
July 2000

166

© Xephon plc 2000

3 Concurrent copy
8 Return-code special register

10 Implementing shared HFS on OS/390
Version 2 Release 9

27 Keeping track of load module
changes

48 Sorting a PDS list
49 A Java client/server application on

OS/390 – part 2
66 Reference modification
68 Shifting text and data in ISPF/PDF
70 OS/390 Version 2 Release 10

directions
72 MVS news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Jaime Kaminski

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

MVS Update on-line
Code from MVS Update can be downloaded
from our Web site at http://www.xephon.
com/mvsupdate.html; you will need the user-
id shown on your address label.

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
£340.00 in the UK; $505.00 in the USA and
Canada; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1992 issue, are available separately
to subscribers for £29.00 ($43.00) each
including postage.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 33598
From USA: 01144 1635 33598
E-mail: Jaimek@xephon.com

North American office
Xephon/QNA
PO Box 350100,
Westminster, CO 80035-0100
USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
Articles published in MVS Update are paid
for at the rate of £170 ($260) per 1000 words
and £100 ($160) per 100 lines of code for the
first 200 lines of original material. The
remaining code is paid for at the rate of £50
($80) per 100 lines. In addition, there is a flat
fee of £30 ($50) per article. To find out more
about contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors, or you can
download a copy from www.xephon.com/
contnote.html.

 3© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Concurrent copy

INTRODUCTION

How do you carry out your mainframe disaster recovery? In this world
of e-commerce and ever-increasing demands of existing OS/390
systems, it is easy to get the impression from the press and from
advertising that if you have OS/390 then you probably have mirrored
DASD and maybe even a hot site. Would that this were the case. Many
sites cannot justify the cost for such systems, yet still wish to improve
their availability and minimize their down time for functions such as
back-up. Having been involved with such a site for a while now, I
would like to discuss the merits of exploiting what is an old, yet
seemingly not widely-used technology, that nearly all of us probably
have and which could help reduce down time. This is concurrent copy.

WHAT IS CONCURRENT COPY?

Concurrent copy is, at its most basic, a tool that can be invoked during
DFDSS DUMP (or COPY) processing that virtually eliminates the
processing time involved with doing the DUMP. What happens is this:

• DFDSS initiates a concurrent copy session with 3990 compatible
controllers. At this point, a track map of all selected data is taken
within the controller so that a complete location map exists of all
the disk areas that will be transferred.

• Once this map is built, the dump processing actually begins, and,
most importantly, all the ENQs on the data are released leaving
the data free for use by other systems. Furthermore a log message
is issued enabling automation tools to release applications back
to the system.

• Should one of the systems which then gets access to the data
attempt to update one of the datasets being dumped, the controller
will detect from its track map that a change is to be made. As a
result the ‘about to be updated’ track is uploaded into an area of
the controller’s storage known as a sidefile (thus protecting the
original data from being lost), and the update can then take place.

 4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This sidefile occupies about 1MB of the controller storage at
most, so if the amount of data being updated exceeds this sidefile,
then the data is transferred into expanded storage and then
subsequently to paging areas for safe keeping. This data is
associated with an address space known as ANTMAIN. The size
of this paging requirement ebbs and flows depending on how
widely DFDSS is able to get the data transferred to tape (or the
copy disk).

The net result is that your DFDSS dumps are now reduced to the time
taken to complete the mapping process the duration of which is highly
dependent upon how much work DFDSS has to do to identify all the
relevant datasets to dump. It will, however, be considerably less than
that for the whole dump!

FREE LUNCH?

Unfortunately, concurrent copy comes under the category of ‘no such
thing as a free lunch’. It may seem from the above that concurrent copy
is the ideal solution for the smaller site, but it does need to be
implemented with care, and with understanding of the potential risks
involved with using concurrent copy. The ultimate risk associated
with this facility (and one that may have put people off its use to some
extent) is the fact that it is a non-restartable operation. Should there be
a failure during the dump process, and should any of the data being
processed have been updated since the copy was initiated, it is not
possible to start the copy again from its original position.

Having said that, we have used this tool at our site for somewhere
around seven years now and in itself it is very reliable. However, there
are a number of issues to look out for which can affect its use as
follows:

• Ensure that you have spare page datasets available (or a large
amount of free space in your existing ones) since if there is a large
amount of updating going on, the updated tracks will find their
way on to your page areas, and this could lead to auxiliary storage
shortages.

• If there is a large amount of activity, ANTMAIN may well
‘swamp’ expanded storage as well, so try to ensure that the dumps
are not done at peak times.

 5© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

• Always make sure that the output part of your dump does not
become ‘blocked’ (ie if you have manual tape drives, do not let
the system wait for tapes because this may cause more data to be
sent to ANTMAIN). If you have a robot, do not put it into pause
mode or manual mode because this will cause ANTMAIN to clog
the system as well.

Concurrent copy in itself rarely seems to fail. What does compromise
it is its potential impact on the system through its use of memory and
auxiliary storage. With care therefore it can be safe to use.

Should it still fail despite your best efforts, for example because of a
tape error or perhaps because ultimately the job had to be cancelled
because of its use of resources, the question then is, is it really that
much of a problem? If it is possible to take a new copy quickly, as it
can be with this technique, is it possible to rerun it anyway at the point
it has reached, and deal with any data inconsistencies through
operational methods? That question can only be asked when you have
decided on how you may want to exploit this tool in your processing
schedules.

HOW IS IT INVOKED?

Although it was stated earlier in this article that concurrent copy is
invoked under DFDSS, it can also be activated through HSM. Having
said that, ultimately, it is DFDSS that acts as the data mover for HSM
and that is the real invoker of concurrent copy.

If you wish to use HSM as your method of exploiting concurrent copy,
then you can either do it through the use of VOLUMEDUMP(CC) on
a SETSYS command for volume dumps, or through the use of
management class specifications. There are two specifications within
the management class – ‘back-up copy technique’ and ‘abackup copy
technique’. Each can be specified as CONCURRENT REQUIRED
(ie must use concurrent copy), CONCURRENT PREFERRED (ie use
it if on a suitable device), and STANDARD (no concurrent copy), The
back-up copy technique covers ordinary HSM incremental back-ups,
while the ABACKUP category covers ABARS (aggregate back-up
and restore). In order for the management class to be effective, the data
must reside on concurrent copy capable devices. This may be assisted

 6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

by setting the storage class ‘accessibility’ option to ‘continuous’(or
CONT PREFD if you have a mix of DASD). Having said that, it is
probable by now that the majority of sites will have concurrent copy
capable controllers, so the storage class may well be irrelevant.

Use of DFDSS with concurrent copy is the easiest and most direct
approach to using this facility. To show how easy it is to do a
concurrent copy for back-up through DFDSS, the following is an
example of a set of DFDSS parameters that are in use at our site for
daily incremental back-up. I have included all of them because the
overall set-up has been optimized for back-up speed and may therefore
be of interest generally.

DUMP -
ADMIN -
CANCELERROR -
CONCURRENT -
DATASET(INCLUDE(PROD1.**,PROD2.**) -
 EXCLUDE(%%%.DSN*.**, -
 SYS1.VVDS.**) -
 BY((DSCHA EQ 1))) -
INCAT(CATALOG.PROD1,CATALOG.PROD2) -
ONLYINCAT -
OPTIMIZE(4) -
OUTDDNAME(TAPEOUT1) -
SHARE -
SPHERE -
TOL(ENQF) -
VALID -
WAIT(Ø,Ø)

Assuming this works satisfactorily, the following style of messages
should be present in your job log:

ADR8Ø1I (ØØ1)-DTDSC(Ø1), DATASET FILTERING IS COMPLETE. 4171 OF 4171
DATA SETS WERE SELECTED: Ø FAILED SERIALIZATION AND Ø FAILED FOR OTHER
REASONS.
ADR734I (ØØ1)-DTDSC(Ø1), 2ØØØ.133 Ø4:28:11 CONCURRENT COPY
INITIALIZATION SUCCESSFUL FOR 4171 OF 4171 SELECTED DATA SETS.
SERIALIZATION FOR THIS DATA IS RELEASED IF DFSMSDSS HELD IT. THE
INTERMEDIATE RETURN CODE IS ØØØ4.

The ADR734I message will also be present on SYSLOG to allow your
automation routines to restart systems and applications after concurrent
copy completion. As an example of the time taken to process, the
above job took just over six minutes for concurrent copy completion.

 7© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

ADDITIONAL CONSIDERATIONS FOR USE

The following points should also be considered when using concurrent
copy:

• Concurrent cannot be used with the DELETE and UNCATALOG
DFDSS keywords. Effectively you cannot use concurrent copy
where you want DFDSS to carry out a change to the data to be
copied. What you can do though, if you want to take a copy and
do a delete, start the delete job upon completion of concurrent
copy initialization.

• By default you cannot use the RESET DFDSS keyword to setoff
change flags when using concurrent copy. However this can be
altered through a simple ZAP to the DFDSS patch area. Note this
is a standard technique for controlling DFDSS operation and is
not a ‘dodgy tweak’ to the product. The required ZAP is included
below.

• IBM’s and STK’s devices with snapshot capability simulate
concurrent copy through a snap file, rather than through the track
map. However, the effect is the same, but the potential impact of
concurrent copy on the paging areas is moved outboard to the
device.

ALLOWING RESET WITH CONCURRENT COPY

All that is required to achieve RESET with concurrent copy is to set
the byte at offset X'18' in ADRPATCH to a non-zero value. The ZAP
deck shown below should be all that is required to make the necessary
change.

//your job card
//STEPA EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=library.where.adrdssu.resides,DISP=SHR
//SYSIN DD *
 NAME ADRDSSU ADRPATCH
 VER 18 ØØ
 REP 18 FF

 8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSIONS

As with all functionality, it is necessary to decide if this tool suits the
requirements of your site. You can easily check whether it works by
simply trying the concurrent keyword in a simple DFDSS job. Then
all that is required is a risk management exercise to determine if you
can safely accept the possibility of using a non-restartable mechanism
for your back-up. Which leads me to one final suggestion for using
this facility. If you take two copies of data for security reasons and feel
that concurrent copy is not for you, there may still be one possibility
for its use. If one copy of data is taken in standard form, you could
initiate the second copy upon completion of the first as a concurrent
copy. Although the reads to the disk are potentially doubled, the actual
elapsed time between completion of the first copy and concurrent
copy completion of the second will be around 35% less than taking
two simultaneous copies.

Systems Programmer (UK) © Xephon 2000

Return-code special register

INTRODUCTION

The RETURN-CODE special register can be used to pass a number
between separately-compiled programs. This is an IBM extension to
the COBOL language, so do not expect to see it in every version of
ANSI COBOL that you might work with. It has the implicit definition
as follows:

 Ø1 RETURN-CODE GLOBAL PIC S9999 COMP.

You do not have to define it in your data division.

You may use it to pass a ‘return code’ to the calling program or the
system by setting RETURN-CODE before executing an ‘EXIT
program’or GOBACK statement.

 9© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

The first time a program is called, the compiler initializes the field to
zero (normal return code for a successful program). Under normal
conditions, the register will not be reset on subsequent calls to the
program. There are some rare exceptions to this rule, so look them up
for your specific compiler.

When control returns to the operating system, return-code’s contents
are returned to the operating system as a ‘user return code’.

EXAMPLE

Starting with the calling program:

 PROCEDURE DIVISION.

 CALL 'ABSØ1Ø' USING ARGUMENT-1.
 IF RETURN-CODE = ZERO
 PERFORM MAIN-PROCESSING-ROUTINE
 ELSE
 PERFORM SUBROUTINE-ERROR.

Now consider the subroutine ABS010:

 PROCEDURE DIVISION USING ARG-X.
 PERFORM DO-A-LOT-OF-STUFF.
 IF ERROR-LEVEL > 1Ø
 MOVE 8 TO RETURN-CODE.
 GOBACK.

When the calling program returns control to the operating system, the
user return code will be ‘8’ if ABS010 experienced an error. Many
shops use ‘8’ to indicate a serious error. ‘16’ is usually reserved for
total melt-downs. This pretty much follows the IBM usage, which is
similar to the following:

 Ø - Successful operation
 4 - Warning ("oops")
 8 - Error
16 - Major unrecoverable error.

Allan Kalar
Systems Programmer (USA) © Xephon 2000

 10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Implementing shared HFS on OS/390 Version 2
Release 9

INTRODUCTION

With Release 9, OS/390 enables Sysplex users to share read/write
access to data stored in Hierarchical File Systems (HFS) among the
MVS images of the Sysplex.

Before Release 9, users had to log onto one system in a Sysplex and
had write access only to the file systems associated with their own
system. With shared HFS, all file systems are available, in read/write
access, to all systems participating in the shared HFS support. A user
who is logged on to any system can make changes to shared file
systems and those changes are visible to all systems of the Sysplex.

In this article we will explain how HFS Sysplex sharing works. Then
we will describe how to implement it step by step.

PHYSICAL SHARED HFS IMPLEMENTATION DESIGN

XCF message services are used to communicate between systems in
the Sysplex. This allows metadata, such as mount structure for
example, to be maintained in a couple dataset to allow each system to
know where it must communicate to access a file.

Recovery is provided, such that if one system fails another system in
the Sysplex will take over the file sharing responsibilities for the
failing system. This will be invisible to the application.

XCF Transfer Protocol

Every HFS dataset that is shared read/write in the Sysplex has a central
owning system that manages it on behalf of other systems in the
Sysplex. The owning system gets read or write requests from other
systems and performs these operations on the HFS datasets.

A messaging protocol via XCF services is used to transfer data around
the Sysplex from the central owner. This is like a client/server
environment.

 11© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

OS/390 Unix System Services Version 2 Release 9 implemented
shared HFS support by using function shipping. Function shipping
means that one system performs as a server to the other sharing
systems (clients).

A client system ships its requests to the related server(s) for each read/
write shared HFS dataset.

Only the server system issues read and write requests for both types
of data (files and metadata) to an HFS dataset on a volume. The
buffering and cacheing is also done within by the system owning the
file system.

By default, the system that mounts the HFS dataset the first time
automatically becomes the owning system.

The XCF group that is used by shared HFS is SYSBPX.

Mount requests are Sysplex wide.

The communication for the shared HFS support is implemented by
using:

• XCF messaging services to inform all systems when a system
joins or leaves the SYSBPX group, and to notify other systems
that an update occurred in the system-wide mount table when a
mount, unmount, chmount, quiesce, or unquiesce request was
issued.

• A coupling dataset to track information about the participating
systems and to have a Sysplex-wide mount table. Note that a
coupling dataset is used, not a coupling facility structure.

Recovery

Dead system recovery is provided to dynamically recover file systems
owned by a system that has left the Sysplex for any reason. Those files
will be randomly moved to surviving systems in the Sysplex, providing
enhanced file system availability.

LOGICAL SHARED HFS IMPLEMENTATION DESIGN

This paragraph introduces new terms and concepts that are used when

 12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

implementing shared HFS, such as Sysplex root, system-specific
HFS, and Version HFS.

Sysplex root

This new HFS, which will be allocated during Shared HFS
implementation, is unique in the Sysplex.

It contains only directories and symbolic links that allow redirection
to system-specific HFS directories and HFS directories.

The structure of the Sysplex root HFS looks like:

Directory /

Symlink /bin – $VERSION/bin

Symlink /usr – $VERSION/usr

Symlink /lib – $VERSION/lib

Symlink /opt – $VERSION/opt

Symlink /samples – $VERSION/samples

Symlink $SYSNAME – $SYSNAME/

Symlink $VERSION – $VERSION/

Symlink /dev – $SYSNAME/dev

Symlink /tmp – $SYSNAME/tmp

Symlink /var – $SYSNAME/var

Symlink /etc – $SYSNAME/etc

Directory /u – automount managed.

$VERSION and $SYSNAME are system variables which will be
instantiated using BPXPRMxx parameters (root version) and the local
MVS system name.

System-specific HFS

This new HFS will also be allocated during shared HFS implementation.

 13© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

There is one system-specific HFS for each MVS image participating
in the Sysplex. It contains only directories and symbolic links that
allow redirection to system specific directories (/dev, /tmp, /var and
/etc). The structure of the system-specific file system looks like:

Symlink /bin – /bin

Symlink /usr – /usr

Symlink /lib – /lib

Symlink /opt – /opt

Symlink /samples– /samples

Directory /devmount point for system-specific HFS for /dev

Directory /tmp mount point for system-specific HFS for /tmp

Directory /var mount point for system-specific HFS for /var

Directory /etc mount point for system-specific HFS for /etc.

Version HFS

The version HFS is the IBM-supplied root HFS dataset containing
files and executables for OS/390 elements.

IBM supplies this HFS in the ServerPac – it corresponds to the ‘old’
root HFS. It contains system code including /bin, /usr, /lib, /opt,
/samples, etc. In the Sysplex environment, each system could be on a
different OS/390 release or service level. You should use the VERSION
statement of BPXPRMxx member to specify the version of the HFS.

Global shared HFS structure overview

In order to describe the global HFS structure when implementing
Shared HFS in a Sysplex, we will use a sample Sysplex (WXCF),
composed of two MVS images (AMVS and BMVS). After
implementing Shared HFS, the HFS structure for AMVS will look
like:

• the root Version will be instantiated with the SYSRES volser
(&SYSR1 = RES$01). So, the symbolic link /bin will point to the
directory /bin of the Version HFS RES$01.

 14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The symbolic link /tmp will point to /AMVS/tmp, which
corresponds to the /tmp directory of the System-specific HFS for
AMVS. A specific HFS for /tmp (ABASEPRO.BASEPRHF.
OMVS.TMP) is mounted on that directory.

A similar structure will be implemented for the other MVS image
BMVS.

IMPLEMENTING SHARED HFS

First, you should install OS/390 Version 2 Release 9 on all the systems
that will participate in HFS sharing (these systems should be set up in
a Sysplex).

A new chapter in OS/390 Unix System Services Planning contains
information about how to set up shared HFS in a Sysplex, including
how to create the Sysplex root HFS dataset and the system-specific
HFS dataset, and how to format an OS/390 Unix Couple Dataset
(CDS).

It also describes how to update BPXPRMxx, move file systems,
control security, and tune performance in a Sysplex.

Creating the Sysplex root HFS dataset

The Sysplex root is an HFS dataset that is used as the Sysplex-wide
root. This HFS dataset, which is very small, must be mounted read/
write. Only one Sysplex root is allowed for all systems participating
in shared HFS.

The Sysplex root is created by invoking the BPXISYSR sample job
in SYS1.SAMPLIB shown below:

//*
//IKJEFT1A EXEC PGM=IKJEFT1A,PARM='BPXISYS1'
//*
//ROOTSYSP DD DSNAME=WBASEPRO.BASEPRHF.OMVS.SYSPLEX.ROOT,
// DISP=(,CATLG),
// DSNTYPE=HFS,
// SPACE=(CYL,(1,Ø,1))
//*
//SYSEXEC DD DSN=SYS1.SAMPLIB,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//*

 15© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

You would need superuser authority to run this job.

Creating the system-specific HFS datasets

Directories in the system-specific HFS dataset are used as mount
points, specifically for /etc, /var, /tmp, and /dev.

It is highly recommended to use a standardized naming convention for
this dataset uses the MVS system name (&SYSNAME).

To create the system-specific HFS, run the BPXISYSS sample job in
SYS1.SAMPLIB:

//*

//IKJEFT1A EXEC PGM=IKJEFT1A,PARM='BPXISYS2'

//*

//HFSSYSTS DD DSNAME=WBASEPRO.BASEPRHF.OMVS.AMVS.HFS,

// DISP=(,CATLG),
// DSNTYPE=HFS,
// SPACE=(CYL,(1,Ø,1))
//*
//SYSEXEC DD DSN=SYS1.SAMPLIB,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//*

BPXISYSS should be run multiple times, with different dataset
names, in order to create one system-specific HFS for every MVS
image in the Sysplex. The mount point for the system-specific HFS
dataset (/AMVS) will be created dynamically during OMVS start-up.

Creating OMVS Couple Datasets

The Couple Dataset (CDS) contains the Sysplex-wide mount table
and information about all participating systems, and all mounted file
systems in the Sysplex. CDS are used in the following manner:

• The first system that enters the Sysplex with SYSPLEX(YES)
initializes an OMVS CDS. The CDS controls shared HFS mounts
and will eventually contain information about all systems
participating in shared HFS.

 16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• This system processes its BPXPRMxx parmlib member, including
all its ROOT and MOUNT statement information. It is also the
designated owner of the byte range lock manager for the
participating group. The MOUNT and ROOT information are
logged in the CDS so that other systems that eventually join the
participating group can read data about systems that are already
using shared HFS.

• Subsequent systems joining the participating group will read
what is already logged in the CDS and will perform all mounts.
Any new BPXPRMxx mounts are processed and logged into the
CDS. Systems already in the participating group will then process
the new mounts added to the CDS.

To allocate and format a CDS invoke the BPXISCDS sample job in
SYS1.SAMPLIB. It specifies the number of mount records that are
supported by the CDS. For example:

//STEP1Ø EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /* Begin definition for OMVS couple dataset (1) */
 DEFINEDS SYSPLEX(WXCF) /* Name of the Sysplex in
 which the OMVS couple
 dataset is to be used. */
 DSN(SYSW.WXCF.OMVSØ1) VOLSER(SYSWA1) /* The name and
 volume for the OMVS
 couple dataset. The
 utility will allocate a
 new dataset by the name
 specified on the volume
 specified. */
 MAXSYSTEM(2) /* Number of systems in the
 Sysplex to be supported by
 this couple dataset. Default
 value is eight. @Ø1A*/
 CATALOG /* Default is not to CATALOG.
 @Ø1C*/
 DATA TYPE(BPXMCDS) /* The type of data in the
 dataset being created is
 for OMVS. BPXMCDS is the
 TYPE for OMVS. */
 ITEM NAME(MOUNTS) NUMBER(Ø3Ø) /* Specifies the number of
 MOUNTS that can be supported
 by OMVS.

 17© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 Default = 1ØØ
 Minimum = 1
 Maximum = 5ØØØØ @D1C*/
 ITEM NAME(AMTRULES) NUMBER(5Ø) /* Specifies the number
 of automount rules that can
 be supported by OMVS.
 Default = 5Ø
 Minimum = 5Ø
 Maximum = 1ØØØ @D1A*/

//*

When you create this dataset you need to specify the maximum
number of HFS mounts and automount rules you want to support
under OMVS. This is the total number Sysplex wide.

You should set this value right for your installation. If you set it too
high and more than what you really need, the HFS performance may
be affected.

You should define two couple datasets – one as primary and the other
as secondary. Define these on two different volumes for availability
reasons.

Updating COUPLExx parmlib member

Next you should tell XCF the names of the primary and secondary
couple datasets you have just defined. This is done by updating the
COUPLExx member in your parmlib dataset. The COUPLExx member
contains information on all couple datasets used by your Sysplex.

You should update that COUPLExx member to define the CDS to
XCF.

/* */
 COUPLE SYSPLEX(WXCF)
 PCOUPLE(SYSW.WXCF.COUPLEØ1,SYSWA1)
 ACOUPLE(SYSW.WXCF.COUPLEØ2,SYSWA2)
/* */
/* */
DATA TYPE(CFRM)
 PCOUPLE(SYSW.WXCF.CFRMØ1,SYSWA1)
 ACOUPLE(SYSW.WXCF.CFRMØ2,SYSWA2)
/* */
DATA TYPE(WLM)
 PCOUPLE(SYSW.WXCF.WLMØ1,SYSWA1)

 18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ACOUPLE(SYSW.WXCF.WLMØ2,SYSWA2)
/* */
DATA TYPE(LOGR)
 PCOUPLE(SYSW.WXCF.LOGRØ1,SYSWA1)
 ACOUPLE(SYSW.WXCF.LOGRØ2,SYSWA2)
/* */
DATA TYPE(ARM)
 PCOUPLE(SYSW.WXCF.ARMØ1,SYSWA1)
 ACOUPLE(SYSW.WXCF.ARMØ2,SYSWA2)
/* */
DATA TYPE(SFM)
 PCOUPLE(SYSW.WXCF.SFMØ1,SYSWA1)
 ACOUPLE(SYSW.WXCF.SFMØ2,SYSWA2)
/* */
/* */
DATA TYPE(BPXMCDS)
/* Á OMVS CDS */
 PCOUPLE(SYSW.WXCF.OMVSØ1,SYSWA1)
 ACOUPLE(SYSW.WXCF.OMVSØ2,SYSWA2)
/* */
/* PATH AMVS TO BMVS */
/* */
 PATHIN DEVICE(C49)
 PATHOUT DEVICE(C48)
/* */
/* */
/* PATH BMVS TO AMVS */
/* */
 PATHIN DEVICE(C18)
 PATHOUT DEVICE(C19)
 /* */
 /* PATH VIA COUPLING FACILITY */
 /* */
 PATHIN STRNAME(IXC_PATH1)
 PATHOUT STRNAME(IXC_PATH1)
 /* */
 PATHIN STRNAME(IXC_PATH2)
 PATHOUT STRNAME(IXC_PATH2)
 /* */
 /* TRANSPORT CLASS */
 /* */
 CLASSDEF CLASS(TCØ4Ø96Ø) CLASSLEN(4Ø96Ø)

Customizing BPXPRMxx for Shared HFS

You specify the various parameters to control the file system in the
BPXPRMxx parmlib member.

This member also contains information to control the OMVS set up
and processing.

 19© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

New keywords of BPXPRMxx

In order to implement shared HFS, there are new keywords available
in BPXPRMxx. They are:

• SYSPLEX(YES|NO).

• VERSION(‘xxxx’).

• ROOT and MOUNT new keywords: SYSNAME(sysname),
AUTOMOVE|NOAUTOMOVE.

• SYSPLEX(YES) indicates whether a system is to be initialized
in a Sysplex environment or operate in local mode. The first
system entering the Sysplex with SYSPLEX(yes) initializes a
Couple Dataset (CDS), which controls shared HFS mounts. The
value of this parameter cannot be changed dynamically.

• VERSION(‘xxxx’) indicates the release or version of root HFS.
This statement will dynamically create a mount point at the time
of IPL to mount the Version HFS file. The version HFS is the
IBM-supplied root HFS dataset. You should specify a version
parameter that identifies your OS/390 system release level. The
system residence volser might be an appropriate name you can
use. Different MVS systems in the Sysplex can specify different
VERSION parameters in their BPXPRMxx member to allow
different releases or service levels of root HFS.

• SYSNAME(sysname) declares the system that is the ‘owner’ of
the file system (by default, it is the system where the mount is
issued).

• AUTOMOVE|NOAUTOMOVE parameters indicate whether, if
the specified root file system owner goes down, the root file
system can be automatically moved to another system, which
then becomes the owner of that root.

Sample BPXPRM00 member

You can use a common BPXPRMxx member for all the systems in the
Sysplex:

FILESYSTYPE TYPE(HFS)
 ENTRYPOINT(GFUAINIT)

 20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 PARM(" ")

/****************************/
/* shared HFS */
/****************************/

SYSPLEX(YES)
VERSION("&SYSR1.")

/***********************/
/* Sysplex root HFS */
/***********************/

ROOT FILESYSTEM("WBASEPRO.BASEPRHF.OMVS.SYSPLEX.ROOT")
 TYPE(HFS)
 MODE(RDWR)

/****************************/
/* version HFS */
/****************************/

MOUNT FILESYSTEM("SYS1.ROOT")
 TYPE(HFS)
 MODE(READ)
 MOUNTPOINT("/$VERSION")

/***********************/
/* system-specific HFS */
/***********************/

MOUNT FILESYSTEM("WBASEPRO.BASEPRHF.OMVS.&SYSNAME..HFS")
 TYPE(HFS)
 MODE(RDWR)
 NOAUTOMOVE
 MOUNTPOINT("/&SYSNAME.")

MOUNT FILESYSTEM("&SYSCLONE.BASEPRO.BASEPRHF.OMVS.TMP")
 TYPE(HFS)
 MODE(RDWR)
 NOAUTOMOVE
 MOUNTPOINT("/&SYSNAME./tmp")

MOUNT FILESYSTEM("&SYSCLONE.BASEPRO.BASEPRHF.OMVS.ETC")
 TYPE(HFS)
 MODE(RDWR)
 NOAUTOMOVE
 MOUNTPOINT("/&SYSNAME./etc")

MOUNT FILESYSTEM("&SYSCLONE.BASEPRO.BASEPRHF.OMVS.DEV")
 TYPE(HFS)

 21© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 MODE(RDWR)
 NOAUTOMOVE
 MOUNTPOINT("/&SYSNAME./dev")

You should notice the NOAUTOMOVE options on the MOUNT
statements. These tell the mount table not to move this HFS dataset to
another system when the MVS ‘owner’ system goes down (default, if
not specified, is AUTOMOVE).

IPL the systems of the Sysplex

This is to activate the COUPLExx and BPXPRMxx changes. Now you
are ready to share HFS datasets across the Sysplex.

Automount policies

The automount facility gives you the flexibility to mount files as and
when they are required rather than keeping them mounted all the time.
The mount point directories are created internally as they are required.
Later, when the file system is no longer in use, the mount point
directories are deleted. You specify the details on how to and when to
mount and unmount the file in a policy file.

Before Release 9, your automount policy most likely resided in the
/etc/auto.master and /etc/u.map files. For those using shared HFS,
each participating system has a separate /etc file system.

In order for the automount policy to be consistent across participating
systems, the same copy of the automount policy must exist in every
system’s /etc/auto.master and /etc/u.map files.

For example both AMVS and BMVS have the following configuration
files:

/u /etc/auto_u.map

and

name *
type HFS
filesystem WBASEPRO.BASEPRHF.OMVS.U.<uc_name>
mode rdwr
duration 6Ø
delay 6Ø

 22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When the automount daemon initializes on AMVS, it will read its
local /etc/auto.master file to identify what directories to manage; in
this case, it is /u.

Next, the automount daemon will use the policy specified in the local
/etc/u.map file to mount file systems with the specified naming
convention under /u. The automount daemon on BMVS will perform
similar actions.

Because all mounted file systems are available to all participating
systems in the Sysplex, your automount policy must be consistent.
This is true for the file system name specified in /etc/u.map and the
values for other parameters in /etc/u.map and /etc/auto.master.

Different behaviour

The biggest change generated by the introduction of Shared HFS is the
fallout from changing directories to symbolic links.

Things like the ‘ls’ command will now require you to specify:

ls /etc/

You should notice the trailing slash, which is now mandatory.

Displaying enhanced mount information

Changes were made to display commands to support Shared HFS. For
example, D OMVS,F:

D OMVS,F.
D OMVS,FILE
BPXOØ45I 15.35.Ø5 DISPLAY OMVS 256
OMVS ØØØF ACTIVE OMVS=(ØØ)
TYPENAME DEVICE —————STATUS————— MODE
AUTOMNT 7 ACTIVE RDWR
 NAME=*AMD/u
 PATH=/u
 OWNER=AMVS AUTOMOVE=Y CLIENT=N
HFS 11 ACTIVE RDWR
 NAME=BBASEPRO.BASEPRHF.OMVS.DEV
 PATH=/BMVS/dev
 OWNER=BMVS AUTOMOVE=N CLIENT=Y
HFS 1Ø ACTIVE RDWR
 NAME=BBASEPRO.BASEPRHF.OMVS.ETC
 PATH=/BMVS/etc

 23© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 OWNER=BMVS AUTOMOVE=N CLIENT=Y
HFS 9 ACTIVE RDWR
 NAME=BBASEPRO.BASEPRHF.OMVS.TMP
 PATH=/BMVS/tmp
 OWNER=BMVS AUTOMOVE=N CLIENT=Y
HFS 8 ACTIVE RDWR
 NAME=WBASEPRO.BASEPRHF.OMVS.BMVS.HFS
 PATH=/BMVS
 OWNER=BMVS AUTOMOVE=N CLIENT=Y
HFS 6 ACTIVE RDWR
 NAME=ABASEPRO.BASEPRHF.OMVS.DEV
 PATH=/AMVS/dev
 OWNER=AMVS AUTOMOVE=N CLIENT=N
HFS 5 ACTIVE RDWR
 NAME=ABASEPRO.BASEPRHF.OMVS.ETC
 PATH=/AMVS/etc
 OWNER=AMVS AUTOMOVE=N CLIENT=N
HFS 4 ACTIVE RDWR
 NAME=ABASEPRO.BASEPRHF.OMVS.TMP
 PATH=/AMVS/tmp
 OWNER=AMVS AUTOMOVE=N CLIENT=N
HFS 3 ACTIVE RDWR
 NAME=WBASEPRO.BASEPRHF.OMVS.AMVS.HFS
 PATH=/AMVS
 OWNER=AMVS AUTOMOVE=N CLIENT=N
HFS 2 ACTIVE READ
 NAME=SYS1.ROOT
 PATH=/RES$Ø1
 OWNER=AMVS AUTOMOVE=Y CLIENT=N
HFS 1 ACTIVE RDWR
 NAME=WBASEPRO.BASEPRHF.OMVS.SYSPLEX.ROOT
 PATH=/
 OWNER=AMVS AUTOMOVE=Y CLIENT=N

For D OMVS,O, the command has been updated to show new parmlib
SYSPLEX and VERSION keywords.

D OMVS,OPTIONS
BPXOØ43I 17.54.57 DISPLAY OMVS 282
OMVS ØØØF ACTIVE OMVS=(ØØ)
OS/39Ø Unix CURRENT CONFIGURATION SETTINGS:
MAXPROCSYS = 2ØØ MAXPROCUSER = 25
MAXFILEPROC = 64 MAXFILESIZE = NOLIMIT
MAXCPUTIME = 1ØØØ MAXUIDS = 5Ø
MAXRTYS = 256 MAXPTYS = 256
MAXMMAPAREA = 4Ø96 MAXASSIZE = 41943Ø4Ø
MAXTHREADS = 2ØØ MAXTHREADTASKS = 5Ø
MAXCORESIZE = 41943Ø4 MAXSHAREPAGES = 131Ø72
IPCMSGQBYTES = 262144 IPCMSGQMNUM = 1ØØØØ
IPCMSGNIDS = 5ØØ IPCSEMNIDS = 5ØØ

 24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

IPCSEMNOPS = 25 IPCSEMNSEMS = 25
IPCSHMMPAGES = 256 IPCSHMNIDS = 5ØØ
IPCSHMNSEGS = 1Ø IPCSHMSPAGES = 262144
SUPERUSER = BPXROOT FORKCOPY = COW
STEPLIBLIST =
USERIDALIASTABLE=
PRIORITYPG VALUES: NONE
PRIORITYGOAL VALUES: NONE
MAXQUEUEDSIGS = 1ØØØ SHRLIBRGNSIZE = 671Ø8864
SHRLIBMAXPAGES = 4Ø96 VERSION = RES$Ø1
SYSCALL COUNTS = NO TTYGROUP = TTY
SYSPLEX = YES BRLM SERVER = AMVS

PERFORMANCE ISSUES

There is a performance cost associated with the introduction of the
shared HFS function. Specifically, a degradation in file I/O and mount
times can be noticed.

XCF overhead

There is no I/O performance reduction for an HFS successfully
mounted R/O on all systems.

However, the intersystem communication required for shared HFS
does affect response time and throughput on R/W file systems being
shared in a Sysplex.

File I/O to a shared file system from a client that does not own the
mount has additional pathlength plus latency involved in the XCF
messaging function. For this reason, it is recommended that files be
mounted on the system where they are most heavily used.

Increased XCF message traffic to support shared HFS can contribute
to system degradation if not monitored and controlled.

Workloads that use large file buffer sizes will give you an increased
number of large messages; workloads with small file buffer sizes will
you give you an increased number of small messages.

To control XCF message traffic, closely monitor the number and size
of message buffers and the number of message paths within the
Sysplex.

 25© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

It is likely that you will need to define additional XCF paths and
increase the number of XCF message buffers above the minimum
default.

Impacts in HFS mount times

You should be aware that because of I/O operations to the mount table
CDS, every mount request requires additional system overhead.

Mount time increases as a function of the following three parameters
– the number of mounts, the number of members in the Sysplex, and
the size of your CDS.

Number of mounts

When a system joins the Sysplex, information concerning its mounts
must be written into the CDS. This takes time since mounts are
performed serially, one at a time.

Also, every time a system joins the Sysplex, it must first read the CDS
and perform the mounts already listed there. Once this is done, the new
system can perform its own mounts and write that information to the
CDS. As each new mount is performed, any other systems in the
Sysplex must then read what was just written into the CDS and
perform the same mount (catch-up). Conducting these catch-ups
affects the system on which the new mounts are initiated, ie the next
mount cannot be written into the CDS until the other systems have
read and mounted the last mount recorded in the CDS.

Thus, the more mounts that need to be performed, the more time is
expended in the reading of and writing to the CDS.

Number of members in the Sysplex

As pointed out above, when a new system enters a Sysplex, it must
perform all the mounts listed in the CDS before it can perform its own
mounts. The more systems in the Sysplex, the more mounts will be
recorded in the CDS, and thus the more time it will take for this new
system to read what is already in the CDS and perform the mounts.

Also, as already discussed, a catch-up function must be performed

 26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

when there are multiple systems in the Sysplex. The more systems in
the Sysplex, the more systems will be competing to read what is added
to the CDS and perform the new mounts listed there. This competition,
as discussed above, impedes the mount response time on the system
that is writing new mounts to the CDS.

Size of the CDS

When you format your CDS, the number of mounts specified in the
JCL determines the size of the CDS.

A value of 1000 gives you a smaller CDS than a value of 5000.

When a system reads the CDS for mount information, it must read the
entire CDS. Thus, even if you are only performing 600 mounts, if you
specify a mount number of 1000, all members in the Sysplex will read
the CDS as if 1000 mounts must be performed. In other words,
whatever amount of space the CDS will use to hold information on
1000 mounts will be read by all the systems in the Sysplex.

For example, even if only 600 mounts are listed in the CDS, if the
mount number in the JCL is 1000, a new system joining the Sysplex
will read the entire CDS, not just the space that contains the information
on the 600 mounts. Also, those systems performing catch-up will not
only read the new information added, but will read through the entire
CDS to get to the new information along with whatever space is left
over (in our example, the additional space used up by the 400 mounts
defined in the JCL).

For this reason, IBM recommends that you specify an appropriate
number of mounts in the JCL; this way you will not end up with a CDS
whose size is unnecessarily large.

Systems Programmer (UK) © Xephon 2000

 27© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Keeping track of load module changes

INTRODUCTION

This article is based on Determining the LMOD date of load modules
in MVS Update, March 1999, Issue 150.

There is no user program that never needs to be modified to reflect
end-user change requests or to fix a problem. These changes may
happen only every few years, or they may be much more frequent –
sometimes even every few days. In an MVS environment (and
especially a production one), we need to know, for change management
purposes, how many times a program, be it Assembler, PL/I, or
COBOL, has been changed since it was first link-edited.

I was installing a CICS program (CEMT I PROG command) when I
suddenly realized that it was the fifth end-user install request in 24
hours for the same program. So I came up with the following way to
keep track of load module changes. Just to give an example of what
the utility does: if a program called GUVEN has been changed five
times within a given period, this utility enables you to see all the
change dates in a dataset associated with that load library, as follows:

GUVEN ØØØØ5 91212 92355 92365 96ØØ3 982ØØ

ENVIRONMENT

We use MVS 5.2.2 running under ES/9000 580 mainframe. We also
use ISPF Version 4 Release 2, DFSORT Release 13, PL/I Version 2
Release 3, and JES2 5.2.

CUSTOMIZATION

This utility allows you to use as many load libraries to track as you
like. Only two load libraries are used to track their members’ change
dates. These libraries are SDIAGAS.USER.LOAD and
SDIAGAS.AGMPV.LOADLIB. In the following list, therefore, n
must be taken as ‘2’. If you wish to use more than two load libraries
to track, you must reflect this in the utility programs.

 28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The datasets you need in order to get the job done are shown in Figure
1, which also refers to Figures 2-11.

MISCELLANEOUS NOTES

• The notation n used at the end of the dataset name means that there
are n datasets associated for that dataset group. For example,
SDID.MVS.LIB.CHANGEn represents both SDID.MVS.LIB.
CHANGE1 and SDID.MVS.LIB.CHANGE2 in this utility. That
is why it is ‘2’ here.

• In the utility, LMOD DATE word is used as the link-edit date for
a given load module.

• To keep load module history records, a variable VSAM dataset
structure was considered the best for this type of design. Some
load modules might have just one change date, while others might
have a variable number of change dates (between two and 1001
changes). This explains why a variable VSAM dataset is used in
the utility; if it was not, disk space would be wasted.

If the maximum of 1001 changes seems to be too high for your
organization, you can decrease it to by customizing the VSAM
define jobs and PL/I programs.

HOW IT WORKS

This utility can be used for libraries from a variety of applications.
First, you need to determine the load libraries of importance to you.
Depending on the number you decide on, some minor changes have
to be made to the JCL and programs, such as repeating some job steps
for each additional load libraries.

Once the theoretical phase of the project is completed, the rest is quite
easy. The jobs to be run are listed below:

• First, run ALLOC1 and ALLOC2. These two jobs allocate the
necessary VSAM and sequential datasets.

• Second, NULLIFY is a separate job that helps you redefine
sequential datasets without having to delete them.

 29© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

• Then, use the EXTRACT job to get the LMOD dates of load
libraries.

• Finally, run INITHIST. This builds the VSAM history datasets.
This is the last step for the setting-up process, after which we have
all the datasets the utility requires. All VSAM history datasets are
then set at their initial status – that is, all members have a change
count of 1.

After set-up, you simply need to run the EXTRACT, HJOB1, and
HJOB2 daily. These three jobs detect changes and reflect them into the
history datasets. Note that, because of the way in which the utility is
designed, these jobs must be run the day after set-up. At our site, they
run automatically at the end of the day.

When the utility jobs are run late at night they not only make updates
but also insertions into the history datasets. As the utility encounters
a newly-created load module, it inserts a record into the history dataset
concerning the new load module saying ‘count = 1’.

The following PL/I programs are used in this utility:

• LMODPLI in Job EXTRACT

• LMODPLI2 in Job INITHIST

• LMODPLI3 in Job HJOB2

• LMODPLI4 in Job HJOB1.

AUTOMATING THE UTILITY JOBS

We use CA-OPERA as a scheduler product, but any other automation
tool, such as AF/Operator or CA-7, could also be used. At our
organization, CA-OPERA schedules the utility jobs for 2:00 am; this
means that by next morning all the utility datasets are ready for the
TSO users.

PRESENTING THE RESULTS

ISPF panels are used to show the user the history and LMOD datasets.

 30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SDINLIB1 is the main panel of the utility. Option 1 enables you to
have a look at the LMOD dates of a load library selected from the list.
Option 2 shows the history records of a load module library. Option
3 is for browsing the load modules link-edited the day before. By
using option 4, you can even get the LMOD dates of any load library
you want just by entering its name.

FINAL WORD

The efficient use of this utility can even lead to a badly written
program being re-written as error-free as possible. Consider the
following scenario: if, while browsing history records, you see a high
number of changes for a given production load module, there can be
two explanations for this. Either there are too many end-user change
requests, or the program is not well-written and has been altered over
and over again every time it caused an abend or error.

You do not need to worry if the first explanation is the correct one, and
changes have been made to accommodate end-user requests. For
example, in a banking-related program, interest rate changes may
need to be reflected. But action should be taken to recode the program
if the second explanation is correct.

This utility is coded according to the Julian date format, with two
digits for the year and 3 for the day, because the AMBLIST utility
which I have used uses Julian date. Once Year 2000 support is
provided for all IBM program products, VSAM history datasets and
programs using them should be re-designed to accommodate the digit
increase.

SOURCE

JCL ALLOC1
//SDIAGAS1 JOB (SDIAGAS),MSGCLASS=X,CLASS=A,MSGLEVEL=(1,1),
// NOTIFY=SDIAGAS
//*
//***
//*
//* Allocate required VSAM HISTORY datasets.
//*

 31© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

//* In case there are more than 2 load libraries to track,
//* its related VSAM datasets must be added here.
//*
//* For example, for the three load libraries:
//*
//* 1 - Sdid.Mvs.Lib.Histv1 must be defined.
//* 2 - Sdid.Mvs.Lib.Histv2
//* 3 - Sdid.Mvs.Lib.Histv3
//*
//***
//*
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
 DELETE SDID.MVS.LIB.HISTV1 CLUSTER PURGE
 DELETE SDID.MVS.LIB.HISTV2 CLUSTER PURGE

 DEFINE CLUSTER -
 (-
 NAME (SDID.MVS.LIB.HISTV1) -
 CYLINDERS(1Ø 1) -
 INDEXED -
 KEYS (8 Ø) -
 RECORDSIZE (16Ø 6Ø21) -
 SHR (2) -
 NOREUSE -
 SPEED -
 WRITECHECK -
 VOLUMES (SDIDØ1) -
) -
 DATA -
 (-
 NAME (SDID.MVS.LIB.HISTV1.DATA) -
 CISZ (6144) -
 FREESPACE (2Ø 1Ø) -
) -
 INDEX -
 (-
 NAME (SDID.MVS.LIB.HISTV1.INDEX) -
)
//*
//STEP2 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
 DEFINE CLUSTER(NAME(SDID.MVS.LIB.HISTV2) -
 MODEL(SDID.MVS.LIB.HISTV1))
//*

JCL ALLOC2

//SDIAGAS2 JOB (SDIAGAS),MSGCLASS=X,CLASS=A,MSGLEVEL=(1,1),
// NOTIFY=SDIAGAS

 32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*
//***
//*
//* Allocate all required sequential datasets.
//*
//* In case there are more than 2 load libraries to track,
//* its related sequential datasets must be added here.
//*
//* For example, for the third additional load library:
//*
//* 1 - Sdid.Mvs.Lib.Change3
//* 2 - Sdid.Mvs.Lib2.Change3
//* 3 - Sdid.Mvs.Lib.Hists3 must be allocated.
//*
//***
//*
//ALLOC1 PROC BIR=
//STEP EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//ALLOC1 DD DISP=(,CATLG),DSN=&BIR,
// SPACE=(TRK,(3,1),RLSE),VOL=SER=SDIDØ1,UNIT=339Ø,
// DCB=(DSORG=PS,RECFM=FB,LRECL=79,BLKSIZE=Ø)
// PEND
//*
//ALLOC2 PROC IKI=
//STEP EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//ALLOC1 DD DISP=(,CATLG),DSN=&IKI,
// SPACE=(TRK,(3,1),RLSE),VOL=SER=SDIDØ1,UNIT=339Ø,
// DCB=(DSORG=PS,RECFM=VB,LRECL=6Ø27,BLKSIZE=Ø)
// PEND
//*
//CAGIR1 EXEC ALLOC1,BIR='SDID.MVS.LIB.CHANGE1'
//CAGIR2 EXEC ALLOC1,BIR='SDID.MVS.LIB.CHANGE2'
//CAGIR3 EXEC ALLOC1,BIR='SDID.MVS.LIB.CHANGEX'
//CAGIR4 EXEC ALLOC1,BIR='SDID.MVS.LIB2.CHANGE1'
//CAGIR5 EXEC ALLOC1,BIR='SDID.MVS.LIB2.CHANGE2'
//CAGIR5 EXEC ALLOC1,BIR='SDID.MVS.LIB.SUM'
//*
//CAGIR6 EXEC ALLOC2,IKI='SDID.MVS.LIB.HISTS1'
//CAGIR7 EXEC ALLOC2,IKI='SDID.MVS.LIB.HISTS2'
//*

JCL EXTRACT
//SDIAGAS3 JOB (SDIAGAS),MSGCLASS=X,CLASS=A,MSGLEVEL=(1,1),
// NOTIFY=SDIAGAS
//*
//**
//*
//* Extract the LMOD dates of members for load libraries and write
//* them into the LMOD datasets.

 33© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

//*
//* Sdid.Mvs.Lib.Change1 holds the LMOD DATES of Sdiagas.User.Load
//* Sdid.Mvs.Lib.Change2 holds the LMOD DATES of Sdiagas.Agmpv.Loadlib
//*
//* In case there are more than 2 load libraries to track,
//* this job must be updated. That is, VILLAR3 step must be
//* coded for the third load library.
//*
//**
//*
//VILLAR1 EXEC LMODPROC,OUT='SDID.MVS.LIB.CHANGE1',
// IN='SDIAGAS.USER.LOAD'
//*
//VILLAR2 EXEC LMODPROC,OUT='SDID.MVS.LIB.CHANGE2',
// IN='SDIAGAS.AGMPV.LOADLIB'

//**
//*
//* Sort Sdid.Mvs.Lib.Change1 along with Sdid.Mvs.Lib.Change2 into
//* the MERGE dataset Sdid.Mvs.Lib.ChangeX by 'Julian date.'
//*
//* This dataset will be input to the Clist SDICLIBV called at
//* PERNAS4.
//*
//**
//*
//PERNAS1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=SDID.MVS.LIB.CHANGE1
// DD DISP=SHR,DSN=SDID.MVS.LIB.CHANGE2
//SORTOUT DD DISP=SHR,DSN=SDID.MVS.LIB.CHANGEX
//SORTWKØ1 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SORTWKØ2 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SYSIN DD DISP=SHR,DSN=SDID.MVS.LIB.DATA(CTRL3)
//*
//***
//*
//* Sort Sdid.Mvs.Lib.ChangeN into Sdid.Mvs.Lib2.ChangeN by the field
//* 'member-name'. This dataset will be input to the PL/I program
//* LMODPLI2 later to build the VSAM HISTORY datasets. (N = 1, 2)
//*
//***
//*
//PERNAS2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=SDID.MVS.LIB.CHANGE1
//SORTOUT DD DISP=SHR,DSN=SDID.MVS.LIB2.CHANGE1
//SORTWKØ1 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SORTWKØ2 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SYSIN DD DISP=SHR,DSN=SDID.MVS.LIB.DATA(CTRL4)

 34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*
//PERNAS3 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=SDID.MVS.LIB.CHANGE2
//SORTOUT DD DISP=SHR,DSN=SDID.MVS.LIB2.CHANGE2
//SORTWKØ1 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SORTWKØ2 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SYSIN DD DISP=SHR,DSN=SDID.MVS.LIB.DATA(CTRL4)
//*
//***
//*
//* By using the Clist SDICLIB2, extract the last link edited
//* (changed) modules' names from the Sdid.Mvs.Lib.ChangeX
//* and write them into TRANSACTION dataset Sdid.Mvs.Lib.Sum.
//*
//***
//*
//PERNAS4 EXEC PGM=IKJEFTØ1
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EX 'SYSP.ISPF.CLIB(SDICLIB2)'

JCL INITHIST
//SDIAGAS4 JOB (SDIAGAS),MSGCLASS=X,CLASS=A,MSGLEVEL=(1,1),
// NOTIFY=SDIAGAS
//*
//***
//*
//* Build the VSAM HISTORY datasets Sdid.Mvs.Lib.HistvN
//* from the LMOD datasets Sdid.Mvs.Lib2.ChangeN. (N = 1, 2)
//*
//* PS: this job must be run only once to set up VSAM datasets.
//*
//* In case there are more than 2 load libraries to track, this
//* job must be updated. That is, CAGIR3 step must be inserted
//* for the third library.
//*
//*
//* Procedure parameters:
//* 1- BIR = LMOD dataset name .
//* 2- IKI = Vsam dataset name.
//*
//***
//*
//HISTORY PROC IKI=,BIR=
//*
//STEP EXEC PGM=LMODPLI2
//STEPLIB DD DISP=SHR,DSN=SDIAGAS.USER.LOAD

 35© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

//SYSPRINT DD SYSOUT=*
//GO.INFILE DD DISP=SHR,DSN=&BIR
//GO.OUTFILE DD DISP=SHR,DSN=&IKI
// PEND
//*
//*
//CAGIR1 EXEC HISTORY,IKI='SDID.MVS.LIB.HISTV1',
// BIR='SDID.MVS.LIB2.CHANGE1'
//*
//CAGIR2 EXEC HISTORY,IKI='SDID.MVS.LIB.HISTV2',
// BIR='SDID.MVS.LIB2.CHANGE2'
//*

JCL HJOB1
//SDIAGAS5 JOB (SDIAGAS),MSGCLASS=X,TIME=144Ø,CLASS=P,
// NOTIFY=SDIAGAS
//*
//**
//*
//* Update the Sdid.Mvs.Lib.HistvN VSAM HISTORY datasets by
//* using the TRANSACTION dataset Sdid.Mvs.Lib.Sum. (N = 1, 2)
//*
//* The associated VSAM HISTORY datasets are updated for
//* the new load modules or the load modules changed lately.
//*
//**
//*
//STEP1 EXEC PGM=SORT
//*
//**
//*
//* Sort the TRANSACTION dataset by 'member-name' field.
//*
//**
//*
//SYSOUT DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=SDID.MVS.LIB.SUM
//SORTOUT DD DISP=SHR,DSN=SDID.MVS.LIB.SUM
//SORTWKØ1 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SORTWKØ2 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SYSIN DD DISP=SHR,DSN=SDID.MVS.LIB.DATA(CTRL4)
//*
//*
//STEP2 EXEC PGM=LMODPLI4
//STEPLIB DD DISP=SHR,DSN=SDIAGAS.USER.LOAD
//SYSPRINT DD SYSOUT=*
//GO.INFILE DD DISP=SHR,DSN=SDID.MVS.LIB.SUM
//GO.FIL1 DD DISP=OLD,DSN=SDID.MVS.LIB.HISTV1
//GO.FIL2 DD DISP=OLD,DSN=SDID.MVS.LIB.HISTV2

 36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*

JCL HJOB2
//SDIAGAS6 JOB (SDIAGAS),MSGCLASS=X,TIME=144Ø,CLASS=P,
// NOTIFY=SDIAGAS
//*
//**
//*
//* Build the HISTORY sequential datasets from HISTORY VSAM
//* datasets.
//*
//* Procedure parameters:
//* A) ILK = HISTORY (VSAM) dataset
//* B) SON = HISTORY (Seql.) dataset
//*
//*
//* In case there are more than 2 load libraries to track,
//* this job must be updated. That is, CAGIR3 and GUVEN3
//* steps must be coded for the third load library.
//*
//*
//**
//*
//HISTSEQ PROC ILK=,SON=
//STEP EXEC PGM=LMODPLI3
//STEPLIB DD DISP=SHR,DSN=SDIAGAS.USER.LOAD
//SYSPRINT DD SYSOUT=*
//GO.INFILE DD DISP=SHR,DSN=&ILK
//GO.KUT DD DISP=SHR,DSN=&SON
// PEND
//*
//CAGIR1 EXEC HISTSEQ,ILK='SDID.MVS.LIB.HISTV1',
// SON='SDID.MVS.LIB.HISTS1'
//*
//CAGIR2 EXEC HISTSEQ,ILK='SDID.MVS.LIB.HISTV2',
// SON='SDID.MVS.LIB.HISTS2'
//*
//***
//*
//* Sort the HISTORY sequential datasets Sdid.Mvs.Lib.HistsN
//* by 'Count' field.
//*
//***
//*
//SORT PROC SRTFL=
//STEP EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DISP=SHR,DSN=&SRTFL
//SORTOUT DD DISP=SHR,DSN=&SRTFL

 37© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

//SORTWKØ1 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SORTWKØ2 DD UNIT=SYSDA,SPACE=(CYL,2Ø)
//SYSIN DD DISP=SHR,DSN=SDID.MVS.LIB.DATA(CTRL5)
// PEND
//*
//GUVEN1 EXEC SORT,SRTFL='SDID.MVS.LIB.HISTS1'
//GUVEN2 EXEC SORT,SRTFL='SDID.MVS.LIB.HISTS2'
//*

PL/I PROGRAM LMODPLI
//SDIAGASW JOB (SDIAGAS),MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A,
// NOTIFY=SDIAGAS
//*
//GUVEN EXEC PLIXCL
//SYSPRINT DD SYSOUT=*
//PLI.SYSIN DD *
 SERKAN:PROC(PARM) OPTIONS(MAIN NOEXECOPS) ;

 /**/
 /* */
 /* Program: Lmodpli */
 /* Function: This PL/I program formats the output of the Amblist */
 /* utility and builds the LMOD dataset. */
 /* */
 /**/

 DCL IN FILE RECORD SEQL INPUT ,
 OUT FILE RECORD SEQL OUTPUT ,
 (SUBSTR,INDEX,ONCODE) BUILTIN ,
 A BIT(1) INIT('1'B) ,
 SAHA CHAR(133) ,
 (MEMB_NAME,MEMB_DATE_GUN,MEMB_DATE_YIL) CHAR(2Ø) VAR ,
 PARM CHAR(44) VAR ,
 1 ALAN ,
 2 FILLER1 CHAR(1) INIT('') ,
 2 MEMB_NAME CHAR(8) ,
 2 FILLER2 CHAR(1) INIT('') ,
 2 MEMB_DATE_YIL PIC'(2)X' ,
 2 MEMB_DATE_GUN PIC'(3)X' ,
 2 FILLER3 CHAR(2) INIT('') ,
 2 TARIH CHAR(18) INIT('') ,
 2 DSN CHAR(44) ;

 ON ENDFILE(IN) A='Ø'B ;

 /***/
 /* */
 /* Open the files. */
 /* */

 38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /***/

 OPEN FILE(IN) ;
 OPEN FILE(OUT) ;
 READ FILE(IN) INTO(SAHA) ;
 DO WHILE(A='1'B) ;
 IF (INDEX(SAHA,'MEMBER NAME') ¬=Ø) | (INDEX(SAHA,'OF YEAR') ¬=Ø)
 THEN
 DO ;
 ALAN.MEMB_NAME=SUBSTR(SAHA,3Ø,8) ;
 READ FILE(IN) INTO(SAHA) ;
 ALAN.MEMB_DATE_GUN=SUBSTR(SAHA,1Ø2,3) ;
 ALAN.MEMB_DATE_YIL=SUBSTR(SAHA,114,2) ;
 ALAN.DSN=PARM ;
 CALL ALT(ALAN.MEMB_DATE_YIL,ALAN.MEMB_DATE_GUN,ALAN.TARIH);
 WRITE FILE(OUT) FROM(ALAN) ;
 END ;
 READ FILE(IN) INTO(SAHA) ;
 END ;
 /***/
 /* */
 /* Close the files. */
 /* */
 /***/

 CLOSE FILE(IN) ;
 CLOSE FILE(OUT) ;

 ALT:PROC(M_DATE_YIL,M_DATE_GUN,YAZI) ;

 /**/
 /* */
 /* This sub_program converts the Julian date to the normal date. */
 /* eg Julian date 98Ø67 will be converted to 'Ø8.MARCH.1998' */
 /* */
 /* NOTE: This conversion doesn't apply the rules for the leap */
 /* years such as 1ØØ year and 4ØØ year rule. It just */
 /* applies 'divisible by 4 ' rule. The oldest MVS load */
 /* module is NO MORE THAN 2Ø YEARS. SO THERE IS NO PROBLEM */
 /* AT ALL in terms of the leap year. */
 /* */
 /**/

 DCL JDATE PIC'99999' ,
 M_DATE_YIL PIC'XX' ,
 M_DATE_GUN PIC'XXX' ,
 CONV CHAR(5) ,
 YAZI CHAR(18) ,
 YEAR PIC'9999' ,
 DAY PIC'99' ,

 39© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 MONTH CHAR(9) ,
 (SUM1,I,SUM2) FIXED BIN(31) ,
 YIL(12) FIXED BIN(31) INIT(31,28,31,3Ø,31,3Ø,31,31,3Ø,31,3Ø,31) ,
 AY(12) CHAR(9) VAR INIT('JANUARY','FEBRUARY','MARCH','APRIL','MAY' ,
 'JUNE','JULY','AUGUST','SEPTEMBER','OCTOBER','NOVEMBER','DECEMBER'),
 MOD BUILTIN ;

 CONV = M_DATE_YIL || M_DATE_GUN ;
 SUM1,SUM2 = Ø ;
 JDATE = CONV ;
 YEAR = JDATE/1ØØØ ;
 JDATE = JDATE - 1ØØØ * YEAR /*Number of days portion of Julian date*/;
 YEAR = 19ØØ + YEAR /* Add 19ØØ to the year portion of Julian date */;

 /***/
 /* */
 /* Every year divisible by 4 is a leap year. (MOD builtin function)*/
 /* If it's a leap year then change the array to reflect leap year. */
 /* */
 /***/

 IF MOD(YEAR,4) =Ø THEN YIL(2) = 29 ;

 DO I=1 TO 12 ;
 SUM1 = SUM1 + YIL(I) ;
 IF SUM1 >= JDATE THEN LEAVE ;
 SUM2 = SUM1 ;
 END ;

 MONTH = AY(I) ;

 IF SUM1 = JDATE THEN DAY = YIL(I) ;
 ELSE DAY = JDATE - SUM2 ;

 /***/
 /* */
 /* At last, the date in normal format is returned to the main */
 /* program. */
 /* */
 /***/

 SUBSTR(YAZI,1,2) = DAY ;
 SUBSTR(YAZI,3,1) = '.' ;
 SUBSTR(YAZI,4,9) = MONTH ;
 SUBSTR(YAZI,13,1) = '.' ;
 SUBSTR(YAZI,14,4) = YEAR ;
 END ALT ;
 END SERKAN ;
//*
//LKED.SYSLMOD DD DISP=SHR,DSN=SDIAGAS.USER.LOAD(LMODPLI)

 40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*

PL/I PROGRAM LMODPLI2
//SDIAGASX JOB (SDIAGAS),MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A,
// NOTIFY=SDIAGAS
//*
//KONCI EXEC PLIXCL,PARM.PLI='GOSTMT'
//SYSPRINT DD SYSOUT=*
//PLI.SYSIN DD *
 SERVET:PROC OPTIONS(MAIN) ;

 /***
 *
 * Program: Lmodpli2
 * Function: Build the VSAM HISTORY datasets Sdid.Mvs.Lib.HistvN
 * from the LMOD datasets Sdid.Mvs.Lib2.ChangeN (N =1, 2)
 *
 *
 * RECORD FORMAT for VSAM HISTORY datasets:
 *
 * Columns Length Description
 * ======= ====== ==
 *
 * 1 - 8 8 : Member name (Load module name)
 * 9 - 9 1 : Blank
 * 1Ø - 13 4 : Change count for that member
 * 14 - 14 1 : Blank
 * 15 - 19 5 : 1. change date of that member (Julian date)
 * 2Ø - 2Ø 1 : Blank
 * 21 - 25 5 : 2. change date of that member (If any)
 * 26 - 26 1 : Blank
 * 27 - 31 5 : 3. change date of that member (If any)
 * 32 - 32 1 : Blank
 *
 *
 *
 *
 * VSAM HISTORY datasets are designed as a variable VSAM.
 * It can have as many as 1ØØ1 change dates for a given load
 * module. Then;
 *
* Maximum record length = 19 + 6*1ØØØ = 6Ø19 bytes
 *(This value has been coded in ALLOC1 Allocation job.)
 *
 *
 * Minimum record length = 19 bytes
 * (In this case, one member has just one change count and one change
 * date.
 *

 41© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 ***/

 DCL ONCODE BUILTIN,A BIT(1) INIT('1'B) ,
 OUTFILE FILE RECORD SEQL OUTPUT KEYED ENV(V VSAM) ,
 INFILE FILE RECORD ,
 1 INREC ,
 2 FILLER1 CHAR(1) INIT('') ,
 2 MEMBER CHAR(8) ,
 2 FILLER2 CHAR(1) INIT('') ,
 2 MEMB_DATE PIC'(5)X' ,
 2 FILLER3 CHAR(2) INIT('') ,
 2 TARIH CHAR(18) INIT('') ,
 2 DSN CHAR(44) ,

 1 OUTREC ,
 2 UYE PIC'(8)X' ,
 2 BOS1 PIC'(1)X' ,
 2 COUNT PIC'9999' ,
 2 BOS2 PIC'(1)X' ,
 2 DATE PIC'(5)X' ;

 ON ENDFILE(INFILE) A='Ø'B ;

 ON KEY(OUTFILE) BEGIN ;
 PUT LIST('Error',ONCODE,INREC) ;
 END ;

 OPEN FILE(OUTFILE) OUTPUT ;
 OPEN FILE(INFILE) INPUT ;

 READ FILE(INFILE) INTO(INREC) ;

 DO WHILE(A) ;
 OUTREC.UYE = INREC.MEMBER ;
 OUTREC.DATE = INREC.MEMB_DATE ;
 OUTREC.COUNT = 1 ;
 OUTREC.BOS1,OUTREC.BOS2 = ' ' ;
 WRITE FILE(OUTFILE) FROM(OUTREC) KEYFROM(UYE) ;
 READ FILE(INFILE) INTO(INREC) ;
 END ;

 CLOSE FILE(INFILE) ;
 CLOSE FILE(OUTFILE) ;
 END SERVET ;
//*
//LKED.SYSLIB DD DISP=SHR,DSN=PLI.PLIBASE
// DD DISP=SHR,DSN=PLI.SIBMBASE
//LKED.SYSLMOD DD DISP=SHR,DSN=SDIAGAS.USER.LOAD(LMODPLI2)
//*

 42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PL/I PROGRAM LMODPLI3

//SDIAGASY JOB (SDIAGAS),MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A,
// NOTIFY=SDIAGAS
//*
//PEDRO EXEC PLIXCL
//SYSPRINT DD SYSOUT=*
//PLI.SYSIN DD *
 CEM:PROC OPTIONS(MAIN) ;

 /**
 *
 * Program: Lmodpli3
 * Function: Build the HISTORY sequential datasets from the
 * HISTORY VSAM datasets. These HISTORY sequential
 * datasets will be used for browsing under ISPF.
 *
 **/

 DCL ONCODE BUILTIN,A BIT(1) INIT('1'B) ,
 INFILE FILE RECORD SEQL KEYED ENV(VSAM) ,
 KUT FILE RECORD SEQL OUTPUT ,

 1 ALAN ,
 2 MEMBER PIC'(8)X' ,
 2 BOS1 PIC'(1)X' ,
 2 COUNT PIC'(4)9' ,
 2 BOS2 PIC'(1)X' ,
 2 DATE PIC'(5)X' ,
 2 KALAN CHAR(6ØØ2) VARYING ,

 (ALANX,ALANY) CHAR(6Ø21) VARYING ,

 1 SON CTL ,
 2 UYE PIC'(8)X' ,
 2 BOS1 PIC'(1)X' INIT(' ') ,
 2 SAYI PIC'(4)9' ,
 2 BOS2 PIC'(1)X' INIT(' ') ,
 2 DATE2 PIC'(5)X' ,
 2 KALAN2 CHAR(*) VARYING ;

 ON ENDFILE(INFILE) A='Ø'B ;

 OPEN FILE(INFILE) INPUT ;
 OPEN FILE(KUT) OUTPUT ;

 /**/
 /* */
 /* Write a heading. */
 /* */

 43© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 /**/

 ALANY = '$MEMBER $COUNT $DATES' ;
 WRITE FILE(KUT) FROM(ALANY) ;
 ALANY = '$====== $==== $========' ;
 WRITE FILE(KUT) FROM(ALANY) ;
 READ FILE(INFILE) INTO(ALANX) ;

 DO WHILE(A) ;
 IF SUBSTR(ALANX,1Ø,4) = 'ØØØ1' THEN
 ALANY = SUBSTR(ALANX,1,21) || ' ' || SUBSTR(ALANX,23) ;
 ELSE ALANY = SUBSTR(ALANX,1,19) || ' ' || SUBSTR(ALANX,23) ;
 WRITE FILE(KUT) FROM(ALANY) ;
 READ FILE(INFILE) INTO(ALANX) ;
 END ;

 CLOSE FILE(KUT) ;
 CLOSE FILE(INFILE) ;

 FREE SON ;
 END CEM ;
//*
//LKED.SYSLMOD DD DISP=SHR,DSN=SDIAGAS.USER.LOAD(LMODPLI3)
//*

PL/I PROGRAM LMODPLI4

//SDIAGASZ JOB (SDIAGAS),MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A,
// NOTIFY=SDIAGAS
//*
//DANIEL EXEC PLIXCL
//SYSPRINT DD SYSOUT=*
//PLI.SYSIN DD *
 PATTY:PROC OPTIONS(MAIN) ;

 /***
 *
 * Program: Lmodpli4
 * Function: Update the VSAM HISTORY datasets Sdid.Mvs.Lib.HistvN
 * from the TRANSACTION dataset Sdid.Mvs.Lib.Sum.
 * (N = 1, 2)
 *
 * USED FILES:
 *
 * A-) Infile : TRANSACTION dataset
 *
 * It has load modules changed lately. This may contain different
 * load module names from different load libraries. So, this program

 44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 * reads the TRANSACTION dataset and updates associated HISTORY VSAM
 * dataset.
 *
 * B -) Fil1 : HISTORY VSAM datasets.
 * Fil2
 * In case there are more than 2 load libraries to track,
 * related FIL statements must be added here. In addition,
 * for those load libraries, 'WHEN' PL/I statements must be
 * coded. (eg: For the third load library, FIL3 variable
 * here and GO.FIL3 DD statement to JCL HJOB1 must be added.)
 *
 * C -) Kut : This is the variable filename in the PL/I program.
 * It is set to one of the HISTORY VSAM datasets inside the program.
 *
 *
 ***/

 DCL KUT FILE VARIABLE,A BIT(1) INIT('1'B) ,

 FIL1 FILE RECORD DIRECT KEYED BUFFERED ENV(V VSAM) ,
 FIL2 FILE RECORD DIRECT KEYED BUFFERED ENV(V VSAM) ,

 (SUBSTR,LENGTH) BUILTIN, SYSPRINT SYSTEM OUTPUT,I FIXED BIN(31) ,

 1 INREC ,
 2 BOS1 CHAR(1) INIT('') ,
 2 MEMBER CHAR(8) ,
 2 BOS2 CHAR(1) INIT('') ,
 2 MEMB_DATE PIC'(5)X' ,
 2 BOS3 CHAR(2) INIT('') ,
 2 TARIH CHAR(18) INIT('') ,
 2 DSN CHAR(44) ,

 INFILE FILE RECORD ;

 ON ENDFILE(INFILE) A='Ø'B ;
 OPEN FILE(INFILE) INPUT ;

 READ FILE(INFILE) INTO(INREC) ;

 DO WHILE(A) ;

 SELECT(INREC.DSN) ;
 WHEN('SDIAGAS.USER.LOAD') DO ;
 KUT = FIL1 ;
 CALL ATALAY(KUT) ;
 END ;
 WHEN('SDIAGAS.AGMPV.LOADLIB') DO ;
 KUT = FIL2 ;
 CALL ATALAY(KUT) ;

 45© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 END ;
 OTHERWISE PUT EDIT ('Dataset',INREC.DSN,'is not
 within the scope.') (COL(1),A(8),X(1),A,X(2),A(24)) ;
 END ;
 READ FILE(INFILE) INTO(INREC) ;

 END /* Do while end */ ;

 CLOSE FILE(INFILE) ;

 ATALAY:PROC(KUT) ;

 DCL FIL1 FILE RECORD DIRECT KEYED BUFFERED ENV(V VSAM) ,
 FIL2 FILE RECORD DIRECT KEYED BUFFERED ENV(V VSAM) ,
 KUT FILE VARIABLE ,

 ONCODE BUILTIN,UZ FIXED BIN(31) ,
 EKLE CHAR(6) INIT(' ') ,
 FALAN CHAR(6Ø21) VAR ,

 1 ALAN ,
 2 UYE PIC'(8)X' ,
 2 BOS4 PIC'(1)X' ,
 2 COUNT PIC'(4)9' ,
 2 BOS5 PIC'(1)X' ,
 2 DATE PIC'(5)X' ,
 2 KALAN CHAR(6ØØ2) VARYING ,

 1 ALAN3 ,
 2 UYE3 PIC'(8)X' ,
 2 BOS4 PIC'(1)X' INIT(' ') ,
 2 COUNT3 PIC'(4)9' ,
 2 BOS5 PIC'(1)X' INIT(' ') ,
 2 DATE3 PIC'(5)X' ,

 1 ALANZ CTL ,
 2 UYEZ PIC'(8)X' ,
 2 BOS4Z PIC'(1)X' ,
 2 COUNTZ PIC'(4)9' ,
 2 BOS5Z PIC'(1)X' ,
 2 DATEZ PIC'(5)X' ,
 2 KALANZ CHAR(*) VAR ;

 ON KEY(KUT)
 BEGIN ;
 SELECT(ONCODE) ;
 WHEN(51) DO ;

 /***/
 /* */

 46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /* This is a newly-created load module */
 /* for that load library dataset. So in */
 /* the HISTORY VSAM dataset this should */
 /* be written with the 'Count = 1'. */
 /* */
 /***/
 PUT EDIT('Member ',MEMBER, 'is a newly created load
 module.It has been added to the VSAM file.')(COL(1),A,A,A) ;
 ALAN3.UYE3=INREC.MEMBER ;
 ALAN3.COUNT3=1 ;
 ALAN3.DATE3=INREC.MEMB_DATE ;
WRITE FILE(KUT) FROM(ALAN3) KEYFROM(INREC.MEMBER);
 GO TO ETIK2 ;
 END ;
 OTHERWISE PUT SKIP LIST('Any other error......',MEMBER) ;
 END ;
 END ;

 ON RECORD(KUT)
 BEGIN ;
 SELECT(ONCODE) ;
 WHEN(22) DO ;
 PUT SKIP LIST('Record Condition',ONCODE) ;
 PUT DATA(ALANZ.UYEZ) ;
 GO TO ETIK2 ;
 END ;
 OTHERWISE PUT SKIP LIST('Any other error......') ;
 END ;
 END ;

 OPEN FILE(KUT) UPDATE ;
 READ FILE(KUT) INTO(ALAN) KEY(INREC.MEMBER) ;

 FALAN = ALAN.KALAN ;
 IF (ALAN.COUNT + 1) > 1ØØ1 THEN
 DO ;
 PUT SKIP EDIT('For the load module ',ALAN.UYE,
'the count limit 1ØØ1 is exceeded.') (COL(1),A,A,A) ;
 GO TO ETIK2 ;
 END ;

 ALAN.COUNT = ALAN.COUNT + 1 ;
 SUBSTR(EKLE,1,1) =' ' ;
 SUBSTR(EKLE,2,5) = INREC.MEMB_DATE ;
 FALAN = FALAN || EKLE ;
 ALAN.KALAN=FALAN ;
 I = LENGTH(FALAN) ;
 /**/
 /* */
 /* By using CONTROLLED definition of */

 47© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 /* field ALANZ, just the necessary amount */
 /* of storage is reserved. Here is the */
 /* ALLOCATE statement for this purpose. */
 /* */
 /**/

 ALLOCATE 1 ALANZ ,
 2 UYEZ ,
 2 BOS4Z ,
 2 COUNTZ ,
 2 BOS5Z ,
 2 DATEZ ,
 2 KALANZ CHAR(I) ;

 ALANZ = ALAN ;

 REWRITE FILE(KUT) FROM(ALANZ) KEY(ALAN.UYE) ;
 FREE ALANZ ;

 EKLE=' ';FALAN='';I=Ø;ALAN='' ;
 ETIK2:CLOSE FILE(KUT) ;

 RETURN ;
 END ATALAY ;

 END PATTY ;
//*
//LKED.SYSLMOD DD DISP=SHR,DSN=SDIAGAS.USER.LOAD(LMODPLI4)
//*

Editor’s note: this article will be concluded in the next issue.

Recep Atalay Gul
Systems Programmer (Spain) © Xephon 2000

As a free service to subscribers and to remove the need to rekey
the scripts, code in individual articles can be accessed on our
Web site. Subscribers need the user-id printed on the envelope
containing their Update issue. Once they have registered, any
code requested will be automatically e-mailed to them.

 48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Sorting a PDS list

THE PROBLEM

You have listed the contents of a library used by everyone in the shop
. . . say, by entering ‘=3.4’ on the COMMAND line and entering ‘B’
next to one of the library names that comes up. Where is that member
you are looking for? You cannot quite remember the name but you do
know that you created it.

The ‘ID’ column contains either the logon ID of the person or the Job
ID of the job, that created the file. On the command line, type:

SORT ID

 After you press <Enter> the list will be re-sorted by the values in the
ID column. Now, all you have to do is type:

L mlnabk (substitute your ID for 'mlnabk')

. . . and the list will page forward to your stuff. Now you can wade
through a shorter list of member names to find the one you want.

This works on most of the columns in most of the member listings
(Edit, Browse, etc). Locate (‘L’) will always search on the column
values that are currently ‘sorted’. The next time you enter the list, the
sort will default to the standard ‘Name’ column.

Allan Kalar
Systems Programmer (USA) © Xephon 2000

If you want to contribute an article to MVS Update, a copy of
our Notes for contributors can be downloaded from the Xephon
Web site. The URL is: www.xephon.com/contnote.html.

 49© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

A Java client/server application on OS/390 – part 2

INTRODUCTION

Last month we considered how Java could be used to implement a
simple client/server application on OS/390.

The application can be used as an example to detail Java programming
concepts, and will allow a Java client on a PC workstation to interact
with a Java server located on OS/390.

This example shows how to implement TCP/IP communication in
Java. It also describes how to use the Java Native Interface (JNI) to
allow Java programs on OS/390 to communicate with C/C++ and
Assembler routines.

MVSCMD.MAKE.

MAIN = MVScmd

CC = c89 -c -W c,expo,dll -DNEEDSIEEE754 -DNEEDSLONGLONG
CFLAGS := -I. -I/usr/lpp/java/J1.1/include -I/usr/lpp/java/J1.1/include/mvs
LL = c89 -W l,dll
LFLAG1 := /usr/lpp/java/J1.1/lib/mvs/native_threads/libjava.x
LFLAG2 := /usr/lpp/java/J1.1/lib/mvs/native_threads/libJNIConvert.x

$(MAIN): $(MAIN).o ; $(LL) -o libMVScmdJNI.so $(MAIN).o $(LFLAG1) $(LFLAG2)
$(MAIN).o: $(MAIN).c $(MAIN).h ; $(CC) -o $(MAIN).o $(CFLAGS) $(MAIN).c

$(MAIN).class: $(MAIN).java ; javac $(MAIN).java
$(MAIN).h: $(MAIN).class ; javah -jni -o $*.h $(MAIN)

To use this makefile (whose name is not ‘Makefile’), you should enter
the following command:

make -f MVScmd.make

COMASO ASSEMBLER PROGRAM

COMASO CSECT
COMASO AMODE 31
COMASO RMODE ANY

 50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

** SAVE REGISTERS *********

COMMND STM R14,R12,12(R13) SAVE CALLERS REGISTERS
 LR R12,R15 INITIALIZE BASE REGISTER
 USING COMMND,R12 ESTABLISH ADDRESSABILITY
 LA R14,SAVEAREA MY SAVEAREA
 ST R14,8(R13) LINK TO CALLERS
 ST R13,SAVEAREA+4 LINK TO MINE
 LA R13,SAVEAREA POINT R13 TO MY SAVE AREA

** COPY COMMAND ***********

 L R2,Ø(R1) LOAD PARAMETER ADDRESS
 MVC XCMD,Ø(R2)
*
 L R3,4(R1)
 L R3,Ø(R3)
* LA R3,5
 STH R3,CMDLEN
*
* LH R3,Ø(R2) LENGTH
*
* MVC CMDLEN(2),Ø(R2) COPY COMMAND LENGTH
*
* BCTR R3,Ø SUBTRACT 1 FROM LENGTH FOR MOVE
* EX R3,MOVE MOVE COMMAND FROM PARAMETER LIST

*
 AUTHON AUTH ON
*
 MODESET KEY=ZERO SUPERVISOR MODE FOR SVC GENERATION
 SR RØ,RØ RØ=Ø
 LA R2,CMD
 MGCRE MF=(E,LAREA),TEXT=(R2),CONSID=MASTER
 MODESET KEY=NZERO RESET SUPERVISOR MODE
*
 AUTHOFF AUTH OFF
*

** RESTORE REGISTERS ******

EXIT DS ØH NORMAL RETURN.
 L R13,SAVEAREA+4
 LM R14,R12,12(R13)
 SR R15,R15
 BR R14

 51© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

** DATA FIELDS ************

SAVEAREA DC 18F'Ø'

MOVE MVC XCMD(Ø),2(R2) MOVE COMMAND FROM AN ARGUMENT
 DS ØF
*
CMD DS ØCLØ62
CMDLEN DC XL2'ØØ5' NO SECURITY TOKEN
XCMD DC CL6Ø'D C' COMMAND
*
FILLER DC CL6Ø''
*
LAREA MGCRE MF=L
*
MASTER DC F'ØØ'
*
*
 LTORG
RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END

JCL TO START THE SERVER

The server can be started as a job:

//I99Ø557A JOB (Ø18Ø8),
// 'SYSTEM TEAM',
// MSGCLASS=R,
// MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,
// CLASS=4
//*
//STEPØ1 EXEC PGM=BPXBATCH,
// PARM='SH /u/i99Ø557/java/jni/pgmØ4/Server.sh'

 52 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*
//STDOUT DD PATH='/tmp/mvs_server.out',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//*
//STDERR DD PATH='/tmp/mvs_server.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//*
//STDENV DD *
CLASSPATH=/u/i99Ø557/java/jni/pgmØ4:$CLASSPATH
/*
//STEPØ2 EXEC PGM=IKJEFTØ1
//HFSOUT DD PATH='/tmp/mvs_server.out'
//HFSERR DD PATH='/tmp/mvs_server.err'
//STDOUTL DD SYSOUT=*,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)
//STDERRL DD SYSOUT=*,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 OCOPY INDD(HFSOUT) OUTDD(STDOUTL)
 OCOPY INDD(HFSERR) OUTDD(STDERRL)
/*

The first step of this job starts the server using a shell script. The
following script starts the server on port 5001, which is passed as a
argument to the Server class:

BROWSE — /u/i99Ø557/java/jni/pgmØ4/Server.sh ——— Line ØØØØØØØØ Col ØØ1 Ø54
 Command ===> Scroll ===>
HALF
******************************* Top of Data **********************************
echo '*** Starting Java Server on OS/39Ø ***'

export STEPLIB=SMAINT.I99Ø557.ASM.LOAD
export CLASSPATH=/u/i99Ø557/java/jni/pgmØ4/:$CLASSPATH
export LIBPATH=/u/i99Ø557/java/jni/pgmØ4/:$LIBPATH

java Server 5ØØ1

****************************** Bottom of Data *******************************

You should modify the STEPLIB statement to point to your load
library containing the Assembler programs IPLCASO and COMASO.

The second step of the job redirects STDOUT and STDERR to the
JES2 spool, so you can control the server output in a familiar
environment such as SDSF.

 53© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

SERVER LOG

When the server is stopped, you can display its log using SDSF :

*** Starting Java Server on OS/39Ø ***
Server started using port 5ØØ1
>> Waiting for client...
 Client Socket opened...
 Data from Client : IPLINFO_
 Request type : IPLINFO_
 ->> IPLINFO
>> Waiting for client...
 Client Socket opened...
 Data from Client : SEND_CMDd a,l
 Request type : SEND_CMD
 ->> MVS command
 MVS command : d a,l
>> Waiting for client...
 Client Socket opened...
 Data from Client : IPLINFO_
 Request type : IPLINFO_
 ->> IPLINFO
>> Waiting for client...
 Client Socket opened...
 Data from Client : STOP____
 Request type : STOP____

CLIENT IMPLEMENTATION

The client is implemented using several Java classes which implement
the graphical interface.

Client.java.
import java.net.*;

public class Client
{

public static void main (String args[])
{

server_request server_req = new server_request();
display_frame df = new display_frame(server_req);

}
}

display_frame.java.
import java.awt.*;

public class display_frame extends Frame
{

 54 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 final static int HS = 75Ø;
 final static int VS = 1ØØ;

 public display_frame(server_request server_req)
 {
 addWindowListener(new manage_general_frame());

 status_window sw;

 setTitle("Java - MVS Manager");
 setSize(HS, VS);
 setBackground(Color.lightGray);
 setLayout(new BorderLayout(2,2));

 setMenuBar(new frame_menu(this, server_req));

 add(sw = new status_window(), "South");
 add(new parm_window(server_req, sw), "North");

 show();
 }
}

frame_menu.java.
import java.awt.*;

public class frame_menu extends MenuBar
{
 public MenuItem mi_ipl_info, mi_stop_server, mi_about, mi_exit;
 public MenuItem mi_send_cmd;

 public frame_menu(Frame top_frame,
 server_request server_req)
 {

Menu m_action = new Menu("Action");

 mi_ipl_info = new MenuItem("Get last IPL Information");
 m_action.add(mi_ipl_info);
 mi_ipl_info.addActionListener(new

 manage_frame_menu(server_request.IPLINFO, server_req));

 mi_send_cmd = new MenuItem("Send a MVS command");
 mi_send_cmd.addActionListener(new

 manage_frame_menu(server_request.SEND_CMD, server_req));

 m_action.add(mi_send_cmd);

 m_action.addSeparator();

mi_stop_server = new MenuItem("Stop Server");

 55© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 mi_stop_server.addActionListener(new

 manage_frame_menu(server_request.STOP, server_req));
 m_action.add(mi_stop_server);

 m_action.addSeparator();

mi_exit = new MenuItem("Exit");
i_exit.addActionListener(new manage_frame_menu(server_request.EXIT,

 server_req));

m_action.add(mi_exit);

this.add(m_action);

Menu m_help = new Menu("Help");
mi_about = new MenuItem("About...");
m_help.add(mi_about);
mi_about.addActionListener(new

manage_frame_menu(server_request.ABOUT,
 server_req));

this.add(m_help);
 }

}

manage_frame_menu.java.
import java.awt.*;
import java.awt.event.*;

public class manage_frame_menu implements ActionListener
{
 private int id;
 private Frame top_frame;
 private server_request server_req;

 public manage_frame_menu(int id,
 server_request server_req)
{

this.id = id;
this.server_req = server_req;

}

 public void actionPerformed(ActionEvent e)
{

switch(id)
{

case server_request.EXIT:
System.exit(Ø);
break;

case server_request.IPLINFO:
server_req.process_request(id);

 56 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

break;
case server_request.SEND_CMD:

send_cmd_frame scf = new send_cmd_frame(server_req);
break;

 case server_request.STOP:
server_req.process_request(id);
break;

case server_request.ABOUT:
server_req.frame(id, "Java - MVS Manager Version 1.Ø");
break;

}
}

}

manage_general_frame.java.

import java.awt.*;
import java.awt.event.*;

class manage_general_frame extends WindowAdapter
{

public void windowClosing(WindowEvent e) // close with system X button
{

Window w = e.getWindow();
w.dispose(); // close the window

}
}

manage_parm_window.java.
import java.awt.*;
import java.awt.event.*;

public class manage_parm_window implements ActionListener
{
 static final int UPDATE = Ø;
 static final int DISCONNECT = 1;

 private int id;
 private status_window sw;
 private server_request server_req;
 private TextField tf_hostname;
 private TextField tf_port;

 public manage_parm_window(int id,
 status_window sw,
 server_request server_req,
 TextField tf_hostname,
 TextField tf_port)
{

this.id = id;

 57© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

this.sw = sw;
this.server_req = server_req;
this.tf_hostname = tf_hostname;
this.tf_port = tf_port;

}

 public void actionPerformed(ActionEvent e)
{

switch(id)
{

case UPDATE:
sw.print_hostname(tf_hostname.getText());
sw.print_port(tf_port.getText());
// System.out.println(tf_hostname.getText());
server_req.set_hostname(tf_hostname.getText());
server_req.set_port(Integer.parseInt(tf_port.getText()));

break;
}

}
}

parm_window.java.

import java.awt.*;

public class parm_window extends Panel
{

 public parm_window(server_request server_req,
 status_window sw)

 {
 Font my_font = new Font("Arial", Font.BOLD,2Ø);
 setLayout(new FlowLayout());
 setBackground(Color.green);

 Label l_server_hostname = new Label("Server HostName: ");
 l_server_hostname.setFont(my_font);
 this.add(l_server_hostname);
 TextField tf_server_hostname = new TextField(2Ø);
 this.add(tf_server_hostname);

 Label l_server_port = new Label("Port: ");
 l_server_port.setFont(my_font);
 this.add(l_server_port);
 TextField tf_server_port = new TextField(5);
 this.add(tf_server_port);

 Button b_update = new Button("Update Server Properties");
 b_update.addActionListener(new
manage_parm_window(manage_parm_window.UPDATE,
 sw,
 server_req,

 58 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 tf_server_hostname,
 tf_server_port));
 this.add(b_update);
 }
}

send_cmd_frame.java.

import java.awt.*;
import java.awt.event.*;

class send_cmd_frame extends Frame implements ActionListener
{

 private TextField tf_send_cmd;
 private server_request server_req;

 public send_cmd_frame(server_request server_req)
{
 this.server_req = server_req;

addWindowListener(new manage_general_frame());
setSize(6ØØ, 13Ø);

 setBackground(Color.lightGray);
setTitle("Send a MVS Command...");
setLayout(new FlowLayout());
Label l1 = new Label("Command:");
Font my_font = new Font("Arial", Font.BOLD,2Ø);
l1.setFont(my_font);
add(l1);
tf_send_cmd = new TextField(8Ø);
add(tf_send_cmd);

 Button b_send = new Button("Send");
b_send.addActionListener(this);
add(b_send);

 show();
}

 public void actionPerformed(ActionEvent e)
{
 System.out.println(tf_send_cmd.getText());
 server_req.process_request(server_request.SEND_CMD,

 tf_send_cmd.getText());
}

}

server_request.java.
import java.awt.*;
import java.net.*;
import java.io.*;

public class server_request
{

 59© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

static final int EXIT = Ø;
static final int IPLINFO = 1;
static final int ABOUT = 2;
static final int STOP = 3;
static final int SEND_CMD = 4;

static final int ERROR = 999;

static final String IPLINFO_str = "IPLINFO_";
static final String STOP_str = "STOP____";
static final String SEND_CMD_str = "SEND_CMD";

private String hostname;
private int port;
private String reply;
private String error;

public server_request()
 {

this.hostname = "unkown";
this.port = Ø;

 }

public String get_hostname()
 {

return (hostname);
 }

public int get_port()
 {

return (port);
 }

public void set_hostname(String new_hostname)
 {

this.hostname = new_hostname;
// System.out.println("New hostname = " + new_hostname);

 }

public void set_port(int new_port)
 {

this.port = new_port;
// System.out.println("New port = " + new_port);

 }

public String send_request(String request)
 {

try
{

 error = "NO";

 InetAddress address;

 60 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 Socket client_socket;

 address = InetAddress.getByName(hostname);

 client_socket = new Socket(address, port); // open socket

 BufferedWriter write_buffer = // output stream
 new BufferedWriter(new

 OutputStreamWriter(client_socket.getOutputStream(),"CpØ37"));
 BufferedReader read_buffer = // input stream
 new BufferedReader(new

 InputStreamReader(client_socket.getInputStream(),"CpØ37"));

 write_buffer.write(request);
 write_buffer.newLine();

 write_buffer.flush();

 reply = read_buffer.readLine();

 write_buffer.close();
 read_buffer.close();
 client_socket.close(); // close socket

 }
catch (Exception e) {error = "YES";}

return(reply);
}

public String process_request(int id,
 String input_string)

{
String request_string;

 String reply = new String("");;
switch(id)
{
 case SEND_CMD:

request_string = SEND_CMD_str + input_string;
// System.out.println(request_string);
reply = this.send_request(request_string);
reply = reply.substring(Ø,21);

break;
}

this.frame(id, reply);
return(reply);

}

public String process_request(int id)
{

String request_string;
 String reply = new String("");

 61© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

switch(id)
{
 case IPLINFO:

request_string = IPLINFO_str;
reply = this.send_request(request_string);

 break;
 case STOP:

request_string = STOP_str;
reply = this.send_request(request_string);
reply = reply.substring(Ø,21);

 break;
 case ABOUT:

request_string = STOP_str;
reply = this.send_request(request_string);

 break;
 }

if (error.equals("YES"))
 {
 System.out.println("Error detected...");
 id = server_request.ERROR;
 reply = "";
 }

 this.frame(id, reply);

return(reply);
}

public void frame(int id, String reply)
{
 Frame request_frame = new Frame();
 request_frame.addWindowListener(new manage_general_frame());

 request_frame.setBackground(Color.lightGray);
 request_frame.setTitle("Java - MVS Manager");

 Font my_font1 = new Font("Arial", Font.BOLD,2Ø);
 Font my_font2 = new Font("Courier", Font.BOLD,12);

 Label l1, l2;

 switch(id)
{

 case ERROR:
 request_frame.setSize(4ØØ, 2ØØ);
 request_frame.setLayout(new GridLayout(2,1));
 l1 = new Label("Network error detected...",Label.CENTER);
 l1.setFont(my_font1);
 request_frame.add(l1);
 l2 = new Label("Verify Server properties...",Label.CENTER);
 l2.setFont(my_font2);
 request_frame.add(l2);

 62 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 break;
 case IPLINFO:
 request_frame.setSize(4ØØ, 2ØØ);

 request_frame.setTitle("Last IPL information:");
 request_frame.setLayout(new GridLayout(7,2));
 request_frame.add(new Button("SMFID:"));
 request_frame.add(new Label(reply.substring(Ø,4),Label.CENTER));
 request_frame.add(new Button("DATE:"));
 request_frame.add(new Label(reply.substring(4,1Ø),Label.CENTER));
 request_frame.add(new Button("TIME:"));
 request_frame.add(new Label(reply.substring(1Ø,18),Label.CENTER));
 request_frame.add(new Button("SYSRES - Volser:"));
 request_frame.add(new Label(reply.substring(18,24),Label.CENTER));
 request_frame.add(new Button("SYSRES - Address:"));
 request_frame.add(new Label(reply.substring(24,27),Label.CENTER));
 request_frame.add(new Button("LOADPARM:"));
 request_frame.add(new Label(reply.substring(27,35),Label.CENTER));
 request_frame.add(new Button("MVS Version:"));
 request_frame.add(new Label(reply.substring(35,43),Label.CENTER));
 break;
 default:
 request_frame.setSize(4ØØ, 2ØØ);
 l1 = new Label(reply,Label.CENTER);
 l1.setFont(my_font1);
 request_frame.add(l1);
 break;

}
 request_frame.show();

}
}

status_window.java.

import java.awt.*;

public class status_window extends Panel
{
 private Label hostname, port;

 public status_window()
 {

Label l1, l2, l3;
Font my_font = new Font("Arial", Font.BOLD,12);

setBackground(Color.lightGray);
setLayout(new FlowLayout(FlowLayout.LEFT));
l1 = new Label("Current Server Properties =");
l1.setForeground(Color.blue);
add(l1);

l2 = new Label("HostName: ");
l2.setForeground(Color.black);
add(l2);

 63© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

add(hostname = new Label("?????????"));
hostname.setForeground(Color.darkGray);
hostname.setFont(my_font);

l3 = new Label("Port: ");
l3.setForeground(Color.black);
add(l3);

add(port = new Label("?????????"));
port.setForeground(Color.darkGray);
port.setFont(my_font);

 }
 public void print_hostname(String msg)

{
hostname.setText(msg);

}
 public void print_port(String msg)

{
port.setText(msg);

}

}

COMPILING JAVA CLASSES ON YOUR PC

On your PC, you can use the following command file to compile the
different Java classes:

javac status_window.java
javac send_cmd_frame.java
javac manage_general_frame.java
javac manage_display_frame.java
javac manage_frame_menu.java
javac display_frame.java
javac frame_menu.java
javac manage_parm_window.java
javac parm_window.java
javac server_request.java
javac Client.java

STARTING THE CLIENT

To start the client, you should enter, in a DOS session, the following
command:

java Client

Then you will get a client window as shown in Figures 1 and 2.

 64 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

F
ig

ur
e

1:
 F

ir
st

 s
pe

ci
fy

 a
nd

 u
pd

at
e

th
e

‘S
er

ve
r

P
ro

pe
rt

ie
s’

:
ho

st
na

m
e

an
d

po
rt

. n
um

be
r

F
ig

ur
e

2:
 S

el
ec

t a
n

ac
ti

on
 in

 th
e

‘A
ct

io
n’

 m
en

u

 65© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Patrick Reynard
Systems Programmer (France) © Xephon 2000

F
ig

ur
e 3

: A
n

ex
am

pl
e o

f a
n

ac
tio

n
co

ul
d

be
 –

‘G
et

 L
as

t I
P

L
In

fo
rm

at
io

n’

 66 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Reference modification

THE PROBLEM

Have you ever needed to manipulate just a portion of a field? We often
end up redefining the field five different ways for the different
configurations and variants needed or we have to redefine it as a table
of single bytes to be manipulated one byte at a time. As a result, we end
up with horrors like the following:

 Ø5 DEPARTMENT.
 1Ø DEPT-DIVISION PIC XXX.
 1Ø DEPT-GLASS.
 15 DEPT-GLASS-FACTORY PIC XX.
 15 DEPT-GLASS-FUNCTION PIC XX.
 1Ø DEPT-FIBER REDEFINES DEPT-GLASS.
 15 DEPT-FACTORY PIC X.
 15 DEPT-FUNCTION PIC XXX.
 1Ø DEPT-RESEARCH REDEFINES DEPT-GLASS.
 15 DEPT-FACTORY PIC X.
 15 DEPT-FUNCTION PIC XX.
 15 FILLER PIC X.
 1Ø DEPT-TABLE REDEFINES DEPT-GLASS.
 15 DEPT-TABLE-BYTE OCCURS 7 TIMES
 INDEXED BY DPTX
 PIC X.

In the PROCEDURE DIVISION:

IF DEPT-DIVISION = 'GLS'
 MOVE DEPT-GLASS-FUNCTION TO CURRENT-FUNCTION
ELSE
IF DEPT-DIVISION = 'FBR'
 MOVE DEPT-FIBER-FUNCTION TO CURRENT-FUNCTION
ELSE
IF DEPT-DIVISION = 'RCH'
 MOVE DEPT-RESEARCH-FUNCTION TO CURRENT-FUNCTION.

All this just to handle a few lines of code to split out a substring of
‘department’.

THE SOLUTION

Using reference modification, we can avoid all this fuss and bother.
The field needs to be defined only once:

 67© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

Ø5 DEPARTMENT PIC X(7).

All the work is done in the code without all the extra data division
coding:

 * ** Move function from input record to work area **
IF DEPARTMENT (1:3) = 'GLS'
 MOVE DEPARTMENT (6:2) TO CURRENT-FUNCTION
ELSE
IF DEPARTMENT (1:3) = 'FBR'
 MOVE DEPARTMENT (5:3) TO CURRENT-FUNCTION
ELSE
IF DEPARTMENT (1:3) = 'RCH'
 MOVE DEPARTMENT (5:2) TO CURRENT-FUNCTION.

As you can see, except for the comment line, there is no more
PROCEDURE DIVISION code than with the first method. The
savings are in the DATA DIVISION. The general format for reference
modification is:

 data-name (n:m)

or:

 data-name (n:)

where ‘n’ is the leftmost character position within the field and ‘m’ is
the length (or byte count) of the data you want to deal with. If ‘m’ is
not indicated, the operation will use all of the data from and including
the ‘n’th position to the end of the field.

The data item (data-name) referenced must have a USAGE of
‘DISPLAY’. It may be qualified and/or subscripted.

‘n’ and ‘m’ must be positive, non-zero integers or arithmetic
expressions. Obviously, they must be within the number of characters
defined by data-name. They can be elementary data items themselves
as long as they are positive, non-zero integers.

Arithmetic expressions that calculate to a non-integer are truncated.
In other words, ‘8 / 3’ would yield ‘2’.

Allan Kalar
Systems Programmer (USA) © Xephon 2000

 68 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Shifting text and data in ISPF/PDF

THE PROBLEM

Sometimes your edit window does not show the full line you are
working on, and you want to insert something into a line, but the
window gets in the way. The line is long enough to accommodate the
extra text, but the empty part is off the window to the right. As you
try to insert the text, the existing text reaches the right margin of the
window and will not go any further.

Maybe you want to delete something out of a line (perhaps spaces) and
left shift everything behind it. As you hit the delete key, the line
obediently shifts left and spaces are inserted between the last character
on the window and the right edge. When you shift your window to the
right to see the right end of the line(s), the rest (unseen portion) of the
line is still where you left it – with spaces between it and the left
portion of the line.

A SOLUTION

There is a way around these problems. Part of the solution involves the
use of the BNDS. I will repeat some of the information for those who
need to brush up.

Firstly, we will set the bounds of the area you want to work with by
entering BNDS in the line command area. Any line will do.

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 BNDSØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

Then we hit <enter> and we see:

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 =BNDS> <
 ØØØ2ØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

There is a ‘>’ at the true right hand boundary of the new BNDS line.
We cannot see it because it is off the screen to the right. We will re-
set the c# by entering ‘<’ and ‘>’ (boundary markers) where we want
them.

 69© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 =BNDS> < < >
 ØØØ2ØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

Notice that both the new boundary markers and the old markers are on
the screen. PDF can tell which we have just entered and which are the
old ones. After we press <enter>, the screen will look like this:

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 =BNDS> < >
 ØØØ2ØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

Now we can shift the line using the line shift commands ‘(’ and ‘)’ in
the line command area. ‘(’ is the ‘left shift’ command and ‘00)’ is the
‘right shift’.

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 =BNDS> < >
 (1Ø2ØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

Note the cursor is under the ‘2’ in column 3. We want a left shift of
10 characters. Leaving the cursor under the ‘2’ tells PDF where the
number ‘10’ ends. When we entered text in the ‘data’ area, PDF could
tell which entries were new. In the Line Command area, it cannot. If
we move the cursor somewhere else, we would have to enter a blank
after the number to delineate the shift quantity as in the following line:

 (1Ø ØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL

In either case, after we press <ENTER>, we get:

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 =BNDS> < >
 ØØØ2ØØ -CUSTOMER-DEMAND-DATE < JOLL
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

Notice how everything shifted past the left boundary gets sent to the
‘bit bucket’. Obviously we did not want to reset the boundaries. If
we’d left the boundaries as we found them the result would have been
similar to this:

 ØØØ1ØØ 1ØØØ-EDIT-INPUT.
 =BNDS> <
 ØØØ2ØØ NPUT-CUSTOMER-DEMAND-DATE < JOLLY-ROGER-LI
 ØØØ3ØØ MOVE ' JOLLY ROGER DATE EX

 70 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

OK, so it is stupid. It is more likely that we will have deleted the spaces
out of the message being moved. But, you get the idea. The important
part is that we can do this in groups.

 ((Ø1ØØ 1ØØØ-EDIT-INPUT.
 ØØØ2ØØ IF POINPUT-CUSTOMER-DEMAND-DATE < JOLL
 ((1ØØØ MOVE ' JOLLY ROGER DATE EX

We can enter the shift quantity behind either of the group commands.
By the way, if we do not enter a shift quantity, the default is ‘2’. BNDS
can be used to limit the effect of other commands, such as copy and
overlay. Only the portions within the Bound marks get copied or
overlaid. Do not forget to reset the boundaries after you have finished
using them.

Allan Kalar
Systems Programmer (USA) © Xephon 2000

OS/390 Version 2 Release 10 directions

OS/390 VERSION 2 RELEASE 9

In MVS Update, April 2000, Issue 163 we looked at the latest release
of OS/390 (Release 9). The functionality in Release 9 builds on the
developments in previous releases: e-business enablement, Enterprise
Application Intergration (EAI), server consolidation, technology
extensions, and Unix System Services enhancements. Release 10
continues these themes.

OS/390 VERSION 2 RELEASE 10

Release 10, available on 29 September 2000, offers:

• Ease in porting C and C++ applications to S/390 through Extra
Performance Linkage

• Application development flexibility through downward
compatibility of Language Environment

• Better security in the network operating environment and the
TCP/IP environment

 71© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

• Increased flexibility in data storage and management

• Standard workstation access to SAM, PDS(E), and VSAM files

• Wizard technology, multimedia instructional animations, and
Automatic Alter support to advance ease-of-use.

LINUX, JAVA, EJB, AND CORBA

Linux for S/390 is a separate entity to OS/390. Linux for S/390 can
execute in one of three modes: S/390 native, S/390 LPAR, and VM
guest (further information can be found at the following URL: http:/
/www.ibm.com/s390/linux). Also, separate from the OS/390 product,
WebSphere Application Server for OS/390 allows users to deploy
Enterprise Java Beans and CORBA Business Objects on the S/390.
IBM also offers Java 2 technology on OS/390 via the IBM Developer
Kit for OS/390, Java 2 Technology Edition. (Further information on
WebSphere Application Server for OS/390 can be found at the
followinf URL: http://www.ibm.com/s390/ebusiness.)

PREREQUISITES FOR RELEASE 10

Release 10 will only run on servers that implement certain architectural
enhancements. The following IBM servers have these enhancements:

• All models of the S/390 Parallel Enterprise Server except Release 1
models

• All models of the S/390 Multiprise

• All PC Server S/390 servers and RS/6000 with S/390 Server-on-
Board models

• All S/390 Integrated Servers.

BEYOND RELEASE 10

Further information regarding Release 10 can be found on the IBM
Web site. In the next edition we will review OS/390 directions beyond
Release 10, including future usage-based pricing models, future
hardware requirements, and IBM’s future OS/390 strategy.

 © Xephon 2000

MVS news

Action Software International has
announced Version 6.01 of Change Action,
the only active Change Management
solution for the OS/390 environment.
Change Action’s tracking features monitor
all changes in the system, especially those
made to sequential or partitioned datasets.

In addition, Change Action’s management
features allow users to provide levels of
control that protect data in relation to its
importance. Change Action’s interface to
Tivoli Service Desk (formerly Info/
Management) turns TSD from a passive
electronic paper system into an active
change management system via Change
Action’s Tracking and Control features.

Change Action also includes other features
and functions that can improve systems
availability and can reduce both short- and
long-term costs. New features in Version
6.01 include: the command tracking and
control component that eliminates the need
to search SYSLOG for commands that have
been entered. PET (Program Execution
Tracking) has been extended to support JES2
PROCs, TSO CLISTs and REXX EXECs.
Tracking can continue even after the Started
Task has been stopped.

Action Software International,
20 Valleywood Drive, Suite 107, Markham,
Ontario, Canada, L3R 6G1
Tel: (905) 470 7113
Fax: (905) 470 6507

Action Software GmbH, Im Eichli 9,
CH-6315 Oberaegeri, Switzerland.
Tel: +41 41 754 5088
Fax: +41 41 754 5089

http://www.actionsoftware.com

 * * *

IBM has announced support for IMS
Version 7 in its Extended Terminal Option
Support (ETO Support) Version 1 Release 2,
a front end to help implement, customize,
and exploit the benefits of ETO.

The feature allows terminals, printers, and
LTERMs to be created dynamically,
reducing the need for IMSGENs and,
therefore, helping to improve IMS
availability.

ETO Support provides a front-end to ETO
for implementation, tailoring, and control. It
includes a batch interface for the bulk
loading of descriptors and options and
manages ETO through a set of dynamically
refreshable tables.

It helps determine how structure names are
created, assigns specific LUs to select logon
descriptors, overrides ASOT/ALOT values
for specified LUs, and controls the
disposition of conversations and queued
messages at signoff.

It can also control which unknown
destinations create an SPQB/CNT,
optionally perform command authorization,
support batch loading/adding of nodes,
LTERMs, and user IDs to the control
database, and provide printer/LTERM cross
reference support in on-line and batch
model.

Contact your local IBM representative for
further information.

http://www.ibm.com

 * * *

x xephon

	Concurrent copy
	Return-code special register
	Implementing shared HFS on OS/390 Version 2 Release 9
	Keeping track of load module changes
	Sorting a PDS list
	A Java client/server application on OS/390 – part 2
	Reference modification
	Shifting text and data in ISPF/PDF
	OS/390 Version 2 Release 10 directions
	MVS news

