180

September 2001

]
In this issue

3 A REXX program to submit
DEFRAGs

9 Analysing VLF statistics
12 NetRexx

13 Measuring buffering activity for
PDSE datasets

31 Machine instructions

48 Synchronization of catalogs and
SMS DASD volumes

64 Deployment options for mainframe
Linux

72 MVS news

© Xephon plc 2001

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MVS Update

Published by
Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 33598
From USA: 01144 1635 33598
E-mail: Jaimek@xephon.com

North American office
Xephon/QNA

PO Box 350100,
Westminster, CO 80035-0100
USA

Editor
Jaime KaminskKi

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves

as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
Articles published ilfMVS Updateare paid
for at the rate of £170 ($260) per 1000 wordubscriptions and back-issues
and £100 ($160) per 100 lines of code for ti#e year’'s subscription toMiVS Update
first 200 lines of original material. Thecomprising twelve monthly issues, costs
remaining code is paid for at the rate of £9(B40.00 in the UK; $505.00 in the USA and
($80) per 100 lines. In addition, there is a fl@anada; £346.00 in Europe; £352.00 in
fee of £30 ($50) per article. To find out morAustralasia and Japan; and £350.00
about contributing an article, you caelsewhere. In all cases the price includes
download a copy of ourNotes for postage. Individual issues, starting with the
Contributors from www.xephon.com/January 1992 issue, are available separately
contnote.html. to subscribers for £29.00 ($43.50) each
including postage.

MVS Updateon-line

Code fromMVS Updateand complete issues

in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.

com/mvsupdate.html; you will need to

supply a word from the printed issue.

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

2

A REXX program to submit DEFRAGS

Recently | needed to automate a DEFRAG process for a number of
volumes, mostly allocated to development, but with different criteria.
We had DASD POOLs that needed daily DEFRAGS, and some that
needed weekly DEFRAGS; for some the fragmentation index should
be targeted to 0, while for others that was not necessary. Also, a few
of the POOLs had volumes that should not be DEFRAGged, because
some of the files that resided in them — like PSF libraries. At that time,
we were still in the middle of an SMS conversion, and not all the
volumes were SMS managed, so | needed to select volumes based on
their volser, or their storage group if they were SMS managed.

Based on those premises, | wrote a REXX program that will generate
DEFRAG JCL, accepting for input four different parameters. Ofthose
four at least one storage group or one volser must be specified, and the
volser may be fully qualified or it may be a generic. If it is a generic,
than it must end with an **'. The input parameters are based on
keyword recognition, because this is easier to use than positional. The
DFRG program can be invoked with up to four parameters:

« STOR (storage-group(s) name(s))
* VOL (VOLSER(S))

« EXCL (VOLSER(S))

 INDEX (fragmentation index).

The fragmentation index, if omitted, will assume a value of 10. The
VOLSER(s) and storage group name(s), when more than one, must be
blank delimited. There is no provision for any other kind of separator.
Storage group names must be fully qualified. Fully qualified VOLSERs
can be intermixed with generic VOLSERSs for VOL() and EXCLY().

When invoked, DFRG will execute an IDCAMS DCOLLECT in
order to obtain the VOLSERs and DEVICE TYPEs of the ONLINE
volumes for the parameters specified. If at least one volume is found
ONLINE, the DFRG program will generate a JOB for the DEFRAG
execution. This JOB will have a first STEP, which will create the
SYSIN for the ADRDSSU utility used to perform the DEFRAG; then

it will have an instream procedure for the execution of the

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

aforementioned utility, and finally it will have a STEP for each
volume to DEFRAG. If you were to invoke the DFRG program with
something like:

DFRG vol(MVS*) excl1(MVS1*) index(0)

You could end by submitting JCL like this:

//USERIDX JOB (ACCT#),'DEFRAG VOLUMES',

/7 MSGLEVEL=(1,1),
/7 CLASS=W,MSGCLASS=X
/1*

//MKDATA EXEC PGM=ICEGENER
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DISP=(,PASS),
/7 DSN=&WK1,SPACE=(TRK, (1,8)),LRECL=80
//SYSIN DD DUMMY
//SYSUT1 DD *
DEFRAG DDNAME(DASD@1) -

ADMINISTRATOR -
FRAGMENTATIONINDEX(1@) -
WAIT(2,2)

/*

/1*

//DEFRAG PROC VOLID=,UNIT=

/1*

//DEFRAG EXEC PGM=ADRDSSU,REGION=4M

//SYSPRINT DD SYSOUT=*

//DASD@1 DD DISP=0LD,UNIT=&UNIT,VOL=SER=&VOLID
//SYSIN DD DISP=(OLD,PASS),DSN=&WK1

/1*

//ENDPROC PEND

/1*

//DFRGPPA1 EXEC DEFRAG,VOLID=MVS20@,UNIT=3390
//DFRGPPG2 EXEC DEFRAG,VOLID=MVS201,UNIT=3390

/1*

DFRG
/* REXX

*hkkhkkkkkkhkkhkhkhkhkhkhkhkkkkkkhkikx

* DFRG 2.0.0 *
*kkhhkkkhhkkkhhkhkkhhkkkhkhkkhkhhkkk
; */
arg opt_all
parse value opt_all with "STOR("stor_group")"
parse value opt_all with "VOL("volser")"
parse value opt_all with "EXCL("exclude")"
parse value opt_all with "INDEX("indx")"
ok=1

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

if stor_group="" & volser="" then

be :

do
ok=0
say""
say"You MUST specify :"
say" STOR(storage group name(s))"
say" or/and"
say" VOL(volid(s))"
say"At least one of this parameters is mandatory"
say""
end
else
nop
if indx=="" then
do
if -datatype(indx,"W") | indx<@ | indx>999 then
do
ok=0@
say""
say"If specified, the defragmentation index must
say" ==> numeric"
say"™ ==> greater than or equal to 0"
say"™ ==> less than or equal to 999"
say""
say"If not specified, the default is 10"
say""
end
else
nop
end
else
do
indx=10
end
if ok then
do
if exclude—=—="" then
do
optns="NODATAINFO EXV("exclude")"
end
else
do
optns="NODATAINFO"
end
call alloc_files
end
else
do
say""
say"Correct the options in error, and reissue the command"
say""
end
return

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

/* ____________ */
alloc_files:
"alloc f(sysprint) shr reuse dummy"
h1gs=userid(),
||".D"date("d"),
||".T"space(translate(time(),,":"),0)
out_dsn="'"hlqs".OQUTFILE""
ddff1="A"time("S")
"alloc f("dd#1") new dsorg(PS) recfm(V B) 1recl(454)",
"da("out_dsn") space (10 5) tracks release”
if rc=@ then

do
in_dsn="'"hlqs".SYSIN""
"alloc f(SYSIN) new reuse dsorg(PS) recfm(F B) lrec1(8@)",
"da("in_dsn") space (1 1) tracks release”
if rc=0 then
do
dd#2="0"time("S")
"ALLOC F("dd#2") WRITER(CINTRDR) SYSOUT(A) LRECL(8@)",
"RECFM(F)"
if rc=@ then
do
call format_sysin
end
else
do
say"Error ("rc") on Internal Reader",
"Allocation"
say"DFRG Interrupted”
end
end
else
do
say"Error ("rc") allocating SYSIN file for DCOLLECT,",
in_dsn
say"DFRG interrupted”
end
"alloc f(sysin) shr reuse da(*)"
end
else
do

say"Error ("rc") allocating output file for DCOLLECT, "out_dsn
say"DFRG interrupted”

end
"alloc f(sysprint) shr reuse da(*)"
return
/* _____________ */
format_sysin:
if stor_group—="" then

do a=1 to words(stor_group)
queue” DCOLLECT OFILE("ddff1")",
"STOG("word(stor_group,a)™) "optns
end

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

if volser=="" then
do a=1 to words(volser)
queue”™ DCOLLECT OFILE("ddff1")",
"VOL("word(volser,a)") "optns
end
"execio "queued()" diskw SYSIN (finis)"
if rc=@ then

do
"alloc f(sysin) reuse old da("in_dsn"™) delete"
"CALL *(IDCAMS)"
if rc=@ then
do
"alloc f("dd#1") old da("out_dsn") delete"
"execio * diskr "dd#f1" (finis stem volume_info.)
if rc=@ then
do
if volume_info.@>@ then
do
call process_data
end
else
do
say"No volumes were selected for
say"DFRG interrupted”
end
end
else
do
say"Error ("rc") on "out_dsn™ READ"
say"DFRG interrupted”
end
"free f("dd#1")"
end
else
do
say"Error ("rc") during DCOLLECT execution"
say"Process state unknown"
say"DFRG interrupted”
end
end
else
do

say"Error ("rc") on the WRITE for "in_dsn
say"DFRG Interrupted”
"dropbuf"
end
return
/* _____________ */
process_data:
job_name=userid()||jobsuf()
queue"//"job_name" JOB (ACCT#), 'DEFRAG VOLUMES',"
queue"// MSGLEVEL=(1,1),"
queue"// CLASS=W,MSGCLASS=X"

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

queue™//*"
queue™"//MKDATA EXEC PGM=ICEGENER"
queue™//SYSPRINT DD SYSQUT=*"
queue™//SYSUT2 DD DISP=(,PASS),"
queue"// DSN=&WK1,SPACE=(TRK,(1,@)),LRECL=88"
queue"//SYSIN DD DUMMY"™
queue™//SYSUT1 DD *"
queue" DEFRAG DDNAME(DASD@1) -"
queue" ADMINISTRATOR -"
if indx>@ then
do
queue" FRAGMENTATIONINDEX("indx") -"
end
queue" WAIT(2,2)"
queue"/*"
queue™//*"
queue"//DEFRAG PROC VOLID=,UNIT="
queue"//*"
queue"//DEFRAG EXEC PGM=ADRDSSU,REGIQON=4M"
queue™//SYSPRINT DD SYSQUT=*"
queue™//DASD@1 DD DISP=0LD,UNIT=&UNIT,VOL=SER=&VOLID"
queue™//SYSIN DD DISP=(OLD,PASS),DSN=&WK1"
queue"//*"
queue"”//ENDPROC PEND"
queue™//*"
do a=1 to volume_info.@
parse value volume_info.a with 25 volid 31 . 69 dev_type 77 .
queue"//DFRG"right(a,4,"@")" EXEC DEFRAG,VOLID="volid",",
| |"UNIT="strip(dev_type)
end
queue™//*"
zx=queued()
"execio "zx" diskw "dd#2" (finis)"
if rc——=@0 then
do
say"ERROR ("rc") on Internal Reader WRITE"
say"Program Situation Unknown"
say queued()" of "zx" records were left unprocessed on the",
"Internal Reader"
say"Program Interrupted”
"dropbuf”
end
else
do
say"JOB "job_name"™ SUBMITTED"
say volume_info.@" volumes were selected for DEFRAG"
end
"free f("dd#2")"
return
/* _____________ */
jobsuf:
address "ISPEXEC™ "VGET jobsuf profile”

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

if Jjobsuf="" then
jobsuf="A"
else
do
tab_suf="ABCDEFGHIJKLMNOPQRSTUVXWYZ@123456789"
pl=pos(jobsuf,tab_suf)
if pl=length(tab_suf) then
jobsuf=left(tab_suf,1)
else
jobsuf=substr(tab_suf,pl+l,1)
end
address "ISPEXEC" "VPUT jobsuf profile”
return jobsuf
/* _____________ */

Joao Bentes de Jesus
Systems Programmer
Mundial-Confiana SA (Portugal) © Xephon 2001

Analysing VLF statistics

The Virtual Lookaside Facility (VLF) enables an authorized program
to store named objects in virtual storage managed by VLF and to
retrieve these objects by name on behalf of users in multiple address
spaces. VLFis designed primarily toimprove performance by retrieving
frequently-used objects from virtual storage rather than performing
repetitive 1/0O operations from DASD. Some IBM products or
components such as LLA, TSO/E, CAS, and RACF use VLF as an
alternative way to access data. Since VLF uses virtual storage for its
data space there are performance considerations each installation
must weigh when planning for VLF.

IBM supplies a default VLF PARMLIB member (COFVLFOO) that
contains CLASS statements for the VLF classes used by IBM-
supplied products. You might need to tailor some of these CLASS
statements to meet your installation’s needs. You should tune the
MAXVIRT parameter, which specifies the maximum amount of
virtual storage that your installation wants VLF to use for the objects
in the class. When you specify the MAXVIRT value, ensure that it is
large enough to hold most or all of the frequently-used objects in a
VLF class. An excessively small value tends to cause thrashing of the
data in that VLF class, while an excessively large MAXVIRT value

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

tends to increase the consumption of auxiliary storage because rarely-
used data is paged out, rather than discarded. SMF record type 41,
record subtype 3, allows you to capture SMF data related to the usage
of VLF. If you request subtype 3, the system writes this record every
15 minutes.

The following SAS routine analyses SMF type 41 records to produce
a report describing VLF memory usage.

SOURCE

//SMF41J0B JOB (91808),

/1 "SYSTEM",

/1 MSGCLASS=R,

/! MSGLEVEL=(1,1),
/1 NOTIFY=&SYSUID,
/1 CLASS=4

/1*

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=R
/1*
//SYSIN DD *
DELETE SYS2.SXSP@@3.PDB.PROD
SET MAXCC=00
/*
//LOAD EXEC CALLSAS,
// OPTIONS='ERRORABEND SOURCE SOURCE2 MACROGEN'
//WORK DD UNIT=SYSDA,SPACE=(CYL, (50,5))
//SORTWK@1 DD SPACE=(CYL, (&SORT)),UNIT=SYSDA ALWAYS HAVE REAL SORTWORK
//SORTWK@2 DD SPACE=(CYL, (&SORT)),UNIT=SYSDA DD CARDS (DON'T USE DYNAM
//SORTWK@3 DD SPACE=(CYL, (&SORT)),UNIT=SYSDA ALLOCATION OF SORTWORK).

//PDB DD DSN=SYS2.SXSP@@3.PDB.PROD,

/1 DISP=(,CATLG),

/1 UNIT=SYSDA,VOL=SER=MNT$@2,SPACE=(CYL, (5,3))
/1*

//SMF DD DISP=SHR,DSN=SYS3.SMF.ARCHIVE.PROD

/1%

//SOURCE DD DISP=SHR,DSN=SYS2.SXSP@@3.SAS.SOURCE
//SYSIN DD *
MACRO _SMFFILE ;

INFILE SMF ;
%
MACRO _SMFHDR ;

LENGTH DEFAULT=4

SMFTIME 8

INFORMAT SYSTEM $CHAR4. ;

FORMAT
SMFTIME DATETIME19.2

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

LABEL ID =
SMFTIM
SYSTEM

RETAIN ID SMF

"SMF*RECORD*ID"
E='SMF*RECORD*TIME STAMP'’
="SYSTEM*ID'

TIME SYSTEM ;

INPUT 41 MVSXAFLG PIB1.
#2 ID PIBI.
#3 SMFTIME SMFESTAMPS8.
#11 SYSTEM $CHAR4 .
i#;
%
/*
/* SMF RECORD 41 (X'29') - DIV OBJECTS AND VLF STATISTICS
/*
MACRO _VAR@41
TYPE@41 (
KEEP=
SMFTIME SYSTEM
SMF41STY
SMF41CLS
SMF41MVT
SMF41USD
SMF41SRC
SMF41FND
SMF41ADD
SMF41DEL
SMF41TRM
SMF41LRG
MEM_USAGE_PCT
HIT _RATIO
)
%
MACRO _CDE@41
IF ID=@41 THEN DO;
LABEL
SMF41STY="RECORD*SUBTYPE "
SMF41CLS="VLF*CLASS*NAME "
SMFAIMVT="MAXVIRT*VALUE*IN 4K BLOCKS "
SMF41USD="VIRTUAL*STORAGE*USED* IN 4K BLOCKS "
SMF41_USAGE='VIRTUAL*STORAGE*USAGE "
SMF41SRC="NUMBER OF*CACHE SEARCHS "
SMF41FND="NUMBER OF*0OBJECTS FOUND*IN CACHE "
SMF41ADD="NUMBER OF*0OBJECTS ADDED*IN CACHE "
SMF41DEL="'NUMBER OF*0BJECTS DELETED*FROM CACHE "
SMF41TRM='NUMBER OF*0BJECTS TRIMMED*FROM CACHE "

SMF41LR

INPUT 419 SMF
i

IF SMF41STY E
DO ;

G="LARGEST OBJECT*ATTEMPTED*TO PUT IN CACHE

41STY PIB2. /* FAIRE @94-3 = @1 (OFFSET) */

/* SUBTYPE 3: VLF STATISTICS */

Q 3 THEN

INPUT 457 SMF410D4 PIB4.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/

11

#61 SMF41LD4 PIB2.
#63 SMF41ND4 PIB2.
i#;
SMF410D4=SMF410D4-3 ;
LOOP_ST_3:
INPUT #SMF410D4 SMF41CLS $CHARS.
SMF41MVT PIB4.
SMF41USD PIB4.
SMF41SRC PIB4.
SMF41FND PIB4.
SMF41ADD PIB4.
SMF41DEL PIB4.
SMF41TRM PIB4.
SMF41LRG PIB4.
i#;
MEM_USAGE_PCT
HIT_RATIO
OUTPUT TYPE@41 ;
SMF41ND4 = SMF41ND4 - 1;
IF SMF41ND4 GT @ THEN
DO;

SMF41USD / SMF4IMVT ;
SMF41FND / SMF41SRC ;

Systems Programmer (France) © Xephon 2001

NetRexXx

NetRexx was designed by IBM Research Fellow Mike Cowlishaw as

a Web-oriented version of his REXX language. For mainframers with

a background in REXX it is a much simpler alternative to using Java
as it requires less coding than Java to produce applications, applets
and servlets for any Java Virtual Machine (JVM). Also, Java classes
and beans are easily accessible. NetRexx can be used as a translator
that produces Java source code. It also can be used as a runtime
interpreter. There are two principal Redbooks about Netf®ating

Java Applications Using NetRexX$G24-2216-00) and&/M/ESA
Network Computing for Java and NetR¢®%24-5148-00).

You can download the latest version of NetRexx (Version 2.02) for
free from IBM’s Hursley research centre’s Web site at the following
URL: http://lwww2.hursley.ibm.com/netrexbhis site is a goldmine

of information containing tutorials, slideshows, free documents and
executables to download. If you want to subscribe to IBM’s NetRexx
mailing list visit:http://ncc.hursley.ibm.com/majordomo/ibm-netrexx

© Xephon 2001

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Measuring buffering activity for PDSE datasets

PDSE datasets have been around in MVS and OS/390 for several
years. We have noticed in many of the installations that we have
supported that PDSE datasets are only marginally utilized. The PDSE
dataset has some clear advantages over the traditional PDS dataset, so
why is it that the PDSE dataset is not used? One area that PDSE has
an advantage over PDS is dataset performance. The PDSE is supposed
to have a more efficient directory lookup mechanism. There is an
excellent IBM Redboolfartioned Data Set Extended Usage Guide
SG24-6101, which describes how the directory structure is architected
within the PDSE.

Chapter 5 of the Redbook details which OS/390 facilities are used to
help provide the performance enhancements for PDSE datasets. One
of the key features is the use of a dataspace to help manage directory
information as well as manage individual members. The dataspace is
used as a high-speed cache to avoid sending physical I/O to the dataset
where possible. We were curious to understand how we could measure
how effective the dataspace was. We looked in the SMF manual and
found thatrecord type 42, subtype 1 contained some basic information
that could be used to report statitics at the SMS storage-class level.

Although not at the dataset level, this information does provide a
useful foundation to start to gain some insight on the effectiveness of
the dataspace. We used the information from the Redbook and the
SMF manual to develop the attached program, which reads the SMF
data and produces a simple report showing the number of hits obtained
forthe member and the directory entry from the high-speed cache. The
interval for producing these records is controlled by a parmlib
specification. The JCL needed to execute this program is detailed
below:

//yourjob card goes here

//STEP@@@1 EXEC PGM=EXTSM421

//STEPLIB DD DISP=SHR,DSN=your.load.lib

//SYSUT1 DD DISP=SHR,DSN=your.unloaded.sms.data

//SYSUT2 DD optional,include standard dataset parms for this dataset
//SYSOUT DD SYSOUT=*,RECFM=FBA, LRECL=133

//DETAILS DD SYSOUT=*,RECFM=FBA,LRECL=133

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

SYSUT2 is an optional dataset that can be allocated to save the type
42 subtype 1 records inif you want to retain them. Three local macros,
$ESAPRO, $ESASTG, and $ESAEPI, have been included. You can
change to your own macros with minimal code changes. This program
was developed and tested under OS/390 Version 2 Release 8 and
DFSMS 1.5.

EXTSM421

TITLE "EXTSM421 - ANALYSE SMF TYPE 42 SUBTYPE 1 BMF RECORDS'

SPACE 1
* — 4 — 4 — 4+ — + — + — + — + — + — + — + — + — + — + — *
* CSECT . EXTSM421 *
* MODULE : EXTSM421 *
* DESC : EXTSM421 IS A ROUTINE WHICH READS SMF TYPE 42, SUBTYPE 1 *
* RECORDS, AND PRODUCES A SIMPLE REPORT. *
* MACROS : $ESAPRO $ESAEPI $ESASTG OPEN CLOSE DCB DCBD DCBE *
* GET PUT WTO *
* DSECTS : IHADCBD *
* INPUT : SYSUT1 - SMF DATA *
* QUTPUT : SYSUT? - OPTIONAL, IF PRESENT 42(1) RECORDS ARE COPIED =*
* TO IT. *
* SYSOUT - MESSAGES DATASET *
* DETAILS - DETAIL REPORT FILE *
* PLIST : NONE *
* CALLS : NONE *
* NOTES : 31-BIT ADDRESSING USED FOR ALL FILES. *
* — 4 — 4 — 4+ — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
EXTSM421 $ESAPRO R12,AM=31,RM=24

SPACE 1

OPEN (UT3, (OUTPUT)),MODE=31

USING IHADCB,R1 DECLARE A BASE

LA R1,UT3 GET @(DCB WE JUST OPENED)

™ DCBOFLGS,DCBOFOPN Q. OPEN CLEAN?

BO UT3_OPEN A. YES, PROCEED

DROP R1

SPACE 1
¥ — 4 — + — + — + — + — + — + — + — + — + — + — + — + — *
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE SYSUT3 DATASET. *
* ISSUE A WTO TO USER, SET A RETURN CODE AND EXIT BACK TO OP. SYS. *
* — 4 — 4 — 4+ — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
SYN_UT3 DS @H

SPACE 1

LA R1,WTO_MSG POINT TO THE WTO

WTO TEXT=ER_MSG@1, +

ROUTCDE=(2,1@), +
DESC=(6), +

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

MF=(E, (1))

SPACE 1

MVC RET_CODE,RC0@10 SET THE RETURN CODE

B EXIT_RTN EXIT PROGRAM

SPACE 1
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* WE WERE ABLE TO OPEN UP THE SYSUT3 DATASET. NOW SEE IF WE CAN OPEN *
* UP THE SYSUT1 DATASET, WHICH IS THE SMF DATA WE WANT TO READ. *
* — + — + — + — + + —+ —+ —+ — + — + — + — + — + — *

SPACE 1
UT3_OPEN DS @H

SPACE 1

0I DCB_FLAG,UT3.0 INDICATE UT1 IS OPEN

OPEN (UT1, (INPUT)),MODE=31

USING IHADCB,R1 DECLARE A BASE

LA R1,UTI GET @(DCB WE JUST OPENED)

TM DCBOFLGS,DCBOFOPN Q. OPEN CLEAN?

BO UT1_OPEN A. YES, PROCEED

DROP R1

SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE SYSUT1 DATASET. *
* PLACE A MESSAGE INTO THE SYSOUT DATASET AND EXIT BACK TO THE OP. SYS*
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
SYN.UT1 DS @H

SPACE 1

MVI UT3_BUFF,C' BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,EL_MSG@2 GET THE LENGTH OF THE MESSAGE

LA R15,ER_MSG@2 GET @(ERROR MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

PUT UT3,UT3_BUFF

MVC RET_CODE,RCO@10 SET THE RETURN CODE

B CLOSE_DS EXIT PROGRAM

SPACE 1
¥ — — + — + — + — + — + — + — + — + — + — + — + — + — *
* ISSUE A MESSAGE INDICATING SYSUT1 DATASET HAS OPENED. *
* SEE IF WE CAN OPEN UP THE SYSUT2 DATASET. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
UT1_OPEN DS @H

SPACE 1

MVI UT3_BUFF,C' BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,0L_MSGO@1 GET THE LENGTH OF THE MESSAGE

LA R15,0K_MSG@1 GET @(MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

PUT UT3,UT3_BUFF

01 DCB_FLAG,UT1.0 INDICATE UT1 IS OPEN

OPEN (UT2,(OUTPUT)),MODE=31

USING IHADCB,R1 DECLARE A BASE

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

LA R1,UT2
™ DCBOFLGS,DCBOFOPN
BO UT2_OPEM

GET @(DCB WE JUST OPENED)
Q. OPEN CLEAN?
A. YES, PROCEED

DROP Rl

SPACE 1
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE SYSUT2 DATASET. *
* PLACE A MESSAGE INTO THE SYSOUT DATASET. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
SYN.UT2 DS @H

MVI UT3_BUFF,C' BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,EL_MSGO3 GET THE LENGTH OF THE MESSAGE

LA R15,ER_MSGO3 GET @(ERROR MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

PUT UT3,UT3_BUFF

B UT2_OPEN A. YES, PROCEED

SPACE 1
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* ISSUE A MESSAGE INDICATING THAT SYSUT2 DATASET HAS BEEN OPENED. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
UT2_OPEM DS @H

SPACE 1

01 DCB_FLAG,UT2 0 INDICATE UT2 IS OPEN

MVI UT3_BUFF,C' " BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,0L_MSG@2 GET THE LENGTH OF THE MESSAGE

LA R15,0K_MSG@2 GET @(ERROR MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

PUT UT3,UT3_BUFF

SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* OPEN THE DETAILS DATASET. *
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
UT2_OPEN DS @H

SPACE 1

OPEN (UT4, (OUTPUT)),MODE=31

USING IHADCB,R1 DECLARE A BASE

LA R1,UT4 GET @(DCB WE JUST OPENED)

TM DCBOFLGS,DCBOFOPN Q. OPEN CLEAN?

BO UT4_OPEM A. YES, PROCEED

DROP Rl

SPACE 1
X — + —+ — + — + — + — + — + — + — + — + — + — + — + — *
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE DETAILS DATASET. *
* PLACE A MESSAGE INTO THE SYSOUT DATASET. *
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

SYN_UT4 DS oH

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

SPACE 1
MVI UT3_BUFF,C" '

BLANK IN BYTE 1

MVC UT3_BUFF+1(L"UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,EL_MSGR4
LA R15,ER_MSG@4
EX R14,MVCT_UT3
PUT UT3,UT3_BUFF

GET THE LENGTH OF THE MESSAGE
GET @(ERROR MESSAGE)
PUT THE MESSAGE IN THE BUFFER

B UT4_OPEN A. YES, PROCEED
SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* ISSUE A MESSAGE INDICATING THAT DETAILS DATASET HAS BEEN OPENED. *
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1
UT4_OPEM DS @H
SPACE 1

01 DCB_FLAG,UT4_0
MVI UT3_BUFF,C" '

INDICATE UT2 IS OPEN
BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,0L_MSG@3
LA R15,0K_MSG@A3
EX R14,MVCT_UT3
PUT UT3,UT3_BUFF
PUT UT4,DH1

PUT UT4,DH2

PUT UT4,DH3

MVC UT4_CNT,F3

GET THE LENGTH OF THE MESSAGE
GET @(ERROR MESSAGE)
PUT THE MESSAGE IN THE BUFFER

SET LINES PRINTED

SPACE 1
X — + —+ — + — + — + — + — + — + — + — + — + — + — + — *
* OPEN PROCESSING IS COMPLETE. BEGIN PROCESSING THE INPUT DATA. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1
UT4_OPEN DS @H
SPACE 1

ZAP TSMF_CNT,P_ZERO
ZAP T42_CNT,P_ZERO
ZAP T421_CNT,P_ZERO
SPACE 1

LOOP_UTI DS ZH
SPACE 1
GET UT1
CLC @(2,R1),HALF6
BL LOOP_UT1

INTIALIZE THE COUNTER
INITIALIZE THE COUNTER
INITIALIZE THE COUNTER

Q. CHECK THE RECORD LENGTH
A. SHORT RECORD, BYPASS

LR R2,R1 GET @(RECORD JUST READ)

USING SMF42,R2 INFORM THE ASSEMBLER

SPACE 1
X — —+ — + — + — + — + — + — + — + — + — + — + — + — *
* PERFORM SOME BASIC SCREENING ON THE CURRENT RECORD TO SEE IF IT IS *
* ONE WE ARE LOOKING FOR. *
X —+ —+ — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

AP TSMF_CNT,P_ONE
CLC SMF42RTY,TYPE42

BUMP THE RECORD COUNT
Q. TYPE 42 RECORD

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

BNE LOOP_UT1 A.
AP T42_CNT,P_ONE
CLC SMF42STY,STYPE1

NO, GET THE NEXT RECORD
BUMP THE RECORD COUNT
Q. SUBTYPE 1

BNE LOOP_UT1 A. NO, GET THE NEXT RECORD

AP T421 _CNT,P_ONE BUMP THE RECORD COUNT

SPACE 1
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* NEED TO LOOK AT THE DATE TO SEE IF IT IS PRE 2@XX. FROM THIS WE *
* KNOW HOW TO SET THE DATE UP FOR DISPLAY. *
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

MVC WSMF_DTE,SMF42DTE GET THE TIME STAMP

CLI WSMF_DTE,X'@@" Q. FIRST BYTE SET FOR 197

BNE SMFD_20 A. NO, SET UP FOR 2000

MVI WSMF_DTE,X'19"' SET FOR 19XX

B WSMF_SET DATE IS SET

SPACE 1
SMFD_28 DS 2H

SPACE 1

MVI WSMF_DTE,X'20@" SET FOR 2@XX

SPACE 1
WSMF_SET DS @H

SPACE 1

MVC HOLDTIME,SMF42TME SAVE THE TIME

SPACE 1
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* NOW WE NEED TO DETERMINE IF THE RECORD IS SPANNED. WE DO THIS BY *
* LOOKING AT THE SEGMENT DESCRIPTOR IN THE RDW AT THE BEGINNING OF *
* THE RECORD. IF THE SEGMENT DESCRIPTOR IS ZERO, THEN WE SIMPLY *
* ESTABLISH ADDRESSABILITY TO THE RECORD AND PROCEED TO PROCESS IT. *
* IF THE SEGMENT DESCRIPTOR IS NON-ZERO, THEN WE NEED TO PUT THE THE *
* PIECES OF THE RECORD TOGETHER IN A WORK AREA, AND THEN WE CAN SET *
* ADDRESSABILITY TO IT AND PROCESS IT. *
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

CLC SMF42SGD,=H'@" Q. IS THIS A SPANNED RECORD?

BE SGD_ZERO A. NO

LA RO,WB GET @(TARGET LOCATION)

LH R1,SMF42RCL GET THE LENGTH OF THE SOURCE

LR R15,R1 GET THE LENGTH OF THE SOURCE

LR R14,R2 GET @(SOURCE LOCATION)

MVCL R@,R14 MOVE THE DATA

LR R3,R0O PRESERVE NEW TARGET LOCATION

LA R2,WB RESET THE BASE REGISTER

GET uTl

LR R@,R3 RESTORE TARGET LOCATION

LR R14,R1 GET @(RECORD)

LH R1,SMF42RCL GET LENGTH OF THE TARGET

LH R1,0(R14) GET LENGTH OF SOURCE DATA

S R1,=F'4"' MINUS THE RDW

LR R15,R1 GET THE LENGTH OF THE SOURCE

LA R14,4(,R14) GET THE SOURCE LOCATION
18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

MVCL R@,R14 MOVE THE REMAINDER OF THE DATA

SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* WHEN WE GET HERE WE ARE READY TO SET-UP BASE REGISTERS SO WE CAN *
* PROCESS THE CURRENT RECORD. *
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
SGD_ZERO DS @H

SPACE 1

XR R3,R3 CLEAR REGISTER 3

LA R3,SMF42_LEN(R3,R2) POINT PAST THE HEADER

USING SMF4251,R3 INFORM THE ASSEMBLER

ICM R4,B'1111',SMF425C0 OFFSET TO STORAGE CLASS SUMMARY

ICM R3,B'1111',SMF42BMO OFFSET TO BMF TOTALS

LA R3,0(R3,R2) POINT TO BMF TOTALS

LA R4,0(R4,R2) POINT TO STORAGE CLASS SUMMARY

DROP R3 INFORM THE ASSEMBLER

USING SMF4201A,R3 INFORM THE ASSEMBLER

USING SMF4201B,R4 INFORM THE ASSEMBLER

ICM R5,B'1111',SMF42TNA GET NUMBER OF STORAGE CLASSES

SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* PROCESS ALL OF THE STORAGE CLASSES. *
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1
LOOP_SCS DS @H

SPACE 1

MVI UT4 BUFF,C' " PUT A BLANK IN BYTE 1

MVC UT4_BUFF+1(L'UT4_BUFF-1),UT4_BUFF NOW BLANK THE REST

UNPK UT4 DTE(L'UT4 DTE),WSMF_DTE UNPACK THE DATE

SPACE 1
¥ — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* THE TIME IS SAVED IN HUNDREDTHS OF A SECOND SINCE MIDNIGHT. TO *
* MAKE THE TIME DISPLAYABLE, WE NEED TO DIVIDE IT BY HOURS, MINUTES *
* AND SECONDS. WE DISCARD THE REMAINDER. FOR THE CALCULATIONS BELOW *
* NOTE THE FOLLOWING: *
* IN HUNDREDTHS, 1 HOUR = 360000 *
* 1 MINUTE = 6000 *
* 1 SECOND = 100 *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

L R1,HOLDTIME PICK UP THE TIME

SLR RO,RO CLEAR REGISTER ZERO

D RO, F360000 DIVIDE BY HOURS

CVD R1,DUBLWORK MAKE 1T DECIMAL

01 DUBLWORK+7,X'@F' FIX THE SIGN

UNPK UT4_TME(2),DUBLWORK+6(2) NOW MAKE IT DISPLAYABLE

MVI ~ UT4_TME+2,C':" FORMAT IT

SRDL R@,32 SHIFT IT BY 32 BITS

D RO, F6000 DIVIDE BY MINUTES

CVD R1,DUBLWORK MAKE 1T DECIMAL

01 DUBLWORK+7,X'@F" FIX THE SIGN

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

19

UNPK UT4_TME+3(2),DUBLWORK+6(2) MAKE IT DISPLAYABLE

MVI UT4_TME+5,C':" FORMAT 1T

SRDL R@,32 SHIFT IT BY 32 BITS

D RO, F100 DIVIDE BY SECONDS

CVD R1,DUBLWORK MAKE IT DECIMAL

01 DUBLWORK+7,X'@F" FIX THE SIGN

UNPK UT4_TME+6(2),DUBLWORK+6(2) MAKE IT DISPLAYABLE

SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* NOW PICK UP THE DATA FROM THE SMF RECORD. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

MVC UT4_PNN(L'SMF42PNN),SMF42PNN GET THE STORAGE CLASS NAME
ICM R14,B'1111",SMF42SRT GET THE DATA PAGE READS

CvD R14,DUBLWORK MAKE IT DECIMAL

MVC UT4_SRT(L'PATTERNZ),PATTERNZ GET THE EDIT PATTERN

ED UT4_SRT(L'PATTERN2),DUBLWORK+4 EDIT THE DATA

ICM R14,B'1111",SMF42SRH GET THE DATA PAGE READ HITS
CvD R14,DUBLWORK MAKE IT DECIMAL

MVC UT4_SRH(L'PATTERN2),PATTERN2 GET THE EDIT PATTERN

ED UT4_SRH(L'PATTERN2),DUBLWORK+4 EDIT THE DATA

ICM R14,B"1111",SMF42SDT GET THE DIRECTORY PAGE READS
CvD R14,DUBLWORK MAKE IT DECIMAL

MVC UT4_SDT(L'PATTERNZ2),PATTERNZ2 GET THE EDIT PATTERN

ED UT4_SDT(L'PATTERN2),DUBLWORK+4 EDIT THE DATA

ICM R14,B'1111",SMF42SDH GET DIRECTORY PAGE READ HITS
CvD R14,DUBLWORK MAKE IT DECIMAL

MVC UT4_SDH(L'PATTERNZ2),PATTERNZ GET THE EDIT PATTERN

ED UT4_SDH(L'PATTERN2),DUBLWORK+4 EDIT THE DATA

L R14,UT4_CNT GET THE LINE COUNTER
C R14,F60 Q. 60 LINE ALREADY PRINTED
BNE NOT_F60 A. NO, PRINT THE LINE

PUT UT4,DH1
PUT UT4,DH2

PUT UT4,DH3
MVC UT4_CNT,F2 INITIALIZE THE COUNTER
SPACE 1

NOT_F6@8 DS ZH
SPACE 1
LA R14,1(,R14) INCREMENT THE COUNTER
ST R14,UT4_CNT SAVE THE COUNTER

PUT UT4,UT4_BUFF
LA R4,SMF4201B_LEN(,R4) BUMP THE POINTER

BCT R5,L0O0P_SCS LOOP FOR ALL STORAGE CLASSES

B LOOP_UT1 GO GET ANOTHER SMF RECORD

DROP R2,R3,R4 INFORM THE ASSEMBLER

SPACE 1
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* END OF FILE ON THE SMF INPUT DATA. ISSUE A FINAL SET OF MESSAGES *
* AND THEN GO THROUGH THE FILE CLOSE ROUTINES. *
X — + —+ — + — + — + — + — + — + — + — + — + — + — + — *

SPACE 1

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

EOF_UT1 DS 2H

SPACE 1

MVI UT3_BUFF,C" ' BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER
LH R14,0L_MSG@6 GET THE LENGTH OF THE MESSAGE
LA R15,0K_MSG@6 GET @(ERROR MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

MVC UT3_BUFF+0D_MSG@6-0K_MSG@A6 (L' PATTERN3),PATTERN2
ED UT3_BUFF+0D_MSG@6-0K_MSG@6(L"PATTERN3), TSMF_CNT
PUT UT3,UT3_BUFF

MVI UT3_BUFF,C" ' BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER
LH R14,0L_MSG@4 GET THE LENGTH OF THE MESSAGE
LA R15,0K_MSG@4 GET @(ERROR MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

MVC UT3_BUFF+0D_MSG@4-0K_MSG@4(L'PATTERNL),PATTERNL
ED UT3_BUFF+0D_MSG@4-0K_MSG@4(L'PATTERNL),T42_CNT+1
PUT UT3,UT3_BUFF

MVI UT3_BUFF,C" ' BLANK IN BYTE 1

MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER
LH R14,0L_MSG@5 GET THE LENGTH OF THE MESSAGE
LA R15,0K_MSG@5 GET @(ERROR MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

MVC UT3_BUFF+0D_MSG@5-0K_MSG@A5(L"PATTERN1),PATTERN1
ED UT3_BUFF+0D_MSG@5-0K_MSG@5(L"PATTERNL),T421_CNT+1
PUT UT3,UT3_BUFF

SPACE 1
X — b — + — + — + — + — + — + — + — + — + — + — + — + —
* COMMON EXIT POINT. EACH FILE IS TESTED TO DETERMINE THE STATUS.
* IF THE FILE IS OPEN, IT WILL BE CLOSED.
X — b —+ — + — + — + — + — + — + — + — + — + — + — + —
SPACE 1
CLOSE_DS DS @H
SPACE 1
™ DCB_FLAG,UT1_0 Q. IS THE FILE OPEN
BNO CLO_UT2 A. NO, CHECK NEXT FILE
CLOSE (UT1),MODE=31
MVI UT3_BUFF,C" ' BLANK IN BYTE 1
MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER
LH R14,0L_MSG@7 GET THE LENGTH OF THE MESSAGE
LA R15,0K_MSG@7 GET @(MESSAGE)
EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER
PUT UT3,UT3_BUFF
SPACE 1
CLO_UT2 DS @H
SPACE 1
™ DCB_FLAG,UT2_0 Q. IS THE FILE OPEN
BNO CLO_UT4 A. NO, CHECK NEXT FILE
CLOSE (UT2),MODE=31
MVI UT3_BUFF,C" ' BLANK IN BYTE 1
MVC UT3_BUFF+1(L'UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER
LH R14,0L_MSG@8 GET THE LENGTH OF THE MESSAGE

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

* % X X

LA R15,0K_MSG@8 GET @(MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

PUT UT3,UT3_BUFF

SPACE 1
CLO_UT4 DS 2H

SPACE 1

™ DCB_FLAG,UT4_0 Q. IS THE FILE OPEN

BNO CLO_UT3 A. NO, CHECK NEXT FILE

CLOSE (UT4),MODE=31

MVI UT3_BUFF,C" ' BLANK IN BYTE 1

MVC UT3_BUFF+1(L"UT3_BUFF-1),UT3_BUFF COPY TO REMAINDER

LH R14,0L_MSG@9 GET THE LENGTH OF THE MESSAGE

LA R15,0K_MSG@9 GET @(MESSAGE)

EX R14,MVCT_UT3 PUT THE MESSAGE IN THE BUFFER

PUT UT3,UT3_BUFF

SPACE 1
CLO_UT3 DS 2H

SPACE 1

™ DCB_FLAG,UT3_0 Q. IS THE FILE OPEN

BNO EXIT_RTN A. NO

CLOSE (UT3),MODE=31

SPACE 1
EXIT_RTN DS 2H

SPACE 1

$ESAEPI

TITLE "EXTSM421 - LITERALS'

SPACE 1
F360099 DC F'360000"' USED FOR TIME MANIPULATION
F6000 DC F'6000' USED FOR TIME MANIPULATION
F100 DC F'100°' USED FOR TIME MANIPULATION
F60 DC F'60' USED TO CONTROL PRINTING
F3 DC F'3' USED TO CONTROL PRINTING
F2 DC Fre' USED TO CONTROL PRINTING
HALF6 DC H'6' USED TO TEST RECORD LENGTHS
MVCT_UT3 MVC UT3_BUFF+1(*-*),0(15) USED TO MOVE MESSAGES TO BUFFER
PATTERN1 DC XLQ7'4020206B202120" EDIT PATTERN FOR DATA
PATTERNZ DC XLO9'406B2020206B202123"' EDIT PATTERN FOR DATA
PATTERN3 DC CL16" EDIT PATTERN FOR DATA

ORG PATTERN3 ORG BACK

DC XLO4'40202020"
DC XL4'6B202020"
DC XLo4'6B202020"
DC XL@4'6B202120"

TYPE4?Z DC AL1(42) USED TO TEST FOR TYPE 42 RECORDS
STYPE1L DC AL2(1) USED TO TEST FOR SUBTYPE 1 RECS.
P_ZERO DC PLA'D" USED FOR PACKED OPERATIONS
P_ONE DC PL4'1’ USED FOR PACKED OPERATIONS

TITLE "EXTSM421 - MESSAGES'

SPACE 1
ER_MSG@1 DC C'SMF421-91(E) ERROR OPENING THE SYSOUT DATASET, PROGRAM+

TERMINATING'

EL_MSGA1 DC Y(*-ER_MSG@A1)

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

ER_MSG@2 DC C'SMF421-@2(E) ERROR OPENING THE SYSUT1 SMF INPUT DATASE+
T. PROGRAM TERMINATING'
EL_MSG@2 DC Y(*-ER_MSG@2)
ER_MSG@3 DC C'SMF421-@3(W) ERROR OPENING THE SYSUT2 DATASET, COPY OP+
ERATION WILL N OT BE PERFORMED'
EL_MSG@3 DC Y(*-ER_MSG@3)
ER_MSG@4 DC C'SMF421-@4(W) ERROR OPENING THE DETAILS REPORT DATASET.+
PROGRAM OPERATION TERMINATED.'
EL_MSG@4 DC Y(*-ER_MSG@4)
OK_MSG@1 DC C'SMF421-@1(I) SYSUT1 SMF INPUT DATASET OPENED.'
OL_MSG@1 DC Y (*-0K_MSG@1)
OK_MSG@2 DC C'SMF421-@2(1) SYSUT2 SMF OUTPUT COPY DATASET OPENED.'
OL_MSG@2 DC Y (*-0K_MSG@2)
OK_MSG@3 DC C'SMF421-93(I) DETAILS OUTPUT DATASET OPENED.'
OL_MSG@3 DC Y (*-0K_MSG@3)
OK_MSG@4 DC C'SMF421-@4(1) NUMBER OF SMF TYPE 42 RECORDS EXAMINED WA+
g v
0D_MSG@4 DC g7CL1" '
OL_MSG@4 DC Y (*-0K_MSG@4)
OK_MSG@5 DC C'SMF421-@5(I) NUMBER OF SMF TYPE 42 SUBTYPE 1 RECORDS E+
XAMINED WAS '
0D_MSG@5 DC @g7CLL" '
OL_MSG@5 DC Y (*-0K_MSG@5)
OK_MSG@6 DC C'SMF421-@6(1) NUMBER OF SMF RECORDS READ FROM THE INPUT+
DATASET WAS '
0D_MSG@6 DC CLCL'"PATTERN3)" '
OL_MSG@P6 DC Y (*-0K_MSG@6)
OK_MSG@7 DC C'SMF421-@7(I) SYSUT1 SMF INPUT DATASET CLOSED.'
0L_MSG@7 DC Y (*-0K_MSG@7)
OK_MSG@8 DC C'SMF421-@8(1) SYSUT2 SMF OUTPUT COPY DATASET CLOSED.'
OL_MSG@8 DC Y (*-0K_MSG@8)
OK_MSG@9 DC C'SMF421-99(I) DETAILS OUTPUT DATASET CLOSED.'
0L_MSG@P9 DC Y (*-0K_MSG@9)
TITLE "EXTSM421 - OUTPUT RECORDS'
SPACE 1
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* USE THE ASSEMBLER TO HELP SET UP THE SPACING FOR THE OUTPUT LINE *
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1
DH1 LF@1 EQU L'DH1_1
DH1_LF@2 EQU L'DH1_2+DH1_LF@1
DH1_LF@3 EQU L'DH1_3+DH1_LF@2
DH1 _LF@4 EQU L'DH1_4+DHI1_LF@3
DH1_LF@5 EQU L'DH1_5+DH1_LF@4
DH1 LF@6 EQU L'DH1_6+DH1_LF@5
DH1_LF@7 EQU L'DH1_7+DH1_LF@6
DH1_SPAC EQU (L'DH1-DH1_LF@7)/8
DH1 DC CL133"
ORG DH1
DC c'1’
ORG DH1+DH1_SPAC
DH1_1 DC C' DATE '

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

ORG ~ *+DH1_SPAC
DH1_2 DC c' TIME
ORG *+DH1_SPAC
DH1_3 DC C'STORAGE '
ORG *+DH1_SPAC
DH1_4 DC C' MEMBER '
ORG ~ *+DH1_SPAC
DH1_5 DC C' MEMBER '
ORG *+DH1_SPAC
DH1_6 DC C'DIRECTORY'
ORG *+DH1_SPAC
DH1_7 DC C'DIRECTORY"
ORG DH1+L'DH1

EJECT
X — + —+ — + — + — + — + — + — + — + — + — + — + — + — *
* USE THE ASSEMBLER TO HELP SET UP THE SPACING FOR THE OUTPUT LINE. *
X — + —+ — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1

DHZ2_LF@1 EQU L'DHZ_1
DHZ2_LF@2 EQU L'DH2_2+DH2_LF@1
DHZ2_LF@3 EQU L'DH2_3+DH2_LF@?2
DHZ2_LF@4 EQU L'DH2_4+DH2_LF@3
DHZ_LF@5 EQU L'DH2_5+DH2_LFP4
DHZ2_LF@6 EQU L'DH2_6+DH2_LF@5
DHZ2_LF@7 EQU L'DH2_7+DH2_LF@6
DH2_SPAC EQU (L'DH2-DHZ2_LF@7)/8
DH2 DC CL133*

ORG DH2+DH2_SPAC
DH2_1 DC c' '

ORG *+DH2_SPAC
DH2_2 DC c' '

ORG ~ *+DH2_SPAC
DHZ2_3 DC C'CLASS '

ORG *+DH2_SPAC
DHZ2_4 DC C'DATA PAGE’

ORG *+DH2_SPAC
DHZ2_5 DC C'DATA PAGE’

ORG ~ *+DH2_SPAC
DHZ2_6 DC C'DATA PAGE’

ORG *+DH2_SPAC
DHZ2_7 DC C'DATA PAGE’

ORG DH2+L'DH2

EJECT
* — + — + — + — + — + — + — + — + — + — + — + — + — + — *
* USE THE ASSEMBLER TO HELP SET UP THE SPACING FOR THE OUTPUT LINE. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1

DH3_LF@1 EQU L'DH3_1

DH3_LF@2 EQU L'DH3_2+DH3_LF@1
DH3_LF@3 EQU L'DH3_3+DH3_LF@2
DH3_LF@4 EQU L"DH3_4+DH3_LF@3
DH3_LF@5 EQU L"DH3_5+DH3_LFQ4

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

DH3_LF@6 EQU
DH3_LF@7 EQU
DH3_SPAC EQU

DH3

DH3_1
DH3_2
DH3_3
DH3_4
DH3_5
DH3_6

DH3_7

UTIDCBE

UT2DCBE

UT3DCBE

UT4DCBE

uTl

uT2

uT3

DC
ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG
TITLE
SPACE
DCBE

SPACE
DCBE

SPACE
DCBE

SPACE
DCBE

TITLE
SPACE
DCB

TITLE
SPACE
DCB

TITLE
SPACE
DCB

L'DH3_6+DH3_LF@5
L'DH3_7+DH3_LF@6
(L'DH3-DH3_LF@7)/8
CLI33" '
DH3+DH3_SPAC

c '
*+DH3_SPAC

c '
*+DH3_SPAC

c '
*+DH3_SPAC

C' READS '
*+DH3_SPAC

C'READ HITS'
*+DH3_SPAC

C' READS
*+DH3_SPAC

C'READ HITS'
DH3+L'DH3
"EXTSM421 - DATASET CONTROL BLOCKS'
1

RMODE31=BUFF,
SYNAD=SYN_UTI,
EODAD=EOF_UT1

1

RMODE31=BUFF,
SYNAD=SYN_UT?2

1

RMODE31=BUFF,
SYNAD=SYN_UT3

1

RMODE31=BUFF,
SYNAD=SYN_UT3
"EXTSM421 - DEFINE THE DCB FOR THE SYSUT1 DATASET'
1

DDNAME=SYSUT1,
DSORG=PS,
MACRF=(GL),
DCBE=UT1DCBE
"EXTSM421 - DEFINE THE DCB FOR THE SYSUT2 DATASET'
1

DDNAME=SYSUTZ2,
DSORG=PS,
MACRF=(PM),
DCBE=UT2DCBE
"EXTSM421 - DEFINE THE DCB FOR THE SYSOUT DATASET'
1

DDNAME=SYSOUT,
DSORG=PS,
RECFM=FBA,
LRECL=133,
MACRF=(PM),

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

+ 4+ 4+ 4+

25

DCBE=UT3DCBE

TITLE 'EXTSM421 - DEFINE THE DCB FOR THE DETAILS DATASET'
SPACE 1
uT4 DCB DDNAME=DETAILS,
DSORG=PS,
RECFM=FBA,
LRECL=133,
MACRF=(PM),
DCBE=UT4DCBE
TITLE "EXTSM421 - DYNAMIC AREA'
SPACE 1
$ESASTG
DUBLWORK DS D
HOLDTIME DS D
RET_CODE DS F RETURN CODE FIELD
DCB_FLAG DS ALl BYTE FOR FILE INDICATORS
UTi_o EQU B'10000000"
ut2_o0 EQU B'01000000'
UT3_0 EQU B'00100000'
UT4_0 EQU B'00010000'
TSMF_CNT DS PL6 COUNTER FOR TOTAL SMF RECORDS
T42_CNT DS PL4 COUNTER FOR TOTAL TYPE 42 RECS.
T421_CNT DS PL4 COUNTER FOR TYPE 42 SUBTYPE 1
UT4_CNT DS F COUNTER TO CONTROL HEADINGS
WSMF_DTE DS F
UT3_BUFF DS XL133
SPACE 1
X — + —+ — + — + — + — + — + — + — + — + — + — + — + — *
* USE THE ASSEMBLER TO HELP SET UP THE SPACING FOR THE OUTPUT LINE. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1
UT4_LFO1 EQU L"UT4_PNN
UT4_LF@2 EQU L'UT4_SRT+UT4_LF@A1
UT4_LF@3 EQU L'UT4_SRH+UT4_LF@2
UT4_LF@4 EQU L'UT4_SDT+UT4_LF@3
UT4_LF@5 EQU L'UT4_SDH+UT4_LF@4
UT4_LF06 EQU L'"UT4_DTE+UT4_LF@5
UT4_LF@7 EQU L'"UT4_TME+UT4_LF@6
UT4_SPAC EQU (L'"UT4_BUFF-UT4_LF@7)/8
SPACE 1
X — + —+ —+ — + — + — + — + — + — + — + — + — + — + — *
* ACTUAL RECORD LAYOUT STARTS HERE. *
X — + — + — + — + — + — + — + — + — + — + — + — + — + — *
SPACE 1
UT4_BUFF DS XL133
ORG UT4_BUFF+UT4_SPAC
UT4_DTE DS XL7
ORG *+UT4_SPAC
UT4_TME DS XL8
ORG *+UT4_SPAC
UT4_PNN DS XL39
ORG *+UT4_SPAC

+ 4+ + 4+ +

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

UT4_SRT

UT4_SRH

UT4_SDT

UT4_SDH

WTO_MSG
WB

DS XL29
ORG *+UT4_SPAC
DS XL@9
ORG *+UT4_SPAC
DS XL29
ORG *+UT4_SPAC
DS XL29

ORG ~ UT4_BUFF+L'UT4_BUFF

WTO "PLACE HOLDER',MF=L

DS XL8192

TITLE "EXTSM421 - SMF RECORD TYPE 42 MAPPING'
IGWSMF SMF42_@1=YES

TITLE "EXTSM421 - MAP OUT THE DCB CONTROL BLOCK'
DCBD DSORG=(QS)

END EXTSM421

$ESAPRO MACRO

&LABEL

MACRO
$ESAPRO &AM=31,&RM=ANY,&MODE=P

*hkhkhkkkkkhkhkhhkhkhkhkhkhkkkhkhkhhhhhkhkhkhkkhkkhkhkhhhhhhkhkhkkhkhkhkhkhhhhhhkhkkhkhkhkhkhhhhhhkhkkkkhkhkhhhhxkx

*

% o o X % % % %k 3k %

THIS MACRO WILL PROVIDE ENTRY LINKAGE AND OPTIONALLY
MULTIPLE BASE REGISTERS. TO USE THIS MACRO, YOU NEED TO
ALSO USE THE $ESASTG MACRO. THE $ESASTG DEFINES THE SYMBOL
QLENGTH WHICH OCCURS IN THE CODE THAT &ESAPRO GENERATES.
IF YOU DO NOT CODE ANY OPERANDS, THEN REGISTER 12 WILL BE
USED AS THE BASE. IF YOU CODE MULTIPLE SYMBOLS, THEN THEY
WILL BE USED AS THE BASE REGISTERS.

EXAMPLES:
SECTNAME $ESAPRO = REG 12 BASE
SECTNAME $ESAPRO 5 = REG 5 BASE

SECTNAME $ESAPRO R1@,R11 REGS 1@ AND 11 ARE BASES

*hkhkhkkkkkhkkhhhhkhkhkhkkkhkkhkhkhkhhhkhhkhkhkkhkkhkkhkhhhhhhhkhkkhkhkhkhhhhhhkhkhkhkkhkhkdkhhhhhkhkhkkkkhkhkhhhhxkx

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
RA
R11
RB

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

LCLA &AA,&AB,&AC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU 9

EQU 10
EQU 10
EQu 11
EQU 11

coONOYOl B WMN S

27

R12
RC

R13

RD

R14

RE

R15

RF

*

FPRO
FPR2
FPR4
FPR6

*
&LABEL
&LABEL
&LABEL

*

*

$$$SFISA
$$$$4096

*

$$SSEYEC

*

.USER1?2

.GNBASE
&AA

&AC
.GNBASE1

*

&AB

28

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

CSECT
AMODE
RMODE

12
12
13
13
14
14
15

[I A S

&AM
&RM

SYSSTATE ASCENV=&MODE

B

DC
DC
DC
DC
DC
DC
DC

DC
DC

BAKR
AIF
LAE
USING
AGO
ANOP
MNOTE
LAE
USING
AGO
ANOP
AIF
SETA
SETA
ANOP

AILF
SETA

$$$SEYEC-*(RL5)
ALT(($$$SEYEC-*)-1)
CL8'&LABEL'

cL3* -
CL8'&SYSDATE'

CL3" - '
CL8"&SYSTIME'

CL3' '

CL4'FISA'
F'4096"

oH

R14,0

(N'"&SYSLIST EQ ©@).USERLZ2
&SYSLIST(1),08(R15,0)

&LABEL,&SYSLIST(1)
.GNBASE

*,'NO BASE REG SPECIFIED,

R12,0(R15,0)
&LABEL,R12
.STGOB

(N'"&SYSLIST LE 1).STGOB

2
4996

SET THE ENVIRONMENT
BRANCH AROUND EYECATCHER
EYECATCHER LENGTH

MODULE ID

ASSEMBLY DATE

ASSEMBLY TIME
FILLER

USED FOR STACK OPERATIONS
USED TO ADJUST BASE REGS

SAVE GPRS AND ARS ON THE STACK

LOAD OUR BASE REG
LET THE ASSEMBLER KNOW

REGISTER 12 USED'
LOAD OUR BASE REG
LET THE ASSEMBLER KNOW

(&AA GT N'&SYSLIST).STGOB

&AA-1

© 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telef@ine 10 9344, fax (303) 438 0290.

&AA
&AC

.STGOB

.MEND

LR &SYSLIST(&AA) ,&SYSLIST(&AB) GET INITIAL BASE

A &SYSLIST(&AA),$$$$4096 ADJUST NEXT BASE

USING &LABEL+&AC,&SYSLIST(&AA) LET THE ASSEMBLER KNOW
SETA &AA+1

SETA &AC+4096

AGO .GNBASE1

ANOP

L RO,QLENGTH GET THE DSECT LENGTH

STORAGE OBTAIN,LENGTH=(R@),LOC=(RES,ANY)

LR R15,R1 GET @(OBTAINED AREA)

L R13,QDSECT GET DISPLACEMENT INTO AREA
LA R13,0(R13,R15) GET @(OBTAINED AREA)

LR R@O,R13 SET REG @ = REG 13

L R1,QLENGTH GET THE LENGTH OF THE AREA
XR R15,R15 CLEAR REG 5

MVCL R@,R14 INTIALIZE THE AREA

MVC 4(4,R13),$$$$F1SA INDICATE STACK USAGE

USING DSECT,R13 INFORM ASSEMBLER OF BASE
ANOP

EREG RI1,R1 RESTORE REGISTER 1

MEND

$ESAEPI MACRO

MACRO
$ESAEPI

hhkhkhkkkkkhkhhhkhkhkhkhkhkkkhkhhhhhkhhhkhkkhkhkdkhhhhhhhkhkkkdkdhhhhhkhhkhkdhkhkdkdhhhhhhhkdkkkkdhhhhxx

% X % % % 3k 3 X X X * F

THIS MACRO WILL PROVIDE EXIT LINKAGE. IT WILL FREE THE
STORAGE AREA THAT WAS ACQUIRED BY THE $ESAPRO MACRO. YOU

CAN OPTIONALLY PASS IT A RETURN CODE VALUE. THIS VALUE IS
EITHER THE LABEL OF A FULL WORD IN STORAGE, OR IT IS A REG-
ISTER. AS WITH THE $ESAPRO MACRO, YOU NEED TO USE THE $ESASTG
MACRO. THE SYMBOL QLENGTH WHICH OCCURS IN THE CODE THAT IS
GENERATED BY THIS MACRO IS DEFINED BY $ESASTG

EXAMPLES:
$ESAEPI NO RETURN CODE SPECIFIED
$ESAEPI (R5) RETURN CODE IS IN REG 5
$ESAEPI RETCODE = RETURN CODE IS IN THE FULLWORD AT
RETCODE

*hkhkhkkkkkhkhkhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkhkkhkhkhkhhhhhhkhkkhkhkdkhhhhhhhkhkkhkhkdkhkhhhhhhkhkkkkhkhkhhhhikx

.REGRC

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

AILF (N"&SYSLIST EQ @) .STGFRE

ATF ("&SYSLIST(1)'(1,1) EQ "(").REGRC

L R2,&SYSLIST(1) GET RETURN CODE VALUE
AGO .STGFRE

ANOP

LR R2,&SYSLIST(1,1) GET RETURN CODE VALUE

29

.STGFRE ANOP

*

L R@,QLENGTH GET THE DSECT LENGTH
STORAGE RELEASE,LENGTH=(R@),ADDR=(R13)

AIF (N"&SYSLIST NE @).SETRC
XR R15,R15 CLEAR THE RETURN CODE
AGO .MEND
.SETRC ANOP
LR R15,R2 SET THE RETURN CODE
.MEND ANOP
PR RETURN TO CALLER
* FOR ADDRESSABILITY PURPOSES
LTORG
MEND

$ESASTG MACRO

MACRO
$ESASTG

*hkhkhkkkkkhkkhhhhkhkhkhkkkhkkhkhkhkhhhkhhkhkhkkhkkhkkhkhhhhhhhkhkkhkhkhkhhhhhhkhkhkhkkhkhkdkhhhhhkhkhkkkkhkhkhhhhxkx

Lx THIS MACRO IS USED IN CONJUNCTION WITH THE $ESAEPI AND $ESAPRO
L* MACROS. IT PROVIDES A Q TYPE ADDRESS CONSTANT WHICH WILL CON-
L THE LENGTH OF THE DSECT. A REGISTER SAVE AREA ID PROVIDED AS
* WELL.

.*

Lx EXAMPLES:

* $ESASTG

L* XXX DC F = DEFINE ADDITIONAL STORAGE AREA

L YYY DC XL255

L x

.*

.*

*Ahkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhkhhhhkhhkhkhkkhkkhkhkhhhhkhhkhkhkkhkhkhkhhhhkhhhkhkkkhkhkhkhhhkhkhhhkkkkdkhkhrhhxkx

RCOVYPH DC F'o’ USED TO SET RETURN CODES

RCOPO4 DC Frg USED TO SET RETURN CODES
RCOPE8 DC F'g’ USED TO SET RETURN CODES
RCOPAC DC Fri2’ USED TO SET RETURN CODES
RCOP1P DC F'16’ USED TO SET RETURN CODES
QDSECT DC Q(DSECT) DEFINE A QCON
QLENGTH CXD LET ASM CALCULATE THE LENGTH
DSECT DSECT
DS 18F SET ASIDE REGISTER SAVE AREA
MEND
Enterprise Data Technologies (USA) © Xephon 2001

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Machine instructions

INTRODUCTION

Over the last few years many machine instructions have been added
to thePrinciples of Operationgnanual (IBM form number SA22-
7201). Some of these are eminently useful for the application
programmer.

This article discusses four groups of instructions:

* ‘Long’instructions:
MVCL — Move Characters Long.
CLCL — Compare Characters Long.
In the meantime, two further ‘long extended’ instructions have
been added: MVCLE and CLCLE. These two newer
Instructions are similar to the ‘long’ instructions described
here, but use a 32-bit length rather than a 24-bit length.

 Program linkage instructions:
BAKR — branch and stack.
PR — program return.

« The MVCIN (Move Characters Inverse) instruction.

e 'String’processing instructions:
MVST — move string.
SRST - search string.
CUSE — compare until substring equal.
CLST — compare logical string.

Although these are not the only application programmer-oriented
instructions that have been introduced since the venerable days of the
IBM/360 (for example, the addressing mode instructions, BASR,
BASSM, etc), the utility of these other instructions is generally well
appreciated. This article does not handle the ‘long’ instructions in
detail, but just discusses those aspects not so well known, in particular
some useful side-effects.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

THE LONG INSTRUCTIONS

The ‘long’ instructions (MVCL, CLCL) process two operands — the
lengths and addresses, which are each contained in an even-odd
register pair. Each operand can have a length in the range 0...2 24-1
(16 MB). If the two lengths differ, the operand with the shorter length

is implicitly padded with the specified pad character to the length of
the longer operand.

The contents of the associated ‘address’ register are ignored if the
length is zero. Because the processing time for these instructions can
be long (even a fast CPU requires a significant amount of time to
transfer 16 MB of data), these instructions can be interrupted. Although
any such interruption is transparent to the program, it does mean that
the specified general registers must be used to store the current
instruction parameters, that is, the register contents change during the
course of execution. In particular, the specified general registers
reflect the state at the end of the execution. This particular side-effect
can be useful even when the operands are less than 256 bytes long, that
is, MVC (etc) could have been used.

Note: register O can be used as a normal addressing register, ie the
usual restriction that register O is equivalent to address O does not
apply here.

Format: MVCLdestinationsource
CLCL comparandjcomparand?2
Before processing:

» rs— start address of source field, either 24-bit or 31-bit address
depending on the addressing mode; the start address is ignored if
the length of the source field is zero.

» rs'—length of source the field (low-order 3 bytes), pad byte (high-
order byte).

 rd — start address of the destination field, either 24-bit or 31-bit
address depending on the addressing mode.

 rd' — length of the destination field (low-order 3 bytes), high-
order byte not used.

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

After processing:

* Is—one byte past the end of the source field.

* rs'—number of bytes of the source field that were not moved (non-
zero only ifthe destination field was shorter than the source field).

 rd — one byte past the end of the destination field.
 rd' — always zero.

The schematic processing is shown in Figure 1:

rs rs' (changed on completion)
I I I | |

X X = pad byte

l (after)

(before) ‘

\/
| |

I
XXXXXX
]

A
(before) T (after)

rd rd' (changed on completion)

Figure 1:Schematic processing of tlmng instructions

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

33

INITIALIZING A LONG FIELD

One use of the MVCL instruction is to initialize a field. Because the
pad character can be used as the initialization, the source field can be
omitted (length = 0 and no address is required). For example:

LA @,TARGET Address of target field
L 1,=A(L'TARGET) Length of target field

L 15,=X"'ffo000e0' ff = initialization byte
MVCL 0,14

Filling a target field

Many applications need to fill a target field with variable length
subfields; creating a print line image is a typical application here.
Normally the EX instruction on an MVC instruction would be used in
such asituation. Such an approach requires quite a lot of housekeeping
overhead: reducing the length of the field being moved and maintaining
the current address in the target field. Although the MVCL instruction
requires more registers, the side-effects (update of the current address)
can simplify the processing logic. Example (using ‘traditional’ code):

LA 1,PA Start address of target
* move first subfield
LA 14,FLD1 Address of source field
LA 15,L'FLD1 Length of field
SH 15,=H'1" Length-code (= length -1)
EX 15,MOVE Move source field
LA 1,1(1,15) Update target address
* move second subfield
LA 14,FLD2 Address of source field
LA 15,L'FLD2 Length of field
SH 15,=H'1" Length-code
EX 15,MOVE Move source field
LA 1,1(1,15) Update target address

** etc.

* EX-instruction

MOVE MVC 9(@,1),0(14)

Example (using MVCL):
LA @,PA Start address of target
L 1,=A(L'PA) Length of target

* move first subfield
LA 14,FLD1 Address of source field
LA 15,L"FLD1 Length of field
MVCL @,14 Move source field

* move second subfield
LA 14,FLD2 Address of source field
LA 15,L"FLD2 Length of field
MVCL 0,14 Move source field

** etc.

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

To summarize, the ‘traditional’ approach is as follows:
* One initialization instruction.

* Five instructions per subfield.

* One housekeeping instruction (ex-target).

Whilst using MVCL is as follows:

« Two initialization instructions.

» Three instructions per subfield.

As can be seen, using MVCL is always shorter, even ignoring the two
advantages that it offers:

 The target field bounds are explicitly checked.

» Long source fields (ie fields longer than 256 bytes) can be used
without requiring any code changes.

Note: because the fields concerned are fixed, there is no requirement
to set the lengths dynamically at execution-time, but the example
serves to illustrate the techniques involved.

Comparison

Compared with the CLC instruction, the CLCL instruction has two
advantages (in addition to the support of long operands):

 The two fields do not need to have the same length (the shorter
field is right-padded with the specified pad character to the length
of the longer field).

« At the end of the comparison, the registers indicate where the
comparison stopped: both the respective addresses and the
remaining number of bytes not compared.

For example:

LA @,FLD1 Start address of field 1

L 1,LFLD1 Length of field 1 + pad-character
LA 14,FLD2 Start address of field 2

L 15,LFLD2 Length of field 2 + pad-character
CLCL @,14 Compare fields

BL LOW Field 1 Tow

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

BH HIGH Field 1 high

BE EQUAL Fields identical (possibly padded)
LOW SL 15,LFLD2
LCR 15,15 Number of compared bytes
HIGH SL 1,LFLD1
LCR 1,1 Number of compared bytes
EQUAL NOPR @ ... Process identical fields
%
FLD1 DC C'alphabetagamma'
LFLD1 DC XL1'@@' ,AL3(L'FLD1) pad-character + field length
FLD2 DC C'alphabet’
LFLD2 DC C'a',AL3(L'FLD2) pad-character + field length

PROGRAM LINKAGE INSTRUCTIONS

The program linkage instructions discussed here use the hardware
stack to save and restore the current program environment. Although
the hardware (linkage) stack can be used for general register (and
access register) housekeeping, its main use for the application
programmer is to solve some problems that can occur in mixed
addressing mode environments rather than standard program save-
areas, in particular when an AMODE(31) program invokes an
AMODE(24) program. The techniques discussed here apply only to
the called program; the calling program is not affected, ie the usual
methods of invoking a subprogram are retained (eg CALL macro).

Note: these program linkage instructions have additional functionality
of particular interest for use in control programs.

LINKAGE STACK

The linkage stack is a system facility. Hardware instructions are
provided for its use. Exceptions are signalled when its bounds, etc, are
exceeded. The following two stack exceptions are of primary interest
for the application programmer:

« Stack-Empty exception (ie an attempt was made to retrieve a
stack entry (eg with the PR instruction) although the stack is
empty). This is normally caused by unpaired BAKR-PR
instructions.

« Stack-Full exception. The linkage stack has a finite size, but itis
normally adequate.

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

The linkage stack provides the following major advantages compared
with traditional techniques:

 Whereas the linkage stack saves both the access registers and the
general-purpose registers; the SAVE macro saves only the general-
purpose registers.

 The linkage stack is hardware-protected.

BAKR (BRANCH AND STACK)

The Branch and Stack instruction saves the current registers and the
access registers (0-15), and the current PSW (including addressing
mode) in the (hardware) linkage stack (additional information of
limited interest for the application programmer is also saved).

Format: BAKRretaddrjumpaddr

* retaddr— return address. The register that contains the address
(including the addressing mode) to which a subsequent return is
made. It is 14 when standard linkage procedures are used.

e jumpaddr-jump address. The register that contains the address
(including the addressing mode) to which a control is to be
passed. This is normally O, which means no branch is made and
the next sequential instruction is executed.

BAKR when used with PR for application program linkage has the
following general form:
* save calling environment

BAKR 14,0 Use hardware stack

LA 13,SA Program save area
MVC 4(4,13),=C'F1SA" Indicate Tlinkage stack used

* restore calling environment

L 15, .. Load program return code
PR . Program return

%

SA DS 18F

For simplicity, save-area chaining and unchaining is omitted.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

PR (PROGRAM RETURN)

The Program Return instruction restores the general registers and
access regqisters (2 through 14) from the linkage stack and returns in
the correct addressing mode to the saved location. Although other
information is restored, this information is of limited interest to the
application programmer.

Format: PR
Note: The PR instruction does not have any operands.

MOVE INVERSE

The MOVE INVERSE instruction will reverse the contents of a field.
Other than the requirement to explicitly reverse the contents of a field,
there are some circumstances when it can be simpler to process
reversed data.

The MVCIN instruction is unique as an instruction in that it transfers
a source field starting from the back.

Format: MVCINdestinatiorflength,sourceend
The schematic processing is shown in Figure 2:

a: b ..-<«—] y z| source field

Vo

z y —» .-+ b al destination field

Befo@lRdcadiggnatic processing of th®/CIN instruction

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

rd: Start (lowest numbered byte) address of the destination field.
rse End (highest numbered byte) address of the source field.

Example: this example finds the length of the significant data in a text
field, ie the start of trailing blanks. This is conceptually the same as
searching for the first occurrence of a blank in the reversed field
contents, for which it is possible to use normal search logic (eg with

the SRST (Search String) instruction):

MVCIN TEMP,FLDE Reverse field contents
LA 4,TEMP Search field (start)
LA 3, TEMP+L'FLD-1 Search field (end)

SR 2,0 Clear register

IC g,=C' "' Search character

SRST 3,4 Search string

BH NOTFOUND
* delimiter byte found (Register 3 updated)

SR 3,4
* Register 3: displacement from right
LCR 3,3 Negative displacement
LA 3,FLDE(3) Address of found character
NOTFOUND NOPR @ Tag
TEMP DS CL256
FLD DC CL256'The rain in Spain'

FLDE EQU *-1

STRING PROCESSING INSTRUCTIONS

ESA/390 provided a number a new instructions designed to improve
the processing of string-oriented fields typically used in C programs.
For example, character fields in C are terminated with a X'00'.
However, because native S/370 character-oriented instructions require
an explicit length, the field would need to be processed twice without
these new instructions — once to find the actual length and once to
perform the actual processing.

However, these instructions are not restricted to string processing,
they can be used effectively in many other application areas. Because
the string instructions are ‘long’ instructions, they are not subject to
length restrictions, although special processing logic is required to
handle possible instruction interruptions.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

« MVST (Move String)

« SRST (Search String)

« CUSE (Compare Until Substring Equal)
« CLST (Compare Logical String).

General note: the MVST, SRST, CUSE, and CLST instructions
aresimilar to the ‘long’ instructions (MVCL, CLCL) in that they can
process fields longer than 256 characters and the processing can be
interrupted. Whereas the interruption of the ‘long’ instructions is
transparent to the application programmer (the instruction processing
continues automatically), the string instructions must be explicitly
reinvoked after an interruption (the condition code is set to indicate
whether the processing has completed; BO = instruction interrupted
before completion). Because the processing block length is at least
256 bytes, this interruption of the string instructions applies only
when the fields involved are longer that 256 bytes; fields lengths not
exceeding 256 bytes are guaranteed not to be interrupted.

MVST (MOVE STRING)

The MVST instruction transfers the source field that is terminated
with the specified delimiter byte (contained in general register 0) to
the destination field; the delimiter byte is also transferred.

Note: because the length of the destination field is not specified, the
programmer must take the appropriate precautions to maintain the
bounds.

Format: MVSTdestinatiosource
destinationandsourceare each a general register.
Before processing:

e source- start address of the source field.

» destination- start address of the destination field.

Register 0 — delimiter byte is the low-order byte (the high-order three
bytes must be set to X'00").

After processing:

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

 BO-condition the instruction execution was interrupted before
the end of processing. Re-invoke the instruction to continue
processing.

The destination register is updated to contain the address of the last
byte transferred (the delimiter byte).

The schematic processing is shown in Figure 3:
Example:

rd rs

\/

VWAV A x | source field

(before) (after)
\/ \/

VWAV x| destination field

000 x| x = delimiter byte; final byte of the source field

Figure 3: Schematic processing of tN&/ST instruction

L 0,=X'00000002" Delimiter byte

LA 4,INSTR Source field

LA 2,0UTSTR Destination field

MVST 2,4 Move string

BO *-4 Reinvoke, execution interrupted

INSTR DC C'alpha',X'02',C'gamma’,X'@2"'
OUTSTR DS CL512
OUTSTR contains C'alpha',X'02"' after execution in this example.

Note: the BO instruction is actually superfluous in this case because
the length of the source field does not exceed 256 bytes.

SRST (Search String)

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

The SRST instruction searches for the specified byte (in general
register 0) inastring. SRST can sometimes be used as replacement for
the TRT instruction (see Example 2).

Format: SRSBtringendstringstart
stringstartandstringendare each a general register.
The schematic processing is shown in Figure 4.
Before processing:

rse rs

l (after) _l (before)
\J

X string field

RO
O:O:O:x x = search byte

Figure 4: Schematic processing of tBRST instruction

o stringstart— address of the first byte of the string.
» stringend- address of the next byte after the end of the string.

The search byte is specified in the low-order byte of general register
O (the high-order 3 bytes must be set to X'00").

After processing:

« BO-condition the instruction execution was interrupted before
the end of processing. Re-invoke the instruction to continue
processing.

« BL-condition— the search character was found. The ‘stringend’

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

register contains the address of the found byte.

 BE-condition-the search character was not found. The registers
remain unchanged.

Example 1

LA
LA

L
SRST
BO
BL
BH

INSTR DC
INSTRE EQU

Example 2

4, INSTR
3, INSTRE
0.=X'00000002"
3,4

*-4

FOUND

NOTFOUND

Start address of input string

End address of input string (+1)
Search byte

Search string

Repeat, execution interrupted
String found (Register 3 updated)
String not found

C'alpha',X'02',C'gamma’,X'@2"'

*

This example shows SRST as a replacement for the TRT instruction.
For example, if an EXEC parameter used for switch settings (/A, /B,
or /C) is analysed.

L
LA
LH

2,0(1)
3,2(2)
4,0(2)

A(parameter data)

L(parameter data)

* Register 3: A(argument); Register 4: L(argument)
* Search for switch (/x (x =

LR 6,3
LA 5,0(3,4)
LR 14,5
L @,=XL4'00000061"
* Processing loop
LOOP DS @H
LR 5,14
SRST 5,6
BH LOOPEND
* Register 5: A(/switch)
CLI 1(5),C'A"
BNE NOTSWA
01 FLAG,X'@1"
B CONTINUE
NOTSWA CLI 1(5),C'B"’
BNE NOTSWB
01 FLAG,X'@2"

, C))

Start of parameter

End of parameter

Save parameter end address
Delimiter = 0...0/

Set parameter end address

No (further) delimiter found

Set corresponding bit (@1) in FLAG

Set corresponding bit (02) in FLAG

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

B CONTINUE
NOTSWB CLI 1(5),Cc'C’

BNE NOTSWC
0I FLAG,X'@4" Set corresponding bit (04) in FLAG
B CONTINUE
NOTSWC ABEND 1 Invalid switch value (=terminate)
CONTINUE LA 6,2(5) Set next parameter start address (R6!)
B LOOP Continue processing

LOOPEND DS oH

**

FLAG DC X'9'

Note: because the length of the source field does not exceed 256 bytes
no BO instruction to check for incomplete processing is required in
this case.

CUSE (COMPARE UNTIL SUBSTRING EQUAL)

The CUSE instruction compares two strings for the specified number
of characters that must agree (general register 0 contains the number
of characters). The shorter string is right-padded with the specified
pad character (in general register 1). The found string must be located
at the same relative position in each of the two fields.

The comparison ends when either a matching string is found (possibly
right padded) or the comparison strings are expended. The comparison
may be interrupted, although not before at least 256 bytes have been
processed. The address and length of the two comparison fields must
each be contained in two even/odd register pairs (eg R2,R3 and
R14,R15).

Format: CUSHegaregb
regaandregbare each register pairs (even-odd).
Before processing:

 rega-— address of the leftmost byte of the first string (the even
register of the first even-odd register pair)

* rega'-length of the first string (the odd register of the first even-
odd register pair)

» regb—address of the leftmost byte of the second string (the even
register of the second even-odd register pair)

44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

* regb'-length of the second string (the odd register of the second
even-odd register pair).

Register 0 — length of the string that must match.

Register 1 — padding byte (low-order byte, 3 high-order bytes must be
set to X'00".

The schematic processing is shown in Figure 5.

Match string parameters:

RO R1

I I I I I |
———y||==-2| z=pad byte

11 1 11 1
y = length of the string that must agree
—=X"00'

First comparand:

ra ra'
1 1 1

(before)| (after)
M YV ——

XXXXXXXX

Second comparand:
rb rb’

(before)l (after)
v [|

T]
XXXXXXXX | 22777 4—

Figure 5: Schematic processing of tG&JSE instruction

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 45

« BO-condition- the instruction execution was interrupted before
a matching string was found. Re-invoke the instruction to
continue.

« BE-condition— an explicit matching string was found.

« BL-condition-animplicit matching string was found (the shorter
string was padded).

 BH-condition— no matching string was found.

The registers are updated to indicate where the processing stopped
(address of each matching string, end of the string or address where
the instruction was interrupted) and the number of bytes not processed.
For example:

LA 2,INSTR1 String 1

LA 3,INSTRIL Length of string 1

LA 4,INSTR2 String 2

LA 5,INSTR2L Length of string 2

LA 2,4 Length of the required search string
LA 1,X'4@°' Pad character (here blank)

CUSE 2,4 Compare string

BO *-4 Reinvoke, execution interrupted before

completion
BL MATCHPAD Matching string found (one string was padded)
BH NOMATCH No matching string found
BE MATCH Matching string found (no padding required)
INSTR1 DC C'123123betagamma’
INSTR1IL EQU *-INSTR1
INSTR2 DC C'123412betagammadelta’
INSTR2L EQU *-INSTR2

Note:betawas found as the matching string in this example.

CLST (COMPARE LOGICAL STRING)

The CLST instruction compares two strings for equality. General
register O contains the string delimiter character. The comparison ends
when either the delimiter character is found or a difference is detected
between the two strings. When the detection of the delimiter character
terminates the comparison, the string that contains the first delimiter
character found is considered to be the smaller field. If the comparison
indicates inequality, the registers are updated with the addresses of the
last byte compared in each string. The comparison may be interrupted,
although not before at least 256 bytes have been processed.

46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Format: CLSTstringl,string2

stringlandstring2are registers, each of which contains the address
of a comparison string.

e stringl— address of the leftmost byte of the first string.
e string2— address of the leftmost byte of the second string.
After processing:

 BO-condition- the instruction execution was interrupted before
processing completed. Re-invoke the instruction to continue.

 BE-condition— both strings match.

» BL-condition-the first string matches low. Either the first string
Is logically smaller than the second string or the two strings are
identical up to the specified delimiter found in the first string.

» BH-condition— the first string matches high. Either the second
string is logically smaller than the first string or the two strings are
identical up to the specified delimiter is found in the second.

Registers are updated to show where processing stopped. For example:

L 2,DLM Delimiter
LA 1,FLD1 Start address of string 1
LA 2,FLD2 Start address of string 2
CLST 1,2 Compare strings
BO *-4 Reinvoke, execution interrupted before completion
BL LOW String 1 smaller
BH HIGH String 1 Targer
BE EQUAL Both strings equal
LOW NOPR @ Tag for processing first string smaller
HIGH NOPR @ Tag for processing first string larger
EQUAL NOPR @ Tag for processing both strings equal
%
DLM DC XL3'g',Cc';’
FLD1 DC C'alphabetagamma',C';"
FLD2 DC C'alphabet',C';"

Note 1: this example yields a string 2 high.

Note 2: the labels LOW, HIGH, and EQUAL are supplied here to
provide branch addresses for the result of the comparison. Obviously
the appropriate application processing must be added.

Systems Programmer (Germany) © Xephon 2001

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 47

Synchronization of catalogs and SMS DASD
volumes

THE PROBLEM

Catalog entries can become unsynchronized, so that dataset information
is different in the BCS, VVDS, and VTOC. These differences may
make a dataset inaccessible or otherwise unusable. This can happen
after disaster recovery procedures because of DASD failure or after
improper administration action. Likely errors include:

« There is a catalog entry for the dataset, but it does not exist on
DASD volume.

« Datasetis ona DASD volume, but there is no catalog entry for it.

 There are multiple datasets with the same name on different
DASD volumes.

A SOLUTION

The DIAG procedure can help you to find a discrepancy between BCS
and VVDS information on SMS disks. Without this procedure you
have to compare each catalog with each SMS DASD voluméaaand
versa It takes a lot of submission and manual work.

The DIAG procedure does all the comparisons in one submission and
that is why the duration time is fairly large. However, in our opinion
this not a problem because you do not need to use this procedure
frequently, only after disaster recovery on DASD volumes and
periodically (for example twice a year) for checking purposes. If you
rerun the procedure, checking will be performed only on objects that
have been found to have a problem (rc>=8) during the first run. This
improvement significantly shortens the execution time of the procedure.
The procedure gives the following scenario for synchronizing:

* Delete the catalog entry with a DELETE dsname NOSCRATCH
statement.

48 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

— Check if the dataset is important and recover it from the
back-up copy

* Reconnectthe datasetto a catalog for NONVSAMand CLUSTER.
We recommend DELETE VVR and rebuilding for alternate
indexes.

 Checkwhich datasetis valid and which ones are obsolete and can
be deleted. If two or more datasets have the same name only one
can be in the catalog. This means that we have to check the data
in the first dataset and then rename or uncatalog it. After that we
can catalog the second dataset to inspect the data inside it. The
action that follows after inspection is as follows:

— Delete the obsolete dataset with DELETE dsname (NVR or
VVR).

— Catalog the valid dataset with RECONNECT (if it is not
already in catalog).

The DIAG procedure will generate statements for the actions previously
described in the dataset userid. DIAGNOSE.#REPAIR.LIST. The
system programmer or storage administrator must check and edit
these statements before implementing them. Statements that pass
checking and editing will be implemented by job REPAIRCD. The
prerequisites are:

« SMS active.
« RACF permission:
— Read authority for CONSOLE profile in TSOAUTH class.

— Read authority for the STGADMIN.IDC.DIAGNOSE.
CATALOG profile in FACILITY class.

— Read authority for STGADMIN.IDC.DIAGNOSE.VVDS
profile in FACILITY class.

Note:if you do not activate these profiles in RACF, it is necessary to
authorize the DIAGNOSE function. To achieve this, add the
AUTHCMD statement in the IKJITSQ member of the parmlib
library. With the PARMLIB UPDATE(XX) TSO command you can
dynamically activate it.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 49

DIAG

/******************************* REXX *********************************/

/* Diagnose all user catalogs and all SMS DASD and generate

/* statements for reparation.
/*

/* %DIAG argumentl [argument2]

/*

/* Each argument can have one of the following values:

/* DIAGCAT - check all user catalogs and compare them with
/* DASD volumes

/* DIAGVVDS - check all VVDS and compare them with all BCS

/**/

/* Trace ?R */

ARG functions
userid=SYSVAR(SYSUID)
prefix=SYSVAR(SYSPREF)
"PROFILE NOPREFIX"
DSN_ALL_USERCAT =userid|
DSN_ALL_SMS_DASD =userid|

DSN_DIAG_LOG =userid||".
DSN_DIAG_ERR =userid||".
DSN_REPAIR =userid||".

If SYSDSN(DSN_ALL_USERCAT) <
Then Do

Call Alloc_DS USERCAT

Call List_Usercat
End
If SYSDSN(DSN_ALL_SMS_DASD)
Then Do
Call Alloc_DS SMSDASD
Call List_Sms_Dasd
End

DIAGNOSE.#fUSERCAT.
DIAGNOSE.#SMSDASD.
DIAGNOSE.#DIAGLOG.
DIAGNOSE.#fDIAGERR.
DIAGNOSE.{HFREPAIR.

> '0K'

DSN_ALL_USERCAT

<> oK

LIST'
LIST'
LIST'
LIST" /* Only
LIST'

NEW 123 V

DSN_ALL_SMS_DASD NEW 123 V

Call Alloc_DS USERCAT DSN_ALL_USERCAT SHR
Call Alloc_DS SMSDASD DSN_ALL_SMS_DASD SHR

Call Alloc_DS DIAGLOG DSN_DIAG_LOG NEW
Call Alloc_DS DIAGERR DSN_DIAG_ERR NEW
Call Alloc_DS REPAIR DSN_REPAIR NEW
PARSE UPPER VAR functions function.l function.
Do if=1 To 2

Select

When function.if = 'DIAGCAT'

Then Call Diagnose_Al

1_Usercatalog

When function.if = 'DIAGVVDS'

Then Call Diagnose_Al
Otherwise
End /* select */
End /* Do */
If prefix <> '

1_VVDS

133 v
133 v
80 F

*/
*/
*/
*/
*/
*/
*/
*/
*/

50 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Then "PROFILE PREFIX("prefix")"
Return

List_Usercat: Procedure
user_cat.o0=0
t=0UTTRAP('dsnc.', ,NOCONCAT)
"LISTCAT USERCATALOG"
rrc=RC
t=0UTTRAP('OFF")
If rrc > 0
Then Do

Do i =1 to dsnc.@

Say '">>>' dsnc.i

End

EXIT rrc

End
Do i =1 to dsnc.0

Parse var dsnc.i keyword sign user_cat.i

End
user_cat.@d=dsnc.@
Say 'There is 'user_cat.@' user catalogs'
"EXECIO * DISKW usercat (STEM user_cat. FINIS)"
Return

Get_User_catalog: Procedure Expose user_cat. user_cat_rc.
user_cat.0=0
" EXECIO * DISKR usercat (STEM usercat. FINIS) "
Do i=1 to usercat.®
Parse Var usercat.i user_cat.i rrc user_cat_rc.i
End
user_cat.® = usercat.®
Drop usercat.
Return

Put_User_catalog: Procedure Expose user_cat. user_cat_rc.
Do i=1 to user_cat.®

usercat.i=LEFT(user_cat.i,45)||" RC= '||user_cat_rc.i
End
usercat.@=user_cat.0d
" EXECIO * DISKW usercat (STEM usercat. FINIS) "
Return

Diagnose_AT1_Usercatalog: Procedure
user_cat.g=0

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

user_cat_rc.0=0
Call Get_User_Catalog
sms_unit.@ = k
sms_dasd.@ = k
Call Get_SMS_Dasd
If user_cat.@0 > 0
Then Do
Say 'We compare 'user_cat.@' user catalogs with 'sms_dasd.@' SMS dasd’
msg.1=Comment('C',' Repair of User Catalogs ','='")
" EXECIO 1 DISKW repair (STEM msg.) "
diag.0=0
Do i =1 to user_cat.®
If user_cat_rc.i <> @
Then Do
rrc=diagnose_usercat(user_cat.i)
Say '===> DIAGNOSE icfcatalog ' i user_cat.i 'Re="' rrc
If rrc <=4
Then Do j =1 to sms_dasd.@
rcc=diagnose_usercat_dasd(user_cat.i, sms_dasd.j)
Say ' ---> Compare ' i user_cat.i,
"'with " j sms_dasd.] 'Re=" rcc
If rcc =4
Then rcc=0
rrc=MAX(rrc,rcc)
End
Else Do
Say '>>> We do not compare with dasd’
Say '>>> because of catalog errors'
End
user_cat_rc.i=rrc
End
Else Say '>>> Skip diagnose 'i user_cat.i,
' OLD Rc=" user_cat_rc.i
End
Call Put_User_Catalog
End
Else Say ">>> No usercatalog defined in master catalog"”
return

/* ___ */
/* Diagnose user catalogs */
/* ___ */

diagnose_usercat: Procedure Expose sms_dasd.

Arg User_Catalog

t=0UTTRAP('diag.", ,NOCONCAT)

"DIAGNOSE ICFCATALOG IDS ("''''User_Catalog''''") NODUMP"
rrc=RC

t=0UTTRAP('OFF")

msg.1l= COPIES('-',80)

msg.2= 'DIAGNOSE ICFCATALOG IDS ('user_catalog') RC='||rrc
msg.0=2

Call Write_Diag_Messages 'diaglog'

52 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

If rrc > 0
Then Do
Call Write_Diag_Messages 'diagerr'
Call Check_diagnose_usercat(User_catalog)
End
If rrc = 4 /* VVDS referenced catalogs were not encountered */
Then Do
Do j=1 TO0 diag.®
If SUBSTR(diag.j,1,9) = "IDC113741"
Then Leave
End
Do j=j+1 TO diag.@
Parse Var diag.j volume rest
If volume = '"IDC@AQL4T’
Then Leave
Else Call Repair_cat User_Catalog volume
End
End
drop msg. diag.
Return rrc

Repair_cat: Procedure Expose sms_dasd.
Arg User_Catalog Volume
vvds="SYS1.VVDS.V"'||VoTlume

Do k=1 TO sms_dasd.®

If sms_dasd.k = volume
Then Leave

End

If k > sms_dasd.@

Then Do
t=Check_dasd(Volume)
Ift=20
Then recat='YES'

Else recat="NO"
End
Else recat='YES'
If recat = 'YES'

Then Do
"DEFINE CLUSTER(NAME(™'"'''vvds''''™)",
" VOLUMES("VoTlume™) NONINDEXED RECATALOG) ",
" CAT(""'''User_Catalog'""''™)"
End
Else Do

msg.1l=Comment('L"',"'-","-")
msg.2=Comment('L"',Volume,
' does not exist for dataset in cat 'User_Catalog' ||]|'.'-")
" EXECIO 2 DISKW repair (STEM msg.) "
Call Del_cat_entry User_Catalog Volume
End
Drop msg.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

End

Return

/* ___ */
/* Diagnose user catalogs compared with DASD */
/* ___ */

diagnose_usercat_dasd: Procedure

Arg user_catalog, dasd

vvds="SYS1.VVDS.V'||dasd

t=0UTTRAP('diag."',,NOCONCAT)

"DIAGNOSE ICFCATALOG IDS ("''''user_catalog''''™)",
" COMPAREDS("™''"'vvds'"'"'") NODUMP"

rrc=RC

t=0UTTRAP('OFF")

msg.1l= COPIES('-',80)

msg.2= 'DIAGNOSE ICFCATALOG IDS ('user_catalog') -'

msg.3= ' COMPAREDS('"vvds') NODUMP RC="||rrc
msg.@=3

Call Write_Diag_Messages 'diaglog'

If rrc > 4

Then Do

Call Write_Diag_Messages 'diagerr'
Call Check_diagnose_usercat(User_catalog)
End

drop msg. diag.

Return rrc

/* ___ */
/* Check does DASD exist? */
/* ___ */

Check_Dasd: Procedure

Arg Volume

cmdresp.2=0

cmd='D U,VOL="Volume

rrc=mvs_command(cmd)

If rrc =0

Then Do
/* Volume does not exist If response is: */
/* TEE4551 UNIT STATUS NO DEVICES WITH REQUESTED ATTRIBUTES */
If SUBSTR(cmdresp.1,2,7) = 'IEE455I' | cmdresp.@ =1
Then rrc=16

End
Return rrc
/* ___ */
/* Delete dataset entry from catalog, volume does not exist */
/* ___ */

Del_cat_entry: Procedure

Arg User_Catalog Volume

t=0UTTRAP('1listc."', ,NOCONCAT)

"LISTC CAT(™ ''''User_Catalog'''' ") VOLUME"
x=RC

t=0UTTRAP('OFF")

If x=20

54 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Then Do

End
Drop 1is
Return

Check_d
Arg use
/* find
/* IDC2

k=1 to Tistc.@
If SUBSTR(1listc.k,1,3) <> '
Then Parse var listc.k type cr ds_name
If INDEX(1istc.k,'VOLSER-") > @ & INDEX(Tistc.k,Volume) > @
Then Do
msg.1=Comment('L','Catalog entry 'type ds_name,'-")
msg.2=Comment('L"', 'points to ' Volume,'-")

msg.3="' DELETE ' ''''ds_name'''' type ' NOSCRATCH -'

msg.4=" CAT(" "'''User_catalog"''" ")’

"EXECIO 4 DISKW repair (STEM msg.) "

End
tc.
___ */
output from diagnose user catalog */
___ */
iagnose_usercat: Procedure Expose diag.

r_catalog
message */
13631 THE FOLLOWING ENTRIES HAD ERRORS: */

Do j=1 to diag.®
If SUBSTR(diag.j,1,9) = "IDC21363I"

Then
End

leave

Do j=j+1 to diag.®

i =

INDEX(diag.j," REASON CODE")

Ifi>0
Then Do
Parse VAR diag.j dsname type sign reason code ncode
cat_type = Catalog_Entry_type(type)
msg.1=Comment('C',"' Error in Catalog ','-")
msg.2=Comment('L"',dsname cat_type ' reason code='ncode,'-")
msg.3="' DELETE " '"''dsname'''' cat_type ' NOSCRATCH -'
msg.4=" CAT(" "'''User_catalog'''' ")'
"EXECIO 4 DISKW repair (STEM msg.) "
End
End
Return
/* ___ */
/* Catalog Entry Type */
/* ___ */

Catalog_Entry_type:Procedure
Arg record_type

Select

When record_type = "(A)'

Then

cat_type = 'NONVSAM'

When record_type = '"(B)"'

Then

cat_type = 'GDG’

When record_type = '(C)'

Then

cat_type = "CLUSTER'

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 55

When record_type = '"(G)"'
Then cat_type = 'AIX'
When record_type = "(L)'
Then cat_type = 'LIBRARYENTRY'
When record_type = '(R)'
Then cat_type = 'PATH'
When record_type = "(T)"
Then cat_type = 'TRUENAME'
When record_type = "(U)'
Then cat_type = "USERCATALOG'
When record_type = "(W)"'
Then cat_type = "VOLUMEENTRY'
When record_type = "(X)"'
Then cat_type = "ALIAS'
Otherwise cat_type = "'

End /* select */

Return cat_type

/* ___ */
/* Procedure LIST ALL SMS DASD */
/* ___ */
List_Sms_Dasd: Procedure

cmdresp.2=0

cmd="'D SMS,SG(ALL),LISTVOL'
rrc=mvs_command(cmd)
If rrc > 0
Then Exit rrc
Do i=1 to cmdresp.@
If substr(cmdresp.i,2,6) = "VOLUME'
Then Teave
End
k=0
Do i=i+l to cmdresp.@
If substr(cmdresp.i,27,1) = '+’
Then Do
k=k+1 /* Extract volume name + unit */
Parse var cmdresp.i volume unit rest
unit=RIGHT (unit,3)
smsdasd.k = volume||"' '||unit
End
End
smsdasd.@ = k
Say 'There is 'smsdasd.@' SMS dasd’
"EXECIO * DISKW smsdasd (STEM smsdasd. FINIS) "
Return rrc

/* ___ */
/* Get name of all SMS DASD */
/* ___ */

Get_Sms_Dasd: Procedure Expose sms_dasd. sms_unit. dasd_rc.
smsdasd.@=0

" EXECIO * DISKR smsdasd (STEM smsdasd. FINIS) "

Do i=1 to smsdasd.®

56 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Parse Var smsdasd.i sms_dasd.i sms_unit.i rrc dasd_rc.i
End
sms_dasd.@ = smsdasd.@
sms_unit.@ = smsdasd.®

dasd_rc.@ = smsdasd.®

Drop smsdasd.

Return

/* ___ */
/* Put name of all SMS DASD */
/* ___ */

Put_Sms_Dasd: Procedure Expose sms_dasd. sms_unit. dasd_rc.
Do i=1 to sms_dasd.@

smsdasd.i=sms_dasd.i||" "||sms_unit.i||" RC= "||dasd_rc.i
End
smsdasd.@=sms_dasd.?
" EXECIO * DISKW smsdasd (STEM smsdasd. FINIS) "

Return

/* ___ */
/* Issue MVS command */
/* ___ */
Mvs_command: Procedure Expose cmdresp.

Arg cmd

sd=SYSVAR("SOLDISP")
usd=SYSVAR("UNSDISP")
wait_time = 30
userid = SYSVAR(SYSUID)
cart = userid||TIME() /* create unique CART value */
"CONSPROF SOLDISPLAY(NO) UNSOLDISPLAY(NO) SOLNUM(9999) UNSOLNUM(@)"
If rc <> 0
Then Do
Say "*** Userid' userid 'needs CONSOLE authority’
Exit RC
End
"CONSOLE ACTIVATE NAME(DIAG)" /* activate console */
rrc = RC
If rrc <> @
Then Do
Say 'CONSOLE ACTIVATE RC=' rrc
"CONSOLE DEACTIVATE"
Exit rrc
End
"CONSOLE SYSCMD("cmd"™) CART("cart")"
rrc=RC
grc = GETMSG('cmdresp.','SOL",cart,,wait_time) * get response */
rrc=MAX(rrc,grc)
"CONSOLE DEACTIVATE" /* finished with console */
If sd = "YES' Then
"CONSPROF SOLDISP("SD"™)"
If usd = "YES' Then
"CONSPROF UNSOLDISP("USD™)"
If grc > @ /* GETMSG was NOT OK */

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

57

Then Do
Say ">>> GETMSG error retrieving message. RC =" get_rc

End
return rrc
/* ___ */
/* Diagnose VVDS on all SMS DASD */
/* ___ */

Diagnose_A11_VVDS: Procedure
sms_dasd.0=0
sms_unit.g=0
dasd_rc.0=0
Call Get_SMS_Dasd
user_cat.o0=0
Call Get_User_Catalog
If sms_dasd.0 > @
Then Do
Say 'We compare 'sms_dasd.@' SMS dasd with 'user_cat.@' user catalogs'
msg.1l=Comment('C',"' Repair SMS DASD ','=")
" EXECIO 1 DISKW repair (STEM msg.) "
Do i=1 to sms_dasd.®
If dasd_rc.i <> @

Then Do
rrc=diagnose_vvds(sms_dasd.i,sms_unit.i)
Say '===> DIAGNOSE VVDS ON ' i sms_dasd.i,

sms_unit.i 'RC='rc
Do j =1 to user_cat.@
rcd=diagnose_vvds_usercat(sms_dasd.i, sms_unit.i, ,
user_cat.j)
---> Compare i sms_dasd.i,
"'with " j user_cat.j 'Rc=' rcd

Say

rrc=MAX(rrc,rcd)
End
If rrc=4
Then rrc=0
dasd_rc.i=rrc

End
Else Say '>>> Skip diagnose ' i sms_dasd.i 'OLD Rc=' dasd_rc.i
End
Call Put_Sms_Dasd
End
Else Say ">>> No SMS DASD"
Return
/* ___ */
/* Diagnose VVDS */
/* ___ */

diagnose_vvds: Procedure

Arg Volume, Unit

vvds="SYS1.VVDS.V'||VoTlume

"ALLOC F(DIAGDD) DS("vvds") SHR VOLUME("Volume") UNIT("Unit")"

58 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

t=0UTTRAP('diag."',,NOCONCAT)
"DIAGNOSE VVDS INFILE(DIAGDD) NODUMP"
rrc=RC

t=0UTTRAP('OFF")

"FREE F(DIAGDD)"

msg.1l= COPIES('-',80)

msg.2= 'DIAGNOSE VVDS IDS('vvds') NODUMP RC="||rrc
msg.0=2

Call Write_Diag_Messages 'diaglog'

If rrc > 4

Then Do

Call Write_Diag_Messages 'diagerr'
Call Check_diagnose_vvds Volume Unit
End

drop diag. msg.

Return rrc

/* ___ */
/* Diagnose VVDS */
/* ___ */

diagnose_vvds_usercat: Procedure

Arg Volume, Unit, User_Catalog

vvds="SYS1.VVDS.V'||VoTlume

"ALLOC F(DIAGDD) DS("vvds") SHR VOLUME("Volume") UNIT("Unit")"
t=0UTTRAP('diag."',,NOCONCAT)

"DIAGNOSE VVDS INFILE(DIAGDD) NODUMP COMPAREDS("User_Catalog")"
rrc=RC

t=0UTTRAP('OFF")

"FREE F(DIAGDD)"

msg.1l= COPIES('-',80)

msg.2= "'DIAGNOSE VVDS IDS('vvds') NODUMP '

msg.3= ' COMPAREDS('User_Catalog") RC="]|rrc
msg.0=3

Call Write_Diag_Messages 'diaglog'

If rrc > 4

Then Do

Call Write_Diag_Messages 'diagerr'
Call Check_diagnose_vvds Volume Unit
End

drop diag. msg.

Return rrc

/* ___ */
/* Check output from diagnose VVDS */
/* ___ */

Check_diagnose_vvds: Procedure Expose diag.
Arg Volume Unit
vvds="SYS1.VVDS.V'||VoTlume
/* find message */
/* IDC213631 THE FOLLOWING ENTRIES HAD ERRORS: */
Do j=1 to diag.@
If SUBSTR(diag.j,1,9) = "IDC213631I"
Then Teave

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 59

End

Do j=j+1 to diag.@®
i = index(diag.j,' REASON CODE')

Ifi>0
Then Do

Parse VAR diag.j entry_name type sign reason code ncode
Volume_cat=Cet_Vol_From_catalog(entry_name)

dsname =
If type = "(N)'

Then

Else

Do

entry_name

vvds_type=' NVR '

Cat_

type ="NONVSAM'

devt="DEVT(SYSDA)'

End
Do

vvds_type=" VVR '

Cat_type ="CLUSTER'

devt=""
i=INDEX(entry_name,"'.INDEX') - 1
IfTi>0

Then dsname = LEFT(entry_name,i)
i=INDEX(entry_name,'.DATA') - 1

If i

> 0

Then dsname = LEFT(entry_name,i)

End

If Volume_cat =""

Then

Else

60

Do

If type <> (N) & INDEX(entry_name,'.INDEX"') > 0@
Then return

msg.
msg.
msg.
msg.
msg.

msg.

msg.

1=Comment('C', 'Dataset not in catalog','-")

2=' DEFINE 'Cat_type'(NAME(' ''''dsname'''' ') -'

3=" VOLUMES('Volume') 'devt' RECATALOG)'

4=Comment('C','or if dataset not necessary','-")

5=Comment('L',"ALLOC F(DASD) DS(' "'''vvds'''",
') UNIT(SYSDA) VOLUME('Volume') SHR "," ")

6=Comment ('L",'DELETE" ''''dsname''"''vvds_type,

"FILE(DASD)'," ")
7=Comment('L"','FREE F(DASD)',"' ')

"EXECIO 7 DISKW repair (STEM msg.) "

End
Do

msg.
msg.
msg
msg

msg.
msg.
msg.
msg.
msg.

.4

1=Comment('C', 'Duplicate','-")

2=Comment('L','Catalog entry 'type dsname,'-"')
.3=Comment('L"','points to ' Volume_cat,"'-")
=" ALLOC F(DASD) DS(" """'vvds'''’",
") UNIT(SYSDA) VOLUME('Volume') SHR'
b=' DELETE ' '''‘'dsname'''' vvds_type' FILE(DASD)'
6=' FREE F(DASD)'

7=Comment('C','or if wrong dataset in cat','-")
8=Comment(lLl’lDELETE v lllldsnamellll’l l)
9=Comment('L', 'DEFINE 'Cat_type'(NAME("',

© 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telef@ine 10 9344, fax (303) 438 0290.

"'*'dsname'""" ") -'," ")
msg.1l@=Comment('L"," VOLUMES('Volume') 'devt,
' RECATALOG)'," ")

"EXECIO 1@ DISKW repair (STEM msg.) "

End

Drop msg.

End
End
Return
/* ___
/* Get dataset volume from catalog
/* ___

Cet_Vol_From_catalog: Procedure

Arg Ds_name

Volume_cat=""

t=0UTTRAP('1listc."', ,NOCONCAT)

"LISTC ENT("'''"'Ds_name"'"'"''") VOLUME"

x=RC
t=0UTTRAP('OFF")
If x =20

Then Do k=1 to listc.@

If index(listc.k,'VOLSER-") > @

Then Do
Volume_cat=SUBSTR(1istc.k,26,6)
leave
End

End
Drop listc.
Return Volume_cat

Comment: Procedure
Arg Format,Message,Padc
Select
When Format = 'C’
Then msg='/* 'CENTER(Message,66,Padc)"' */'
When Format = 'L’
Then msg='/* 'LEFT(Message,66,Padc)' */'
End /* Select */
Return msg

Write_Diag_Messages: Procedure Expose msg. diag.
Arg DiagFile

" EXECIO * DISKW "DiagFile"™ (STEM msg.) "

" EXECIO * DISKW "DiagFile"™ (STEM diag.) "
Return

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/

*/
*/
*/

*/
*/
*/

61

Alloc_DS: Procedure

Arg DD_name DS_name Disp Length_rec Rec_fm

If Disp="NEW"' & SYSDSN(''"'Ds_name''"'") = '0OK"

Then Disp="SHR'

msgstat=MSG("OFF") /* Inhibit the display of TSO/E information */
/* messages */

"FREE F("DD_name")"

t=MSG(msgstat) /* Returns the pervious status of message */.
If Disp = "NEW'
Then "ALLOC F("DD_name") DA("''''DS_name'''"'") "Disp" CATALOG",

" SPACE(5@,50) LRECL("Length_rec"™) RECFM("Rec_fm" B)",
" BLKSIZE(@) RELEASE"
Else "ALLOC F("DD_name™) DA("''''DS_name'"'"''") "Disp" REUSE"
Return

The job for executing DIAG is shown below:

//useridD JOB CLASS=A,MSGCLASS=X,MSGLEVEL=(@,8),NOTIFY=&SYSUID
//DIAGNOSE EXEC PGM=IKJEFT@1,DYNAMNBR=5@,
/1 REGION=4M
//SYSPROC DD DSN=userid.USER.CLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTSIN DD *
%DIAG DIAGCAT DIAGVVDS
/*

The job for executing generated statements for reparation is shown
below:

//REPAIRCD JOB CLASS=A,MSGCLASS=X,MSGLEVEL=(@,2) ,NOTIFY=&SYSUID
//REPAIRCD EXEC PGM=IKJEFT@1,DYNAMNBR=5@,

/1 REGION=4M

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSTSIN DD DSN=userid.DIAGNOSE.{HfREPAIR.LIST,DISP=SHR

/7

EXAMPLES

If errors exist in any catalog, the DIAG procedure puts the following
report in dataset userid. DIAGNOSE.#DIAGERR.LIST:

DIAGNOSE ICFCATALOG IDS (CATALOG.MVSICFM.VOS2CAT) RC=4

IDC113741 THESE ADDITIONAL CATALOG REFERENCED VOLUMES WERE ENCOUNTERED:
DSN@17
0S3RES

IDCPP141 LASTCC=4

DIAGNOSE ICFCATALOG IDS (CATALOG.USER) -

62 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

COMPAREDS(SYS1.VVDS.VPSTEST) NODUMP RC=8

IDC213641 ERROR DETECTED BY DIAGNOSE:

ICFCAT ENTRY: IBMUSER.TEST (A)

RECORD: IBMUSER.TEST /00

OFFSET: X'@@5D"'

REASON: 51 - VVDS ENTRY NOT FOUND. SCAN VVDS FAILED.
IDC213631 THE FOLLOWING ENTRIES HAD ERRORS:

IBMUSER.TEST (A) - REASON CODE: 51
IDCPP14T LASTCC=8

The DIAG procedure generates the following statements for reparation,
which are based on the previous report in the dataset
userid. DIAGNOSE.##REPAIR.LIST:

/* REPAIR OF USER CATALOGS */
/* ___ */
/* DSN@17 DOES NOT EXIST FOR DATASET IN CAT CATALOG.MVSICFM.VOS2CAT */
/* CATALOG ENTRY CLUSTER CICS41.CSD418.DFHCSD.BKP=---=------=-------- */
/% POINTS TO DSN@L7--------m-mmmmmmmmmmo oo */

DELETE CICS41.CSD41@.DFHCSD.BKP NONSCRATCH -
CAT(CATALOG.MVSICFM.VOS2CAT)

P y

/* OS3RES DOES NOT EXIST FOR DATASET IN CAT CATALOG.MVSICFM.VOS2CAT */
/* CATALOG ENTRY CLUSTER SYS1.APPCSI----------cmmommmmmmmaoooooe */
/% POINTS TO OS3RES----=------=mmmmmmmmom oo */

DELETE SYS1.APPCSI NONSCRATCH -
CAT(CATALOG.MVSICFM.VOS2CAT)
/* CATALOG ENTRY CLUSTER SYSL1.APPCSI-------------------------------- */
/* POINTS TO OS3RES------------------mmmmmmm oo o */
DELETE SYS1.APPCSI NONSCRATCH -
CAT(CATALOG.MVSICFM.VOS2CAT)

R ERECEEEF LR EPEE ERROR IN CATALOG -------=----=--<-=------ */
/* TBMUSER.TEST REASON CODE=51------=-=----=--cozmmcmcoooaooo oo */
DELETE IBMUSER.TEST NONSCRATCH -
CAT(CATALOG. PROBA)
/* REPAIR SMS DASD */
R EERCEEEEEEEE T DATASET NOT IN CATALOG---------=----=------- */
DEFINE NONVSAM(NAME('IBMUSER.TESTIT') -
VOLUMES(PSTEST) RECATALOG)

R E TP OR IF DATASET NOT NECESSARY-------------omon-- */
/* ALLOC F(DASD) DS('SYS1.VVDS.VPSTEST') UNIT(SYSDA) VOLUME(PSTEST) */
/* DELETE 'IBMUSER.TEST1T' NVR FILE(DASD) */
/* FREE F(DASD) */

Emina Spasic and Dragan Nikolic
Systems Programmers
Postal Savings Bank (Yugoslavia) © Xephon 2001

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 63

Deployment options for mainframe Linux

INTRODUCTION

By bringing the Linux operating system to the mainframe IBM has
given users the chance to exploit the availability, performance and
serviceability of the System/390 and z900 architectures with the
momentum, speed, and quality of the Open Source development
world. Linux brings new applications and potentially vast opportunities.
With research suggesting that a third of mainframe sites intend to
exploit Linux in the mid-term future, this article provides a detailed
overview of the pros and cons on the various deployment methods.

Linux for S/390 and zSeries can operate in four configurations: native,
LPAR, using the Virtual Image Facility for Linux, and in guest mode
on VM/ESA and z/VM. Each of these modes has its own advantages
and disadvantages, although deployment under VM and VIF seems
to be the most attractive given the flexibility and the number of
systems supported.

NATIVE

Linux can run native on the bare metal of a System/390 or zSeries to
provide a single Linux environment. However, because only a single

image is supported this is a very limited mode of operation that is not
practical or cost effective for most users. It is probable that this

configuration would be used only for testing purposes. The other

limitation of running Linux for S/390 native is that Linux itself would

be responsible for the I/O error recovery on the networked devices
losing the benefits of the System/390 and zSeries platforms. Also,
because it is not possible to define System/390 storage and 1/O
configurations from the software level the definitions must be made

from the hardware console level.

Linux does not yet support many of the standard system configuration
tools such as IOCP or EREP, and without tape support itis difficult to
back-up the system. While these limitations may eventually be
overcome — the Linux community will almost certainly add the

64 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

necessary support given time — they will remain for the foreseeable
future.

Itis possible that this mode could be used by those experimenting with
System/390 simulators and looking for a low cost operating
environment to support tinkering with the System/390 architecture.
Other than this there are therefore few advantages to running a single
native Linux image per box.

LPAR

The use of the logical partitioning (LPAR) facilities on the System/
390 and zSeries can support up to 15 images on a single high-end
machine. These images could be used to support Linux development,
testing, and production environments, as well as other operating
systems. This is a likely initial configuration for sites with only z/OS,
0S/390, or VSE/ESA.

This can be useful for introducing Linux-based front-ends to existing
z/OS, 0S/390, or VSE/ESA-based applications. However, the
architectural limitation of 15 LPARSs per physical system makes the
comparison with non-System/390 hardware unfavourable because of
the high initial cost of System/390 hardware.

The 1/O hardware devices are dedicated to each partition so data is
shared through these devices, not through network transactions as in
native mode. The throughput will therefore be high. Active instances
can heavily impact the available CPUs for heavily-threaded
applications. The use of VM or Virtual Image Facility allows simple
distribution and load balancing across CPU engines, providing
significantly better throughput than with LPAR deployments.

In most cases, deployment of Linux on LPAR is not suitable for
enterprise deployment because of the limitations in management and
resource management. However, sites experimenting with enterprise
Linux services and making a case for expanding services may have a
limited use for this configuration. However, LPAR does have the
advantage of being cheap, which is why so many users are exploiting
it for Linux.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 65

VIRTUAL IMAGE FACILITY (VIF)

The System/390 Virtual Image Facility for Linux was announced on
26 August, 2000. The Virtual Image Facility is a limited implementation
of the VM hypervisor technology enabling users to run hundreds of
Linux server images on a single System/390 or zSeries server. This
is ideal for users who do not need the tens of thousands of Linux
images that VM can support as guests. The Virtual Image Facility
offers a low-cost introduction to the virtual environment intended to
introduce users unfamiliar with the virtual system environment to
system management. There are two principal advantages in Virtual
Image Facility over traditional VM/ESA:

« Cost because VIF is a stripped down version of VM with
functionality closely linked with Linux it is much cheaper.

» Skills user organizations do not need to invest in VM skills if
they do not already have them.

VIF presents a method for sites to deliver quick deployment of Linux
for S/390 and z900 systems as part of a planned small- to medium-size
deployment that requires more images than an LPAR-based or native
System/390 solution can deliver, but that cannot cost-justify a full
VM/ESA licence.

It is ideally suited for those who want to move Linux and/or Unix
workloads deployed on multiple servers onto a single System/390
server, while maintaining the same number of distinct server images.
This provides centralized management and operation of the multiple
image environment, reducing complexity, easing administration, and
lowering costs.

The Virtual Image Facility allows users to consolidate operations,
servers, and networks onto a single physical system for improved
manageability. Additionally they can create and manage dynamic
Linux images quickly, share system resources among Linux images,
provide high-speed communication among Linux images, simplify
system resource management, port Unix-like applications more easily
to the System/390 platform, and isolate Linux images from one
another. Deploying Linux workloads on the Virtual Image Facility is
particularly attractive if the workload interacts with System/390
servers, applications, or data located on the same System/390 server.

66 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Add/delete a server

Shared memory No
Shared disk No
Performance

Virtual disk in storage No
Minidisk caching No
Fastpath 1/0O support No
Productivity

Temporary disks No
Resource virtualization No
Resource sharing No
Device independent I/O support No
Dynamic multi-image support Yes
S/390 trace and debug No
Operations

Virtual server controls No
Performance management Yes
VM skills required No
Dynamic 1/O reconfiguration Yes

VIF, or VM/ESA and z/VM

Yes

Yes

No
Yes

Yes

No
Partial
Partial

Yes
Partial

No

No
No
No

Partial

LPAR VIF VM/ESA
Number of servers 15 Hundreds Thousands
TCP/IP No IP only Optional

Dynamic Real time Real time

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 1: A comparison of running Linux for S/390 using LPAR,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

67

However, VIF lacks the individual resource management and
automation capabilities of VM/ESA and VIF is only available for IFL
engines. Therefore, the decision to run VIF or VM on an IFL engine
will be based on the availability of VM skills, and the requirements of
the applications needed. Figure 1 provides an overview of the
comparative functionality of running Linux for S/390 on LPAR,
Virtual Image Facility (VIF) or as a guest of VM.

VM/ESA AND Z/VM

Using VM to support Linux could turn out to be the ‘killer app’ for
Linux on the mainframe. While VIF is easy to install and use, and
requires little VM skill, VM and z/VM provides heavy-duty system
management facilities which allows easy management of hundreds of
Linux guests. It also includes system administration tools for
performance, accounting, auditing, etc, plus enhanced security features,
and a wider variety of supported disk and tape storage devices (see
Figure 1). Allthese capabilities are useful in a large-scale deployment.
This is certainly the most flexible and desirable solution and is likely
to reverse the decline in VM licences seen in the last decade.

Using a Virtual Machine environment to support Linux allows each
end user complete access to the System/390 environment (including
CPU, memory, and 1/0). VM has over thirty years of maturity to
support it. Virtualization is supported through emulation mode on the
CPU’s and VM's Control Program component.

VM works with Red Hat Linuxi{ttp://www.redhat.cojp SUSE Linux
(http://www.suse.de/en/produkte/susesoft/S3add TurboLinux
(http://www.turbolinux.com Supportis provided by each distributor,
IBM business partners and, obviously, IBM Global Services.

VM enables users to run a large number of Linux server images on a
single S/390 or zSeries server. It is ideally suited for those who want
to move Linux and/or Unix workloads deployed on multiple servers
onto a single S/390 or zSeries server, while maintaining the same
number of distinct serverimages. These Linux images can be deployed
on standard processor engines or IFL processor features. Server
consolidation often results in cost savings realized by managing large
server farms deployed on virtual servers instead of multiple hardware
servers.

68 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

The new z/VM exploits and supports the z/Architecture, enabling
users to run 64-bit capable operating systems (0S/390 Version 2
Release 10, z/OS, and Linux for zSeries) as guests of z/VM
Version 4 when z/VVM Version 4 is running on a zSeries server in 64-
bit mode. A z/VM Version 4 guest operating system running in ESA/
390 mode such as VSE/ESA, TPF, OS/390, Linux for S/390, or VM/
ESA may realize performance benefits from additional central storage
when z/VM is operating in 64-bit mode. In order for z/OS to operate
as a guest of z/VM on a zSeries server, both z/VM and z/OS must be
operating in 64-bit mode.

There are anumber of compelling reasons for running Linux as a guest
under VM. This will certainly extend the lifespan of the VM operating
system as seen by the release of 64-bit z/VM. It is highly ironic that
IBM has been trying to migrate VM users to OS/390 for a long time.

« Server consolidatior running Linux on VM will be particularly
attractive for users who see the System/390 as the place to
centralize and consolidate their growing farms of distributed
intranetand Web servers. Resources can be shared among multiple
Linux images running on the same VM/ESA system.

» \Virtualization—the virtual machine environmentis highly flexible
and adaptable. New Linux guests can be added to a VM/ESA
system quickly and easily without requiring dedicated resources.
In the rapid pace of the Web arena this could be crucial.

o System/390 hardware supperLinux guests can transparently
take advantage of VM’s support for System/390 hardware
architecture and RAS features.

e Communications—- VM/ESA provides high-performance
communication among virtual machines running Linux and other
operating systems on the same processor.

« Debugging— VM/ESA offers a functionally rich debug
environmentthatis particularly valuable for diagnosing problems
in the Linux kernel and device drivers.

 Support— from a support perspective the staff only have to
maintain one Linux image. Therefore, all images that end-users
have access to will be at the same level of maturity.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 69

 Growth- an effective and simple way to grow Linux workload
capacity is to add more Linux guests to a VM/ESA system. The
time required to set up and deploy a Linux image from VM or VIF
Is negligible.

WHO IS USING LINUX NOW?

In a recent Xephon survey of large systems users, we reviewed sites
that were using Linux on the mainframe. As of June 2001, 8% of
repondents were running Linux on their System/390 or zServers. Of
these 25% were running Linux under VM or the Virtual Image
Facility, while 75% were running Linux in an LPAR.

Two thirds of all sites questioned have no intention of running Linux
on a mainframe. In the future, however, a further quarter of all sites
planto run Linux, which will increase its total penetration to one third
of all System/390s and zServers. It is estimated that in the future
almost a third of mainframes running Linux on S/390 will run Linux
under VM or Virtual Image Facility, while two thirds will run Linux

in an LPAR.

CONCLUSIONS

The principal driving forces behind this heightened interest in Linux
for System/390 and zSeries are the spiralling costs associated with
buying and managing the growing number of departmental Unix- and
Windows NT-based servers.

This makes the availability of Linux on System/390 of major
importance. The ability to achieve the logical extreme of consolidation
by putting many environments onto one mainframe will give the
System/390 and z900 a boost. The influence of Linux at least
encouraged the major Unix vendors to settle on the File System
Standard to give something closer to ‘Windows-like’ transportability
of files.

The crucial selling point of a Linux/mainframe solution running VIF

or VM is that as the number of virtual Linux servers increases the cost
per server decreases. With a conventional set-up running a multitude
of departmental servers, the cost increases as the number of physical
servers increases. This is the key difference between the System/390

70 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

platform and the competition. The only limitation to the number of
Linux instances running under VM or Virtual Image Facility is the
physical memory and CPU resources of the underlying processors. In
most cases, the most significant limitation will be network bandwidth

if internal OSA adapters are used (a maximum of 16 adapters are
currently supported). With smaller hardware configurations scalability
means more boxes, which equates to more maintenance, floorspace,
power, and personnel.

Given the overlap between NT and Linux use, it must be assumed that
Linuxis beginning to eatinto specific NT application areas, presumably
low down the Web server hierarchy. While it is not discouraging
organizations from using NT, itis encroaching on NT’s use in specific
areas. It is ironic to note that price — of hardware with operating
system, of applications software, and of maintaining the currency of
software — is cited frequently as the reason for preferring Linux to
Microsoft-based solutions.

The introduction of yet another platform type in a world constrained
by skill shortages needs genuine justification if it is going to make
substantial long-term progress. On the other hand, Linux’s position in
academic institutions means that there is a certain amount of raw
talent coming into the commercial field with some skills in place.

What makes Linux different is the GPL, which removes the licensing
considerations and the groundswell of industry and end-user support
behind Linux. Linux has also given IBM an opportunity to offer
applications that cannot be ported to the z900 quickly, hence making
Linux a truly viable open-systems solutions for z900 users.

The coming year will be critical in Linux’s progress, defining whether
or not the Open Source contender can establish itself as a viable
mainframe-based applications platform. The shaky state of the dot-
com commercial world in the second quarter of 2001 is more of a
concern for Microsoft and Unix than for Linux; the former is competing
for sales to the e-business-or-nothing companies while the latter is
more likely to be put in place by a company treating e-business, or
Web-facing activity, as an addition to its existing core activities.

© Xephon 2001

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 71

MVS news

Docucorp has begun shipping Docusav&erena Software has added IMS support for
Server 1.5.6, which adds MVS support to itsts Serena StarTool application availability
Docusave and Documanage product setproducts. StarTool FDM (File and Data
and enables a connection betweemManager) is extending its IMS support to
mainframe document production and clientinclude database access for IMS BMP
server document management, includingegions, while StarTool DA Batch (Batch
Internet delivery. The idea is to targetDump Analyser) will now support IMS
companies whose documents are generateghplications using DLI or BMP regions.
on mainframes. BMP support for StarTool FDM is designed

Th ¢ bi inf to provide a way to fix problems and
€ new systeém combines mainiramen,.q rect data in on-line databases. It

document production with client/server o n,yes the need to create and/or run a
management and Web delivery, including ijity nrogram and then validate the change.
both thick and thin client configurations. TheSupport for IMS in StarTool DA provides a
publishing engines that create documents%ay to locate information in an IMS

MVS can now utilize the same documen P :
management system that hosts Windowtapphcatlon dump, which should reduce the

Kstati 4 Web ed fime it takes to solve problems in IMS
workstations and YWeb-connected USers. 55 pications. By creating a mini-dump in the

Users can mix and match database angysprint of a failing application, users get
storage systems across platforms. Thigccess to all the information needed to
means MVS DB2 and Windows NT SQL resolve the cause of an abend.

Server tables can work together with VSAMgarena also announced that its ChangeMan

and NT storage area networks, allowing th(;/c\)/r 2/0S and OS/390 now supports IBM's

most appropriate technology to be utilizédyehsphere Studio Asset Analyzer, which
without integration or reconciliation issues.rovides a framework for connecting

Docusave captures documents where thegpplications for z/OS, 0S/390, and J2EE
are produced and directly updates th@latforms.

database and storage volumes. The Systegy, ¢, rther information contact:

provides an open common folder in which

documents of all types can be filed,Serena Software, 500 Airport Boulevard,
managed, and viewed in a single filing2nd Floor, Burlingame, California, 94010-

scheme. 1904, USA.
For further information contact: -II:_SI)&:(?65500))66996611880409

Docucorp International, 5910 North Centralgarena Software UK. Nash House Repton
Expressway, Suite 800, Dallas, Texapiace, white Lion Road, Amersham,

75206-5140, USA. Buckinghamshire, HP7 9LP, UK.
Tel: (214) 891 6500 Tel: 01494 766777

Fax: (214) 987 8187 Fax: 01494 766888
http://www.docucorp.com

http://www.serena.com

* % %

* % %

QO xephon

	A REXX program to submit DEFRAGs
	Analysing VLF statistics
	NetRexx
	Measuring buffering activity for PDSE datasets
	Machine instructions
	Synchronization of catalogs and SMS DASD volumes
	Deployment options for mainframe Linux
	MVS news

