDS on DB2’s
behalf. Bear in mind how DFSMS allocates the VSAM dataset.
Firstly, it allocates the primary space on a candidate volume (in one
to five extends, depending on how fragmented the DASD device was
at the time of the allocation request). When the space allocated is
exhausted, if the VSAM dataset has not reached the 118 extends limit,
DB2 will request from DFSMS that the space allocated to the VSAM
LDS be expanded by an additional SECONDARY QUANTITY
(SECQTY) amount. If there is no space available on the current
volume, DFSMS will find another candidate volume in either the
STOGROUP’s DASD POOL or in the SMS pool, depending on the
installation parameters. Once a candidate volume is found, DFSMS
will allocate the new extend on the new volume using the primary
space allocation quantity. This peculiarity of VSAM allocation logic
can generate a serious amount of DASD waste. For example, a
segmented tablespace will require 1.25GB of DASD and the PRIQTY
is defined at 1.25GB and SECQTY is defined at 0.125GB. After the
primary space allocated is used, DB2 will request for an extent of

 21© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

0.125GB. Let us assume the DASD volume is full. DFSMS will be
forced to look for available space on another volume and it will
allocate another 1.25GB. The total space allocated is 2.5GB – but you
know that for segmented tablespaces DB2 will only use the first two
gigabytes of the dataset, and it will never use that extra 0.5GB
allocated on the second space. Thus, more DASD is wasted. You can
prevent this by having some standards at your installation that
minimize the risk of over-allocating DASD for DB2 datasets. The
trade-off is that your DB2 datasets will have more extents.

As you can see, there are several peculiarities pertaining to the
PRIQTY clause. The PRIQTY clause has ‘relationships’ with other
clauses of the CREATE statements that sometimes are not obvious to
the DBA. External factors such as DASD device geometry and
DFSMS/DFP behaviour will have a significant impact on how well
DB2 uses the space allocated.

An important aspect of choosing and specifying the PRIQTY values
is its operational implications. For example, if a DB2 tablespace or
indexspace is created with an insufficient PRIQTY value, and the
underlying VSAM dataset(s) reach the maximum number of VSAM
extends, ‘Resource unavailable’ messages will start appearing and
someone will end up calling you in the middle of the night.

Similarly, if the DB2 object was created with a large PRIQTY value,
it is possible that, during the next execution of the REORG utility, the
utility won’t be able to get the space it requires to re-allocate the
VSAM LDS, and the utility job will terminate abnormally. Database
growth happens randomly, and the only way to avoid ‘Resource
unavailable’ problems is by conducting periodic reviews of your
different tablespaces and indexspaces to ensure they are not expanding
into a critical number of extents, or that they are not about to exhaust
your DASD pool.

So, how do you determine the appropriate PRIQTY for your DB2
tablespaces and indexspaces? I believe a basic requirement is a clear
knowledge and understanding of how the storage environment at your
shop is set up to handle DB2 databases, and to review that environment
on a regular basis. What types of DASD devices are available? What
is the average amount of contiguous space regularly available on your

 22 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DASD devices? What happens to your DASD pools during month-
end processing or other special days? How fast are your applications
growing, etc?

I have several recommendations for PRIQTY values:

• You should never take the defaults. Always ensure that the
PRIQTY values are allocated in track or cylinder boundaries,
since that is how DFSMS/DFP allocates datasets. Make sure that
the PRIQTY has a good ‘relationship’ with the SEGSIZE clause
(if any) as well as with the DASD device geometry.

• The maximum PRIQTY value should match or be less than the
average amount of free space that you will find on your DASD
pool at any time. For example, if you are using SMS to handle the
allocation and placement of your DB2 datasets, and the average
amount of free space in these volumes is around 1GB, make sure
that you don’t set your PRIQTY value to a value larger than 1GB.
If you do, it is very likely that reorganization utility jobs would
be unable to re-allocate the VSAM datasets it had just deleted –
because there was no single DASD volume in the SMS pool that
could satisfy the PRIQTY amount requested. This
recommendation also allows the data to spread across multiple
devices, which potentially could help to minimize DASD
contention.

• For large tablespaces (ie more than 10GB), consider requesting
a pool of dedicated DASD volumes from your storage
administration friends. These large tablespaces may require this
special attention in order to facilitate operations (such as to avoid
no space available error conditions), as well as to specifically
place the datasets on certain DASD devices/controllers for
performance reasons.

• Ensure that the SECQTY value will not affect the way DFSMS
will allocate the VSAM LDS. Specifically, DFSMS/DFP will
determine the size of the Control Area (CA) to be allocated based
on the smaller of the two allocation quantities (primary or
secondary) specified in the define command. Thus, if your
SECQTY value is less than a cylinder, even if your PRIQTY is
over a cylinder, the VSAM LDS will be allocated in tracks instead

 23© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

of cylinders, thus potentially creating a storage and/or performance
problem. For more details, refer to the Define Cluster IDCAMS
command.

THE SECQTY CLAUSE

The SECQTY value specifies the amount of space DB2 will request
when there is no more space to be used. The SECQTY value can’t be
larger than 128MB. I have been told that this limitation will be
removed in DB2 Version 6.

I like to specify the SECQTY value depending on the PRIQTY
specified. If the PRIQTY size is larger than 512MB, I like to specify
the maximum SECQTY value (128MB). For PRIQTY values of less
than 512MB, I suggest that the SECQTY value is equal to 20 percent
of the PRIQTY value, or that the maximum allowed SECQTY value
is specified, such as in the case of tables with heavy insertion activity.
Always ensure that the SECQTY value uses track or cylinder
boundaries, so it will not impact the way the VSAM LDS is allocated,
as mentioned previously.

CONCLUSION

DASD I/O is still the slowest part of a DBMS engine. Efficient
allocation and utilization of DASD resources can have significant
performance implications for a DB2 database. The less I/O performed
against a tablespace/indexspace, the better an application will perform.

DASD utilization and management is changing rapidly and
significantly with the introduction of RAID technologies. For example,
IBM’s RVA DASD device uses hardware compression to reduce the
actual amount of DASD needed to store data. Typical reduction rates
for DB2 datasets are in the order of one to four, depending on the type
of data as well as the tablespace characteristics, such as FREEPAGE
and FREEPCT. Compression is performed at the DASD device itself
and neither DB2 nor the MVS operating system is aware of this
compression happening. In addition, the concept of DASD device
geometry loses a lot of relevance on these new devices, because,
although they do emulate it, it does not affect the way they store and
retrieve the data. Similarly, in relation to performance, dataset extends

 24 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

lose their importance, because the RVA devices store data all over
multiple small disks, so extends are only pertinent as far as the 118
limitation.

As far as DB2 is concerned, the implications of these new technologies
are many. First of all, many of the ideas and concepts expressed in this
article will become irrelevant. In time, the newer DASD subsystems,
with automatic hardware compression features, will take care of the
space allocated versus space used issue – since it will compress
allocated but not used space to a very small amount of actual DASD
space. However, for those of us still using real 3380 and 3390 devices,
most of the items listed above are still relevant.

I believe that understanding your storage administration environment
as well as the peculiarities of the DB2/MVS DBMS CREATE clauses
described above, will produce a better DB2 database – one that can use
DASD resources as efficiently as possible, and that could potentially
be a better performer.

Antonio Salcedo
Lead System Programmer/DBA (USA) © Xephon 1998

Simulating a production environment – part 2

This month we continue the article on simulating a production
environment in DB2.

 *————————————————————————————————
 * GENERAL STRUCTURE OF PROGRAM -
 *————————————————————————————————
 *
 ØØØØ-MAIN.

 ACCEPT W-PARM FROM SYSIN.
 DISPLAY 'W-PARM-DBNAME' W-PARM-DBNAME.
 DISPLAY 'W-PARM-TBOWNER' W-PARM-TBOWNER.
 PERFORM A1ØØ-BEGIN
 THRU A1ØØ-BEGIN-EXIT.
 PERFORM B1ØØ-INITIALIZE
 THRU B1ØØ-INITIALIZE-EXIT.
 MOVE Ø TO PROCESS-END.

 25© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 PERFORM C1ØØ-READ-SYSTBLS
 THRU C1ØØ-READ-SYSTBLS-EXIT
 UNTIL PROCESS-END = 1.
 *
 EXEC SQL
 COMMIT
 END-EXEC.
 *
 MOVE Ø TO PROCESS-END.
 PERFORM C2ØØ-READ-SYSTBLSP
 THRU C2ØØ-READ-SYSTBLSP-EXIT
 UNTIL PROCESS-END = 1.
 *
 EXEC SQL
 COMMIT
 END-EXEC.
 *
 MOVE Ø TO PROCESS-END.
 PERFORM C3ØØ-READ-SYSINDXS
 THRU C3ØØ-READ-SYSINDXS-EXIT
 UNTIL PROCESS-END = 1.
 *
 EXEC SQL
 COMMIT
 END-EXEC.
 *
 MOVE Ø TO PROCESS-END.
 PERFORM C4ØØ-READ-SYSCOLMS
 THRU C4ØØ-READ-SYSCOLMS-EXIT
 UNTIL PROCESS-END = 1.
 *
 EXEC SQL
 COMMIT
 END-EXEC.
 *
 MOVE Ø TO PROCESS-END.
 PERFORM C5ØØ-READ-SYSCOLDT
 THRU C5ØØ-READ-SYSCOLDT-EXIT
 UNTIL PROCESS-END = 1.
 *
 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.

 *

 *————————————————————————————————
 * OPEN FILES
 *————————————————————————————————
 *
 A1ØØ-BEGIN.
 *

 26 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 * READY TRACE.
 OPEN INPUT SYSTBLS
 SYSTBLSP
 SYSINDXS
 SYSCOLMS
 SYSCOLDT.
 OPEN OUTPUT REPOUT.
 *
 A1ØØ-BEGIN-EXIT.
 EXIT.
 *
 *————————————————————————————————
 * INITIALIZE VARIABLE FIELDS
 *————————————————————————————————
 *
 B1ØØ-INITIALIZE.
 *
 MOVE SPACES TO W-SYSTBLS
 W-SYSTBLSP
 W-SYSINDXS
 W-SYSCOLMS
 W-SYSCOLDT.
 *
 MOVE ZEROS TO W-TBL-CARD-NUM
 W-TBL-NPAGES-NUM
 W-TBL-PCTRCOMP-NUM
 W-TBLSP-NACTIVE-NUM
 W-CLUSTERRATIO-NUM
 W-FIRSTKEY-CARD-NUM
 W-FULLKEY-CARD-NUM
 W-NLEAF-NUM
 W-NLEVELS-NUM
 W-COLCARD-NUM
 W-FREQUENC-NUM.
 *
 B1ØØ-INITIALIZE-EXIT.
 EXIT.
 *
 *————————————————————————————————
 * READ INPUT FILES RESULTANT OF THE RUN OF PGM PCATV3EX
 *————————————————————————————————
 C1ØØ-READ-SYSTBLS.
 READ SYSTBLS AT END
 MOVE 1 TO PROCESS-END
 GO TO C1ØØ-READ-SYSTBLS-EXIT.
 IF FILE-STATUS = ØØ
 NEXT SENTENCE
 ELSE
 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.
 *

 27© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 MOVE R-SYSTBLS TO W-SYSTBLS.
 MOVE W-TBL-CARD TO W-TBL-CARD-NUM.
 MOVE W-TBL-NPAGES TO W-TBL-NPAGES-NUM.
 MOVE W-TBL-PCTRCOMP TO W-TBL-PCTRCOMP-NUM.
 *
 PERFORM D1ØØ-UPDATE-SYSTBLS
 THRU D1ØØ-UPDATE-SYSTBLS-EXIT.
 *
 C1ØØ-READ-SYSTBLS-EXIT.
 EXIT.
 C2ØØ-READ-SYSTBLSP.
 READ SYSTBLSP AT END
 MOVE 1 TO PROCESS-END
 GO TO C2ØØ-READ-SYSTBLSP-EXIT.
 IF FILE-STATUS = ØØ
 NEXT SENTENCE
 ELSE
 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.

 MOVE R-SYSTBLSP TO W-SYSTBLSP.
 MOVE W-TBLSP-NACTIVE TO W-TBLSP-NACTIVE-NUM.
 *
 PERFORM D2ØØ-UPDATE-SYSTBLSP
 THRU D2ØØ-UPDATE-SYSTBLSP-EXIT.
 *
 C2ØØ-READ-SYSTBLSP-EXIT.
 EXIT.
 C3ØØ-READ-SYSINDXS.
 *
 READ SYSINDXS AT END
 MOVE 1 TO PROCESS-END
 GO TO C3ØØ-READ-SYSINDXS-EXIT.
 IF FILE-STATUS = ØØ
 NEXT SENTENCE
 ELSE
 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.
 *
 MOVE R-SYSINDXS TO W-SYSINDXS.
 MOVE W-CLUSTERRATIO TO W-CLUSTERRATIO-NUM.
 MOVE W-FIRSTKEY-CARD TO W-FIRSTKEY-CARD-NUM.
 MOVE W-FULLKEY-CARD TO W-FULLKEY-CARD-NUM.
 MOVE W-NLEAF TO W-NLEAF-NUM.
 MOVE W-NLEVELS TO W-NLEVELS-NUM.
 *
 PERFORM D3ØØ-UPDATE-SYSINDXS
 THRU D3ØØ-UPDATE-SYSINDXS-EXIT.
 *
 C3ØØ-READ-SYSINDXS-EXIT.
 EXIT.

 28 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 *
 C4ØØ-READ-SYSCOLMS.
 *
 READ SYSCOLMS AT END
 MOVE 1 TO PROCESS-END
 GO TO C4ØØ-READ-SYSCOLMS-EXIT.
 IF FILE-STATUS = ØØ
 NEXT SENTENCE
 ELSE
 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.

 MOVE R-SYSCOLMS TO W-SYSCOLMS.
 MOVE W-COLCARD TO W-COLCARD-NUM.
 *
 PERFORM D4ØØ-UPDATE-SYSCOLMS
 THRU D4ØØ-UPDATE-SYSCOLMS-EXIT.
 *
 C4ØØ-READ-SYSCOLMS-EXIT.
 EXIT.
 *
 *
 C5ØØ-READ-SYSCOLDT.
 *
 READ SYSCOLDT AT END
 MOVE 1 TO PROCESS-END
 GO TO C5ØØ-READ-SYSCOLDT-EXIT.
 *
 IF FILE-STATUS = ØØ
 MOVE R-SYSCOLDT TO W-SYSCOLDT
 MOVE W-FREQUENC TO W-FREQUENC-NUM
 ELSE
 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.
 *
 IF W-COLDT-TBNAME NOT = W-PREV-TBNAME
 OR W-COLDT-NAME NOT = W-PREV-COLNAME
 IF W-PREV-TBNAME = SPACES
 EXEC SQL
 OPEN FETCH_SYSCOLDT
 END-EXEC
 ELSE
 EXEC SQL
 CLOSE FETCH_SYSCOLDT
 END-EXEC
 EXEC SQL
 OPEN FETCH_SYSCOLDT
 END-EXEC.
 *
 MOVE W-COLDT-TBNAME TO W-PREV-TBNAME
 MOVE W-COLDT-NAME TO W-PREV-COLNAME

 29© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 *
 PERFORM C51Ø-FETCH-SYSCOLDT
 THRU C51Ø-FETCH-SYSCOLDT-EXIT.
 *
 *
 C5ØØ-READ-SYSCOLDT-EXIT.
 EXIT.
 *
 *

 C51Ø-FETCH-SYSCOLDT.
 *
 MOVE W-COLDT-TBNAME TO NAME-TABLE.
 *
 EXEC SQL
 FETCH FETCH_SYSCOLDT
 INTO :W-FETCH-COLDT-TBNAME,
 :W-FETCH-COLDT-NAME,
 :W-FETCH-COLVALUE,
 :W-FETCH-FREQUENC
 END-EXEC.
 *
 IF SQLCODE = Ø
 PERFORM D5ØØ-UPDATE-SYSCOLDT
 THRU D5ØØ-UPDATE-SYSCOLDT-EXIT
 ELSE
 IF SQLCODE = +1ØØ
 PERFORM X1ØØ-DBERROR-DB2
 THRU X1ØØ-DBERROR-DB2-EXIT.
 *
 C51Ø-FETCH-SYSCOLDT-EXIT.
 EXIT.
 *————————————————————————————————
 * UPDATES SYSIBM.SYSTABLES -
 *————————————————————————————————
 *
 D1ØØ-UPDATE-SYSTBLS.
 *
 MOVE W-TBL-NAME TO NAME-TABLE
 *
 EXEC SQL
 UPDATE SYSIBM.SYSTABLES
 SET
 CARD = :W-TBL-CARD-NUM-R,
 NPAGES = :W-TBL-NPAGES-NUM-R,
 PCTROWCOMP = :W-TBL-PCTRCOMP-NUM-R
 WHERE CREATOR = :W-PARM-TBOWNER
 AND NAME = :W-TBL-NAME
 END-EXEC.
 *
 IF SQLCODE = Ø

 30 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 ADD 1 TO COUNT-TBL-UPD
 ELSE
 IF SQLCODE = +1ØØ
 PERFORM X1ØØ-DBERROR-DB2
 THRU X1ØØ-DBERROR-DB2-EXIT.
 *
 D1ØØ-UPDATE-SYSTBLS-EXIT.
 EXIT.
 *

 *————————————————————————————————
 * UPDATES SYSIBM.SYSTABLESPACE -
 *————————————————————————————————
 *
 D2ØØ-UPDATE-SYSTBLSP.
 *
 MOVE W-TBLSP-NAME TO NAME-TABLE
 *
 EXEC SQL
 UPDATE SYSIBM.SYSTABLESPACE
 SET
 NACTIVE = :W-TBLSP-NACTIVE-NUM-R
 WHERE DBNAME = :W-PARM-DBNAME
 AND NAME = :W-TBLSP-NAME
 END-EXEC.
 *
 IF SQLCODE = Ø
 ADD 1 TO COUNT-TBL-UPD
 ELSE
 IF SQLCODE = +1ØØ
 PERFORM X1ØØ-DBERROR-DB2
 THRU X1ØØ-DBERROR-DB2-EXIT.
 *
 D2ØØ-UPDATE-SYSTBLSP-EXIT.
 EXIT.
 *
 *————————————————————————————————
 * UPDATES SYSIBM.SYSINDEXES
 *————————————————————————————————
 *
 D3ØØ-UPDATE-SYSINDXS.
 *
 MOVE W-INDXS-NAME TO NAME-TABLE
 *
 EXEC SQL
 UPDATE SYSIBM.SYSINDEXES
 SET
 FIRSTKEYCARD = :W-FIRSTKEY-NUM-R,
 FULLKEYCARD = :W-FULLKEY-NUM-R,
 NLEAF = :W-NLEAF-NUM-R,
 NLEVELS = :W-NLEVELS-NUM-R,

 31© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 CLUSTERRATIO = :W-CLUSTERRAT-NUM-R
 WHERE TBCREATOR = :W-PARM-TBOWNER
 AND TBNAME = :W-INDXS-TBNAME
 AND NAME = :W-INDXS-NAME
 END-EXEC.
 *
 IF SQLCODE = Ø
 ADD 1 TO COUNT-TBL-UPD
 ELSE
 IF SQLCODE = +1ØØ
 PERFORM X1ØØ-DBERROR-DB2
 THRU X1ØØ-DBERROR-DB2-EXIT.
 *
 D3ØØ-UPDATE-SYSINDXS-EXIT.
 EXIT.
 *

 *————————————————————————————————
 * UPDATES SYSIBM.SYSCOLUMNS
 *————————————————————————————————
 *
 D4ØØ-UPDATE-SYSCOLMS.
 *
 MOVE W-COLMS-NAME TO NAME-TABLE
 *
 EXEC SQL
 UPDATE SYSIBM.SYSCOLUMNS
 SET
 COLCARD = :W-COLCARD-NUM-R,
 LOW2KEY = :W-LOW2KEY,
 HIGH2KEY = :W-HIGH2KEY
 WHERE TBCREATOR = :W-PARM-TBOWNER
 AND TBNAME = :W-COLMS-TBNAME
 AND NAME = :W-COLMS-NAME
 END-EXEC.
 *
 IF SQLCODE = Ø
 ADD 1 TO COUNT-TBL-UPD
 ELSE
 IF SQLCODE = +1ØØ
 PERFORM X1ØØ-DBERROR-DB2
 THRU X1ØØ-DBERROR-DB2-EXIT.
 *
 D4ØØ-UPDATE-SYSCOLMS-EXIT.
 EXIT.
 *
 *————————————————————————————————
 * UPDATES SYSIBM.SYSCOLDIST
 *————————————————————————————————
 *
 D5ØØ-UPDATE-SYSCOLDT.

 32 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 *
 MOVE W-COLDT-NAME TO NAME-TABLE
 *
 EXEC SQL
 UPDATE SYSIBM.SYSCOLDIST
 SET
 COLVALUE = :W-COLVALUE,
 FREQUENCY = :W-FREQUENC-NUM-R
 WHERE CURRENT OF FETCH_SYSCOLDT
 END-EXEC.
 *
 IF SQLCODE = Ø
 ADD 1 TO COUNT-TBL-UPD
 ELSE
 IF SQLCODE = +1ØØ
 PERFORM X1ØØ-DBERROR-DB2
 THRU X1ØØ-DBERROR-DB2-EXIT.
 *
 D5ØØ-UPDATE-SYSCOLDT-EXIT.
 EXIT.
 *
 *

 *————————————————————————————————
 * CALL DB2 ERROR ROUTINE -
 *————————————————————————————————
 *
 X1ØØ-DBERROR-DB2.
 *
 MOVE SQLCODE TO ERROR-CODE.
 DISPLAY MSG2.

 PERFORM X2ØØ-CALL-MODULE
 THRU X2ØØ-CALL-MODULE-EXIT

 PERFORM Z1ØØ-END
 THRU Z1ØØ-END-EXIT.
 *
 X1ØØ-DBERROR-DB2-EXIT.
 EXIT.
 *
 X2ØØ-CALL-MODULE.
 *
 CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
 *
 IF RETURN-CODE = ZERO
 PERFORM ERROR-PRINT
 VARYING ERROR-INDEX FROM 1 BY 1
 UNTIL ERROR-INDEX > 8.
 *

 33© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 GO X2ØØ-CALL-MODULE-EXIT.
 *

 * PRINT MESSAGE TEXT *

 ERROR-PRINT.
 *
 WRITE REPREC FROM ERROR-TEXT (ERROR-INDEX)
 AFTER ADVANCING 1 LINE.
 *
 X2ØØ-CALL-MODULE-EXIT.
 EXIT.
 *————————————————————————————————
 * PROGRAM END -
 *————————————————————————————————
 *
 Z1ØØ-END.
 *
 * RESET TRACE.

 CLOSE SYSTBLS
 SYSTBLSP
 SYSINDXS
 SYSCOLMS
 SYSCOLDT
 REPOUT.

 DISPLAY '************************************'
 DISPLAY 'UPDATED RECORDS' COUNT-TBL-UPD
 DISPLAY '************************************'.

 STOP RUN.
 *
 Z1ØØ-END-EXIT.
 EXIT.

JCL TO RUN PROGRAMS

//RUNSYS JOB (ACCT#),'CATLG PROGS',MSGLEVEL=(1,1),CLASS=x,
// MSGCLASS=x,NOTIFY=&SYSUID,TIME=144Ø
//*
//JOBLIB DD DSN=DSN31Ø.SDSNEXIT,DISP=SHR
// DD DSN=DSN31Ø.SDSNLOAD,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
//***
//* RUN CATALOG PROGRAMS
//***
//STEP1 EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø,REGION=3M
//SYSTSPRT DD SYSOUT=*

 34 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSDBOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTBLS DD DSN=TEST.SYSTBLS,DISP=SHR
//SYSTBLSP DD DSN=TEST.SYSTBLSP,DISP=SHR
//SYSINDXS DD DSN=TEST.SYSINDXS,DISP=SHR
//SYSCOLMS DD DSN=TEST.SYSCOLMS,DISP=SHR
//SYSCOLDT DD DSN=TEST.SYSCOLDT,DISP=SHR
//REPOUT DD DSN=TEST.REPOUT,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(xxxx)
 RUN PROGRAM(PCATV3EX/PCATV3UP) PLAN9SYSDPGB) -
 LIB('TEST.DB2.LOAD')
 END
//SYSIN DD *
xxxxxxxxyyyyyyyy
//*

Note: the following fields are variable according to your installation:

• ‘xxxxxxxx’ is the database name.

• ‘yyyyyyyy’ is the creator of the tables and indexes.

Before you run the program(s), you must bind a plan with two
PACKAGES or two DBRMS – one for each program.

DB2CATSP

DB2CATSP displays values from the SYSTABLESPACE output file
produced by the catalog extraction program PCATV3UP.

/* REXX */
DD1="I"TIME("S")
DD2="O"TIME("S")
DSN1="'xxxxxxxx.SYSTBLSP'"
DSN2="'xxxxxxxx.SYSTBLOP'"

"ALLOC F("DD1") SHR REUSE DA("DSN1")"
"EXECIO * DISKR "DD1" (FINIS STEM TBL.)"
"FREE F("DD1")"
/***** READS THRU INPUT FILE UNTIL SPECIFIED RECORD IS REACHED *****/

NM=Ø
SAY 'DO YOU WANT THE WHOLE DATABASE?'
PULL VAR1

 35© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

IF VAR1='YES' THEN
 NOP
ELSE
 DO
 SAY 'WHAT TABLESPACE DO YOU WANT TO CHANGE?'
 PULL VAR2
 END
DO A=1 TO TBL.Ø
 PARSE VALUE TBL.A WITH 1 NAME 7 . ,
 9 NACTIVE 13 .
 DO
 IF VAR1='YES' THEN
 NOP
 ELSE
 IF VAR2 ¬= NAME then
 ITERATE
 ELSE
 NOP
 END

/******* PROCESSES INPUT VALUES ******/

 DO
 NACTIVE=C2X(NACTIVE)
 DO
 IF NACTIVE='FFFFFFFF' THEN
 NOP
 ELSE
 NACTIVE=X2D(NACTIVE)
 END

/******* DISPLAYS SPECIFIC FILE RECORD *********/

 LIST.SCR=LEFT(NAME,8)' 'RIGHT(NACTIVE,8,Ø)
 SAY 'TBLSP NACTIVE '
 SAY LIST.SCR
 PULL . NACTIVE .

/******* PREPARES CHANGED FIELDS TO REWRITE FILE RECORD ******/

 IF NACTIVE¬='' THEN
 DO
 NAME=LEFT(NAME,8)
 IF NACTIVE/='FFFFFFFF' &,
 DATATYPE(NACTIVE)=NUM THEN
 NACTIVE=D2C(NACTIVE,4)
 ELSE
 IF NACTIVE='FFFFFFFF' THEN
 NACTIVE=COPIES(X2C('FF'),4)
 ELSE
 DO

 36 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 A=A-1
 SAY '***ERROR: NACTIVE IS INVALID'
 ITERATE
 END

 NM=NM+1
 PARSE VALUE NAME||LEFT(NACTIVE,9,Ø) WITH TBLO
 TBLO.NM=TBLO
 END
 ELSE
 NOP

/******* PROCESSES NEXT RECORD ON INPUT FILE ******/

 IF VAR1='YES' THEN
 NOP
 ELSE
 DO
 SAY 'WHAT TABLESPACE DO YOU WANT TO CHANGE? '
 PULL VAR2
 A=1
 ITERATE
 END
 END
END

"ALLOC F("DD2") SHR REUSE DA("DSN2")"
"EXECIO "NM" DISKW "DD2" (FINIS STEM TBLO.)"
"FREE F("DD2")"
RETURN

/* REXX */

DB2CATTB

DB2CATTB displays values from the SYSTABLES output file result
produced by the extraction program PCATV3EX.

/* REXX */

DD1="I"TIME("S")
DD2="O"TIME("S")
DSN1="'XXXXXXXX.SYSTBLS'"
DSN2="'XXXXXXXX.SYSTBLSO'"
"ALLOC F("DD1") SHR REUSE DA("DSN1")"
"EXECIO * DISKR "DD1" (FINIS STEM TBL.)"
"FREE F("DD1")"

/***** READS THRU INPUT FILE UNTIL SPECIFIED RECORD IS REACHED *****/

 37© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

NM=Ø
SAY 'DO YOU WANT THE WHOLE DATABASE?'
PULL VAR1
IF VAR1='YES' THEN
 NOP
ELSE
 DO
 SAY 'WHAT TABLE DO YOU WANT TO CHANGE?'
 PULL VAR2
 END
DO A=1 TO TBL.Ø
 PARSE VALUE TBL.A WITH 1 NAME 7 . ,
 19 CARD 23 . ,
 28 NPAGES 32 . ,
 37 COMP 39 .
 DO
 IF VAR1='YES' THEN
 NOP
 ELSE
 IF VAR2 ¬= NAME THEN
 ITERATE
 ELSE
 NOP
 END

/******* PROCESSES INPUT VALUES ******/
 DO
 CARD=C2X(CARD)
 NPAGES=C2X(NPAGES)
 COMP=C2X(COMP)
 DO
 IF CARD='FFFFFFFF' THEN
 NOP
 ELSE
 CARD=X2D(CARD)
 IF NPAGES='FFFFFFFF' THEN
 NOP
 ELSE
 NPAGES=X2D(NPAGES)
 IF COMP='FFFF' THEN
 NOP
 ELSE
 COMP=X2D(COMP)
 END

/******* DISPLAYS SPECIFIC FILE RECORD *********/

 LIST.SCR=LEFT(NAME,8)' 'RIGHT(CARD,8,Ø)' ',
 RIGHT(NPAGES,8,Ø)' 'RIGHT(COMP,4,Ø)
 SAY 'TABLE CARD NPAGES PCTCOMP'

 38 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SAY LIST.SCR
 PULL . CARD NPAGES COMP .

/******* PREPARES CHANGED FIELDS TO REWRITE FILE RECORD ******/

 IF CARD¬='' THEN
 DO
 NAME=LEFT(NAME,18)
 IF CARD/='FFFFFFFF' &,
 DATATYPE(CARD)=NUM THEN
 CARD=D2C(CARD,4)
 ELSE
 IF CARD='FFFFFFFF' THEN
 CARD=COPIES(X2C('FF'),4)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: CARD IS INVALID'
 ITERATE
 END

 IF NPAGES/='FFFFFFFF' &,
 DATATYPE(NPAGES)=NUM THEN
 NPAGES=D2C(NPAGES,4)
 ELSE
 IF NPAGES='FFFFFFFF' THEN
 NPAGES=COPIES(X2C('FF'),4)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: NPAGES IS INVALID'
 ITERATE
 END

 IF COMP/='FFFF' &,
 DATATYPE(COMP)=NUM THEN
 COMP=D2C(COMP,2)
 ELSE
 IF COMP='FFFFFFFF' THEN
 COMP=COPIES(X2C('FF'),2)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: COMP IS INVALID'
 ITERATE
 END

/************* PROCESSES NEXT RECORD ON INPUT FILE ***********/
 NM=NM+1
 PARSE VALUE NAME||LEFT(CARD,9,Ø)||LEFT(NPAGES,9,Ø),

 39© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 ||LEFT(COMP,4,Ø) WITH TBLO
 TBLO.NM=TBLO
 END
 ELSE
 NOP

 IF VAR1='YES' THEN
 NOP
 ELSE
 DO
 SAY 'WHAT TABLE DO YOU WANT TO CHANGE?'
 PULL VAR2
 A=1
 ITERATE
 END
 END
END

"ALLOC F("DD2") SHR REUSE DA("DSN2")"
"EXECIO "NM" DISKW "DD2" (FINIS STEM TBLO.)"
"FREE F("DD2")"
RETURN

/* REXX */

DB2CATIX

DB2CATIX displays values from the SYSINDEXES output file
produced by the extraction program PCATV3EX.

/* REXX */

DD1="I"TIME("S")
DD2="O"TIME("S")
DSN1="'XXXXXXXX.SYSINDXS'"
DSN2="'XXXXXXXX.SYSINDXO'"

"ALLOC F("DD1") SHR REUSE DA("DSN1")"
"EXECIO * DISKR "DD1" (FINIS STEM TBL.)"
"FREE F("DD1")"

/***** READS THRU INPUT FILE UNTIL SPECIFIED RECORD IS REACHED *****/

NM=Ø
SAY 'DO YOU WANT THE WHOLE DATABASE?'
PULL VAR1
IF VAR1='YES' THEN
 NOP
ELSE
 DO

 40 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SAY 'WHAT TABLE OR INDEX DO YOU WANT TO CHANGE?'
 PULL VAR2
 END

DO A=1 TO TBL.Ø
 PARSE VALUE TBL.A WITH 1 TBNAME 7 . ,
 19 NAME 27 . ,
 37 CLUSTRAT 39 . ,
 41 FIRSTKEY 45 . ,
 5Ø FULLKEY 54 . ,
 59 NLEAF 63 . ,
 68 NLEVELS 7Ø .
 DO
 IF VAR1='YES' THEN
 NOP
 ELSE
 IF VAR2 ¬= TBNAME &,
 VAR2 ¬= NAME THEN
 ITERATE
 ELSE
 NOP
 END
/******* PROCESSES INPUT VALUES ******/

 DO
 CLUSTRAT=C2X(CLUSTRAT)
 FIRSTKEY=C2X(FIRSTKEY)
 FULLKEY=C2X(FULLKEY)
 NLEAF=C2X(NLEAF)
 NLEVELS=C2X(NLEVELS)
 DO
 IF CLUSTRAT='FFFF' THEN
 NOP
 ELSE
 CLUSTRAT=X2D(CLUSTRAT)
 IF FIRSTKEY='FFFFFFFF' THEN
 NOP
 ELSE
 FIRSTKEY=X2D(FIRSTKEY)
 IF FULLKEY='FFFFFFFF' THEN
 NOP
 ELSE
 FULLKEY=X2D(FULLKEY)
 IF NLEAF='FFFFFFFF' THEN
 NOP
 ELSE
 NLEAF=X2D(NLEAF)
 IF NLEVELS='FFFF' THEN
 NOP
 ELSE
 NLEVELS=X2D(NLEVELS)

 41© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 END

/******* DISPLAYS SPECIFIC FILE RECORD *********/
 LIST.SCR=LEFT(TBNAME,8)' 'LEFT(NAME,8)' 'RIGHT(CLUSTRAT,4,Ø),
 ' 'RIGHT(FIRSTKEY,8,Ø)' 'RIGHT(FULLKEY,8,Ø),
 ' 'RIGHT(NLEAF,8,Ø)' 'RIGHT(NLEVELS,4,Ø)
 SAY 'TABLE INDEX CLUSTRATIO FIRSTKEY FULLKEY NLEAF
 NLEVELS'
 SAY LIST.SCR
 PULL . . CLUSTRAT FIRSTKEY FULLKEY NLEAF NLEVELS .

/******* PREPARES CHANGED FIELDS TO REWRITE FILE RECORD ******/

 IF CLUSTRAT¬='' THEN
 DO
 TBNAME=LEFT(TBNAME,18)
 NAME=LEFT(NAME,18)
 IF CLUSTRAT/='FFFF' &,
 DATATYPE(CLUSTRAT)=NUM THEN
 CLUSTRAT=D2C(CLUSTRAT,2)
 ELSE
 IF CLUSTRAT='FFFFFFFF' THEN
 CLUSTRAT=COPIES(X2C('FF'),2)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: CLUSTRAT IS INVALID'
 ITERATE
 END

/******* PREPARES FIRSTKEY VALUES THAT WERE CHANGED ******/

 IF FIRSTKEY/='FFFF' &,
 DATATYPE(FIRSTKEY)=NUM THEN
 FIRSTKEY=D2C(FIRSTKEY,4)
 ELSE
 IF FIRSTKEY='FFFFFFFF' THEN
 FIRSTKEY=COPIES(X2C('FF'),4)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: FIRSTKEY IS INVALID'
 ITERATE
 END

/******* PREPARES FULLKEY VALUES THAT WERE CHANGED ******/

 IF FULLKEY/='FFFF' &,
 DATATYPE(FULLKEY)=NUM THEN
 FULLKEY=D2C(FULLKEY,4)
 ELSE

 42 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 IF FULLKEY='FFFFFFFF' THEN
 FULLKEY=COPIES(X2C('FF'),4)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: FULLKEY IS INVALID'
 ITERATE
 END

/******* PREPARES NLEAF VALUES THAT WERE CHANGED ******/
 IF NLEAF/='FFFF' &,
 DATATYPE(NLEAF)=NUM THEN
 NLEAF=D2C(NLEAF,4)
 ELSE
 IF NLEAF='FFFFFFFF' THEN
 NLEAF=COPIES(X2C('FF'),4)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: NLEAF IS INVALID'
 ITERATE
 END
/******* PREPARES NLEVELS VALUES THAT WERE CHANGED ******/

 IF NLEVELS/='FFFF' &,
 DATATYPE(NLEVELS)=NUM THEN
 NLEVELS=D2C(NLEVELS,2)
 ELSE
 IF NLEVELS='FFFFFFFF' THEN
 NLEVELS=COPIES(X2C('FF'),2)
 ELSE
 DO
 A=A-1
 SAY '***ERROR: NLEVELS IS INVALID'
 ITERATE
 END

/******* PROCESSES NEXT RECORD ON INPUT FILE ******/

 NM=NM+1
 PARSE VALUE TBNAME||NAME||LEFT(CLUSTRAT,4,Ø)||,
 LEFT(FIRSTKEY,9,Ø)||LEFT(FULLKEY,9,Ø)||,
 LEFT(NLEAF,9,Ø)||LEFT(NLEVELS,4,Ø) WITH TBLO
 TBLO.NM=TBLO
 END
 ELSE
 NOP
 IF VAR1='YES' THEN
 NOP
 ELSE
 DO

 43© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

 A=A+1
 PARSE VALUE TBL.A WITH 1 TBNAME 7 .
 IF VAR2 = TBNAME THEN
 DO
 A=A-1
 ITERATE
 END
 ELSE
 DO
 SAY 'WHAT TABLE OR INDEX DO YOU WANT TO CHANGE?'
 PULL VAR2
 A=1
 ITERATE
 END
 END
 END
END
"ALLOC F("DD2") SHR REUSE DA("DSN2")"
"EXECIO "NM" DISKW "DD2" (FINIS STEM TBLO.)"
"FREE F("DD2")"
RETURN

/* REXX */

DB2CATCD

DB2CATCD displays values from the SYSCOLDIST output file
produced by the catalog extraction program PCATV3EX.

/* REXX */

DD1="I"TIME("S")
DD2="O"TIME("S")
DSN1="'XXXXXXXX.SYSCOLDT'"
DSN2="'XXXXXXXX.SYSCOLOT'"
"ALLOC F("DD1") SHR REUSE DA("DSN1")"
"EXECIO * DISKR "DD1" (FINIS STEM TBL.)"
"FREE F("DD1")"

/***** READS THRU INPUT FILE UNTIL SPECIFIED RECORD IS REACHED *****/

NM=Ø
SAY 'DO YOU WANT THE WHOLE DATABASE?'
PULL VAR1

IF VAR1='YES' THEN
 NOP
ELSE
 DO

 44 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SAY 'WHAT TABLE DO YOU WANT TO CHANGE?'
 PULL VAR2
 END

DO A=1 TO TBL.Ø
 PARSE VALUE TBL.A WITH 1 TBNAME 7 .,
 19 COLNAME 37 . ,
 37 COLVALUE 77 . ,
 291 FREQUENC 293 .
 DO
 IF VAR1='YES' THEN
 NOP
 ELSE
 IF VAR2 = TBNAME THEN
 NOP
 ELSE
 ITERATE
 END

/******* PROCESSES FREQUENCY VALUES ******/
 DO
 FREQUENC=C2X(FREQUENC)
 IF FREQUENC='FFFF' THEN
 DO
 A=A+1
 PARSE VALUE TBL.A WITH 1 TBNAME 7 .
 IF VAR2 = TBNAME THEN
 DO
 A=A-1
 ITERATE
 END
 ELSE
 DO
 SAY 'WHAT TABLE DO YOU WANT TO CHANGE?'
 PULL VAR2
 A=1
 ITERATE
 END
 END
 ELSE
 FREQUENC=X2D(FREQUENC)
 END

Editor’s note: this article will be continued next month.

Iolanda Lopes
Database Administator
Companhia Seguros Mundial Confiança (Portugal) © Xephon 1998

 45© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

Character versus numeric data types

Most DBAs have faced the situation where one of their applications
requires a four-byte code that is used to identify products, accounts,
or some other business object, and all of the codes are numeric and will
stay that way. But, for reporting purposes, users or developers want
the codes to print out with leading zeros. So, the users request that the
column be defined as CHAR(4) to ensure that leading zeros are
always shown. What are the drawbacks, if any, to doing this?

Well, there are drawbacks! Without proper edit checks, inserts and
updates could put invalid alphabetic characters into the product code.
This can be a very valid concern if ad hoc data modifications are
permitted. This is rare in production databases, but data problems can
still occur if the proper edit checks are not coded into every program
that can modify the data. Let’s assume that proper edit checks are
coded and will never be by-passed. This removes the data integrity
question.

There is another problem that is related to filter factors. Consider the
possible number of values that a CHAR(4) column and a SMALLINT
column can assume. Even if edit checks are coded for each, DB2 is not
aware of these and assumes that all combinations of characters are
permitted. DB2 uses base 37 maths when it determines access paths
for character columns – under the assumption that 26 alphabetic
letters, 10 numeric digits, and a space will be used. This adds up to 37
possible characters. For a four-byte character column there are 374

(1,874,161) possible values.

A SMALLINT column can range from -32,768 to 32,767, producing
65,536 possible small integer values. The drawback here is that
negative or five-digit product codes could be entered. However, if we
adhere to our proper edit check assumption, the data integrity problems
will be avoided here as well.

DB2 will use the HIGH2KEY and LOW2KEY values to calculate
filter factors. For character columns, the range between HIGH2KEY
and LOW2KEY is larger than numeric columns because there are
more total values. The filter factor will be larger for the numeric data

 46 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

type than for the character data type – which may influence DB2 to
choose a different access path. For this reason, favour the SMALLINT
over the CHAR(4) definition.

It might be possible to solve the leading zeros problem using other
methods. When using QMF, you can ensure that leading zeros are
shown by using the ‘J’ edit code. Report programs can be coded to
display leading zeros easily enough by moving the host variables to
appropriate display fields. Ad hoc access through other reporting tools
typically provides a parameter that can enable leading zeros to be
displayed.

In general, it is wise to choose a data type which is closest to the
domain for the column. If the column is to store numeric data, favour
choosing a numeric data type (SMALLINT, INTEGER, DECIMAL,
or floating point). In addition, always be sure to code appropriate edit
checks to ensure data integrity.

Craig S Mullins
VP Operations
PLATINUM Technology (USA) © PLATINUM Technology 1998

January 1995 – October 1998 index

Items below are references to articles that have appeared in DB2 Update since January 1995.

References show the issue number followed by the page number(s). Back-issues of DB2

Update are available back to Issue 15 (January 1994). See page 2 for details.

24-bit CAF applications 70.3-9
Accessing directory information 69.7
Back-up/restore 57.22-48
Boot Strap Dataset (BSDS) 46.23-34
Buffer pool 50.9-23, 51.43-47, 54.12-40,

58.39-47, 59.17-18, 66.3-18,
 70.34-47, 71.35-47, 71.12-14

Buffer pool maintenance 65.22-37
CAF 70.3-9
Catalog 52.42
Character data types 72.45-46
Check constraints 39.8-16
CHECKDATA 49.5

CICS 41.47, 44.19-20, 53.3, 53.28-32
CLIST 49.3, 56.3-8
COBOL 53.3-12, 59.27
Column descriptions 63.22-30
Command interface 64.3-21
Command panel 54.40-43
Convert plans to packages 68.41-47,

 69.29-47, 70.16-34
COPY 59.26-47
Coupling facility 55.27-29
CREATE clauses 72.9-24
Data generator 61.36-47, 62.26-47,

 63.31-47, 64.38-47

 47© 1998. Reproduction prohibited. Please inform Xephon of any infringement.

Data sharing 50.5
Datasets 49.4
DB2 cloning 55.3-26, 56.20-44
DB2 for OS/2 41.3-9
DB2 UDB 62.14-15
DB2 Version 4.1 40.10-15,

42.33-42, 44.40-43
DB2 Version 4.2 43.32-35
DB2 Version 5 50.3, 57.21, 65.3-10
DB2 Version 6 57.21, 72.3-8
DB2 WWW 68.18-21
DB2/2 52.45-47
DBRM 42.3-15, 49.13-38,

51.20-27, 53.29
DCL 53.3-12, 61.26-35
DDL 43.12-32,44.20-39,

47.25-39, 49.38-46,
50.24-45,51.27-42, 52.14-29,

53.13-28 57.3-19, 58.19-38
Deadlock 46.13-23, 69.20-29
Dirty read 40.10-15
DISPLAY BUFFERPOOL 66.3-18,

70.34-47, 71.35-47
DSNDB07 59.3-17
DSNZPARM 39.16-34, 69.3-7
Dynamic plan switching 67.9-25
EDM pool 62.3-13
EXPLAIN 49.13-38
Hardware failure recovery 45.3-15
IBM announcements 43.32-35
Image copy 41.10-19
Image copy analyser 63.3-7
Index 49.41, 52.30
Index tuning 65.22-37
Indexspaces 48.18-26
Internet 68.3-8, 68.18-21
ISPF utility 56.3-8, 59.18-26
Joins 48.3-18
LOAD utility 68.9-17, 47.3-12
MGCRE 60.15-19
Numeric data types 72.45-46
Object maintenance 58.3-18
Object-id translation 43.36-47, 45.30-47
On-line statistics 69.17-19
Optimizer 55.37
Outer joins 47.20-24
Packages 54.3-12
Page number calculator 67.25-30
Parallelism 50.4
Partitioned tablespaces 61.3-8
Plan table 55.36-47

QMF 60.7-15
RACF 53.28-30, 58.18-19
RCT 41.47, 44.19-20
RDS STATISTICS 69.17-19
REBIND PLAN/PACKAGE 68.41-47,

69.29-47
RECOVER 52.29-42
Referential integrity 48.3-18
REORG 51.3-20, 56.44-51
Repair 57.48-55
Restart 47.13-20, 48.26-40
Return codes 56.44-51
REXX 53.3-13, 53.32-47, 60.20-40,

61.9-25, 62.15-24, 63.8-24
REXX extension 64.26-37, 65.10-21,

 66.34-47, 67.31-47
RID pool 54.43-47
RUNSTATS 51.3, 52.3-14, 66.19-31
Security 44.40-43, 50.45-47,

53.28-32, 58.18-19,
60.15-19, 69.3-7

Simulate production environment
71.15-34, 72.24-44

SMF Accounting information 68.22-40,
 69.8-16

SMS 65.42-47
Space calculation 46.3-13
Space status 70.10-15
SQL 42.42-51, 44.3-18,

45.15-26, 52.42-47, 65.37-41
Stored procedures 50.5-6
SYSIBM.SYSCOPY 39.35-43
System Catalog 39.3-7, 40.15-43,

41.19-46, 42.16-33, 65.3-10
Table descriptions 63.22-30
Table recovery 56.8-20
Tablespaces 45.30-47, 48.18-26,

49.43-45, 55.27-28
TERM UTILITY 64.22-26
Test data 43.3-12
THREAD 60.3-6
Timeout 46.13-23, 69.20-29
Transparent migration 71.3-11
TSO interfaces 44.3-18, 45.15-26
Two’s complement converter 62.25
UNLOAD utility 47.3-12, 68.9-17
Updating statistics 66.19-31
Utility abends 55.29-36
Variable data 45.27-30
VSAM 40.3-10, 46.34-43
Year 2000 57.21-22, 67.3-8

Sterling Software has announced Version
1.5 of Vision:Webaccess, with new access to
SQL Server and DB2 data, via a standard
Web browser. Users can point-and-click
through queries, view and refresh previously
created reports and charts, and create ad hoc
reports and charts.

The new release connects to DB2 via IBM’s
client middleware. Persistent database
connection eliminates the need to reconnect
to databases constantly, and there’s no client
installation, configuration, or maintenance.

For further information contact:
Sterling Software, 1800 Alexander Bell
Drive, Reston, VA 22091, USA.
Tel: (703) 264 8000.
Sterling Software, 1 Longwalk Road,
Stockley Park, Uxbridge, Middlesex, UB11
1DB.
Tel: (0181) 867 8000.
URL: http://www.storage.sterling.com.

* * *

Infotel has announced MASTER-UTIL for
DB2, for automated and integrated
management of reorganizations and back-up
copies. With its MaserReorg and
MasterCopy components, MASTER-UTIL
automatically ensures that DB2 application
performance is maintained and that the DB2
environment is secure, but with full
operational awareness and control.

MasterReorg prioritizes and schedules DB2
reorganizations, based on the degree of
disorganization of the DB2 objects and batch
window constraints. It maintains and
maximizes the performance of DB2

application programs, optimizes the use of
the batch window, and ensures completion
of the reorganizations prior to the start of the
on-line session.

MasterCopy automatically manages the
back-up copies of DB2 tablespaces
according to the restore criteria defined by
the site and taking into account batch
window constraints. It assures availability at
any given time of all objects necessary to
perform a recovery.

For further information contact:
Infotel, 15438 North Florida Avenue, Suite
204, Tampa, FL 33613, USA.
Tel: (813) 264 2090.
Infotel Software, Craven House, 14-18 York
Road, Wetherby, West Yorkshire, LS22
6SL, UK.
Tel: (01937) 584 200.
URL: http://www.infotelcorp.com.

* * *

IBM has announced DB2 Spatial Extender,
an optional feature of DB2 DataJoiner
Version 2.1.1. By using existing geographic
information systems applications or a single
SQL statement directly, it can query spatial
information and/or join this data with normal
business data from various sources. The
product includes support for Oracle 8 and
Sybase SQL Anywhere via DataJoiner
Version 2.1.1, which provides transparent
Data Definition Language support and
supports complex configurations and large
database needs.

For further information contact your local
IBM representative.

DB2 news

x xephon

	Preparing for DB2 Version 6
	Peculiarities of the CREATE statement clauses
	Simulating a production environment – part 2
	Character versus numeric data types
	January 1995 – October 1998 index
	DB2 news

