
© Xephon Inc 2004

June 2004

213

In this issue

3 Checking a steplib
concatenation for authorized
datasets

5 Quick HFS free space report
11 High resource users –

accumulated statistics suite
based on SMF records

35 Analysing legacy applications
37 z/OS Dynamic Channel path

Management (DCM)
56 Monitoring USS performance

from z/OS – an introduction
76 MVS news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
$505.00 in the USA and Canada; £340.00 in
the UK; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for £29.00 ($43.50) each
including postage.

MVS Update on-line
Code from MVS Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon
.com/mvs; you will need to supply a word
from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in MVS Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Checking a steplib concatenation for authorized
datasets

The following ISPF edit macro can be used to check a steplib
concatenation for authorized datasets. The EXEC will highlight
any datasets that do not exist, are migrated, or are not in the APF
list. The EXEC assumes that the APF list is in the dynamic
format.

/* Rexx */

/* an edit macro to check that a STEPLIB concatenation */

/* is APF authorized */

address isredit

"macro"

"reset special"

true = 1; false = Ø

"find '//STEPLIB ' first 1"

if rc ¬= Ø then

 do

 say 'no //STEPLIB found'

 exit

 end

call build_apflist

finished = false

"(lnum) = LINENUM .zcsr"

"(ldata) = LINE "lnum

"(max) = LINENUM .zlast"

do until (finished)

 call process_jcl_card

 lnum = lnum + 1

 if lnum > max then

 exit

 "(ldata) = LINE "lnum

 finished = end_of_steplib()

end

infomsg = '=== end of APFCHECK ==='

"line_before "lnum "= INFOLINE (infomsg)"

exit

process_jcl_card :

 if substr(ldata,1,3) = '//*' then

 return

 startpos = pos('DSN=',ldata)

 if startpos = Ø then

 return

 startpos = startpos + 4

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 endpos = pos(',',ldata,startpos)

 if endpos = Ø then

 endpos = pos(' ',ldata,startpos)

 dsname = substr(ldata,startpos,endpos-startpos)

 if pos('&',dsname) ¬= Ø then /* symbols in name ? */

 do

 infomsg = copies(' ',startpos-1) || dsname' === can''t resolve ==='

 "line_after "lnum "= INFOLINE (infomsg)"

 return

 end

 x = listdsi("'"dsname"' smsinfo norecall")

 if sysreason = 5 then /* doesn't exist ? */

 do

 infomsg = copies(' ',startpos-1) || dsname' === doesn''t exist ==='

 "line_after "lnum "= INFOLINE (infomsg)"

 return

 end

 if sysreason = 9 then /* migrated ? */

 do

 infomsg = copies(' ',startpos-1) || dsname' === is migrated ==='

 "line_after "lnum "= INFOLINE (infomsg)"

 return

 end

 do j = 1 to apflist.Ø /* search the list of APF datasets */

 if dsname ¬= substr(apflist.j,8) then

 iterate

 if sysvolume = substr(apflist.j,1,6) then /* specific volume */

 return

 if sysstorclass ¬= ' ' & substr(apflist.j,1,3) = 'SMS' then

 return

 end

 infomsg = copies(' ',startpos-1) || dsname' === not authorised ==='

 "line_after "lnum "= INFOLINE (infomsg)"

return

end_of_steplib : procedure expose true false ldata

 if substr(ldata,1,2) ¬= '//' then

 return (true)

 if strip(ldata) = '//*' | strip(ldata) = '//' then

 return (true)

 if substr(ldata,1,3) = '//*' & substr(ldata,4,1) ¬= ' ' then

 return (true)

 if substr(ldata,3,1) ¬= '*' & substr(ldata,3,1) ¬= ' ' then

 return (true)

return (false)

build_apflist :

 /* this assumes a dynamic APF list */

 numeric digits 2Ø

 @cvt = c2d(storage(1Ø,4))

 @ecvt = c2d(storage(d2x(@cvt+14Ø),4)) /* cvtecvt */

 @csvt = c2d(storage(d2x(@ecvt+228),4)) /* ecvtcsvt */

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 @apfa = c2d(storage(d2x(@csvt+12),4))

 apht = c2d(storage(d2x(@apfa+8),4))

 i = Ø

 do while (apht ¬= Ø)

 dsn = storage(d2x(apht+24),44)

 if storage(d2x(apht+4),1) = '8Ø'x then

 volser = 'SMS '

 else

 volser = storage(d2x(apht+68),6)

 if substr(dsn,1,1) ¬= 'ØØ'x then

 do

 i = i + 1

 apflist.i = volser','strip(dsn)

 end

 apht = c2d(storage(d2x(apht+8),4))

 end

 apflist.Ø = i

return

Dave Welch (New Zealand) © Xephon 2004

Quick HFS free space report

Every now and then it happens that a storage administrator or
system programmer encounters an HFS file system flagging an
out-of-space condition. This can happen when installing a new
application, a product that is not part of the standard ServerPac
order, or simply because of an application’s high write activity. By
taking a proactive approach to planning and monitoring HFS free
space, one can avoid the situation where the file/volume becomes
so full that there is a risk of not writing out data from the buffer
when it is time to unmount the HFS dataset (in order to add
candidate volumes). Thus, when installing a new application or
a product that installs into the HFS, consider doing the following:

• Creating new directories where the files associated with the
new application/product will be installed.

• If possible, creating a new HFS dataset and mounting it for
the new directory. After installation of the product/application,
all the files will reside in the new HFS dataset.

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Keeping new applications/products in different HFS datasets,
which offers better file system management while maintaining
a more stable root file system. This also ensures easier
maintenance when applying service.

Before proceeding any further, it might be helpful to remember
that in order to update an HFS file, DFSMS 1.5 uses a shadow
write technique that maintains duplicate pages in the dataset
until the update is completed. This technique improves the
integrity of the data, but on the other hand it also requires that
there always must be a certain number of free pages within the
dataset. In order to shadow write, it needs to make a copy of the
attribute page(s) it is updating along with any index pages that
need to change because of pointers to different pages. Usually
the tree depth is small and it needs only a few pages. HFS keeps
a 30-60 byte block in reserve for this purpose in case the file
system runs out of user space. Please note that some free space
is needed even if only reading data! It is good to know that a new
parameter has been added to the PARM keyword on the MOUNT
statement to control the number of pages HFS should reserve for
Sync processing of the file system metadata. When this parameter
is specified on the MOUNT statement, it will override HFS’s
internal reserved page estimation algorithm. This parameter
should be used only if it you find that the internal algorithm is not
providing the desired results. The new parameter is
SYNCRESERVE(nn), where nn represents the percentage of
the file system space to be reserved for the Sync shadow write
mechanism. Valid values for nn are between 1 and 50. The trade-
off is that less space will be available for user file data in the HFS
(see APAR OW43771). How to recover from an out-of-space
error during sync on the HFS root file system or /etc directory is
described in great detail by info APAR II13537.

As already stated, it is necessary to monitor the utilized space
within each dataset regularly, as well as to take preventative
action when you find a dataset that is close to exhausting its
available space. The storage administrator’s attention should be
especially focused on high I/O activity datasets, since one may
see a performance benefit by allocating particularly active

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

application files across a number of different HFS datasets as
well as predicting and thus preventing out-of-space errors.
Unfortunately, there do not seem to be many tools available that
help you easily to identify your most active files. There is some
activity data recorded in SMF type 92 records that may prove
helpful, but it will take some manipulation on your part.

To help alleviate the burden of monitoring HFS free space, a
simple yet easy-to-use REXX procedure was written. It uses the
USS command df, which displays the amount of free space in the
file system. By default the df measures space in units of 512-byte
disk sectors. One can specify a particular file system by naming
any filename on that file system. If you do not give an argument,
df reports on space for all mounted file systems known to the
system. The total space reported is the space in the already
allocated extents (primary and any already allocated secondary
extents) of the HFS dataset that holds this file system. Therefore,
the total space may increase as new extents are allocated. An
additional option, –S, was used because it provides SMF I/O
accounting for mounted files. A detailed description of the df
command and the output it produces can be obtained from z/OS
Unix System Services Command Reference (SA22-7802). The
report this procedure produces (HFS free space and I/O activity)
can shed some light on your HFS file system status and activity,
thus helping you to prevent the out-of-space problems:

 - Dir

I/O blocks - Total bytes

Filesystem Allocated Used Free Free % reads writes total

read write read written

--

OMVS.DB271Ø.DSNHFS 36ØØ 1Ø51 2549 7Ø.8Ø 7Ø Ø 2348

63 Ø 15455Ø Ø

OMVS.DB271Ø.HFS.DB2TX 1Ø8ØØ 1Ø573 227 2.1Ø 144 Ø 3322

148 Ø 3Ø5247 Ø

OMVS.DB271Ø.HFS.DB2EXT 1Ø8ØØ 5899 49Ø1 45.37 54 Ø 2498

74 Ø 215262 Ø

OMVS.DB2.HFSWHSE 576Ø 112 5648 98.Ø5 43 Ø 1Ø92

181 Ø 64Ø123 Ø

OMVS.DTW.SDTWHFS 468Ø 2233 2447 52.28 174 Ø 4158

165 Ø 371Ø8Ø Ø

OMVS.WAS.CONFIG.HFS 324ØØ 14942 17458 53.88 4ØØ8 Ø 56771Ø

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

5227 Ø 3635399 Ø

OMVS.JV39Ø 819ØØ 3631 78269 95.56 1Ø34 Ø 8647Ø

11Ø4 Ø 2723247 Ø

OMVS.AS39Ø 135ØØØ 39771 95229 7Ø.54 736 Ø 57282

14Ø2 Ø 4192596 Ø

OMVS.ILMSPDM 36ØØ 3578 22 Ø.61 6 Ø 1Ø

5 Ø 437Ø Ø

OMVS.ILMUC 36ØØ 3578 22 Ø.61 6 Ø 1Ø

5 Ø 437Ø Ø

OMVS.VAR 36ØØ 3475 125 3.47 71 2 8Ø7

53 4 95267 9969

OMVS.ETC 1Ø8ØØ 1Ø171 629 5.82 274Ø 131 21Ø13

3168 131 9Ø4Ø493 6727

OMVS.HFS.ROOT 882ØØØ 18ØØ3 863997 97.95 32473 243 1534188

79883 243 63Ø2481 34581

Detecting out-of-space conditions was greatly facilitated by
applying APAR OW44631, which has provided an early warning
capability to let users know when a file system is becoming full.
This APAR shipped a new function for HFS called HFS MONITOR.

It provides support to monitor how full an HFS is and will issue
operator message IGW023A when the HFS exceeds a user-
specified full threshold. The fullness of an HFS is based on the
number of pages currently in use versus the currently allocated
HFS file system size. The user can specify threshold and
increment values via the parmlib member BPXPRMx to set
default values to be used for all HFS file systems. The values can
also be specified on the Mount command to set values for a
specific file system. Parameters on the Mount command will
override parmlib values. If no values are specified in either place,
no threshold checking will be done. Message IGW023A will be
automatically removed if the HFS is extended to bring the HFS
below its threshold, if files are deleted to bring the HFS below its
threshold, or if the HFS is unmounted.

The new parameter syntax is:

FSFULL(threshold,increment)

where threshold means that when the HFS exceeds threshold%
full, operator messages will start to be generated (default is
100%). increment means that with each increment% increase/
decrease in file system fullness beyond the threshold, the
message will be updated (default is 5%).

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

HFSFREE
/* REXX **

 Procedure: HFSfree

 Description: Get information on HFS free space and I/O activity

 Install: - Download BPXWUNIX function (a part of "REXX Function

 Package for REXX in OpenEdition") from the IBM's "USS

 Tools and Toys page"

 - Restore it using the TSO/E receive inda() command.

 - Place this where REXX EXECs can be found.

 ***/

signal ON ERROR

Address TSO

userid=SYSVAR(SYSUID)

outds =userid||'.hfs.out' /* Change dataset name */

x = MSG('ON') /* to fit your standards */

if SYSDSN(outds) = 'OK'

Then "DELETE "outds" PURGE"

"ALLOC FILE(PRC) DA("outds")",

 " UNIT(SYSALLDA) NEW TRACKS SPACE(2,1) CATALOG",

 " REUSE LRECL(15Ø) RECFM(F B)"

/*--*/

/* Allocate BPXWUNIX load library: */

/* supply the name of received REXX function load library */

/*--*/

 arg hlq

 if hlq = "" then HLQ = 'uid.REXXFUNC.LOAD'

Address ISPEXEC

"LIBDEF ISPLLIB DATASET ID('"hlq") STACK"

call syscalls 'ON'

/*--*/

/* Return USS information */

/*--*/

Address SYSCALL

'uname sys.'

/*--*/

/* Print headers and labels */

/*--*/

sis.1 = left('HFS Quick report - produced on:',32,),

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' '),

 ||left(time(),1Ø)

sis.2 = left(' ',1)

sis.3 = left('System identification:',22)

sis.4 = left('Sysname: ',11)||sys.U_SYSNAME

sis.5 = left('Version: ',11)||sys.U_VERSION

sis.6 = left('Release: ',11)||left(sys.U_RELEASE,1Ø)

sis.7 = left('Node : ',11)||left(sys.U_NODENAME,1Ø)

sis.8 = left('Hardware:',11)||left(sys.U_MACHINE,1Ø)

sis.9 = left(' ',112,' ') left('- Dir I/O blocks -',21),

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 left('Total bytes',12)

hf.1 = left('Filesystem',1Ø) left(' ',13) left('Allocated',13),

 left('Used',8) left('Free',5) left('Free %',6),

 left('Mounted on',1Ø) left(' ',22,' ') left('reads',7),

 left('writes',7) left('total',8) left('read',6),

 left('write',6) left('read',6) left('written',7)

hf.2 = left('-',15Ø,'-')

/*---*/

/* Get HFS data */

/*---*/

Address SH

 call BPXWUNIX "df -S",,out.

 dfrc = rc

 If dfrc <>Ø Then Do

 Say "Return Code =" rc

 Say "OMVS Return Value =" retval

 Say "OMVS Return Code =" errno

 Say "OMVS Reason Code =" errnojr

 End

 j = 1

 Do i = 2 to OUT.Ø /* Process each entry returned*/

 parse var out.i mount . '(' HFS ')' rawdata .

 parse var rawdata ava '/' tot

 fre = tot - ava

 pct = trunc((1-(ava/tot))*1ØØ, 2); i = i + 1;

 read = word(out.i,5); i =i + 1;

 write= word(out.i,5); i =i + 1;

 ioblk= word(out.i,6); i =i + 1;

 reblk= word(out.i,6); i =i + 1;

 wrblk= word(out.i,6); i =i + 1;

 byread = word(out.i,7); i =i + 1;

 bywrite= word(out.i,7)

 HFS = left(HFS,25)

rrw.j=left(HFS,25), /* Filesystem */

 right(tot/8,8), /* Total 4K pages allocated */

 right(ava/8,8), /* Available pages (4K) */

 right(fre/8,8), /* Free pages (4K) */

 format(pct,3,2), /* Percent free */

 left(mount,32), /* Mounted on */

 right(read,7) , /* Number of reads */

 right(write,7) , /* Number of writes */

 right(ioblk,7) , /* Number directory I/O block*/

 right(reblk,7) , /* Number read I/O blocks */

 right(wrblk,7) , /* Number write I/O blocks */

 right(byread,7) , /* Total number bytes read */

 right(bywrite,7) ; j = j + 1 /* Total number bytes writte */

 End

call syscalls 'OFF'

/*--*/

/* Write out USS System info and HFS info data */

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/*--*/

Address ISPEXEC "LIBDEF ISPLLIB";

Address TSO

"EXECIO * DISKW PRC (STEM sis.)"

"EXECIO * DISKW PRC (STEM hf.)"

"EXECIO * DISKW PRC (STEM rrw.)"

 /*--*/

 /* Close & free allocated report file; then display result */

 /*--*/

 "EXECIO Ø DISKW PRC (FINIS "

 "free FILE(PRC)"

 Address ISPEXEC

 "ISPEXEC BROWSE DATASET('"outds"')"

 exit Ø

 /*--*/

 /* Error exit routine */

 /*--*/

 ERROR: say 'The following command produced non-zero RC =' RC

 say SOURCELINE(SIGL)

 exit

Mile Pekic
Systems Programmer (Serbia) © Xephon 2004

High resource users – accumulated statistics suite
based on SMF records

INTRODUCTION

There are various products to monitor the performance of system
components. However, not all of these products analyse the
components to establish which ones should then be selected for
monitoring. At our site we have encountered this problem.

We have a super tool to monitor on-line and batch processes. For
on-line it is quite easy to set up the monitoring because we have
only two relevant production CICS to worry about. For both of
these CICS systems we automatically trigger measurements
twice a day via a simple batch job controlled by our scheduling
system.

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Batch, on the other hand, is quite different because we must
specify which, from several hundred, jobs/steps/programs we
want to measure. We could measure them all, but this would
produce an overload of information that somebody would have
to wade through.

To make our life easier we could buy add-on products from other
vendors, but in this case we have developed something ourselves
to identify the greatest resource users and therefore the potential
candidates for performance tuning.

At a later date we intend to improve the selection process (which
jobs/steps/programs should be measured) by providing user
interfaces in ISPF. The first step, however, is to establish a
method of comparison to be able to select the greatest resource
users for subsequent monitoring and measurement tasks.

To satisfy the needs of this first phase and to produce something
of use in the interim, I have developed a suite to accumulate,
analyse, and report resource usage information per batch jobstep.

EXTRACTING THE DATA

As you know, MVS (OS/390, z/OS) has a background ‘tool’ called
System Management Facilities (known simply as SMF), which
collects and records system- and job-related information that you
can use in:

• Billing users

• Reporting reliability

• Analysing the configuration

• Scheduling jobs

• Summarizing direct access volume activity

• Evaluating dataset activity

• Profiling system resource use

• Maintaining system security.

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The type 30 SMF record provides accounting information, and
subtype 4 provides ‘step’ total information. This will be our source
of information for determining which ‘steps’ are the greatest
system resource users.

For further information please see the IBM manual MVS System
Management Facilities (SMF), http://publibz.boulder.ibm.com/
epubs/pdf/iea2g233.pdf.

The first phase is to extract the relevant information from the SMF
records dataset and format it into smaller records for further
analysis. The SMF records dataset is huge, with a VBS (variable
block spanned) record of length 32,760 bytes (at our site a daily
dataset uses about 1,500 cylinders), and we need only a small
portion of this.

In our case we select SMF 30 records (SMF30RTY = X'1E') of
subtype 04 (SMF30STP = 04), which meet the criterion ‘batch
job’, eg ‘JES2’ (SMF30WID = ‘JES 2’), and write them to an
interim dataset with VB records of length 32,756 and space of
about 30 cylinders.

We then extract the relevant information for our use from this
dataset.

The conversion from VBS to VB reduces the length of the records
and also means that this needs to be taken into account when
determining the offsets to the various sections that we will need.

The main section (header/self-defining section) has offset fields
referring to the following sections. In our case, because the first
3 bytes have been cut off, all the offsets will be shorter by a factor
of 3 bytes. Our selection is performed with a sort (SORT01).

FORMATTING

The next stage is to format the records into new records
containing the information we will need. We reduce here from VB
32756 to FB 240. Fields of interest are as follows:

• Header/self-defining section:

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

– system identification – SMF30SID

– end date – SMF30DTE

– end time – SMF30TME.

• Identification section:

– job name – SMF30JBN

– job number – SMF30JNM

– step name – SMF30STM

– program name – SMF30PGM (PGM=xxxxxxxx)

– step number – SMF30STN

– RACF user – SMF30RUD

– initiator start date – SMF30STD

– initiator start time – SMF30SIT.

• Processor accounting section:

– step CPU time – SMF30CPT and SMF30CPS.

• Performance section:

– total service units – SMF30SRV

– CPU service units – SMF30CSU

– SRB service units – SMF30SRB

– I/O service units – SMF30IO

– MSO service units – SMF30MSO.

• Completion section:

– step completion code – SMF30SCC.

ACCUMULATION, ANALYSIS, AND EXCLUSION

The first exclusion is to use a sort to include only records with

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CPU usage and Total Service Units greater than zero, and return
codes of 04 and lower. This then excludes records with insignificant
usage and those with abnormal runs. The abnormal runs show
that something was likely to be in error and the job must be rerun,
allowing corruption of the ‘normal’ run statistics; therefore we will
also exclude these records.

In the next stage, BTCHSDB1, we reformat the data one last time
for our record accumulation dataset. We have two lots of JCL:
one for daily runs and another for initialization. The daily run JCL
produces a mini version of the accumulation dataset, which is
then merged with the accumulation dataset in the next sort step.
The initializing JCL is constructed to create the accumulation
dataset and fill it with the data from several days’ worth of SMF
records.

A second exclusion is performed to remove all records with a run-
time under 1 second.

Now that we have our accumulated records dataset we can
perform statistical analysis.

The analysis is pretty simple and can be thought of as a bit of
basic number crunching followed by sorting to show the greater
resource users.

The routine BTCHSDB2 is used to do this number crunching. It
updates the accumulation dataset and produces a statistical
dataset. The statistical dataset can be used as input for ISPF
selection routines (something we have planned) and for input for
a daily report.

The method of statistical selection and preparation is as follows.

We pass through the accumulation dataset, which has been
previously sorted on job name, step number, step name, program
name, and run date (descending). All records for common job,
step, and program information are selected into a group (a
change in any of these fields causes a new group to be
accumulated). Per group, the latest records up to and including
the twentieth record are then summed, average values calculated,
and the frequency established.

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Excess records, count greater than 20, will be discarded to keep
the running statistics up-to-date and also to keep the size of the
accumulated records dataset within reason.

The calculated frequency per common job step is then used in
connection with the average values to establish estimated yearly
usage values.

Limitations

At first, the job steps that will contribute to a better level accuracy
for the yearly estimations are those jobs which run more often.
This is because the frequency will be more accurately calculated.
Job steps that have been recorded as having been run only once
in the period of record accumulation will be assumed to run only
once a year. In reality they may run more often, so the estimated
yearly usage calculated will be significantly less than the actual
yearly usage.

OPTIONS

REXX BTCHSDB2 contains a portion of code that is commented
out. It was my intention to discard the older records when a job
name and job step number remained the same, but either
program name or step name changed. The logic behind this is
that the JCL had been changed and the older statistics would
then be irrelevant. If the job names are unique then this assumption
is true (normally the case for production jobs). However, we
noticed that there were several generated jobs with a common
job name on our system, and until we introduce a method of
producing unique names for these generated jobs I have
commented out this portion of the code.

If the routines produce excessive output, the limits of exclusion
can be adjusted to reduce the throughput. The current limits I
have set are: CPU > 0, Total service Units > 0, and runtime > 0.

REPORTING

As a method of control, and as an interim measure until we

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

incorporate the statistical dataset into our ISPF routines, we
produce two reports within the daily run, which are written out to
a separate datasets. These reports could be printed out, say
once a month, and could be used as a control to show the effects
of performance tuning and/or the negative effects of changed
programs. One report is sorted on estimated yearly total service
units, the other on average total service units.

FUTURE PLANNING

As mentioned earlier, we are planning to incorporate the generated
statistics within an ISPF suite to allow user-friendly selection of
job steps to monitor.

A further extension that we can visualize is that we will write a
routine to compare the run statistics of the latest runs against our
accumulated averages. When a large apparent discrepancy
(outside of set percentage limits) is recorded, we would then
report the culprit job steps for further observation, either manually
or by automatic monitoring.

SUMMARY

The suite produces daily updated statistics for up to the latest 20
runs of a jobstep and reports the greatest resource (total service
units) users sorted on estimated yearly usage and average
usage per run. The input for the suite is the IBM standard SMF
records.

The code supplied contains:

• BTCHSTA0 – initialization of the accumulated records dataset
JCL.

• BTCHSTAT – daily run with statistics updates and reporting
JCL.

• BTCHSFOR – initial formatting and record shrinking REXX

• BTCHSDB1 – final formatting for accumulated records
dataset REXX.

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• BTCHSDB2 – statistical functions and discard of old records
REXX.

BTCHSTA0
//jobnamex JOB (SRØØ,SRØ16882,SRØ16882),'BTCHSTAØ SMFØ4 JES2.',

// CLASS=Ø,MSGCLASS=H,REGION=ØM,

// NOTIFY=useridx,MSGLEVEL=(1,1)

/*JOBPARM L=Ø1ØØ,G=99999

//* ---

//* change 'hlq' to site high level qualifier

//* change 'smf.dataset.day(-n)' to site SMF datsets

//* ---

//* ZOS. SMF3Ø subtyp Ø4 selection sorting and reporting ..

//* DELØ1 ..

//* Clear datasets prior to Creation ..

//* ..

//* SORTØ1 ..

//* 1st Selection SMF3Ø subtype Ø4 (SORT) ..

//* ..

//* REXXØ1 ..

//* Formatting to summary records (BTCHSFOR) ..

//* ..

//* SORTØ2 ..

//* Sorting on Jobname Stepname ..

//* ..

//* REXXØ2 ..

//* Database initialization ..

//* ..

//* Initial Database to contain all steps with CPU usage ..

//* and total service units greater than Ø ..

//* ---

//DELØ1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE hlq.BTCHSTAT.FORMAT

 DELETE hlq.BTCHSTAT.INPUT

 DELETE hlq.BTCHSTAT.DB

 DELETE hlq.BTCHSTAT.EXTRACT

 SET MAXCC = Ø

/*

//IEFBR14 EXEC PGM=IEFBR14

//AUSGABE DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.FORMAT,

// DCB=(RECFM=FB,LRECL=24Ø,BLKSIZE=2784Ø),

// SPACE=(CYL,(5Ø,5Ø)),UNIT=WORK,

// VOL=SER=WRKØØ1

/*

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//* SORTØ1 ..

//* Conditions:

//* ---

//* (6,1,BI,EQ,X'1E') record type 3Ø

//* (19,4,CH,EQ,C'JES2') SMF3ØWID = 'JES2' (Batch)

//* (23,2,BI,EQ,X'ØØØ4') Record Subtype = Ø4

//* ---

//SORTØ1 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=smf.dataset.day(-1)

// DD DISP=SHR,DSN=smf.dataset.day(-2)

// DD DISP=SHR,DSN=smf.dataset.day(-3)

// DD DISP=SHR,DSN=smf.dataset.day(-4)

// DD DISP=SHR,DSN=smf.dataset.day(-5)

// DD DISP=SHR,DSN=smf.dataset.day(-6)

// DD DISP=SHR,DSN=smf.dataset.day(-7)

// DD DISP=SHR,DSN=smf.dataset.day(-8)

// DD DISP=SHR,DSN=smf.dataset.day(-9)

// DD DISP=SHR,DSN=....................etc.

//SORTOUT DD DISP=(,CATLG,DELETE),DSN=hlq.BTCHSTAT.EXTRACT,

// SPACE=(CYL,(25Ø,1ØØ),RLSE),UNIT=WORK,

// DCB=(BLKSIZE=3276Ø,LRECL=32756,RECFM=VB),

// VOL=SER=WRKØØ1

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 OPTION COPY,VLSHRT

 INCLUDE COND=(6,1,BI,EQ,X'1E',AND,19,4,CH,EQ,C'JES2',AND, C

 (23,2,BI,EQ,X'ØØØ4'))

/*

//REXXØ1 EXEC PGM=IRXJCL,PARM='BTCHSFOR'

//SYSEXEC DD DISP=SHR,DSN=hlq.ISPF.EXEC

//SYSTSPRT DD SYSOUT=*

//SMFEXTR DD DISP=SHR,DSN=hlq.BTCHSTAT.EXTRACT

//SMFFORM DD DISP=SHR,DSN=hlq.BTCHSTAT.FORMAT

/*

//* SORTØ2 ..

//* Sort Fields:

//* ---

//* (1,8,CH,D) Jobname

//* (19,8,CH,D) Stepname

//* ---

//* Conditions:

//* ---

//* (59,1Ø,CH,GT,C'ØØØØØØØØØØ) Total service Units

//* (5Ø,8,CH,GT,C'ØØØØØØØØØØ) CPU Usage

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//* (114,2,CH,LE,C'Ø4') job Completion Code

//* ---

//SORTØ2 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=hlq.BTCHSTAT.FORMAT

//SORTOUT DD DISP=(,CATLG,DELETE),DSN=hlq.BTCHSTAT.INPUT,

// SPACE=(CYL,(5Ø,5Ø),RLSE),UNIT=WORK,

// DCB=(RECFM=FB,LRECL=24Ø,BLKSIZE=2784Ø),

// VOL=SER=WRKØØ1

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 SORT FIELDS=(1,8,CH,D,19,8,CH,D)

 INCLUDE COND=(59,1Ø,CH,GT,C'ØØØØØØØØØØ',AND,5Ø,8,CH,GT,C'ØØØØØØØØ', C

 AND,114,2,CH,LE,C'Ø4')

/*

//REXXØ2 EXEC PGM=IRXJCL,PARM='BTCHSDB1'

//SYSEXEC DD DISP=SHR,DSN=hlq.ISPF.EXEC

//SYSTSPRT DD SYSOUT=*

//SMFINPUT DD DISP=SHR,DSN=hlq.BTCHSTAT.INPUT

//SMFDB DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.DB,

// SPACE=(CYL,(25Ø,1ØØ),RLSE),

// DCB=(RECFM=FB,LRECL=172,BLKSIZE=28Ø36),

// VOL=SER=ALUØØ2

/*

BTCHSTAT
//jobnamex JOB (SRØØ,SRØ16882,SRØ16882),'BTCHSTAT SMFØ4 JES2.',

// CLASS=Ø,MSGCLASS=H,REGION=ØM,

// NOTIFY=useridx,MSGLEVEL=(1,1)

/*JOBPARM L=Ø1ØØ,G=99999

//* ---

//* change 'hlq' to site high-level qualifier

//* change 'smf.dataset.day' to site SMF datasets for today

//* eg smf.dataset.D2ØØ4Ø63.SMFDATA

//* change date D2ØØ4Ø63 to today's date (also for reports)

//* ---

//* ZOS. SMF3Ø subtyp Ø4 selection sorting statistics and..

//* reporting Daily run.

//* Update of Database for Step resource usage with the

//* days SMF records. Followed by update and report from

//* statistics file

//* Database always reduced to last 2Ø entries per jobstep

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//*

//* DELØ1 ..

//* Clear datasets prior to Creation ..

//* ..

//* SORTØ1 ..

//* Selection SMF3Ø subtype Ø4 (SORT) ..

//* ..

//* REXXØ1 ..

//* Formatting to summary records (BTCHSFOR) ..

//* ..

//* SORTØ2 ..

//* Sorting on Jobname Stepname ..

//* remove step records with CPU/SERVICE units = Ø ..

//* and records with return code > Ø4 ..

//* ..

//* REXXØ2 ..

//* Create update database (BTCHSDB1) ..

//* ..

//* SORTØ3 ..

//* Merge existing database with update database ..

//* sort = jobname stepnum pgm stepname startdate cpu ..

//* ..

//* REXXØ3 ..

//* Creation of new updated database and new statistics ..

//* file (BTCHSDB2) ..

//* ..

//* SORTØ4 ..

//* Sort statistics file on average Total Service Units ..

//* ..

//* ICETØ1 ..

//* Report on above ..

//* ..

//* SORTØ5 ..

//* Sort statistics file on yearly est. Total Service Units

//* ..

//* ICETØ2 ..

//* Report on above

//* ..

//* RENØ1 ..

//* Delete old datbase and rename new database to oldname..

//* ..

//* ---

//* Note: Change the Date Qualifier to relevant date ..

//* ..

//* Daily DSN : smf.dataset.D2ØØ4Ø63.SMFDATA ..

//* Saved for 1Ø years in HSM ..

//*

//SET1 SET SMFAL1Ø=smf.dataset.D2ØØ4Ø63.SMFDATA

//*

//* ---

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//DELØ1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE hlq.BTCHSTAT.EXTRACT

 DELETE hlq.BTCHSTAT.FORMAT

 DELETE hlq.BTCHSTAT.INPUT

 DELETE hlq.BTCHSTAT.DBØ

 DELETE hlq.BTCHSTAT.DB2

 DELETE hlq.BTCHSTAT.DBST

 SET MAXCC = Ø

/*

//IEFBR14 EXEC PGM=IEFBR14

//FORMAT DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.FORMAT,

// DCB=(RECFM=FB,LRECL=24Ø,BLKSIZE=2784Ø),

// SPACE=(CYL,(1Ø,1Ø)),UNIT=WORK,

// VOL=SER=WRKØØ1

/*

//* SORTØ1 ..

//* Conditions:

//* ---

//* (6,1,BI,EQ,X'1E') record type 3Ø

//* (19,4,CH,EQ,C'JES2') SMF3ØWID = 'JES2' (Batch)

//* (23,2,BI,EQ,X'ØØØ4') Record Subtype = Ø4

//* ---

//SORTØ1 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=&SMFAL1Ø

//SORTOUT DD DISP=(,CATLG,DELETE),DSN=hlq.BTCHSTAT.EXTRACT,

// SPACE=(CYL,(25Ø,1ØØ),RLSE),UNIT=WORK,

// DCB=(BLKSIZE=3276Ø,LRECL=32756,RECFM=VB),

// VOL=SER=WRKØØ1

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 OPTION COPY,VLSHRT

 INCLUDE COND=(6,1,BI,EQ,X'1E',AND,19,4,CH,EQ,C'JES2',AND, C

 (23,2,BI,EQ,X'ØØØ4'))

/*

//REXXØ1 EXEC PGM=IRXJCL,PARM='BTCHSFOR'

//SYSEXEC DD DISP=SHR,DSN=hlq.ISPF.EXEC

//SYSTSPRT DD SYSOUT=*

//SMFEXTR DD DISP=SHR,DSN=hlq.BTCHSTAT.EXTRACT

//SMFFORM DD DISP=SHR,DSN=hlq.BTCHSTAT.FORMAT

/*

//* SORTØ2 ..

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//* Sort Fields:

//* ---

//* (1,8,CH,D) Jobname

//* (19,8,CH,D) Stepname

//* ---

//* Conditions:

//* ---

//* (59,1Ø,CH,GT,C'ØØØØØØØØØØ) Total service Units

//* (5Ø,8,CH,GT,C'ØØØØØØØØØØ) CPU Usage

//* (114,2,CH,LE,C'Ø4') job Completion Code

//* ---

//SORTØ2 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=hlq.BTCHSTAT.FORMAT

//SORTOUT DD DISP=(,CATLG,DELETE),DSN=hlq.BTCHSTAT.INPUT,

// SPACE=(CYL,(1ØØ,1ØØ),RLSE),UNIT=WORK,

// DCB=(RECFM=FB,LRECL=24Ø,BLKSIZE=2784Ø),

// VOL=SER=WRKØØ1

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 SORT FIELDS=(1,8,CH,D,19,8,CH,D)

 INCLUDE COND=(59,1Ø,CH,GT,C'ØØØØØØØØØØ',AND,5Ø,8,CH,GT,C'ØØØØØØØØ', C

 AND,114,2,CH,LE,C'Ø4')

/*

//REXXØ2 EXEC PGM=IRXJCL,PARM='BTCHSDB1'

//SYSEXEC DD DISP=SHR,DSN=hlq.ISPF.EXEC

//SYSTSPRT DD SYSOUT=*

//SMFINPUT DD DISP=SHR,DSN=hlq.BTCHSTAT.INPUT

//SMFDB DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.DBØ,

// SPACE=(CYL,(1ØØ,1ØØ),RLSE),UNIT=WORK,

// DCB=(RECFM=FB,LRECL=172,BLKSIZE=28Ø36),

// VOL=SER=WRKØØ1

/*

//* SORTØ3 ..

//* Sort Fields:

//* ---

//* (1,8,A) Jobname

//* (28,2,A) Stepnumber

//* (19,8,A) pgmname

//* (1Ø,8,A) stepname

//* (133,8,D) start date

//* ---

//* Conditions:

//* ---

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//* (53,12,CH,GT,C'ØØØØØØØØØØØØ') runtime (seconds)

//* ---

//SORTØ3 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=hlq.BTCHSTAT.DBØ

// DD DISP=SHR,DSN=hlq.BTCHSTAT.DB

//SORTOUT DD DISP=SHR,DSN=hlq.BTCHSTAT.DB

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 SORT FIELDS=(1,8,A,28,2,A,19,8,A,1Ø,8,A,133,8,D),FORMAT=CH

 INCLUDE COND=(53,12,CH,GT,C'ØØØØØØØØØØØØ')

/*

//REXXØ3 EXEC PGM=IRXJCL,PARM='BTCHSDB2'

//SYSEXEC DD DISP=SHR,DSN=hlq.ISPF.EXEC

//SYSTSPRT DD SYSOUT=*

//BTCHSDBI DD DISP=SHR,DSN=hlq.BTCHSTAT.DB

//BTCHSDBO DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.DB2,

// SPACE=(CYL,(25Ø,1ØØ),RLSE),

// DCB=(RECFM=FB,LRECL=172,BLKSIZE=28Ø36),

// VOL=SER=ALUØØ3

//BTCHSTAT DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.DBST,

// SPACE=(CYL,(5Ø,25),RLSE),

// DCB=(RECFM=FB,LRECL=265,BLKSIZE=28Ø9Ø),

// VOL=SER=ALUØØ3

/*

//SORTØ4 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=hlq.BTCHSTAT.DBST

//SORTOUT DD DISP=SHR,DSN=hlq.BTCHSTAT.DBST

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 SORT FIELDS=(119,1Ø,CH,D)

/*

//ICETØ1 EXEC PGM=ICETOOL

//ICEIN DD DISP=SHR,DSN=hlq.BTCHSTAT.DBST

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//TOOLMSG DD SYSOUT=*

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//DFSMSG DD SYSOUT=*

//LIST1 DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.D2ØØ4Ø63.STATLST1,

// SPACE=(CYL,(5,5),RLSE),

// DCB=(RECFM=FB,LRECL=289,BLKSIZE=28Ø33),

// VOL=SER=ALUØØ1

//TOOLIN DD *

 DISPLAY FROM(ICEIN) LIST(LIST1) -

 TITLE('BATCH JOB - SERVICE UNITS USAGE - JOBSTEP SUMMARY') -

 PAGE DATE TIME -

 HEADER('JOBNAME') ON(1,8,CH) -

 HEADER('STEPNAME') ON(1Ø,8,CH) -

 HEADER('PGMNAME') ON(19,8,CH) -

 HEADER('STEPNUM') ON(28,2,CH) -

 HEADER('AVG-Total-SRV-Units') ON(229,6,PD,A2) -

 HEADER('YY-Total-SRV-Units') ON(177,7,PD,A2) -

 HEADER('AVG-CPU-SRV-UNITS') ON(236,6,PD,A2) -

 HEADER('YY-CPU-SRV-UNITS') ON(185,7,PD,A2) -

 HEADER('AVG-SRB-SRV-UNITS') ON(243,6,PD,A2) -

 HEADER('YY-SRB-SRV-UNITS') ON(193,7,PD,A2) -

 HEADER('AVG-IO-SRV-UNITS') ON(25Ø,6,PD,A2) -

 HEADER('YY-IO-SRV-UNITS') ON(2Ø1,7,PD,A2) -

 HEADER('AVG-MSO-SRV-UNITS') ON(257,6,PD,A2) -

 HEADER('YY-MSO-SRV-UNITS') ON(2Ø9,7,PD,A2) -

 HEADER('AVG-Runtime.SECS') ON(223,5,PD,A2) -

 HEADER('YY-Runtime.SECS') ON(217,5,PD,A2) -

 HEADER('INC. Records Count') ON(264,2,PD,AØ) -

 LINES(38) -

 BETWEEN(2) -

 AVERAGE('AVERAGE')

/*

//SORTØ5 EXEC PGM=SORT

//SORTIN DD DISP=SHR,DSN=hlq.BTCHSTAT.DBST

//SORTOUT DD DISP=SHR,DSN=hlq.BTCHSTAT.DBST

//SORTWKØ1 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ2 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ3 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ4 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SORTWKØ5 DD UNIT=339Ø,SPACE=(CYL,(15,15),RLSE)

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSIN DD *

 SORT FIELDS=(31,13,CH,D)

/*

//ICETØ2 EXEC PGM=ICETOOL

//ICEIN DD DISP=SHR,DSN=hlq.BTCHSTAT.DBST

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//LIST2 DD DISP=(,CATLG,DELETE),

// DSN=hlq.BTCHSTAT.D2ØØ4Ø63.STATLST2,

// SPACE=(CYL,(5,5),RLSE),

// DCB=(RECFM=FB,LRECL=289,BLKSIZE=28Ø33),

// VOL=SER=ALUØØ1

//TOOLIN DD *

 DISPLAY FROM(ICEIN) LIST(LIST2) -

 TITLE('BATCH JOB - SERVICE UNITS USAGE - JOBSTEP SUMMARY') -

 PAGE DATE TIME -

 HEADER('JOBNAME') ON(1,8,CH) -

 HEADER('STEPNAME') ON(1Ø,8,CH) -

 HEADER('PGMNAME') ON(19,8,CH) -

 HEADER('STEPNUM') ON(28,2,CH) -

 HEADER('YY-Total-SRV-Units') ON(177,7,PD,A2) -

 HEADER('AVG-Total-SRV-Units') ON(229,6,PD,A2) -

 HEADER('YY-CPU-SRV-UNITS') ON(185,7,PD,A2) -

 HEADER('AVG-CPU-SRV-UNITS') ON(236,6,PD,A2) -

 HEADER('YY-SRB-SRV-UNITS') ON(193,7,PD,A2) -

 HEADER('AVG-SRB-SRV-UNITS') ON(243,6,PD,A2) -

 HEADER('YY-IO-SRV-UNITS') ON(2Ø1,7,PD,A2) -

 HEADER('AVG-IO-SRV-UNITS') ON(25Ø,6,PD,A2) -

 HEADER('YY-MSO-SRV-UNITS') ON(2Ø9,7,PD,A2) -

 HEADER('AVG-MSO-SRV-UNITS') ON(257,6,PD,A2) -

 HEADER('YY-Runtime.SECS') ON(217,5,PD,A2) -

 HEADER('AVG-Runtime.SECS') ON(223,5,PD,A2) -

 HEADER('INC. Records Count') ON(264,2,PD,AØ) -

 LINES(38) -

 BETWEEN(2) -

 AVERAGE('AVERAGE')

/*

//RENØ1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE hlq.BTCHSTAT.DB

 ALTER hlq.BTCHSTAT.DB2 NEWNAME(hlq.BTCHSTAT.DB)

 SET MAXCC = Ø

/*

BTCHSFOR
/* REXX * BTCHSFOR *** */

/*Description: SMF records of subtype Ø4 to show resource usage of */

/* batch jobs. Per total service units. */

/* -- */

/* Created: Ø3.Ø2.2ØØ4 Rolf Parker */

/* -- */

/* Updates: Ø3.Ø2.2ØØ4 RP Creation */

/* ** */

/* ** */

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* The records after the selection/sort are now 3 bytes shorter due */

/* to the conversion from VBA to VB. This will be taken into account */

/* with the adjustment variable 'adj'. ie. the offsets will naturally */

/* be 3 bytes shorter */

/* ** */

 adj = 3 /* offset adjustment */

/* ** */

 numeric digits 12 /* increase num. digits 9 --> 12 */

/* read input --- */

"execio * diskr SMFEXTR (stem ESMF. finis)"

 do i = 1 to ESMF.Ø

 /* Header/Self-defining Section --------------------------------- */

 SMF3ØRTY = x2d(c2x(SUBSTR(ESMF.i,2,1))) /* SMF Type */

 SMF3ØSTP = x2d(c2x(SUBSTR(ESMF.i,19,2))) /* SMF Subtype */

 SMF3ØWID = SUBSTR(ESMF.i,15,4) /* Work type indicator */

 SMF3ØSID = SUBSTR(ESMF.i,11,4) /* SID */

 SMF3ØION = x2d(c2x(SUBSTR(Record,35,2))) /* Identification */

 SMF3ØCON = x2d(c2x(SUBSTR(ESMF.i,59,2))) /* Processor Sections*/

 SMF3ØPON = x2d(c2x(SUBSTR(ESMF.i,83,2))) /*Performance Sections*/

 /* */

 select

 when SMF3ØION = Ø then iterate /* no Identification */

 when SMF3ØCON = Ø then iterate /* no Processor */

 when SMF3ØPON = Ø then iterate /* no Performance */

 otherwise nop

 end

 /* Identification Section --------------------------------------- */

 SMF3ØIOF = x2d(c2x(SUBSTR(ESMF.i,32-adj,4)))-adj

 /* Identification */

 SMF3ØJBN = SUBSTR(ESMF.i,SMF3ØIOF,8) /* Job Name */

 SMF3ØJNM = SUBSTR(ESMF.i,SMF3ØIOF+32,8) /* Job Number */

 SMF3ØPGM = SUBSTR(ESMF.i,SMF3ØIOF+8,8) /* PGM=xxxxxxxx */

 SMF3ØSTM = SUBSTR(ESMF.i,SMF3ØIOF+16,8) /* Step Name */

 SMF3ØSTN = C2D(SUBSTR(ESMF.i,SMF3ØIOF+4Ø,2)) /* Steb Number */

 SMF3ØUSR = SUBSTR(ESMF.i,SMF3ØIOF+8Ø,2Ø) /* Programmer Name*/

 SMF3ØGRP = SUBSTR(ESMF.i,SMF3ØIOF+1ØØ,8) /* RACF User */

 SMF3ØRUD = SUBSTR(ESMF.i,SMF3ØIOF+1Ø8,8) /* RACF Group */

 /* -- Start Job Time and Day ------------------------------------ */

 SMF3ØSIT = c2x(SUBSTR(ESMF.i,SMF3ØIOF+56,4))

 SMF3ØSIT = x2d(SMF3ØSIT)

 SMF3ØSTD =

Date("S",substr(c2x(SUBSTR(ESMF.i,SMF3ØIOF+6Ø,4)),3,5),"J")

 /* -- End Job Time and Day -------------------------------------- */

 SMF3ØTME = c2x(SUBSTR(ESMF.i,6-adj,4))

 SMF3ØTME = x2d(SMF3ØTME)

 SMF3ØDTE = Date("S",substr(c2x(SUBSTR(ESMF.i,1Ø-adj,4)),3,5),"J")

 /* Completion Section --- */

 SMF3ØTOF = x2d(c2x(SUBSTR(ESMF.i,48-adj,4)))-adj

 /* Identification */

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 SMF3ØSCC = RIGHT(C2D(SUBSTR(ESMF.i,SMF3ØTOF,2)),2,'Ø') /* JOB CC*/

 /* Processor Accounting Section --------------------------------- */

 SMF3ØCOF = x2d(c2x(SUBSTR(ESMF.i,56-adj,4)))-adj /* Processor */

 SMF3ØCPT = x2d(c2x(SUBSTR(ESMF.i,SMF3ØCOF+4,4))) /* CPU Time TCB*/

 SMF3ØCPS = x2d(c2x(SUBSTR(ESMF.i,SMF3ØCOF+8,4))) /* CPU Time SRB*/

 /* CPU Time total --- */

 SMF3ØCPU = SMF3ØCPT + SMF3ØCPS /* CPU Time tcb+SRB */

 /* Performance Section -- */

 SMF3ØPOF = x2d(c2x(SUBSTR(ESMF.i,8Ø-adj,4)))-adj

 /* Perform. Sections */

 SMF3ØSRV = x2d(c2x(SUBSTR(ESMF.i,SMF3ØPOF,4)))

 /* Total Serv. Units */

 SMF3ØCSU = x2d(c2x(SUBSTR(ESMF.i,SMF3ØPOF+4,4)))

 /* CPU Serv. Units */

 SMF3ØSRB = x2d(c2x(SUBSTR(ESMF.i,SMF3ØPOF+8,4)))

 /* SRB Serv. Units */

 SMF3ØIO = x2d(c2x(SUBSTR(ESMF.i,SMF3ØPOF+12,4)))

 /* I/O Serv. Units */

 SMF3ØMSO = x2d(c2x(SUBSTR(ESMF.i,SMF3ØPOF+16,4)))

 /* MSO Serv. Units */

 /* -- */

 Queue ' '||,

 Left(SMF3ØJBN,8,' '), /* Job Name */

 Left(SMF3ØJNM,8,' '), /* Job Number */

 Left(SMF3ØSTM,8,' '), /* Step Name */

 Left(SMF3ØPGM,8,' '), /* PGM=xxxxxxxx (Name) */

 Right(SMF3ØSTN,2,' '), /* Step number */

 Left(SMF3ØRUD,8,' '), /* Racf User */

 Right(SMF3ØCPU,8,'Ø'), /* Step CPU Time */

 Right(SMF3ØSRV,1Ø,'Ø'), /* Total Service Units */

 Right(SMF3ØCSU,1Ø,'Ø'), /* CPU Service Units */

 Right(SMF3ØSRB,1Ø,'Ø'), /* SRB Service Units */

 Right(SMF3ØIO,1Ø,'Ø'), /* I/O Service Units */

 Right(SMF3ØMSO,1Ø,'Ø'), /* MSO Service Units */

 Left(SMF3ØSCC,2,'Ø'), /* Step completion code */

 Left(SMF3ØSTD,8,' '), /* Initiator start date */

 Right(SMF3ØSIT,8,'Ø'), /* Initiator start time */

 Left(SMF3ØDTE,8,' '), /* End Date */

 Right(SMF3ØTME,8,'Ø'), /* End Time */

 Right(SMF3ØSID,4,' ') /* SubSystemID */

 End

/* write output --- */

"execio "queued()" diskw SMFFORM (FINIS"

Return

BTCHSDB1

/* REXX * BTCHSDB1 *** */

/* Description: Reporter for Output from BTCHSFOR (SORTØ2) */

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* */

/* */

/* -- */

/* Created: Ø3.Ø2.2ØØ4 Rolf Parker */

/* -- */

/* Updates: Ø3.Ø2.2ØØ4 RP Creation */

/* ** */

/* ** */

/* */

/* */

/* */

/* */

/* */

/* ** */

 numeric digits 12 /* numeric increase from 9 to 12 */

 dd = 'SMFINPUT'

 "EXECIO * DISKR "dd" (STEM SMFIN. FINIS"

 do rec = 1 to smfin.Ø

 job = word(smfin.rec,1)

 jobnum = word(smfin.rec,2)

 stepname = word(smfin.rec,3)

 pgmname = word(smfin.rec,4)

 stepnum = word(smfin.rec,5)

 racfuser = word(smfin.rec,6)

 cputime = word(smfin.rec,7)

 days = Ø

 if word(smfin.rec,14) /= word(smfin.rec,16) then

 do

 datestr = word(smfin.rec,14)

 dateend = word(smfin.rec,16)

 daysstr = date('B',datestr,'S')

 daysend = date('B',dateend,'S')

 days = daysend - daysstr

 end

 dayshs = days * 864ØØØØ

 runtime = (word(smfin.rec,17)+dayshs) - word(smfin.rec,15)

 runtime = trunc(runtime/1ØØ)

 totsrv = word(smfin.rec,8)

 cpusrv = word(smfin.rec,9)

 srbsrv = word(smfin.rec,1Ø)

 iosrv = word(smfin.rec,11)

 msosrv = word(smfin.rec,12)

 cc = word(smfin.rec,13)

 runfromd = word(smfin.rec,14)

 runfromt = word(smfin.rec,15)

 runfromt = hhmmss(runfromt)

 runtod = word(smfin.rec,16)

 runtot = word(smfin.rec,17)

 runtot = hhmmss(runtot)

 sid = word(smfin.rec,18)

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 queue,

 left(job,8,' '),

 left(stepname,8,' '),

 left(pgmname,8,' '),

 left(stepnum,2,' '),

 left(racfuser,8,' '),

 right(cputime,12,' '),

 right(runtime,12,'Ø'),

 right(totsrv,1Ø,' '),

 right(cpusrv,1Ø,' '),

 right(srbsrv,1Ø,' '),

 right(iosrv,1Ø,' '),

 right(msosrv,1Ø,' '),

 left(jobnum,8,' '),

 right(cc,2,'Ø'),

 right(runfromd,8,' '),

 right(runfromt,8,' '),

 right(runtod,8,' '),

 right(runtot,8,' '),

 left(sid,4,' ')

 end

"execio "queued()" diskw SMFDB (FINIS"

return

hhmmss:

arg timein

 splt1 = ':'

 splt2 = ':'

 hh = right(timein%1ØØ%36ØØ,2,'Ø')

 mm = right(timein%1ØØ//36ØØ%6Ø,2,'Ø')

 ss = right(timein%1ØØ//6Ø,2,'Ø')

 hs = right(timein-(trunc(timein/1ØØ)*1ØØ),2,'Ø')

 if hs > 5Ø then ss = right(ss+1,2,'Ø')

 timeout = hh||splt1||mm||splt2||ss

Return timeout

BTCHSDB2
/* REXX * BTCHSDB2 *** */

/* Description: Analyser for BTCHSTAT DB */

/* */

/* */

/* -- */

/* Created: Ø5.Ø2.2ØØ4 Rolf Parker */

/* -- */

/* Updates: Ø5.Ø2.2ØØ4 RP Creation */

/* ** */

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* ** */

/* */

/* */

/* */

/* */

/* */

/* ** */

 numeric digits 12 /* numeric increase from 9 to 12 */

 underline = '--',

 || ‚--',

 || ‚--------------------------'

 dd1 = ‚BTCHSDBI'

 dd2 = ‚BTCHSDBO'

 dd3 = ‚BTCHSTAT'

 "EXECIO * DISKR "dd1" (STEM dbin. FINIS"

 outpos = Ø

 count = Ø

 btchdbout. = ''

 inpos = 1

 /* set initial select keys */

 key_new = word(dbin.2,1) word(dbin.2,2) word(dbin.2,3) word(dbin.2,4)

 key_cur = word(dbin.1,1) word(dbin.1,2) word(dbin.1,3) word(dbin.1,4)

 key_old = 'DUMMY'

 /* set current record */

 cur_rec = dbin.1

 count = 1

 do forever

 do forever /* count loop */

 select

 when ((key_old<>key_cur)&(key_cur<>key_new)&, /* single record */

 (key_new<>key_old)) then

 do

 dbwork.count = cur_rec

 key_old = key_cur

 key_cur = key_new

 cur_rec = dbin.inpos

 inpos = inpos + 1

 key_new = word(dbin.inpos,1) word(dbin.inpos,2),

 word(dbin.inpos,3) word(dbin.inpos,4)

 call calc_stat /* process block */

 count = 1

 if inpos > (dbin.Ø+1) then leave

 end

 when (key_old='DUMMY') then

 do /* 1st record */

 dbwork.count = cur_rec

 cur_rec = dbin.inpos

 inpos = inpos + 1

 key_old = key_cur

 key_cur = key_new

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 key_new = word(dbin.inpos,1) word(dbin.inpos,2),

 word(dbin.inpos,3) word(dbin.inpos,4)

 end

 when (key_cur=key_new) then

 do /* record in block */

 dbwork.count = cur_rec

 cur_rec = dbin.inpos

 inpos = inpos + 1

 key_old = key_cur

 key_cur = key_new

 key_new = word(dbin.inpos,1) word(dbin.inpos,2),

 word(dbin.inpos,3) word(dbin.inpos,4)

 count = count + 1

 end

 when key_cur <> key_new then /* change of key */

 do

 dbwork.count = cur_rec

 cur_rec = dbin.inpos

 key_old = key_cur

 key_cur = key_new

 inpos = inpos + 1

 key_new = word(dbin.inpos,1) word(dbin.inpos,2),

 word(dbin.inpos,3) word(dbin.inpos,4)

 call calc_stat /* process block */

 count = 1

 if inpos > (dbin.Ø+1) then leave

 end

 otherwise nop

 end

 end

 if inpos > dbin.Ø then leave

 end

 /* write statistic records */

 "execio "queued()" diskw "dd3" (FINIS"

 /* write reduced db records */

 "execio "outpos" diskw "dd2" (stem dbout. FINIS"

 exit

calc_stat:

 /* sift out the old info after jcl changes

 step_pgm_changed = Ø

 key_todo = word(dbwork.1,1)||word(dbwork.1,4)

 if key_todo = key_done then step_pgm_changed = 1

 if step_pgm_changed then return

 key_done = word(dbwork.1,1)||word(dbwork.1,4)

 */

 /* limit statistical sample to newest 2Ø SMF records */

 if count > 2Ø then count = 2Ø

 /* initialise */

 stat_rec = ''

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 jobname = word(dbwork.1,1)

 stepname = word(dbwork.1,2)

 pgmname = word(dbwork.1,3)

 stepnum = word(dbwork.1,4)

 cputot = Ø

 runtimetot = Ø

 totsrvtot = Ø

 cpusrvtot = Ø

 srbsrvtot = Ø

 iosrvtot = Ø

 msosrvtot = Ø

 /* process block */

 do stat = 1 to count

 outpos = outpos + 1

 /* output of db record */

 dbout.outpos = dbwork.stat

 /* sum action */

 runtimetot = runtimetot + word(dbwork.stat,7)

 totsrvtot = totsrvtot + word(dbwork.stat,8)

 cpusrvtot = cpusrvtot + word(dbwork.stat,9)

 srbsrvtot = srbsrvtot + word(dbwork.stat,1Ø)

 iosrvtot = iosrvtot + word(dbwork.stat,11)

 msosrvtot = msosrvtot + word(dbwork.stat,12)

 end

 /* resource averages */

 runtimeav = trunc(runtimetot / count)

 totsrvav = trunc(totsrvtot / count)

 cpusrvav = trunc(cpusrvtot / count)

 srbsrvav = trunc(srbsrvtot / count)

 iosrvav = trunc(iosrvtot / count)

 msosrvav = trunc(msosrvtot / count)

 /* sample period in days */

 dayfirst = word(dbwork.count,15)

 daylast = word(dbwork.1,15)

 dayfirst = date('B',dayfirst,'S')

 daylast = date('B',daylast,'S')

 days = (daylast - dayfirst) + 1

 /* frequency of job/jobstep per year */

 if count = 1 then

 yearfactor = 1

 else

 do

 frequency = trunc(count/days,8)

 yearfactor = frequency * 365

 end

 /* calculated yearly resource use */

 runtimeyy = trunc(runtimeav * yearfactor)

 totsrvyy = trunc(totsrvav * yearfactor)

 cpusrvyy = trunc(cpusrvav * yearfactor)

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 srbsrvyy = trunc(srbsrvav * yearfactor)

 iosrvyy = trunc(iosrvav * yearfactor)

 msosrvyy = trunc(msosrvav * yearfactor)

 /* PD (packed decimal) conversion */

 pdtotsrvyy = totsrvyy || 'C'

 pdtotsrvyy = right(pdtotsrvyy,14,'Ø')

 pdtotsrvyy = x2c(pdtotsrvyy)

 pdcpusrvyy = cpusrvyy || 'C'

 pdcpusrvyy = right(pdcpusrvyy,14,'Ø')

 pdcpusrvyy = x2c(pdcpusrvyy)

 pdsrbsrvyy = srbsrvyy || 'C'

 pdsrbsrvyy = right(pdsrbsrvyy,14,'Ø')

 pdsrbsrvyy = x2c(pdsrbsrvyy)

 pdiosrvyy = iosrvyy || 'C'

 pdiosrvyy = right(pdiosrvyy,14,'Ø')

 pdiosrvyy = x2c(pdiosrvyy)

 pdmsosrvyy = msosrvyy || 'C'

 pdmsosrvyy = right(pdmsosrvyy,14,'Ø')

 pdmsosrvyy = x2c(pdmsosrvyy)

 pdruntimeyy = runtimeyy|| 'C'

 pdruntimeyy = right(pdruntimeyy,1Ø,'Ø')

 pdruntimeyy = x2c(pdruntimeyy)

 pdruntimeav = runtimeav|| 'C'

 pdruntimeav = right(pdruntimeav,1Ø,'Ø')

 pdruntimeav = x2c(pdruntimeav)

 pdtotsrvav = totsrvav|| 'C'

 pdtotsrvav = right(pdtotsrvav,12,'Ø')

 pdtotsrvav = x2c(pdtotsrvav)

 pdcpusrvav = cpusrvav || 'C'

 pdcpusrvav = right(pdcpusrvav,12,'Ø')

 pdcpusrvav = x2c(pdcpusrvav)

 pdsrbsrvav = srbsrvav || 'C'

 pdsrbsrvav = right(pdsrbsrvav,12,'Ø')

 pdsrbsrvav = x2c(pdsrbsrvav)

 pdiosrvav = iosrvav || 'C'

 pdiosrvav = right(pdiosrvav,12,'Ø')

 pdiosrvav = x2c(pdiosrvav)

 pdmsosrvav = msosrvav || 'C'

 pdmsosrvav = right(pdmsosrvav,12,'Ø')

 pdmsosrvav = x2c(pdmsosrvav)

 pdcount = count || 'C'

 pdcount = right(pdcount,4,'Ø')

 pdcount = x2c(pdcount)

 /* output statistical records */

 queue ,

 left(jobname,8,' '),

 left(stepname,8,' '),

 left(pgmname,8,' '),

 right(stepnum,2,' '),

 right(totsrvyy,13,' '),

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Analysing legacy applications

Analysis is an art perfected over a period of time. In most shops,
legacy applications lack proper documentation. Most of the time
code has comments here and there that help in understanding
the underlying logic to a certain extent, but not completely. So as
the need arises, programmers/analysts are asked to document
the application in some form of analysis document. Most of the
time there are no clear guidelines on the structure of this
document, and different shops come up with their own versions.
We’ll focus here on the actual analysis part and leave the

 right(cpusrvyy,13,' '),

 right(srbsrvyy,13,' '),

 right(iosrvyy,13,' '),

 right(msosrvyy,13,' '),

 right(runtimeyy,8,' '),

 right(runtimeav,8,' '),

 right(totsrvav,1Ø,' '),

 right(cpusrvav,1Ø,' '),

 right(srbsrvav,1Ø,' '),

 right(iosrvav,1Ø,' '),

 right(msosrvav,1Ø,' '),

 right(count,2,' '),

 pdtotsrvyy,

 pdcpusrvyy,

 pdsrbsrvyy,

 pdiosrvyy,

 pdmsosrvyy,

 pdruntimeyy,

 pdruntimeav,

 pdtotsrvav,

 pdcpusrvav,

 pdsrbsrvav,

 pdiosrvav,

 pdmsosrvav,

 pdcount

return

Rolf Parker
Systems Programmer (Germany) © Xephon 2004

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

structure of the document to the respective shops and
programmers.

COBOL has been one of the most widely-used languages in
legacy systems. In COBOL programs, the function-oriented
structured programming approach is followed. The code is
developed in a top-down way using a modular programming
technique. But still there are many applications using the old
GOTO approach to programming, which must be avoided when
writing newer programs or adding new code to existing programs.

While analysing, we’ve got to keep in mind that this is not a stand-
alone program and therefore try to find out at what point the
subroutines are being called and the purpose of the subroutine.
We can put the purpose in the analysis document. Generally
subroutines are used with a ‘write once call again’ philosophy so
the same subroutine can be called in different places from a
program or from different programs.

Some shops use Data Manager or Data Dictionary, which
certainly make life easier for programmers. These are generally
based on SSAD (Structured System Analysis and Design)
methodology. They use elements, data flows, and processes
that correspond to individual data items, group items, and
functions of the program. Based on this, Data Flow Diagrams
(DFDs) can be created and put in the document to understand
better the functionalities.

While solving maintenance issues, analysis of the problem is
vital. But there is nothing like simulation of the problem. If you can
simulate the problem with different sets of data, you get an insight
into the problem. On the other hand, in the case of production
abends, we generally go with the offset of the instruction in the
dump. Tools like Abend-Aid help in getting the offset as well as
the instruction where the abend occurred.

Coming back to analysis actually to understand the business
logic of the program, not only do we have to understand the
purpose of each section or paragraph but also we have to keep
track of some variables. We need to remember the context in
which this variable is being called. Variable names in COBOL

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

programs are generally indicative of the purpose, so pay close
attention to this. A Notepad document can be opened along with
the mainframe programs where the programmer can put these
variables or a few important sections or paragraphs of the
program. It avoids losing sight of the problem or the logic being
analysed.

Analysis is not just about having facts – we need to make them
understandable to others. Put yourself in the shoes of a novice/
other programmers and then read what you have put in the
analysis document. Is this understandable? Bear in mind that
what you are writing in the document is not only for your use later
but others may refer to it while doing maintenance or enhancing
the application. It could also be used for review or reference.
Also, is it language-independent? Try as much as possible to
make it so.

Some automated tools are available in the market that help in
application analysis to a certain extent but not completely.

One thing to take care to avoid while preparing this analysis
document is information overload or over-simplification of the
logic. After a self-review of this document, submit it for a review
to one of your peer programmers or manager. This is a good
practice, giving him/her the opportunity to point out what is not
clear, needs more explanation, or even is incorrect.

Aseem Anand
Programmer Analyst
Cognizant Technology Solutions (India) © Xephon 2004

z/OS Dynamic Channel path Management (DCM)

The Intelligent Resource Director (IRD) is a new feature of z/OS
V1R1. IRD extends the concept of goal-oriented resource
management by allowing users to group MVS images that reside
on the same physical server running in LPAR mode, and in the
same sysplex, into an LPAR cluster.

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This gives Workload Manager (WLM) the ability to manage
resources, both processor and DASD I/O, not just in one single
image but across the entire cluster of system images.

The three functions that make up IRD are:

• LPAR CPU management, which lets WLM distribute
processor resource across an LPAR cluster by dynamically
adjusting the LPAR weights in response to changes in the
workload requirements. When important work is not meeting
its goals, WLM will raise the weight of the partition where that
work is running, thereby giving it more processing power. As
part of LPAR CPU management, WLM will also optimize the
number of on-line logical CPUs configured on-line to each
partition.

• Dynamic channel path management, which lets WLM
dynamically move managed channel paths through one
ESCON Director from one I/O control unit to another, in
response to changes in the workload requirements. DCM
exploits the dynamic I/O reconfiguration capability to add
and remove physical paths to control units.

• Channel subsystem priority queueing, which is an extension
o f
I/O priority queueing, a concept that has been evolving in
MVS over the past few years. If important work is missing its
goals because of I/O contention on channels shared with
other work, it will be given a higher channel subsystem I/O
priority than the less important work.

In order to implement these IRD functions, you should use a
zSeries server (Z/9xx) running in z/Architecture mode (64 bits).

This article will describe in detail how to implement Dynamic
Channel path Management (DCM).

DCM BENEFITS

Improved and maximized I/O bandwidth

DCM can provide improved performance by dynamically moving

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the available channel bandwidth to where it is most needed. Prior
to DCM, you had manually to balance your available channels
across your I/O devices, trying to provide sufficient paths to
handle the average load on every controller. This means that at
any one time, some controllers probably have more I/O paths
available than they need, while other controllers possibly have
too few.

DCM attempts to balance the responsiveness of the available
channels by moving channels to the controllers that require
additional bandwidth.

Simplified I/O configuration

Dynamic Channel path Management also simplifies the task of
defining your I/O configuration. Without DCM, you have to
identify the bandwidth required for each LCU to provide acceptable
performance at peak times. Because DCM can dynamically
move I/O paths to the LCUs that are experiencing channel
delays, you can reduce the CU/channel-level capacity planning
and balancing activity that was necessary prior to DCM.

Using DCM, you are required to define only a minimum of one
non-managed path and up to seven managed paths to each
controller (although a realistic minimum of at least two non-
managed paths are recommended), with DCM taking
responsibility for adding more paths as required, and ensuring
that the paths meet the objectives of availability and performance.

DCM PREREQUISITES

Processor requirements

In order to implement DCM you must be running on an IBM
zSeries 900 or later CPC.

Operating system requirements

The only operating system that can use a managed path is z/OS
1.1 or higher (in z/Architecture mode).

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Some support is contained in OS/390 V2R10 that allows you, for
example, to use some of the new DCM-related display commands;
however, the OS/390 V2R10 system itself cannot use a managed
path.

DCM consists of code in both the IOS and WLM components of
z/OS. You should review DCM’s latest PTFs for both of these
components.

Supported control units

The only control units supported by DCM are those used to attach
the more recent DASD devices.

The IBM DASD control units that are supported by and have been
successfully tested with DCM are:

• 2105 Enterprise Storage Subsystem with microcode level
SC01208.

• 9393 RAMAC Virtual Array.

9032 microcode level

DCM supports all 9032 models. The following list shows the
required microcode levels for each of the ESCON director
models:

• 9032-2 – Version 4.1

• 9032-3 – LIC 04.03.00

• 9032-5 – LIC 05.04.00.

IMPLEMENTING DCM

Sample configuration

The sample configuration that will be used to implement IRD-
DCM is shown below:

• A Z/900 server (type: 2064/serial number 9150).

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• One 2105 control unit (CNTL 1200/Devices 1200-12FF).

• Two ESCON directors (ESCD 02 – CNTL/DEV: 9002 and
ESCD 04 – CNTL/DEV: 9004).

CHPID Connected to ESCD # ESCD port # CHPID type

34 02 96 Static
35 02 9E Managed
36 02 82 Managed
37 02 87 Managed

04 04 49 Static
05 04 4A Managed
06 04 34 Managed
07 04 35 Managed

Figure 1: Channel connections

Port Connected to ESCD # ESCD port #

0 02 C2

1 02 81

2 02 9D

3 02 9F

4 04 32

5 04 33

6 04 06

7 04 10

Figure 2: Control unit configuration

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The Z/900 CHPIDs configuration
In order for DCM to be able to add or remove paths to a control
unit, the control unit must be attached to a switch and that switch,
in turn, must be attached to managed channels.

Eight channels are used to connect to the 2105 control unit.
These channels are connected to two ESCON directors.

On each ESCON director, one channel connection will be static,
the three others will be managed by IRD. This is illustrated in
Figure 1.

The 2105 control unit configuration
The 2105 control unit has eight ports which are connected to the
ESCON directors.

The 2105 control unit number is 1200 and it serves 256 DASD
devices (1200-12FF). This is illustrated in Figure 2.

The ESCON directors’ configuration
The ESCON directors’ configuration is:

• ESCD 02 is a 9032 mod 3. Its device number is 9002 (CNTL
9002).

• ESCD 04 is a 9032 mod 5. Its device number is 9004 (CNTL
9004).

HCD definitions

In order to implement IRD-DCM, three sets of changes need to
be made in HCD:

• Switch definitions.

• Managed channels definitions.

• Control unit definitions.

Switch definitions
In order to allow communication between IRD and ESCON
directors, switches have to be defined in HCD.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Because DCM uses the control unit port on the switch to get
information about the configuration of the switch, and all the
devices attached to it, you must define the control unit port in
HCD.

First, you should define a 9032-x control unit:

.-------------------------- Add Control Unit --------------------------.

| |

| Specify or revise the following values. |

| |

| Control unit number 9ØØ2 + |

| Control unit type 9Ø32-3 + |

| |

| Serial number __________ |

| Description ________________________________ |

| |

| Connected to switches . . . Ø2 __ __ __ __ __ __ __ + |

| Ports FE __ __ __ __ __ __ __ + |

| |

| If connected to a switch: |

| |

| Define more than eight ports . . 2 1. Yes |

| 2. No |

| Propose CHPID/link addresses and |

| unit addresses 2 1. Yes |

| 2. No |

| F1=Help F2=Split F3=Exit F4=Prompt F5=Reset F9=Swap |

| F12=Cancel |

'--'

And a 9032-x device:

.----------------------------- Add Device -----------------------------.

| |

| |

| Specify or revise the following values. |

| |

| Device number 9ØØ2 (ØØØØ - FFFF) |

| Number of devices 1___ |

| Device type 9Ø32-3 + |

| |

| Serial number __________ |

| Description ________________________________ |

| |

| Volume serial number ______ (for DASD) |

| |

| Connected to CUs . . 9ØØ2 ____ ____ ____ ____ ____ ____ + |

| |

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

| |

| F1=Help F2=Split F3=Exit F4=Prompt F5=Reset F9=Swap |

| F12=Cancel |

'--'

At this point, you can use HCD Option 2 (switches) to define your
ESCON directors’ configurations:

--

 Switch List Row 1 of 2 More: >

 Command ===> ___ Scroll ===> PAGE

 Select one or more switches, then press Enter. To add, use F11.

 CU Dev

 / ID Type + Ad Serial-# + Description Num. Num.

 P Ø2 9Ø32-3 __ __________ __________________________ 9ØØ2 9ØØ2

 _ Ø4 9Ø32-5 __ __________ __________________________ 9ØØ4 9ØØ4

 *************************** Bottom of data ****************************

Using options P (Work with ports), you can manage your switch
attachments:

 Goto Filter Backup Query Help

 Port List Row 1 of 153

 Command ===> __ Scroll ===> PAGE

 Select one or more ports, then press Enter.

 Switch ID : Ø2 Address :

 --------------Connection--------------

 / Port H Name + Unit ID Unit Type O

 _ 8Ø N ________________________ _

 _ 81 Y ________________________ CU 12ØØ 21Ø5 N

 _ 82 N ________________________ _

 _ 83 N ________________________ _

 _ 84 N ________________________ _

 _ 85 N ________________________ _

 _ 86 N ________________________ _

 _ 87 Y ________________________ PR CPCØCØ1 CHP 37 2Ø64-2C4 N

 _ 88 N ________________________ _

…

Managed channel definitions
Managed channels must have the following characteristics in
HCD:

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• The channel cannot be in the path list for any defined control
units. If you are converting an existing channel to become a
managed channel, you must first remove it from the definition
of any control units that it is currently attached to.

• The channel must be defined as Shared.

• The Managed field must be set to YES.

• The I/O Cluster field must be set to the sysplex name of the
LPARs that can share this managed channel

• The switch characteristics (entry switch ID, entry port) of the
channel connection must be defined.

The following panel shows the definition of the managed channel
35:

.------------------ Change Channel Path Definition --------------------.

| |

| |

| Specify or revise the following values. |

| |

| Processor ID : CPCØCØ1 |

| Configuration mode . : LPAR |

| Channel Subsystem ID : |

| |

| Channel path ID 35 + PCHID . . . ___ |

| Channel path type . . . CNC + |

| Operation mode SHR + |

| Managed Yes (Yes or No) I/O Cluster AXCF + |

| Description ________________________________ |

| |

| Specify the following values only if connected to a switch: |

| |

| Dynamic entry switch ID Ø2 + (ØØ - FF) |

| Entry switch ID Ø2 + |

| Entry port 9E + |

| |

| |

'--'

Control unit definitions
Having defined the managed channels, the next step is to define
the control unit.

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

A managed control unit must have the following HCD
characteristics:

• The control unit must support DCM.

• The control unit must be attached to a switch that is in turn
attached to managed channels.

• The switch characteristics (switch ID, entry port) of the
control unit interfaces must be defined.

.-------------------------- Add Control Unit --------------------------.

| |

| |

| Specify or revise the following values. |

| |

| Control unit number 12ØØ + |

| Control unit type 21Ø5 + |

| |

| Serial number __________ |

| Description ________________________________ |

| |

| Connected to switches . . . Ø2 Ø2 Ø2 Ø2 Ø4 Ø4 Ø4 Ø4 + |

| Ports 81 9D 9F C2 Ø6 1Ø 32 33 + |

| |

| If connected to a switch: |

| |

| Define more than eight ports . . 2 1. Yes |

| 2. No |

| Propose CHPID/link addresses and |

| unit addresses 2 1. Yes |

| 2. No |

| F1=Help F2=Split F3=Exit F4=Prompt F5=Reset F9=Swap |

| F12=Cancel |

'--'

On the second panel:

• In order to allow managed chpid usage, there must be at
least one path that is specified with an asterisk (*) rather than
a CHPID and Link Address. The control unit definition is:

 Select Processor / CU Row 1 of 2 More: >

 Command ===> ___ Scroll ===> PAGE

 Select processors to change CU/processor parameters, then press Enter.

 Control unit number . . : 12ØØ Control unit type . . . : 21Ø5

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 --------------Channel Path ID . Link Address + --------------

 / Proc.CSSID 1------ 2------ 3------ 4------ 5------ 6------ 7------ 8-

 _ CPCØAØ1 Ø4.32 Ø5.33 34.C2 35.81 _______ _______ _______ __

 _ CPCØCØ1 Ø4.32 34.C2 * * * * * *

 *************************** Bottom of data ****************************

WLM definitions

There is no switch to turn DCM on or off.

So if you are running in basic mode, or the system that will be
using DCM is in XCFLOCAL or monoplex mode, no WLM-related
changes are required.

If the system that will be exploiting DCM will be running in an
LPAR and is in multisystem sysplex mode, you must have a WLM
structure defined. If the structure is not defined or is not available,
DCM will not function in this environment.

You should modify your CFRM policy to define a structure named
SYSZWLM _sssstttt – where ssss is the last four digits of the
CPC serial number and tttt is the CPC type.

//STEP2Ø EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(CFRM) REPORT(YES)

 DEFINE POLICY NAME(POLICYØ) REPLACE(YES)

…

 STRUCTURE NAME(SYSZWLM_915Ø2Ø64) /* WLM IRD */

 SIZE(ØØØØ8192)

 INITSIZE(ØØØØ6144)

 PREFLIST(CF1,CF2)

 REBUILDPERCENT(Ø1)

 ENFORCEORDER(YES)

/*

HMC definitions

There are no changes to the HMC specifically for DCM. However,
in order for an LPAR to use the Dynamic I/O Reconfiguration
capability, you must have enabled several functions in the CPC
Reset Profile.

You must enable:

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• The Allow dynamic changes to the channel subsystem input/
output (I/O) definition option.

• The automatic input/output (I/O) interface reset option.

IOSTmmm module

Whenever Dynamic Channel path Management investigates
adding or removing a path to an LCU, it tries to select the path with
the best availability characteristics that delivers the required
performance. It does this by comparing the points of failure of all
potential paths with the points of failure of all existing paths to that
LCU.

A control unit is characterized to MVS by a node descriptor, which
can be displayed using the D M=SWITCH command:

D M=SWITCH(9ØØ4,32)

IEE174I 18.35.51 DISPLAY M 821

SWITCH 9ØØ4, PORT 32, DCM STATUS=ONLINE

ATTACHED NODE = ØØ21Ø5.F2Ø.HTC.ØØ.ØØØØØØØ5ØØ31 - CU Node Descriptor

DCM uses information from the tag field of the node descriptor
and combines this with information from a new load module
(IOSTmmm) to identify common points of failure within the
device.

The IOSTmmm load module is built using the IOSCUMOD
macro, which:

• Identifies manufacturer (mmm).

• Identifies device type (for example 2105).

• Identifies model.

• Describes the meaning of four masks.

The IOSTmmm load modules must reside in a LNKLST library.

The IOSTIBM module, the one that maps the IBM control units,
is shipped in SYS1.LINKLIB as part of the system, and is
updated as part of the changes provided with every new IBM
control unit.

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

For non-IBM control units, you will need to obtain a copy of the
IOSTmmm load module from each DASD vendor that you use.

To compile the IOSTmmm load module:

//ASMCUMOD EXEC PGM=ASMA9Ø,PARM=(NODECK,OBJECT)

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

//SYSUT1 DD DSN=&SYSUT1,SPACE=(1Ø24,(12Ø,12Ø),,,ROUND),UNIT=SYSDA

//SYSLIN DD DSN=&OBJ,SPACE=(3Ø4Ø,(4Ø,4Ø),,,ROUND),

// DISP=(MOD,PASS),UNIT=SYSDA,

// DCB=(BLKSIZE=3Ø4Ø,LRECL=8Ø,RECFM=FBS,BUFNO=1)

//SYSPUNCH DD DUMMY

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

** IOSTHTC - CONTROL UNIT MODEL TABLE FOR HITACHI PRODUCTS **

** THE FOLLOWING CONTROL UNITS ARE DEFINED **

** ALL HTC 399Ø/6, 21Ø5 EMULATION DEVICES. **

** CHANGE ACTIVITY: **

** DATE IDENT DESCRIPTION AUTHOR **

** Ø4/29/Ø2 @HTC ORIGINAL VERSION HTC/SEC **

*

HTC IOSCUMOD MANF=HTC,DEVT=,MODN=,MASK1=ØØ1Ø,MASK2=ØØ1E,

*

 MASK3=ØØ1F,MASK4=ØØØØ,DCM_SUPPORTED=NO

HTC399Ø61 IOSCUMOD MANF=HTC,DEVT=ØØ399Ø,MODN=ØØ6,MASK1=ØØ1Ø,MASK2=ØØ1E,

*

 MASK3=ØØ1F,MASK4=ØØØØ,DCM_SUPPORTED=NO

HTC399Ø62 IOSCUMOD MANF=HTC,DEVT=399Ø,MODN=ØØ6,MASK1=ØØ1Ø,MASK2=ØØ1E,

*

 MASK3=ØØ1F,MASK4=ØØØØ,DCM_SUPPORTED=NO

HTC21Ø51 IOSCUMOD MANF=HTC,DEVT=ØØ21Ø5,MODN=,MASK1=ØØ1Ø,MASK2=ØØ1E,

*

 MASK3=ØØ1F,MASK4=ØØØØ,DCM_SUPPORTED=YES

HTC21Ø52 IOSCUMOD MANF=HTC,DEVT=21Ø5,MODN=,MASK1=ØØ1Ø,MASK2=ØØ1E,

*

 MASK3=ØØ1F,MASK4=ØØØØ,DCM_SUPPORTED=YES

/*

//LINKIT EXEC PGM=IEWL,COND=(5,LT,ASMCUMOD),

// PARM='LET,LIST,NCAL,RENT,SCTR,XREF'

//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR

//SYSUT1 DD DSN=&SYSUT1,SPACE=(1Ø24,(12Ø,12Ø),,,ROUND),UNIT=SYSDA

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSN=&OBJ,DISP=(OLD,DELETE)

// DD *

 NAME IOSTHTC(R)

/*

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Updates to the IOSTmmm load modules can be activated
dynamically using the SETIOS DCM,REFRESH command:

SETIOS DCM=REFRESH

IOS361I CONTROL UNIT MODEL TABLE REFRESH REQUEST COMPLETE

OPERATING DCM

Having completed all these changes, DCM is now ready to
manage LCU.

You can use several operator commands to display information
about the managed channels and control units.

In normal operation, there should be no need to interact with
DCM. If the installation has defined managed channels and
DASD subsystems with managed paths, DCM will automatically
start managing the paths following an IPL. All actions that are
taken by DCM are automatic and should be transparent, from an
operator’s point of view.

However, if you wish to display information about DCM or exert
some control over the actions that it can take, you must be aware
of some new commands and enhancements to existing
commands.

DCM messages at IPL time

When the system is IPLed, you will receive messages from WLM
informing you that it has connected to the WLM LPAR cluster
structure. These messages will be followed by IOS351I and
IOS356I messages indicating the status of DCM.

DCM messages at IPL time look like:

IOS351I DYNAMIC CHANNEL PATH MANAGEMENT ACTIVE

IOS356I DYNAMIC CHANNEL PATH MANAGEMENT NOT MANAGING ON SYSTEM = PROD

IWMØ5ØI STRUCTURE(SYSZWLM_915Ø2Ø64), CONNECTED

IWMØ61I WLM CPU MANAGEMENT AVAILABLE ON PROD

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Display commands

D IOS command
The D IOS,DCM command shows the status of DCM:

D IOS,DCM

IOS353I 17.53.19 DCM STATUS Ø38

DYNAMIC CHANNEL PATH MANAGEMENT IS ACTIVE IN GOAL MODE

D WLM,IRD
The D WLM,IRD command provides the status of each of the
three IRD functions (WLM CPU management, DCM, and channel
subsystem I/O priority queueing) in the system on which the
command is issued:

D WLM,IRD

IWMØ59I 16.49.29 WLM DISPLAY 198

 OPTIONS

 VARYCPU ENABLED: YES

 CPU MANAGEMENT ENABLED: YES

 CHANNEL SUBSYSTEM PRIORITY ENABLED: YES

 WLM CPU MANAGEMENT STATUS

 CPU MANAGEMENT ACTIVE

 DCM STATUS

 DCM ACTIVE

 WLM LPAR CLUSTER DATA

 SYSPLEX NAME: AXCF

 WLM LPAR CLUSTER STRUCTURE: SYSZWLM_915Ø2Ø64

 SYSTEM PARTITION MVS CAPABILITY CONNECT CHANNEL

 NAME IDENTIFIER LEVEL LEVEL STATUS SUBS.ID

 PROD ØØ2 Ø15 Ø14 CONNECTED ØØØ

D M=DEV command
The DISPLAY M=DEV command has been expanded to include
an indicator of whether a given path is managed or not. It also lists
the maximum number of managed paths that can be used by the
control unit to which the device is attached:

D M=DEV(12ØØ)

IEE174I 14.41.39 DISPLAY M 529

DEVICE 12ØØ STATUS=ONLINE

CHP Ø4 34 35

DEST LINK ADDRESS 32 C2 81

ENTRY LINK ADDRESS 49 96 9E

PATH ONLINE Y Y Y

 52 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CHP PHYSICALLY ONLINE Y Y Y

PATH OPERATIONAL Y Y Y

MANAGED N N Y

MAXIMUM MANAGED CHPID(S) ALLOWED: 6

DESTINATION CU LOGICAL ADDRESS = ØØ

CU ND = ØØ21Ø5.ØØØ.HTC.14.ØØØØØØØ5ØØ31

DEVICE NED = ØØ21Ø5.ØØØ.HTC.14.ØØØØØØØ5ØØ31

PAV BASE AND ALIASES 5

D M=CHP command
The DISPLAY M=CHP command has been updated to provide
additional information related to DCM:

D M=CHP(Ø5)

IEE174I 18.41.13 DISPLAY M 322

CHPID Ø5: TYPE=Ø4, DESC=MANAGED ESCON SWITCHED OR PT-PT, ONLINE

DEVICE STATUS FOR CHANNEL PATH Ø5

NO DEVICES ARE ACCESSIBLE THROUGH THIS CHANNEL PATH

SWITCH DEVICE NUMBER = 9ØØ4

************************ SYMBOL EXPLANATIONS ************************

+ ONLINE @ PATH NOT VALIDATED - OFFLINE . DOES NOT EXIST

* PHYSICALLY ONLINE $ PATH NOT OPERATIONAL

D M=SWITCH command
The command allows you to display information about the
selected switch (indicated by specifying the switch device number),
and the components that are attached to it (CPCs, control units,
or other switches):

D M=SWITCH(9ØØ4)

IEE174I 18.26.56 DISPLAY M 74Ø

SWITCH 9ØØ4, PORT STATUS

 Ø 1 2 3 4 5 6 7 8 9 A B C D E F

 Ø p + + c p + c c c c c c

 1 + c c + x c p + c c p c x c c c

 2 c c + c x + + + + c c c u c c +

 3 c c + + c c c u c c + + c c c u

 4 u x x x x c c c c c p p

 5

 6

 7

 8

 9

 A

 B

 C

 53© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 D

 E

 F

***************** SYMBOL EXPLANATION *****************

 + DCM ALLOWED - DCM NOT ALLOWED BY OPERATOR

 x NOT DCM ELIGIBLE p DCM NOT ALLOWED DUE TO PORT STATE

 c CHANNEL ATTACHED $ UNABLE TO DETERMINE CURRENT ATTACHMENT

 u NOT ATTACHED . DOES NOT EXIST

The information provided in the output from the D M=SWITCH
command is a combination of actual hardware information about
the switch, discovered when DCM gets the node descriptors for
all attached devices, and software information, which indicates
whether DCM in this LPAR cluster can use the related port.

If you specify a port number on the display command (D
M=SWITCH(ssss,pp)), the response includes the node descriptor
of the device that is connected to the port, as well as the DCM
status of the port:

D M=SWITCH(9ØØ4,32)

IEE174I 18.35.51 DISPLAY M 821

SWITCH 9ØØ4, PORT 32, DCM STATUS=ONLINE

ATTACHED NODE = ØØ21Ø5.F2Ø.HTC.ØØ.ØØØØØØØ5ØØ31 - control unit

or:

D M=SWITCH(9ØØ4,4A)

IEE174I 18.42.Ø5 DISPLAY M 474

SWITCH 9ØØ4, PORT 4A, DCM STATUS=CHANNEL ATTACHED

ATTACHED NODE = ØØ2Ø64.2C4.IBM.51.ØØØØØØØ6915Ø - managed chpid

D XCF,STR command
The D XCF,STR command allows you to display information
about the WLM structure used by IRD:

D XCF,STR,STRNAME=SYSZWLM_915Ø2Ø64

IXC36ØI 17.Ø2.46 DISPLAY XCF 4Ø1

STRNAME: SYSZWLM_915Ø2Ø64

 STATUS: ALLOCATED

 POLICY INFORMATION:

 POLICY SIZE : 8192 K

 POLICY INITSIZE: 6144 K

 POLICY MINSIZE : Ø K

 FULLTHRESHOLD : 8Ø

 ALLOWAUTOALT : NO

 REBUILD PERCENT: 1

 54 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 DUPLEX : DISABLED

 PREFERENCE LIST: ACF1 ACF2

 ENFORCEORDER : YES

 EXCLUSION LIST IS EMPTY

 ACTIVE STRUCTURE

 ALLOCATION TIME: Ø8/28/2ØØ3 21:13:41

 CFNAME : ACF1

 COUPLING FACILITY: ØØ2Ø64.IBM.51.ØØØØØØØ6915Ø

 PARTITION: Ø1 CPCID: ØØ

 ACTUAL SIZE : 6144 K

 STORAGE INCREMENT SIZE: 256 K

 PHYSICAL VERSION: B9FØ94ØØ DE78A642

 LOGICAL VERSION: B9FØ94ØØ DE78A642

 SYSTEM-MANAGED PROCESS LEVEL: 9

 DISPOSITION : DELETE

 ACCESS TIME : NOLIMIT

 MAX CONNECTIONS: 32

 # CONNECTIONS : 1

 CONNECTION NAME ID VERSION SYSNAME JOBNAME ASID STATE

 ---------------- -- -------- -------- -------- ---- ----------------

 #PROD Ø1 ØØØ1ØØØ3 PROD WLM ØØØB ACTIVE

Alter commands

V SWITCH command
The new VARY SWITCH command is used to tell DCM on all
systems in the LPAR cluster whether it is allowed to use the
specified port on the switch or not. It is only necessary to issue
the command on one system in the cluster.

Specifying DCM=ONLINE tells DCM that it can use that switch
port to set up a path between a managed channel and the
attached control unit.

Specifying DCM=OFFLINE will stop DCM from setting up a
managed path using this port. If it is already using this port for an
existing managed path, the associated path will be varied off-line
and removed from the configuration for the affected LCU:

V SWITCH(9ØØ4,32),DCM=OFFLINE

IEE633I SWITCH 9ØØ4, PORT 32, DCM STATUS=OFFLINE

ATTACHED NODE = ØØ21Ø5.F2Ø.HTC.ØØ.ØØØØØØØ5ØØ31

 55© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SETIOS command.
The SETIOS command with the DCM= option can be used to turn
DCM on or off.

DCM will automatically be started after the IPL.

If you wish to change the status of DCM after the IPL, use the
SETIOS command. Don’t forget that this command has an LPAR
cluster-wide scope, so turning it on or off on one system will
produce the same effect on all the other systems in the LPAR
cluster:

SETIOS DCM=OFF

IOS358I DYNAMIC CHANNEL PATH MANAGEMENT HAS BEEN TURNED OFF

The effect of this command is to stop any further changes. It does
not reset the configuration to its initial state:

SETIOS DCM=ON

IOS353I 17.55.54 DCM STATUS 139

DYNAMIC CHANNEL PATH MANAGEMENT IS ACTIVE IN GOAL MODE

VARY PATH command
Because DCM is solely responsible for the managed paths, it is
not possible for the VARY PATH command to either vary on or
vary off a managed path.

If you try to use this command with a managed path, the
command will be rejected as in the following example:

VARY PATH(12ØØ,35),OFFLINE

IEE777I VARY PATH REJECTED, CHPID 35 DEFINED AS MANAGED

CONFIG CHP command
To take a channel off-line, whether it is a managed or a non-
managed channel, issue the CONFIG CHP(xx),OFFLINE
command. It is not necessary to issue a V PATH or a V SWITCH
command before taking the channel off-line.

Part of the CONFIG CHP processing is to take the path off-line,
regardless of whether it is a managed or a non-managed path.

Systems Programmer (France) © Xephon 2004

 56 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Monitoring USS performance from z/OS – an
introduction

This article will focus on monitoring resource utilization and
performance issues of Unix System Services (USS). The primary
focus is on understand USS performance metrics as well as on
monitoring and managing critical z/OS USS resources. The
sample technique for collecting and analysing USS performance
data will be demonstrated. Tuning recommendations will be
briefly discussed too.

INTRODUCTION

For many years MVS (now called z/OS) has been the repository
for business-critical applications and data while Unix played a
fundamental role in the deployment of low-end server-based
applications. This kind of application separation does not exist
any more. Today’s business environment requires multi-tiered
applications that span multiple platforms, including the IBM
eServer with z/OS native applications like DB2 and CICS as well
as USS-based applications, such as WebSphere Application
Server, Domino, ERP, and SAP. These workloads exploit the
latest features of the z/OS runtime environment, including Parallel
Sysplex, WLM and Unix System Services.

Thus, the merging of two platforms, especially two as disparate
as MVS and Unix, is bound to cause confusion in those who have
to monitor, maintain, debug, and write applications for the
merged system. USS under z/OS poses a challenge to systems
programmers in understanding the impact of USS workloads
and resource consumption, especially since Unix concepts and
commands can be unfamiliar territory for
z/OS-oriented systems staff.

On the other hand, users generally have experience in either
MVS or Unix and neither side is quite sure what to make of the
other. The team who installs, manages, and monitors z/OS

 57© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

workloads and e-business products must be equally comfortable
in both environments. It is interesting to note that OMVS (Unix
System Services) has been part of OS/390 for many releases.
Many installations have been ignoring OMVS configuration even
though the address space tries to start at IPL time. With OS/390
2.5, it became impossible to ignore because it is required in order
to run TCP/IP and when applying software maintenance.

The challenges in using a z/OS system as a USS application
server are the additional complexities associated with providing
and maintaining acceptable performance levels for the new Unix
applications, existing legacy applications, and the production
batch processes.

THE MAIN FEATURES OF USS

The main feature of USS is that it is not a complete operating
system: it is neither a virtual machine within z/OS nor an
emulation, a subsystem, or an LPAR; it does not sit on top of z/
OS. It is a set of system calls implemented directly into the z/OS
system as USS services that perform functions that are similar
to the functions other Unixes provide. In addition to that, USS
does not have its own resources – memory, CPU, and DASD are
shared with other z/OS work, and z/OS is used for all basic
services such as CPU dispatching, virtual and real memory
allocation, and paging. The resources USS uses are not pre-
allocated from z/OS – USS dynamically expands and uses CPU,
storage, and I/O capacity at will. This is a job done by the OMVS
system address space (kernel), which provides USS services.
The kernel is an integral part of the BCP element of z/OS; it sends
instructions to the processor, schedules work, manages I/O, and
tracks processes, open files, and shared memory, among other
things. No work gets done in USS without involving the kernel.

Resource control and HFS file system statements, as well as
system processing of USS, occur through a standard parmlib
member (BPXPRMxx), which USS uses when it initializes during
the IPL of a z/OS system. There are over 50 parameters that can
be assigned in the BPXPRMxx file, each one demanding an

 58 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

understanding of the resources being controlled. To dynamically
reconfigure kernel services, you might use the SETOMVS or
SET OMVS operator command. The SETOMVS command
allows you to dynamically reconfigure one or more of the system
characteristics. The SET OMVS command lets you specify one
or more BPXPRMxx parmlib members to dynamically reconfigure
the entire setting of kernel services. IBM recommends that you
have two BPXPRMxx members – one that specifies system
limits and processing and one that specifies HFS file system set-
up. A detailed description of each parameter that controls the z/
OS Unix System Services (z/OS Unix) environment and the file
systems can be found in Chapter 9 of MVS Initialization and
Tuning Reference (SA22-7592-02).

Before proceeding any further and diving into monitoring the
performance of USS it might be helpful to review briefly some key
concepts of USS.

In the world of the Unix program management model, a ‘program’
is either an executable program (called a ‘binary’ sometimes) or
a shell script.

A ‘process’ is a program running one or more threads, along with
the resources the threads are using (memory/storage, external
files, control blocks and environment variables, and options).

There are three types of processes – user processes (associated
with a program or shell user), daemon processes (which perform
continuous or periodic system-wide functions), and kernel
processes (which perform system-wide functions for the kernel,
such as the init process or cleaning up zombie processes). A
process maps ‘roughly’ into a z/OS address space; ‘roughly’
because, in certain circumstances, one can request that
processes share an address space. The reason for this is that
address space creation is expensive in z/OS (in terms of
processing time and resources) so some performance benefits
could be gained by sharing an address space among two or more
processes.

Whether a process will try to create a new process in the current

 59© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

address space is determined by the setting of the environment
variable _BPX_SHAREAS. By setting the _BPX_SHAREAS
environment variable, the parent process can control whether a
spawn() call will result in a process being started in another
address space or as a task within the same address space as the
parent process itself. If
_BPX_SHAREAS is set to YES before the spawn() call is
initiated, the child process starts within the Fsame address
space as the parent process and WLM is not involved in the
creation of the new process. The _BPX_SHAREAS environment
variable can be set to YES, NO, MUST, and REUSE.

There are some exceptions where, despite
_BPX_SHAREAS=YES, a non-local spawn() (ie a child process
starts in another address space) is done. The ability to create
multiple processes in a single address space is probably unique
to the z/OS versions of Unix. For each process a Task Control
Block (TCB) and related control blocks are created. When an
address space begins using z/OS USS services, we say the
address space is a z/OS USS process. Many of the control
blocks for Unix-type entities (directories, process groups, etc)
are maintained in the Unix kernel address space. The following
control blocks are maintained in the program’s address space,
off the secondary TCB (STCB): OTCB (Open systems Task
Control Block, which holds UID and GID, and points to kernel
services and lots of other places, including the THLI control
block), THLI (THread Level Information, which holds flags and
pointers to Unix thread-related information including the address
of the PRLI control block), and PRLI (PRocess Level Information,
which contains PID, flags, process return code, and other
pointers).

A z/OS Unix program can create new processes and enable
multi-threading within a process itself. A child process is created
when the parent process issues a fork() system call. The creating
process is called a parent process and the newly-created process
is called a child process. A parent process can have many child
processes, the number of which is controlled through the
MAXPROCUSER statement contained in member BPXPRMxx.

 60 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

To be a bit more precise, the MAXPROCUSER specifies the
maximum number of processes that a single user (that is, with
the same UID) is allowed to have concurrently active regardless
of origin.

The MAXPROCSYS statement specifies the maximum number
o f
z/OS USS processes that the system allows. Most processes
use an entire address space. A tuning tip: increasing the
MAXPROCSYS value increases the usage of ECSA and ESQA
storage on the system. The recommendation from IBM is to
specify a higher value for MAXPROCSYS than your system
environment can support. If you set the value too high, failures
(EAGAIN) for fork or spawn might occur because WLM cannot
provide enough fork initiators. However, there are no means to
prohibit the creation of new processes by an application
programmer. The maximum number of unique users (UIDs) that
can use z/OS Unix services at a given time is controlled by the
MAXUIDS parameter. This number includes all simultaneous
TCP/IP users, as well as z/OS Unix users. FTP usage requires
one user per connection, but TN3270 and a Web server do not.

z/OS USS assigns a unique identifier called the Process ID (PID)
to the process. Each process also knows the ID of its parent
through the Parent Process (PPID). All processes are related to
each other through the PIDs and PPIDs. The originator of all
processes is called the INIT process (PID = 1). Every process
belongs to a process group, which also has a unique identifying
number, the process group ID (PGID). A performance analyst will
detect that processes are sharing the same address space and
process grouping. A process group is a collection of address
spaces.

A stream of instructions that is in control of a process is called a
thread. A multi-threaded process begins with one stream of
instructions (one thread) and may later create other instruction
streams to perform tasks. To create a new thread, an application
program will use the pthread_create() function. This function
allows multiple tasks to run in a single process, thus allowing

 61© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

concurrent and asynchronous processing without the additional
overhead of creating a new address space. The z/OS Unix
design for creating a thread is to attach a TCB within a process
(address space). The pthread_create system call is used to
create a thread and each thread is given its own thread ID.

The maximum number of threads initiated by pthread_create()
that a single process can concurrently have active is controlled
by the MAXTHREADS parameter.

Transparent to the application running in a USS environment is
the fact that the HFS files it uses are treated internally by the
system as a subsystem dataset, or, to put it another way, an HFS
file is an object that exists within a mountable file system. An HFS
dataset is a hierarchical file system that is used to store, and is
essentially identified with, a mountable file system.

There are four types of file: regular file (consisting of text or
binary), character special file (defining a terminal, a null file, and
a descriptor file), special file (used to send data from one process
to another, so that the receiving process can read the data), and
pipe file. A pipe can be used to send data from one process to
another. The pipes are like files where one process can write into
a pipe and the other can read from the pipe.

Use MAXFILEPROC to set the maximum number of files that a
single process can have open concurrently. This includes all
open files, directories, sockets, pipes, etc. By limiting the number
of open files a process can have, you limit the amount of system
resources a single process can use at one time. The
MAXFILEPROC setting affects storage in the OMVS address
space. The BPXPRMxx parmlib member contains the parameters
that control processing and the file system. The system uses
these values when initializing the OMVS address space. The file
systems are defined at OMVS initialization by FILESYSTYPE
(defines the type of file system), ROOT (defines and mounts the
root file system), MOUNT (defines the file systems to be mounted
at initialization and where in the hierarchy they are to be
mounted), and NETWORK (defines information needed for the
socket physical file system to run).

 62 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ON-LINE MONITORING OF USS PERFORMANCE

As indicated earlier, USS address spaces can consist of several
processes, which in turn might run one or more threads.

Each process is typically associated with a Unix command,
consumes a certain amount of CPU, and provides state
information. After having understood the current set of control
parameters and the options that USS uses, the next step would
be to find out what work is running in your USS environment.

An on-line USS performance monitoring tool should provide a
compact view on processes running, commands associated with
these processes, the parent /child relationship of the processes,
the thread structure of a process, programs running on these
threads, and address spaces representing the USS workload.
On the other hand, for problem determination, a performance
analyst needs to find answers to the questions: what are the
delayed processes? what is the status of each of the processes?
or which processes are high CPU consumers?

When it comes to on-line performance monitoring tools for USS
there are currently two options available within the standard
IBM’s toolkit. The first one is RMF Monitor III OPD report, while
the second is SDSF’s PS command.

RMF Monitor III OPD report

Currently, RMF Monitor III shows only the USS address spaces
with their jobname and using or delay information collected in a
similar way as for normal started tasks, batch jobs, or TSO users.
The new Monitor III USS Process Data (OPD) report presents
details about workloads running on z/OS under USS. A compact
view with process state information and CPU consumption is
provided in the base report, while a pop-up panel displays
additional data (eg command name) on process granularity. The
pop-up can be invoked via cursor-sensitivity (from all columns
except Jobname, which goes to the JOB report, and PPID, which
locates the parent process). The OPD report allows users to filter
by jobname, by user, by process ID, or by address space ID to

 63© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

give you the highest flexibility to reduce the data. In addition to the
OPD report, one enhancement within RMF Monitor III is that the
DELAY, PROC, and JOB reports have been enhanced to identify
all address spaces that are associated with USS in some way. An
‘O’ is appended to the letter representing the job class, eg ‘SO’
is a started task having USS processes. Via cursor sensitivity,
one can navigate between those reports and the new OPD
report.

SDSF process display

The process display panel invoked by the PS command (new
with z/OS R2) allows authorized users to display information
about z/OS USS processes and provides the ability to cancel the
process. The parameters of the PS command let you show all
processes or just active processes (ALL|ACTIVE).

The process panel includes some or all of the following fields.
The order and titles of these fields may be different depending on
installation and user options. The PS display allows you to filter
and arrange (by using FILTER and ARRANGE commands) by
jobname, status, state, user, process ID, parent process ID, PID
on which the process is waiting, command that created the
process, time/date the process was started, number of active
files, or by address space ID to give you the highest flexibility to
reduce the data. The D OMVS,PID=pid command can be
invoked by action character D, which displays thread-level
information for any thread. You can use this command to display
address space information for a user who has a process that is
hung. You can also use the information returned from this
command to determine whether an address space is using too
many resources, and whether a user’s process is waiting for a z/
OS Unix kernel function to complete.

MXI PID command

A quick and simple way to display the USS process and thread
information is available from MXI (MVS eXtended Information).
MXI is free and available from Scott Enterprise Consultancy Ltd

 64 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

(www.secltd.co.uk). The PID command provides a compact
report with process-related information and CPU consumption,
while a drill-down panel displays additional data on process
granularity, including the unique features of displaying the last
five syscalls of each thread as well as the full path name of the
executing command.

The pop-up can be invoked via cursor-sensitivity from the
Jobname and ASID columns. When selecting the ASID column,
it will display address space-related information at the same time
providing WLM’s Service Class cursor-sensitivity field, which
can be used to review its rule definition.

COLLECTING THE USS PERFORMANCE DATA

It is quite common to see a performance assessment being
carried out only after we have seen applications experiencing
performance problems or when analysts need to know whether
there is enough capacity to support growth or new USS workloads.
In addition to that, it has been noted that most of the performance
tools available seem to relate to only the specific function they
are measuring and do not offer a viewpoint of how well the total
system is performing. Thus, it was deemed essential to establish
a standard method for performance analysis of z/OS USS
workload that would provide a consistent and effective process
for monitoring and managing USS system resources.

As we have become familiar with the processes, threads,
programs, commands, and cross-correlation of these to an
address space, we are ready to proceed to the next step – that
of choosing the types of data to collect. Information about z/OS
Unix activity can be logged in SMF records if these records are
specified in the SMFPRMxx parmlib member. In general, the
following SMF records will have information about z/OS USS:

• Address space-level information is available in the common
address space work record (type 30).

• HFS dataset cacheing information is available in the DFSMS
statistics and configuration record (type 42, subtype 6).

 65© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• RMF support for USS is reflected in SMF record types 70 to
79.

• RACF processing record has information that can be used
for security auditing (type 80).

• HFS file system activity data is available in SMF record type
92.

The single most important factor for any useful and meaningful
USS performance analysis is a proper understanding of z/OS
accounting of USS workload, a very detailed description of which
can be found in Chapter 8, OpenMVS Accounting of MVS
System Management Facilities (SMF) (SA22-7630-03). Based
on recommendations gleaned from it as well as from descriptions
of relevant SMF records and subtypes, a sample USS
performance report writer was constructed in order to provide a
starting point from which one can begin to gather performance
information about the USS.

CODE

The code is a six-part stream (called USSDRIVE here). In the first
step (DEL) auxiliary files are deleted while in the second step
(SMFEXTR) the selected USS-related SMF records are extracted
from the SMF weekly/daily dataset and copied to a file that can
be used as a base of archived records. It is worth noting that data
related to granularity and quality of performance is very important.

Too much data will slow the process and increase the resource
consumption without providing additional benefit. Intervals for
performance analysis should be chosen carefully: the seven
days of performance data is sufficient to ensure consistency and
repeatability. To limit the amount of data collected one may use
the DATE and TIME filtering options that the SMF dump program
(IFASMFDP) provides.

In the next step (COPYSMF) the extracted records are further
filtered. The reasons for doing this are that the SMF dump
program does not know anything about subtypes and, importantly,

 66 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

we wanted only those records that reflect USS activity, ie the
records with valid USS segments.

In the fourth step (REXX13) the relevant records are formatted
by invoking a corresponding REXX EXEC. Three EXECs are
invoked in this step – USSASID, USSFILE, and RMFUSS.

USSASID is the EXEC that handles the common address space
work record (type 30) and it provides information related to USS
process accounting data for the address space and special
accounting for the EXEC family of functions. For every USS
process that creates a new address space, SMF will create at
least four type 30 records – job start, step termination, interval,
and job termination.

If there are subprocesses that are started with forks or other USS
constructs that build a new process (specifically processes that
will use a new address space), you will get the same four records
for that process. If you are running a shell script (any kind), every
‘command’ with the shell script will generate at least four type 30
records. Be careful here – if a lot of USS processes are running
(such as a continuously running shell script), hundreds of
thousands of type 30 records will be created in a 24-hour period.
It should be possible to reduce the number of type 30 records by
using the environment variable BPXSHAREAS=YES, which
tells USS to make commands and forks subtasks of the parent
task. The REUSE setting is treated as a YES, except some of the
system structures built when the subtask is created are retained
and used again during the next fork/spawn. Both the YES and
REUSE ‘hide’ the identity of child processes, while accumulating
resource usage into the SMF records. One will also probably see
step completion messages in batch job output with *OMVSEX,
which reflect a new USS process initiated in the same address
space as the original batch job.

The next EXEC invoked in this step, USSFILE, is the EXEC that
handles the USS file system activity record type 92 subtype 11
(close of a file).

All file system activity records contain information needed to

 67© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

associate them with a particular job and jobstep. These fields can
be used to link file system records with related common address
space records (type 30), which, in fact, was done in the last step
of this stream by MATCH EXEC.

Also included is information needed to associate them with a
particular user, when appropriate.

The last EXEC in this step, RMFUSS, handles the SMF 74.3 and
74.6 records. SMF record 74 subtype 3 deals with USS kernel
activity while subtype 6 is a repository for HFS global activity,
buffer pool statistics, and HFS file system statistics. These
subtypes are generated only if the OPD parameter of the RMF
Mon III gatherer is set on and HFS dataset names are included
therein. This EXEC may seem to be redundant since there is a
postprocessor’s OMVS kernel activity report.

The main reason for writing this EXEC is that the OMVS kernel
activity report is interval based and each one of the reports it
produces is in fact a collection of five reports, each reporting on
resources being monitored. This makes each single interval
report very dense – one has to be quite skilful in finding out what
to look for and where. In contrast, the RMFUSS EXEC is
resource oriented – each resource is separately reported on,
thus making it easier to notice the peaks and overruns. Also,
each report contains the counted totals per interval, which is the
information missing in the postprocessor’s report. This is not
meant to be a replacement for the postprocessor’s kernel activity
report but rather a supplement to it. Once we have spotted a peak
value, an exception, or an overrun, we can turn to the
postprocessor’s report and analyse all of the interval report. The
very same logic is behind the processing of SMF 74.6 records,
which pertain to three interval statistics – HFS global statistics,
buffer pool statistics, and HFS file system statistics.

The fifth step (MTOOL) is an auxiliary step that prepares the
selected portions of address space records (type 30 subtype 4)
and close file records (type 92 subtype 11) for the match/merge
EXEC invoked in the last step (REXX4).

 68 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

A set of 16 reports is produced by this stream, each providing in-
depth information on certain aspects or domains of USS
performance. Each report consists of two sets of variables. The
first set is a fixed one consisting of the variables that uniquely
identify the process being monitored. This set is meant to be
used across all common address space work reports. The pool
of variables in this set contains the generated observation
number, process date and time stamp, user id, job id, job name,
step name, process (PID), and the name of the program that was
run (an MVS load module or HFS executable filename). The
second set of printed variables is area specific and pertains only
to the performance domain being monitored.

The processor report is an overview of various processor timings
(total, TCB, SRB, I/O, and RCT) for hiperspace transfers, pre-
emptable SRBs, and enclaves (independent/dependent). This
report can be used to determine which processes are the
heaviest consumers of CPU. There are several means to control
CPU usage within an instance of USS: the MAXPROCSYS
parameter can be used to limit the total number of processes
within USS; MAXPROCUSER is used to limit the number of
concurrent processes that any given user can spawn; and
MAXCPUTIME parameter is useful when we want to control the
amount of CPU that any given application requires to complete
its processing.

An additional note should be made on enclaves: when an
application issues a fork or spawn, it is desirable for the
performance characteristics of the application to be propagated
to the forked or spawned process. This is achieved through the
use of enclaves. Some code, which runs in the forked (or
spawned) address space before the application code receives
control, is usually called set-up code. The service consumed by
this set-up code is not charged to the enclave that the application
is running in. The service consumed by the set-up code is
charged under the OMVS subsystem according to the
classification rules you set up. The set-up code counts as a
transaction in the service class it is associated with (under the
OMVS subsystem), as does the original application transaction

 69© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

(under the subsystem of the original transaction, for example
IWEB). This results in a count of two transactions for one
business unit of work. However, so that the service units consumed
are not double-counted, those used by the application are
charged to the enclave, and those consumed by the set-up code
are charged to the OMVS subsystem. The new thread will be
joined to the enclave of the caller of pthread_create.

The I/O activity report is a detailed report that shows calculated
delays (dataset delay and allocation delay), the count of blocks
transferred, DASD I/O connect time, and enclave DASD I/O
timing for both independent and dependent ones, including
connect, disconnect, and pending time.

The process I/O report provides a summary of the I/O activity
done using USS. I/O activity is summarized in the categories
directory reads, read and write activity to regular files (this
includes all I/O to HFS files), read and write activity to pipe files
(although there is no physical I/O associated with pipes this
activity is still listed as I/O – this field contains I/O activity to pipe
files and to Unix domain sockets), read and write activity to
special files (this includes I/O activity to terminals), and read and
write activity to network sockets (this field includes I/O activity to
network sockets as returned by the TCP/IP physical file system).
Path look calls and path generated calls are also included in this
report, as well as message queues’ byte counts for send and
receive. Finally, there is also a count of total sync() calls and the
number of USS syscalls requested by each process and the
corresponding CPU timing (in seconds) accumulated by these
requests.

The CPU timing is not included in the total CPU seconds
accumulated for the address space and its value is limited since
there is no way of knowing which syscalls are being issued by the
processes, how often each is being issued, or how much CPU
time each syscall type is consuming. The value, however, could
be monitored to help monitor changes to the workload.

A tuning hint: the information related to directory look-ups is quite

 70 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

useful because high values normally indicate that the accessed
files are close to the bottom in the file system hierarchy. To reduce
look-ups there are two options – move these files towards the top
of the hierarchy (as close to the root directory as possible,
keeping in mind that HFS locks all the paths to the file) or change
applications to force a change directory before opening the files.

The storage and paging report is a summary of paging/swapping
activity and storage mapping of the process. The maximum
region size (in bytes) for an address space hosting process/
processes is under the control of the MAXASSIZE parameter. In
the context of address space reporting, it applies to a daemon
process that forks another, and a daemon that was not manually
started via TSO/E or the OMVS shell. Note that the IEFUSI limit
for the OMVS work region size overrides MAXASSIZE. Users are
strongly discouraged from altering the region size of address
spaces in the OMVS subsystem category. Use the SETOMVS or
SET OMVS command to dynamically increase or decrease the
value of MAXASSIZE.

The performance report is a detailed report on service units
consumed by each process (by CPU, SRB, I/O, and MSO),
transaction timings (how long a transaction was active and how
long it was real storage resident), and WLM-related information
(workload, service class, resource group, and reporting class).
Remember that the most important tool we have with which to
tune USS performance from the z/OS side is a proper WLM set-
up. Because we normally do it for any z/OS workloads we have
also to check service policy to ensure that proper service classes
and objectives are specified to manage the USS and the
increase in the number of address spaces it uses.

Based on established business requirements, workloads that act
as servers should be at a higher dispatching priority and
importance than other applications. The USS system address
spaces we have to take care of include:

• OMVS – the kernel – the default service class is SYSTEM,
no need to change it.

 71© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• BPXOINIT – the first parent (process id = 1) – it starts the
daemons, inherits orphaned children allowing for a correct
clean up of their processes, and it is the parent of the
processes inside an existing address space (not created by
fork or spawn). WLM classification should be to SYSSTC
service class or high-velocity goal. It is quite useful to place
OMVS and BPXOINIT in their own report classes.

• BPXAS – a pool of address spaces WLM maintains in order
to avoid the delay of address space creation during a fork
operation. BPXAS initiators are started by WLM only on
demand and are similar in concept to JES2 initiators. It is not
advisable to terminate the BPXAS address spaces when a
user finishes with them. There is a very high overhead in
creating address spaces. BPXAS remains for the next
request in order to speed up processing. Because of the
nature of Unix, thousands of processes can be started in a
matter of seconds, for example a make command against a
large set of programs could cause this. Thus, one should be
careful here: too many extra address spaces in the pool
wastes CPU and storage while too few forces a new address
space to be created during a fork(), thus slowing down fork
response time. The default service class is SYSSTC and
there is no need to change it. A good thing would be to place
it in its own report class to monitor average spaces in the
pool.

• SYSBMAS is the DFSMS buffer manager that is classified
in the default STC service class – change it to SYSSTC.

There are also two performance flags available, and these
should be taken care of if the values are not zero. The first one
provides insight into address space initiation/restart status and
service class (if CPU-critical or storage-critical). The second one
is address space related and warns us that there might be some
WLM performance issue such as an address space being
designated as storage-critical, an address space currently CPU-
protected/storage-protected, or an address space that cannot be
managed to meet transaction goals.

 72 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The summary report is the last one in the group of reports
produced by the USSASID EXEC, providing a summary of the
processes by areas covered by the reports described above. It
was tailored after IBM’s job/step termination exit routine
(IEEACTRT) and is probably the best place to start when
monitoring USS performance. Once an exception or a peak
value has been spotted in any key performance value, one can
use generated observation identification to drill down across
domain-relevant reports.

The USS file system read and write activity report is a product of
USSFILE EXEC.

When an HFS file system is mounted, SMF begins collecting
accounting data for the file system. When an HFS file is opened,
SMF begins collecting accounting data for the file. Partial SMF
accounting does not occur – either all the information for a file
system or open file is collected, or none is collected.

There are several subtypes of SMF record type 92. Subtype 11
(written when a file is closed) is the most important subtype for
performance data.

The report shows how hard a file system (identified by file serial
number and pathname used at open time, if known) is being hit
by number of calls (read/write), count of I/O blocks (directory,
read/write), and number of bytes (read /write). Also included in
the report is data on the time the file was opened as well as when
it was closed. The calculated difference between these two
timestamps tells us how long the file was open. Note that the file
serial number changes every time the file is reallocated. Included
in the report is information necessary to associate file activity with
a particular job and jobstep (jobname, reader start time and date,
step name, process ID). In general, it is best not to create these
records unless one is trying to diagnose an I/O performance
issue or determine the reason for a certain activity. A warning:
when enabled, SMF can generate a huge volume of SMF92 data;
use the alternative SMFPRMxx setting to avoid it.

The composite I/O activity report uses SMF type 30 records to

 73© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

create a table displaying program name, system resource and
file activity.

The SMF process ID (SMF30OPI) field was used with SMF type
92 records to identify HFS dataset names.

The following two sets of reports (eight in total) are a product of
RMFUSS EXEC (discussed above): the first one is HFS dataset
I/O related (buffer pool statistics, HFS global statistics, and HFS
file system statistics) while the second one is a kernel activity
report set consisting of five separate reports (USS Inter Process
Communication, USS shared library region and queued signals,
USS memory map, USS process activity, and USS system call
activity).

At the beginning of this article we said that no work gets done in
USS without involving the kernel. Thus, monitoring and tuning
the kernel is of prime importance and should be the focus of a
performance analyst’s attention. Nonetheless, it should be
observed that if your z/OS system is currently experiencing
performance problems, you can be assured that USS will not
perform well. The system must have CPU cycles, storage, and
I/O capacity available before an attempt is made to fully exploit
the USS-based applications. For an overall heath-check of the
USS kernel the RMFUSS-produced set of reports has been
provided, and these should be carefully examined. These reports
provide feedback for installation-specified limits and actual activity
for system calls, process activity, inter-process communication,
memory map and shared library region, and queued signals. It
can be used for verification of parmlib settings as well as for
tracking and planning the resource utilization in terms of MPL,
CPU, and storage.

The system call activity report provides the same information as
included in the SMF 30 record, but aggregated at the system
level. The count can be turned on by BPXPRMxx parameter
SYSCALL_COUNTS(YES/NO). The data presented reports on
the total, minimum, average, and maximum number of system
calls during an interval and the corresponding total, minimum,
average, and maximum CPU time consumed for system calls. It

 74 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

is good to monitor changes in these numbers, especially in a
before/after situation when introducing a new USS application
because certain system calls can take up significant CPU time.
It not possible at this stage to identify and measure what type of
system calls do consume the CPU. (The measurement unit for
syscalls is number per second, and for CPU timing it is number
per hundredth of a second.)

PROCESS ACTIVITY REPORT

The BPXPRMxx parameters corresponding to the defined
maximum values as reported under the heading PARM VALUE
for Processes, Users, and Proc/User are MAXPROCSYS
(maximum processes allowed system wide), MAXUIDS
(maximum number of concurrent Unix users), and
MAXPROCUSER (maximum number of processes allowed per
user). To set initial values for these parameters the following
advice might be of some help: estimate the number of users
concurrently accessing the system; add 30% and set the value
for MAXUIDS; multiply MAXUIDS by 4; add a sufficient number
of processes for daemons (5–15); and set the value for
MAXPROCSYS. If you don’t run applications with specific
requirements, set MAXPROCUSER to 25 (default).

The count of Processes is the number of Unix processes
controlled by USS during this interval (total, minimum, average,
and maximum). The count of Users is the number of Unix users
controlled by USS during this interval (total, minimum, average,
and maximum). Monitor the ‘AVERAGE’ used values to help
determine whether the value is set too high (waste of resources).

There is also an ‘OVERRUNS’ part to the report showing you how
many times you had to wait because a specified number was too
small. For Processes, you get the number of processes that
could not be created by USS because the maximum number of
processes would have been exceeded; for Users, the number of
Unix users that could not be created by USS because the
maximum number of users would have been exceeded; for Proc/
User, the number of processes per user that could not be created

 75© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

by USS because the maximum number of processes per user
would have been exceeded. Monitor the ‘OVERRUNS’ to
determine whether you are experiencing slowdowns because a
value is set too low. (The measurement unit for overruns is
number per second.)

On the other hand, if you get the message, ‘FSUM7726 cannot
fork: EDC5112I resource temporarily unavailable’, the parent
process has completed (gone away), leaving the child process
abandoned. These child processes cannot terminate and clean
up; they are hanging around in a zombie state. Issue a D
OMVS,A=ALL operator command to see whether there are any
zombies. Zombies will be address spaces flagged with a Z. If no
zombies, the specified limits have been exhausted. Issue a D
OMVS,O command, which shows the settings for
MAXPROCUSER and MAXPROCSYS. Increasing
MAXPROCSYS or MAXPROCUSER will fix this.

Sometimes, when a problem has occurred, there may be many
zombie processes left around. Each zombie takes up a process
slot. If zombies exist something is wrong because zombie
processes are not getting cleaned up. This can happen when an
incorrectly-coded application does not do wait() calls to clean up
child processes or is otherwise functioning incorrectly. If there
are many zombies and the parent pid for them is 1, it usually
indicates a hang in the PID=1 BPXOINIT process, which is
responsible for zombie clean up. Issue D GRS,C to see whether
there is a latch hang on BPXPRIT latch #1. If PID(1) is the parent
of the zombies, it is likely that the system is having a problem. You
may need to cancel the process that is stuck holding this latch.
Terminating the parent with a SIGNAL or CANCEL should clean
up the problem. Issue a D GRS,C command. This will show
whether BPXOINT is stuck waiting for the process latch for
PID(1). If it is waiting, then the problem is the owner of that latch.
Cancelling the owner of the latch should free up the zombies
once BPXOINIT gets control.

Editor’s note: this article will be concluded next month.

Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2004

MVS news

BMC Software has announced the availability
of CONTROL-M for File Transfer, which
delivers unified file transfer management. The
product manages the entire file transfer process,
providing a graphical interface and real-time
progress reporting to ensure successful transfers
of files. This automation reduces the risk of
transmission delays, data corruption, and poor
security.

CONTROL-M for File Transfer allows users to
define file transfers through a GUI. It features
capabilities for monitoring and managing files in
transfer, allowing full control of the file transfer
during execution and real-time reporting on the
transfer’s exact status using various parameters
including the amount of data transferred, transfer
rate, and the transfer’s predicted completion
time.

For further information contact:
BMC Software, 2101 City West Blvd,
Houston, TX 77042-2827, USA.
Tel: (713) 918 8800.
URL: http://www.bmc.com.

* * *

Computer Associates has announced general
availability of Advantage CA-IDMS R16 for z/
OS, a Web-enabled database platform that
handles high-volume processing requirements,
including online transaction processing, batch
job activity, and transactions from diverse
distributed-platform applications.

R16 delivers: z/Architecture 64-bit processing
that utilizes virtual storage to support massive
memory cacheing, reducing real I/O and

improving performance; Parallel Access
Volume exploitation that allows multiple jobs to
simultaneously access the same logical volume
and thereby allows much higher I/O rates for
increased throughput and reduced response
times; full, two-phase commit compatibility
between multiple Advantage CA-IDMS/DB
systems, DB2, WebSphere MQ and other
resource managers, providing fully automatic
resynchronization if processing is interrupted
during the commit operation; plus other features.

For further information contact:
Computer Associates, One CA Plaza, Islandia,
CA 11749, USA.
Tel: (631) 342 5224.
URL: http://www3.ca.com/Solutions/
ProductFamily.asp?ID=126.

* * *

Compuware has announced its intention to
provide Compuware STROBE support for
IBM’s zSeries Application Assist Processor
(zAAP), planned to be available on the IBM
eServer z990 and zSeries 890 servers.

Specifically, Compuware STROBE will
provide application performance analysis for
Java applications utilizing the new IBM zAAP
execution environment on the zSeries platform.

For further information contact:
Compuware Corporation, One Campus
Martius, Detroit, MI 48226, USA.
Tel: (313) 227 7300.
URL: http://www.compuware.com/products/
strobe/default.htm.

* * *

x xephon

	Checking a steplib concatenation for authorized datasets
	Quick HFS free space report
	High resource users - accumulated statistics suite based on SMF records
	Analysing legacy applications
	z/OS Dynamic Channel path Management (DCM)
	Monitoring USS performance from z/OS - an introduction
	MVS news

