

© Xephon plc 2003

January 2003

196

In this issue

MVS
u

p
d

ate

3 Introducing and backing out
software changes with minimum
disruption

8 A multi-platform/multi-feature
solution

13 Expanding MFS (IMS/DC) for
EQU statements

20 Simplify master catalog operations
across different partitions

28 z/Architecture overview – part 2
50 Assessing programs for virtual

storage memory leaks
64 Automating the defrag process and

preparing user-friendly reports
74 MVS news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
£340.00 in the UK; $505.00 in the USA and
Canada; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1999 issue, are available separately
to subscribers for £29.00 ($43.50) each
including postage.

MVS Update on-line
Code from MVS Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon
.com/mvs; you will need to supply a word
from the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in MVS Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Introducing and backing out software changes with
minimum disruption

Or Changing parameters and bringing software changes online
without an IPL.

PREFACE
There are two main reasons for writing this article.
First, in my current workplace we are using a technique of
introducing software changes (updating parameters) without an
IPL, and wish to continue using this technique.
At the moment there is no official way to change a parameter
without an IPL. The writers of the Redbook Parallel Sysplex –
Managing Software for Availability introduced a program
(SYMUPDTE) that allows this. We believe that when more IBM
customers use this ‘unofficial’ technique there is every chance
that IBM will recognize its importance and introduce it officially.
Secondly, as I am fairly new to the concepts and tools, through
the research and preparation of this article, I personally will gain
a better understanding of what is involved.

INTRODUCTION
The introduction of a new version of a software product involves
a great amount of effort. Datasets need to be created, copied,
modified, and authorized. Procedures and JCL need to be
updated, tested, corrected, and further tested. When everything
is ready on one LPAR, it is usually necessary to transfer
everything to one or more production LPARs. When something
doesn’t quite work as expected (a common PROC/JCL
nightmare), it is preferable to be able to reverse the process as
quickly and with as minimal a distruption as possible (normally
at least the changes in procedures and JCL would need reversing).

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

On top of all this, it is quite often necessary to perform one IPL
to implement the changes and another to reverse them, should
it be necessary.
At the beginning of 2002 I started work with my current employer.
Within the first few weeks I received new software versions from
one of our suppliers. I immediately noticed that things were very
different from with my previous employer when it came to
introducing these software changes.
Here it was possible to introduce software changes on one
LPAR, test them fully, and, with the minimum disruption, implement
the new versions on one or more other LPARs. If a problem
occurred the whole process could be quickly and exactly reversed
with an absolute minimum of disruption.

WORKING EXAMPLE
To describe the technique, it is easier for me to use a working
example, and therefore I will describe the update of the STROBE
(Compuware) product from Version 2.3.1 to 2.5.0.

Existing definitions
&RELSTR, the parameter for the level of the STROBE release
defined in SYS1.PARMLIB(IEASYM00).
Dataset aliases as defined using IDCAMS:
DEFINE ALIAS(NAME(SYS4.STR.CLIST)
SYMBOLICRELATE(SYS4.STR&RELSTR..CLIST))
DEFINE ALIAS(NAME(SYS4.STR.ISPMLIB.MSGS)
SYMBOLICRELATE(SYS4.STR&RELSTR.. ISPMLIB.MSGS))
DEFINE ALIAS(NAME(SYS4.STR.ISPPLIB.PANELS)
SYMBOLICRELATE(SYS4.STR&RELSTR.. ISPPLIB.PANELS))
DEFINE ALIAS(NAME(SYS4.STR.ISPSLIB.SKELS)
SYMBOLICRELATE(SYS4.STR&RELSTR.. ISPSLIB.SKELS))
DEFINE ALIAS(NAME(SYS4.STR.MESSAGES.MSGS)
SYMBOLICRELATE(SYS4.STR&RELSTR.. MESSAGES.MSGS))
DEFINE ALIAS(NAME(SYS4.STR.LOADLIB)
SYMBOLICRELATE(SYS4.STR&RELSTR..LOADLIB))

Entries in SYS1.PARMLIB (IEASYM00) for IPL (all LPARs using
Version 2.3.1):

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SYSDEF SYMDEF(&RELOS='21Ø') /* OPERATING SYSTEM BASE */
 SYMDEF(&RELSTR='231') /* STROBE rel 231 */
SYSDEF LPARNAME(LPØ1) /* PRODUCTION */
 SYSNAME(SYØ1)
 SYMDEF(&LPARNUM='Ø1')
SYSDEF LPARNAME(LPØ2) /* DEVELOPMENT */
 SYSNAME(SYØ2)
 SYMDEF(&LPARNUM='Ø2')
 SYSDEF LPARNAME(LPØ3) /* SYSTEMS TEST */
 SYSNAME(SYØ3)
 SYMDEF(&LPARNUM='Ø3')

With the above configuration (after an IPL) the dataset alias
SYS4.STR.LOADLIB points to the actual dataset
SYS4.STR231.LOADLIB.

INSTALLATION

Stage 1
The supplied installation dataset is copied from the installation
tape to dataset INST.STR250.CNTL using IEBCOPY. The
previous version’s installation dataset INST.STR231.CNTL is
used as reference during the installation to show on-site
modifications and may be deleted after the successful installation
and implementation of the newer version.

Stage 2
The installation is applied to the base datasets (new) with the
prefix SMPT.STR250.
After the installation, these datasets are copied to the relevant
datasets with the prefix SYS4.STR250.
PTFs, when received, are applied directly to the base SMPT
datasets and then copied to the next higher prefix. For example
,SYS4.STR250A, then SYS4.STR250B, then SYS4.STR250C,
etc.
The datasets of the last two versions of a software product are
generally kept to allow a quick backout should any problems with
the new version be detected. Often obscure problems are first

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

detected after several weeks; this method allows for the old
version to be used during the correction of the new version, or if
necessary a complete backout is possible with minimum
intervention.

Stage 3
To test the release between IPLs or to quickly switch back to a
previous release, the program SYMUPDTE is used to change
the parameter &RELSTR.
JCL:
//*
//*
// INCLUDE MEMBER=$JCLSVAR
//*
//SYMBOL1 EXEC ISPFSYS,EX=SYMUPDTE,EXPARM='SYØ3 RELSTR=25Ø'

For acceptance tests, over a long period of time (over one or
more IPLs), the entries in IEASYM00 would need to be changed
as follows so that the ‘SYSTEMS TEST’ LPAR runs Version 2.5.0
and the other LPARs Version 2.3.1.
SYSDEF SYMDEF(&RELOS='21Ø') /* OPERATING SYSTEM BASE */
SYSDEF LPARNAME(LPØ1) /* PRODUCTION */
 SYSNAME(SYØ1)
 SYMDEF(&LPARNUM='Ø1')
 SYMDEF(&RELSTR='231') /* STROBE rel 231 */
SYSDEF LPARNAME(LPØ2) /* DEVELOPMENT */
 SYSNAME(SYØ2)
 SYMDEF(&LPARNUM='Ø2')
 SYMDEF(&RELSTR='231') /* STROBE rel 231 */
 SYSDEF LPARNAME(LPØ3) /* SYSTEMS TEST */
 SYSNAME(SYØ3)
 SYMDEF(&LPARNUM='Ø3')
 SYMDEF(&RELSTR='25Ø') /* STROBE rel 25Ø */

Stage 3a
When SYMUPDTE is used, the relevant linklist entries must be
activated (after deleting the previous and adding the new version
dataset entries) using SETPROG.
The command from the console is:
SET PROG=SR

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Member SYS2.MODIFY.PARMLIB(PROGSR) contains:
APF DELETE DSNAME(SYS4.STR231.LOADLIB) SMS
APF ADD DSNAME(SYS2.STR25Ø.LOADLIB) SMS
LNKLST DEFINE NAME(LNKLSTSTR) COPYFROM(CURRENT)
LNKLST DELETE NAME(LNKLSTSTR) DSNAME(SYS2.STR231.LOADLIB)
LNKLST ADD NAME(LNKLSTSTR) DSNAME(SYS2.STR25Ø.LOADLIB)
LNKLST ACTIVATE NAME(LNKLSTSTR)

Stage 4
Restart the subsystem from the console (S STROBE).

SUMMARY
The method described has many advantages over previous
techniques:
1 It is simple to implement.
2 It minimizes interruptions to application availability.
3 There are no JCL changes on switching from one version to

another.
4 All copying can be done prior to switching.
5 No datasets need to be recatalogued or renamed.
6 It provides quick and easy backout: stop the subsystem,

change the parameter, activate the linklist, and restart the
subsystem.

REFERENCES
IBM Redbook, Parallel Sysplex – Managing Software for
Availability (Section 3.5), ISBN 0738415472 IBM Form Number
SG24-5451-00, www.redbooks.ibm.com.
NASPA article: Storage Strategies by Steve Pryor, http://
www.naspa.com/PDF/2001/0901%20PDF/T0109009.pdf,
www.naspa.com
Rolf Parker
Systems Programmer (Germany) © Xephon 2003

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A multi-platform/multi-feature solution

 A well-known problem for us COBOL programmers is how to
calculate the length of a declared structure before compilation
time. There’s also a great number of solutions of every possible
kind. I have written some REXX functions for the IBM mainframe
platforms.
What I present here is probably not the ultimate solution. I offer
it as an example using the strengths of a typical network
configuration, namely:
• I use a PC as workstation – the operating systems is

Windows NT, running an emulator (NS/Elite, in my case) to
emulate a 3270 terminal.

• The host side runs OS/390.
Other components include the following:
• Under WinNT, Visual Basic (upwards from Version 5).
• Under OS/390, ISPF and REXX.
• A special component is the Workstation Agent from IBM; it’s

client/server software to use the functionalities of the client
(WinNT – there are client components for other operating
systems as well). These functions include downloading a file
or starting a program on the client.

• Another special component is the freeware SIZER from
Progeni (available for download from www.progeni.com). It’s
a small program that calculates the length of a structure with
every possible attribute, like OCCURS etc.

How does it work?
• On the host side one must edit the the text, which includes

the COBOL declaration under ISPF.
• The edit macro, COBLEN, must be called from the command

line. If the labels .b and .e (begin-end) are given, it calculates

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the length of this section, otherwise the whole text is
considered to be a structure.

• The macro does the following:
– It downloads the selected text into a file in the directory

c:\temp on the PC.
– It starts a small Visual Basic program, ClipBoardCopy,

which copies this file into the Windows clipboard. This is
necessary because SIZER uses the clipboard as input.

– It starts the program SIZER from the directory C:\tmp\mvs.
That’s the directory where the downloaded SIZER must
be installed.

The output (ie the length of the structure) will be shown in a small
message box. It is somewhat customizable. I think I have seen
that it can also show the offsets of the fields as well, but I’ve
succeeded only once with this ‘magic’ – Progeni can perhaps
help to stabilize this feature if it really exists.
What are the lessons to be learned from this solution? It helps
you to learn how to use the Workstation Agent for simple
procedures.
As I’ve already said, the WSA is a free component that is
delivered with OS/390. You must install it as follows:
• Download the file SYS1.ISPF.SISPGUI to your PC under the

name ISPFINST.EXE.
• Execute this program on the PC once.
• Create a linkage with the application WSA.EXE.
This procedure might be slightly different at your shop; contact
your systems programmers!
It teaches you how to combine the different components of the
host and the workstation to achieve the optimal solution. You
can, for example, start Excel to process your host data as a
spreadsheet, or use Word to make a grammatical correction to
your text document!

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A final word on the Visual Basic component. Please don’t be
afraid to use this language even if you are a host dinosaur like
myself – it ain’t vodoo magic! You must set up the simplest VB
project and copy my first listing into the text object. No GUI is
necessary. You must create an .exe file with the name
ClipBoardCopy.exe and store it in the directory c:\Programs (you
can of course change this in the REXX function if you prefer
another directory).

CLIPBOARD COPY
'---'
' Function to copy a textfile to the clipboard
' (no GUI is necessary)
'---'
Private Sub Form_Load()
 Dim strFileText As String
 ' empty the Clipboard
 Clipboard.Clear
 If FileExists("c:\temp\clipBoardCopy.txt") = False Then
 MsgBox ("File does not exist!")
 Else
 ' read the textfile into a string
 strFileText = ReadFromFile("c:\temp\clipBoardCopy.txt")
 ' copy the string into the clipboard
 Clipboard.SetText strFileText, vbCFText
 End If

End Sub
'
Public Function FileExists(FileName As String) As Boolean
 ' test if the inputfile exists
 If Dir(FileName) = "" Then
 FileExists = False
 Else
 FileExists = True
 End If
End Function
'
Public Function ReadFromFile(sFile As String) As String
 Dim fs As FileSystemObject
 Dim a As TextStream
 Set fs = CreateObject("Scripting.FileSystemObject")
 Set a = fs.OpenTextFile(sFile)
 ReadFromFile = a.ReadAll
 a.Close

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

End Function

COBLEN EDIT MACRO
/******************************** REXX ********************************/
/* Ver.1.Ø */
/* EDIT Macro COBLEN */
/* */
/* Description : */
/* ------------ */
/* This edit macro is used to calculate the length of a COBOL */
/* structure. */
/* If the labels .a and/or .e are set, it calculates the size of */
/* the structure between these two labels (both are options, if one */
/* fails, it will be from the first or to the left line processed). */
/* */
/* -It uses the Workstation Agent(IBM) for the download */
/* -It uses the Freeware component progeni.exe from the company */
/* Progeni Corporation,Norcross, GA, USA */
/* at www.progeni.com */
/* */
/* WARNING: when the message-box of the progeni component shown, */
/* please push on the 'recalculate' button if the size is not */
/* automatically shown... */
/* */
/* ----------+--+-------- */
/* Parameter ! Description ! Default */
/* ----------+--+-------- */
/* parameter ! parameter-Description ! */
/* ----------+--+-------- */
/* none + + */
/* ----------+--+-------- */
/* */
/**/
/* */
/* Changes: */
/* -------- */
/* */
/**/
 address ISPEXEC "CONTROL ERRORS RETURN "
 address ISREDIT
 "MACRO (PARMS) NOPROCESS"
 parse var parms param
 /* ---*/
 /* Copy the whole/selected edited text into the stack */
 /* ---*/
 "ISREDIT PROCESS"
 "ISREDIT (ENV) = USER_STATE"
 "ISREDIT (MEMBER) = MEMBER"

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 "ISREDIT (DATASET) = DATASET"
 "ISREDIT (PROFILE) = PROFILE"
 if member ¬= '' & member ¬= 'MEMBER' /* Partitioned DS */
 then
 DatasetName = "'"dataset"("member")'" /* Sequential DS */
 else
 DatasetName = "'"dataset"'"
 Address TSO
 hostdsn = "'"userid()".DOWN'"
 $ = listdsi(hostdsn' DIR')
 rea = sysreason
 if sysreason = Ø
 then
 "ALLOC F(DOWN) DA('" || userid() || ".DOWN') OLD REUS "
 else
 "ALLOC F(DOWN) DA('" || userid() || ".DOWN') NEW CATALOG " || ,
 "SPACE(1Ø 5Ø) CYL" || ,
 " BLKSIZE(Ø) LRECL(2ØØØ) RECFM(V B)"
 "ISREDIT (LINE1) = LINENUM .A"
 if rc > Ø
 then
 "ISREDIT (LINE1) = LINENUM .ZFIRST"
 "ISREDIT (LINE2) = LINENUM .E"
 if rc > Ø
 then
 "ISREDIT (LINE2) = LINENUM .ZLAST"
 text = 'DataSet >'DataSetName'< on 'Date()' at 'Time()' downloaded'
 push text
 "EXECIO 1 DISKW DOWN"
 do i = line1 to line2
 "ISREDIT (TEXT) = LINE "i
 push text
 "EXECIO 1 DISKW DOWN"
 end
 "EXECIO Ø DISKW DOWN (FINIS)"
 /* --*/
 /* Transfer text (=copy-Structure) to the workstation */
 /* --*/
 parse var DatasetName "'" DatasetName "'"
 DatasetName = translate(DatasetName,'_ ','()')
 dir = "C:\TEMP\clipBoardCopy.txt"
 address ISPEXEC
 "FILEXFER HOST(HOSTDSN) WS(DIR) TO(WS) TEXT MAKEPATH(YES)"
 if rc = Ø
 then do
 "FREE F(DOWN)"
 end
 else do
 if rc = 1Ø
 then

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 say 'Please establish the Workstation-Connect'
 else
 say 'Filetransfer cancelled,RC:'rc
 end

/*--*/
 /* Call the copy program to copy the downloaded textfile into the */
 /* clipboard */
/*--*/
 wscmd = "C:\Programs\clipBoardCopy.EXE "
 "ISPEXEC SELECT WSCMDV(WSCMD) MODELESS"
/*---*/
 /* Call the COBOL Utility program to calculate the size of the */
 /* structure */
/*---*/
 wscmd = "C:\tmp\mvs\sizer.exe " /* Progeni executable */
 "ISPEXEC SELECT WSCMDV(WSCMD) MODELESS "
/*--*/
 /* End , return with CC=Ø */
/*--*/
 "ISREDIT RES"
return Ø

Gabor Markon
Systems Engineer
HVB Systems (Germany) © Xephon 2003

Expanding MFS (IMS/DC) for EQU statements

PROBLEM
The place where I currently work uses IMS DC. We have a large
number of MFS members that have EQU statements coded
within each member. Also, each MFS member holds definitions
for a number of screens. It is very difficult and time-consuming
to read and interpret these MFS statements, especially when
debugging a production problem or doing maintenance/
enhancements on the member. Just imagine a DFLD statement
having these attributes: P.(03,35),L.10,PNHN,R.

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SOLUTION
This EXEC will translate and replace all the referenced values
with EQU values that were defined using EQU statements. You
can use this EXEC either in ISPF/EDIT or in TSO. If you call this
EXEC while editing the member, the expanded statements are
inserted as NOTES under the original statements – perhaps you
just want to see the expanded values. Typing RESET will clear
these NOTES statements. If you call this EXEC in TSO, the
EXEC will prompt you for the input file and the output is written
to a sequential file. If you pass any non-blank character as a
parameter while in Edit mode, it is the same as calling the EXEC
in TSO – ie the output is written to a sequential file.
/* -------- REXX Exec -------------- */
/* If this character is not | logical OR*/
/* please make a a global change to */
/* modify this character to logical OR. */
/* ----------------------------------- */
/* Sometimes MFS statements have EQU */
/* statements and it is difficult */
/* to read. This macro will expand */
/* all FLDs referred by EQU statements */
/* If called within EDIT, the expanded */
/* statements are displayed as NOTES */
/* If called from TSO, the whole MFS */
/* with expanded statements is written */
/* to a dataset. */
/* ---------------------------------- */
Trace O
Address ISREDIT
'MACRO (xParams) PROCESS'
If Rc=Ø Then Call ReadFileInEdit
 Else Call ReadFileInTSO
Call InitVar
Call SegregateData
Call ReadNReplace
Call BuildAgain
If sNewFile='Y' Then Call CreateFile
 Else Call DisplayReset
Exit
ReadFileInEdit:
/*************/
sNewFile='N'
 /* sNewFile='N' --> Expand The Statements As Notes Within File */
 /* sNewFile='Y' --> Expand The Statements & Write a New File */
If xParams='' Then sNewFile='N'

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Else sNewFile='Y'
Address ISREDIT
'(nLast) = LINENUM .ZLAST'
Do nCountI=1 By 1 Until nCountI=nLast
 '(xData) = LINE (nCountI)'
 xCards.nCountI=xData
 End
Return
ReadFileInTSO:
/*************/
Address TSO
Arg xMfsCrds .
If xMfsCrds="" Then Do
 Say 'Please Key In The Dsn Where You Have The Image'
 Say 'If Dsn Is Not In Quotes,' Userid() 'Will Be Suffixed To It'
 Pull xMfsCrds
 If xMfsCrds='' Then Exit
 End
If Left(xMfsCrds,1)="'" Then Nop
 Else xMfsCrds="'"Userid()"."xMfsCrds"'"
xStrpName="'"Strip(xMfsCrds,'B',"'")"'"
xAvail=Sysdsn(xStrpName)
If xAvail<>'OK' Then Do
 Say '** Error **' xMfsCrds 'Is Not Present'
 Say 'Program Abandoned'
 Exit 9999
 End
xNazBeg = Msg("OFF")
"FREE DD(xDdMfs)"
xAskha = Msg(xNazBeg)
"ALLOCATE DD(xDdMfs) DSN("xMfsCrds") SHR REUSE"
If Rc<>Ø Then Do
 Say '*Error* Unable To Alloc' xMfsCrds 'Return Code Is ' Rc
 Say ' Program Aborted'
 Exit
 End
"EXECIO * xDdMfs (STEM xCards."
If Rc<>Ø Then Do
 Say '*Error* Unable To Read' xMfsCrds 'Return Code Is ' Rc
 Say ' Program Aborted'
 Exit
 End
"EXECIO * xDdMfs (FINIS"
xNazBeg = Msg("OFF")
"FREE DD(xDdMfs)"
xNazBeg = Msg("OFF")
nLast = xCards.Ø
sNewFile='Y'
Return
SegregateData:

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/*************/
Do nCountI=1 By 1 Until nCountI=nLast
 xData=xCards.nCountI
 xData=Substr(xData,1,72)
 xOrgnl.nCountI=xData
 xOrig.nCountI=xData
 If Left(xData,1)='*' Then Iterate nCountI
 If sContinue='Y' Then Do
 nCountK=nCountK+1
 xSaveI.nCountK=nCountI
 If Substr(xData,72,1)=' ' Then sContinue='N'
 End
 xFld=Substr(xData,1Ø,4)
 If xFld='MFLD' | xFld='DFLD' Then Do
 nCountK=nCountK+1
 xSaveI.nCountK=nCountI
 If Substr(xData,72,1)<>'' Then sContinue='Y'
 End
 If Word(xData,2) <> 'EQU' Then Iterate
 Parse Var xData xDef . xValue
 xValue=Strip(xValue)
 If Left(xValue,1)<>"'" Then xValue="'"xValue"'"
 Interpret 'xVal.'xDef'='xValue
 nCountJ=nCountJ+1
 xEqu1.nCountJ=xDef'.'
 xEqu2.nCountJ=xDef' '
 End
nSaveJ=nCountJ
Return
ReadNReplace:
/***********/
Do nCountI=1 By 1 Until nCountI=nCountK
 M=xSaveI.nCountI
 xTemp=xOrig.M
 If Pos("'",xTemp)>Ø Then Do
 Do nCountJ=16 By 1 To 71
 xCh=Substr(xTemp,nCountJ,1)
 If xStComa='Y' & xCh="'" Then xStComa='N'
 If xStComa='' & xCh="'" Then xStComa='Y'
 If xStComa<>'' Then xTemp=Overlay('~',xTemp,nCountJ,1)
 If xStComa='N' Then xStComa=''
 End
 End
 If Pos("(",xTemp)>Ø Then Do
 Do nCountJ=16 By 1 To 72
 xCh=Substr(xTemp,nCountJ,1)
 If xStBrkt='Y' & xCh=")" Then xStBrkt='N'
 If xStBrkt='' & xCh="(" Then xStBrkt='Y'
 If xStBrkt<>'' Then xTemp=Overlay('~',xTemp,nCountJ,1)
 If xStBrkt='N' Then xStBrkt=''

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 End
 End
 Parse Var xTemp 1 xTemp1 16 xTemp2
 Parse Var xOrig.M 1 xOrig1 16 xOrig2
 Parse Var xTemp2 xTemp2 .
 nLen=Length(xTemp2)
 xOrig2=Substr(xOrig2,1,nLen)
 nCountJ1=Ø
 Do While Pos(',',xTemp2)>Ø
 nPos=Pos(',',xTemp2)
 nCountJ1=nCountJ1+1
 xTemp.nCountJ1=Substr(xTemp2,1,nPos-1)
 xOrig.nCountJ1=Substr(xOrig2,1,nPos-1)
 xTemp2=Substr(xTemp2,nPos+1)
 xOrig2=Substr(xOrig2,nPos+1)
 End
 nCountJ1=nCountJ1+1
 xTemp.nCountJ1=xTemp2
 xOrig.nCountJ1=xOrig2
 Do nCountJ2=1 By 1 Until nCountJ2=nCountJ1
 xTrans=xTemp.nCountJ2
 xMorig=xOrig.nCountJ2
 xRest=xMorig
 nPosDot=Pos('.',xTrans)
 If nPosDot>Ø Then Do
 xMay1=Substr(xTrans,1,nPosDot)
 Do nCountJ3=1 By 1 Until nCountJ3=nSaveJ
 xMak=xEqu1.nCountJ3
 If xMak=xMay1 Then Do
 xRest=Substr(xMorig,nPosDot+1)
 xMak=Strip(Translate(xMak,'','.'))
 xRest=xVal.xMak||xRest
 Leave nCountJ3
 End
 End
 End
 Else
 Do nCountJ3=1 By 1 Until nCountJ3=nSaveJ
 xMak=xEqu2.nCountJ3
 xMak=Strip(xMak)
 If xMak=xTrans Then Do
 xRest=xVal.xMak
 Leave nCountJ3
 End
 End
 If Length(xOrig1)<16 Then xOrig1=xOrig1||xRest
 Else xOrig1=xOrig1','xRest
 End
 If Left(xOrig1,71)<>Left(xOrig.M,71) Then xRepl.M=xOrig1
 End

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Return
BuildAgain:
/*********/
nCountJ=Ø
Do nCountI=nLast By -1 Until nCountI=1
 If xRepl.nCountI='?' Then Do
 If sNewFile='Y' Then Do
 nCountJ=nCountJ+1
 xNewDat.nCountJ=xOrgnl.nCountI
 End
 Iterate nCountI
 End
 Parse Var xOrig.nCountI 1 xPart1 9 xRest
 If Length(xRepl.nCountI)>71 Then Do
 If Pos(',POS=',xRepl.nCountI)<71 Then Do
 Parse Var xRepl.nCountI xPart1 'POS=' xPart2
 xData=Copies(' ',14) 'POS='||xPart2
 If sNewFile='Y' Then Do
 nCountJ=nCountJ+1
 xNewDat.nCountJ=xData
 End
 Else 'Line_After' nCountI '= NoteLine (xData)'
 xData=Left(xPart1,7Ø) '*'
 If sNewFile='Y' Then Do
 nCountJ=nCountJ+1
 xNewDat.nCountJ=xData
 End
 Else 'Line_After' nCountI '= NoteLine (xData)'
 End
 Else Do
 Parse Var xRepl.nCountI 1 xPart1 71 xPart2
 xData=xPart1'*'
 If sNewFile='Y' Then Do
 nCountJ=nCountJ+1
 xNewDat.nCountJ=Copies(' ',14) xPart2
 nCountJ=nCountJ+1
 xNewDat.nCountJ=Copies(' ',14) xData
 End
 Else Do
 'Line_After' nCountI '= NoteLine' Copies(' ',14) xPart2
 'Line_After' nCountI '= NoteLine (xData)'
 End
 End
 End
 Else Do
 xData=xRepl.nCountI
 If sNewFile='Y' Then Do
 nCountJ=nCountJ+1
 xNewDat.nCountJ=xData
 End

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Else 'Line_After' nCountI '= NoteLine (xData)'
 End
 End
Return
CreateFile:
/*********/
xDfltDisp='NEW LRECL(8Ø) SPACE(8) DSORG(PS) RECFM(F,B) TRACKS RELEASE'
Address TSO
xNazBeg = Msg("OFF")
"DELETE" xFileName
"FREE DD(MFSXPND)"
"ALLOCATE DD(MFSXPND) DSN("xFileName")" xDfltDisp
If Rc<>Ø Then Do
 Say '*Error* Unable To Alloc' xFileName 'Return Code Is ' Rc
 Say ' Program Aborted'
 Dropbuf
 Exit
 End
Do nCountI=nCountJ By -1 Until nCountI=1
 Queue xNewDat.nCountI
 If Length(xNewDat.nCountI)>8Ø Then Say nCountI xNewDat.nCountI
 End
Queue ''
'EXECIO * DISKW MFSXPND'
If Rc<>Ø Then Do
 Say '*Error* Unable To Write' xFileName 'Return Code Is ' Rc
 Say ' No FIle Created -- Program ABorted'
 Dropbuf
 Exit
 End
"EXECIO Ø DISKW MFSXPND (FINIS"
"FREE DD(MFSXPND)"
xAsk=MSG(xNazBeg)
xMsg1='+--+'
nLen=Length(xMsg1)
xMsg2='|' Center('Your Expanded MFS Is In',nLen-2)
xMsg2=Overlay('|',xMsg2,nLen)
xMsg3='|' Center(xFilename,nLen-4)
xMsg3=Overlay('|',xMsg3,nLen)
Say
Say xMsg1
Say xMsg2
Say xMsg3
Say xMsg1
Return
DisplayReset:
/***********/
zedsmsg='Type RESET To Clear'
zedlmsg='Type RESET & Press Enter To Clear The Notes'
Address ISPEXEC 'SETMSG MSG(ISRZØØ1)'

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Return
InitVar:
/******/
nCountJ=Ø
nCountK=Ø
sContinue='N'
xOrgnl.='?'
xOrig.='?'
xRepl.='?'
xStBrkt=''
xStComa=''
xVal.='?'
xFileName="'"Userid()".ASKNB.EXPANDED.MFS'"
Return

Moyeen A Khan
Systems Programmer
Decision Consultants (USA) © Moyeen A Khan 2003

Simplify master catalog operations across different
partitions

Most OS390/MVS systems programmers work on two or more
MVS images sharing the same DASD strings at one time.
I often report problems caused by HSM activity in a shared
environment, because HSM may migrate datasets catalogued in
the mastercatalog (eg Serverpac installation libraries), but which
are accessible by other partitions too! So, I’ve got inconsistencies
with the mastercatalog entries, because
CATALOG.MVSA.CAT001 states that dataset is MIGRAT and
CATALOG.MVSB.CAT002 says that the same one is on ML0
VOLUME!
Another kind of problem is when I duplicate a SYS1 or another
‘mastercatalogued’ dataset; I catalog it in the mastercatalog, but
it is reachable by other images only via UNIT and VOLSER,
unless I catalog it in the other mastercatalogs.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

So, I must catalog or uncatalog the dataset in the mastercatalog
of another image. It seems a simple operation, but… do I
remember the command DELETE NOSCRATCH? Yes, I
remember the name of the SYSID of the test or production MVS
image, but what about the MASTERCATALOG name? Do I
remember the dataset device type (UNIT)? And anyway, isn’t it
annoying to have to type a long command such DEFINE
NONVSAM etc etc etc?

A SIMPLE SOLUTION USING FIVE CLISTS
Assume we have an IBM 9672 computer with four IPLable PR/
SM MVS images – MVSA (production), MVSB (test), MVSC
(development), and MVSD (for systems programmers’ use,
implementation, new installations). All MVS images share the
same DASD strings. We need to catalog a library called
SYS1.LINKLIB.NEWCOPY without an alias in all four ICF
mastercatalogs. I am logged on MVSA TSO/ISPF.
These are the names of the mastercatalogs:
• Sysid MVSA – CATALOG.MVSA.CAT001
• Sysid MVSB – CATALOG.MVSB.CAT002
• Sysid MVSC – CATALOG.MVSC.CAT003
• Sysid MVSD – CATALOG.MVSD.CAT004
It is important that you modify the CLISTs to reflect your installation
naming, especially the ????? lines (see the CLIST code below).
First of all, I must connect all the other partition’s mastercatalogs
to my partition mastercatalog, so it can see all of them as
usercatalogs. The IMPCONN CLIST will IMPORT CONNECT in
the mastercatalog of any usercatalog.
Use my IMPCONN CLIST (only in ‘Dataset List Utility’ ISPF 3.4
panel ISRUDSL0, left of the catalog name) by:
%IMPCONN <catalog>

I am logged on to MVSA TSO/ISPF, so I must connect the other

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

three as usercatalogs:
%IMPCONN CATALOG.MVSB.CATØØ2
%IMPCONN CATALOG.MVSC.CATØØ3
%IMPCONN CATALOG.MVSD.CATØØ4

To reverse the operation, use the EXPDISC CLIST to do EXPORT
DISCONNECT of any usercatalog from the mastercatalog.
Use my EXPDISC CLIST (use it in 3.4 or elsewhere) by:
%EXPDISC <catalog>

For example:
%EXPDISC CATALOG.MVSB.CATØØ2

Then, use my CATAL CLIST to catalog a non-VSAM dataset
(only in ‘Dataset List Utility’ ISPF 3.4 panel ISRUDSL0, left of the
dataset name) by:
%CATAL <nonvsam-dataset> <system-id>

Go to the 3.4 panel, choose Dsname Level . . . SYS1.LINKLIB
.NEWCOPY and Enter. Now, to the left of the to dataset name,
enter:
%CATAL / MVSB

then repeat it for MVSC and MVSD. Simple, isn’t it? Look at the
example:
Command - Enter "/" to select action Message Volume
 SYS2.LINKLIB SHRØ12
 %CATAL / MVSB LINKLIB.NEWCOPY SHRØ12

At a successful end, dataset SYS1.LINKLIB.NEWCOPY will be
catalogued in MVSB mastercatalog.
You can use the UNCAT CLIST to uncatalog a non-VSAM
dataset from another MVS mastercatalog (use it in 3.4 or
elsewhere):
%UNCAT <nonvsam-dataset> <system-id>

For example:
%UNCAT 'SYS1.LINKLIB.NEWCOPY' MVSC

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

At a successful end, dataset SYS1.LINKLIB.NEWCOPY will be
uncatalogued from the MVSB mastercatalog.
Last but not least: do you want to list other mastercatalog entries,
just using the partition system-id? To do so, use my LST CLIST:
%LST <nonvsam-dataset> <system-id>

For example:
%LST 'SYS1.LINKLIB.NEWCOPY' MVSD DEBUG

You can list all CLIST instructions to locate and remove errors –
just add the DEBUG parameter on every CLIST.

LST CLIST
PROC 2 &DSN &ID DEBUG
/*- SETUP FOR DEBUG IF REQUESTED ------------------------------------*/
 CONTROL MSG NOLIST NOFLUSH END(ENDO) NOCONLIST NOPROMPT
 IF &DEBUG = DEBUG THEN +
 CONTROL MSG LIST NOFLUSH END(ENDO) PROMPT SYMLIST CONLIST
/*- END OF SETUP --*/
/* . */
/* */
/* LST: TO LIST ENTRIES FROM ANOTHER MASTER CATALOG. */
/* WARNING: PREPARE THE CLIST WITH YOUR OWN CATALOG NAMES! */
/* SUPPLY ID WITH A SYSID RELATED TO A MASTERCATALOG. */
/* EG TO LIST ENTRY 'SYS1.TEST.DSN' FROM THE */
/* MASTERCATALOG OF THE SYSTEM 'MVSB' ENTER: */
/* */
/* %LST 'SYS1.TEST.DSN' MVSB */
/* */
/* . */
 SET &LL = &LENGTH(&DSN)
 SET &APICE = &STR(&SUBSTR(1,&DSN)
 IF &APICE = &STR(') THEN +
 SET &DSN = &STR(&SUBSTR(2:&LL-1,&DSN)
 ELSE IF &SYSPREF NE THEN +
 SET &DATASET = &SYSPREF..&DATASET
 SELECT &ID
/* . */
/* */
/* NOW SUPPLY YOUR OWN CATALOG NAMES AND SYSTEM IDENTIFIERS */
/* */
/* . */
 WHEN (???A) SET &MCAT=CATALOG.MVS.V?????A
 WHEN (???B) SET &MCAT=CATALOG.MVS.V?????B
 WHEN (???C) SET &MCAT=CATALOG.MVS.V?????C

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 WHEN (???D) SET &MCAT=CATALOG.MVS.V?????D
 OTHERWISE DO
 WRITE SYSID NOT FOUND!
 EXIT CODE (4)
 ENDO
 ENDO
WRITE SEARCHING ENTRY '&DSN' IN '&MCAT' ...
LISTC ENT('&DSN') ALL CAT('&MCAT')
SET &RC=&LASTCC
 IF &RC > Ø THEN WRITE LISTCAT '&DSN' FAILED FOR '&MCAT'
 EXIT CODE (&RC)

IMPCONN CLIST
PROC 1 USERCAT DEBUG
/*- SETUP FOR DEBUG IF REQUESTED ------------------------------------*/
 CONTROL MSG NOLIST NOFLUSH END(ENDO) NOCONLIST NOPROMPT
 IF &DEBUG = DEBUG THEN +
 CONTROL MSG LIST NOFLUSH END(ENDO) PROMPT SYMLIST CONLIST
/*- END OF SETUP --*/
/* . */
/* */
/* IMPCONN : TO DO IMPORT CONNECT OF AN ICF USERCATALOG */
/* WARNING! VERSION FOR USE IN ISPF 3.4 ONLY */
/* EXIT CODE Ø = CATALOG CONNECTED TO MASTERCATALOG */
/* EXIT CODE 12 = CATALOG NOT CONNECTED TO MASTERCATALOG */
/* */
/* . */
 SET &LL = &LENGTH(&USERCAT)
 SET &APICE = &STR(&SUBSTR(1,&USERCAT)
 IF &APICE = &STR(') THEN DO
 SET &USERCAT = &STR(&SUBSTR(2:&LL-1,&USERCAT)
 ENDO
/* . */
/* */
/* OBTAIN SYSID, DEVICETYPE AND VOLUME OF THE CATALOG TO BE IMPORTED */
/* */
/* . */
 ISPEXEC VGET (ZSYSID ZDLDEV ZDLVOL)
 IF &ZDLDEV = OR &ZDLVOL = THEN DO
 WRITE *** YOU CAN USE 'IMPCONN' ONLY IN 3.4 ISPF DSLIST ***
 EXIT CODE(8)
 ENDO
/* . */
/* */
/* NOW SUPPLY YOUR OWN CATALOG NAMES AND SYSTEM IDENTIFIERS */
/* */
/* . */
 SELECT &ZSYSID

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 WHEN (???A) SET &MCAT=CATALOG.MVS.V?????A
 WHEN (???B) SET &MCAT=CATALOG.MVS.V?????B
 WHEN (???C) SET &MCAT=CATALOG.MVS.V?????C
 WHEN (???D) SET &MCAT=CATALOG.MVS.V?????D
 OTHERWISE DO
 WRITE SYSID NOT FOUND!
 EXIT CODE (4)
 ENDO
 ENDO
IF &DEBUG NE DEBUG THEN SET &SYSLIST=ON
IMPORT CONNECT OBJ(('&USERCAT' VOLUME(&ZDLVOL) DEVICETYPE(&ZDLDEV))) -
 CATALOG('&MCAT')
SET &RC = &LASTCC
IF &DEBUG NE DEBUG THEN SET &SYSLIST=OFF
EXIT CODE(&RC)

EXPDISC CLIST
PROC 1 USERCAT DEBUG
/*- SETUP FOR DEBUG IF REQUESTED ------------------------------------*/
 CONTROL MSG NOLIST NOFLUSH END(ENDO) NOCONLIST NOPROMPT
 IF &DEBUG = DEBUG THEN +
 CONTROL MSG LIST NOFLUSH END(ENDO) PROMPT SYMLIST CONLIST
/*- END OF SETUP --*/
/* . */
/* */
/* EXPDISC : TO DO EXPORT DISCONNECT OF AN ICF USERCATALOG */
/* EXIT CODE Ø = CATALOG SUCCESFULLY DISCONNECTED */
/* EXIT CODE 12 = CATALOG NOT DISCONNECTED */
/* */
/* . */
 SET &LL = &LENGTH(&USERCAT)
 SET &APICE = &STR(&SUBSTR(1,&USERCAT)
 IF &APICE = &STR(') THEN DO
 SET &USERCAT = &STR(&SUBSTR(2:&LL-1,&USERCAT)
 ENDO
/* . */
/* */
/* OBTAIN SYSID */
/* */
/* . */
 ISPEXEC VGET (ZSYSID)
/* . */
/* */
/* NOW SUPPLY YOUR OWN CATALOG NAMES AND SYSTEM IDENTIFIERS */
/* */
/* . */
 SELECT &ZSYSID

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 WHEN (???A) SET &MCAT=CATALOG.MVS.V?????A
 WHEN (???B) SET &MCAT=CATALOG.MVS.V?????B
 WHEN (???C) SET &MCAT=CATALOG.MVS.V?????C
 WHEN (???D) SET &MCAT=CATALOG.MVS.V?????D
 OTHERWISE DO
 WRITE SYSID NOT FOUND!
 EXIT CODE (4)
 ENDO
 ENDO
IF &DEBUG NE DEBUG THEN SET &SYSLIST=ON
EXPORT '&USERCAT' DISCONNECT CAT('&MCAT')
SET &RC=&LASTCC
IF &DEBUG NE DEBUG THEN SET &SYSLIST=OFF
EXIT CODE(&RC)

CATAL CLIST
PROC 2 &DSN &ID DEBUG
/*- SETUP FOR DEBUG IF REQUESTED ------------------------------------*/
 CONTROL MSG NOLIST NOFLUSH END(ENDO) NOCONLIST NOPROMPT
 IF &DEBUG = DEBUG THEN +
 CONTROL MSG LIST NOFLUSH END(ENDO) PROMPT SYMLIST CONLIST
/*- END OF SETUP --*/
/* . */
/* */
/* WARNING! VERSION FOR USE IN ISPF 3.4 ONLY */
/* CATAL: TO CATALOG A NONVSAM ENTRY IN A MASTER CATALOG. */
/* WARNING: PREPARE THE CLIST WITH YOUR OWN CATALOG NAMES! */
/* USING ID(NONE): NO ACTION IS DONE */
/* USING ID(OTHER-VALUE) MEANS THAT WE WANT TO CATALOG */
/* THE NONVSAM ENTRY INTO ANOTHER CATALOG, EG TO DO IT */
/* FOR MASTERCATALOG OF THE SYSTEM 'MVSB' ENTER: */
/* */
/* %CATAL / MVSB */
/* */
/* . */
 ISPEXEC VGET (ZDLDEV ZDLVOL)
 SELECT &ID
/* . */
/* */
/* NOW SUPPLY YOUR OWN CATALOG NAMES AND SYSTEM IDENTIFIERS */
/* */
/* . */
 WHEN (???A) SET &MCAT=CATALOG.MVS.V?????A
 WHEN (???B) SET &MCAT=CATALOG.MVS.V?????B
 WHEN (???C) SET &MCAT=CATALOG.MVS.V?????C
 WHEN (???D) SET &MCAT=CATALOG.MVS.V?????D
 OTHERWISE DO
 WRITE SYSID NOT FOUND!

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 EXIT CODE (4)
 ENDO
 ENDO
 DEFINE NVSAM(NAME(&DSN) DEVT(&ZDLDEV) VOL(&ZDLVOL)) +
 CAT('&MCAT')
SET &RC=&LASTCC
 IF &RC=Ø THEN WRITE &DSN CATALOGED ON '&MCAT'
 ELSE WRITE &DSN NOT CATALOGED ON '&MCAT'
 EXIT CODE (&RC)

UNCAT CLIST
PROC 2 &DSN &ID DEBUG
/*- SETUP FOR DEBUG IF REQUESTED ------------------------------------*/
 CONTROL MSG NOLIST NOFLUSH END(ENDO) NOCONLIST NOPROMPT
 IF &DEBUG = DEBUG THEN +
 CONTROL MSG LIST NOFLUSH END(ENDO) PROMPT SYMLIST CONLIST
/*- END OF SETUP --*/
/* . */
/* */
/* UNCAT: TO UNCATALOG A NONVSAM ENTRY IN A MASTER CATALOG. */
/* WARNING: PREPARE THE CLIST WITH YOUR OWN CATALOG NAMES! */
/* USE CAREFULLY!!! OTHER SYSTEMS MAY BE AFFECTED... */
/* SUPPLY ID WITH A SYSID RELATED TO A MASTERCATALOG. */
/* EG TO UNCATALOG 'SYS1.TEST.DSN' FROM THE */
/* MASTERCATALOG OF THE SYSTEM 'MVSB' ENTER: */
/* */
/* %UNCAT 'SYS1.TEST.DSN' MVSB */
/* */
/* . */
 SET &LL = &LENGTH(&DSN)
 SET &APICE = &STR(&SUBSTR(1,&DSN)
 IF &APICE = &STR(') THEN +
 SET &DSN = &STR(&SUBSTR(2:&LL-1,&DSN)
 ELSE IF &SYSPREF NE THEN +
 SET &DATASET = &SYSPREF..&DATASET
 SELECT &ID
/* . */
/* */
/* NOW SUPPLY YOUR OWN CATALOG NAMES AND SYSTEM IDENTIFIERS */
/* */
/* . */
 WHEN (???A) SET &MCAT=CATALOG.MVS.V?????A
 WHEN (???B) SET &MCAT=CATALOG.MVS.V?????B
 WHEN (???C) SET &MCAT=CATALOG.MVS.V?????C
 WHEN (???D) SET &MCAT=CATALOG.MVS.V?????D
 OTHERWISE DO
 WRITE SYSID NOT FOUND!
 EXIT CODE (4)

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ENDO
 ENDO
 DELETE '&DSN' NOSCRATCH CAT('&MCAT')
 SET &RC=&LASTCC
 IF &RC=Ø THEN WRITE '&DSN' UNCATALOGED FROM '&MCAT'
 ELSE WRITE '&DSN' NOT UNCATALOGED FROM '&MCAT'
 EXIT CODE (&RC)

Alberto Mungai
Senior Systems Programmer (Italy) © Xephon 2003

z/Architecture overview – part 2

This month we conclude our look at z/Architecture.

STORE SYSTEM INFORMATION
The Store System Information Instruction (STSI), which was
added to the ESA/390 instruction set, will, depending on a
function code that is placed in general register 0, return either of
the following types of information:
• An identification of the level of the configuration that is

executing the program (this is placed in general register 0).
• Information about a component or components of a

configuration is stored in a system-information block (SYSIB).
Additional information about the requested component or
components can be specified further by specifying additional
information in general register 0 and general register 1.

The STSI is illustrated in Figure 1.
The function codes are:
• 0 Current configuration level number is placed in bit

positions 32-35 of general register 0 as follows:

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

0 16 20 31

STSI D2(B2) [S]

– 1= Basic machine
– 2= Logical Partition
– 3= Virtual Machine.

• 1 – Information about level 1 (the basic machine).
• 2 – Information about level 2 (a logical partition).
• 3 – Information about level 3 (a virtual machine).
The function code that determines the operation is an unsigned
binary integer in bit positions 32-35 of general register 0. When
the function code is non-zero (1, 2, 3) information may also be
stored in a SYSIB beginning at the second-operand address.
The SYSIB is 4KB in length and must begin on a 4KB boundary.
When the function code is non-zero (1, 2, 3), general registers 0
and 1 can contain additional information as follows:
• Bit positions 56-63 of general register 0 can contain an

unsigned binary integer called selector 1, which specifies a
component or components of the specified configuration as
follows:
– 1 = Information about the specified configuration.
– 2 = Information about one or more CPUs in the specified

configuration level.

B27D B2 D2

Figure 9: The Store System Information Instruction

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Bit positions 48-63 general register 1 can contain an unsigned
binary integer called selector 2, which specifies the type of
information requested as follows:
When selector 1 is 1, selector 2 can have the following value:
– 1 = Information about the specified configuration level.
When selector 1 is 2, selector 2 can have the following
values:
– 1 = Information about the CPU executing the program in

the specified configuration level.
– 2 = Information about all CPUs in the specified

configuration level.

General Register 0 format
General Register 0 format is shown in Figure 2.

0 32 36 56 63

Figure 2: General Register 0 format

General Register 1 format

General Register 1 format is shown in Figure 3.
For example, when the function code = 2, selector 1 = 2 and
selector 2 = 2, the SYSIB will describe the logical Partition CPUs
as shown in Figure 4.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SET ADDRESS MODE INSTRUCTION
z/Architecture has introduced three new Set Address Mode
(SAM) instructions that allow you to change the addressing
mode without branching. These instructions are:
• SAM24 – set Addressing mode to 24-bit (PSW bit 31=0 PSW

bit 32=0).
• SAM31 – set Addressing mode to 31-bit (PSW bit 31=0 PSW

bit 32=1).
• SAM64 – set Addressing mode to 64-bit (PSW bit 31=1 PSW

bit 32=1).

TEST ADDRESS MODE INSTRUCTION
The Test Address Mode (TAM) instruction sets the condition
code based on the addressing mode (AMODE) currently set in
the PSW as follows:
• CC= 0 – 24-bit mode
• CC= 1 – 31-bit mode
• CC= 3 – 64-bit mode.
Note: the TAM instruction has been added to the ESA/390
Instruction set.

0000000000000000 Selector 2

Figure 3: General Register 1 format

0 32 48 63

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

LCPUC= Logical CPU Characteristics (dedicated, shared, utilization limit)

0 16 31
0

7

8

9

10

11

12

13

14

17

18

19

1023

Reserved

 LPAR number Reserved LCPUC

 Total Logical Configured Logical
 CPU count CPU count

 Standby Logical Reserved Logical
 CPU count CPU count

 Logical-partition name

 Logical-partition
 capability adjustment factor

 Reserved

 Dedicated logical Shared logical
 CPU count CPU count

 Reserved

Figure 4: SYSIB will describe the logical partition CPUs

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

BRANCH AND SET MODE INSTRUCTIONS
The BASSM and BSM instruction will set 64-bit mode if the low
order bit of the target address is 1. Bit 63 is left set so that the
mode switch can be detected, but it is ignored in branch address
generation (target addresses must always be even).
The BASSM and BSM instruction will set 24-bit or 31-bit mode
based on bit 31 being 0 or 1, as in ESA/390 Architecture:
BASSM R1,R2
BSM R1,R2

AMODE setting bits in R2 are 32 and 63. If they are both 0, switch
to 24-bit mode. If 32 is 1 and 63 is 0, switch to 31-bit mode. If 32
is x and 63 is 1, switch to 64-bit mode.

64-bit address generation
Sixty-four-bit addresses are generated using the value contained
in a 64-bit base register, optionally taking the value contained in
a 64-bit index register plus the value of the 12-bit displacement
contained in the instruction. The result of this sum is then
truncated on the left depending on the current addressing mode
as follows:
• In 24-bit mode, the leftmost 40 bits are set to zeros.
• In 31-bit mode, the leftmost 33 bits are set to zeros.
• In 64-bit mode, the 64-bit address is not truncated.

RX Type Address Generation instruction
The RX Type Address Generation instruction comprises a base
register (0 to 63), plus an Index Register (0 to 63), plus
displacement (0 to 11).

Z/ARCHITECTURE INSTRUCTION SET
Many new instructions have been introduced with z/Architecture.
All the existing instructions in the ESA/390 can be used in z/

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Architecture mode and there are over 160 new Z/Architecture
instructions. Some of the new instructions mix 64-bit and existing
data types. I will not cover all the new Z/Architecture instruction
set in this article; please refer to the z/Architecture Principles of
Operation for additional information.
Mnemonics for 64-bit instructions/operations end in or contain a
G, eg:
 AGR R4,R1Ø Adds the 64-bit operand in R1Ø to R4.

Mnemonics that mix 32-bit and 64-bit operands to give a 64-bit
result have GF or GH, and in a few cases GT or GC. Where:
• F = fullword
• H = halfword
• T = 31 bits
• C = character.
AGFR R4,R6

adds the signed 32-bit operand in R6 to the 64-bit operand in R4.

AGHI R4,4ØØØ

adds the 16-bit signed operand to the 64-bit operand in R4.
LGH R4,HWORD

loads the signed 16-bit operand at HWORD. 64-bit result in R4.
LLGT R4,F31BITS

loads the 31-bit operand at F31BITS. 64-bit result in R4.
There are five new instruction formats that have been introduced
with z/Architecture. These are shown in Figure 5.

MODAL AND NON-MODAL INSTRUCTIONS
Two new terms have been introduced with z/Architecture that
describe instruction behaviour; they are Modal and Non-Modal.
The term Modal applies to instructions in which the operation is

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

different in 64-bit addressing mode from the operation in 24-bit
or 31-bit mode. The AMODE determines the width of the output
register operands. For example LA instruction operates as
follows:
• In the 24-bit addressing mode, the address is placed in bit

positions 40-63, bits 32-39 are set to zeros, and bits 0-31
remain unchanged.

• In the 31-bit addressing mode, the address is placed in bit
positions 33-63, bit 32 is set to zero, and bits 0-31 remain
unchanged

• In 64-bit addressing mode, the address is placed in bit
positions 0-63.

Other examples of Modal instructions are:
• Branch and Link (BAL, BALR)
• Branch and Save (BAS, BASR)
• Branch and Save and Set Mode (BASSM)
• Branch Relative and Save (BRAS)
• Branch and Save (BSM)
• Branch Relative and Save Long (BRASL)
• Compare Logical Long (CLCL)
• Compare Logical Long Extended (CLCLE)
• Compare Logical String (CLST)
• Compare Until Substring Equal (CUSE)
• Load Address Extended (LAE)
• Load Address Relative Long (LARL)
• Move Long (MVCL)
• Move Long Extended (MVCLE)
• Move String (MVST)

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Opcode R1 M3 B2 D2

Opcode R1 R3 B2 D2 Opcode

Opcode R1 M3 B2 D2 Opcode

Opcode R1 M3 I2 Opcode

Opcode R1 M3 I2

RS

The M3 field is new

RSE

RSE

RIE

RIL

The RIL format supports signed 32-bit immediate operand

Figure 5: New instruction formats

• Search String (SRST)
• Store Pair to QUADWORD (STPG)
• Translate Extended (TRE)

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Translate And Test (TRT).
The term Non-Modal applies to instructions that perform the
same operation regardless of address mode. The AMODE is
only used during storage operand address generation. If the
current AMODE is 64, the secondary operand can reside
anywhere in the address space. If the AMODE is 31, the
secondary operand must reside below the 2-gigabyte line. If the
AMODE is 24, the secondary operand must reside below the 16-
megabyte line. Bits 0-31 of the 64-bit registers are unexamined
and unmodified. For example, the LOAD instruction (L) always
loads 32 bits into bits 32-63 of the first operand. The ADD (A)
instruction takes the value of a fullword in storage and arithmetically
adds it to the contents of the low-order 32- bits of a general
purpose register. The high order 32-bits of the general purpose
register are neither interrogated nor modified. This is known as
a Non-Modal 32-bit instruction.
Other examples of Non-Modal 32-bit instructions are:
• Add Register (AR)
• Add Logical Register (ALR)
• Add Logical (AL)
• Add Logical with carry (ALC)
• Load Register (LR)
• Load Reversed (LRV, LRVR)
• Multiply Logical (ML, MLR)
• Divide Logical (DL, DLR)
• Subtract Logical with borrow (SLB)
• Store Reversed (STRV)
• Rotate Left Single Logical (RLL).
The AG instruction takes the value of an 8-byte storage field and
arithmetically adds it to the contents of the full 64 bits of a general
purpose register. All 64 bits of the first operand are modified. This

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

is known as a Non-Modal 64-bit instruction.
Other examples of Non-Modal 64-bit instructions are:
• Add Register (AGR)
• Add Logical (ALG)
• Add Logical Register (ALGR)
• Add Logical with carry (ALCG)
• Divide Logical (DLG)
• Divide Logical Register (DLGR)
• Load (LG)
• Load Register (LGR)
• Load Reversed (LRVG)
• Load Reversed Register (LRVGR)
• Multiply Logical (MLG)
• Multiply Logical Register (MLGR)
• Rotate Left Single Logical (RLLG)
• Subtract Logical with Borrow (SLBG)
• Subtract Logical Register with Borrow (SLBGR)
• Store Reversed (STRVG).
The AGF instruction operates on 32-bit second operands into
64-bit first operands. The instruction takes the value of a fullword
in storage and propagates the sign to extend it to 64 bits, and then
arithmetically adds the sign extended value to the contents of the
64-bit general purpose register. The 32-bit second operand is
internally extended to the left before the operation is performed.
All 64 bits of the first operand register participate. This is known
as a Non-Modal 64/32-bit instruction.
Other examples of Non-Modal 64/32-bit instructions are:

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Add (AGF, AGFR)
• Add Logical (ALGF, ALGFR)
• Compare (CGF, CGFR)
• Load (LGF, LGFR)
• Load Logical (LLGF, LLGFR)
• Load Logical Thirty One Bits (LLGT, LLGTR)
• Load Positive (LPGFR)
• Load Negative (LNGFR)
• Multiply Single (MSGF, MSGFR)
• Subtract (SGF, SGFR)
• Subtract Logical (SLGF, SLGFR).

LOGICAL IMMEDIATE INSTRUCTIONS
The new Logical Immediate Instructions load an immediate 16-
bit value into any of the four halfwords of a 64-bit register. The
new instructions are as follows:
• IIHH, IIHL, IILH, IILL – Insert Immediate. Insert an immediate

16-bit value into any of the four halfwords of a 64-bit register.
The three other halfwords are left unchanged.

• LLIHH, LLIHL, KKILH, LLILL – Load Logical Immediate.
Load an immediate 16-bit value into any of the four halfwords
of a 64-bit register. The three other halfwords are cleared to
zeros.

• NIHH, NIHL, NILH, NILL – AND-Immediate. Logically AND
an immediate 16-bit value into any of the four halfwords of a
64-bit register. The three other halfwords are left unchanged.

• OIHH, OIHL, OILH, OILL – OR-Immediate. Logically OR an
immediate 16-bit value into any of the four halfwords of a 64-
bit register. The three other halfwords are left unchanged.

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• TMHH, TMHL, TMLH, TMLL – Test Under Mask High/Low.
Test the 16 bits of any of the four halfwords of a 64-bit register
against a 16-bit immediate instruction. Note: the TMLH and
TMLL instructions exist in the ESA/390 instruction set as
TMH and TML.

The last two letters of the instruction mnemonic indicate which
part of the Register will be acted upon:
• HH – High half’s High half (bits 0-15)
• HL – High half’s Low half (bits 16-31)
• LH – Low half’s High half (bits 32-47)
• LL – Low half’s Low half (bits 48-63).
This is illustrated in Figure 6.

LOAD LOGICAL INSTRUCTIONS
The following Load Logical instructions have been introduced in
support of 64-bit:
• LLGT LLGTR – the Load Logical Thirty One instruction takes

the low-order 31 bits of the 32-bit second operand and
places them in bits 33-63 of the first operand register, and
sets bits 0-32 of the first operand register to 33 binary zeroes.
This instruction can be used to produce a clean 64-bit
address from a 31-bit address regardless of the addressing
mode.

• LLGF, LLGFR – Load Logical Word instruction. The 32 bits,
or low-order 32 bits (LLGFR), of the second operand are
loaded into the low-order 32 bits of the first operand. The
high-order 32 bits of the first operand register are set to
zeros.

• LLGH – Load Logical Halfword. The 16 bits of the second
operand are loaded into the low-order 16 bits of the first
operand register. The high-order 48 bits of the first operand
register are set to zeroes.

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

0 15 16 31 32 47 48 63

64-bit registers

• LLGC – Load Logical Character. The 8 bits of the second
operand are loaded into the low-order 8 bits of the first
operand. The high-order 56 bits of the first operand register
are set to zeroes.

• LMH – Load Multiple High. The Load Multiple High instruction
works like the LM instruction except that it loads into the high-
order 32 bits of the 64-bit register.

ARITHMETIC INSTRUCTIONS
The following Arithmetic instructions have been introduced in
support of 64-bit:
• DSG,DSGR – Divide Single. The dividend, divisor, quotient

and remainder are treated as 64-bit signed binary integers
(64/64).

• DSGF, DSGFR – Divide Single. The dividend is 64-bits, the
divisor is 32-bits (64/32). The quotient and remainder are
treated as 64-bit signed binary integers.

• DL, DLR – Divide Logical. The dividend is 64 bits, the divisor
is 32 bits (64/32); both are unsigned binary integers. The
quotient and remainder are 32-bit unsigned binary integers.
These two instructions are also available in the ESA/390
instruction set.

HH HL LH LL

Figure 6: Logical Immediate Instructions

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• DLG, DLGR – Divide Logical. The dividend is 128 bits, the
divisor is 64 bits (128/64); both are unsigned binary integers.
The quotient and remainder are 64-bit unsigned binary
integers.

• ML, MLR – Multiply Logical. The multiplicand and the
multiplier are 32-bit unsigned binary integers. The product is
a 64-bit unsigned binary integer. These two instructions
have also been made available in the ESA/390 instruction
set.

• MLG MLGR – Multiply Logical. The multiplicand and the
multiplier are 64-bit unsigned binary integers. The product is
a 128-bit unsigned binary integer.

• ALC, ALCR – Add logical with carry. The operands, the carry,
and the sum are treated as 32-bit unsigned binary integers.
These two instructions have also been made available in the
ESA/390 instruction set.

• ALCG, ALCGR – Add logical with carry. The operands, the
carry, and the sum are treated as 64-bit unsigned binary
integers.

• AG, AGR – Add. The operands are treated as 64-bit signed
integers.

• AGF, AGFR – Add. The second operand is treated as a 32-
bit signed binary integer and the first operand and the
difference are treated as 64-bit signed binary integers.

• SLB, SLBR – Subtract Logical with borrow. The operands,
borrow, and the difference are treated as 32-bit unsigned
binary integers. These two instructions have also been
made available in the ESA/390 instruction set.

• SLBG, SLBGR – Subtract Logical with borrow. The operands,
borrow, and the difference are treated as 64-bit unsigned
binary integers.

• SG, SGR – Subtract. The operands are treated as 64-bit
signed integers.

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• SGF, SGFR – Subtract. The second operand is treated as a
32-bit signed binary integer and the first operand and the
difference are treated as 64-bit signed binary integers.

QUADWORD INSTRUCTIONS
The Load Pair From Quadword (LPQ) instruction loads a
quadword second operand into an even-odd pair of general
registers. The left doubleword of the quadword is loaded into R1,
and the right doubleword is loaded into general register R1 + 1.
The second operand must be aligned on a quadword boundary,
The Store Pair to Quadword (STPQ) instruction stores a quadword
first operand at the second operand location. The first operand
designates an even-odd pair of registers. The second operand
must be aligned on a quadword boundary.

TEST DECIMAL
The test decimal instruction (TP) tests for valid decimal digits and
valid sign codes. The instruction format is RSL:
TP D1(L1,B1)

The results of the test are reported in the condition code as
follows:
• CC=0 – all digits and sign are valid
• CC=1 – sign invalid
• CC=2 – at least one digit is invalid
• CC=3 – sign invalid and at least one digit invalid.

ADDITIONAL 64-BIT INSTRUCTIONS
The following instructions are an assortment of new instructions
that have been added to the Z/Architecture instruction set:
• ICMH – Insert Characters Under Mask High. Operates on

the four high-order bytes of the first operand.

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• STCMH – Store Characters Under Mask High. Operates on
the four high-order bytes of the first operand.

• STMH – Store Multiple High.
• LRVR, LRVRG, LRVH, LRV, LRVG – Load Reversed.
• LMD – Load Multiple Disjoint. This instruction can be used

when the registers could not be stored in a single contiguous
area, as on a call from an old 31-bit program to a new 64-bit
program.

• LRVH, LRV, LRVG, LRVR, LRVGR – Load Reversed. The
low order 2, 4 or 8 bytes of a register are loaded in byte-wise
reverse order. This instruction can be used to convert two,
four, or eight bytes from a ‘little-endian’ format to a ‘big-
endian’ format or vice versa.

• STRVH,STRV, STRVG – Store Reversed. The low order 2,
4, or 8 bytes of a register are loaded in byte-wise reverse
order. This instruction can be used to convert two, four, or
eight bytes from a ‘little-endian’ format to a ‘big-endian’
format or vice versa.

• RLL, RLLG – Rotate Left Single Logical. These two
instructions have also been made available in the ESA/390
instruction set.

• TROO – Translate one to one. Translates from one single-
byte code to another single-byte code.

• TROT – Translate one to two. Translates from a single-byte
code to a double-byte code.

• TRTO – Translate two to one. Translates from a double-byte
code to a single-byte code.

• TRTT – Translate two to two. Translates from one double-
byte code to another double-byte code.

IARV64 SYSTEM SERVICES
To obtain virtual storage above the two gigabyte line (ie above the

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

bar), IBM has introduced a new set of system services called the
IARV64 System Services. Storage above the bar is in memory
objects. A memory object can be as large as the memory limits
set by the installation or as small as one megabyte. The existing
GETMAIN/FREEMAIN services, STORAGE macro, CPOOL, or
callable cell pool services do not work on virtual storage above
the bar. To use the storage in memory objects, the program must
be executing in AMODE 64 (ie SAM 64 into AMODE64).
A new limit called the MEMLIMIT has been introduced that
indicates how much virtual storage above the bar each address
space can use. If no MEMLIMIT is set, the system default is 0,
which means that no address space can use virtual storage
above the bar. The MEMLIMIT can be specified as xxxxxM
(megabytes), xxxxxG (gigabytes) xxxxxT (terabytes), xxxxxP
(petabytes) or NOLIMIT.
The MEMLIMIT for each address space can be set as follows:
• The new MEMLIMIT JCL keyword on the EXEC and JOB

statement. The MEMLIMIT on the JOB statement overrides
the MEMLIMIT value specified on the EXEC statement.

• SMFPRMxx PARMLIB member MEMLIMIT keyword.
• SMF MEMLIMIT can be updated using the SET SMF or

SETSMF commands.
• MEMLIMIT set in the IEFUSI installation exit. This setting

overrides all other settings.
The IARV64 services provided are as follows:
• GETSTOR – create a memory object
• DETACH – free one or more memory objects
• PAGEFIX – fix physical pages
• UNPAGEFIX – reverse a PAGEFIX operation
• PAGEOUT – perform a PAGEOUT request
• PAGEIN – perform a PAGEIN request

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• DISCARDATA – Discard Data in memory objects
• CHANGEGUARD – create a guard area and a usable area

in the memory object
• LIST – List the memory objects.
The scope of these services is based on problem state, key 8-
F programs, and supervisor state or key 0-7 programs.
The following example creates a 1-megabyte memory object:
IARV64 REQUEST=GETSTOR,
 SEGMENTS=ONESEG,
 USERTLM=UTOKEN,
 ORIGIN=V64ADDR,
 COND-YES

ONESEG DC ADL8(1)
UTOKEN DC ADL8(1)
V64ADDR DS AD

Note the use of the AD 8-byte doubleword-aligned address
constants.

64-BIT STANDARD LINKAGE CONVENTION
New 64-bit standard linkage conventions have been introduced.
The linkage conventions that are defined are as follows.

Standard 72-byte save area
This type of save area would be used if the target program does
not change the high-order halves of the General Purpose
Registers. The GPRs are saved with the STM instruction.

Format 4 save area (F4SA)
This type of save area would be used if the target program
changes the high-order halves of the General Purpose Registers.
The length is 144 bytes. The GPRs are saved with the STMG
instruction.

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Its format is as follows:
• 0 – used by language translators
• 1 – ‘F4SA’
• 2-3 – 64-bit GPR14 (Return Address)
• 4-5 – 64- bit GPR 15
• 6-31 – 64-bit GPRs 0-12
• 32-33 – address of the previous save area (stored by the

calling program)
• 34-35 – address of the next save area (stored by the target

program).

Format 5 save area (F5SA)
This type of save area would be used if the target program is
AMODE64 and the caller still passes a 72-byte savearea. The
length is 216 bytes. The low-order halves of the registers are
saved in the caller’s savearea with the STM instruction and the
high-order halves of the registers are saved with the STMH
instruction in the target program’s Format 5 save area (F5SA),
words 36-53.
Its format is as follows:
• 0 – used by language translators
• 1 – ‘F4SA’
• 2-3 – 64-bit GPR14 (Return Address)
• 4-5 – 64- bit GPR 15
• 6-31 – 64-bit GPRs 0-12
• 32-33 – address of the previous save area (stored by the

calling program)
• 36-53 – address of the next save area (stored by the target

program)

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• 36-53 – high-order halves of GPRs 0-15.

Format 6 save area (F6SA)
This type of save area would be used if a primary mode program
saves the registers on the linkage stack and calls another
program that requires a 36-word save area.
Its format is as follows:
• 0 – used by language translators
• 1 – ‘F4SA’
• 2-3 – 64-bit GPR14 (Return Address)
• 4-5 – 64-bit GPR 15
• 6-31 – 64-bit GPRs 0-12
• 32-33 – address of the previous save area (stored by the

calling program)
• 34-35 – address of the next save area (stored by the target

program).

CONTROL BLOCK INFORMATION
The following control blocks have been updated with some
interesting 64-bit information.

CVT
Flag CVTOSLV3, byte 3 of CVTOSLVL has the following equates
defined:
CVTZOS EQU X'20' – z/OS V1R1
CVTZOS_010100 EQU X'20' – z/OS V1R1
CVTZOS_V1R1 EQU X'20' – z/OS V1R1
CVTZOS_010200 EQU X'10' – z/OS V1R2

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

CVTZOS_V1R21 EQU X'10' – z/OS V1R2
CVT64 EQU X'10' – 64-bit Virtual.
Field CVTOSLVL is part of the programming interface information.

RAX (RSM Address Space Block Extension)
The following fields are part of the programming interface
information:
• RAXLVMEMLIM – address Space Memory Limit in MB.
• RAXLVABYTES – number of bytes allocated from large

virtual memory in memory objects.
• RAXLVNMOMB – number of memory objects allocated.

HIGH LEVEL ASSEMBLER RELEASE 4
I would like to mention a couple of zSeries support features that
have been incorporated into HLASM Release 4.

AMODE changes
The AMODE instruction now supports the following directives:
• ANY31 – the control section or entry point is not sensitive to

whether it is entered in AMODE 24 or AMODE 31. ANY31 is
equivalent to ANY.

• 64 – specifies that 64-bit addressing mode is to be associated
with a control section or entry point.

RMODE changes
The RMODE instruction now supports the following directives:
• 31 – specifies that a residence mode of either 24 or 31 is to

be associated with the control section: that is, the control
section can be resident above or below the 16-megabyte
line.

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• 64 – specifies that a residence mode of 64 is to be associated
with the control section.

Address constant
A new 8-byte address constant:
• AD – 8-byte doubleword-aligned address constant, for

example:
ØØØØØØØØØØØØ1ØØØ DC AD(4Ø96)

Binary Constant
A new 8-byte binary constant:
• FD – 8 byte doubleword-aligned binary integer, for example:

ØØØØØØØØØØØØØ4ØØ DC FD'1Ø24'

R F Perretta
Systems Consultant
Millenium Computer Consultancy (UK) © Xephon 2003

Assessing programs for virtual storage memory
leaks

Today, OS/390 systems run for extended lengths of time without
requiring or generating an outage. As a result, continuous
system operation has improved significantly when compared
with 10 or 15 years ago. Applications that run in these
environments need to be well behaved in order to stay up and
running during these lengthy operational uptimes. In order to
accomplish this, one of the classic problems that face long-
running applications needs to be attended to. The problem
referred to is the potential for an application virtual storage
shortage caused by undetected memory leaks.
Memory leaks typically occur as a result of recurring storage

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

GETMAINs or STORAGE OBTAIN operations that do not have
a corresponding FREEMAIN or STORAGE RELEASE. Given
enough of these of a sufficient size an application’s virtual
storage region can become completely allocated. Requests for
additional dynamic storage result in the traditional x78 abends.
The GFSDATAA program provided with this article offers a
method of assessing dynamically acquired virtual storage usage
by an application to determine the potential for memory leaks. In
order to properly use GFSDATAA, you must make use of three
available OS/390 components:
1. DIAGxx PARMLIB members
2. GTF GFS trace
3. IPCS GTFTRACE output formatting.

DIAGXX PARMLIB MEMBERS
The DIAGxx PARMLIB members are used to activate and
deactivate virtual storage tracing. The powerful benefit of using
this feature is that it can capture GETMAIN/FREEMAIN requests
(SVC and branch enter calls) and STORAGE OBTAIN/RELEASE
requests. The information provided with the DIAGxx PARMLIB
member can indicate which address space should be monitored
(either by jobname or ASID) and the characteristics of storage
get/free events that should be captured. For example, you can
request trace records for only certain subpools, storage keys,
length, etc – the OS/390 MVS Initialization and Tuning Reference
manual provides details on the DIAGxx PARMLIB member. A
sample usage might look something like:
VSM TRACE GETFREE(ON) SUBPOOL(1Ø-25,231-233,253) DATA(ALL)
JOBNAME(LONGAPP1)

This will cause GFS (Get Free Storage) tracing to be activated
for jobname LONGAPP1. Trace records will be produced for
GET/FREE requests in subpools 10-25, 231-233, and 253.
Maximum trace information will be captured (DATA(ALL)).
If the above parameter information were located in a PARMLIB

 52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

dataset member DIAG99, it would be activated using the following
operator command:
SET DIAG=99

IBM provides a default DIAG00 PARMLIB member that can be
used to turn tracing off. When you have captured the trace
information you desire, tracing can be disabled with this command:
SET DIAG=ØØ

Ensure that the DIAG00 member contains the following:
VSM TRACE GETFREE(OFF)

GTF GFS TRACE
GTF is used to capture the GFS trace records produced with
VSM TRACE GETFREE(ON). The following GTF control input
should be supplied in the GTF SYSLIB dataset prior to starting
the GTF started task:
TRACE=USRP
USR=(F65)

This will indicate that GTF should capture GFS trace records
produced as a result of VSM trace activation with a SET DIAG=xx
operator command. If SYS1.PARMLIB member GFSTRACE
contained the above GTF control cards, a sample GTF procedure
to initiate GFS tracing would look something like:
//GTF PROC MEMBER=GFSTRACE
//IEFPROC EXEC PGM=AHLGTF,PARM='MODE=EXT,DEBUG=NO,TIME=YES',
// TIME=144Ø,REGION=288ØK
//IEFRDER DD DSNAME=gfs.trace.dataset,UNIT=SYSDA,SPACE=(TRK,2Ø),
// DISP=(NEW,KEEP)
//SYSLIB DD DSNAME=SYS1.PARMLIB(&MEMBER),DISP=SHR

Section 13.1 Starting and Stopping GFS Trace in OS/390 MVS
Diagnosis: Tools and Service Aids provides additional information
on using GTF to capture the GFS trace records.

IPCS GTFTRACE OUTPUT FORMATTING
IPCS is used to format the trace records produced from GTF. The

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

GFSDATAA program expects its input data to be IPCS
GTFTRACE output data produced by running JCL similar to the
following:
//IPCS EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø,REGION=15ØØK
//IPCSDDIR DD DSN=ipcs.DDIR,DISP=(SHR)
//DUMP DD DSN=gfs.trace.dataset,DISP=SHR
//IPCSPRNT DD DSN=gfs.gtftrace.output,DISP=(,CATLG),UNIT=SYSDA,
// SPACE=(TRK,(5,1)),
// DCB=(LRECL=133,BLKSIZE=1334,DSORG=PS,RECFM=VBA)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 IPCS
 DROPDUMP DDNAME(DUMP)
 GTFTRACE USR(F65) +
 DDNAME(DUMP) PRINT NOTERMINAL
 Y
 DROPDUMP DDNAME(DUMP)
 END

IPCS GTFTRACE output generated to the IPCSPRNT dataset
will have the following general appearance:
IPCS PRINT LOG FOR USER USER1

 **** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
 USR=SEL
 **** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
 USRP option
 **** GTF TRACING ENVIRONMENT ****
 Release: SP6.1.Ø FMID: HBB77Ø3 System name: TCMØ
 CPU Model: 9672 Version: 86 Serial no. 126659
USRDA F65 ASCB ØØEB77ØØ JOBN LNGAPP
Getmain Local branch(12Ø) Cond=No CheckZero=No
Loc=(24,31) Bndry=Dblwd
Return address=ØØEØC2DØ Amode=31 Asid=ØØ5B Jobname=LNGAPP
Subpool=255 Key=Ø Asid=ØØ5B Jobname=LNGAPP TCB=ØØ9FEØA8 Retcode=Ø
Storage address=ØØ515488 Length=1344 X'54Ø'
 GPR Values
 Ø-3 ØØØØØ54Ø ØØ515488 ØØØØØØØ1 ØØØØFFØ2
 4-7 ØØ9FEØA8 ØØØØØØ11 7F8F495C ØØEB77ØØ
 8-11 7F8F5ØAØ 8ØEØC27A ØØØØØØØ1 ØØØØØØØ1
 12-15 ØØØØØØ45 ØØØØØØØØ 8ØEØC2DØ ØØØØØØØØ
 GMT-11/Ø7/2ØØ1 19:22:23.5Ø4Ø66 LOC-11/Ø7/2ØØ1
13:22:23.5Ø4Ø66
USRDA F65 ASCB ØØEB77ØØ JOBN LNGAPP
Freemain Local branch(12Ø) Cond=No CheckZero=No
Return address=ØØEØCDF6 Amode=31 Asid=ØØ5B Jobname=LNGAPP
Subpool=255 Key=Ø Asid=ØØ5B Jobname=LNGAPP TCB=ØØ9FEØA8 Retcode=Ø
Storage address=ØØ515488 Length=1344 X'54Ø'

 54 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 GPR Values
 Ø-3 ØØØØØ54Ø ØØ515488 ØØØØØØØ1 ØØØØFFØ3
 4-7 ØØ9FEØA8 ØØØØØØØ1 ØØØ3B5B4 ØØEB77ØØ
 8-11 ØØ515488 8ØEØC27A ØØ5154DØ ØØØØØØØØ
 12-15 ØØØØØØØØ ØØØØØØØØ 8ØEØCDF6 ØØØØØØØØ
 GMT-11/Ø7/2ØØ1 19:22:23.5Ø4213 LOC-11/Ø7/2ØØ1
13:22:23.5Ø4213

VIRTUAL STORAGE USAGE ANALYSIS
The nature of program code, especially code that will be up and
running for a period of time, is to:
1 Acquire storage for long-term use.
2 Wait for something to happen.
3 Process an event (generally requiring temporary use storage).
4 Return to 2, unless the request is to terminate.
What GFSDATAA is good at analysing is storage GET/FREE
requests that occur in 3 above. As a result, the recommended
data capture approach would be:
• Start the long running application.
• Activate the appropriate DIAG=xx PARMLIB member.
• Start GTF GFS tracing.
• Run multiple tests into the application.
• Terminate the GTF trace and deactivate GFS tracing with the

DIAG00 PARMLIB member.
• Produce the IPCS GTFTRACE output from the GTF trace

dataset.
• Use GFSDATAA to examine the IPCS GTFTRACE output

dataset contents.

THE GFSDATAA PROGRAM
The following is sample JCL to run the GFSDATAA program:

 55© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

//GFSDATAA EXEC PGM=GFSDATAA
//STEPLIB DD DSN=load.library,DISP=SHR
//INPUT DD DSN=gfs.gtftrace.output,DISP=SHR
//OUTPUT DD SYSOUT=*

If GFSDATAA is able to pair up all the storage GET/FREE
requests, GFSDATAA will end with a return code of 0 and
produce one line of output in the OUTPUT dataset as follows:
ALL ALLOCATED STORAGE HAS BEEN RELEASED

If GFSDATAA does not find a corresponding storage free request
for a prior storage get request, GFSDATAA will end with a return
code of 4 and produce a report in the OUTPUT dataset containing
information similar to the following:
POTENTIAL MEMORY LEAK DETECTED
STORAGE ADDR ØØ51555Ø LEN(ØØØØØ478) NOT RELEASED FOR TRACE ENTRY
13:22:25.584172
STORAGE ADDR ØØ51539Ø LEN(ØØØØØ1CØ) NOT RELEASED FOR TRACE ENTRY
13:22:25.586749
STORAGE ADDR ØØ518Ø4Ø LEN(ØØØØØØ5Ø) NOT RELEASED FOR TRACE ENTRY
13:22:25.657453
STORAGE ADDR ØØ514B88 LEN(ØØØØØ478) NOT RELEASED FOR TRACE ENTRY
13:24:3Ø.377423
STORAGE ADDR ØØ5151DØ LEN(ØØØØØ1CØ) NOT RELEASED FOR TRACE ENTRY
13:24:3Ø.38Ø545
STORAGE ADDR ØØ51518Ø LEN(ØØØØØØ5Ø) NOT RELEASED FOR TRACE ENTRY
13:24:3Ø.38Ø628
STORAGE ADDR ØØ51471Ø LEN(ØØØØØ478) NOT RELEASED FOR TRACE ENTRY
13:3Ø:34.6522Ø9

Notice that the storage address, storage length, and time stamp
of the trace entry are indicated. This allows you to go back into
the IPCS GTFTRACE output to identify the offending trace entry
and then initiate corrective action.
On rare occasions, the GTF GFS trace may have captured a
storage free request that didn’t have a prior storage get trace
record. Make a note and be aware that the most likely cause of
this is that the application being examined acquired a storage
block prior to the GFS trace being activated. In this case,
GFSDATAA will also end with a return code of 4 and produce an
output record in the OUTPUT dataset similar to:
GFS TRACE DOES NOT CONTAIN OBTAIN REFERENCE FOR FREED STORAGE ADDRESS
ØØ51442Ø

 56 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION
GFSDATAA is a very useful tool for assessing virtual storage
usage in application code. If you will be creating long-running
application code, you should consider using a tool like GFSDATAA
prior to releasing the application into production use. It will allow
you to examine virtual storage usage to determine whether
anything unexpected is occurring with dynamic storage acquisition
or release.

GFSDATAA.ASM

* *
* The GFSDATAA (Get Free Storage DATA Analysis) program is used *
* to examine IPCS GTFTRACE formatted output from a GTF GFS trace. *
* The purpose of the program is to try and determine whether there *
* are any virtual storage memory leaks in the program code that *
* has been traced. *
* *
* Three standard OS/39Ø components are used in obtaining the *
* input information used by GFSDATAA. The DIAGxx PARMLIB member *
* is used to activate/deactive the trace as well as to indicate *
* which address spaces data is to be captured for (see OS/39Ø *
* Initialization and Tuning Reference for details). GTF is used *
* to capture the GFS trace records that get produced when GFS *
* tracing has been enabled by a SET DIAG=xx command. An IPCS *
* GTFTRACE is used to produce the formatted output listing that *
* is used as input data to the GFSDATAA utility. *
* *
* This program should be linkedited into a target load library *
* using the following linkedit control cards: *
* *
* INCLUDE OBJECT(GFSDATAA) *
* ENTRY GFSDATAA *
* NAME GFSDATAA(R) *
* *
* The following JCL can be used to produce a GFS analysis report *
* from an IPCS GTFTRACE output listing: *
* *
* //GFSDATAA EXEC PGM=GFSDATAA *
* //STEPLIB DD DSN=load.library,DISP=SHR *
* //INPUT DD DSN=ipcs.gtftrace.gfs.output,DISP=SHR *
* //OUTPUT DD SYSOUT=* *

GFSDATAA CSECT
GFSDATAA AMODE 31

 57© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

GFSDATAA RMODE 24 GOT SOME DCB'S
 STM R14,R12,12(R13) SAVE THE REGISTERS
 LR R12,R15 COPY BASE REGISTER
 USING GFSDATAA,R12 SET ADDRESSABILITY
 LR R11,R1 SAVE INCOMING PARM ADDRESS
 LR R3,R13 SAVE INCOMING SAVEAREA ADDRESS
 STORAGE OBTAIN,LENGTH=WORKLEN,LOC=ANY
 LR RØ,R1 COPY THE ADDRESS
 LR R14,R1 AGAIN
 LR R2,R1 AGAIN
 L R1,=A(WORKLEN) GET THE LENGTH
 XR R15,R15 SET FILL BYTE VALUE
 MVCL RØ,R14 CLEAR THE STORAGE
 ST R3,4(,R2) SAVE OLD SAVEAREA ADDRESS
 LR R13,R2 GET NEW SAVEAREA ADDRESS
 USING WORKAREA,R13 SET ADDRESSABILITY
 LR R1,R11 COPY PARM ADDRESS
 OPEN (INPUT,INPUT),MODE=31 OPEN INPUT DATASET
 OPEN (OUTPUT,OUTPUT),MODE=31 OPEN OUTPUT DATASET
EVENTLP EQU *
 GET INPUT,INRECLN GET INPUT DATA
 CLC INREC+1(9),=C'USRDA F65' AN EVENT START RECORD?
 BE EVENTST YES - DETERMINE EVENT TYPE
 B EVENTLP GET NEXT RECORD
EVENTST EQU *
 GET INPUT,INRECLN GET INPUT DATA
 CLC INREC+1(14),=C'Storage Obtain' STORAGE GET FUNCTION?
 BE STORGET YES - PROCESS GET
 CLC INREC+1(7),=C'Getmain' STORAGE GET FUNCTION?
 BE STORGET YES - PROCESS GET
 CLC INREC+1(15),=C'Storage Release' STORAGE FREE FUNCTION?
 BE STORFREE YES - PROCESS FREE
 CLC INREC+1(8),=C'Freemain' STORAGE FREE FUNCTION?
 BE STORFREE YES - PROCESS FREE
 B EVENTST FIND START RECORD
STORGET EQU *
 GET INPUT,INRECLN GET INPUT DATA
 CLC INREC+1(16),=C'Storage address=' DATA RECORD?
 BE GETDATA YES - RECORD WE'RE LOOKING FOR
 CLC INREC+1(15),=C'Return address=' ASID RECORD?
 BE GETASID YES - RECORD WE'RE LOOKING FOR
 CLC INREC+1(9),=C'USRDA F65' AN EVENT START RECORD?
 BE EVENTST YES - DETERMINE EVENT TYPE
 B STORGET TRY NEXT RECORD
GETASID EQU *
 MVC ASIDSAVE(4),INREC+31 SAVE THE ASID
 B STORGET GET NEXT RECORD
GETDATA EQU *

* OBTAIN STORAGE FOR A STORAGE GET TRACE ENTRY. WE WILL CAPTURE *

 58 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

* KEY PIECES OF INFORMATION AND SAVE IT HERE. *

 STORAGE OBTAIN,LENGTH=VSAELN,LOC=ANY GET ENTRY SAVE AREA
 XC Ø(VSAELN,R1),Ø(R1) CLEAR IT
 MVC VSAEASID-VSAE(4,R1),ASIDSAVE COPY THE ASID
 MVC Ø(4,R1),ALLOCPTR CHAIN TO NEXT ENTRY
 ST R1,ALLOCPTR SAVE NEW CHAIN START
 MVC DBL1(8),INREC+17 SAVE THE STORAGE ADDRESS
 TR DBL1(8),TRTABLE1 CONVERT TO HEX CHARACTERS
 PACK DBL2(5),DBL1(9) PACK IT
 MVC 4(4,R1),DBL2 COPY THE STARTING ADDR
 LA R15,INREC+34 POINT TO LENGTH
 XR R2,R2 CLEAR R2
 XR R3,R3 CLEAR R3
LENLP1 EQU *
 CLI Ø(R15),C' ' END OF LENGTH?
 BE DONELEN1 YES - DO LENGTH END STUFF
 MH R2,=H'1Ø' MULTIPLY CURRENT BASE BY 1Ø
 ICM R3,B'ØØØ1',Ø(R15) MOVE IN CURRENT DIGIT
 N R3,=X'ØØØØØØØF' TURN OFF FIRST NIBBLE
 AR R2,R3 ADD TO LENGTH
 LA R15,1(,R15) POINT TO NEXT BYTE
 B LENLP1 CHECK NEXT BYTE
DONELEN1 EQU *
 ST R2,12(,R1) SAVE LENGTH
 L R15,4(,R1) GET START ADDRESS
 AR R15,R2 SET END ...
 BCTR R15,Ø ADDRESS
 ST R15,8(,R1) SAVE ENDING ADDRESS
TIMEGET EQU *
 GET INPUT,INRECLN GET INPUT DATA
 CLC INREC+1(9),=C'USRDA F65' AN EVENT START RECORD?
 BE EVENTST YES - DETERMINE EVENT TYPE
 CLC INREC+16(4),=C'GMT-' TIME STAMP RECORD?
 BNE TIMEGET NO - CHECK NEXT RECORD
 L R1,ALLOCPTR GET CURRENT ENTRY ADDRESS
 MVC 16(15,R1),INREC+63 SAVE TIME STAMP
 B EVENTLP CHECK FOR NEXT EVENT

STORFREE EQU *

* WE HAVE DETECTED A STORAGE FREE TRACE EVENT. CAPTURE ASID, *
* STORAGE ADDRESS, AND LENGTH INFORMATION AND DETERMINE IF THERE *
* IS A STORAGE GET ENTRY ON THE CHAIN THAT MATCHES THIS FREE *
* REQUEST. *

 GET INPUT,INRECLN GET INPUT DATA
 CLC INREC+1(16),=C'Storage address=' DATA RECORD?
 BE FREEDATA YES - RECORD WE'RE LOOKING FOR
 CLC INREC+1(15),=C'Return address=' ASID RECORD?

 59© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 BE FREEASID YES - RECORD WE'RE LOOKING FOR
 CLC INREC+1(9),=C'USRDA F65' AN EVENT START RECORD?
 BE EVENTST YES - DETERMINE EVENT TYPE
 B STORFREE TRY NEXT RECORD
FREEASID EQU *
 MVC ASIDSAVE(4),INREC+31 SAVE THE ASID
 B STORFREE GET NEXT RECORD
FREEDATA EQU *
 MVC DBL1(8),INREC+17 SAVE THE STORAGE ADDRESS
 TR DBL1(8),TRTABLE1 CONVERT TO HEX CHARACTERS
 PACK DBL2(5),DBL1(9) PACK IT
 LA R15,INREC+34 POINT TO LENGTH
 XR R2,R2 CLEAR R2
 XR R3,R3 CLEAR R3
LENLP2 EQU *
 CLI Ø(R15),C' ' END OF LENGTH?
 BE DONELEN2 YES - DO LENGTH END STUFF
 MH R2,=H'1Ø' MULTIPLY CURRENT BASE BY 1Ø
 ICM R3,B'ØØØ1',Ø(R15) MOVE IN CURRENT DIGIT
 N R3,=X'ØØØØØØØF' TURN OFF FIRST NIBBLE
 AR R2,R3 ADD TO LENGTH
 LA R15,1(,R15) POINT TO NEXT BYTE
 B LENLP2 CHECK NEXT BYTE
DONELEN2 EQU *

* AT THIS POINT, DBL2 CONTAINS THE ADDRESS OF THE FREED BLOCK OF *
* STORAGE AND R2 CONTAINS THE FREED BLOCK LENGTH. RUN THROUGH THE *
* GET STORAGE CHAIN LOOKING FOR A BLOCK THAT CONTAINS THIS *
* FREE AREA ADDRESS. *

 L R4,ALLOCPTR GET CHAIN START ADDRESS
 LA R5,ALLOCPTR KEEP ADDR OF SAVE AREA
ALLOCCHK EQU *
 LTR R4,R4 AN ALLOC ENTRY?
 BZ NOMATCH NO - ISSUE A MESSAGE
 CLC DBL2(4),4(R4) ADDRESS TOO LOW?
 BL NEXTENT YES - TRY NEXT ENTRY
 CLC DBL2(4),8(R4) ADDRESS TOO HIGH?
 BH NEXTENT YES - TRY NEXT ENTRY
 CLC VSAEASID-VSAE(4,R4),ASIDSAVE SAME ASID?
 BNE NEXTENT NO - ADDR IS IN RANGE, ASID DIFF
 L R1,12(,R4) GET LENGTH
 CR R2,R1 A LENGTH MATCH?
 BNE NOTALL NO - WE'RE FREEING THE WHOLE CHUNK

* WE'VE DETECTED AN ALLOCATED STORAGE BLOCK CONTAINING THE FREE *
* ADDRESS. THE ENTIRE ENTRY IS BEING FREED. REMOVE THE ENTRY *
* FROM THE CHAIN AND PROCESS THE NEXT EVENT. *

 MVC Ø(4,R5),Ø(R4) MAINTAIN CHAIN INTEGRITY

 60 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 STORAGE RELEASE,LENGTH=VSAELN,ADDR=(R4)
 B EVENTLP CHECK FOR NEXT EVENT
NOTALL EQU *
 CLC 4(4,R4),DBL2 FREED CHUNK AT START?
 BE ATSTART YES - THIS IS THE EASIEST
 L R15,8(,R4) GET ENDING ADDR
 LA R15,1(,R15) ADD ONE
 SR R15,R2 SUBTRACT THE LENGTH
 L R1,DBL2 GET START ADDR
 CR R15,R1 FREED CHUNK AT END?
 BE ATEND YES - ALMOST AS EASY AS AT START
INMIDDLE EQU *

* WE'VE DETECTED AN ALLOCATED STORAGE BLOCK CONTAINING THE FREE *
* ADDRESS. THE ADDRESS AND LENGTH INDICATE A STORAGE FREE REQUEST *
* IN THE MIDDLE OF AN EXISTING GET BUFFER. WE NEED TO BREAK UP *
* THE GET ENTRY INTO TWO SEPARATE BLOCKS FOR FUTURE REFERENCE. *

 STORAGE OBTAIN,LENGTH=VSAELN,LOC=ANY
 XC Ø(VSAELN,R1),Ø(R1) CLEAR IT
 LR R5,R1 SAVE STORAGE ADDRESS
 MVC Ø(VSAELN,R5),Ø(R4) COPY CURRENT ENTRY
 ST R5,Ø(,R4) ADD NEW ENTRY INTO CHAIN
 L R15,DBL2 GET FREE BLOCK ADDR
 S R15,4(,R4) SUBTRACT BLOCK START ADDR
 ST R15,12(,R4) SAVE NEW LENGTH
 L R1,4(,R4) GET START ADDR
 AR R1,R15 ADD LENGTH
 BCTR R1,Ø SET END ADDR
 ST R1,8(,R4) SAVE NEW END ADDR
 L R15,DBL2 GET START ADDR FOR NEW ENTRY
 ST R15,4(,R5) SAVE IN ENTRY
 L R1,8(,R5) GET END ADDR
 LA R1,1(,R1) ADD ONE
 SR R1,R15 GET LENGTH
 ST R1,12(,R5) SAVE LENGTH OF NE ENTRY
 B EVENTLP CHECK FOR NEXT EVENT
ATSTART EQU *

* WE'VE DETECTED AN ALLOCATED STORAGE BLOCK CONTAINING THE FREE *
* ADDRESS. THE ADDRESS AND LENGTH INDICATE THAT THE FREE REQUEST *
* IS NOT FOR AN ENTIRE GET ENTRY, BUT IT IS RIGHT AT THE START OF *
* AN EXISTING ENTRY. ALTER THE STARTING ADDRESS OF THE EXISTING *
* ENTRY AND ADJUST ITS LENGTH ACCORDINGLY. *

 L R15,4(,R4) GET START ADDR
 AR R15,R2 ADD LENGTH
 ST R15,4(,R4) SAVE NEW START ADDR
 L R15,12(,R4) GET LENGTH
 SR R15,R2 SUBTRACT FREE BLOCK LENGTH

 61© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 ST R15,12(,R4) SAVE NEW BLOCK LENGTH
 B EVENTLP CHECK FOR NEXT EVENT
ATEND EQU *

* WE'VE DETECTED AN ALLOCATED STORAGE BLOCK CONTAINING THE FREE *
* ADDRESS. THE ADDRESS AND LENGTH INDICATE THAT THE FREE REQUEST *
* IS NOT FOR AN ENTIRE GET ENTRY, BUT IT IS RIGHT AT THE END OF *
* AN EXISTING ENTRY. ADJUST THE LENGTH OF THE EXISTING ENTRY *
* ACCORDINGLY. *

 BCTR R15,Ø REDUCE ADDR BY ONE
 ST R15,8(,R4) SAVE NEW END ADDR
 L R15,12(,R4) GET LENGTH
 SR R15,R2 SUBTRACT FREE BLOCK LENGTH
 ST R15,12(,R4) SAVE NEW BLOCK LENGTH
 B EVENTLP CHECK FOR NEXT EVENT
NEXTENT EQU *
 LR R5,R4 SAVE THIS ENTRY ADDRESS
 L R4,Ø(,R4) GET ADDR OF NEXT CHAIN ENTRY
 B ALLOCCHK GO CHECK IT OUT
NOMATCH EQU *
 MVC OUTREC(8Ø),OUTREC2 MOVE IN OUTPUT RECORD
 MVC OUTREC+7Ø(8),INREC+17 MOVE IN STORAGE ADDRESS
 PUT OUTPUT,OUTREC WRITE THE MESSAGE
 OI FLAG,FREEBLK SET UNPAIRED FREE BLOCK FLAG
 B EVENTLP CHECK FOR NEXT EVENT

ALLDONE EQU *
 CLC ALLOCPTR(4),=F'Ø' ANY EXISTING STORAGE REFERENCES?
 BNE MEMLEAK YES - MAY INDICATE MEMORY LEAK
 PUT OUTPUT,OUTREC1 WRITE MESSAGE
 TM FLAG,FREEBLK UNPAIRED FREE BLOCK ENCOUNTERED?
 BO RETURNØ4 YES - RETURN RC=4
 B RETURN WE'RE DONE

MEMLEAK EQU *

* AT THIS POINT, WE HAVE DETERMINED THAT STORAGE GET REQUESTS IN *
* THE TRACE OUTPUT DATA DO NOT HAVE CORRESPONDING FREE REQUESTS. *
* *
* PRODUCE AN OUTPUT RECORD FOR EACH ENTRY ON THE CHAIN. *

 PUT OUTPUT,OUTREC3 WRITE MESSAGE

* PROCESS THE CHAIN FROM END TO START SO THAT THE OUTPUT RECORDS *
* ARE PRODUCED IN TIMESTAMP ASCENDING SEQUENCE. *

LEAK EQU *
 L R4,ALLOCPTR GET STARTING ENTRY ADDR
 LA R5,ALLOCPTR SAVE POINTER ADDR

 62 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

LEAKLP EQU *
 CLC Ø(4,R4),=F'Ø' LAST ENTRY?
 BE LASTENT YES - PROCESS LAST ENTRY
 LR R5,R4 SAVE PREV ADDR
 L R4,Ø(,R4) POINT TO NEXT ENTRY
 B LEAKLP CHECK IT OUT
LASTENT EQU *
 XC Ø(4,R5),Ø(R5) CLEAR POINTER
 MVC DBL2(4),4(R4) COPY BLOCK ADDRESS
 UNPK DBL1(9),DBL2(5) UNPACK THE ADDRESS
 NC DBL1(8),=8X'ØF' TURN OFF HIGH NIBBLE
 TR DBL1(8),=C'Ø123456789ABCDEF'
 MVC OUTREC(8Ø),OUTREC4 MOVE IN MESSAGE MODEL
 MVC OUTREC+13(8),DBL1 MOVE IN THE ADDRESS
 MVC DBL2(4),12(R4) COPY BLOCK LENGTH
 UNPK DBL1(9),DBL2(5) UNPACK THE LENGTH
 NC DBL1(8),=8X'ØF' TURN OFF HIGH NIBBLE
 TR DBL1(8),=C'Ø123456789ABCDEF'
 MVC OUTREC+26(8),DBL1 MOVE IN THE LENGTHS
 MVC OUTREC+65(15),16(R4) MOVE IN TIMESTAMP
 PUT OUTPUT,OUTREC WRITE THE MESSAGE
 STORAGE RELEASE,LENGTH=VSAELN,ADDR=(R4)
 CLC ALLOCPTR(4),=F'Ø' LAST ENTRY?
 BE RETURNØ4 YES - WE'RE DONE
 B LEAK TRY ANOTHER TIME

RETURN EQU *
 CLOSE (INPUT),MODE=31 CLOSE INPUT DATASET
 CLOSE (OUTPUT),MODE=31 CLOSE OUTPUT DATASET
 LR R1,R13 COPY STORAGE ADDRESS
 L R3,4(,R1) GET RETURN SAVEAREA ADDRESS
 STORAGE RELEASE,LENGTH=WORKLEN,ADDR=(R1)
 LR R13,R3 RESTORE RETURN SAVEAREA ADDRESS
 LM R14,R12,12(R13) RESTORE THE REGISTERS
 XR R15,R15 SET RETURN CODE
 BR R14 RETURN

RETURNØ4 EQU *
 CLOSE (INPUT),MODE=31 CLOSE INPUT DATASET
 CLOSE (OUTPUT),MODE=31 CLOSE OUTPUT DATASET
 LR R1,R13 COPY STORAGE ADDRESS
 L R3,4(,R1) GET RETURN SAVEAREA ADDRESS
 STORAGE RELEASE,LENGTH=WORKLEN,ADDR=(R1)
 LR R13,R3 RESTORE RETURN SAVEAREA ADDRESS
 LM R14,R12,12(R13) RESTORE THE REGISTERS
 LA R15,4 SET RETURN CODE
 BR R14 RETURN

INPUT DCB MACRF=(GM),DDNAME=INPUT,DSORG=PS,EODAD=ALLDONE
OUTPUT DCB MACRF=(PM),DDNAME=OUTPUT,LRECL=8Ø,DSORG=PS

 63© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

OUTREC1 DC CL8Ø'ALL ALLOCATED STORAGE HAS BEEN RELEASED'
OUTREC2 DC C'GFS TRACE DOES NOT CONTAIN OBTAIN REFERENCE FOR'
 DC CL(8Ø-L'OUTREC2)' FREED STORAGE ADDRESS XXXXXXXX'
OUTREC3 DC CL8Ø'POTENTIAL MEMORY LEAK DETECTED'
OUTREC4 DC C'STORAGE ADDR XXXXXXXX LEN(xxxxxxxx) NOT RELEASED FOR'
 DC CL(8Ø-L'OUTREC2)' TRACE ENTRY '

TRTABLE1 DC 256X'ØØ'
 ORG TRTABLE1+C'A'
 DC X'ØAØBØCØDØEØF'
 ORG TRTABLE1+C'Ø'
 DC X'ØØØ1Ø2Ø3Ø4Ø5Ø6Ø7Ø8Ø9'
 ORG ,

WORKAREA DSECT
SAVEAREA DS 18F
INPARM DS F
ALLOCPTR DS F
ASIDSAVE DS CL4
SPSAVE DS CL4
KEYSAVE DS CL2
DBL1 DS 2D
DBL2 DS 2D
INRECLN DS CL4
INREC DS CL133
OUTREC DS CL8Ø
FLAG DS CL1
FREEBLK EQU X'8Ø'
WORKLEN EQU *-WORKAREA
VSAE DSECT VIRTUAL STORAGE ALLOCATION ENTRY
VSAENXT DS F ADDR OF NEXT ENTRY
VSAESTRT DS F VIRTUAL ADDR OF STORAGE BLOCK
VSAEEND DS F ENDING ADDR OF STORAGE BLOCK
VSAELEN DS F LENGTH OF THIS STORAGE BLOCK
VSAETIME DS CL16 TIMESTAMP OF THIS TRACE ENTRY
VSAEASID DS CL4 ASID
VSAERSV1 DS CL12 RESERVED
VSAELN EQU *-VSAE
 $REQU
 END

Systems Programmer
(Canada) © Xephon 2003

 64 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Automating the defrag process and preparing user-
friendly reports

THE NEED FOR DEFRAG OPERATIONS
We have frequently been through situations like this: there is
enough space on a single disk for a new file allocation, but,
because of high fragmentation, DADSM cannot manage the new
allocations. This is because of the nature of allocation algorithms
and the frequent creation, extension, and deletion of datasets
causes the free space on DASD volumes to become fragmented.
This results in inefficient use of DASD storage space, an
increase in space-related abends, performance degradation
caused by excessive DASD arm movement, and an increase in
the time required for functions that are related to Direct Access
Device Space Management (DADSM).
So the defrag operation in this situation relieves the space-
related problems, consolidating the free space on a volume to
help prevent out-of-space abends on new allocations. Defrag
operations relocate dataset extents on a DASD volume to
reduce or eliminate free-space fragmentation. In summary, the
objective of the defrag is to create the most contiguous space
possible on the disk.

THE UTILITY DEFRAGJ
The utility that I developed automates the defragmentation
process and prepares user-friendly reports for the systems
programmers. Along with three REXX programs and one edit
macro, the utility uses two JCL files, two JES2 procedures, and
two SYSIN datasets.
It generates a report showing before and after statistics for each
defrag operation and sends it to specific e-mail addresses in a
TCP/IP network via SMTP. In addition, it maintains a cumulative
statistics report to keep track of the number of defrag operations

 65© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

and disk volumes involved. Statistics in this report are aimed at
identifying the problematic disk volumes that have been
defragmented most often, and which may therefore need
special attention.
The algorithm used by the utility is based on the defragmentation
index value. This index varies between 0 and 999. Lower
fragmentation index values represent larger pieces of free space
on the volume; therefore, low fragmentation index values are
better than high values. The utility will defragment only those
disks in need of defragmentation
DCOLLECT records are read in the utility for all volumes that are
candidates for defrag, and those volumes having an index of 250
or higher are chosen for the defrag process. You can specify a
different fragmentation index in the job DEFRAGJ to meet your
needs. Note that, if you keep it too low, you may have too many
disks to defrag and this may affect your system’s performance.
On the other hand, if a disk’s fragmentation index is quite high,
it doesn’t necessarily mean that the disk needs the defrag
process. For example, if a disk has just three cylinders left and
the largest free extent is two cylinders, then its fragmentation
index will be high. If we defragment it, actually we wouldn’t gain
too much. For this reason, free space percentage will be the
second criterion in selecting defrag-candidate volumes. This is
15% in the utility; however, you can change it in step PASO4 of
the JCL DEFRAGJ.

DETERMINING THE FRAGMENTATION INDEX
To determine the fragmentation index of a volume without
actually performing the DEFRAG operation, code the NORUN
parameter on the EXEC statement of the ADRDSSU program.
In addition to the fragmentation index, the number of free
cylinders, the number of free tracks, the number of free extents,
the largest free extent size, and the percentage of free space on
the volume will be listed:
//DEFRAG EXEC PGM=ADRDSSU,PARM='TYPRUN=NORUN'
//SYSPRINT DD SYSOUT=A

 66 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//PRIMARY DD VOL=SER=PEX1Ø1,UNIT=339Ø,DISP=OLD
//SYSIN DD *
 DEFRAG DDNAME(PRIMARY)

Another easy way to figure it out is to use the Option 2.1 (DASD)
of the ISMF application. You can observe all space characteristics
of the disk volumes including the fragmentation index value.
Example:
LINE VOLUME FREE % ALLOC FRAG LARGEST FREE
OPERATOR SERIAL SPACE FREE SPACE INDEX EXTENT EXTENTS
--(1)---- -(2)-- --(3)-- (4)- --(5)-- -(6)- --(7)-- --(8)--
 PSE1Ø1 1Ø2Ø229 37 1751271 115 854885 1Ø2
 PSE1Ø2 681573 25 2Ø89927 194 381818 9Ø
 PSE1Ø3 552474 2Ø 2219Ø26 238 124395 47
 PSE1Ø4 115Ø489 42 1621Ø11 241 3791Ø7 129
 PSE1Ø5 859256 31 1912244 249 4Ø2292 127
--------- ------ ---------- BOTTOM OF DATA ---------- ------ ----

WHEN TO RUN THE DEFRAGJ FUNCTION
The defrag command of the program ADRDSSU locks the
VTOC (via RESERVE) and VVDS, if it exists, on the volume. The
DEFRAG function that uses the DEFRAGJ job also serializes on
datasets via ENQ or dynamic allocation. These activities might
cause excessive wait time for other jobs to update the VTOC.
Therefore, times of low system activity are best for DEFRAGJ
runs. In our data centre we schedule it for midnight on a daily
basis.

HOW TO SET UP THE DEFRAGJ UTILITY
Execute the job DEFRAGJ1 to create some of the utility’s
datasets. Place the procedures (DEFRAGP1 and DEFRAGPB)
into one of your JES2 procedure libraries and the REXX EXECs
and the edit macro (DEFRAGR1, DEFRAGR2, DEFRAGR3,
and DEFRAGM) into one of your SYSPROC libraries. Do not
forget in the procedure members to update the library name in
the SYSPROC DD statement with the library you’ve chosen.
Enter the names of datasets in the exclude sysin dataset
(EXP.SMS.DEFRAG.SYSIN.EXCLUDE) so that the DEFRAG

 67© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

doesn’t move them. The final thing to do is schedule the job
DEFRAGJ on a daily/weekly basis, according to your
requirements, via a scheduler product.
Additional notes:
1 DFSMSdss automatically excludes and does not relocate

some of the datasets, eg user catalogs or RACF control
datasets, so you need not exclude them in the defrag
operation. (Please refer to DFSMSdss Storage Administration
book to get a complete list of excluded datasets.) On the
other hand, you have to exclude system datasets that are
opened and are being accessed without an enqueue; for
example procedure libraries can be excluded from the
defrag.

2 You can specify the CONSOLIDATE option in the SYSIN
dataset (EXP.SMS.DEFRAG.SYSIN). In this case, DEFRAG
attempts to combine the dataset extents into a single extent
when possible.

Dataset nomenclature used in the utility:
• EXP.SMS.CNTL – PO dataset which consists of REXX

EXECs/edit macro/JCL
• EXP.SMS.DEFRAG.DCOLLECT – Dcollect dataset
• EXP.SMS.DEFRAG.REPORT – defrag-candidate disks

report dataset
• EXP.SMS.DEFRAG.STATS – daily defrag statistics report

dataset (cumulative)
• EXP.SMS.DEFRAG.SUMMARY – daily defrag summary

report dataset
• EXP.SMS.DEFRAG.SUMMARY.GDG – daily defrag

summary report (gdg dataset)
• EXP.SMS.DEFRAG.SYSIN – defrag sysin1 (includes fixed

control statements)

 68 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• EXP.SMS.DEFRAG.SYSIN.EXCLUDE – defrag sysin2
(includes datasets to be excluded from defrag).

SAMPLE REPORTS GENERATED BY DEFRAGJ
Defrag detailed report for each disk volume (spool output,
SYSTSPRT):
********************************* TOP OF DATA **************************

DEFRAG STATISTICS FOR VOLUME - PSE1Ø3 -

 BEFORE AFTER
 ------ ------
FREE CYLINDERS ØØØ642 ØØØ656
FREE TRACKS ØØØ26Ø ØØØØ5Ø
FREE EXTENTS ØØØØ36 ØØØØØ3
LARGEST FREE EXTENT (CYL,TRK) ØØØ154,ØØØ2 ØØØ47Ø,ØØ24
FRAGMENTATION INDEX Ø.239 Ø.Ø95

PERCENT FREE SPACE 19
DATASET EXTENTS RELOCATED ØØØ22Ø
TRACKS RELOCATED ØØ4939
******************************* BOTTOM OF DATA *************************

Defrag summary report (dataset,
EXP.SMS.DEFRAG.SUMMARY):
***************************** Top of Data ******************************
 SUMMARY OF DEFRAGMENTATION PROCESS IN THE LPAR -P1Ø1- 16/Ø4/Ø2 | 5:ØØam

Volume T1 T2 T3 T4
------ ------ ------ ------ ------
PSE1Ø3 154 47Ø 36 3
PEX1Ø6 554 168Ø 1Ø1 3

Note: to get more information for each defragmented disk, check
out the EXPSMS02 ouput in the spool:
LEYENDA:
========
T1: VOLUME Largest_Free_Extent (Cyl) - Before Defrag
T2: VOLUME Largest_Free_Extent (Cyl) - After Defrag
T3: Free Extents - Before Defrag
T4: Free Extents - After Defrag
****************************** Bottom of Data **************************

Defrag statistics report (dataset, EXP.SMS.DEFRAG.STATS):

 69© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 ***************************** Top of Data ****************
 16/Ø4/Ø2 - 2 PSE1Ø3,PEX1Ø6
 18/Ø4/Ø2 - 5 PEX111,PSE1Ø1,PEX113,PEX116,PSE1Ø2
 21/Ø4/Ø2 - 1 PEX1Ø6
 **************************** Bottom of Data **************

DEFRAGJ JCL
//EXPSMSØ1 JOB MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID,CLASS=E
//*
//*--*/
//* AUTOMATED DEFRAG UTILITY (- Batch -) */
//* */
//* Jcl : DefragJ */
//* REXX's called : DefragR1, DefragR2 */
//* Function : Generates an report which will consist of defrag- */
//* candidate disk volumes, then defragments them. */
//* */
//*--*/
//PASO1 EXEC PGM=IDCAMS
//*--*/
//* Delete Report and Dcollect dataset. */
//*--*/
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE EXP.SMS.DEFRAG.DCOLLECT
 DELETE EXP.SMS.DEFRAG.REPORT
//*
//*--*/
//* Collect dataset information for all online volumes. */
//*--*/
//PASO2 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//DCOUT DD DSN=EXP.SMS.DEFRAG.DCOLLECT,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(TRK,(3,1),RLSE),
// DSORG=PS,RECFM=VB,LRECL=644
//SYSIN DD *
 DCOLLECT OUTFILE(DCOUT) VOLUMES(*) NODATAINFO
//*
//*--*/
//* Allocate Report dataset. */
//*--*/
//PASO3 EXEC PGM=IEFBR14
//REPORT DD DSN=EXP.SMS.DEFRAG.REPORT,DISP=(NEW,CATLG),
// BLKSIZE=Ø,SPACE=(TRK,(3,1)),RECFM=FBA,LRECL=133,UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

 70 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*
//*--*/
//* DefragR1 : */
//* Build Report dataset by using Dcollect records. */
//* This report will hold Defrag-candidate volumes that meet the */
//* conditions set by two parameters: Frag.index and Free space% . */
//* */
//* Parameters passed to the REXX DefragR1 */
//* ====================================== */
//* These are Defrag critera parameters. */
//* */
//* 25Ø:Fragmentation index threshold */
//* 15 :Disk free space percent threshold */
//* */
//* In order a disk volume to be defragmented, it must have fragm. */
//* index of 25Ø or more AND Free space usage of 15% or more. */
//*--*/
//PASO4 EXEC DEFRAGP1
//DCOLIN DD DISP=SHR,DSN=EXP.SMS.DEFRAG.DCOLLECT
//REPORT DD DISP=SHR,DSN=EXP.SMS.DEFRAG.REPORT
//SYSTSIN DD *
PROFILE NOPREF
ISPSTART CMD(DEFRAGR1 25Ø 15) +
BATSCRW(132) BATSCRD(27) BREDIMAX(3) BDISPMAX(99999999)
//*
//*---*/
//* DefragR2 : Builds a dynamic Jcl. Job steps of this Jcl calls the */
//* DefragPB procedure to defrag a single disk volume. */
//* */
//* Example: */
//* //EXPSMSØ2 JOB MSGCLASS=Z,MSGLEVEL=(1,1),TIME=144Ø, */
//* // NOTIFY=&SYSUID,CLASS=E */
//* //* */
//* //STEP1 EXEC DEFRAGPB,DSK=PSE1Ø4,FLAG=Ø */
//* //STEP2 EXEC DEFRAGPB,DSK=PSE1Ø3,FLAG=Ø */
//* //STEP3 EXEC DEFRAGPB,DSK=PEX19Ø,FLAG=1 */
//* */
//*--*/
//PASO5 EXEC DEFRAGP1
//SYSTSIN DD *
ISPSTART CMD(DEFRAGR2) +
BATSCRW(132) BATSCRD(27) BREDIMAX(3) BDISPMAX(99999999)
//*
//*-------------------- End of Job DefragJ --------------------------*/

DEFRAGJ1 JCL
//EXPSMSØ1 JOB MSGCLASS=X,MSGLEVEL=(1,1),CLASS=E

 71© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

//*--*/
//* AUTOMATED DEFRAG UTILITY (- Batch -) */
//* */
//* Jcl : DefragJ1 */
//* Function : This JCL has to be executed first to set-up the */
//* "Automatic Defrag" utility datasets. */
//* */
//* Datasets created */
//* ================= */
//* 1- Exp.Sms.Defrag.Summary.Gdg : GDG dataset to hold daily */
//* Defrag summary report. */
//* */
//* 2- Exp.Sms.Defrag.Stats : Statistics dataset to hold daily */
//* Defrag operation statistics. */
//* */
//* 3- Exp.Sms.Defrag.Sysin : Sysin used by Adrdssu program. */
//* 4- Exp.Sms.Defrag.Sysin.Exclude: Sysin used by Adrdssu for */
//* excluding datasets from Defrag. */
//* */
//*--*/
//DEFINE1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEF GDG (NAME(EXP.SMS.DEFRAG.SUMMARY.GDG) -
 NOEMPTY -
 SCRATCH -
 LIMIT(7))
//*--*/
//DEFINE2 EXEC PGM=IEFBR14
//STATS DD DSN=EXP.SMS.DEFRAG.STATS,DISP=(,CATLG),
// DCB=(LRECL=9Ø,RECFM=FB,BLKSIZE=Ø),UNIT=SYSALLDA,SPACE=(CYL,1)
//*--*/
//DEFINE3 EXEC PGM=ICEGENER
//SYSUT1 DD *
 DEFRAG DDNAME(IN) MAXMOVE(999999,1) PASSDELAY(999) WAIT(2,2) -
 EXCLUDE(DDNAME(EXCLUDE))
//*
//SYSUT2 DD DSN=EXP.SMS.DEFRAG.SYSIN,DISP=(,CATLG),
// DCB=(LRECL=8Ø,RECFM=F,BLKSIZE=Ø),UNIT=SYSALLDA,SPACE=(TRK,1)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//*--*/
//DEFINE4 EXEC PGM=ICEGENER
//SYSUT1 DD *
 EXCLUDE(LIST(-
 ENTER.HERE.DATA.SETS -
 ENTER.HERE.DATA.SETS -
))

 72 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*
//SYSUT2 DD DSN=EXP.SMS.DEFRAG.SYSIN.EXCLUDE,DISP=(,CATLG),
// DCB=(LRECL=8Ø,RECFM=F,BLKSIZE=Ø),UNIT=SYSALLDA,SPACE=(TRK,1)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//*-------------------- End of Job DefragJ1 --------------------------*/

DEFRAGM EDIT MACRO
/* REXX */
"Isredit Macro"
/*--*/
/* AUTOMATED DEFRAG UTILITY (- Batch -) */
/* Edit macro : DefragM */
/* Called from : REXX DefragR3 */
/* Function : Formats the Sysprint dataset of the defrag process. */
/* (Eliminates unnecessary records.) */
/*--*/
"Isredit Exclude ALL"
"Isredit Find 'FREE CYLINDERS ' ALL"
"Isredit Find 'FREE TRACKS ' ALL"
"Isredit Find 'FREE EXTENTS ' ALL"
"Isredit Find 'LARGEST FREE EXTENT' ALL"
"Isredit Find 'FRAGMENTATION INDEX' ALL"
"Isredit Find 'PERCENT FREE SPACE ' ALL"
"Isredit Find 'TRACKS RELOCATED ' ALL"
"Isredit Find 'DATASET EXTENTS RELOCATED' ALL"
/*--*/
/* Delete all excluded lines and save the dataset. */
/*--*/
"Isredit Delete ALL X"
"Isredit Save"
"Isredit Cancel"
Return
/*------------------ End of Edit-macro DefragM ----------------------*/

DEFRAGP1 JES2 PROCEDURE
//DEFRAGPØ PROC
//*--*/
//* AUTOMATED DEFRAG UTILITY (- Batch -) */
//* */
//* Procedure : DefragP1 */
//* Called from : Job DefragJ */
//* Function : Allocates Ispf-related datasets which are */
//* necessary to be able to run REXX programs */

 73© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Contributions for MVS Update can be sent to Trevor
Eddolls at trevore@xephon.com. A copy of our
Notes for Contributors is available at
www.xephon.com/nfc.

//* DefragR1 and DefragR2. */
//*--*/
// EXEC PGM=IKJEFTØ1
//STEPLIB DD DISP=SHR,DSN=SYS1.DGTLLIB
//SYSPROC DD DISP=SHR,DSN=EXP.SMS.CNTL
//ISPPLIB DD DISP=SHR,DSN=ISP.SISPPENU
//ISPSLIB DD DISP=SHR,DSN=ISP.SISPSENU
//ISPTLIB DD DISP=SHR,DSN=ISP.SISPTENU
//ISPMLIB DD DISP=SHR,DSN=ISP.SISPMENU
// DD DISP=SHR,DSN=ISP.SISPMENU
//ISPPROF DD DISP=(NEW,DELETE,DELETE),DSN=&&PROF,
// DCB=(ISP.SISPTENU),SPACE=(TRK,(1,1,1)),UNIT=SYSDA
//*
//SYSTSPRT DD SYSOUT=(,),OUTLIM=5ØØØØØ
//ISPLOG DD SYSOUT=(,),DCB=(LRECL=125,BLKSIZE=129,RECFM=VA)
// PEND
//*-------------------- End of Proc DefragP1 ------------------------*/

Editor’s note: this article will be concluded in the next issue.
Atalay Gul
Systems Programmer
EDS Barcelona (Spain) © Xephon 2003

MVS news

IBM has announced Lotus Domino for z/OS
V6.0, which is said to provide many
significant enhancements, including
improved scalability with lower CPU usage.

Lotus Domino for z/OS V6.0 is integrated
with WebSphere and it implements platform
statistics for CPU and storage (memory)
usage that integrate RMF (TM) Monitor II
information directly with the Domino
statistics package, and it can utilize server
monitoring via the Tivoli Analyzer for Lotus
Domino, which provides health assessments
based on Domino statistics, including the
newly-implemented platform statistics.

Enhancements allow users to not only create
selective replicas, specify document and
attachment size limits, set scheduled
replication, and leverage streaming
replication, but also gain improved wireless
access to PDAs, pagers, and Web-enabled
mobile phones.

Domino 6 provides persistent connections,
improved session handling, better denial of
service attack handling, and more
administrative control over things like URL
length and number of path segments.

For further information contact your local
IBM representative.
URL: http://www.ibm.com.

* * *

IBM has announced Infoprint XML
Extender for z/OS, which connects
application output using XML data
interchange format to the AFP print and
presentation output system.

Infoprint XML Extender for z/OS is software
that operates on XML documents to produce
AFP output. It can accept either XML

documents with companion XSL style
sheets, or documents with XSL Formatting
Objects (XSL-FO) as input into the process.

Infoprint XML Extender for z/OS
complements and extends support in Print
Services Facility (PSF) V3.3 for formatting
XML data with AFP page layouts.

For further information contact your local
IBM representative.
URL: http://www.ibm.com.

* * *

UMX Technologies has announced
Mainframe in a Box, a small to medium-sized
mainframe running on a specially designed
Intel-based UMX Server using Microsoft
Windows 2000 or XP as the GUI.

The installed software mainframe is UMX
Virtual Mainframe V4.2 microcode engine,
which functions between the IBM operating
system and the common Intel-based
hardware to ‘virtualize’ the hardware to the
software.

Mainframe in a Box uses the original IBM
operating system and existing applications,
without a single modification. All operating
systems (OS/390, z/OS, VM, z/VM, and
VSE) and PL/I, CICS, IMS, COBOL, and
DB2 applications run on this new mainframe.

PCI add-in cards support ESCON and
Parallel Channel extension technologies to
provide mainframe connectivity.

For further information contact:
UMX Technologies, Kruislaan 400
NL-1098 SM, Amsterdam, The Netherlands.
Tel: (+31)20 888 4044.
URL: http://www.umxtech.com/
index0.html.

x xephon

	Introducing and backing out software changes with minimum disruption
	A multi-platform/multi-feature solution
	Expanding MFS (IMS/DC) for EQU statements
	Simplify master catalog operations across different partitions
	z/Architecture overview - part 2
	Assessing programs for virtual storage memory leaks
	Automating the defrag process and preparing user-friendly reports
	MVS news

