

© Xephon Inc 2004

April 2004

211

In this issue

MVS

3 Easy dynamic allocation!
9 Porting a Java Web application

to z/OS
24 zSeries CPC capping
28 Keeping track of non-reusable

ASIDs
48 REXX routine to count lines of

COBOL code – part 2
62 JCL tips – part 1
72 Defining page datasets for a

new partition without STEPCAT
75 MVS news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
£340.00 in the UK; $505.00 in the USA and
Canada; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1999 issue, are available separately
to subscribers for £29.00 ($43.50) each
including postage.

MVS Update on-line
Code from MVS Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon
.com/mvs; you will need to supply a word
from the printed issue.

© Xephon plc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in MVS Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Easy dynamic allocation!

INTRODUCTION
The use of the dynamic allocation SVC (99) is an arduous and
error prone process. To help you with SVC 99, there is an IBM
utility, BPXWDYN, which is an undocumented/semi-documented
service used by USS.
BPXWDYN is a text interface to a subset of the SVC 99 (dynamic
allocation) and SVC 109 (dynamic output) services. BPXWDYN
supports dataset allocation, unallocation, concatenation, and
adding and deleting output descriptors. BPXWDYN covers only
a subset of SVC 99 parameters, but probably supports everything
you need including USS path allocation.
The primary intent of BPXWDYN is to make dynamic allocation
and dynamic output services easily accessible to programs
running outside of a TSO environment; however, it also functions
in a TSO environment.
BPXWDYN documentation is available at ftp://
ftp.software.ibm.com/s390/zos/tools/bpxwdyn/bpxwdyn.html.
This article describes how to use BPXWDYN with REXX and
Assembler.

BPXWDYN SERVICE

BPXWDYN calling convention
BPXWDYN is an IBM service located in SYS1.LINKLIB. It is
designed to be called directly from REXX, but may also be called
by any program using a parameter list.
Several parameter list formats are supported:
• REXX external function parameter list.
• Conventional MVS variable-length parameter string.

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

REXX external function parameter list
The REXX external function parameter list allows REXX programs
to call the BPXWDYN program as a function or subroutine.
It must be called with a single string parameter:
 if BPXWDYN("alloc dd(sysin) da('my.dataset') shr")<>Ø then
 call allocfailed

Conventional MVS variable-length parameter string
The conventional MVS variable-length parameter string is the
same parameter list as the one generated by ADDRESS
LINKMVS with one parameter and JCL with EXEC
PGM=xxxxxxxx,PARM=.
This parameter list form is simple to use by any Assembler
program:
 -------------------*
 R1-->|1| parm string addr *---*
 -------------------* |

 | *-------*---------------------*
 *---->| length| parameter string |
 ------*---------------------*

Note that this is a single item variable-length parameter list. The
high bit is on in the parameter address word and length is a half
word.

BPXWDYN syntax
BPXWDYN accepts four request types:
• ALLOC – for dynamic allocation.
• FREE – for dynamic unallocation of a DD or to free an output

descriptor.
• CONCAT – to concatenate several DDnames.
• OUTDES – to create an output descriptor.
For each request type, it is possible to specify additional
parameters (keys). There are too many options to be included in

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

this article; you should read the BPXWDYN documentation page
on the IBM FTP server to get more details.
ALLOC sample:
CALL BPXWDYN("ALLOC DD(DD1) DA(MYUSER.BPXWDYN) NEW CATALOG
 UNIT(339Ø) CYL SPACE(1,1)
 DSORG(PS) RECFM(F,B) LRECL(8Ø) BLKSIZE(2344Ø)")
SAY "ALLOC - RC = " RESULT

ALLOC HFS sample:
CALL BPXWDYN("ALLOC DD(DD3) PATH('/tmp/bpxwdyn.txt')
 PATHOPTS(OWRONLY,OCREAT) PATHMODE(SIRWXU,SIRGRP)
 PATHDISP(KEEP,DELETE) msg(wtp)")
SAY "ALLOC - RC = " RESULT

FREE sample:
CALL BPXWDYN("FREE DD(DD1)")
SAY "FREE - RC = " RESULT

CONCAT sample:
CALL BPXWDYN("ALLOC DD(DD1) DA(MYUSER.MCAT.DLB$Ø1) SHR")
SAY "ALLOC - RC = " RESULT

CALL BPXWDYN("ALLOC DD(DD2) DA(MYUSER.MCAT.DLB$Ø2) SHR")
SAY "ALLOC - RC = " RESULT

CALL BPXWDYN("CONCAT DDLIST(DD1,DD2) MSG(WTP)")
SAY "CONCAT - RC = " RESULT

OUTDES sample:
CALL BPXWDYN("OUTDES(MYDESC) COPIES(4) DEPT(MYDEPT) DEST(MYDEST)")
SAY "OUTDES - RC = " RESULT

BPXWDYN return codes
When BPXWDYN is called as a REXX function or subroutine, the
return code can be accessed in RESULT or as the value of the
function.
When called as a program, the return code is available in R15.
BPXWDYN returns the following codes:
• 0 – successful.

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• 20 – invalid parameter list.
• -21 to -9999 – key error.
• -100nn – message processing error. IEFDB476 returned

code nn.
• >0 – dynamic allocation or dynamic output error codes.
For more information about error codes, you should see the
BPXWDYN documentation page on the IBM FTP server.

SAMPLE REXX PROGRAM USING BPXWDYN SERVICES
/* REXX */
 CALL BPXWDYN("ALLOC DD(DD1) DA(MYUSER.BPXWDYN) NEW CATALOG
 UNIT(339Ø) CYL SPACE(1,1)
 DSORG(PS) RECFM(F,B) LRECL(8Ø) BLKSIZE(2344Ø)")
 SAY "ALLOC - RC = " RESULT
 LINEO.Ø = 2
 LINEO.1 = "TEST DATA LINE 1"
 LINEO.2 = "TEST DATA LINE 2"
 "EXECIO * DISKW DD1 (STEM LINEO."
 "EXECIO Ø DISKW DD1 (FINIS"
 CALL BPXWDYN("FREE DD(DD1)")
 SAY "FREE - RC = " RESULT
 CALL BPXWDYN("ALLOC DD(DD2) DA(MYUSER.BPXWDYN) OLD DELETE")
 SAY "ALLOC - RC = " RESULT
 CALL BPXWDYN("FREE DD(DD2)")
 SAY "FREE - RC = " RESULT
 CALL BPXWDYN("OUTDES(MYDESC) COPIES(4) DEPT(MYDEPT) DEST(MYDEST)")
 SAY "OUTDES - RC = " RESULT
 CALL BPXWDYN("ALLOC DD(DD3) SYSOUT(A) OUTDES(MYDESC)")
 SAY "ALLOC - RC = " RESULT
 LINEO.Ø = 2
 LINEO.1 = "TEST DATA LINE 1"
 LINEO.2 = "TEST DATA LINE 2"
 "EXECIO * DISKW DD3 (STEM LINEO."
 "EXECIO Ø DISKW DD3 (FINIS"
 CALL BPXWDYN("FREE DD(DD3)")
 SAY "FREE - RC = " RESULT
 CALL BPXWDYN("ALLOC DD(DD1) DA(MYUSER.MCAT.LØ1) SHR")
 SAY "ALLOC - RC = " RESULT
 CALL BPXWDYN("ALLOC DD(DD2) DA(MYUSER.MCAT.LØ2) SHR")
 SAY "ALLOC - RC = " RESULT
 CALL BPXWDYN("CONCAT DDLIST(DD1,DD2) MSG(WTP)")
 SAY "CONCAT - RC = " RESULT
 CALL BPXWDYN("FREE DD(DD1)")

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 SAY "FREE - RC = " RESULT
 CALL BPXWDYN("FREE DD(DD2)")
 SAY "FREE - RC = " RESULT
 CALL BPXWDYN("ALLOC DD(DD3) PATH('/tmp/bpxwdyn.txt')
 PATHOPTS(OWRONLY,OCREAT) PATHMODE(SIRWXU,SIRGRP)
 PATHDISP(KEEP,DELETE) msg(wtp)")
 SAY "ALLOC - RC = " RESULT
 LINEO.Ø = 2
 LINEO.1 = "TEST DATA LINE 1"
 LINEO.2 = "TEST DATA LINE 2"
 "EXECIO * DISKW DD3 (STEM LINEO."
 "EXECIO Ø DISKW DD3 (FINIS"
 CALL BPXWDYN("FREE DD(DD3)")
 SAY "FREE - RC = " RESULT

SAMPLE ASSEMBLER PROGRAM USING BPXWDYN SERVICES
BPXWDYSO CSECT
BPXWDYSO AMODE 31
BPXWDYSO RMODE ANY
*
 SAVE (14,12)
 BASR R12,Ø
 USING *,R12 R12 = BASE REGISTER
*
 GETMAIN R,LV=WORKL
*
 ST R1,8(R13)
 ST R13,4(R1)
 LR R13,R1
 USING WORK,R13
*
 MVC WTOA(WTOL),WTOLIST
 MVC WTOM,=CL8Ø'IN BPXWDYSO ROUTINE'
 L R2,=A(WTOMLEN)
 STH R2,WTOML
 LA R2,WTOMSG
 WTO TEXT=(R2),MF=(E,WTOLIST)
*
 LOAD EP=BPXWDYN
 LTR R15,RØ
 BZ LOAD_ERROR
*
 OI PARMLISTa,X'8Ø' END OF PARMLIST
 LA R1,PARMLISTa LOAD PTR TO PARMLIST
 BALR R14,R15 CALL BPXWDYN
 LTR R15,R15
 BNZ ALLOC_ERROR
*

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 B RETURN
*
* LINK EP=SHOWREGS
*
LOAD_ERROR EQU *
 MVC WTOA(WTOL),WTOLIST
 MVC WTOM,=CL8Ø'BPXWDYSO - ERROR DURING LOAD'
 B ISSUE_MSG
ALLOC_ERROR EQU *
 MVC WTOA(WTOL),WTOLIST
 MVC WTOM,=CL8Ø'BPXWDYSO - ERROR DURING ALLOC'
*
ISSUE_MSG EQU *
*
 L R2,=A(WTOMLEN)
 STH R2,WTOML
 LA R2,WTOMSG
 WTO TEXT=(R2),MF=(E,WTOLIST)
*
RETURN L R13,4(R13) RESTORE R13
 L R1,8(R13)
 FREEMAIN R,LV=WORKL,A=(R1)
 L R14,12(R13)
 LM RØ,R12,2Ø(R13)
 SR R15,R15 SET UP RC
 BSM Ø,R14 RETURN TO MVS AND USE RC=R15
*
WTOLIST WTO TEXT=,ROUTCDE=11,MF=L
WTOL EQU *-WTOLIST
*
PARMLISTa DC AL4(LENGTH)
LENGTH DC AL2(TEXTLEN)
TEXT DC C'ALLOC FI(DD2) DSN(MYUSER.TEST) NEW CATALOG '
 DC C'UNIT(339Ø) CYL SPACE(5,1) '
 DC C'DSORG(PS) RECFM(F,B) LRECL(8Ø) BLKSIZE(2344Ø)'
TEXTLEN EQU *-TEXT
*
WORK DSECT
SAVEAREA DS 18F
WTOA DS CL(WTOL)
*
WTOMSG DS ØF
WTOML DS H
WTOM DS CL8Ø
WTOMLEN EQU *-WTOM
*
WORKL EQU *-WORK
*
 REGISTER

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Porting a Java Web application to z/OS

INTRODUCTION
Scaling is the ability of a system to handle increasing demands
at an acceptable performance level. When the number of clients
is not very large, PC platforms may be a satisfactory solution.
However, when the number of clients is growing rapidly, a
possible solution is to port the same application to z/OS, which
is intended for such a load.
jPOS is a Java-based, production grade, ISO 8583 library/
framework that can be used to implement financial interchanges,
protocol converters (for example from HYPERCOM ISO 8583 to
SPDH and vice versa, etc), payment gateways, credit card
verification clients and servers (from merchant, issuer, or acquirer
point of view), etc. In other words, jPOS is a Java-based financial
transaction library/framework that can be customized and
extended in order to implement any particular financial
interchange. You can use http://www.jpos.org/ to get more
information about jPOS.
Our aim was to port a Java Web application (jPOS-based
application) developed for PC platforms, called TMS (Terminal
Management System), onto a z/OS platform. TMS is a modular
software system for EFT/POS (Electronic Funds Transfer with
Point Of Sale) network management and POS financial
transactions management. TMS is a system through which EFT/
POS devices connect to a bank authorization system or to many
bank authorization systems. TMS also initializes EFT/POS
devices in such a way that they are able to accept national cards
and cards compliant with international technical standards,
issued by any bank.

*
 END

Systems Programmer (France) © Xephon 2004

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The purpose of this article is to provide all the practical information
necessary to successfully port a jPOS-based application to z/
OS. Particularly, we will present our experience with an IBM z/
800 mainframe model 0A2 with two processors. The system has
8GB RAM memory. We assume that WebSphere Application
Server (WAS) Version 4.0.1 and DB2 Version 7.1 for z/OS (PTF
level 502) are already installed.

TMS DESCRIPTION
TMS is a modular and expandable system. The basic features
and functions of TMS are:
• A simple graphical user interface.
• Management of EFT/POS networks with PIN-PAD or without

PIN-PAD. A PIN-PAD is a small keyboard that contains
numeric keys and it is used to provide better security. PIN is
an acronym for a Personal Identification Number, which is
entered into the keyboard pad to verify account information
for a transaction in a payment system.

• ISO 8583 (1987) compliant.
• Credit, debit, and loyalty transactions support.
• Connection to concentrators by using HTTP.
• Floor limits support.
• Downloading of BIN (Bank Identification Number) tables and

EFT/POS parameters.
• Routing of financial transactions.
• Hot-list management.
• Management of cards with a negative balance.
• PAN (Personal Account Number) control (Luhn formula).
• Connection to a host by using TCP/IP protocol.
• Centralized management of all POS parameters in order to

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

control all POS devices systematically.
• Multi-banking.
• Multi-merchant.
• Integration with Web CMS (Card Management System).
• Mobile recharge.

PROBLEMS
During the process of porting the TMS (jPOS-based application)
t o
z/OS we met the following problems:
• General problems in Java code on z/OS. For example,

ternary if-else operator does not always work properly.
• The z/OS platform represents character strings in EBCDIC

format and it is really the biggest challenge when writing
platform-independent Java applications.

• How to prepare a Java jPOS-based Web application for
deployment on z/OS.

• How to deploy a Java jPOS-based Web application on z/OS.
• How to run a Java jPOS-based Web application on z/OS.

SOLUTIONS

Solutions for general problems with Java code on z/OS
General problems in Java code on z/OS can be solved easily. For
example:
• Ternary if-else operator
• Boolean-exp? true : false
Boolean values of true and false do not always work properly in
a z/OS environment, so they have to be replaced with the
following if-else statements:

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

if (boolean-exp)
 return true;
else
 return false;

After the replacement, the code works correctly.

Solutions for problems in porting jPOS to z/OS
The class ISO87Bpackager is used for packaging ISO 8583
messages in the TMS application. Most platforms to which Java
has been ported are ASCII based. Bearing in mind that the z/OS
platform is EBCDIC based, whenever it is necessary to get the
value of a field that is represented as an ASCII value in an ISO
8583 message, it is necessary to convert that value to EBCDIC
and to create a string under that array of bytes. It can be done in
the following way:
ISOPackager packager = new ISO87BPackager();
ISOMsg isoMsg = new ISOMsg();
isoMsg.setPackager(packager);
isoMsg.unpack(isobytes);

String fieldValue = (String) isoMsg.getValue(fieldNumber);
byte[] ebcdic = ISOUtil.asciiToEbcdic(fieldValue.getBytes());
String fieldValueOnHost = new String(ebcdic);

The isobytes is an array of bytes representing an ISO 8583
message. ISO 8583 messages are composed of fields. The
number of fields is variable for different types of ISO 8583
messages. The fieldValue is an ASCII value, which you want to
convert into the corresponding EBCDIC value. The fieldNumber
is the number of the required field. For example, if you want the
Merchant ID field, then fieldNumber = 42.
Similarly, whenever it is necessary to set a value for a field that
is represented as an ASCII value in an ISO 8583 message, it is
first necessary to convert the string to ASCII and after that to set
the value in the ISO 8583 message. It can be done in the
following way:
ISOPackager packager = new ISO87BPackager();
ISOMsg isoMsg = new ISOMsg();
isoMsg.setPackager(packager);
isoMsg.unpack(isobytes);

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1: Studio Application Developer for Windows

Figure 2: The window for selecting an export destination

String ascii = ISOUtil.ebcdicToAscii(fieldValue.getBytes());

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

isoMsg.set(new ISOField(fieldNumber, ascii));

As in the previous example, the isobytes is an array of bytes,
which represents an ISO 8583 message, the fieldValue is an
EBCDIC value that we want to convert into an ASCII value, and
the fieldNumber is the number of the required field.

Preparing a Java jPOS-based Web application for deployment on
z/OS
A Java jPOS-based Web application can be prepared for
deployment on
z/OS platform by using any PC with IBM WebSphere Studio
Application Developer (we worked with Version 5.0.0 for Windows)
installed. First, in WebSphere Studio create a new Enterprise
Application Project. We called it WebTms. Then it is necessary
to import Java source classes from a file system as shown in
Figure 1 (Select File/Import/File system and enter the name of
the directory where the Java classes are located). After that you

Figure 3: EAR file resources and name

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 4: The Application Assembly Tool main window

Figure 5: Importing EAR file

should click on the button J2EE Navigator (below the window on
the upper-left side of the screen) in order to see the tree of Java
classes.
It is necessary to export the Enterprise Application project into an
EAR (Enterprise Archive) file in order to deploy a Web application
on WebSphere Application Server on z/OS. So, the next step is
to create an EAR file. Select File/Export. The window is shown
in Figure 2.
Select EAR file option, click on the Next button and you will see
the window shown in Figure 3. Enter the resource name and the

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 6: Application Assembly Tool after import

Figure 7: Deploying Tms Enterprise Application

location to which you want to export the EAR file.
Click on the button Finish and the EAR file will be generated.

Using the Application Assembly Tool for z/OS and OS/390
We used the Application Assembly Tool for z/OS and OS/390 in
order to deploy the TMS (jPOS-based application). The main

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 8: Exporting Tms Enterprise Application

Figure 9: Entering EAR file path name

window of the Application Assembly Tool for z/OS and OS/390
is shown in Figure 4.

Click on Applications and press the right mouse button. Then
click on Import. You will see the window shown in Figure 5.
Enter the EAR file path name and click the OK button. After that
the EAR file will be imported. A successful import is shown in
Figure 6.
The next step is validation of the application, which is imported.
Select TmsEnterpriseApplication and press the right mouse
button. Then click on Validate and the application will be validated.

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 10: Adding EAR file

Figure 11: Saving EAR file

The next step is the application deployment in the Application
Assembly Tool. Click on TmsEnterpriseApplication and press
the right mouse button. Then click on Deploy as shown in Figure
7.

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 12: Installing J2EE application on z/OS

Figure 13: Entering EAR file name and destination server

The next step is the application export from the Application
Assembly Tool. Click on TmsEnterpriseApplication and press
the right mouse button. Then click on Export as shown in Figure
8.
Enter the full path of EAR file for Tms Enterprise Application as
shown in Figure 9.
The EAR file prepared using the Application Assembly Tool for
z/OS and OS/390 is now ready for deployment on WebSphere
Application Server for z/OS and OS/390. This process will now
be described in detail.

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 14: Validating Tms Enterprise Application

Figure 15: Committing Tms Enterprise Application

Click on the Selected option in the main menu bar and then click
on the Add option as shown in Figure 10.
For Conversion name enter some value (for example posted51)

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 16: Completing all tasks

Figure 17: Activating Tms Enterprise Application

on the right side of the screen as shown in Figure 11.
Click on the Selected option in the main menu bar and then click

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 18: Completion of an authorization transaction

on the Save option.
Click on J2EEServer name, press the right mouse button, and
choose Install J2EE application option (Figure 12). The window
for entering the EAR file name and destination FTP server will
appear, as shown in Figure 13.
Enter the EAR file name and destination FTP server and press
the OK button.
Select posted51 and press the right mouse button. Click on
Validate as shown in Figure 14.
Then click on Commit as shown in Figure 15.
After that, you have to perform the final operation: select
posted51. Press the right mouse button, and choose Complete/
All tasks as shown in Figure 16. After that, the application
deployment on z/OS is completed.

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

RUNNING A jPOS-BASED WEB APPLICATION ON z/OS
In this part of the article the starting of a TMS application on
WebSphere Application Server on z/OS is described.
In WebSphere Application Server for z/OS and OS/390
Administrator click on posted51, press the right mouse button,
and click on Activate as shown in Figure 17.
After that, the TMS application is running. Figure 18 shows
completion of an authorization transaction on TMS generated on
a POS terminal.

FURTHER READING
• The Name Game: WebSphere z/OS JNDI Naming Concepts,

Kenneth J Muckenhaupt, IBM Design Center for e-transaction
processing, 2002.

• Java 2 on the OS/390 and z/OS Platforms.
• Java programming code page considerations – ASCII vs

EBCDIC and others, Frank Petrik, Paschalis Kaltsatis and
John Peck, IBM Java Security for S/390 project, 2002. http:/
/www-1.ibm.com/servers/eserver/zseries/software/java/.

• Java Security on z/OS: An Introduction, Tom Benjamin,
http://www-1.ibm.com/servers/eserver/zseries/zos/racf/pdf/
share_03_2002_java_security_zos.pdf.

• IBM Redbook, Writing Optimized java Applications for z/OS,
http: //www.redbooks.ibm.com/redbooks/pdfs/sg246541.pdf.

• IBM Redbook, e-business Cookbook for z/OS Volume III:
Java Development, http://www.redbooks.ibm.com/redbooks/
pdfs/sg246541.pdf.

• jPOS Programmer’s Guide, http://www.jpos.org/proguide/
index.html.

• Java for OS/390 and z/OS Tips and FAQs, http://
www.s390java.com.

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

zSeries CPC capping

CPC capping is limiting/restricting CPU usage in a CPC to a
desired MSU value. One reason for capping a CPC could be for
zSeries subcapacity WLC licensing when the systems are under
utilized. zSeries CPC can be capped at the CP level or at the
LPAR level.

CAPPING AT CP LEVEL
CPC can be capped by disabling one or more CPs to attain the
desired MSU value. This way of capping a CP might require
external support (from IBM) to disable a CP. Consider the case
of a zSeries box rated at 78 MSU with 2 CPs, it is desired to cap
the CPC to 39 MSU. If we assume that both the CPs can deliver
the same processing power, disabling a CP would do the trick.
Suppose, at some point in time it is required to roll back the
capping, we would have to enable the CP. But, this once again
could require external support. If the CPC were to be capped at
42 MSU, this way of capping might not work. Also, the same
problem would occur when CPC capping was being changed
frequently. Capping at the LPAR level could solve this problem.

We thank the following people who contributed to this work on
TMS porting on z/OS: Ana Dobrašinovic and Dragan Vasovic
from ARIUS ad (Belgrade, Serbia and Montenegro), Emina
Spasic, Gordana Arsenijevic, and Dragan Nikolic from Postal
Savings Bank j s (Belgrade, Serbia and Montenegro).
Mladen Mrkic
Application Developer
Dejan Simic
Associate Professor
ARIUS, ad University of Belgrade (Serbia and Montenegro) © Xephon 2004

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LPAR CAPPING
LPAR capping limits MSU usage in an LPAR to a desired MSU/
% processing power of CPC capacity, but guarantees this
processing capacity in case of contention. An MVS systems
programmer at an installation can do this. There are two ways of
LPAR capping – hard capping and soft capping.

Hard capping
Hard capping is based on LPAR weighting. The weight of a
partition is used to identify the percentage of the processor to
which a partition is guaranteed access. The LPAR hipervisor
enforces this value when there is contention for CPU cycles.
When the processor is not busy, and the LPARs are not capped,
a partition can use more CPU resource than this guarantee. The
percentage of the processor a partition is guaranteed is the
weight of the partition divided by the total weight of all partitions.
Consider the same zSeries box at 78 MSU with 2 CPs with 4
LPARs having the weighting shown in Figure 1.
For LPAR1 the minimum guaranteed amount of CPU is 8 MSU
at contention, when there is no contention it could even use 78
MSU. If LPAR1 is capped, the maximum that MSU LPAR1 could
use is just 8 MSU, even when there is no contention. Capping all
the LPARs based on the weighting would give only capping of
that LPAR, and the MSU consumed by the entire CPC could be
78 MSU. But, how to cap the CPC to 42 MSU or any MSU is not
answered. For this, a dummy LPAR can be created with 46%
weighting with capping and no OS would be run on this LPAR –
see Figure 2.

LPAR Weights % of CPC processing power MSU guaranteed
LPAR 1 10 10 8
LPAR 2 10 10 8
LPAR 3 50 50 39
LPAR 4 30 30 23

Figure 1: Weighting

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Capping all the LPARs based on weighting and operating all
LPARs at their maximum except the dummy LPAR 5, CPU usage
would be 42 MSU, as shown in Figure 3.
This method requires the creation of a dummy LPAR, which
could be an overhead (it may not always be possible), and the
capping is rigid, such that it never allows an overshoot at any
point of time. All these problems are handled in soft capping.

Soft capping
In soft capping, MSU capacity is defined for the each LPAR, such
that 4-hour rolling-average MSU usage is restricted to the

LPAR Weights % of CPC processing power MSU guaranteed
LPAR 1 4 4 3
LPAR 2 4 4 3
LPAR 3 21 21 26
LPAR 4 13 13 10
LPAR 5 46 46 36

Figure 2: Weighting

MSU usage at full load
LPAR 1 3
LPAR 2 3
LPAR 3 26
LPAR 4 10
LPAR 5 0
Total MSU Usage of CPC 42

Figure 3: CPU usage

defined capacity. It also allows, in any RMF interval, the average
MSU can be above the defined capacity provided the 4-hour
rolling-average is below the defined capacity. Even in this case
weighting are specified only to take care of contentions between
LPARs. Even though the LPAR may have been assigned 50% of
processor power, it can use only up to its defined capacity based

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LPAR Weights % of CPC processing power Defined capacity (MSU)MSU guaranteed

LPAR 1 10 10 3 3
LPAR 2 10 10 3 3
LPAR 3 50 50 21 21
LPAR 4 30 30 12 12

MSU usage at full load
LPAR 1 3
LPAR 2 3
LPAR 3 21
LPAR 4 12
Total MSU Usage of CPC 42

Figure 4: Soft capping

Figure 5: MSU usage

on its rolling 4-hours average. Considering the same case of
capping a zSeries box with 2 CPs at 78 MSU to 42 MSU or to any
MSU – see Figure 4.
CPC MSU usage when the LPARs are operating at full would be
42 MSU as in Figure 5.

CONCLUSION
CPC can be best capped by soft capping. It is less rigid than hard
capping because it is flexible enough to allow increases in MSU
usage in an LPAR.Also, it does not require any additional
definitions/LPARs on the hardware side.
Arun Kumaar R
System Software Group
Tata Consultancy Services (India) © Xephon 2004

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Keeping track of non-reusable ASIDs

PROBLEM ADDRESSED
Since the dawn of computers, storage has been a resource that
a lot of users monitor very closely. This can be accomplished by
system monitors such as RMF, MainView, or Omegamon, or by
commands that are either issued manually or triggered at
specific timed intervals. However, every now and then, situations
arise where a systems programmer suddenly finds himself with
a storage shortage condition. One needs to evaluate the cause:
the system appears to be running, but nothing is actually going
on or jobs don’t start. It is now your task, as a systems
programmer, to come up with a resolution and if you are not sure
or have no idea what area of storage is experiencing the shortage
the following should help you determine this.
It is well known that the system assigns an ASID (Address Space
IDentifier) to an address space when the address space is
created. It is also the fact that a limited number of ASIDs are
available to the system. When all ASIDs are assigned to existing
address spaces, the system is unable to start a new address
space. This condition might be the result of too many LOST
ASIDS (ie non-reusable) in the system. A lost ASID is one that
is associated with an address space which has terminated, but,
because of the address space’s cross memory connections, the
system does not reuse the ASID. In other words, when ending a
job or started task, the initiator/terminator may find that this
address space had been used to provide services to other
address spaces through space-switching PC routines, or that
this address space provided and did not remove cross memory
access through ALESERV. In order to maintain system integrity,
the address space is ended and the address space identifier
(ASID) is marked as unavailable. This identifier might be
temporarily or permanently unavailable. This does not necessarily
indicate an error in the program or in the initiator.

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

When an address space becomes non-reusable either
permanently or temporarily because of cross-memory binds, the
ASCB (Address Space Control Block) and ASSB (Address
Space Secondary Block) remain allocated and queued to the
memory delete queue. When an address space becomes
reusable, the ASID is added back to the ASVT (Address Space
Vector Table – the supervisor table that maps ASIDs to ASCBs)
and then the ASCB and ASSB are freed. Thus, to reduce storage
impacts, both virtual and real, the ASCB and ASSB need to be
freed as soon as an ASID becomes non-usable. Starting with z/
OS V1R3 a new protocol is defined between cross-memory and
memory delete to allow this. Freeing these blocks minimizes the
SQA and ESQA impacts that a non-usable ASID has on the
system, and this will allow a large number of replacement ASIDs
to be defined with minimal storage impact. Memory delete now
frees the ASCB and ASSB once cross-memory has accepted
responsibility for the address space. If the address space is
permanently non-reusable, because of a bind to a system LX
(Linkage Indexes), then the virtual storage impact of the lost
ASID is limited to the ASVT entry. If the address space is
potentially reusable when binds have terminated, then cross-
memory adds the XMSE for the address space to a new reuse
queue. The reuse queue will be processed when an address
space terminates. When all the binds have terminated, cross-
memory will remove the XMSE from the reuse queue and add the
ASID back to the ASVT. The ASID reuse code will now exist in
both memory delete and cross-memory, because both may
make an ASID reusable.
For a detailed description of methods that prevent running out of
ASIDs, consult Chapter 3 (Reusing ASIDs: Coding Cross Memory
Services to Avoid the Loss of ASIDs from Reuse) of z/OS MVS
Programming: Extended Addressability Guide (SA22-7614-02).
An enquiring mind eager to learn how to identify cross memory
connections to an address space may take a look at APAR
II08563, which describes the control block chains to follow in
order to map the cross memory connections established between
address spaces. Based on the process explained therein a

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

program was written (Mapping cross memory connections to an
address space) and is available at Xephon’s Mainframe Week
site (http: //www.mainframeweek.com/journals/articles/0031/)
Yet another useful feature that came with z/OS V1R3 is that
monitoring of an ASID and linkage indexes (LXs) usage limits is
now done on a timed basis every two minutes. When this limit is
crossed, a message is issued. The limits for the resources that
are monitored are fixed and cannot be changed. Indications of an
LX shortage are set as follows: > 85% in-use is a shortage, < 70%
is relieved, while indications of an ASID shortage are set as: >
95% in use is a shortage, < 90% is relieved. In general the
messages are warnings, so that an action can be taken, but that
probably means scheduling an IPL. Some resources may be
able to be recovered by terminating the ‘proper’ address space
or correcting a ‘hang’, but most of the time there is not much that
can be done.
It is now obvious that a twofold problem may occur because of
non-reusable ASIDs. On the one hand if started tasks or batch
jobs that create unusable ASIDs end enough times, they will
exhaust all available ASIDs and an IPL will be required. When
this happens one of the following messages appears on the
console:
IEAØ59E ASID SHORTAGE HAS BEEN DETECTED
IEA6Ø2I ADDRESS SPACE CREATE FAILED MAXUSERS WOULD HAVE BEEN EXCEEDED
IEF352I ADDRESS SPACE UNAVAILABLE
IEF353A INITIATOR TERMINATED DUE TO CROSS MEMORY BIND, RESTART INITIATOR
IEF355A INITIATOR TERMINATED, RESTART INITIATOR
IEF356I ADDRESS SPACE UNAVAILABLE DUE TO CROSS MEMORY BIND

These messages indicate that the system has run out of slots in
the ASVT. The size of this table, and thus the total number of
ASIDs that can be initialized until the system is re-IPLed, is
determined during IPL by the values specified in the MAXUSER,
RSVNONR, and RSVSTRT options of the IEASYSxx parmlib
member. The total number of address spaces that can be
initialized at one time, during the life of an IPL, is controlled by the
total of IEASYSxx parameters MAXUSER and RSVSTRT. When
any new ASID is to be started, the supervisor first determines

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

whether there are any slots available for the ASID on the ASVT
MAXUSER queue. If the MAXUSER queue is filled, and if then
the address space to be started is a started task, the ASVT slot
may be satisfied from an unused slot on the RSVSTRT queue.
If there are no slots available on either MAXUSER or RSVSTRT
queues, the address space will not be initialized.
Unfortunately MVS is not very vocal in these cases since there
is not any indication, count, or display of ASIDs hung, waiting for
termination, or those that are non-reusable that would help us to
quickly gain insight into ASVT free slot shortage.
It is now clear that a way to reduce the possibility of the system
running out of ASIDs is through the use of RSVNONR and
RSVSTRT parameters in the IEASYSxx member of
SYS1.PARMLIB. These parameters reserve extra ASIDs to
replace those lost because of cross memory activity. RSVSTRT
is a number of reserved ASIDs for use when MAXUSER is
exhausted and a system address space is needed, while
RSVNONR is the number of reserved ASIDs used to replace
ASIDs that are non-reusable because of cross-memory integrity
reasons. As a matter of fact, the RSVNONR specification
reserves a number of ASVT slots to replenish ASVT slots in the
MAXUSER or RSVSTRT ‘pools’ that are marked non-reusable
at address space termination. As we have explained earlier,
when an address space goes away, its corresponding slot in the
ASVT is marked non-reusable. When this occurs, the non-
reusable slot is replaced by a slot from the RSVNONR pool.
However, once the RSVNONR pool is exhausted, the slots in the
MAXUSER or RSVSTRT pool cannot be replaced and are often
lost for the remainder of the IPL. See MVS Initialization and
Tuning Guide (SA22-7592-02) for more information about
specifying those parameters as well as on methods for identifying
problems in virtual storage. It is helpful to note that the longer one
goes between IPLs and the more times one restarts cross-
memory subsystems (such as MQ or DB2) the larger RSVNONR
needs to be.
On the other hand, if a large number of address spaces become

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

non-reusable, this can cause an excessive amount of CSA/SQA
and ECSA/ESQA to remain allocated for those spaces and force
an IPL to occur. In effect, the ASID is ‘lost from use’ for the
duration of the IPL, or until all connected address spaces have
terminated. When IPLing is not an acceptable option, determine
which programs caused the problem, and search problem
reporting databases for a fix for the problem. It may turn out that
a failure to complete address space termination has been
caused by one of the following reasons: hanging in an address
space resource manager running in the master address space,
waiting for a ‘free’ address space termination task in master
(which is blocked by other hung address spaces), control block
corruption, or an overlay of ASCB/ASSB, etc.

ON-LINE MONITORING
When it comes to on-line monitoring of non-reusable ASIDs
there are currently two options available within the standard IBM
toolkit. The first one is the Interactive Problem Control System
(IPCS) VSMDATA OWNCOMM report, while the second is
RMF’s Monitor III Common Storage Remaining report (STORCR).
In order to exploit these options common storage tracking must
be activated, which is done by the MVS SET command:
SET DIAG=Ø1

The parmlib member DIAG01 should be set as follows:
VSM TRACK CSA(ON) SQA(ON)

The IBM CSA tracker is a facility that provides significant
amounts of information about common storage ownership
captured at the time the storage is acquired and cleared at the
time the storage is released. Information collected by the IBM
CSA tracker includes time, address, length of the allocation,
owner jobname, jobnumber, ASID, and status. Information the
IBM CSA tracker does not collect is subpool and storage protect
key. It should be noted that CSA tracker maintains the data totally
within memory, but the ESQA storage overhead and the small
penalty in CPU consumption is neglible given the fact that when
things go wrong the ability to examine this information is priceless.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

IPCS
From TSO, get into IPCS and change the default for SCOPE to
LOCAL and the SOURCE to ACTIVE. Then, from IPCS Option
6 enter the command to request formatting of storage data:
VERBEXIT VSMDATA 'SUMMARY OWNCOMM'

We would recommend starting with the simplest form of this
command to see common storage usage. The VSMDATA
OWNCOMM processing finds GQEs (Getmain Queue Elements)
by sequentially scanning the GQEs in their cell pool extents,
instead of processing the GQE queues anchored in the GQATs.
So while it is possible that because of changing storage some
address ranges could end up being reported in more than one
GQE, this technique avoids having to attempt to deal with
apparently broken or looping queues. So we tend to recommend
this technique for monitoring programs that do unserialized
processing of GQEs.
The output produced by the VSMDATA ‘SUMMARY OWNCOMM’
subcommand consists of two parts. The first one, called Grand
Totals, is a summary of how much common storage is defined
as well as how much is owned by active ASIDs and by owner
gone ASIDs. Owner gone is IPSC’s term for a non-reusable
ASID. The second part consists of a summary that lists job
names and how much common storage they own. It also has the
status column that contains either AC for active or OG for owner
gone. If you need to obtain the storage addresses, you can issue
the command:
VERBX VSMDATA ‘OWNCOMM DETAIL’

and then locate and note or stack the storage return address of
the OG entry point and browse (BROWSE option of the IPCS
Primary Option Menu) backwards from this address until you find
the name of the module that issued the GETMAIN. By adding the
CONTENTS(yes) option, the report will show the first few bytes
of each area and, if the eyecatcher is present, subpool, key,
contents, and length will make a good starting point to determine
which product and component allocated the storage. This is

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

often a very good clue, even if it turns out that the allocater is no
longer in storage. It is also a good idea to sort the report: sorting
by time can be very useful for identifying the culprit if the storage
usage is slowly growing over time.
For information on how to use IPCS to format common storage
tracking data, see the description of the VERBEXIT VSMDATA
subcommand in z/OS MVS Interactive ProblemControl System
(IPCS) Commands (SA22-7594-02). For an example of the
VSMDATA output, see Chapter 29, ‘Virtual Storage Management
(VSM)’ of z/OS MVS Diagnosis: Reference (GA22-7588-02)

RMF
The RMF Monitor III Common Storage Remaining report is a
snapshot of the system at the end of the specified report interval
and it identifies jobs that have ended but did not release all their
allocated common storage (CSA, ECSA, SQA, and ESQA)
since IPL. The jobs on this report are sorted in descending order
by storage percentage. That is, for each job with the maximum
of the four common storage percentages, the job with the highest
maximum percentage is reported first. The %REMAIN is summary
information about common storage that was not released by
ended jobs and is always the first reported line. There are no
report options for this report.
Unfortunately, there are no cursor-sensitive fields on this report
that would allow us to explore a bit further and thus find an
eyecatcher, subpool and storage protection key of storage left
allocated by ended job/task.

MXI
A quick and simple way to extract more information from the
system is available from MXI (MVS eXtended Information). MXI
is an ISPF-based application that enables the systems
programmer to display important configuration information about
the active MVS, OS/390, or z/OS system. Although primarily
used on-line, MXI comes with a REXX interface and can also be

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

run in batch mode. Most of the displays can be filtered using
ISPF-like masking characters and many display fields have
‘point-and-shoot’ functionality that drills down to a more detailed
display. MXI is free and available from www.mximvs.com . It does
not use any method of CPU serial number protection or encryption.
No passwords or activation zaps are required.
MXI can display a wealth of information from your system
including the following commands, which might help you when
dealing with non-reusable ASIDs.
The Common Storage Remaining command (CSR) provides the
same report as RMF III STORCR command. However, unlike
RMF III, the jobname column is a cursor-sensitive field and if
selected it will invoke the GQE command (new in the latest
version of MXI) to display common storage Getmain Queue
Elements, which, in turn, display details of each block of common
storage allocated including length of allocated storage, type of
storage, owner of the storage, return address from Getmain, and
date and time that the storage was allocated.
The cursor-sensitive fields of the Getmain Queue Elements
report are address (starting address of common storage block),
SP-Key (subpool number-storage protect key), and GQE (GQE
address). When pointed at an address or GQE field, MXI will
invoke the MEM (Display Memory) command, which displays
storage at the specified address or control block. If the SP-Key
field is selected, the SP (Common Storage Subpool Usage)
command will display the current common storage and LSQA
subpool use.
In addition, the Memory Delete Queue (MDQ) command is very
useful because it displays the ASIDs that have been marked
non-reusable by the system and to which address spaces these
ASIDs had latent cross memory links. Exploring cross memory
connections is provided by the XM command, while the Linkage
Indexes and PC Routines display can be obtained by the LX
command.
It may happen that after locating ‘unowned’ (aka ‘orphaned’,
‘dead’, or ‘lost’) storage one may get tempted to find a way to free

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

up CSA or ECSA that wasn’t released after job termination to
alleviate the storage impact of non-reusable ASIDs or in order to
‘save’ the system until such a time that an IPL would not disrupt
production. There are products that provide the ability to browse
common storage and to release ‘unused’ storage but that is a
high-risk situation. What is unused? That is the problem. As
mentioned earlier, an ASID can be marked as non-reusable only
temporarily and it will be used when all related connections
terminate. For example, the ASID that owns a non-system or
non-space switching system LX is marked as non-reusable, as
is also the case with the ASID that is connected to another
address space which owns a non-system or non-system LX.
The fact that the original owner has gone does not necessarily
mean the storage is no longer in use. The side effects of
releasing ‘unowned’ storage are thus unpredictable and may
rapidly lead to an outage anyway. If one tries to free ‘unowned’
storage, one can cause a data integrity problem and corrupt a
database, and IPLing won’t fix that.

Figure 1: ECSA – number of frames not released

Figure 1: ECSA - # frames not released

155

175

195

215

235

255

275

295

315

08
:3

1:
40

08
:4

4:
30

08
:5

7:
10

09
:1

0:
10

09
:2

2:
50

09
:3

5:
50

09
:4

8:
40

10
:0

1:
30

10
:1

4:
20

10
:2

7:
10

10
:4

0:
00

10
:5

2:
50

11
:0

5:
30

11
:1

8:
20

11
:3

1:
20

11
:4

4:
10

11
:5

6:
50

12
:0

9:
40

12
:2

2:
30

12
:3

5:
20

12
:4

8:
10

13
:0

1:
10

13
:1

3:
50

13
:2

6:
50

13
:3

9:
30

13
:5

2:
30

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The bottom line is this: it is difficult to determine whether this kind
of error is caused by bad coding practice by the vendors or bad
design by IBM. For an example of misclassification of storage
ownership see APAR OW47700. However, I do have suggestions
for avoiding future problems: start tracking CSA/SQA/ECSA/
ESQA usage, and use RMF or MXI to display the amount of SQA/
CSA held by particular jobs or address spaces.
If one or more jobs or address spaces are using an excessive
amount of CSA/SQA, tell the operator to cancel those jobs or
address spaces.
Obtain a dump of common storage. Run IPCS verbx vsmdata
‘owncomm’ reporting. Determine whether there has been storage
growth beyond the previous normal range or whether the allocation
of SQA and/or CSA is inadequate (one may need to increase the
sizes in IEASYSxx to allow for some breathing space).

COLLECTING DATA AND REPORTING
Up to now we have seen that on-line monitoring of non-reusable
ASIDs could and should proactively be done. Things are, however,
rather different when one tries to collect data pertaining to these
ASIDs. One may try to run RMF post-processor’s VSTOR report,
which enables you to measure the use of virtual storage with
minimal overhead. It contains the information you need to
understand your current use of virtual storage. If you archive the
data, you can use differences over time to predict a problem or
constraint before it becomes critical. It also helps you to verify the
size values set for CSA and SQA at IPL time, and determine
whether you are using common storage effectively. It would be
very useful also to have RMF Monitor III data tables recorded by
SMF along with other RMF records, but for the time being that is
not the case. There is a way, however, to force RMF to collect
Monitor III data and to write it to a predefined VSAM dataset. This
method has the advantage over direct RMF III analysis in that the
data will not roll off – one does not have to look at screen after
screen to try to determine a trend. If an action is taken to improve
CSA/SQA usage, this allows comparisons of the before and after

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

conditions from one week to the next (for example). For information
on this collecting method see Chapter 6, ‘Using Monitor III VSAM
Data Set Support’ in z/OS Resource Measurement Facility:
Programmer’s Guide (SC33-7994-01).
At this point it should be noted that there is not an easy way to
retrieve compressed RMF VSAM Monitor III data. Instead, an
easy-to-use ready-made solution provided by RMF Performance
Monitor was used.
RMF Performance Monitor (RMF PM) is IBM’s free performance
tool that provides mechanisms for collecting, displaying,
monitoring, and logging real-time performance data from your
system. You can combine nearly all data in DataViews as you
like, without any restriction of predefined reports. You can plot a
DataView for a selected period of your gathering interval, and you
can save the data into a .WK1 file (up to 8,000 values) for further
processing with any spreadsheet application. In order to track
the use of ECSA (just an example) a DataView was created to
collect the number of 4K frames not released at the end of the
interval (Figure 1).

CODE
A neat batch interface that MXI provides was utilized to get the
information pertaining to non-reusable ASIDs. The MXI
commands are entered via the SYSIN DDname and the resultant
output is written to the SYSPRINT DDname. Multiple commands
can be specified and they will be processed in sequential order.
The MXI program must be invoked with the parameter BATCH,
but can also have the optional extra parameter NOTITLES to
suppress the screen titles. A simple but effective batch procedure
was constructed with the aim of producing a more precise
common storage allocation report that would aid in monitoring
and analysing non-reusable ASIDs. The procedure should be
submitted or triggered at specific timed intervals in order to get
a valid snapshots of the common storage allocation.
The code is a two-part stream: in the first part (MXIBATCH) MXI
was invoked to issue the GQE command and its output was then

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

processed in step 2 (VSM) by invoking SAS statistical analysis
of data. SAS was used since it is the most flexible tool for
producing quick and accurate reports of what the data represents.
There are five sets of reports produced by this report writer, each
providing in-depth information on a specific area of common
storage allocation being observed.
CSRPT is a set of four common storage allocation overall reports
providing information on each type of CS in regard to ASIDs
status, subpool usage, and storage protect key:
 STORAGE TYPE
COMMON STORAGE ASID CSA SQA
LOCATION STATUS LENGTH PCT LENGTH PCT
ABOVE ACTIVE 43.6M 9Ø.78% 7.8M 97.18%
 GONE 1.4M 3.Ø5% 53.ØK Ø.65%
-------------- -------- -------- -------- --------
ABOVE 45.1M 93.83% 7.9M 97.84%

BELOW ACTIVE 2.9M 6.14% 172.3K 2.12%
 GONE 14.8K Ø.Ø3% 3.3K Ø.Ø4%
-------------- -------- -------- -------- --------
BELOW 2.9M 6.17% 175.7K 2.16%

HIST is a set of three reports each providing data sufficient to
determine a trend).
OWNSTAT reports on CS allocation by owner (ASID) status:
 STORAGE TYPE
 CSA SQA
 COMMON STORAGE LOCATION COMMON STORAGE
LOCATION

STORAGE ABOVE BELOW # CS ABOVE BELOW # CS
OWNER -------- -------- BLOCKS -------- -------- BLOCKS
MASTER 2.5M 12Ø.4K 65 942.4K 64.5K 69
SYSTEM 12.9M 86.6K 4Ø 7.1M 2Ø2.7K 177
……..
CATALOG 64 2 35.ØK 3.2K 26
CICS 66Ø.2K 5.1K 6 2.6K 14
DFSHSM 365.2K 777 25.6K 1.6K 6
JESXCF 321.8K 19 8.6K 64 1
JES2 55Ø.5K 31.2K 12 1.7K 64 1
JES2AUX 16Ø 1
LLA 2Ø8 5

OWNDET provides a detailed report on ASID’s use of CS:

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 COMMON STORAGE LOCATION
STORAGE ASID STORAGE SUBPOOL ABOVE BELOW
OWNER STATUS TYPE # -------- --------
CATALOG ACTIVE CSA 231 32
 SQA 226 512
 239 2.5K 512
 245 13.3K 512
 248 48Ø
-------- -------- -------- --------
CATALOG ACTIVE 16.3K 1.5K
 GONE CSA 241 32
 SQA 226 384
 239 5.3K 256
 245 12.3K 1.1K
 247 128
 248 984
-------- -------- -------- --------
CATALOG GONE 18.7K 1.7K
-------- -------- --------
CATALOG 35.1K 3.2K

CICS ACTIVE CSA 227 7.2K 136
 228 14.ØK
 231 167.9K
 241 14.9K
 SQA 239 32
 245 1.3K
-------- -------- -------- --------
CICS ACTIVE 2Ø5.6K 136
 GONE CSA 227 66.ØK 2.ØK
 228 12.ØK 3.ØK
 231 34Ø.ØK
 241 38.ØK
 SQA 239 1.2K
-------- -------- -------- --------
CICS GONE 457.2K 5.ØK
-------- -------- --------
CICS 662.9K 5.1K

DFSHSM ACTIVE CSA 227 512
 231 16Ø
 241 624
 SQA 239 32
 245 992
-------- -------- --------
DFHSM ACTIVE 2.2K
 GONE CSA 227 67.8K
 228 11.4K
 231 148.ØK
 241 136.6K

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 SQA 239 4.8K 872
 245 19.7K 8ØØ
-------- -------- -------- --------
DFHSM GONE 388.5K 1.6K
-------- -------- --------
DFHSM 39Ø.8K 1.6K

OWNGONE set provides four reports on ‘owner gone’ ASIDs.
Below is a summary of CS ‘owner gone’ ASIDs by date:
 COMMON STORAGE
LOCATION
ALLOCATION CSA CSA/E SQA SQA/E
DATE LENGTH LENGTH LENGTH LENGTH
2ØØ3/1Ø/27 2.1K 397.1K 3.ØK 27.ØK
2ØØ3/1Ø/29 224 8.7K
2ØØ3/1Ø/3Ø 3.6K 23.4K
2ØØ3/11/Ø3 144 32.ØK 4.8K
2ØØ3/11/Ø4 15.5K
2ØØ3/11/Ø5 32 23.8K
2ØØ3/11/Ø6 256 23.1K
2ØØ3/11/Ø7 2Ø8 66.8K 4.8K
2ØØ3/11/Ø8 16 3.8K
2ØØ3/11/Ø9 32 344
2ØØ3/11/1Ø 1.8K 19.7K
2ØØ3/11/11 192 11.5K
2ØØ3/11/12 23.ØK 6.1K
2ØØ3/11/13 384 23.7K
2ØØ3/11/14 3.8K
2ØØ3/11/17 576 15.8K
2ØØ3/11/2Ø 23.1K
2ØØ3/11/21 1.8K 11.6K 128
2ØØ3/11/22 38.2K 9.7K
2ØØ3/11/23 22.9K
2ØØ3/11/24 48 31.7K
2ØØ3/11/25 4ØØ 164.ØK 128
2ØØ3/11/27 32 64
2ØØ3/12/Ø3 6Ø.8K
2ØØ3/12/Ø4 256 34Ø.ØK

Below is an example report of ‘owner gone’ ASIDs:
STORAGE ALLOCATION ALLOC
OWNER DATE TIME LOCATION SPOOL-KEY LENGTH
CATALOG 2ØØ3/1Ø/27 Ø8.43.2Ø SQA 226-Ø 128
 Ø8.43.2Ø SQA/E 245-Ø 576
 Ø8.43.2Ø SQA/E 248-Ø 784
 Ø8.44.27 SQA 239-Ø 128
 Ø8.44.27 SQA/E 239-Ø 464
 Ø8.44.27 SQA/E 245-Ø 896

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 Ø8.44.36 SQA 226-Ø 128
 Ø8.44.36 SQA 245-Ø 128
 Ø8.44.36 SQA/E 239-Ø 224
 Ø8.44.36 SQA/E 245-Ø 2.ØK
 Ø8.44.36 SQA/E 248-Ø 2ØØ
 11.47.32 SQA 245-Ø 256
 11.47.32 SQA/E 239-Ø 568
 11.47.32 SQA/E 245-Ø 1.8K
 11.47.32 SQA/E 247-Ø 128
CICS 2ØØ3/1Ø/27 Ø8.5Ø.Ø5 CSA/E 227-6 4.ØK
 Ø8.5Ø.2Ø CSA/E 227-6 16.ØK
 Ø8.52.Ø2 CSA/E 231-7 2Ø.ØK
 Ø8.55.3Ø CSA/E 231-7 16.ØK
 Ø8.57.53 CSA/E 228-6 4.ØK
 Ø8.57.53 CSA/E 231-7 2Ø.ØK
 Ø8.57.53 CSA/E 241-Ø 4.ØK
 Ø8.59.36 CSA/E 227-6 16.ØK
 Ø8.59.47 CSA/E 227-6 6.ØK
 Ø9.ØØ.ØØ CSA/E 228-Ø 48
 Ø9.Ø7.4Ø CSA/E 241-6 4.ØK
 Ø9.18.29 CSA/E 231-7 4.ØK
 1Ø.46.31 CSA/E 241-6 4.ØK
 11.41.14 CSA/E 241-6 6.ØK
 11.55.43 CSA/E 241-7 4.ØK
 17.45.Ø3 CSA/E 227-6 4.ØK
 17.45.Ø3 CSA/E 231-5 4Ø.ØK
 17.45.Ø3 CSA/E 231-6 16.ØK
 17.45.Ø3 CSA/E 231-7 2Ø.ØK
 2ØØ3/1Ø/3Ø 11.43.18 CSA/E 228-6 4.ØK
 15.Ø2.42 CSA 227-6 1.ØK
 15.Ø2.44 CSA 227-6 1.ØK
 15.Ø2.45 CSA 228-7 1.ØK
 2ØØ3/1Ø/31 13.Ø9.32 CSA 228-7 1.ØK
 13.19.54 CSA 228-7 1.ØK
 2ØØ3/11/Ø3 Ø7.11.29 CSA/E 241-6 16.ØK
 2ØØ3/11/Ø7 13.56.31 CSA/E 231-7 36.ØK
 2ØØ3/11/12 14.38.27 SQA/E 239-Ø 1.2K
 2ØØ3/11/2Ø 15.2Ø.28 CSA/E 227-6 4.ØK
 2ØØ3/11/28 11.17.48 CSA/E 231-Ø 16.ØK
 11.17.48 CSA/E 231-5 16.ØK
 11.17.48 CSA/E 231-7 132.ØK
 12.23.19 CSA/E 231-5 4.ØK
 2ØØ3/12/Ø3 Ø7.Ø3.Ø4 CSA/E 228-Ø 4.ØK
 Ø8.31.3Ø CSA/E 227-6 16.ØK

JOB
//MXIBATCH EXEC PGM=MXI,PARM='BATCH,NOTITLES'
//* Invoke MXI GQE command to get the snapshot

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//* of all allocated Common Storage blocks
//SYSPRINT DD DSN=&&OUTSMF,DISP=(NEW,PASS),
// DCB=(RECFM=FB,LRECL=8Ø),
// SPACE=(CYL,(1,1))
//SYSIN DD *
 GQE
/*
//VSM EXEC SAS
//WORK DD UNIT=SYSDA,SPACE=(CYL,(5Ø,5))
//GQELIST DD DISP=(OLD,DELETE),DSN=&&OUTSMF
//SASLIST DD SYSOUT=*
//CSRPT DD SYSOUT=*
//HIST DD SYSOUT=*
//OWNSTAT DD SYSOUT=*
//OWNDET DD SYSOUT=*
//OWNGONE DD SYSOUT=*
//SYSUDUMP DD DUMMY
//SYSIN DD *
 /* Process the list of Getmain Queue Elements */
 /* that describe all allocated (active & gone) */
 /* blocks of Common Storage */
OPTIONS NOCENTER LINESIZE=255 PAGESIZE=999;
PROC FORMAT;
 PICTURE BKM Ø-1Ø23='ØØØØØØ'
 1Ø24-1Ø48576='ØØØ.ØK' (MULT=Ø.ØØ9765625)
 OTHER='ØØØ.ØM' (MULT=Ø.ØØØØØ9765625);
DATA CSALLOC;
 INFILE GQELIST;
 INPUT @Ø1 ADDRESS HEX8. /* Starting address of CS block */
 @13 LEN 8. /* Length of allocated storage */
 @21 TYP $CHAR1. /* Type of storage: CSA, SQA */
 @22 STAT $CHAR1. /* ASID status: active, gone */
 @24 OWNER $CHAR8. /* Owner of the storage */
 @33 SUBPOOL $CHAR3. /* Subpool number */
 @37 KEY $CHAR1. /* Storage protect key */
 @41 DATE $CHAR1Ø. /* Allocation date */
 @52 TIME $CHAR8. /* Allocation time */
 @61 GQEADDR HEX8. /* GQE address */
 @7Ø RETADDR HEX8.; /* Return address from Getmain */
 IF ADDRESS > 16777215 THEN AREA ='ABOVE';
 ELSE AREA ='BELOW';
 IF TYP = ‚S' THEN TYPE = ‚SQA';
 ELSE TYPE = ‚CSA';
 IF STAT = ‚-' THEN STATUS = ‚GONE ‚;
 ELSE STATUS = ‚ACTIVE';
 LABEL
 AREA ='Common Storage*location'
 LEN ='Length'
 TYPE ='Storage*type'
 STATUS ='ASID*status'

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 OWNER ='Storage*owner'
 SUBPOOL ='Subpool #'
 KEY ='Storage*protect*key'
 DATE ='Allocation*date'
 TIME ='Alloc*time';
 /*-------------- History data ------------------ */
 PROC SUMMARY DATA=CSALLOC NWAY;
 CLASS DATE TYPE STATUS SUBPOOL AREA;
 VAR LEN;
 OUTPUT OUT=CSAHIS SUM= N=NUMREC;
 PROC PRINTTO PRINT=HIST; OPTIONS PAGENO=1;
 TITLE ‚Common Storage allocation by date';
 PROC REPORT DATA=CSAHIS SPLIT='*';
 COLUMN DATE STATUS AREA,LEN;
 DEFINE DATE /GROUP WIDTH=11;
 DEFINE STATUS/GROUP WIDTH=8;
 DEFINE AREA /ACROSS;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 BREAK AFTER DATE/ SUMMARIZE OL SKIP;
 PROC PRINTTO PRINT=HIST; OPTIONS PAGENO=1;
 TITLE ‚Common Storage type allocation by date';
 PROC REPORT DATA=CSAHIS SPLIT='*';
 COLUMN DATE STATUS TYPE AREA,LEN;
 DEFINE DATE /GROUP WIDTH=11;
 DEFINE STATUS/GROUP WIDTH=8;
 DEFINE TYPE /GROUP WIDTH=8;
 DEFINE AREA /ACROSS;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 BREAK AFTER STATUS/ SUMMARIZE OL SKIP;
 BREAK AFTER DATE/ SUMMARIZE OL SKIP;
 PROC PRINTTO PRINT=HIST; OPTIONS PAGENO=1;
 TITLE ‚common storage type & subpool allocation by date';
 PROC REPORT DATA=CSAHIS SPLIT='*';
 COLUMN DATE STATUS TYPE SUBPOOL AREA,LEN;
 DEFINE DATE /GROUP WIDTH=11;
 DEFINE STATUS /GROUP WIDTH=8;
 DEFINE TYPE /GROUP WIDTH=8;
 DEFINE SUBPOOL/GROUP WIDTH=8;
 DEFINE AREA /ACROSS;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 BREAK AFTER STATUS/SUMMARIZE OL SKIP;
 BREAK AFTER DATE/SUMMARIZE OL SKIP;
 PROC DELETE;
 DATA CSAHIS;
 /* --Common Storage & subpools report -------- */
 PROC SUMMARY DATA=CSALLOC NWAY;
 CLASS TYPE STATUS SUBPOOL DATE AREA;
 VAR LEN;
 OUTPUT OUT=CSAOUT SUM= N=NUMREC;
 PROC PRINTTO PRINT=CSRPT;OPTIONS PAGENO=1;

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 TITLE ‚Common Storage allocation - Summary';
 PROC REPORT DATA=CSAOUT split='*';
 COLUMN AREA STATUS TYPE,(LEN PCT);
 DEFINE AREA /GROUP WIDTH=15;
 DEFINE STATUS/GROUP WIDTH=8;
 DEFINE TYPE /ACROSS WIDTH=8;
 DEFINE PCT /COMPUTED FORMAT=PERCENT8.2 ;
 DEFINE LEN /SUM FORMAT=BKM8.;
 COMPUTE BEFORE;
 TOTCSA=_C3_;
 TOTSQA=_C5_;
 ENDCOMP;
 COMPUTE PCT;
 C4=_C3_/TOTCSA;
 C6=_C5_/TOTSQA;
 ENDCOMP;
 BREAK AFTER AREA/ SUMMARIZE OL SKIP;
 PROC PRINTTO PRINT=CSRPT;OPTIONS PAGENO=1;
 TITLE ‚Common Storage subpools allocation - Part I';
 PROC REPORT DATA=CSAOUT SPLIT='*';
 COLUMN TYPE SUBPOOL AREA,LEN;
 DEFINE TYPE /GROUP WIDTH=8;
 DEFINE SUBPOOL/GROUP WIDTH=8;
 DEFINE AREA /ACROSS;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 BREAK AFTER TYPE/SUMMARIZE OL SKIP;
 PROC PRINTTO PRINT=CSRPT;OPTIONS PAGENO=1;
 PROC REPORT DATA=CSAOUT SPLIT='*';
 TITLE ‚Common Storage subpools allocation - Part II';
 COLUMN STATUS SUBPOOL AREA,LEN;
 DEFINE STATUS /GROUP WIDTH=8;
 DEFINE SUBPOOL/GROUP WIDTH=8;
 DEFINE AREA /ACROSS;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 BREAK AFTER STATUS/SUMMARIZE OL SKIP;
 PROC DELETE;
 DATA CSAOUT;
 PROC SUMMARY DATA=CSALLOC NWAY;
 CLASS STATUS TYPE SUBPOOL KEY AREA;
 VAR LEN;
 OUTPUT OUT=CSASP SUM= N=NUMREC;
 PROC PRINTTO PRINT=CSRPT;OPTIONS PAGENO=1;
 TITLE ‚Subpool allocation - detail';
 PROC REPORT DATA=CSASP SPLIT='*';
 COLUMN TYPE STATUS SUBPOOL KEY AREA,LEN;
 DEFINE TYPE /GROUP WIDTH=8;
 DEFINE STATUS /GROUP WIDTH=8;
 DEFINE SUBPOOL /GROUP WIDTH=8;
 DEFINE KEY /GROUP WIDTH=8;
 DEFINE AREA /ACROSS;

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 DEFINE LEN /SUM FORMAT=BKM8.'--';
 BREAK AFTER STATUS/SUMMARIZE OL SKIP;
 BREAK AFTER TYPE/SUMMARIZE OL SKIP;
 RUN;
 PROC DELETE;
 DATA CSASP;
 /* ------ Owner reports: summary & datail------ */
 PROC SUMMARY DATA=CSALLOC NWAY;
 CLASS OWNER TYPE AREA;
 VAR LEN;
 OUTPUT OUT=OWNOUT SUM= N=NEC;
 LABEL
 NEC ='# CS*BLOCKS';
 PROC PRINTTO PRINT=OWNSTAT;OPTIONS PAGENO=1;
 TITLE ‚Common Storage allocation by Owner (active & gone)';
 PROC REPORT DATA=OWNOUT SPLIT='*';
 COLUMN OWNER TYPE,(AREA,LEN NEC);
 DEFINE OWNER /GROUP WIDTH=8;
 DEFINE NEC /FORMAT=4. WIDTH=6;
 DEFINE TYPE /ACROSS;
 DEFINE AREA /ACROSS WIDTH=6;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 RUN;
 PROC DELETE;
 DATA OWNOUT;
 PROC SUMMARY DATA=CSALLOC NWAY;
 CLASS OWNER STATUS TYPE SUBPOOL AREA;
 VAR LEN;
 OUTPUT OUT=OWNSTD SUM= N=NUMREC;
 PROC PRINTTO PRINT=OWNDET;OPTIONS PAGENO=1;
 TITLE ‚Common Storage allocated by Owner - Detail';
 PROC REPORT DATA=OWNSTD SPLIT='*';
 COLUMN OWNER STATUS TYPE SUBPOOL AREA,LEN;
 DEFINE OWNER /GROUP WIDTH=8;
 DEFINE STATUS /GROUP WIDTH=8;
 DEFINE TYPE /GROUP WIDTH=8;
 DEFINE SUBPOOL /GROUP WIDTH=8;
 DEFINE AREA /ACROSS;
 DEFINE LEN /SUM FORMAT=BKM8. ‚--';
 BREAK AFTER STATUS/SUMMARIZE OL SKIP;
 BREAK AFTER OWNER/SUMMARIZE OL SKIP;
 PROC DELETE;
 DATA OWNSTD;
 /* ------ Owner gone reports: summary & datail------ */
 DATA OWNERG (DROP = STAT STATUS
 TYP ADDRESS);
 SET CSALLOC;
 IF STATUS ='ACTIVE' THEN DELETE;
 IF AREA ='ABOVE' THEN LOC = TYPE !! ‚/E';
 ELSE LOC =TYPE;

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 SPK=SUBPOOL !! ‚-'!!KEY;
 LABEL
 LOC ='COMMON STORAGE LOCATION';
 PROC PRINTTO PRINT=OWNGONE; OPTIONS PAGENO=1;
 PROC SUMMARY DATA=OWNERG NWAY;
 CLASS DATE LOC;
 VAR LEN;
 OUTPUT OUT=K SUM= N=NBL;
 TITLE ‚CS allocation by „owner gone" ASIDs';
 PROC REPORT DATA=K SPLIT='*';
 COLUMN DATE LOC , LEN;
 DEFINE DATE /GROUP;
 DEFINE LOC /ACROSS WIDTH=6;
 DEFINE LEN /SUM FORMAT=BKM8.;
 PROC DELETE;
 DATA K;
 PROC SUMMARY DATA=OWNERG NWAY;
 CLASS OWNER TYPE AREA;
 VAR LEN;
 OUTPUT OUT=OWNSUM SUM= N=NEC;
 LABEL
 NEC ='# CS*BLOCKS';
 TITLE ‚Common Storage allocation by Owner gone - Summary';
 PROC REPORT DATA=OWNSUM SPLIT='*';
 COLUMN OWNER TYPE,(AREA,LEN NEC);
 DEFINE OWNER /GROUP WIDTH=8;
 DEFINE NEC /FORMAT=4. WIDTH=6;
 DEFINE TYPE /ACROSS;
 DEFINE AREA /ACROSS WIDTH=6;
 DEFINE LEN /SUM FORMAT=BKM8.'--';
 PROC DELETE;
 DATA OWNSUM;
 PROC SUMMARY DATA=OWNERG NWAY;
 CLASS DATE OWNER TIME TYPE SPK AREA;
 VAR LEN;
 OUTPUT OUT=K1 SUM= N=NBL;
 TITLE ‚„Owner gone" ASIDs: by date, time and subpools';
 PROC REPORT DATA=K1 SPLIT='*';
 COLUMN DATE OWNER TIME TYPE SPK (AREA, LEN);
 DEFINE DATE /GROUP;
 DEFINE OWNER /GROUP;
 DEFINE TIME /WIDTH=1Ø;
 DEFINE TYPE /GROUP WIDTH=7;
 DEFINE SPK /WIDTH=7;
 DEFINE AREA /ACROSS WIDTH=6;
 DEFINE LEN /SUM FORMAT=BKM8.;
 BREAK AFTER DATE/ SUMMARIZE OL SKIP;
 PROC DELETE;
 DATA K1;
 PROC SUMMARY DATA=OWNERG NWAY;

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 CLASS OWNER DATE TIME LOC SPK;
 VAR LEN;
 OUTPUT OUT=K3 SUM= N=NBL;
 TITLE ‚„Owner gone" ASIDs: owner name, date & subpools';
 PROC REPORT DATA=K3 SPLIT='*';
 COLUMN OWNER DATE TIME LOC SPK LEN;
 DEFINE OWNER /GROUP;
 DEFINE DATE /GROUP;
 DEFINE TIME /WIDTH=9;
 DEFINE LOC /WIDTH=1Ø ‚LOCATION';
 DEFINE SPK /WIDTH=1Ø ‚SPOOL-KEY';
 DEFINE LEN /FORMAT=BKM8.;
 PROC DELETE;
 DATA K3;

CONCLUSION
We have seen that a non-reusable address space is one where
a job that ended had been running in a cross memory environment.
When such a job ends, the system ends the address space and
marks its associated ASVT entry non-reusable (unavailable)
until all the address spaces with which the job had cross memory
binds have ended. This makes it sound like everything will clean
itself out eventually, but it just never seems to happen. Finding
the culprit is not that easy and, unless you want to randomly
check the IBM repository for reported ‘owner gone’ errors, a
systematic approach like the one described in this article might
help you narrow down the list of suspects.
Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2004

REXX routine to count lines of COBOL code –
part 2

This month we conclude the code for the routine that counts the
lines of COBOL code and also demonstrates some useful
techniques in REXX/ISPF.

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* ** */
 val_rc = Ø
 if cpyexp = 'Y' & cbsuse ¬= 'I' then
 /* expand copybooks */
 do
 if cpydsn.Ø <= Ø then
 do
 say 'no copybook datasets defined: cpyexp changed to "N"'
 cpyexp = 'N'
 end
 do
 do i = cpydsn.Ø to 1 by -1
 cpydsn = cpydsn.i
 call ext_cpy
 end
 call eval_copy
 call eval_cpy2
 if unresolved then
 call eval_cpy3
 call write_memlist
 end
 end
 call ext_src
exit Ø
/* extract the copybook values per copybook */
ext_cpy:
 ADDRESS TSO
 x = OUTTRAP(lm.,"*")
 "LISTD" cpydsn "MEMBERS"
 x = OUTTRAP("off")
 do j = 1 to lm.Ø
 if lm.j = "--MEMBERS--" then
 do
 call countmem
 leave
 end
 end
return
/* extract the copybook values per member */
countmem:
 do qc = 1 to queued()
 pull .
 end
 do k = j+1 to lm.Ø
 t1 = t1 + 1
 cpydsnx = strip(cpydsn,"B","'")
 parse value lm.k with mem plus
 cpydsny = "'"cpydsnx"("mem")'"
 /* edit macro called per member */
 "ISPEXEC EDIT DATASET("cpydsny") MACRO(COBCMEM)"

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /* put the extracted values into an array */
 pull cobc_mstr
 table1.t1.mst = cobc_mstr
 pull cobc_post
 table1.t1.pos = cobc_post
 pull cobc_pre
 table1.t1.pre = cobc_pre
 end
return
/* evaluate all unnested copybooks and convert to REXX variables */
eval_copy:
 do t = 1 to t1
 mem1 = word(table1.t.mst,2)
 var1 = mem1 '='
 if pdo = 'Y' then
 do
 if words(table1.t.pos) = 4 then
 do
 var2 = word(table1.t.pos,2) - word(table1.t.pos,4)
 interpret var1 var2
 end
 end
 else
 do
 if words(table1.t.pos) = 4 & (words(table1.t.pre) = 4 ,
 | word(table1.t.pre,1) = 'NULL') then
 do
 var2 = word(table1.t.mst,4) - word(table1.t.mst,6)
 interpret var1 var2
 end
 end
 end
return
/* evaluate second level of nesting for copybooks */
eval_cpy2:
 v1 = Ø
 unresolved = Ø
 do t = 1 to t1
 mem1 = word(table1.t.mst,2)
 var1 = mem1 '='
 if pdo = 'Y' then
 do
 if words(table1.t.pos) = 4 then
 do
 var2 = word(table1.t.pos,2) - word(table1.t.pos,4)
 cp = cp + 1
 memlist.cp = mem1 var2
 interpret var1 var2
 end
 else

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 do
 pos1 = word(table1.t.mst,2)
 restpos = ''
 poscnt = words(table1.t.pos)
 poschk = word(table1.t.pos,2) - word(table1.t.pos,4)
 allnumeric = 1
 do u = 5 to poscnt
 posnum = ''
 var1 = 'posval ='
 posnum = word(table1.t.pos,u)
 interpret var1 posnum
 if datatype(posval,N) then
 do
 poschk = poschk + posval - 1
 end
 else
 do
 allnumeric = Ø
 restpos = restpos word(table1.t.pos,u)
 end
 end
 if allnumeric then
 do
 mem1 = word(table1.t.mst,2)
 var1 = mem1 '='
 var2 = poschk
 cp = cp + 1
 memlist.cp = mem1 var2
 interpret var1 var2
 end
 else
 do
 unresolved = 1
 v1 = v1 + 1
 table2.v1.pos = pos1 poschk restpos
 end
 end
 end
 else
 do
 if words(table1.t.pos) = 4 & (words(table1.t.pre) = 4 ,
 | word(table1.t.pre,1) = 'NULL') then
 do
 var2 = word(table1.t.mst,4) - word(table1.t.mst,6)
 cp = cp + 1
 memlist.cp = mem1 var2
 interpret var1 var2
 end
 else
 do

 52 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 nam1 = word(table1.t.mst,2)
 restmst = ''
 allnumeric = 1
 poscnt = words(table1.t.pos)
 poschk = word(table1.t.pos,2) - word(table1.t.pos,4)
 do u = 5 to poscnt
 posnum = ''
 var1 = 'posval ='
 posnum = word(table1.t.pos,u)
 interpret var1 posnum
 if datatype(posval,N) then
 do
 poschk = poschk + posval - 1
 end
 else
 do
 allnumeric = Ø
 restpos = restpos word(table1.t.pos,u)
 end
 end
 precnt = words(table1.t.pre)
 if word(table1.t.pre,1) = 'NULL' then
 do
 prechk = Ø
 end
 else
 do
 prechk = word(table1.t.pre,2) - word(table1.t.pre,4)
 do u = 5 to precnt
 prenum = ''
 var1 = 'preval ='
 prenum = word(table1.t.pos,u)
 interpret var1 prenum
 if datatype(preval,N) then
 do
 prechk = prechk + preval - 1
 end
 else
 do
 allnumeric = Ø
 restpos = restpos word(table1.t.pre,u)
 end
 end
 end
 if allnumeric then
 do
 mem1 = word(table1.t.mst,2)
 var1 = mem1 '='
 mstchk = poschk + prechk
 var2 = mstchk

 53© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 cp = cp + 1
 memlist.cp = mem1 var2
 interpret var1 var2
 end
 else
 do
 unresolved = 1
 v1 = v1 + 1
 table2.v1.mst = nam1 mstchk restpos
 end
 end
 end
 end
return
/* evaluate third level of nesting for copybooks */
/* unresolved copybooks or further nesting ignored */
eval_cpy3:
 do v = 1 to v1
 mem1 = word(table2.v.pos,1)
 var1 = mem1 '='
 if pdo = 'Y' then
 do
 poscnt = words(table2.v.pos)
 poschk = word(table2.v.pos,2)
 allnumeric = 1
 do u = 3 to poscnt
 posnum = ''
 var1 = 'posval ='
 posnum = word(table2.v.pos,u)
 interpret var1 posnum
 if datatype(posval,N) then
 do
 poschk = poschk + posval - 1
 end
 end
 mem1 = word(table2.v.pos,1)
 var1 = mem1 '='
 var2 = poschk
 cp = cp + 1
 memlist.cp = mem1 var2
 interpret var1 var2
 end
 else
 do
 mstcnt = words(table2.v.mst)
 mstchk = word(table2.v.mst,2)
 allnumeric = 1
 do u = 3 to mstcnt
 mstnum = ''
 var1 = 'mstval ='

 54 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 mstnum = word(table2.v.mst,u)
 interpret var1 mstnum
 if datatype(mstval,N) then
 do
 mstchk = mstchk + mstval - 1
 end
 end
 mem1 = word(table2.v.mst,1)
 var1 = mem1 '='
 var2 = mstchk
 cp = cp + 1
 memlist.cp = mem1 var2
 interpret var1 var2
 end
 end
return
/* write the copybook info. store dataset */
write_memlist:
 memlist.Ø = cp
 if cbsuse = 'U' | cbsuse = 'O' then
 call output_cbs
return
/* extract the source dataset values per datset */
ext_src:
 s1 = Ø
 sl = Ø
 ADDRESS TSO
 x = OUTTRAP(lm.,"*")
 "LISTD" srcdsn "MEMBERS"
 x = OUTTRAP("off")
 do j = 1 to lm.Ø
 if lm.j = "--MEMBERS--" then
 do
 call countsrc
 leave
 end
 end
return
/* extract/count the source dataset values per member */
countsrc:
 do qc = 1 to queued()
 pull .
 end
 do k = j+1 to lm.Ø
 s1 = s1 + 1
 srcdsnx = strip(srcdsn,"B","'")
 parse value lm.k with mem plus
 srcdsny = "'"srcdsnx"("mem")'"
 /* edit macro called per member */
 "ISPEXEC EDIT DATASET("srcdsny") MACRO(COBCMEM)"

 55© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 pull cobc_mstr
 pull cobc_post
 pull cobc_pre
 mem1 = word(cobc_mstr,2)
 var1 = mem1 '='
 poscnt = words(cobc_post)
 poschk = word(cobc_post,2) - word(cobc_post,4)
 If cpyexp = 'Y' then
 do u = 5 to poscnt
 posnum = ''
 var1 = 'posval ='
 posnum = word(cobc_post,u)
 interpret var1 posnum
 if datatype(posval,N) then
 do
 poschk = poschk + posval - 1
 end
 end
 prechk = Ø
 if pdo ¬= 'Y' then
 do
 if cobc_pre ¬= 'NULL' then
 do
 precnt = words(cobc_pre)
 prechk = word(cobc_pre,2) - word(cobc_pre,4)
 If cpyexp = 'Y' then
 do u = 5 to precnt
 prenum = ''
 var1 = 'preval ='
 mstnum = word(cobc_pre,u)
 interpret var1 prenum
 if datatype(preval,N) then
 do
 prechk = prechk + preval - 1
 end
 end
 end
 end
 mstchk = poschk + prechk
 sl = sl + 1
 /* store the source values in array srclist */
 srclist.sl = mem1 mstchk
 end
 /* allocate the ouput dataset */
 call def_output
 /* write out source dataset values to report */
 call write_output
 "FREE DSNAME("outdsn")"
return
/* read in the copybook info. store dataset */

 56 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

input_cbs:
 'ALLOC DA('cbsdsn') F(CBSDD) SHR REUSE'
 'EXECIO * DISKR CBSDD (STEM memlist. FINIS'
 if rc = Ø then
 if memlist.Ø > Ø then
 do
 cp = memlist.Ø
 do ml = 1 to memlist.Ø
 var1 = word(memlist.ml,1)
 var1 = var1 "="
 var2 = word(memlist.ml,2)
 interpret var1 var2
 end
 end
 "FREE DSNAME("cbsdsn")"
return
/* write out the copybook info. store dataset */
output_cbs:
 'ALLOC DA('cbsdsn') F(CBSDD) OLD'
 'EXECIO ' cp ' DISKW CBSDD (STEM memlist. FINIS'
 "FREE DSNAME("cbsdsn")"
return
/* check the validity of the copybook info store dataset */
check_cbsdsn:
 rc = MSG('OFF')
 SYSDSN = SYSDSN(cbsdsn)
 select
 when (SYSDSN = 'OK') then
 do
 nop
 end
 when (SYSDSN = 'DATASET NOT FOUND') then
 do
 ADDRESS TSO
 "FREE DSNAME("cbsdsn")"
 "ALLOC DD("cpybkddn") NEW CATALOG REUSE ",
 "DSN("cbsdsn") ",
 "LRECL(8Ø) BLKSIZE(3272Ø) RECFM(F,B) ",
 "DSORG(PS) ",
 "STORCLAS("stor1") MGMTCLAS("mgmt1")",
 "VOLUME("vol1") UNIT("unit1")",
 "SPACE("spc1") TRACKS"
 end
 otherwise
 do
 do qc = 1 to queued()
 pull .
 end
 say 'copybook store dataset error'
 say SYSDSN

 57© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 exit 8
 end
 end
 "FREE DSNAME("cbsdsn")"
 rc = MSG('ON')
return
/* check the validity of the copybook datasets */
check_cpydsn:
 rc = MSG('OFF')
 SYSDSN = SYSDSN(cpydsn)
 select
 when (SYSDSN = 'OK') then
 do
 nop
 end
 otherwise
 do
 do qc = 1 to queued()
 pull .
 end
 say 'copybook dataset error for ' cpydsn
 say SYSDSN
 exit 8
 end
 end
 "FREE DSNAME("cpydsn")"
 rc = MSG('ON')
return
/* check the validity of the source dataset */
check_srcdsn:
 rc = MSG('OFF')
 SYSDSN = SYSDSN(srcdsn)
 select
 when (SYSDSN = 'OK') then
 do
 nop
 end
 otherwise
 do
 do qc = 1 to queued()
 pull .
 end
 say 'source dataset error for ' srcdsn
 say SYSDSN
 exit 8
 end
 end
 "FREE DSNAME("srcdsn")"
 rc = MSG('ON')
return

 58 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

def_output:
 rc = MSG('OFF')
 SYSDSN = SYSDSN(outdsn)
 select
 when (SYSDSN = 'OK') then
 do
 ADDRESS TSO
 "DELETE "outdsn
 call def_output
 end
 when (SYSDSN = 'DATASET NOT FOUND') then
 do
 ADDRESS TSO
 "ALLOC DD("outddn") NEW CATALOG REUSE ",
 "DSN("outdsn") ",
 "LRECL(8Ø) BLKSIZE(3272Ø) RECFM(F,B) ",
 "DSORG(PS) ",
 "STORCLAS("stor2") MGMTCLAS("mgmt2")",
 "VOLUME("vol2") UNIT("unit2")",
 "SPACE("spc2") TRACKS"
 end
 otherwise
 do
 do qc = 1 to queued()
 pull .
 end
 say 'output datset error'
 say SYSDSN
 exit 8
 end
 end
 rc = MSG('ON')
return
/* write out the report to output dataset and spool */
write_output:
 totalcnt = Ø
 comline = "----------------------------"
 say comline
 queue comline
 say "| MEMBER | LINES OF CODE |"
 queue "| MEMBER | LINES OF CODE |"
 say comline
 queue comline
 do s = 1 to sl
 line = "| "left(word(srclist.s,1),9,' ')"|"
 line = line right(strip(word(srclist.s,2),'L','Ø'),6,' ') " |"
 say line
 queue line
 totalcnt = totalcnt + word(srclist.s,2)
 end

 59© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 say comline
 queue comline
 say sl "members with a total of" totalcnt "lines of code"
 queue sl "members with a total of" totalcnt "lines of code"
 say comline
 queue comline
 say "Options in effect"
 queue "Options in effect"
 say comline
 queue comline
 if pdo = 'Y' then
 do
 say 'Only Code from the PROCEDURE DIVISION counted'
 queue 'Only Code from the PROCEDURE DIVISION counted'
 end
 else
 do
 say 'Code from both PROCEDURE and DATA Divisions counted'
 queue 'Code from both PROCEDURE and DATA Divisions counted'
 end
 if cpyexp = 'Y' then
 if cbsuse ¬= 'I' then
 do
 say 'Copybooks expanded inline and included in count'
 queue 'Copybooks expanded inline and included in count'
 say 'Copybooks expanded when found in following libraries:'
 queue 'Copybooks expanded when found in following libraries:'
 say comline
 queue comline
 do cb = 1 to cpydsn.Ø
 say cpydsn.cb
 queue cpydsn.cb
 end
 say comline
 if cbsuse = 'O' then
 do
 say 'Copybook information stored in:'cbsdsn
 queue 'Copybook information stored in:'cbsdsn
 end
 if cbsuse = 'U' then
 do
 say 'Copybook information updated in:'cbsdsn
 queue 'Copybook information updated in:'cbsdsn
 end
 end
 else
 do
 say 'Copybook information retrived from:'cbsdsn
 queue 'Copybook information retrived from:'cbsdsn
 end

 60 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 else
 do
 say 'Copybooks not expanded'
 queue 'Copybooks not expanded'
 end
say 'Source library: '
queue 'Source library: '
say srcdsn
queue srcdsn
say comline
queue comline
'EXECIO * DISKW OUTDDN (FINIS'
return

COBCMEM – REXX EDIT MACRO
/* REXX */ /* required REXX identifier */
/* Procedure extract count information from a COBOL source member */
/* builds and returns a string of statistical information to be */
/* encyphered by other REXX routine */
'ISREDIT MACRO' /* required EDIT MACRO identifier */
/* ADDRESS ISREDIT */ /* set MODE to ISREDIT */
trace o /* trace switch */
procdivst= Ø
procdiven= Ø
/* ** MEMBER Name ** */
cobc_mstr = ''
cobc_post = ''
cobc_pre = ''
'ISREDIT (memname) = MEMBER'
cobc_mstr = cobc_mstr 'MEMBER=' memname
'ISREDIT (bnd1,bnd2) = BOUNDS'
/* ** Total unexpanded lines in member ** */
'ISREDIT (totlns) = LINENUM .ZLAST'
cobc_mstr = cobc_mstr 'totlns=' totlns
/* ** Total blank lines in member ** */
bl8Ø = ' '
bl8Ø = substr(bl8Ø,1,8Ø,' ') /* make bl8Ø contain 8Ø blanks */
 "ISREDIT BOUNDS = 1 8Ø"
 "ISREDIT FIND '"bl8Ø"' ALL" /* search for all blank 8Ø's */
 "ISREDIT (allstr,allline) = FIND_COUNTS"
 "ISREDIT (bnd1,bnd2) = BOUNDS"
 "ISREDIT BOUNDS = 7 7 "
 "ISREDIT FIND '*' ALL" /* search for all blank 8Ø's */
 "ISREDIT (comstr,comline) = FIND_COUNTS"
 "ISREDIT BOUNDS = " bnd1 bnd2 ""
allline = allline + comline
cobc_mstr = cobc_mstr 'alllbk=' allline
procsplt = Ø

 61© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

'ISREDIT SEEK "PROCEDURE DIVISION" FIRST' /* establish split position*/
seekrc = rc
if seekrc = 4 then
 do
 cobc_pre = 'NULL'
 end
 else
 do
 'ISREDIT (procsplt) = LINENUM .ZCSR'
 /* set labels */
 'ISREDIT LABEL 'procsplt' = .END Ø'
 'ISREDIT LABEL .ZFIRST = .START Ø'
 lines = procsplt
 linecnt = 'LINECNT=' lines
 exp_str = ''
 call exp_zone
 cobc_pre = exp_str
 end
/* set labels */
procsplt = procsplt + 1
'ISREDIT LABEL 'procsplt' = .START Ø'
'ISREDIT LABEL .ZLAST = .END Ø'
lines = totlns - (procsplt - 1)
linecnt = 'LINECNT=' lines
exp_str = ''
call exp_zone
cobc_post = exp_str
'ISREDIT CANCEL'
queue cobc_mstr
queue cobc_post
queue cobc_pre
exit
exp_zone:
 'ISREDIT CURSOR = .START'
 exp_str = exp_str linecnt
 bl8Ø = ' '
 bl8Ø = substr(bl8Ø,1,8Ø,' ')
 "ISREDIT BOUNDS = 1 8Ø"
 "ISREDIT FIND '"bl8Ø"' .START .END ALL"
 "ISREDIT (allstr,allline) = FIND_COUNTS"
 "ISREDIT (bnd1,bnd2) = BOUNDS"
 "ISREDIT BOUNDS = 7 7 "
 "ISREDIT FIND '*' .START .END ALL"
 "ISREDIT (comstr,comline) = FIND_COUNTS"
 "ISREDIT BOUNDS = " bnd1 bnd2 ""
 allline = allline + comline
 exp_str = exp_str 'alllbk=' allline
 do forever
 cpy_txt = " COPY "

 62 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 'ISREDIT FIND "'cpy_txt'" .START .END'
 findcp_rc = rc
 if findcp_rc = 4 then leave
 'ISREDIT (lcontent) = LINE .ZCSR '
 wp = wordpos('COPY',lcontent)
 wp = wp + 1
 copy_mem = word(lcontent,wp)
 copy_mem = strip(copy_mem,'T','.')
 copy_mem = strip(copy_mem,'B',' ')
 exp_str = exp_str copy_mem
 end
return

BATCHPDF – REXX GENERATOR
This is written by Doug Nadel and is available from http://
www.sillysot.com/mvs/.
Rolf Parker
Systems Programmer (Germany) © Xephon 2004

JCL tips – part 1

When you finish coding your programs you want to put them to
work in production, but before that you want to fine tune them. For
batch programs, you want to reduce the run-time because the
batch window can be very short. What you need to know is how
to write good JCL.
Over many years of working with JCL, I have been in situations
where I did not know, or was not sure, how to solve some
problems. This article is about some of the JCL commands and
parameters that we all know or have heard of, but, when we need
them, we find we’ve forgotten them.

JCL CHECKING FOR ERRORS
Before you deploy your jobs in the production environment you

 63© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

at least want to know that your JCL is correctly written. During
testing, you can use the TYPRUN parameter in the JOB statement.
One of the available values for this parameter is SCAN, which
requests that the system scan this job’s JCL for syntax errors,
without executing the job or allocating devices:
//TEST JOB (ACCT),'PRGMR',CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID,
// TYPRUN=SCAN
//*

This parameter asks the system to check for:
• Spelling of parameter keywords and some subparameter

keywords that are not valid.
• Characters that are not valid.
• Unbalanced parentheses.
• Misplaced positional parameters on some statements.
• In a JES3 system only, parameter value errors or excessive

parameters.
• Invalid syntax on JCL statements in catalogued procedures

invoked by any scanned EXEC statements.
TYPRUN works on the whole job, but, if you want to check just
a particular step, you can do it by using a special value (JCLTEST
or JSTTEST) on the PGM parameter of the EXEC statement, as
in the following example:
//TEST JOB (ACCT),'PRGMR',CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//STEP1 EXEC PGM=JCLTEST
//INFILE1 DD DSN=APPLID.INPFILE.TST,DISP=SHR
//REPORT DD SYSPRINT=A
//SYSPRINT DD SYSPRINT=*
//*

The system does not check for misplaced statements, for invalid
syntax in JCL subparameters, or for parameters and/or
subparameters that are inappropriate together. If you want to
check for these possible errors too, you might need to have an
additional utility installed. A good example of such a utility is

 64 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

JCLPREP from Allen Systems Group (ASG). JCLPREP can find
a great many errors you can make in your JCL, since it can:
• Perform JCL checking (the same as TYPRUN or JCLTEST

above).
• Enable catalog look-up for file validation (file existence).
• Perform checking for member existence in dataset libraries

(programs, CNTLs, …).
• Perform program lookup for JOBLIB/STEPLIB statements.
• Perform in-stream and catalogued PROC validation.
• Validate the presence of UNIT/SMS parameters for NEW

files.
• Perform security checking.
• Perform your own rules for such statements as JOB, EXEC,

DD, JCLLIB, PROC, and OUTPUT.
JCLPREP can run in the foreground as well as in the background
as a separate batch job. Its report has a list of all error messages
on the top and then each error message is repeated in the place
where it occurs.

FILE DELETION
When you have batch processing, you find that you must deal
with the deletion of files. The usual reason for deleting the file is
that you do not want your job to fail, because the file was already
created in a previous cycle and you want to keep only the last
version of the file.
The deletion of the file must be done in a fast and easy way. The
easiest way to do it is to use the IEFBR14 program, as in the
following example:
//TEST JOB (ACCT),'PRGMR',CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//STEP1 EXEC PGM=IEFBR14
//DELFILE1 DD DSN=APPLID.DELFILE1.TST,DISP=(MOD,DELETE,DELETE)

 65© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//DELFILE2 DD DSN=APPLID.DELFILE2.TST,DISP=(MOD,DELETE,DELETE)
//*

The problem you may have is if your file has been migrated, using
DFHSM. If it is still on DASD then the retrieval will be quick and
so will deletion. But if the file is migrated to tape, then your job is
slowed down by the fact that it needs to wait for the file to be
retrieved, plus time is spent waiting for a free tape unit and so on.
The same thing occurs if your file is already on tape. Deletion by
IEFBR14 asks for the tape to be mounted and then the file can
be deleted. The solution is to use another way of deleting:
//TEST JOB (ACCT),'PRGMR',CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//STEP1 EXEC PGM=IDCAMS
//SYSIN DD *
DELETE APPLID.DELFILE1.TST
DELETE APPLID.DELFILE2.TST
IF MAXCC = 8 THEN SET MAXCC = Ø

//*

What it is doing is attempting to delete a file directly from the
catalog, without asking for the file to be available – it can be
migrated or on tape already. A little detail like this can save some
time.

DYNAMIC JCL – USING PROCEDURES AND SET AND INCLUDE
STATEMENTS
There can be situations when you know only the structure of your
job, but you do not know exactly the values of some of the
parameters, or you do not know even the name of the input file,
values for some DD statement parameters, or how many files
there are and what they are for (eg with SORT), etc.
In these situations, if it is possible, developers usually try to make
as many jobs as they need, or they make jobs by using JCL
procedures (using the combination of PROC and PEND
statements), or they use JCL symbols – as I will explain here.
JCL symbols are something like JCL variables. You can define
them, use them, change their values, and use them again. Use
of these symbols is simple substitution of the specified value

 66 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

wherever the symbol is found in the job or procedure. There is
also a group of system symbols and maybe everyone is familiar
with the SYSUID symbol, which is usually used in a JOB
statement’s NOTIFY parameter to alert a user when a job is
finished.
There are two ways you can define a JCL symbol. Since symbols
are heavily used by JCL procedures, symbols are defined as
input parameters to the JCL procedure, as in:
//PROC1 PROC MIDNAME='STREAM1',
// CYCLE='Ø3Ø1Ø2'
//*
//STEP1 EXEC PGM=IEFBR14
//DELFILE DD DSN=APPLID.&MIDNAME..D&CYCLE,
// DISP=(MOD,DELETE,DELETE)
//*
// PEND

In this simple procedure (defined in USER.APPLID.PROCLIB)
we defined two JCL symbols, MIDNAME and CYCLE, that can
further define the name of the file we want to delete in STEP1.
Symbols are used in the body of the procedure by placing the
character & in front of the symbol name. You need to add the
character dot (.) after the symbol name if the following character
is $, @, #, or dot itself (like in the example for MIDNAME).
Now you can have a job like this:
//RUNJCL JOB (ACCOUNT),CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//SEARCH JCLLIB ORDER=USER.APPLID.PROCLIB
//*
//STEP1 EXEC PROC1
//*

By executing this job, we will delete file
APPLID.STREAM1.D031101. However, if we want to delete
some other files too, we can write something like:
//RUNJCL JOB (ACCOUNT),CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//SEARCH JCLLIB ORDER=USER.APPLID.PROCLIB
//*
//STEP1 EXEC PROC1
//*

 67© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//STEP1 EXEC PROC1,MIDNAME='STREAM2'
//*
//STEP1 EXEC PROC1,MIDNAME='STREAM1',
// CYCLE='Ø3Ø1Ø1'
//*

With this job we will delete three files:
APPLID.STREAM1.D031102, APPLID.STREAM2.D031102, and
APPLID.STREAM1.D031101. By noting a symbol’s value in the
EXEC statement, we actually override the values set in the
procedure itself.
In the situation above, we got one level of dynamic JCL. By using
SET and INCLUDE statements we can get even more. By using
the INCLUDE statement we can keep a portion of our JCL in
some library as a member. This gives us the opportunity (combined
with the SET statement, or with the already-defined symbols in
a procedure) to have different jobs every time we execute it.
Let’s say we have an application that has an output file whose
name we do not know until run-time; for instance, we have to
create a file for a specific customer, but we only find out which one
during run-time. In that case, our program, which determines the
name of the file, can write out that name (or a part, as here) in
some PDS library, as in the following example:
//* MEMBER CUSTNAME IS DEFINED IN USER.APPLID.INCLUDE
//FMN SET MIDNAME='CUST3'

Now we can have the following job, which further processes this
file:
//RUNJCL JOB (ACCOUNT),CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//SEARCH JCLLIB ORDER=USER.APPLID.INCLUDE
//*
//INCL1 INCLUDE MEMBER=CUSTNAME
//*
//STEP1 EXEC PGM=PGM1
//INPF DD DSN=APPLID.&MIDNAME..TST,DISP=SHR
//REPORT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*

The only request here is that member CUSTNAME must be
defined (created, updated) in a separate job, not in a step in the

 68 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

same job, because INCLUDE and SET statements are evaluated
at the beginning of the job.
It is not unusual for some programs to fail because a file they use
is not defined as expected. Differences in record length or record
format can cause a problem. We like to be sure that all jobs use
the same description – record length, destination, record format,
etc – so we can avoid any unpleasant surprises in production. In
that case, we can have something like this:
//* MEMBER OUTFILE IS DEFINED IN USER.APPLID.INCLUDE
//OUTF DD DSN=APPLID.&MIDNAME..D&CYCLE,DISP=(NEW,CATLG,DELETE),
// DCB=(LRECL=43Ø,RECFM=VB),SPACE=(CYL,(1ØØ,25),RLSE)

In the JCL procedure we can have:
//* THIS PROC IS DEFINED IN USER.APPLID.PROCLIB
//PROC1 PROC,MIDNAME='STREAM',
// CYCLE='Ø3Ø1Ø1'
//*
//STEP1 EXEC PGM=IDCAMS
//INPF DD DSN=APPLID.INPFILE.D&CYCLE,DISP=SHR
//INCL1 INCLUDE MEMBER=OUTFILE
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 REPRO INFILE(INPF) OUTFILE(OUTF)
//*

In the job we can have:
//RUNJCL JOB (ACCOUNT),CLASS=B,MSGCLASS=Z,NOTIFY=&SYSUID
//*
//SEARCH JCLLIB ORDER=(USER.APPLID.PROCLIB,USER.APPLID.INCLUDE)
//*
//STEP1Ø EXEC PROC1,MIDNAME='STREAM1',
// LASTNAME='STEP1Ø'
//*
//STEP2Ø EXEC PROC1,MIDNAME='STREAM1',
// LASTNAME='STEP2Ø'
//*

There are two output files, APPLID.STREAM1.STEP10 and
APPLID.STREAM1.STEP20, but we are sure that they are
defined with the same parameters so we cannot have any
problems.

 69© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

EXECUTE OTHER JOBS
The most common way that applications process data is by using
batch job streams. They consist of as many jobs as an application
needs. Usually there are three major parts; we need to:
• Prepare the data for processing.
• Process the data.
• Create some reports about processed data.
Of course, each of these steps can have more than one job. The
problem is to make them organized as a whole and to make life
easier for operators. It is even more important when we know that
these job streams are running through the night when people are
not so good at concentrating.
All the reasons above (plus many others) were enough to start
us thinking about tools that we could use as automated job
schedulers/managers, and today there are many of them (eg
CA7, ASAP, BETA 42, etc). But these tools are not free, plus
there is the cost of maintenance, time to educate staff, etc.
You can easily replace them by using IF/THEN/ELSE/ENDIF
statements as well as by calling JOB procedures that come with
MVS. It is possible that newer versions of MVS do not have this
very useful procedure so you need to check it first in SYS1.PROC
library (or some similar system library).
So whenever you have a job stream and one job triggers another,
you can have that ‘trigger’ embedded in the job that precedes it
– like in the following example:
//BINDPGM JOB ACCOUNT,PEDJA,MSGCLASS=Z,CLASS=B,NOTIFY=&SYSUID
//*
//**
//* STEP1 IN JOB6
//**
//STEP1 EXEC PGM=PROG1
//INPFILE1 DD DSN=APPLID.INPFILE1.TST,DISP=SHR
//OUTFILE1 DD DSN=APPLID.OUTFILE1.TST,DISP=(NEW,CATLG),
// SPACE=(CYL,(1Ø,5),RLSE),
// DCB=(LRECL=8Ø,RECFM=FB,BLKSIZE=Ø)
//SYSPRINT DD SYSPRINT=*

 70 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//*
//**
//* IF STEP1 ENDS WITH RC=Ø START JOB7
//**
//IF1 IF (STEP1.RC=Ø) THEN
//CALL1 EXEC JOB,D='APPLID.JCLLIB',N=JOB7
//IF1 ENDIF
//*
//**
//* STEP2 IN JOB6
//**
//STEP2 EXEC PGM=PROG2
//INPFILE2 DD DSN=APPLID.INPFILE2.TST,DISP=SHR
//OUTFILE2 DD DSN=APPLID.OUTFILE2.TST,DISP=(NEW,CATLG),
// SPACE=(CYL,(1Ø,5),RLSE),
// DCB=(LRECL=8Ø,RECFM=FB,BLKSIZE=Ø)
//SYSPRINT DD SYSPRINT=*
//*
//**
//* IF STEP1 ENDS WITH RC=Ø START JOB8
//**
//IF2 IF (STEP1.RC=Ø) THEN
//CALL2 EXEC JOB,D='APPLID.JCLLIB',N=JOB8
//IF2 ENDIF
//*

We can see that the CALL to another job can be positioned
anywhere in the job, not just after the last step, so you can have
even more functionality. By positioning the call at the end of the
job you actually continue executing the job stream where the new
job starts. By positioning the call in the middle of the job, you start
a new job stream that can proceed independently. A similar effect
can be achieved by putting both calls at the end of the job, but this
way you can save some valuable time.
Importantly, if you need to restart your job you must be careful if
that job has IF/THEN/ELSE/ENDIF statements, since the job
you want to restart does not need to be the same as the original.
If the expression you use in the IF statement uses a step RC that
is not part of the restart job any more, you need to change the job
to suit the new situation. Usually it is done by keeping either the
THEN or ELSE branch – whichever is true at that moment.

 71© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

TIME
Usually, when system programmers set job classes they also set
a default processor time that they think a job in that class will need
to run. So we have different job classes – short, night, system,
etc. Of course, not everyone is allowed to submit jobs in every
class, but usually there are similar classes for everyone. When
we run our jobs, we like to find a class that will allow our job to run
as soon as possible, especially if we work in a busy environment.
Sometimes we choose the wrong job class, so we end up with our
job failed – even sometimes without knowing why. Well, it can be
because the job exceeded the specified time limit for that job
class, and, as a result, we get S322 as the abend code.
However, we can work around this if we use the TIME parameter,
in either the JOB or the EXEC statement. In the JOB statement
we can set a maximum processor time we need for the whole job,
while on the EXEC statement we can specify the time needed for
that step only. Here are some simple rules for using the TIME
parameter:
• Do not code TIME=0 on a JOB statement. The results are

unpredictable.
• If you want to give unlimited time, code TIME=NOLIMIT or

TIME=1440.
• Every job step can have its own time limit. The sum of all the

values for the TIME parameter on the EXEC statement
cannot exceed the default value set by the system or the
value for the TIME parameter coded on the JOB statement.

• The step limit is set as the EXEC TIME parameter value, the
default time limit, or the job time remaining after the execution
of previous steps, whichever is the smaller.

Predrag Jovanovic
Project Developer
Pinkerton Computer Consultants Inc (USA) © Xephon 2004

 72 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Defining page datasets for a new partition without
STEPCAT

When defining system datasets in order to create a new MVS
partition, you have to create new page datasets.
The ‘traditional’ method uses a STEPCAT to catalog these
VSAM datasets in the new master catalog.
//STEPØ1 EXEC PGM=IDCAMS
//*
//STEPCAT DD DISP=SHR,DSN=CATALOG.MCAT.BPØ1
//*
//SYSPRINT DD SYSOUT=*
//*
//DD DD DISP=OLD,UNIT=SYSALLDA,VOL=SER=BDØØØ1
//*
//SYSIN DD *
 DELETE PAGE.BKUP.PLPA -
 FILE(DD)
 SET MAXCC = Ø
 DEFINE PAGESPACE(-
 NAME(PAGE.BPØ1.PLPA) -
 VOLUME(BDØØØ1) -
 FILE(DD) -
 CYLINDERS(8Ø) -
)
/*

But the usage of STEPCAT is not the best solution because it:
• Is not supported for SMS volumes.
• Doesn’t work if the UCB of the volume where the catalog is

located is loaded > 16 MB line (LOCANY UCB).
• Adversely affects performance.
• Might not be supported at all in the future.
An alternative to STEPCAT is available: the use of the Multi-
Level Alias (MLA) feature.
This article describes how to define page datasets for a new
partion (BP01) without using STEPCAT but using MLA.

 73© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

USING MULTI-LEVEL ALIAS (MLA)
Very often the naming convention uses the SYSNAME of the
partition in the name of the page datasets, eg :
PAGE.&sysname.PLPA

So, for the new partition BP01, the names of the page datasets
will be:
• PAGE.BP01.PLPA
• PAGE.BP01.COMMON
• PAGE.BP01.LOCAL01
The new master catalog of the partition BP01
(CATALOG.MCAT.BP01) is defined as a user catalog of the
driving system.

Enabling the use of MLA
To enable dynamic use of MLA level 2, you should enter the
following MVS command:
F CATALOG,ALIASLEVEL(2)

IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED

In order to check the result of this command, you should issue
the F CALOG,REPORT command:
F CATALOG,REPORT

IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC359I CATALOG REPORT OUTPUT 77Ø
*CAS**************************************
* CATALOG COMPONENT LEVEL = HDZ11GØ *
* CATALOG ADDRESS SPACE ASN = ØØ1D *
* SERVICE TASK UPPER LIMIT = 18Ø *
* SERVICE TASK LOWER LIMIT = 6Ø *
* HIGHEST # SERVICE TASKS = 38 *
* CURRENT # SERVICE TASKS = 38 *
* MAXIMUM # OPEN CATALOGS = 1,Ø24 *
* ALIAS TABLE AVAILABLE = YES *
* ALIAS LEVELS SPECIFIED = 2 * - MLA level

 74 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* SYS% TO SYS1 CONVERSION = OFF *
* CAS MOTHER TASK = ØØ9A392Ø *
* CAS MODIFY TASK = ØØ9A37ØØ *
* CAS ANALYSIS TASK = ØØ9AØE88 *
* CAS ALLOCATION TASK = ØØ9A33D8 *
* VOLCAT HI-LEVEL QUALIFIER = SYS1 *
* NOTIFY EXTENT = 1Ø% *
* DELETE UCAT/VVDS WARNING = ON *
* DATA SET SYNTAX CHECKING = ENABLED *
*CAS**************************************
IEC352I CATALOG ADDRESS SPACE MODIFY COMMAND COMPLETED

In order to make the change static, you should modify the
SYSCAT statement of the LOADxx member of SYS1.IPLPARM:
IODF ** SYS4 OSCONF ØØ Y
NUCLEUS 1
NUCLST ØØ
SYSCAT PDØØØ1123CCATALOG.MCAT.PRODØ1
IEASYM ØØ
* I - 2 = MLA level = 2

Defining alias PAGE.BP01
At this point, on the driving system, you should define an alias for
PAGE.BP01:
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE ALIAS(NAME('PAGE.BPØ1') RELATE('CATALOG.MCAT.BPØ1'))

/*

Defining new page datasets
The new page datasets will be allocated, formatted, and cataloged
in the correct master catalog:
//STEPØ1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE PAGESPACE (NAME(PAGE.BPØ1.LOCAL) -
 VOLUME(BDØØØ1) -
 CYLINDERS(5ØØ))
/*

Systems Programmer (France) © Xephon 2004

MVS news

IBM has announced new security technology
with the latest release of its mainframe
operating system, z/OS 1.5, providing the
first single point of control for managing a
multi-level security environment.

Combined with DB2 UDB for z/OS
Version 8, the IBM solution provides multi-
level security on the eServer zSeries
mainframe to help meet the security
requirements of government agencies and
financial institutions.

z/OS 1.5 and DB2 V8 enable a single
repository of data to be managed at the row
level and accessed by individuals based on
their need to know. Multi-level security on
z/OS can take advantage of eServer zSeries
functionality such as robust cryptography,
high availability, scalability, and flexibility to
provide a highly secure environment.

For further information contact your local
IBM representative.
URL: http://www-1.ibm.com/servers/
eserver/zseries/announce/zos_r5/.

* * *

Software AG has announced that its Adabas
database is able to take advantage of IBM’s
new 64-bit Shared Virtual Storage
technology for the eServer zSeries
mainframe.

Software AG has enhanced Adabas to use the
64-bit Shared Virtual Storage area with
Adabas Parallel Services (Version 7.5).
Adabas Parallel Services runs in SMP
environments under a single multi-engine
CPU. Parallel Services enables multiple SMP
engines to process commands against an
Adabas database, providing greater

throughput. The multiple SMP engines will
now be able to cache data in the 64-bit Shared
Virtual Storage, providing improved
capacity for cacheing frequently used or
recently updated data – thus processing
Adabas information more quickly.

For further information contact:
Software AG, 11190 Sunrise Valley Drive,
Reston, VA 20191, USA.
Tel: 703.860.5050.
URL: http://www.softwareag.com/
corporat/news/feb2004/adabas_64Bit.htm.

* * *

Innovation Data Processing has announced
an addition to the FDR /UPSTREAM
storage management tool. It’s the
UPSTREAM Rescuer, which is a stand-
alone system recovery facility for Intel Linux,
SuSE zLINUX, and Solaris systems.

FDR/UPSTREAM provides enterprise-wide
storage management for a variety of
platforms using the z/OS or OS/390 MVS
mainframe as the back-up server.

UPSTREAM Rescuer allows administrators
to completely restore a system from data that
is saved in FDR/UPSTREAM without
separate system back-ups. FDR/
UPSTREAM’s Rescuer provides this system
recovery supplement because it is completely
integrated into FDR/UPSTREAM.

For further information contact:
Innovation Data Processing, 275 Paterson
Avenue, Little Falls, NJ 07424, USA.
Tel: (973) 890 7300.
URL: http://www.innovationdp.fdr.com/
ups.cfm.

x xephon

	Easy dynamic allocation!
	Porting a Java Web application to z/OS
	zSeries CPC capping
	Keeping track of non-reusable ASIDs
	REXX routine to count lines of COBOL code - part 2
	JCL tips - part 1
	Defining page datasets for a new partition without STEPCAT
	MVS news

