
© Xephon Inc 2004

August 2004

215

In this issue

3 USS processes at a glance
15 VSAM System Managed

Buffering
25 Read spool data from a C/C++

program – part 2
37 Monitoring HFS performance
65 Implementation of the IBM

Flashcopy/Snapshot functions in
a z/OS environment

76 MVS news

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
$505.00 in the USA and Canada; £340.00 in
the UK; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for £29.00 ($43.50) each
including postage.

MVS Update on-line
Code from MVS Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon
.com/mvs; you will need to supply a word
from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in MVS Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

USS processes at a glance

PROBLEM ADDRESSED

In an earlier article I have provided a brief introduction to
monitoring USS performance from the z/OS perspective that can
be used as a starting point in building a set of USS performance
yardsticks (see ‘Monitoring USS performance from z/OS – an
introduction’, MVS Update, issues 213 and 214, June and July
2004). This sample process reporter was written for those who
are somewhat new to the USS world, and specifically not familiar
with commands that may be used to ‘see’ what is going on there.
However, I have to note that only after one has become familiar
with the general concepts of USS processes, threads, programs,
commands, and cross-correlation of these to an address space,
is one ready to proceed to the next step of extracting information
about USS process activity.

When it comes to on-line performance monitoring tools for Unix
System Services, there are currently two well-known options
available within the standard IBM toolkit. The first one is RMF
Monitor III OPD report, while the second is SDSF’s PS command.
However, what I myself really needed was a simple, flexible and
yet fast reporting tool that would quickly provide a compact view
on processes running, commands associated with these
processes, the parent/child relationship of the processes, the
thread structure of a process, programs running on these
threads, address spaces representing the USS workload as well
as the memory, and other resource usage for active processes.

SOLUTION PROPOSED

In a search for a solution I asked myself whether there is any
REXX callable service that would allow me to get information
about all active processes and threads. It came as no surprise
that actually there is such a service. In general, the syscall
commands invoke the z/OS Unix callable service that corresponds

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

to the command verb (the first word of the command). The
parameters that follow the command verb are specified in the
same order as in POSIX.1 and the z/OS Unix callable services,
where applicable. For complete information about the processing
of a particular syscall command, read about the callable service
that it invokes as described in z/OS Unix System Services
Programming: Assembler Callable Services Reference (SA22-
7803).

In this particular case, I have found that getpsent is a callable
service that provides data describing the status for only those
processes for which RACF allows the user access based on
effective user ID, real user ID, or saved set user ID. The data
returned is formatted in a stem – stem.0 contains the number of
processes for which information is returned; stem.1 to stem.n
(where n is the number of entries returned) each contain process
information for the nth process. One can use the predefined
variables that begin with PS_ or their equivalent numeric values
(see Appendix A of a z/OS Using REXX and z/OS Unix System
Services, SA22-7806 manual) to access the information. It
should be noted that besides some 25 variables described in the
book mentioned above, there are three additional predefined
variables that were added to z/OS V1.2, a description of which
appears to be missing from the book. These three variables are:
ps_jobname, ps_asid, and ps_waittime.

While getpsent is good at providing process-related information,
it does not know anything about the threads making a process.
In fact, there is not any other callable service (syscall command)
that is thread related. However, there is a function called
BPXWUnix available from the USS Tools and Toys page, www-
1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html.

In fact, the BPXWUnix is a part of REXX Function Package for
REXX in OpenEdition, which contains the seven REXX I/O
functions and several other useful functions. The REXX function
package is located in an unloaded PDS called
REXXFUNC.UNLOAD. Download this in BINARY into an FB 80
dataset. It is restored using the TSO/E receive inda() command.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Complete install and usage information can be found at the URL
www.s390.ibm.com/ftp/os390/oe/toys/rexx/rexxfunc.html.

The two important features of BPXWUnix function were exploited
in this case – it is the only function in this package that can also
be run outside of a USS REXX environment (ie in TSO), and it
allows you to run any shell command. It should be noted that
when this function is used outside of the Unix REXX environment,
stdin, stdout, stderr, and environment variables will not be
inherited from the current process environment.

CODE

The REXX EXEC provided here (called PSDSP) is in fact a
combination of several syscall commands, each one reporting
on specific USS resources. The first used is uname, which
returns information about the system you are running on. The
getrlimit syscall was used to obtain the maximum and current
resource limits for the calling process (part 1 of the report). The
next syscall, getpsent, was used here as a main source of
information on processes currently running (see part 2 of the
report). In order to obtain information about threads making a
process, a shell command ps -m –ppid was passed to BPXWUnix
function (see part 3 of the report). Of course, one can replace this
command with a more elaborate shell command that would
display thread wait times and semaphore wait information, as
well as the last five syscalls. Note that the last five syscalls (USS
kernel calls) are valid only if CTRACE for OMVS syscalls is
enabled. The single last syscall is valid all the time. (The
CTRACE statement provides tracing while the kernel is starting
and to avoid having to issue a TRACE operator command to set
tracing options. The only way to change any CTRACE value is
with the TRACE command. You cannot use the SETOMVS or
SET OMVS commands to change the value.)

As it is set by USS design, the processes on the same system
can exchange information or communicate data to each other
and synchronize their activities by using three different types of
inter-process communication resources – message queues,

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

shared memory segment, and semaphores. The shell command
ipcs - y was used to obtain inter-process communication settings
(part 4). If you do not specify any flags, ipcs writes information in
a short form about currently active message queues, shared
memory segments, and semaphores (part 5).

USS PROCESS REPORT

Part 2 information about processes currently running:

Display USS processes - summary:

-Jobname- --Asid-- -Userid-- -Process-- --PPID-- --Started at---- ------

--State-------- --Size(KB)-- Wait Sys Cpu User Cpu Total Cpu

BPXOINIT 251 BPXROOT 1 Ø Ø1.Ø2.2ØØ4 18:53:22 File

system kernel wait 88 38:58:87 ØØ:18:36 ØØ:55:1Ø Ø1:13:46

SYSLOGD1 28 BPXROOT 5 1 Ø1.Ø2.2ØØ4 18:55:Ø8 File

system kernel wait 556 ØØ:19:2Ø ØØ:21:59 Ø1:Ø4:77 Ø1:26:36

TCPIP 32 BPXROOT 7 1 Ø1.Ø2.2ØØ4 18:55:11

Running 1116Ø ØØ:ØØ:ØØ 28:49:Ø1 26:27:Ø3 55:16:Ø4

TCPIP 32 BPXROOT 8 1 Ø1.Ø2.2ØØ4 18:55:11

Running 1116Ø ØØ:ØØ:ØØ 28:49:Ø1 26:27:Ø3 55:16:Ø4

TCPIP 32 BPXROOT 9 1 Ø1.Ø2.2ØØ4 18:55:11

Running 1116Ø ØØ:ØØ:ØØ 28:49:Ø1 26:27:Ø3 55:16:Ø4

TCPIP 32 BPXROOT 1Ø 1 Ø1.Ø2.2ØØ4 18:55:11 File

system kernel wait 1116Ø ØØ:49:32 28:49:Ø1 26:27:Ø3 55:16:Ø4

TCPIP 32 BPXROOT 16777219 1 Ø1.Ø2.2ØØ4 18:55:Ø7

Running 1116Ø ØØ:ØØ:ØØ 28:49:Ø1 26:27:Ø3 55:16:Ø4

TCPIP 32 BPXROOT 1677722Ø 1 Ø1.Ø2.2ØØ4 18:55:14

Running 1116Ø ØØ:ØØ:ØØ 28:49:Ø1 26:27:Ø3 55:16:Ø4

SYSTMØ5 52 BPXROOT 33554456 1 26.Ø3.2ØØ4 1Ø:34:36

Running 3412 ØØ:ØØ:ØØ ØØ:ØØ:6Ø ØØ:Ø1:81 ØØ:Ø2:41

DBLDIST 49 BPXROOT 671Ø8991 1 Ø5.Ø3.2ØØ4 Ø6:37:26 File

system kernel wait 9768 57:ØØ:86 Ø7:Ø9:8Ø 21:29:42 28:39:22

DBDCCICS 5Ø BPXROOT 3355456Ø 1 Ø5.Ø3.2ØØ4 Ø7:42:14

Running 147648 ØØ:ØØ:ØØ Ø1:45:Ø2 Ø5:15:Ø9 Ø7:ØØ:11

FTPD1 53 BPXROOT 13Ø 1 Ø5.Ø3.2ØØ4 Ø9:45:28 File

system kernel wait 1636 48:34:98 ØØ:ØØ:Ø2 ØØ:ØØ:Ø8 ØØ:ØØ:1Ø

Part 3 information about threads making a process:

Currently there are 12 processes running

Display USS processes & threads:

-Jobname- -Asid- -Userid-- Process- Threads --------State-------- Total

Cpu --Size(KB)-- Path---- -- Process started by CMD ---

BPXOINIT 251 BPXROOT 1 5 File system kernel wait

ØØ:Ø1:13 88 BPXPINPR BPXPINPR

 ØØØØØØØØ X

Ø:ØØ Last syscall: 1FRK

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ØØØØØØØ1 W

Ø:45 Last syscall: 1WAT

 ØØØØØØØ2 Y

Ø:ØØ Last syscall: -

 ØØØØØØØ3 K

Ø:ØØ Last syscall: 1KIN

 ØØØØØØØ4 F

Ø:ØØ Last syscall: 1ACP

-Jobname- -Asid- -Userid-- Process- Threads --------State--------- Total

Cpu --Size(KB)-- Path---- -- Process started by CMD ---

TCPIP 32 BPXROOT 1677722Ø 5 Running

Ø1:55:16 1116Ø EZBTTMST EZBTTMST

 ØØØØØØØØ Y

Ø:ØØ Last syscall: -

 ØØØØØØØ1 Y

Ø:ØØ Last syscall: -

 ØØØØØØØ2 Y

Ø:ØØ Last syscall: -

 ØØØØØØØ3 Y

Ø:ØØ Last syscall: -

 ØØØØØØØ4 R

Ø:ØØ Last syscall: -

-Jobname- -Asid- -Userid-- Process- Threads --------State-------- Total

Cpu --Size(KB)-- Path---- -- Process started by CMD ---

DBLDIST 49 BPXROOT 671Ø8991 3 File system kernel wait

ØØ:28:39 9768 DSNVEUS3 DSNVEUS3

 ØØØØØØØØ Y

Ø:ØØ Last syscall: -

 ØØØØØØØ1 F

Ø:ØØ Last syscall: 1AIO

 ØØØØØØØ4 F

Ø:ØØ Last syscall: 1AIO

-Jobname- -Asid- -Userid-- Process- Threads --------State-------- Total

Cpu --Size(KB)-- Path---- -- Process started by CMD ---

DBDCCICS 5Ø BPXROOT 3355456Ø 2 Running

ØØ:Ø7:ØØ 147648 DFHKETCB DFHKETCB

 ØØØØØØØØ Y

Ø:ØØ Last syscall: -

 ØØØØØØØ1 R

Ø:ØØ Last syscall: 1KLM

PSDSP EXEC
/* REXX ***/

/* Procedure: psdsp */

/* Description: Get information about: active processes & threads*/

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* USS resource limits and IPC */

/**/

/* trace ?R */

Address TSO

userid=SYSVAR(SYSUID)

outds =userid||'.proc.out' /* change dataset name */

x = MSG('ON') /* to fit your standards*/

if SYSDSN(outds) = 'OK'

Then "DELETE "outds" PURGE"

"ALLOC FILE(PRC) DA("outds")",

 " UNIT(SYSALLDA) NEW TRACKS SPACE(2,1) CATALOG",

 " REUSE LRECL(145) RECFM(F B) BLKSIZE(145Ø)"

 arg hlq

/*--*/

/* Supply the name of received REXX function load library */

/*--*/

 if hlq = "" then HLQ = 'uid.REXXFUNC.LOAD'

PARSE SOURCE Envir .

If Envir ¬= 'SH' then ,

 IF SYSCALLS('ON')>3 THEN

 Do

 Say 'Unable to establish the SYSCALL environment'

 Say 'Return code was 'RC

 Return

 End

/*--*/

/* Allocate BPXWUnix load library */

/*--*/

Address ISPEXEC

"LIBDEF ISPLLIB DATASET ID('"hlq".LOAD') STACK"

Address SYSCALL

/*--*/

/* Return USS information */

/*--*/

'uname sys.'

sis.1 = left('USS process report - produced on',32,),

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' '),

 ||left(time(),1Ø)

sis.2 = left('System identification:',22)

sis.3 = left('Sysname: ',11)||sys.U_SYSNAME

sis.4 = left('Version: ',11)||sys.U_VERSION

sis.5 = left('Release: ',11)||left(sys.U_RELEASE,1Ø)

sis.6 = left('Node : ',11)||left(sys.U_NODENAME,1Ø)

sis.7 = left('Hardware:',11)||left(sys.U_MACHINE,1Ø)

sis.8 = left(' ',1)

/*--*/

/* Display current limits for USS resources (process related) */

/*--*/

proc.1 = left('Part 1:',2Ø)

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

proc.2 = left('Display current system limits for USS processes:',5Ø)

proc.3 = left('-',5Ø,'-')

proc.4= left('Amount of CPU time (in seconds) used by a process:',5Ø)

CALL findlimit 'rlimit_cpu'

proc.5 = left('Current:',9)||rvalue.1

proc.6 = left('Maximum:',9)||rvalue.2

proc.7 = left(' ',1)

proc.8 = left('Files size (in bytes) created by a process:',5Ø)

CALL findlimit 'rlimit_fsize'

proc.9 = left('Current:',9)||rvalue.1

proc.1Ø = left('Maximum:',9)||rvalue.2

proc.11 = left(' ',1)

proc.12 = left('Number of open file descriptors for a process:',5Ø)

CALL findlimit 'rlimit_nofile'

proc.13 = left('Current:',9)||rvalue.1

proc.14 = left('Maximum:',9)||rvalue.2

proc.15 = left(' ',1)

proc.16 = left('Address space size for a process:',5Ø)

CALL findlimit 'rlimit_as'

proc.17 = left('Current:',9)||rvalue.1

proc.18 = left('Maximum:',9)||rvalue.2

proc.19 = left(' ',1)

proc.2Ø = left('Size (in bytes) of a core dump created by a

process:',6Ø)

CALL findlimit 'rlimit_core'

proc.21 = left('Current:',9)||rvalue.1

proc.22 = left('Maximum:',9)||rvalue.2

proc.23 = left(' ',1)

/*--*/

/* Print headers and labels */

/*--*/

raw.1 = left('Part 2:',5Ø)

raw.2 = left('Display USS processes - summary:',5Ø)

raw.3 = Centre("Jobname",9,"-"),

 Centre("Asid",9,"-"),

 Centre("Userid",9,"-"),

 Centre("Process",1Ø,"-"),

 Centre("PPID",8,"-"),

 Centre("Started at",17,"-"),

 Centre("State",23,"-"),

 Centre("Size(KB)",12,"-"),

 Centre("Wait",5),

 right("Sys Cpu",8),

 right("User Cpu",9),

 right("Total Cpu",9)

w=1

ps.Ø=Ø

/*--*/

/* Get process data */

/*--*/

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

'getpsent ps.'

 Do i=1 to ps.Ø /* Process each entry returned */

 cmd =left('ps -m -p',8)||ps.i.ps_pid

 start = start(ps.i.ps_starttime)

 wait = TIM(ps.i.ps_waittime)

 syst = TIM(ps.i.ps_SYSTIME)

 usert = TIM(ps.i.ps_USERTIME)

 toto = TIM(ps.i.ps_USERTIME+ps.i.ps_SYSTIME)

/*--*/

/* Obtain information about a user */

/*--*/

 'getpwuid 'ps.i.ps_euid' pw.'

 'getgrgid 'ps.i.ps_egid' gr.'

 ksiz = ps.i.ps_SIZE / 1Ø24

/*--*/

/* Print process-related data */

/*--*/

 rww.i =Translate(ps.i.ps_Jobname,"4Ø"x,"ØØ"x), /* Jobname */

 right(ps.i.ps_asid,7), /* Asid (dec.) */

 left(' ',3),

 right(pw.pw_name,8), /* Display user */

 right(ps.i.ps_PID,8), /* Process ID */

 right(ps.i.ps_PPID,8), /* Parent PID */

 right(sinf,19), /* Start date/time*/

 Left(Ps_Status(ps.i.ps_state),27), /* Proc.status */

 right(Ksiz,6), /* Total size */

 right(wait,8), /* Waittime */

 right(syst,8), /* System CPU */

 right(usert,8), /* User CPU */

 right(toto,8) /* System + User */

/*--*/

/* Print headers and labels */

/*--*/

 kww.1 = left(' ',1)

 kww.2 = left('Part 3:',1Ø)

 kww.3 = left('Currently there are',2Ø)||right(ps.Ø,3),

 left('processes running',19)

 kww.4 = left('Display USS processes & threads:',5Ø)

call SHCMD cmd /* Obtain thread info*/

/*--*/

/* Print header and labels */

/*--*/

th.w = Centre("Jobname",9,"-"),

 Centre("Asid",6,"-"),

 Centre("Userid",9,"-"),

 Centre("Process",8,"-"),

 Centre("Threads",7,"-"),

 Centre("State",23,"-"),

 right("Total Cpu",9),

 Centre("Size(KB)",12,"-"),

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 left("Path",14,"-"),

 left("Process started by CMD",44,"-"); w = w +1

/*--*/

/* Print process & thread related data */

/*--*/

th.w =Translate(ps.i.ps_Jobname,"4Ø"x,"ØØ"x), /* Jobname */

 right(ps.i.ps_asid,5), /* Asid (dec.) */

 left(' ',1),

 right(pw.pw_name,8), /* Display user */

 right(ps.i.ps_PID,8), /* Process ID */

 right(thread,5) left(' ',2), /* # threads */

 Left(Ps_Status(ps.i.ps_state),24), /* Proc/thread */

 left(toto,8) left(' ',2), /* Total Cpu */

 right(Ksiz,6) left(' ',2), /* Storage size */

 left(ps.i.ps_PATH,14), /* Command path */

 left(ps.i.ps_CMD,44) /* Command */

/* The following variables are also available but */

/* were NOT used by this USS process reporter: */

/* Controlling tty : ps.i.ps_CONTTY */

/* Effective group ID : ps.i.ps_EGID */

/* Effective user ID : ps.i.ps_EUID */

/* Foreground process group ID : ps.i.ps_FGPID */

/* Process Group ID : ps.i.ps_PGPID */

/* Real group ID : ps.i.ps_RGID */

/* Real user ID : ps.i.ps_RUID */

/* Saved set group ID : ps.i.ps_SGID */

/* Saved set user ID : ps.i.ps_SUID */

/* Session ID (leader) : ps.i.ps_SID */

/* Server flags : ps.i.ps_SERVERFLAGS */

/* Server name supplied on registration : ps.i.ps_SERVERNAME */

/* Server type (File=1; Lock=2) : ps.i.ps_SERVERTYPE */

/* Maximum number of vnode tokens allowed : ps.i.ps_MAXVNODES */

/* Current number of vnode tokens : ps.i.ps_VNODECOUNT */

/* */

 do l = 1 to k

 w = w + 1

 th.w = left(' ',25) left(stid.l,1Ø) left(' ',6), /* thread id */

 left(tstat.l,1Ø) left(' ',17), /* thread status */

 left(ttime.l,1Ø) left(' ',6), /* thread Cpu */

 left('Last syscall:',17),

 left(tsysc.l,1Ø) /* syscall */

 end

 w = w +1

th.w = left(' ',1); w = w +1

End /* main loop end */

/*--*/

/* Print header and labels then issue shell command */

/* to obtain inter process communication settings (ipcs -y) */

/*--*/

it.1 = left('Part 4:',5Ø)

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

it.2 = left('Display current IPCS settings:',4Ø)

it.3 = left('-',5Ø,'-')

g=Ø

com = 'ipcs -y'

 call SHCMM com

 do z = 1 to n

 g = g +1

 ip.g =left(x.z,9Ø)

 end

 drop ip.g

/*--*/

/* Print header and labels then issue shell command */

/* to obtain inter process communication usage (ipcs) */

/*--*/

ix.1 = left(' ',1)

ix.2 = left('Part 5:',5Ø)

ix.3 = left('Display current IPCS usage:',4Ø)

ix.4 = left('-',5Ø,'-')

h=Ø

com = 'ipcs'

 call SHCMM com

 do z = 1 to n

 h = h +1

 ic.h =left(x.z,9Ø)

 end

 drop ic.h

call syscalls 'OFF'

Address TSO

 nt.1 =left(' ',1)

 nt.2 =left('-',45,'-')

 nt.3 =left('A Short Explanation of Current Thread state:',77)

 nt.4 =left('-',45,'-')

 nt.5 =left(' ',1)

 nt.6 =left('A - Message queue receive wait',77)

 nt.7 =left('B - Message queue send wait',77)

 nt.8 =left('C - Communication system kernel wait',77)

 nt.9 =left('D - Semaphore operation wait',77)

 nt.1Ø =left('E - Quiesce frozen ',77)

 nt.11 =left('F - File system kernel wait',77)

 nt.12 =left('G - MVS Pause wait',77)

 nt.13 =left('K - Other kernel wait (for example, pause or

sigsuspend)',77)

 nt.14 =left('J - The thread was pthread created rather than dubbed',77

)

 nt.15 =left('N - The thread is medium weight',77)

 nt.16 =left('O - The thread is asynchronous and medium weight',77)

 nt.17 =left('P - Ptrace kernel wait',77)

 nt.18 =left('Q - Quiesce termination wait',77)

 nt.19 =left('R - Running (not kernel wait)',77)

 nt.2Ø =left('S - Sleeping',77)

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 nt.21 =left('U - Initial process thread (heavy weight and

synchronous)',77)

 nt.22 =left('V - Thread is detached',77)

 nt.23 =left('W - Waiting for child (wait or waitpid callable

service)',77)

 nt.24 =left('X - Creating new process (fork callable service is

running)',77)

 nt.25 =left('Y - Thread is in an MVS wait',77)

/*--*/

/* Write out USS info, settings, process, thread, and IPCS data */

/*--*/

"EXECIO * DISKW PRC (STEM sis.)"

"EXECIO * DISKW PRC (STEM proc.)"

"EXECIO * DISKW PRC (STEM raw.)"

"EXECIO * DISKW PRC (STEM rww.)"

"EXECIO * DISKW PRC (STEM kww.)"

"EXECIO * DISKW PRC (STEM th.)"

"EXECIO * DISKW PRC (STEM it.)"

"EXECIO * DISKW PRC (STEM ip.)"

"EXECIO * DISKW PRC (STEM ix.)"

"EXECIO * DISKW PRC (STEM ic.)"

"EXECIO * DISKW PRC (STEM nt.)"

/*--*/

/* Close & free allocated report file; then display result */

/*--*/

"EXECIO Ø DISKW PRC (FINIS "

 "free FILE(PRC)"

 Address ISPEXEC

 "ISPEXEC BROWSE DATASET('"outds"')"

exit Ø

FINDLIMIT:

/* Return current limits for process */

 arg value

 num=value(value)

 "getrlimit "num" rvalue."

 return rvalue.1 rvalue.2

SHCMD:

/* REXX - BPXWUnix: list thread info */

 parse arg usscmd

 call BPXWUnix usscmd,,out.

 If result<>Ø Then Say "Rc("||result||")"

 thread = out.Ø - 2

 Do r = 3 to out.Ø

 k = r - 2

 stid.k = word(out.r,4)

 tstat.k= word(out.r,5)

 ttime.k= word(out.r,6)

 tsysc.k= word(out.r,7)

 End r

 return thread k

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SHCMM:

/* REXX - BPXWUnix: call ipcs commands */

 parse arg usscmd

 call BPXWUnix usscmd,,out.

 If result<>Ø Then Say "Rc("||result||")"

 Do n = 1 to OUT.Ø

 x.n=OUT.n

 End n

 return n

TIM:

/* REXX - convert duration vars to hh:mm:ss:hd format */

arg time

 time1 = time % 1ØØ

 hh = time1 % 36ØØ

 hh = RIGHT("Ø"||hh,2)

 mm = (time1 % 6Ø) - (hh * 6Ø)

 mm = RIGHT("Ø"||mm,2)

 ss = time1 - (hh * 36ØØ) - (mm * 6Ø)

 ss = RIGHT("Ø"||ss,2)

 fr = time // 1ØØØ

 fr = RIGHT("Ø"||fr,2)

 rtime = hh||":"||mm||":"||ss||":"||fr

 return rtime

START:

/* Convert starting date & time to display */

arg strtime

 "gmtime (strtime) tm."

 If rc>=Ø Then Do

 tmdd = Right(tm.tm_mday,2,Ø)||"."

 tmmm = Right(tm.tm_mon,2,Ø)||"."

 tmyy = tm.tm_year

 tmhh = Right(tm.tm_hour,2,Ø)||":"

 tmmn = Right(tm.tm_min,2,Ø)||":"

 tmss = Right(tm.tm_sec,2,Ø)

 sinfo = tmyy||tmmm||tmdd tmhh||tmmn||tmss

 sinf = tmdd||tmmm||tmyy tmhh||tmmn||tmss

 End

 return sinf

Ps_Status:

 Parse Arg ps_status

 Select

 when ps_status=ps_child Then

 ps_status ="Waiting for a child process"

 when ps_status=ps_fork Then

 ps_status ="fork() a new process"

 when ps_status=ps_freeze Then

 ps_status ="QUIESCEFREEZE"

 when ps_status=ps_msgrcv Then

 ps_status ="IPC Msgrcv wait"

 when ps_status=ps_msgsnd Then

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ps_status ="IPC Msgsnd wait"

 when ps_status=ps_pause Then

 ps_status ="MVS PAUSE"

 when ps_status=ps_quiesce Then

 ps_status ="Quiesce termination wait"

 when ps_status=ps_run Then

 ps_status ="Running"

 when ps_status=ps_semwt Then

 ps_status ="IPC Semop wait"

 when ps_status=ps_sleep Then

 ps_status ="Sleep() issued"

 when ps_status=ps_waitc Then

 ps_status ="Communication kernel wait"

 when ps_status=ps_waitf Then

 ps_status ="File system kernel wait"

 when ps_status=ps_waito Then

 ps_status ="Other kernel wait"

 when ps_status=ps_zombie Then

 ps_status ="Process cancelled"

 when ps_status=ps_zombie2 Then

 ps_status ="PS_ZOMBIE2"

 Otherwise ps_status = "PS_UNKNOWN"

 End

Return ps_status

Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2004

VSAM System Managed Buffering

INTRODUCTION

Everyone knows that, just like DB2, VSAM performance can be
improved by buffering when the control interval data is transferred
from DASD to a virtual storage area.

Typically when a VSAM application performance degrades, a
tuning exercise is carried out where the BUFND (data buffers)
and the BUFNI (index buffers) values are arrived at religiously,
based on the LISTCAT output. The problem with this approach
is that these values are sensitive to changes in dataset definition,

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

eg CI size, CA size, record size, and freespace. Even the normal
data growth of the dataset requires that this exercise be carried
out periodically.

This article aims at explaining VSAM System Managed Buffering
and how allowing the system to optimize the buffer size and the
algorithm used would be simple and appropriate in most situations.

VSAM BUFFERING

VSAM, by default, provides enough space for only three buffers,
and use of these buffers depends on the type of VSAM:

• For KSDS or variable-length RRDS, two are allocated for
data CIs and one for an index CI. One of the data buffers is
used only for formatting CAs and during CI/CA splits.

• For ESDS, fixed-length RRDS, or LDS, only data buffers are
needed.

It is obvious that the default buffers (surprisingly unchanged over
the years) are not sufficient to provide any meaningful performance
benefits.

By choosing the appropriate buffering technique and VSAM
buffer length, the number of I/Os and the I/O response time can
be considerably reduced. The alternative approaches by which
this buffering can be controlled are:

1 Specifying BUFFERSPACE in the DEFINE command. This
approach is no longer recommended.

2 Specifying BUFSP, BUFNI, and BUFND in the VSAM ACB
macro.

3 Specifying BUFSP, BUFNI, and BUFND in the JCL DD AMP
parameter.

4 Specifying ACCBIAS in the JCL DD AMP parameter.

5 Specifying SYSTEM or USER in the data class record
access bias parameter.

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Specifying BUFSP is also not preferred, for the following reasons:

• If BUFSP is specified and the amount is smaller than the
minimum amount of storage required to process the dataset,
VSAM cannot open the dataset.

• A valid BUFSP amount takes precedence over the amount
called for by BUFND and BUFNI.

While explicitly specifying the number of buffers, it is not
uncommon to set a number of buffers and simultaneously
reduce the CI size (possibly to improve random performance),
nullifying the impact. Also specifying more buffers (either data or
index) than necessary might cause excessive paging or excessive
internal processing.

VSAM BUFFERING TECHNIQUES

VSAM provides four buffering techniques:

1 Non-Shared Resources (NSR), which is the default. In NSR,
the buffers are located in the private area and are not shared
among VSAM datasets. As a sequential algorithm manages
the buffers, this is most suited to sequential processing.

2 Local Shared Resources (LSR), where the buffers are
shared among VSAM datasets in the same address space,
thereby utilizing the virtual storage efficiently. This is exploited
by OLTPs like CICS and IMS where a large number of
datasets are open in one address space.

3 Global Shared Resources (GSR), which is an extension of
LSR. The buffers are located in common storage and can be
shared by datasets in multiple address spaces. Because of
constraints like requiring the program to be in supervisor
state and the inability to do workload balancing, GSR is not
recommended.

4 Record Level Sharing (RLS) is what CICS exploits effectively.

For more details on each of these techniques, refer to the latest
version of IBM Redbook VSAM Demystified, dated September
2003.

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SYSTEM MANAGED BUFFERING (SMB)

A VSAM batch program’s performance can be greatly improved
by using buffering. Although you could control the buffering
technique and the number of buffers used by each program,
SMB is an option that lets the system do it.

The following are the factors to be considered for using SMB:

1 SMB introduced in DFSMS V1R4 is, in effect, only for VSAM
datasets open for NSR processing.

2 SMB requires that the system-managed VSAM datasets are
defined in extended format (use data class parameter
DSNTYPE=EXT).

3 SMB originally supported KSDS only. With DFSMS V1R5,
SMB is now available for all other VSAM dataset types,
namely ESDS, RRDS (fixed or variable), and LDS.

USING SYSTEM MANAGED BUFFERING

A VSAM dataset can be made to use SMB simply by defining the
dataset through an SMS data class with
RECORD_ACCESS_BIAS=SYSTEM.

Typically a change in data class affects only new allocations. But
in the case of SMB, the data class attributes are retrieved and
used when the dataset is opened. Therefore, existing VSAM
datasets can also be made to use SMB just by changing the
RECORD_ACCESS_BIAS parameter of the associated data
class.

Another approach to using SMB is to specify an appropriate
ACCBIAS value for the AMP parameter in the JCL. ACCBIAS in
the JCL overrides the record access bias value specified in the
data class.

SMB PROCESSING TECHNIQUES

SMB will weight or optimize buffer handling towards either

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

sequential or direct processing. ACCBIAS value in the JCL can
be any of the following four SMB processing techniques:

• SO – SMB with sequential optimization. It uses the NSR
buffering technique with large read-aheads. It is appropriate
for applications that read a large percentage of a dataset in
sequential order. A back-up of a dataset would be one such
application.

• SW – SMB weighted for sequential processing (the majority
is sequential and some is direct). It uses the NSR buffering
technique and uses read-ahead buffers for sequential
requests. The read-ahead will not be as large as the amount
of data transferred with SO. It provides additional index
buffers for direct requests.

This technique is preferred if the application accesses the
entire dataset predominantly in sequential order.

• DO – SMB with direct optimization. It uses the LSR buffering
technique with no read-ahead. This is suitable for applications
accessing records in a completely random order.

• DW – SMB weighted for direct processing (the majority is
direct and some is sequential). It uses the LSR buffering
technique. It provides minimum read-ahead buffers for
sequential retrieval and maximum index buffers for direct
requests. This technique is preferred if the application
accesses the dataset predominantly in random order.

FORCING OR OVERRIDING SMB

Instead of you choosing one of the above four techniques, you
can let the system choose the buffering technique by specifying
an ACCBIAS value of ‘SYSTEM’. The system will choose the
technique based on the processing options that are specified
when the dataset is opened, and on the following storage class
attributes:

1 BIAS values (direct or sequential).

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2 Associated millisecond response (MSR) times given as the
performance objective.

An ACCBIAS value of USER (the default) allows the SMB
specified in the data class to be overridden. If the value is
specified as USER, the buffers are obtained in the same way that
the system would have behaved without SMB. This option is
quite useful to handle exceptional tasks where using SMB is not
appropriate, whereas other tasks using the same dataset can
benefit from SMB.

It is interesting to note that USER and SYSTEM are the only
values you may use to specify record access bias in the data
class. Allowing other values at the data class level doesn’t make
sense because they impact all the datasets pertaining to a data
class and even a single dataset will be accessed differently
(sequential, random, or dynamic) by different programs.

HOW SMB WORKS

When a dataset is opened, SMB chooses the buffering option
based on dataset and application specifications. After the initial
decision on buffering technique and number of buffers has been
made, SMB has no further involvement.

If the requested System Managed Buffering request could not be
completed during open, the request can fail with a message
IEC161I.

STORAGE REQUIREMENTS OF SMB

The storage requirements for SMB buffers are based on the
following factors:

1 Number of VSAM datasets opened for SMB within a single
application program.

2 Technique chosen or specified.

3 Dataset size (applicable for some techniques).

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Using buffers above 16MB virtual storage ensures that the buffer
size is allocated independently of the region size. While the
default VSAM allocation for a resource pool is below the 16MB
line, for SMB the default is above the 16MB line.

By specifying the following values in the RMODE31 value for the
AMP parameter, you can control the virtual storage location of
buffers and control blocks:

1 BUFF – buffers above the 16MB line.

2 CB – control blocks above the 16MB line.

3 ALL – control blocks and buffers above the 16MB line.

4 NONE – control blocks and buffers below the 16MB line.

If the application runs as AMODE=RMODE=24 and issues
locate-mode requests (RPL OPTCD=(,LOC)), it is required that
RMODE31=NONE is specified on the AMP= parameter for the
datasets using SMB.

SMB AND DIRECT OPTIMIZATION (DO)

In the case of direct optimization, additional subparameters
SMBVSP, SMBDFR, and SMBHWT can be used to further
control VSAM performance. These can be stated either as AMP
subparameters in the JCL or in conjunction with the dataclass
record access bias parameter.

DEFERRING WRITE REQUESTS

VSAM performance can further be improved by deferring writes
that save I/O operations. Deferred writes provide performance
benefits in the case of multiple reads, where the request is
satisfied by the data in the buffer pool as well as multiple updates
to a control interval where the updated CI is written only once.

VSAM automatically defers writes for sequential PUT requests.
For direct PUTs, by default, the deferred write processing depends
on the SHAREOPTIONS specified for the dataset:

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 Deferred write is used with SHAREOPTIONS (1,3) and (2,3).

2 Non-deferred write is used with SHAREOPTIONS (3,3),
(4,3), and (x,4).

The default behaviour can be overridden by specifying the value
of Y or N for SMBDFR. An SMBDFR value of Y instructs VSAM
to defer the writing of the I/O buffers to the medium until either the
dataset is closed or the buffer is required for handling a different
request. Deferred write is not allowed for SHAREOPTIONS 4
where the dataset can be fully shared.

CONTROLLING VIRTUAL STORAGE REQUIREMENT

Direct optimization uses the Local Shared Resources (LSR)
buffering technique, thereby creating an LSR pool for each
dataset opened. A separate pool is built for both data and index
components, if applicable, for each dataset.

The default buffer space to be obtained is calculated assuming
that 20% of the data accounts for 80% of the accesses. This
could result in an increased virtual storage requirement for
buffering and the size increases with the size of the dataset
involved. If the required virtual storage is unavailable, the SMB
technique changes to DW, requiring less virtual storage and an
IEC161I message is issued.

The SMBVSP parameter can be used to restrict the size of the
LSR pool for the data component. SMPVSP can be specified in
KB or MB, and the value can range from 1MB to 2048MB. This
specifies the amount of virtual storage to be obtained for buffering
while opening the dataset.

It is to be noted that there is no possibility of overriding the size
of the pool for the index component.

USING HIPERSPACES

Hiperspace can be used to supplement the use of virtual buffer
space for the data component, which reduces the virtual memory

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

requirement. Because data needs to be moved to the virtual
buffer from the hiperspace buffer before it can be accessed, it
involves greater use of the CPU compared with the use of virtual
buffers.

The SMBHWT parameter is used to specify the use of hiperspace
for buffering. SMBHWT has the format nn, where nn can take any
integer value between 0 and 99. The value of 0, which is the
default, implies that the system doesn’t get any hiperspace.

A non-zero value for this parameter is used as the multiplier of the
virtual buffer space for hiperspace buffers. It is to be noted that
this value doesn’t act as a direct multiplier but rather as a
weighting factor, based on which the number of hiperspace
buffers is established.

Similar to virtual space, the hiperspace size buffer is also in
multiples of 4KB, and hence the CI size of the data component
is recommended to be a multiple of 4KB, avoiding wastage of
virtual space and hiperspace.

SMB AND LOAD PERFORMANCE

There are two additional internal techniques that cannot be
specified by the user, but are used internally by the system to
support dataset creation and load-mode processing:

1 Create Optimized (CO) is the most efficient technique for
loading a dataset and is used when an ACCBIAS of SYSTEM
is given. This requires that the dataset be in initial load state
(HURBA=0) and SPEED be specified at dataset definition.

The SPEED parameter does not pre-format the data control
areas and writes an end-of-file indicator only after the last
record is loaded. Hence when an error occurs while loading,
it would be required to reload the records from the beginning.
For a KSDS, the SPEED parameter affects only the data
component.

2 Create Recovery Optimized (CR) uses the maximum number

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

of buffers to optimize load performance if RECOVERY is
specified at dataset definition.

SMB monitors the current state of the dataset and adjusts to the
load mode requirements by regulating the number of buffers it
uses, thereby minimizing the number of I/O operations required.

USING SMB

• SMB is obviously preferable to the VSAM defaults.

• Performance gains provided by SMB are comparable to and
usually better than what can be achieved by specifying
buffers explicitly.

• SMB safeguards the performance tuning measures carried
out from being adversely impacted because of changes in
dataset definition or data growth.

• SMB provides dramatic performance gains in the case of
random access because it switches from NSR to exploit LSR
buffering techniques.

• Now that SMB supports all types of VSAM (and not just
KSDS), the use of Batch LSR can be completely done away
with. This, in addition to simplifying the process of buffer
exploitation for direct access, provides relief from various
restrictions of BLSR.

• Most importantly, SMB allows the system to take better
advantage of current and future hardware technology.

The following are points to be noted while considering the use of
SMB:

• SMB is available only for datasets defined for Non-Shared
Resources (NSR), which excludes RLS access.

• SMB’s choice of buffering technique and number of buffers
is not dependent on the application design and hence not
necessarily the optimum in all cases. In cases where dataset
access is predictable by the application designer, it would be

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

better to let the application designer define the size of the
buffers for each pool and the number for each.

• SMB typically allocates more buffers than without SMB. So
the installation should allow larger virtual storage.

• To use SMB with linear datasets, CI access must be set in the
ACB.

The IBM Redbook VSAM Demystified provides a sample program
that extracts information from SMF record 64 and helps in
identifying VSAM datasets with heavy access and good candidates
for SMB.

CONCLUSION

The benefits of System Managed Buffering (SMB) can now be
achieved just by defining the RECORD_ACCESS_BIAS
parameter in the dataclass. It is observed that the key reason why
SMB is not heavily used is a reluctance to convert to extended
format. The use of extended format is strongly recommended,
because it is a pre-requisite for many other useful features like
data striping, compression, and extended addressibility. For
most batch applications, use of SMB is recommended and can
give performance improvements as high as 60%. When required,
the buffering algorithms determined by VSAM can easily be
overridden via JCL.

Sasirekha Cota
Tata Consultancy Services (India) © Xephon 2004

Read spool data from a C/C++ program – part 2

This month we conclude the code for this article.

/* Values for field "SSS2REAS" */

#define SSS2RENI 4 /* SSS2JEST zero, but SSS2DSN not null */

#define SSS2REIP 8 /* SSS2SIPA and SSS2SIPN are mutually */

#define SSS2RALO 12 /* Prior dataset still allocated */

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

#define SSS2RDUP 16 /* SSS2SDUP on in SSS2SEL1 and wild */

#define SSS2RJBI 2Ø /* SSS2JBIH < SSS2JBIL & SSS2SJBI on */

#define SSS2RCRE 24 /* SSS2CREA has error & SSS2SCRE on */

#define SSS2RLEN 28 /* SSS2LEN is less than SSS2SIZE */

#define SSS2RTYP 32 /* SSS2TYPE is not valid */

#define SSS2RDES 36 /* SSS2DEST has error & SSS2SDST on */

#define SSS2RJNM 4Ø /* SSS2JOBN has error & SSS2SJBN on */

#define SSS2RFRM 44 /* SSS2FORM has error & SSS2SFRM on */

#define SSS2RPGM 48 /* SSS2PGMN has error & SSS2SPGM on */

#define SSS2RPRM 52 /* SSS2PRMO has error & SSS2SPRM on */

#define SSS2RCLS 56 /* SSS2CLSL has error & SSS2SCLS on */

#define SSS2RFCB 6Ø /* SSS2FCB has error & SSS2SFCB on */

#define SSS2RUCS 64 /* SSS2UCS has error & SSS2SUCS on */

#define SSS2RCHR 68 /* SSS2CHAR has error & SSS2SCHR on */

#define SSS2RMO 72 /* SSS2MOD has error & SSS2SMOD on */

#define SSS2RFL 76 /* SSS2FLSH has error & SSS2SFLS on */

#define SSS2RLPM 8Ø /* SSS2LMIN or SSS2LMAX is negative */

#define SSS2RLPG 84 /* SSS2LMIN > SSS2LMAX & SSS2SLIN on */

#define SSS2RDE2 88 /* SSS2DES2 has error & SSS2TYPE is */

#define SSS2RVOL 92 /* SSS2VOL has error & SSS2SVOL on */

#define SSS2REYE 96 /* SSS2EYE does not have "SSS2" */

#define SSS2RCTK 1ØØ /* SSS2CTKN bad & SSS2SCTK on @RØ5LOPI */

#define SSS2RBRO 1Ø4 /* SSS2SBRO on and SSS2TYPE is */

#define SSS2RECJ 1Ø8 /* SSS2SCTK & SSS2SJBI are @RØ5LOPI */

#define SSS2RODS 112 /* SSS2ODST has error & @OW297Ø7 */

#define SSS2RDCL 184 /* SSS2DCLS has error */

#define SSS2RDFR 188 /* SSS2DFOR has error */

#define SSS2RDPG 192 /* SSS2DPGM has error */

#define SSS2RDDS 196 /* SSS2DDES has error */

#define SSS2RDHR 2ØØ /* Both SSS2DHLD & SSS2DRLS */

#define SSS2RENM 24Ø /* No matching output @R1ØAE */

#define SSS2RENS 244 /* Matching output not @R1ØAE */

/* Values for field "SSS2TYPE" */

#define SSS2PUGE 1 /* Request type of Put/Get */

#define SSS2COUN 2 /* Request type of Count. */

#define SSS2BULK 3 /* Bulk modify request. */

/* Values for field "SSS2UFLG" */

#define SSS2SETC Øx8Ø /* Use SSS2CLAS as the new class */

#define SSS2DELC Øx4Ø /* Delete selected dataset(s) */

#define SSS2ROUT Øx2Ø /* Use SSS2DES2 as the new dataset */

#define SSS2RLSE Øx1Ø /* Release selected datasets */

/* Values for field "SSS2SEL1" */

#define SSS2SHLD Øx8Ø /* Select "HOLD/LEAVE" output (JES2); */

#define SSS2SXWH Øx4Ø /* Select "hold for XWTR". In a */

#define SSS2SHOL ØxCØ /* Select from the hold queue. */

#define SSS2SWTR Øx2Ø /* Select "WRITE/KEEP" output (JES2); */

#define SSS2SAWT ØxEØ /* Select from all the above. */

#define SSS2SCLS Øx1Ø /* Use SSS2CLSL as the class */

#define SSS2SDST ØxØ8 /* Use SSS2DEST as a filter */

#define SSS2SJBN ØxØ4 /* Use SSS2JOBN as a filter */

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

#define SSS2SDUP ØxØ6 /* Use SSS2JOBN as a filter, but */

#define SSS2SDU2 ØxØ2 /* Give RC of SSS2DUPJ if duplicate */

#define SSS2SJBI ØxØ1 /* Use SSS2JBIL and SSS2JBIH as */

/* Values for field "SSS2SEL2" */

#define SSS2SPGM Øx8Ø /* Use SSS2PGMN as a filter */

#define SSS2SFRM Øx4Ø /* Use SSS2FORM as a filter */

#define SSS2SCRE Øx2Ø /* Use SSS2CREA as a filter */

#define SSS2SPRM Øx1Ø /* Use SSS2PRMO as a filter */

#define SSS2SIPA ØxØ8 /* Only select output which has an */

#define SSS2SIPN ØxØ4 /* Only select output which has no */

#define SSS2SFCB ØxØ2 /* Use SSS2FCB as a filter */

#define SSS2SUCS ØxØ1 /* Use SSS2UCS as a filter */

/* Values for field "SSS2SEL3" */

#define SSS2SSTC Øx8Ø /* Include Started Tasks (STCs) */

#define SSS2STSU Øx4Ø /* Include Time Sharing Users (TSUs) */

#define SSS2SJOB Øx2Ø /* Include batch jobs (JOBs) */

#define SSS2SAPC Øx1Ø /* Include APPC output */

#define SSS2STYP ØxFF /* If none of these bits is on, then */

/* Values for field "SSS2SEL4" */

#define SSS2SMOD Øx8Ø /* Use SSS2MOD as a filter */

#define SSS2SFLS Øx4Ø /* Use SSS2FLSH as a filter */

#define SSS2SAGE Øx2Ø /* Datasets selected must be at */

#define SSS2SLIN Øx1Ø /* Use minimum and maximum line */

#define SSS2SPAG ØxØ8 /* Use minimum and maximum page */

#define SSS2SPRI ØxØ4 /* Select output based on priority */

#define SSS2SVOL ØxØ2 /* Select output based on the volume */

#define SSS2SCHR ØxØ1 /* Use Printer translation tables in */

/* Values for field "SSS2SEL5" */

#define SSS2SCPN Øx8Ø /* Only select output which is not */

#define SSS2SCTK Øx4Ø /* Use SSS2CTKN as a filter @RØ5LOPI */

#define SSS2SBRO Øx2Ø /* Application intent is to @RØ5LOPI */

#define SSS2SODS Øx1Ø /* Use SSS2ODST as a filter @OW297Ø7 */

/* Values for field "SSS2MSC1" */

#define SSS2CTRL Øx8Ø /* On - Processing complete */

#define SSS2FSWB Øx6Ø /* Return token for SJFREQ calls in */

#define SSS2FSWT Øx2Ø /* Return address of SWBTUREQ buffer */

#define SSS2NJEH Øx1Ø /* Return address of NJE dataset */

/* Values for field "SSS2DSP1" */

#define SSS2DKPE Øx8Ø /* Keep the dataset */

#define SSS2RHLD Øx4Ø /* Keep the dataset and make it */

#define SSS2RNPR Øx2Ø /* Keep the dataset and leave it */

#define SSS2DHLD Øx1Ø /* Hold the dataset */

#define SSS2DRLS ØxØ8 /* Release the dataset */

#define SSS2CHKP ØxØ4 /* Use SSS2RBA to checkpoint the */

#define SSS2DNWR ØxØ2 /* Set writer name to a null value */

#define SSS2RNPT ØxØ1 /* Leave the dataset @OW36Ø19 */

/* Values for field "SSS2WRTN" */

#define SSS2WOK Ø /* Processing successful */

#define SSS2WERR 4 /* Processing failed */

/* Values for field "SSS2RET1" */

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

#define SSS2GNVA Øx8Ø /* An output group name has been */

#define SSS2DSCL Øx4Ø /* Line count, page count, byte */

#define SSS2DSF Øx2Ø /* First dataset in output group */

#define SSS2DSC Øx3Ø /* Output group being continued */

#define SSS2DSL ØxØ8 /* Last dataset in output group */

#define SSS2IP ØxØ4 /* An Internet Protocol (IP) */

#define SSS2BRST ØxØ2 /* BURST=YES specified */

#define SSS2OPTJ ØxØ1 /* OPTCD=J specified */

/* Values for field "SSS2RET2" */

#define SSS2NCHR Øx8Ø /* Selection using printer */

#define SSS2NVOL Øx4Ø /* Selecting output based on a */

#define SSS2NNHD Øx2Ø /* Returning addresses of NJE */

#define SSS2NMOD Øx1Ø /* Selecting output based on Copy */

#define SSS2NPRI ØxØ8 /* Selecting output in priority */

#define SSS2NIPA ØxØ4 /* IP Address selection not */

/* Values for field "SSS2RET3" */

#define SSS2RSTC Øx8Ø /* Dataset created by a started */

#define SSS2RTSU Øx4Ø /* Dataset created by a time */

#define SSS2RJOB Øx2Ø /* Dataset created by a batch job */

/* Values for field "SSS2RET4" */

#define SSS2CPDS Øx8Ø /* Dataset has page mode data */

#define SSS2SPUN Øx4Ø /* Dataset was spun at close */

#define SSS2DSH Øx2Ø /* All datasets in the current */

/* Values for field "SSS2RET5" */

#define SSS2RHLV Øx8Ø /* Dataset on "HOLD/LEAVE" @OW32461 */

#define SSS2RXWH Øx4Ø /* Dataset on "hold for @OW32461 */

#define SSS2RHOL ØxCØ /* Dataset on one of the @OW32461 */

#define SSS2RWTR Øx2Ø /* Dataset on "WRITE/KEEP" @OW32461 */

#pragma pack(reset)

/* Indicate to the compiler that standard OS linkage will be used. */

#ifdef __cplusplus

 extern "OS" int GETSSS2(struct SSS2*, char*);

#else

 #pragma linkage (GETSSS2, OS)

#endif

#define MASK Øx8ØØØØØØØ

#define MASK2 Øx7FFFFFFF

#define BLANKS " \

 \

 "

 /*

 * Create text unit values equivalent to:

 * x'ØØ55',x'ØØØ1',x'ØØØ8',c' '

 * x'ØØØ2',x'ØØØ1',x'ØØ2c',cl44' '

 * x'ØØ5c',x'ØØØ1',x'ØØØ4',c' '

 * x'Ø'

 */

#define TU1 "\Ø\x55\Ø\xØ1\Ø\xØ8"" "

#define \

 TU2 "\Ø\xØ2\Ø\xØ1\Ø\x2c"" "

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

#define TU3 "\Ø\x5c\Ø\xØ1\Ø\xØ4"" "

main(int argc, char *argv[])

{

 int i,j,k,rc;

 char dsname[45];

 char ssname[9];

 char jobname[9];

 char ddname[9];

 char jobid[9];

 char jobid_save[9];

 char jobname_save[9];

 char stepname_save[9];

 char ddname_save[9];

 char creator_userid[9];

 char stepname[9];

 int ddmatch;

 struct __S99struc parmlist;

 char *s[4];

 char return_ddname[9];

 char *m;

 char *c;

 FILE *stream;

 char filename[12];

 char input_record[1Ø24];

 char output_buffer[1Ø24];

 struct SSS2 sss2;

 char *strstrPos;

 char argv_buffer[1Ø24];

 if (argc == 1)

 {

 printf("Program parm required. Format is PARM=\

'JOBNAME=jobname{,JOBNO=JOBnnnnn}{,STEPNAME=stepname}{,\

DDNAME=ddname}\n");

 return 4;

 }

 strncpy(jobname," ",8);

 jobname[8] = Ø;

 strncpy(jobid," ",8);

 jobid[8] = Ø;

 strncpy(stepname," ",8);

 stepname[8] = Ø;

 strncpy(ddname," ",8);

 ddname[8] = Ø;

// Set the incoming PARM data to upper case

 memcpy(argv_buffer,argv[1],strlen(argv[1]));

 for (i = Ø; i < strlen(argv[1]); i++)

 {

 argv_buffer[i] = argv_buffer[i]] 64;

 }

 argv_buffer[i] = Ø;

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

// Check for JOBNAME=

 strstrPos = strstr(argv_buffer,"JOBNAME=");

 if (strstrPos == NULL)

 {

 printf("Required JOBNAME= not specified in program PARM %s\n",

 argv[1]);

 return 8;

 }

 else

 {

 i = Ø;

 while (i < 8 && strstrPos[8+i] != 64 && strstrPos[8+i] != Ø &&

 strstrPos[8+i] != 1Ø7)

 {

 jobname[i] = strstrPos[8+i];

 i++;

 }

 if (strstrPos[8+i] != 64 && strstrPos[8+i] != Ø &&

 strstrPos[8+i] != 1Ø7)

 {

 printf("Invalid jobname specified\n");

 return 8;

 }

 else

 {

 printf("Specified jobname is %s\n",jobname);

 }

 }

/*

 * If we get to here, we have determined that the PARM data has

 * included a valid JOBNAME= specification. We'll now scan the

 * remaining PARM data looking for JOBNO=, STEPNAME=, and DDNAME=

 * selection specifications.

 */

// Check for JOBNO=

 strstrPos = strstr(argv_buffer,"JOBNO=");

 if (strstrPos != NULL)

 {

 if (memcmp(strstrPos+6,"JOB",3) != Ø)

 {

 printf("Invalid JOB specification for JOBNO= in PARM %s\n",

 argv[1]);

 return 8;

 }

 else

 {

 i = Ø;

 while (i < 8 && strstrPos[6+i] != 64 && strstrPos[6+i] != Ø &&

 strstrPos[6+i] != 1Ø7)

 {

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 jobid[i] = strstrPos[6+i];

 if (i >= 3)

 {

 if (jobid[i] < 24Ø]] jobid[i] > 249)

 {

 printf("Invalid numeric specification for jobno in parm

%s\n",

 argv[1]);

 return 8;

 }

 }

 i++;

 }

 if (strstrPos[6+i] != 64 && strstrPos[6+i] != Ø &&

 strstrPos[6+i] != 1Ø7)

 {

 printf("Invalid jobno specified\n");

 return 8;

 }

 else

 {

 printf("Specified jobno is %s\n",jobid);

 }

 }

 }

// Check for STEPNAME=

 strstrPos = strstr(argv_buffer,"STEPNAME=");

 if (strstrPos != NULL)

 {

 if (strstrPos[9] == 91]]

 strstrPos[9] == 123]]

 strstrPos[9] == 124]]

 (strstrPos[9] >= 193 &&

 strstrPos[9] <= 233))

 {

 i = Ø;

 while (i < 8 && strstrPos[9+i] != 64 && strstrPos[9+i] != Ø &&

 strstrPos[9+i] != 1Ø7)

 {

 stepname[i] = strstrPos[9+i];

 i++;

 }

 if (strstrPos[9+i] != 64 && strstrPos[9+i] != Ø &&

 strstrPos[9+i] != 1Ø7)

 {

 printf("Invalid stepname specified\n");

 return 8;

 }

 else

 {

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 printf("Specified stepname is %s\n",stepname);

 }

 }

 else

 {

 printf("Invalid stepname value for STEPNAME= in PARM %s\n",

 argv[1]);

 return 8;

 }

 }

// Check for DDNAME=

 strstrPos = strstr(argv_buffer,"DDNAME=");

 if (strstrPos != NULL)

 {

 if (strstrPos[7] == 91]]

 strstrPos[7] == 123]]

 strstrPos[7] == 124]]

 (strstrPos[7] >= 193 &&

 strstrPos[7] <= 233))

 {

 i = Ø;

 while (i < 8 && strstrPos[7+i] != 64 && strstrPos[7+i] != Ø &&

 strstrPos[7+i] != 1Ø7)

 {

 ddname[i] = strstrPos[7+i];

 i++;

 }

 if (strstrPos[7+i] != 64 && strstrPos[7+i] != Ø &&

 strstrPos[7+i] != 1Ø7)

 {

 printf("Invalid ddname specified\n");

 return 8;

 }

 else

 {

 printf("Specified ddname is %s\n",ddname);

 }

 }

 else

 {

 printf("Invalid ddname value for DDNAME= in PARM %s\n",

 argv[1]);

 return 8;

 }

 }

/*

 * Initialize the SSS2 control block to prepare it for the GETSSS2()

 * function call.

 */

 memset(&sss2, Ø, sizeof(sss2));

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 memcpy(sss2.SSS2EYE, "SSS2", 4);

 sss2.SSS2VER = SSS2CVER;

 sss2.SSS2LEN = (short int)(sizeof(sss2));

 sss2.SSS2SEL1 = Ø;

 sss2.SSS2SEL3 = Ø;

 sss2.SSS2TYPE = Ø;

 sss2.SSS2DSP1 = Ø;

 sss2.SSS2SEL3 = sss2.SSS2SEL3] SSS2SJOB] SSS2SSTC] SSS2STSU;

 sss2.SSS2TYPE = sss2.SSS2TYPE] SSS2PUGE;

 sss2.SSS2DSP1 = sss2.SSS2DSP1] SSS2RNPT] SSS2DKPE;

 memcpy(sss2.SSS2JOBN,jobname,8);

 if (memcmp(jobid," ",8) == Ø)

 {

/*

 * Indicate that selection should occur from all queues (SSS2SAWT)

 * and that the value in SSS2JOBN should be uses as a filter

 * (SSS2SJBN).

 */

 sss2.SSS2SEL1 = sss2.SSS2SEL1] SSS2SAWT] SSS2SJBN;

 }

 else

 {

 memcpy(sss2.SSS2JBIL,jobid,8);

 memcpy(sss2.SSS2JBIH,jobid,8);

/*

 * Indicate that selection should occur from all queues (SSS2SAWT),

 * that the value in SSS2JOBN should be used as a filter (SSS2SJBN),

 * and that SSS2JBIL and SSS2JBIH should be used as filters

 * (SSS2SJBI).

 */

 sss2.SSS2SEL1 = sss2.SSS2SEL1] SSS2SAWT] SSS2SJBN] SSS2SJBI;

 }

 strncpy(jobname_save," ",8);

 jobname_save[8] = Ø;

 strncpy(jobid_save," ",8);

 jobid_save[8] = Ø;

 strncpy(stepname_save," ",8);

 stepname_save[8] = Ø;

 strncpy(ddname_save," ",8);

 ddname_save[8] = Ø;

 i = GETSSS2(&sss2,ssname);

 if (i == Ø)

 {

 printf("Subsystem name is %s\n",ssname);

 }

/*

 * Loop until GETSSS2() does not return a new SSS2.

 */

 while (i == Ø)

 {

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 jobname_save[8] = Ø;

 jobid_save[8] = Ø;

 ddname_save[8] = Ø;

 dsname[44] = Ø;

 memcpy(jobname_save, sss2.SSS2JOBR, 8);

 memcpy(jobid_save, sss2.SSS2JBIR, 8);

 memcpy(ddname_save, sss2.SSS2DDND, 8);

 memcpy(stepname_save, sss2.SSS2STPD, 8);

 memcpy(dsname, sss2.SSS2DSN, 44);

 ddmatch = Ø;

 if (memcmp(ddname," ",8) != Ø &&

 memcmp(ddname,sss2.SSS2DDND,8) == Ø &&

 memcmp(stepname," ",8) != Ø &&

 memcmp(stepname,sss2.SSS2STPD,8) == Ø)

 {

 printf(" \n");

 printf("Jobname: %s Job#: %s Stepname: %s DDname: %s DSname:

%s\n",

 jobname_save, jobid_save, stepname_save, ddname_save,

dsname);

 ddmatch = 1;

 }

 else if (memcmp(ddname," ",8) != Ø &&

 memcmp(ddname,sss2.SSS2DDND,8) == Ø &&

 memcmp(stepname," ",8) == Ø)

 {

 printf(" \n");

 printf("Jobname: %s Job#: %s Stepname: %s DDname: %s DSname:

%s\n",

 jobname_save, jobid_save, stepname_save, ddname_save,

dsname);

 ddmatch = 1;

 }

 else if (memcmp(stepname," ",8) != Ø &&

 memcmp(stepname,sss2.SSS2STPD,8) == Ø &&

 memcmp(ddname," ",8) == Ø)

 {

 printf(" \n");

 printf("Jobname: %s Job#: %s Stepname: %s DDname: %s DSname:

%s\n",

 jobname_save, jobid_save, stepname_save, ddname_save,

dsname);

 ddmatch = 1;

 }

 else if (memcmp(stepname," ",8) == Ø &&

 memcmp(ddname," ",8) == Ø)

 {

 printf(" \n");

 printf("Jobname: %s Job#: %s Stepname: %s DDname: %s DSname:

%s\n",

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 jobname_save, jobid_save, stepname_save, ddname_save,

dsname);

 ddmatch = 1;

 }

/*

 * If ddmatch != 1, the returned SSS2 data does not match with the

 * selection criteria specified on the PARM data. Bypass this entry.

 */

 if (ddmatch != 1)

 {

 goto RD_NEXT;

 }

/*

 * If we get to here, we have a JES spool dataset that matches the

 * PARM data selection criteria. We can dynmically allocate the

 * dataset and read its contents.

 */

 creator_userid[8] = Ø;

 memcpy(creator_userid, sss2.SSS2CRER, 8);

 j = (int)sss2.SSS2MLRL;

// printf(" Creator: %s Max LRECL: %d\n",creator_userid,j);

 printf(" \n");

/*

 * Build the dynamic allocation parameter data and allocate the

 * JES spool dataset.

 */

 memset(&parmlist, Ø, sizeof(parmlist));

 parmlist.__S99RBLN = 2Ø;

 parmlist.__S99VERB = 1; // verb for dsname allocation

 parmlist.__S99FLAG1 = ØxØØØØ;

 parmlist.__S99TXTPP = s; // pointer to pointer to text unit

// Create the return ddname text unit.

 m = (char *)calloc(1,sizeof(TU1));

 memcpy(m,TU1,sizeof(TU1));

 s[Ø] = m;

// Create the dsname text unit.

 m = (char *)calloc(1,sizeof(TU2));

 memcpy(m,TU2,sizeof(TU2));

 memcpy(m+6, dsname, 44);

 s[1] = m;

// Create the subsystem name text unit.

 m = (char *)calloc(1,sizeof(TU3));

 memcpy(m,TU3,sizeof(TU3));

 memcpy(m+6, ssname, 4);

 s[2] = m;

// Copy the address of the spool dataset browse token text unit.

 s[3] = (char *)(sss2.SSS2BTOK);

 s[3] = (char *)((long unsigned) (s[3]) | MASK);

 rc = svc99(&parmlist);

/*

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 * If rc == Ø, the spool dataset has been successfully allocated.

 * Let's open it and read its contents.

 */

 if (rc == Ø)

 {

 return_ddname[8] = Ø;

 memcpy(return_ddname, s[Ø]+6, 8);

// printf("SYSOUT dataset allocated to DDname: %s\n",return_ddname);

 filename[11] = Ø;

 m = &return_ddname[Ø];

 c = &filename[Ø];

 strncpy(c,"DD:",3);

 strncpy(c+3,m,8);

 stream = fopen(filename,"rb, type=record");

 if (stream == NULL)

 {

 printf("Unable to open %s %s\n",filename,dsname);

 }

 else

 {

 strncpy(input_record,BLANKS,132);

 i = fread(input_record, 1, 1Ø24, stream);

 while (!(ferror(stream)) && !(feof(stream)))

 {

// printf("%s",input_record);

 strncpy(output_buffer,BLANKS,132);

 output_buffer[132] = Ø;

 strncpy(output_buffer, input_record, 132);

 printf("%s\n",output_buffer);

 strncpy(input_record,BLANKS,132);

 i = fread(input_record, 1, 1Ø24, stream);

 }

 fclose(stream);

 }

 parmlist.__S99RBLN = 2Ø;

 parmlist.__S99VERB = 2; // verb for unallocation

 parmlist.__S99FLAG1 = ØxØØØØ;

 parmlist.__S99TXTPP = s; // pointer to pointer to text unit

 s[Ø] = (char *)((long unsigned) (s[Ø]) | MASK);

 s[Ø][1] = 1; // set text unit verb to ddname

 rc = svc99(&parmlist);

 if (rc != Ø)

 {

 printf(" DEALLOC Error code = %d Information code = %d\n",

 parmlist.__S99ERROR, parmlist.__S99INFO);

 }

 s[Ø] = (char *)((long unsigned) (s[Ø]) & MASK2);

 }

 else

 {

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 printf(" ALLOC Error code = %d Information code = %d\n",

 parmlist.__S99ERROR, parmlist.__S99INFO);

 }

 free(s[Ø]);

 free(s[1]);

 free(s[2]);

RD_NEXT:

 i = GETSSS2(&sss2,ssname);

 }

 return(Ø);

}

Rudy Douglas
System Programmer (Canada) © Xephon 2004

Monitoring HFS performance

This article will focus on monitoring the performance of HFS and
is a sequel to a previous article (see ‘Monitoring USS performance
from z/OS – an introduction’, MVS Update, issues 213 and 214,
June and July 2004). The primary focus is on understanding HFS
performance metrics as well as on monitoring and managing
critical HFS file systems. The sample technique for collecting
and analysing HFS performance data will be demonstrated.
Tuning recommendations will be briefly discussed too.

INTRODUCTION

Starting with earlier releases, but primarily in OS/390 R5, many
of the base MVS components began using OS/390 Unix System
Services (USS) and, therefore, Unix file services as supported by
IBM’s Hierarchical File System (HFS). These components and
facilities include TCP/IP, Notes Domino, WebServer, ERP
applications, and many others. As already known, you will not be
able to avoid HFS any longer because it has now become an
integral part of OS/390. It is a fact that each new release of
DFSMS continues to build on the previous version to provide
enhanced storage management, data access, and device support.

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

For example, in OS/390 V2R7 and DFSMS 1.5 there were
dramatic changes to the way OS/390 HFS file systems work. The
most notable of these changes are the addition of HFS global
buffers, the ability to perform HFS I/O asynchronously, and the
ability to mount multi-volume file systems. These enhancements,
and others, resulted in dramatic HFS performance improvements.
Thus, the proper tuning of OS/390 HFS is becoming a critical and
non-trivial component of overall OS/390 performance. Many of
OS/390’s performance problems can be traced to poor decisions
related to HFS datasets. The good news is that DFSMS 1.5 vastly
improved HFS performance, and added some new controls for
tuning these important datasets. However, the bad news is that
most of these new controls have not been well documented and
explained. This article will attempt to provide some practical
suggestions for monitoring and improving HFS performance. It
provides you with the information you need to understand and
evaluate the performance of the HFS file system, along with
practical hints and tips. It provides sufficient information for you
to start monitoring HFS and evaluate its performance in your
DFSMS environment.

ONLINE MONITORING OF HFS PERFORMANCE

When it comes to online performance monitoring tools for HFS
file systems there is currently only one option available within the
standard IBM’s toolkit – RMF Monitor II HFS report. It is invoked
by specifying 5 on the I/O Report Selection menu of the RMF
Monitor II panel. The HFS File System statistics report it produces
provides data for basic performance analysis of HFS, which
enables you to identify potential problems and bottlenecks within
the HFS component and to take corrective actions. The contents
of the report as well as its field descriptions are described in the
RMF: Report Analysis (SC33-7991) manual. A systems
programmer is well aware of the fact that when setting report
options (RO) only one file system name can be selected, and, if
you try to select several files, RMF will complain and not a single
file system name will be selected at all! On the other hand, it was
found that RMF Monitor II HFS report is not as informative as it

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

should be because it does not help you easily to identify your
most I/O active files. This limitation was the initial impetus that
prompted me to look for a tool/procedure that would allow me to
get information about all mounted HFS file systems in a single
run. To help alleviate the burden of monitoring HFS performance,
as well as overcoming RMF’s shortcomings, a simple yet easy
to use REXX procedure was constructed. The USS confighfs
query HFS global statistics command was used to display a
system snapshot for all HFS datasets. In addition, the USS
command df with option –S was used because it provides SMF
I/O accounting for mounted files. It was also used to obtain the
mount point for an HFS, which was needed for the confighfs
command in order to get complete statistics for the dataset. The
full meaning of the command and its invoking argument list can
be obtained from Unix System Services Command Reference
(SA22-7802).

HFSPM EXEC

/* REXX **

 Procedure: HFSPM

 Description: Get current information on HFS performance

 Install: - Download BPXWUnix function (a part of "REXX Function

 Package for REXX in OpenEdition") from the IBM's "USS

 Tools and Toys page"

 - Restore it using the TSO/E receive inda() command.

 - Place this where REXX EXECs can be found.

 ***/

signal ON ERROR

Address TSO

userid=SYSVAR(SYSUID)

outds =userid||'.cnf.out' /* Change dataset name */

x = MSG('ON') /* to fit your standards */

if SYSDSN(outds) = 'OK'

Then "DELETE "outds" PURGE"

"ALLOC FILE(PRC) DA("outds")",

 " UNIT(SYSALLDA) NEW TRACKS SPACE(2,1) CATALOG",

 " REUSE LRECL(7Ø) RECFM(F B)"

 arg hlq

 if hlq = "" then HLQ = 'SYSTMØ5.USER'

Address ISPEXEC

"LIBDEF ISPLLIB DATASET ID('"hlq".LOAD') STACK"

call syscalls 'ON'

/*--*/

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* Return USS information */

/*--*/

Address SYSCALL

'uname sys.'

/*--*/

/* Print headers and labels */

/*--*/

sis.1 = left('HFS Performance report - produced on:',37,),

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' '),

 ||left(time(),1Ø)

sis.2 = left(' ',1)

sis.3 = left('System identification:',22)

sis.4 = left('Sysname: ',11)||sys.U_SYSNAME

sis.5 = left('Version: ',11)||sys.U_VERSION

sis.6 = left('Release: ',11)||left(sys.U_RELEASE,1Ø)

sis.7 = left('Node : ',11)||left(sys.U_NODENAME,1Ø)

sis.8 = left('Hardware:',11)||left(sys.U_MACHINE,1Ø)

sis.9 = left(' ',1,' ')

/*--*/

/* Get HFS data */

/*--*/

Address SH

/*--*/

/* Construct confighfs command (fixed part of it). NOTE: */

/* Unlike most z/OS Unix commands, which reside in /bin, */

/* confighfs is found in the /usr/lpp/dfsms/bin directory */

/*--*/

 fix ='cd /usr/lpp/dfsms/bin;./confighfs -q '

/*--*/

/* Call display file command (df) to get file mount point */

/* and I/O activity since mounted */

/*--*/

 call BPXWUnix "df -S",,out.

 s = 1

 dfrc = rc

 If dfrc <>Ø Then Do

 Say "Return Code =" rc

 Say "OMVS Return Value =" retval

 Say "OMVS Return Code =" errno

 Say "OMVS Reason Code =" errnojr

 End

 Do i = 2 to OUT.Ø /* Process each entry returned*/

 parse var out.i mount . '(' HFS ')' rawdata .

 i = i + 1;

 read =word(out.i,5); i =i + 1; /* Read count */

 write =word(out.i,5); i =i + 1; /* Write count */

 ioblk =word(out.i,6); i =i + 1; /* Dir I/O bk.total */

 reblk =word(out.i,6); i =i + 1; /* Dir I/O bkread */

 wrblk =word(out.i,6); i =i + 1; /* Dir I/O bkwritten */

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 byread =word(out.i,7); i =i + 1; /* Total bytes read */

 bywrite =word(out.i,7) /* Total bytes written*/

 HFS = left(HFS,25) /* Filesystem name */

 if (HFS ¬= "/tmp") & (HFS ¬= "/dev") then

 do

 Rw.s =left('PERFORMANCE DATA FOR FILE:',27)||left(HFS,25); s=s+1;

 Rw.s =left('Part 1',6); s=s+1;

/*--*/

/* Construct confighfs command (variable part of it is added) */

/*--*/

 cmd =fix||mount

/*--*/

/* Call confighfs command and process each entry returned */

/*--*/

 call BPXWUnix cmd,,ott.

 cfgc = rc

 If cfgc <>Ø Then Do

 Say "Return Code =" rc

 Say "OMVS Return Value =" retval

 Say "OMVS Return Code =" errno

 Say "OMVS Reason Code =" errnojr

 End

 Do k = 3 to OTT.Ø - 2

 VSTOR =strip(word(ott.k,3),L,'_'); k=k+2; /* Virtual Storage */

 FSTOR =strip(word(ott.k,3),L,'_'); k=k+2; /* Fixed Storage */

 Lch =strip(word(ott.k,4),L,'_'); k=k+1; /* Lookup cache hit */

 Lcm =strip(word(ott.k,4),L,'_'); k=k+1; /* Lookup cache miss */

 h6 =hitr(Lch Lcm)

 Fdph =strip(word(ott.k,5),L,'_'); k=k+1; /* 1st data page hit */

 Fdpm =strip(word(ott.k,5),L,'_'); k=k+2; /* 1st data page miss*/

 h5 =hitr(Fdph Fdpm)

 titl = ott.k; k = k + 1;

/*--*/

/* Get Storage allocated and buffer pool statistics */

/*--*/

 Rw.s =left('Current Buffer pool use:',4Ø); s=s+1;

 Rw.s =left('Virtual Storage:',16)||right(vstor,5); s=s+1;

 Rw.s =left('Fixed Storage:',16)||right(fstor,5); s=s+1;

 Rw.s =left(' ',3,' ' ,)||left(' ',29,' '),

 left('Already',7) left('Not al.',7); s=s+1;

 Rw.s =left('Pool',6)||left('Size',8),

 ||left('#DS',4)||left('BP_pages',9)||left('Fixed',7),

 ||left('fixed',8)||left('fixed',8); s=s+1;

 Rw.s =left('-',5Ø,'-'); s=s+1;

 do f = 1 to 4

 p.f = word(ott.k,1)

 ps.f = strip(word(ott.k,2),L,'_')

 pds.f = strip(word(ott.k,3),L,'_')

 pbp.f = strip(word(ott.k,4),L,'_')

 pf.f = strip(word(ott.k,5),L,'_')

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 paf.f = strip(word(ott.k,6),L,'_')

 pnf.f = strip(word(ott.k,7),L,'_')

 Rw.s = right(p.f,3), /* Pool number */

 right(ps.f,6), /* Pool size */

 right(pds.f,6), /* Data spaces in pool */

 right(pbp.f,6), /* # pages in pool - in use*/

 right(pf.f,6), /* Permanently fixed pages */

 right(paf.f,7), /* Already fixed pages */

 right(pnf.f,7); s=s+1; /* Not already fixed */

 k = k+1;

 end

 k = k+3

 FSsz =strip(substr(ott.k,19,11),L,'_') /* File system */

 k= k+2

 Used =strip(word(ott.k,3),L,'_'); k=k+2; /* Used pages */

 Apgs =strip(word(ott.k,3),L,'_'); k=k+2; /* Attribute pages */

 Cpgs =strip(word(ott.k,3),L,'_'); k=k+2; /* Cached pages */

 Sio =strip(word(ott.k,4),L,'_'); k=k+1; /* Seq I/O reqs */

 Rio =strip(word(ott.k,4),L,'_'); k=k+1; /* Random I/O reqs */

 Lh =strip(word(ott.k,3),L,'_'); k=k+1; /* Look-up hit */

 Lm =strip(word(ott.k,3),L,'_'); k=k+1; /* Look-up miss */

 h2 =hitr(Lh Lm)

 Fph =strip(word(ott.k,4),L,'_'); k=k+1; /* 1st page hit: */

 Fpm =strip(word(ott.k,4),L,'_'); k=k+1; /* 1st page miss */

 h1 =hitr(Fph Fpm)

 Ixnt =strip(word(ott.k,4),L,'_'); k=k+1; /* Index new tops */

 Ixsp =strip(word(ott.k,3),L,'_'); k=k+1; /* Index splits */

 Ixjo =strip(word(ott.k,3),L,'_'); k=k+1; /* Index joins */

 Ixrh =strip(word(ott.k,4),L,'_'); k=k+1; /* Index read hit */

 Ixrm =strip(word(ott.k,4),L,'_'); k=k+1; /* Index read miss */

 h3 =hitr(Ixrh Ixrm)

 Ixwh = strip(word(ott.k,4),L,'_'); k=k+1; /* Index write hit */

 Ixwm = strip(substr(ott.k,19,2Ø),L,'_'); /* Index write miss */

 h4 =hitr(Ixwh Ixwm); k=k+1;

 Rflg = strip(substr(ott.k,19,2Ø),L,'_'); k=k+1; /* RFS flags */

 Rerr = strip(substr(ott.k,19,2Ø),L,'_'); k=k+2; /* RFS errors */

 Memc = strip(word(ott.k,3),L,'_'); k=k+1 /* Member count */

 Sync = strip(word(ott.k,3),L,'_'); k=k+1 /* Sync interval */

/*--*/

/* Process File attributes (formatted to match RMF display) */

/*--*/

 Rw.s =left(' ',3,' '); s=s+1;

 Rw.s =left('Part 2',6); s=s+1;

 Rw.s =left('File attributes:',3Ø); s=s+1;

 Rw.s =left(' ',3,' ' ,); s=s+1;

 Rw.s =left('---- File allocation (pages): --',34)||left(' ',3,' '),

 ||left('---- Index Events --',21); s=s+1;

 Rw.s =left('System',9) left(' ',1,' ') right(FSsz,7),

 ||left(' Used ',8)||left(' ',1,' ')||right(Used,6),

 ||left(' ',1Ø,' '),

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ||left('New tops',9)||right(ixnt,4); s=s+1;

 Rw.s = left('Attr.dir',9)||left(' ',3,' ')||right(Apgs,6),

 ||left(' Cached',8)||left(' ',1,' ')||right(Cpgs,7),

 ||left(' ',1Ø,' '),

 ||left('Splits',9)||right(ixsp,4); s=s+1;

 Rw.s = left('Members ',9)||left(' ',3,' ')||right(Memc,6),

 ||left(' Sync.int',1Ø)||Left(' ',1,' ')||right(sync,12),

 ||left(' ',3,' ')||left('Joins',9)||right(ixjo,4); s=s+1;

 Rw.s = left('RFS flag',9)||left(' ',3,' ')||right(rflg,6),

 ||left(' ',2,' ')||left('RFS error',9),

 ||right(rerr,5); s=s+1;

 Rw.s =left(' ',3,' '); s=s+1;

/*--*/

/* Process File's current I/Os (formatted to match RMF display) */

/*--*/

 Rw.s =left('Part 3',6); s=s+1;

 Rw.s =left('Current I/O activity count:',4Ø); s=s+1;

 Rw.s =left(' ',3,' '); s=s+1;

 Rw.s =left(' ',9,' ')||left('-- File --',12),

 ||left('-- Metadata --',16)||left(' ',3,' '),

 ||left('-- Index --',13); s=s+1;

 Rw.s =left('Cache',1Ø)||right(Fph,5)||left(' ',8,' '),

 ||right(Lh,6)||left(' ',8,' '),

 ||left('read:',5)||right(ixrh,5)||left(' ',2,' '),

 ||left('write:',7)||right(ixwh,3); s=s+1;

 Rw.s =left('DASD',1Ø)||right(Fpm,5)||left(' ',8,' '),

 ||right(Lm,6)||left(' ',8,' '),

 ||left('read:',5)||right(ixrm,5)||left(' ',2,' '),

 ||left('write:',7)||right(ixwm,3); s=s+1;

 Rw.s =left('Hit Ratio ',1Ø)||right(h1,5)||left(' ',8,' '),

 ||right(h2,6)||left(' ',13,' ')||right(h3,5)||left(' ',6,' '),

 ||right(h4,6); s=s+1;

 Rw.s =left('Seq.I/O',1Ø)||right(sio,5); s=s+1;

 Rw.s =left('Random',1Ø)||right(rio,5); s=s+1;

 Rw.s =left(' ',3,' '); s=s+1;

/*--*/

/* File I/O activity since mounted - also found in SMF 92 rec. */

/*--*/

 Rw.s =left('Part 4',6); s=s+1;

 Rw.s =left('File I/O activity since mounted:',4Ø); s=s+1;

 Rw.s =left(' ',3,' ' ,); s=s+1;

 Rw.s = left(' ',18,' ') left('- Dir I/O blocks -',25),

 left('Total bytes',12); s=s+1;

 Rw.s = left('Reads',8) left('Writes',8),

 left('Total',8) left('Read',6) left('Write',8),

 left('read',6) left('written',7); s=s+1;

 Rw.s = left('-',6Ø,'-'); s=s+1;

 Rw.s = right(read,5) , /* Number of reads */

 right(write,8) , /* Number of writes */

 right(ioblk,8) , /* Number dir. I/O block */

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 right(reblk,7) , /* Number read I/O blocks */

 right(wrblk,7) , /* Number write I/O blocks */

 right(byread,8) , /* Total number bytes read */

 right(bywrite,8); s=s+1; /* Total num.bytes written */

/*---*/

/* Cache usage since mounted */

/*---*/

 Rw.s =left(' ',3,' '); s=s+1;

 Rw.s =left('Part 5',6); s=s+1;

 Rw.s =left('Cache usage since mounted:',4Ø); s=s+1;

 Rw.s =left(' ',3,' '); s=s+1;

 Rw.s =left(' ',7,' ')||left('File I/O count',16),

 ||left('Metadata I/O count',18); s=s+1;

 Rw.s =left('-',41,'-'); s=s+1;

 Rw.s =left('Cache',1Ø)||right(Fdph,5)||left(' ',12,' '),

 ||right(Lch,6); s=s+1;

 Rw.s =left('DASD',1Ø)||right(Fdpm,5)||left(' ',12,' '),

 ||right(Lcm,6); s=s+1;

 Rw.s =left('Hit Ratio ',1Ø)||right(h5,5)||left(' ',12,' '),

 ||right(h6,6); s=s+1;

 Rw.s =left(' ',3,' '); s=s+1;

 End

 End

 End /* main*/

call syscalls 'OFF'

/*--*/

/* Write out USS System info and HFS info data */

/*--*/

Address ISPEXEC "LIBDEF ISPLLIB";

Address TSO

"EXECIO * DISKW PRC (STEM sis.)"

"EXECIO * DISKW PRC (STEM Rw.)"

/*--*/

/* Close & free allocated report file; then display result */

/*--*/

"EXECIO Ø DISKW PRC (FINIS "

 "free FILE(PRC)"

 Address ISPEXEC

 "ISPEXEC BROWSE DATASET('"outds"')"

 exit Ø

 /*--*/

 /* Error exit routine */

 /*--*/

 ERROR: say 'The following command produced non-zero RC =' RC

 say SOURCELINE(SIGL)

 exit

HITR:

/* REXX - calculate Hit ratio */

arg a b

 SELECT

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 when a ¬= Ø Then do

 t = a + b

 hr = trunc((a/t)*1ØØ, 2)

 end

 otherwise hr= Ø

 END

 return hr

The data returned by this procedure pertains to each HFS file
system mounted and is grouped into five parts.

PERFORMANCE DATA FOR FILE OMVS.ETC
Part 1

Current Buffer pool use:

Virtual Storage: 4683

Fixed Storage: Ø

 Already Not al.

Pool Size #DS BP_pages Fixed fixed fixed

--

 1 1 1 4Ø83 Ø Ø 686335

 2 4 1 8 Ø Ø 2Ø4

 3 16 1 8Ø Ø Ø 328

 4 64 1 512 Ø Ø 616

Part 2

File attributes:

---- File allocation (pages): -- ---- Index Events ---

System 1Ø8ØØ Used 6Ø1 New tops Ø

Attr.dir 3Ø Cached 6 Splits Ø

Members 295 Sync.int 6Ø(seconds) Joins Ø

RFS flag 43 RFS error Ø

Part 3

Current I/O activity count:

 -- File -- -- Metadata -- -- Index --

Cache 1124 3667 read: 8346 write: 74Ø

DASD 161 1557 read: 49Ø write: Ø

Hit Ratio 87.47 7Ø.19 94.45 1ØØ.ØØ

Seq.I/O Ø

Random 158

Part 4

File I/O activity since mounted:

 - Dir I/O blocks - Total bytes

Reads Writes Total Read Write read written

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

--

 5Ø9Ø 159 33533 714Ø 159 22369373 1Ø423

Part 5

Cache usage since mounted:

 File I/O count Metadata I/O count

Cache 15572 1777Ø3

DASD 1356 126692

Hit Ratio 91.98 58.37

Current buffer pool use (part 1) displays the number of virtual and
permanently-fixed storage pages assigned to all four HFS I/O
buffer pools. Comparing these actual usage numbers with the
VIRTUAL and FIXED values may help you to determine when to
adjust the storage thresholds. The table that follows is buffer pool
assignment and it shows statistics for each of four buffer pools.
This information is not provided by the RMF Monitor II HFS
report. The following data is returned:

• Pool is the buffer pool ID. It designates one of the four HFS
buffer pools. Under the current implementation this number
is always in the range 1 to 4.

• Size is the buffer size for this pool (in pages 4KB, 16KB, 64K,
and 256KB).

• #DS is the number of data spaces allocated to support the
buffers in this buffer pool – usually set to 1 (one for each pool)
except in the case of a very active system. HFS initially
allocates to OMVS kernel four 2GB data spaces for four
different buffer pools:

– 4KB pool for small files (files that are less than or equal
to 4KB in size), metadata, and most random requests.

– 16KB and 64KB pool for intermediate sizes, for sequential
file I/O if the system determines that this is an optimal
buffer size, and for random file I/O if the block size of the
file best fits in the buffer.

– 256KB for large files, sequential file I/O if the system
determines that this is an optimal buffer size, and for

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

random file I/O if the block size of the file best fits in the
buffer.

– additional data spaces are allocated as needed.

• BP_pages is the number of virtual pages in this buffer pool
currently in use.

• Fixed is the number of permanently fixed pages in this buffer
pool.

The last two columns are the measures of effectiveness of
the page-fixed storage assigned to the buffer pools. For each
buffer pool, the sum of these two columns will show the total
number of buffer read and write requests – this is not a
physical I/O count.

• Already_fixed is the number of times a buffer was already
fixed prior to an I/O request in this buffer pool. This is a
counter that is never decremented. By dividing this column
by sum we will get the hit rate percentage for the fixed storage
assigned to each pool.

• Not_already_fixed is the number of times a buffer was not
already fixed prior to an I/O request in this buffer pool. This
is a counter that is never decremented.

File attributes (part 2) displays the allocation data (in pages) for
each mounted HFS file system and index events. The first three
space items (system, used, and attribute directory) may be used
to make capacity-related decisions regarding your HFS datasets:

• System is the amount of storage allocated to this HFS.

• Used is the amount of storage pages internally used within
HFS for data files, directories, and HFS internal structures
(like the attribute directory).

• Attr. Dir is the amount of storage used for the attribute
directory (AD). This number is included in the Used field. The
attribute directory is the internal HFS structure (index)
containing attribute information about individual file system
objects as well as attributes of the file system itself.

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Cached is the amount of data within the HFS that has been
moved into the virtual storage cache. This information may
be used as a measure of activity of the file within the HFS.
If enough virtual storage is made available, more pages of an
HFS will be moved into cache as the files become more
active.

The index statistics are relative to all of the indices in the HFS
dataset. The attribute directory (AD) is one index (the largest)
but each directory (including the root) is also an index. The
activity of index pages within the dataset is represented by
three items:

– New tops number shows how often HFS added a new
level to its index structure, that is when the index is
growing.

– Splits number shows how often an index page was split
into two pages because new records were inserted. This
gives an idea of how much insertion activity there has
been for the index structure.

– Joins, contrary to a new tops and splits (both indicative
of index growth), represents a shrinking of the index
page. It shows how often HFS was able to combine two
index pages into one, because enough index records
had been deleted in the two pages.

The next four items in this part of report are not available if you
use RMF Monitor II HFS report:

• Members is the number of nodes (entries) in the file system
that have been used to represent files and directories. In fact,
it is a crude approximation of the number of logical files
contained within a dataset. Please refer to APAR OW39886
(USS confighfs command shows an incorrect member count)
if your member count is incorrect (too high).

• RFS flag is HFS internal information and it shows the
attributes of the file system at mount time.

• RFS error is HFS internal information that reports the errors

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

that may have occurred while sync daemon was trying to
harden data for this dataset. Watch for any non-zero value –
it should be investigated before you lose more data.

• Sync interval is the interval used by the sync daemon for
hardening all file data for a file system. Please remember
that sync daemon uses vfs_sync operation in order to write
to disk (or otherwise stabilizes) all changed data in a buffer
cache for files in a mounted file system whenever all the HFS
buffers of the file are filled. One should be very cautious when
setting this parameter: if you specify SYNCDEFAULT=0 you
will degrade your system performance by turning off deferred
writes, but you will ensure data integrity of the application
using that particular filesystem. (Remember that syncs are
done at the HFS level, not file level, ie the sync process of the
sync daemon will occur independently on each HFS file
system. Even if sync intervals of all the HFS file systems are
the same, the sync point of each HFS file system will be
different.) On the other hand, be aware that if the system
crashes before sync interval completes, the user or metadata
written since the last sync interval is lost.

Current I/O activity count (part 3) displays a snapshot of I/O
accounting data for all mounted files, thus providing the data for
understanding the throughput achieved by HFS, which, in turn,
allows you to optimally use system resources. The reporting is
done on three levels: file, metadata, and index.

File I/O count items:

• Cache is the number of times the first page of a data file was
requested and found in virtual storage (cache).

• DASD is the number of times the first page of a data file was
requested and was not found in virtual storage (cache), thus,
I/O was required.

• Hit Ratio is the percentage of cache-found requests based
on the total number of requests.

• Seq I/O reqs is the number of sequential file data I/O

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

requests that have been issued. A sequential I/O is one of a
series of I/Os to read or write a data file, where the first I/O
started at the first byte of the file and each subsequent I/O
was for the next sequential set of bytes. This is not meant to
imply that actual disk I/O was required; the data may have
resided in cache.

• Random I/O reqs is the number of random file data I/O
requests that have been issued. A random I/O is an I/O that
does not read or write the start of a file, and was not preceded
by an I/O that read or wrote the immediately-preceding set
of bytes. This is not meant to imply that actual disk I/O was
required; the data may have resided in cache.

Metadata I/O count:

• Cache is the number of times the metadata for a file was
found in virtual storage (cache) during file look-up (look-up
hit).

• DASD is the number of times the metadata for the file was
not found in virtual storage (cache) during file look-up and an
index call was necessary, which may have resulted in I/O
(look-up miss).

• Hit Ratio is the percentage of cache-found requests based
on the total number of requests.

Index I/O count:

• Cache is the number of index page read or write hits.

• DASD is the number of index page read or write misses.

• Hit Ratio is the percentage of cache-found requests based
on the total number of requests.

Note: these index hit/miss items report how efficient virtual
storage cacheing was in providing the data needed without
performing physical access to the data. When combining these
indicators with cache items for the first page of a data file and
metadata, one can get an idea about the total activity at the
dataset level. I have noticed that the RMF Monitor II HFS report

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

does not make any distinction between read and write activity.
This is a serious shortcoming since any non-zero value in the
write miss column should be taken very seriously because it
indicates that the virtual storage cache is so heavily overloaded
that output buffers cannot be provided.

The next two parts of this report are totally absent from the RMF
Monitor II HFS report as well as from post-processor’s HFS
report.

The file I/O activity since mounted (part 4) report provides
summary information on HFS I/O activity (number of reads/
writes, directory activity, and number of bytes read/written) since
the time the file system was mounted. It was found to be very
useful because it can help you to identify high I/O activity files
quickly.

The cache usage since mounted (part 5) report provides the data
that can be used to analyse whether storage and buffer pool
definitions are correct, or whether some adjustments should be
performed to improve the performance of I/O activities for HFS
files. This report is similar to the part 3 report except that it does
not provide data on index activity.

COLLECTING THE HFS PERFORMANCE DATA

It is quite common to see a performance assessment being
performed only after we have seen applications experiencing
performance problems or when analysts needs to know whether
there is enough capacity to support growth or new USS workloads.
When it comes to monitoring HFS performance we already know
that data gathering for HFS file statistics will be performed in the
Monitor III gatherer session. When enabled, the Monitor III
gathers SMF record 74 subtype 6. If you want to get information
about specific hierarchical file systems, you have to activate the
Monitor III gatherer option HFSNAME(ADD(hfsname)). One can
dynamically enable or disable this option by using the OS/390
operator commands:

F RMF,F III,HFSNAME(ADD(your.hfs.filename))

 52 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

F RMF,F III,HFSNAME(DEL(your.hfs.filename))

After data gathering for HFS file statistics was performed in the
Monitor III gatherer session, we can process collected SMF
records either by invoking the RMF HFS postprocessor report or
by running the code that I have provided here.

CODE

The code is a four-part stream (called HFSJOB). In the first step
(DEL) auxiliary files are deleted, while in the second step
(EXT746) the selected HFS-related SMF records are extracted
from the SMF weekly/daily dataset and copied to a file that can
be used as a base of archived records. It is worth noting that data
related to granularity and quality of performance is very important.
Too much data will slow the process and increase the resource
consumption without providing additional benefit. Intervals for
performance analysis should be chosen carefully: seven days of
performance data is sufficient to ensure consistency and
repeatability. To limit the amount of data collected, one may use
the DATE and TIME filtering options the SMF dump program
(IFASMFDP) provides. In the next step (SORT746) the extracted
records are further filtered. In the fourth step (HFSREXX) the
relevant records are formatted by invoking a corresponding
REXX EXEC. The EXEC in this step, HFSREXX, is the EXEC
that handles the 74.6 records.

SMF record 74 subtype 6 is a repository for HFS global activity,
buffer pool statistics, and HFS file system statistics. These
subtypes are generated only if HFS dataset names are included.
This EXEC may seem to be unnecessary since there is a
postprocessor for HFS reports. The main reason for writing this
EXEC is this: the HFS postprocessor report is interval based and
each report it produces is in fact a collection of several reports
each reporting on resource being monitored. This makes each
single interval report very dense – one has to be quite skilful in
finding out what to look for and where to look. Contrary to this kind
of dense reporting, the HFSREXX EXEC is indicator oriented:
each performance indicator is separately reported on, thus

 53© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

making it easier to notice the peaks. This is not meant to be a
replacement for the postprocessor’s report, but rather a
supplement to it: once we have spotted a peak value or an
exception, we can turn to the postprocessor’s report and analyse
all the interval reports.

There is a set of three reports produced by this stream, each
providing in-depth information on a certain aspect or domain of
HFS performance, which allows you to tune your system and
make better use of HFS resources. The first one is HFS dataset
I/O-related (buffer pool statistics), the second one is on HFS
global statistics, and the last one is on HFS file system statistics.

Generally speaking, tuning HFS’s I/O is not that different from
what a performance analyst normally does to tune any kind of I/
O subsystem, and therefore the same general rules apply: avoid
unnecessary I/Os, complete most of the I/Os in memory, and
complete the real I/Os as fast as possible. It was noted a long
time ago that in most applications, I/O activity inversely correlates
to performance. Therefore avoiding unnecessary I/Os is primarily
an application issue: sometimes it is possible to do something
from outside an application but normally we have to understand
and change the application’s behaviour. What we can really do
depends on the application itself. What a performance analyst
can recommend nevertheless is this: since USS stores its HFS
files on the z/OS side and an I/O for USS may begin in the kernel
address space, nonetheless it will use systems services that will
also include processing serviced by z/OS. This means that
minimizing the amount of data sharing that occurs between USS
and z/OS-based applications will yield a performance gain.

In other words, try to isolate the HFS datasets as much as
possible, so that USS I/O requests contend only with each other.
One way to achieve this I/O separation is to place HFS datasets
on DASD that contain infrequently-referenced z/OS datasets. It
is also a good idea is to spread high-activity HFS datasets across
multiple volumes to keep user HFS datasets separate from
system HFS datasets. Remember too that an HFS dataset is a
standard OS/390 PDSE structure only in content. The PDSE

 54 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

access method is used only to open the file. After it is opened, it
is managed by Unix services. Therefore, the HFS datasets do not
benefit from enhanced internal processing for PDSE searches.
DFSMS will not use expanded storage for hiperspaces staging.

The second guideline tells us to complete most of the I/Os in
memory and at this stage there are essentially three techniques
available – TFS, FILECACHE, and HFS global buffering.

Temporary File System (TFS) is an in-storage-only file system
(similar to VIO) and can be used for read/write files. The main
benefit of using a TFS is a dramatic improvement in file I/O
performance since the
I/O is as fast as a memory-to-memory-only access, and it does
not incur the overhead of the HFS global buffers. The main issue
to consider is that a TFS mounted file system is not backed up
by physical disks. So if the system crashes, all data in TFS will
be lost. It is for this reason that TFS is normally useful for
temporary data only. A tuning tip: according to USS manuals, the
storage assigned to TFS is accounted to the OMVS address
space, so if there is a need to intensively use TFS one may like
to consider the option of setting up a ‘colony address space’ so
as to isolate TFS from the kernel. This would prevent virtual
storage constraint in the kernel address space caused by the
TFS. This means that one has to find the balance between
memory one is willing to devote to TFS for improved performance
and dedication of storage to TFS.

Filecache is a command that allows one to cache commonly-
used read-only files in a data space belonging to the OMVS
kernel address space. The amount of storage occupied by the
filecache is equal to the sum of the size of each file – thus care
should be taken that large files do not put a strain on processor
storage (in a storage-constrained environment this could cause
paging). Filecache improves system and end user read response
times since just a memory-to-memory copy is done and some
33% to 50% reductions in CPU time to access data have being
reported. Good candidates for file cache include commonly-
executed shell scripts, commonly-executed binaries, and

 55© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

commonly-referenced read-only files. Files cached using the
filecache command could be read/write files, but consider that if
cached data is being modified, that data is deleted from the
cache and any further data access will be from disk. The only way
you have to refresh the cache is by issuing the filecache -r
command. This command will refresh all the cached files.

HFS global buffering is the latest option available and, despite its
current limitations, the most interesting one. The underlying idea
is to provide a cache for all HFS data and metadata. However,
there is very little one can do to influence the system behaviour
in utilizing HFS global buffers.

The buffer pool statistics report provides information about
activities and storage usage within your z/OS Unix environment.
This data can be used to analyse whether definitions are correct,
or whether some adjustments should be performed to improve
the performance of I/O activity for HFS files. The following
parameters control the HFS buffer usage:

• VlRTUAL(max) specifies the maximum amount of virtual
storage (in megabytes) that HFS data and metadata buffers
can use. HFS may temporarily exceed the max limit to avoid
failure of a file read or write request, but the amount of space
used is reduced to the max specification more or less as
soon as possible. As in many other cases, the amount of
storage needed depends on the workload and system
configuration. If you find your system is using more buffers
because of heavy I/O to the HFS, and processor storage
contention exists, setting a lower value on the VIRTUAL
parameter may relieve this situation.

• FIXED(min) specifies the minimum amount of virtual storage
(in megabytes) that is fixed at HFS initialization and
permanently remains fixed even if HFS activity drops to zero.
Basically, FIXED is used to ensure that storage is there when
needed. The specified value of min must be less than or
equal to VIRTUAL(max). The benefit of FIXED is to avoid the
overhead of page fixing and unfixing needed for I/O, and thus
it minimizes CPU utilization and reduces RSM lock contention.

 56 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

HFS will continue to temporarily fix additional buffers, as
needed, during I/O requests. In addition, HFS will unfix
storage and go below FIXED(min) if there is a pageable
storage shortage in the system. By maintaining a pool of
buffers already fixed, the system will shorten the path length
of I/O operations, avoiding having to page fix and page free
the buffers for every I/O operation out of the HFS global
buffer pool. Obviously a fixed buffer uses real storage frames
so you have to find the right trade-off to guarantee good HFS
performance without degrading your system.

From a performance point of view it is interesting to observe that
once assigned to the pools the fixed buffers will not be redistributed:
we can have a lot of unused fixed buffers in one pool and none
in the others. In order to avoid this, one may need to specify
FIXED(0) in parmlib and use the confighfs command after the
system start to raise the fixed minimum to the target value. By
using this technique, fixed buffers will be allocated to the four
pools, depending on workload demands. The choice of ‘a right
buffer pool’ depends on a rather complex algorithm based on the
following factors: the amount of virtual storage dedicated to HFS
global buffers, the amount of fixed real storage dedicated to HFS
global buffers, the distribution of storage to four buffer pools, the
I/O pattern (random/sequential), the operation type (read/write),
the I/O block size, the file size, and the file type. In brief, when an
application needs to acquire an HFS buffer, HFS chooses a
buffer based on a preference scheme. Since the purpose of
allocating a new buffer is generally to do I/O, which requires that
the buffer be page-fixed, the first preference is to use a permanently
fixed buffer. (This statement is obvious for reads, but even a
deferred write will cause an I/O in the near future.) If no permanently
fixed buffers are available, the second preference is to use a
pageable buffer that is already backed by real storage if one is
available. If all such buffers are in-use, then a new buffer is
acquired, and the first time that the buffer is touched, the Real
Storage Manager (RSM) will allocate some real storage.

Finally, when we consider the third guideline (to complete the
‘real’ I/Os as fast as possible) we have to be aware of the fact that

 57© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

a file system is usually a single dataset only from the z/OS side,
while in fact the underlying structure of directories and files inside
a file system can be quite complex and often includes most of the
files of a single application.

It is highly recommended that you review the potential for
increased HFS buffers and how the increased virtual storage
usage may affect the current system. Installations may be
especially susceptible to the default specification if they do their
migration testing on a system image with less available central
storage configured than the target production system. Production
systems will generally have more central storage configured,
and/or have higher contention for the central storage. Additional
information is available on how to set and measure the HFS
buffer definition in Hierarchial File System Usage Guide (SG24-
5482-00).

Two additional reports that are useful when monitoring HFS
dataset activity and performance are HFS global statistics report
and HFS file system statistics report.

HFS global statistics report provides overall data about I/O
activities of HFS files. Fields in this report include total amount
of virtual storage assigned to I/O buffers (virtual used), total
amount of permanently fixed storage assigned to I/O buffers
(fixed used), file I/O statistics (cache/DASD), and metadata I/O
(cache/DASD).

The HFS file system statistics report includes data gathered
about I/O activity and the internal structure (index) of the HFS
datasets. Some key indicators to observe include: mount point,
space (allocated/used/ cached/index), I/O activity (data/
metadata), index activity (read/write/ split/join/create), and cache
effectiveness (data/metadata/index). The meaning of these fields
can be obtained from the RMF Report Analysis (SC33-7991)
manual.

HFSJOB
//DEL EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=X

 58 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//SYSIN DD *

 DELETE hlq.U746.DATA

 DELETE hlq.SMFCOPY.OUT

 SET MAXCC=Ø

/*

//EXT746 EXEC PGM=IFASMFDP,REGION=5M

//INDA1 DD DSN=your.smf.dataset,DISP=SHR

//OUTDA DD DSN=hlq.SMFCOPY.OUT,DISP=(NEW,PASS),

// UNIT=SYSDA,SPACE=(CYL,(5Ø,2Ø),RLSE),

// DCB=(your.smf.dataset)

//SYSPRINT DD SYSOUT=X

//SYSIN DD *

 INDD(INDA1,OPTIONS(DUMP))

 OUTDD(OUTDA,TYPE(74))

/*

//SORT746 EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//RAWSMF DD DSN=hlq.SMFCOPY.OUT,DISP=SHR

//SMF746 DD DSN=hlq.U746.DATA,

// SPACE=(CYL,(15)),UNIT=SYSDA,DISP=(NEW,KEEP),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=3276Ø)

//TOOLIN DD *

 SORT FROM(RAWSMF) TO(SMF746) USING(SMF6)

//SMF6CNTL DD *

* Eliminate Header and Trailer records

* Get SMF 74.6 with valid HFS data.

* Sort by date and time

 OPTION SPANINC=RC4,VLSHRT

 INCLUDE COND=(6,1,BI,EQ,74,AND,23,2,BI,EQ,6,

 AND,51,2,BI,GT,Ø,AND,59,2,BI,GT,Ø)

 SORT FIELDS=(11,4,PD,A,7,4,BI,A)

/*

//HFSREXX EXEC PGM=IKJEFTØ1,REGION=ØM

//SYSEXEC DD DISP=SHR,DSN=your.rexx.lib

//SMF746 DD DISP=SHR,DSN=hlq.U746.DATA

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

prof nopref

%HFSRMF

/*

HFSRMF EXEC

/* REXX EXEC to read and format RMF record 74

 subtype 6: HFS Global Activity

 : Buffer pool statistics

 : HFS File system statistics */

ADDRESS TSO

 59© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/*---*/

/* Part 1: Handle file allocation & dataset existence and */

/* print report header and labels */

/*---*/

 userid=SYSVAR(SYSUID)

 r74gl =userid||'.rmfglob.rep'

 r74bf =userid||'.rmfbuff.rep'

 r74hf =userid||'.rmfhfsf.rep'

 x = MSG('OFF')

 if SYSDSN(r74gl) = 'OK' /* check report dsn validity */

 Then "DELETE "r74gl" PURGE"

 if SYSDSN(r74bf) = 'OK' /* check report dsn validity */

 Then "DELETE "r74bf" PURGE"

 if SYSDSN(r74hf) = 'OK' /* check report dsn validity */

 Then "DELETE "r74hf" PURGE"

 "ALLOC FILE(global) DA("r74gl")",

 "UNIT(SYSALLDA) NEW TRACKS SPACE(2,1) CATALOG",

 "REUSE LRECL(95) RECFM(F B) BLKSIZE(2793Ø)"

 Gl.1 ='HFS Global statistics'

 Gl.2 =' '

 Gl.3 ='Report produced on',

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' ')||left(time(),1Ø)

 Gl.4 =' '

 Gl.5 =left(' ',28,' ')||left('-- Storage limits (MB) --',33),

 ||left('-- File I/O --',15)||left(' -- Metadata I/O --',19)

 Gl.6 =left('RMF interval TOD',21),

 ||left("VIRT(MAX)",12)||left('Used',8),

 ||left("FIXED(MIN)",12)||left('Used',9),

 ||left('cache',9)||left('dasd',8),

 ||left('cache',9)||left('dasd',4)

 Gl.7 =left('-',95,'-')

 "EXECIO * DISKW global (STEM Gl.)"

 "ALLOC FILE(buffer) DA("r74bf")",

 "UNIT(SYSALLDA) NEW TRACKS SPACE(2,1) CATALOG",

 "REUSE LRECL(95) RECFM(F B) BLKSIZE(2793Ø)"

 Bf.1 ='Buffer pool statistics'

 Bf.2 =' '

 Bf.3 ='Report produced on',

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' ')||left(time(),1Ø)

 Bf.4 =' '

 Bf.5 =left(' ',26,' ')||left('Number',9)||left('Buffer',8),

 ||left(' -- Pool size --',24)||left('Data',6),

 ||left(' -- I/O activity --',19)

 Bf.6 =left('RMF interval TOD',21)||left('Pool',6)||left('buff.',9),

 ||left('size',8)||left('pages',8)||left('MB',5),

 ||left('fixed',9)||left('spaces',7),

 ||left('total',7)||left('fixed',6)||left("not fix.",8)

 Bf.7 =left('-',94,'-')

 60 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 "EXECIO * DISKW buffer (STEM Bf.)"

 "ALLOC FILE(hfsfil) DA("r74hf")",

 "UNIT(SYSALLDA) NEW TRACKS SPACE(2,1) CATALOG",

 "REUSE LRECL(235) RECFM(F B) BLKSIZE(27965)"

 Hf.1 ='HFS File system statistics'

 Hf.2 =' '

 Hf.3 ='Report produced on',

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' ')||left(time(),1Ø)

 Hf.4 =' '

 Hf.5 =left(' ',83,' ')||left('---- Allocation (pages) ----',4Ø),

 ||left('------ File I/O ------',29),

 ||left('- Matadata I/O -',24),

 ||left('-- Index read/write --',32),

 ||left('-- Index Events --',24)

 Hf.6 =left('RMF interval TOD',21)||left('File system name',31),

 ||left('Mount TOD',28)||left('System',1Ø),

 ||left('Data',6)||left('Attr.dir',11)||left('Cached',11),

 ||left('seq.',7)||left('random',1Ø)||left('cache',1Ø),

 ||left('dasd',8)||left('cache',1Ø)||left('dasd',1Ø),

 ||left('hit',8)||left('miss',1Ø)||left('hit',8)||left('miss',7),

 ||left('new level',12)||left('split',9)||left('join',4)

 Hf.7 =left('-',231,'-')

 "EXECIO * DISKW hfsfil (STEM Hf.)"

/*--*/

/* Part 2: Read SMF record type 74; */

/* process selected sections & write out to report file */

/*--*/

 'EXECIO * DISKR SMF746 (STEM x. FINIS'

 numeric digits 2Ø

 do i = 1 to x.Ø

 smftype = c2d(SUBSTR(x.i,2,1)) /* SMF record type */

 smfstype = c2d(SUBSTR(x.i,19,2)) /* Record subtype */

 smfdate = SUBSTR(c2x(SUBSTR(x.i,7,4)),3,5) /* Unpack SMF date */

 smftime = smf(c2d(SUBSTR(x.i,3,4))) /* Decode SMF time */

 sid = SUBSTR(x.i,11,4) /* SID */

 ssi = SUBSTR(x.i,15,4) /* Subsystem ID. */

 pps = c2d(SUBSTR(x.i,25,4)) /* Offset to RMF product sect.*/

 prl = c2d(SUBSTR(x.i,29,2)) /* Lenght of RMF product sect.*/

 prn = c2d(SUBSTR(x.i,31,2)) /* Number of RMF product sect.*/

 IF pps <> Ø AND prn <> Ø Then do

 pps =pps -3

 prd = SUBSTR(x.i,pps+2,8)

 sam = c2d(SUBSTR(x.i,pps+24,4))

 mvs = SUBSTR(x.i,pps+4Ø,8)

 ptn = c2d(SUBSTR(x.i,pps+5Ø,1))

 srl = c2d(SUBSTR(x.i,pps+51,1))

 oil = c2d(SUBSTR(x.i,pps+76,2))

 syn = c2d(SUBSTR(x.i,pps+78,2))

 gie = st(c2x(SUBSTR(x.i,pps+8Ø,8)))

 61© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 xnm = SUBSTR(x.i,pps+88,8)

 snm = SUBSTR(x.i,pps+96,8)

 END

 IF smfstype = '6' Then do

/*-- --*/

/* Part 1: Read SMF record type 74.6 (HFS record) */

/*---*/

 do = c2d(SUBSTR(x.i,33,4)) /* Offset to HFS global data sec.*/

 dl = c2d(SUBSTR(x.i,37,2)) /* Length of HFS global data sec.*/

 dn = c2d(SUBSTR(x.i,39,2)) /* Number of HFS global data sec.*/

 bo = c2d(SUBSTR(x.i,41,4)) /* Offset to HFS buffer sec.*/

 bl = c2d(SUBSTR(x.i,45,2)) /* Length of HFS buffer sec.*/

 bn = c2d(SUBSTR(x.i,47,2)) /* Number of HFS buffer sec.*/

 fo = c2d(SUBSTR(x.i,49,4)) /* Offset to HFS file system sec.*/

 fl = c2d(SUBSTR(x.i,53,2)) /* Length of HFS file system sec.*/

 fn = c2d(SUBSTR(x.i,55,2)) /* Number of HFS file system sec.*/

/*------------------ --*/

/* Part 2.1: Read SMF record type 74.6 (HFS Section) */

/*---*/

 IF do <> Ø AND dn <> Ø Then do

 do =do -3

 gmxv = c2d(SUBSTR(x.i,do,4)) /* VIRTUAL(MAX) - MB)*/

 gusv = c2d(SUBSTR(x.i,do+4,4)) /* pages of VIR assigned to IO buff.*/

 gmnf = c2d(SUBSTR(x.i,do+8,4)) /* FIXED(MIN) - MB */

 gusf = c2d(SUBSTR(x.i,do+12,4)) /* permanently fixed pages*/

 gmc = flt(c2x(SUBSTR(x.i,do+16,8))) /* metadata - cache*/

 gmnc = flt(c2x(SUBSTR(x.i,do+24,8))) /* metadata - dasd*/

 g1c = flt(c2x(SUBSTR(x.i,do+32,8))) /* first page - cache*/

 g1nc = flt(c2x(SUBSTR(x.i,do+4Ø,8))) /* first page - dasd*/

 glrc = c2d(SUBSTR(x.i,do+48,4)) /*Ret. code DisplayBufferLimits*/

 glrs = c2d(SUBSTR(x.i,do+52,4)) /*Reas.code DisplayBufferLimits*/

 gsrc = c2d(SUBSTR(x.i,do+56,4)) /*Ret. code DisplayGlobalStats */

 gsrs = c2d(SUBSTR(x.i,do+6Ø,4)) /*Reas.code DisplayGlobalStats */

 gsfl = SUBSTR(x.i,do+64,1) /* Global data status flags*/

 SELECT

 when gsfl ='1ØØØØØØØ'b then ffl='Kernel not ready '

 when gsfl ='Ø1ØØØØØØ'b then ffl='No buffer limit data'

 when gsfl ='ØØ1ØØØØØ'b then ffl='No global data '

 when gsfl ='ØØØ1ØØØØ'b then ffl='Partial global data '

 otherwise ffl='Reserved'

 END

 mbv = (gusv * 4) / 1Ø24

 mbuse= trunc(mbv,2)

 END

 glb = right(Date('N',smfdate,'J'),11) left(smftime,8),

 right(gmxv,8) right(mbuse,8) right(gmnf,8),

 right(gusf,8) right(g1c,8) right(g1nc,8),

 right(gmc,8) right(gmnc,8)

 PUSH glb

 "EXECIO 1 DISKW global"

 62 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/*---*/

/* Part 2.2: Read SMF record type 74.6 (Buffer section) */

/*---*/

 IF bo <> Ø AND bn <> Ø Then do

 bo =bo -3

 do k = Ø to bn -1

 num = k + 1 /* pool number*/

 incr = (bo + (k*bl))

 gsb.k = c2d(SUBSTR(x.i,incr,2)) /*size of buffers in bp*/

 gnds.k= c2d(SUBSTR(x.i,incr+2,2)) /* data spaces for bp*/

 gsbp.k= c2d(SUBSTR(x.i,incr+4,4)) /* poll size - pages*/

 gsbf.k= c2d(SUBSTR(x.i,incr+8,4)) /* fixed buffers in bp*/

 gbf.k = flt(c2x(SUBSTR(x.i,incr+16,8))) /* buffer was fixed*/

 gbnf.k= flt(c2x(SUBSTR(x.i,incr+24,8))) /* buffer not fixed*/

 nb.k= gsbp.k /gsb.k /* no. of buffers*/

 mb.k= (gsbp.k * 4) / 1Ø24 /* pool size - MB*/

 mm.k=trunc(mb.k,2)

 tot.k=gbf.k+gbnf.k /* total I/O count*/

 SELECT

 when k = Ø then

 inter = right(Date('N',smfdate,'J'),11)||left(' ',1,' '),

 ||left(smftime,8)

 otherwise

 inter =left(' ',2Ø,' ')

 END

 buf.k= inter right(num,4) right(nb.k,5) right(gsb.k,8),

 right(gsbp.k,8) right(mm.k,6) right(gsbf.k,5),

 right(gnds.k,8) right(tot.k,6),

 right(gbf.k,6) right(gbnf.k,6)

 PUSH buf.k

 "EXECIO 1 DISKW buffer"

 end

 line = left(' ',3,' ')

 PUSH line

 "EXECIO 1 DISKW buffer"

 END

/*--*/

/* Part 2.3: Read SMF record type 74.6 (HFS file section) */

/*--*/

 IF fo <> Ø AND fn <> Ø Then do

 fo =fo -3

 do j = Ø to fn -1

 inc = (fo + (j*fl))

 fsnl.j= c2d(SUBSTR(x.i,inc+44,1))

 fsnm.j= SUBSTR(x.i,inc,fsnl.j) /* File system name*/

 fsfØ.j= SUBSTR(x.i,inc+45,1) /* File Status flags*/

 SELECT

 when fsfØ.j ='1ØØØØØØØ'b then fflag='No HFS file system stat.'

 when fsfØ.j ='Ø1ØØØØØØ'b then fflag='Mount time changed'

 when fsfØ.j ='ØØ1ØØØØØ'b then fflag='File system now mounted'

 63© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 otherwise fflag='Reserved'

 END

 fctm.j= st(c2x(SUBSTR(x.i,inc+48,8))) /* RMF TOD timestamp STCK */

 fmtm.j= st(c2x(SUBSTR(x.i,inc+56,8))) /* Mount timestamp STCK */

 fsf.j = c2d(SUBSTR(x.i,inc+64,4)) /* Size of file system */

 fpf.j = c2d(SUBSTR(x.i,inc+68,4)) /* Number of data pages */

 fpd.j = c2d(SUBSTR(x.i,inc+72,4)) /* Attr.directory pages */

 fpc.j = c2d(SUBSTR(x.i,inc+76,4)) /*Data buffer pages cached*/

 fsfi.j= flt(c2x(SUBSTR(x.i,inc+8Ø,8))) /* Sequential I/O */

 frfi.j= flt(c2x(SUBSTR(x.i,inc+88,8))) /* Random I/O */

 fmc.j = flt(c2x(SUBSTR(x.i,inc+96,8))) /* Metadata from cache */

 fmnc.j= flt(c2x(SUBSTR(x.i,inc+1Ø4,8))) /* Metadata from DASD */

 f1c.j = flt(c2x(SUBSTR(x.i,inc+112,8))) /*First page from cache */

 f1nc.j= flt(c2x(SUBSTR(x.i,inc+12Ø,8))) /* First page from DASD */

 fint.j= flt(c2x(SUBSTR(x.i,inc+128,8))) /* Index new tops */

 fis.j = flt(c2x(SUBSTR(x.i,inc+136,8))) /* Index splits */

 fij.j = flt(c2x(SUBSTR(x.i,inc+144,8))) /* Index joins */

 firh.j= flt(c2x(SUBSTR(x.i,inc+152,8))) /* Index page read hits */

 firm.j= flt(c2x(SUBSTR(x.i,inc+16Ø,8))) /* Index page read miss*/

 fiwh.j= flt(c2x(SUBSTR(x.i,inc+168,8))) /* Index page write hits*/

 fiwm.j= flt(c2x(SUBSTR(x.i,inc+176,8))) /* Index page write miss*/

 fsrc.j= c2d(SUBSTR(x.i,inc+184,4)) /* Ret.code Disp.FSStats*/

 fsrs.j= c2d(SUBSTR(x.i,inc+184,4)) /* Reas.codeDisp.FSStats*/

 SELECT

 when j = Ø then

 inter = right(Date('N',smfdate,'J'),11)||left(' ',1,' '),

 ||left(smftime,8)

 otherwise

 inter =left(' ',2Ø,' ')

 END

 fil.j= inter left(fsnm.j,3Ø) right(fmtm.j,25),

 right(fsf.j,8) right(fpf.j,8) right(fpd.j,8),

 right(fpc.j,8) right(fsfi.j,8) right(frfi.j,8),

 right(f1c.j,8) right(f1nc.j,8) right(fmc.j,8),

 right(fmnc.j,8) right(firh.j,8) right(firm.j,8),

 right(fiwh.j,8) right(fiwm.j,8) right(fint.j,8),

 right(fis.j,8) right(fij.j,8)

 PUSH fil.j

 "EXECIO 1 DISKW hfsfil"

 end

 line = left(' ',3,' ')

 PUSH line

 "EXECIO 1 DISKW hfsfil"

 END

 END

 end

 "EXECIO Ø DISKW global(FINIS "

 "EXECIO Ø DISKW buffer(FINIS "

 "EXECIO Ø DISKW hfsfil(FINIS "

 say

 64 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 say 'HFS Global statistics report dsn :'r74gl

 say 'Buffer pool statistics report dsn:'r74bf

 say 'HFS File system statistics report dsn:'r74hf

 say

 "free FILE(SMF746 global buffer hfsfil)"

 exit

SMF: procedure

/* REXX - convert a SMF time */

arg time

 time1 = time % 1ØØ

 hh = time1 % 36ØØ

 hh = RIGHT("Ø"||hh,2)

 mm = (time1 % 6Ø) - (hh * 6Ø)

 mm = RIGHT("Ø"||mm,2)

 ss = time1 - (hh * 36ØØ) - (mm * 6Ø)

 ss = RIGHT("Ø"||ss,2)

 otime = hh||":"||mm||":"||ss /* Compose SMF time*/

 return otime

FLT: procedure

/* This REXX exec computes a floating-point's value */

arg float

float = X2C(float) /* convert float to a hexadecimal string */

float_size = LENGTH(float) /* size in Bytes */

Byte_Ø = SUBSTR(float, 1, 1)

 select

 when BITAND(Byte_Ø, '8Ø'x) == 'ØØ'x then sign = '+'

 when BITAND(Byte_Ø, '8Ø'x) == '8Ø'x then sign = '-'

 end

exponent = C2D(BITAND(Byte_Ø, '7F'x)) - 64

fraction = Ø

power = -1

do i = 2 to float_size

 if i = 9 then iterate /* skip bits 64-71 */

 Next_Byte = C2D(SUBSTR(float, i, 1))

 left_Digit = Next_Byte % 16

 fraction = fraction + left_Digit * 16**power

 right_Digit = Next_Byte // 16

 power = power - 1

 fraction = fraction + right_Digit * 16**power

 power = power - 1

end

interpret 'value =' sign (fraction * 16 ** exponent)

val1=trunc(value,Ø)

return val1

ST: Procedure

/* STCK timestamp format converted

 The BLSUXTOD proc is described in "z/OS

 V1R3 MVS IPCS Customization" */

arg todtime

If todtime <> 'ØØØØØØØØØØØØØØØØØØØØ' Then

 65© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 Do

 TOD_Value = X2C(todtime)

 Returned_Date = '--------------------------'

 address LINKPGM "BLSUXTOD TOD_Value Returned_Date"

 End

Else

 Returned_Date = ''

Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2004

Implementation of the IBM Flashcopy/Snapshot
functions in a z/OS environment

KEY IDEAS

This article provides a business solution to the demands of
providing regular offsite DASD volume back-ups in a timely
fashion. IBM provides copy service functions such as Flashcopy
for the IBM Enterprise Storage Server and Snapshot for the IBM
RAMAC Virtual Array. However, these functions alone do not
provide a complete solution.

This article uses code written to meet this business need. This
code automates the back-up process by generating the JCL
upon execution; it also provides key documentation for recovery,
which includes information on when the dump was taken, the
actual tapes used to dump, and also all the recovery JCL required
at the recovery site. Finally, the code provides a level of optimization
to reduce tape media and tape handling costs, which equated to
a 50% reduction for the Hursley MVS volumes.

CLAIMS

This article supports the following claims:

1 It automates the back-up and recovery process for DASD
volumes.

 66 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2 Following a one-time set up, the procedure is repeatable, eg:

//DRMVSH JOB MSGCLASS=H,REGION=6M,CLASS=2,USER=CPSSDMØ

//**

//** This job will dump DASD volumes and datasets identified by the **

//** IBM Hursley IT Department as necessary in supporting Disaster **

//** Recovery processes. **

//** Author: Martin Hitchman, Senior IT Specialist, IBM Hursley **

//**

//** Changes: **

//**

//** Code changing variables **

//**

// SET PREPARE=N << Y or N

// SET CYCLE=4 << Ø,1-4 = defined cycle number range

//**

//** Code fairly static variables **

//**

// SET OVERRIDE=N << ignore check 8 target volser label check

// SET TAPEGB=59 << Capacity of your tapes including compression

// SET VITAL=CBP << VBP or BRP

// SET SERVICE=MQ << service group

// SET SYSTEM=MVSH << system identifier

// SET METHOD=FLASH << SNAPSHOT or FLASH

// SET DRIVES=ROBOT7 << Manual, Robot7, Robot9

// SET CODE=££REXX££ << where is the local code stored ?

// SET DSN=CPSSDM.HURSLEY.ITDEPT.CODE

//**

//** Generate JCL dynamically **

//**

//BUILDJCL EXEC PGM=IKJEFTØ1,DYNAMNBR=99,

// PARM='%&CODE &PREPARE &CYCLE &TAPEGB &VITAL &SERVICE &SYSTEM X

// &METHOD &DRIVES &OVERRIDE'

//SYSEXEC DD DISP=SHR,DSN=&DSN

//SYSIN DD DUMMY

//SYSTSPRT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//INADDR DD *

 63ØØ 6317 24

 638Ø 6397 24

//OUTADDR DD *

 6318 632F 24

 6398 63AF 24

//DUMMY DD *

 DRDAT1 DRDAT2

//VOLSERS DD *

//DSNAMES DD *

//TAPESØ DD *

 VBTØ21 VBTØ25 5

//TAPES1 DD *

 67© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 VBØØ73 VBØØ77 5

//TAPES2 DD *

 VBØØ78 VBØØ82 5

//TAPES3 DD *

 VBØØ83 VBØØ87 5

//TAPES4 DD *

 VBØØ88 VBØØ92 5

//HTAPESØ DD *

 VBTØ26 VBTØ26 1

//HTAPES1 DD *

 VBØ6Ø5 VBØ6Ø5 1

//HTAPES2 DD *

 VBØ6Ø6 VBØ6Ø6 1

//HTAPES3 DD *

 VBØ6Ø7 VBØ6Ø7 1

//HTAPES4 DD *

 VBØ6Ø8 VBØ6Ø8 1

//SYSTSIN DD DUMMY

//*

3 It reduces the time to implement a disaster recovery back-
up solution and also ensures speedy recovery by
automatically providing all back-up and recovery JCL.

4 It reduces the number of tapes to purchase by providing a
lower level of tape utilization.

5 It reduces your costs with an offsite service provider by
reducing the number of tapes used.

6 It is a scalable solution. Your changing business storage
requirements are easily accommodated as the initial JCL file
contains only key data. The program generates all the other
required JCL.

7 Error checking routines ensure that you have the correct
number of tapes, you don’t overwrite live DASD volumes
(based on volume labels), and the correct number and type
of DASD volumes are present.

EMBODIMENTS

In a z/OS MVS environment the following steps are required to
dump the DASD volumes to tape to enable them to be sent off-

 68 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

site for a disaster recovery.

1 Identify source volumes to dump.

2 Identify target volumes for Flashcopy/Snapshot.

3 Initiate Flashcopy/Snapshot commands to provide a point-
in-time copy of source volumes.

4 Change the DASD volume labels because the replication
process duplicates the source volume label and MVS hosts
allow only unique volume labels to be on-line.

5 Put target volumes on-line to host.

6 Dump volumes to tape.

This isn’t really the complete picture for a workable, repeatable
procedure because every step above can raise questions and
issues. So my article includes the following.

The user performs a one time set-up by coding the following in
the sample JCL file:

1 Source volumes to dump by device address range.

2 Target volumes for Flashcopy/Snapshot by device address
range.

3 Tape label ranges to be used per cycle.

This static information is used to derive all the back-up and
recovery JCL dynamically and prepare reports for documentation
purposes. The JCL that is automatically built is split into a number
of stages to provide a clear procedure to follow.

USER SCENARIO

A user has an IBM Enterprise Storage Server for his Sysplex and
is using DASD control unit numbers 0–7.

The control units each contain 80 3390 Model 9 DASD volumes
and the customer is using the first half of the control unit for the
source volumes and reserving the second half for the target

 69© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

volumes. The customer uses the volume convention name of
FLxxxx for the target volumes and this ensures that the code to
validate replication is not targeting live volumes.

The customer executes the following steps:

1 A batch job to calculate DASD occupancy.

2 A batch job to prepare the customized JCL.

3 A batch job to validate and prepare all back-up and recovery
JCL together with all documentation required during the
restore.

4 A suite of customized batch jobs to automate and complete
the back-up process from start to finish

BUSINESS VALUE

This article provides a complete application to perform regular
point-in-time back-up copies of DASD volumes in a z/OS MVS
environment.

The code is very easy to use and set up, and can quickly be
incorporated into your own business environment.

The business reduces its overheads in people resources because
to perform these tasks without automation is time consuming
and because of the repetition would inevitably result in coding
mistakes.

The business will also make savings in its tape management
systems. Not only will fewer removable media cartridges be
required but also any expenses related to storing the media off-
site will be reduced because this is typically charged by the
cartridge.

CODING JCL

INADDR – list of MVS DASD addresses.

Format: <start address> <end address> <count>

 70 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

OUTADDR – list of MVS DASD addresses.

Format: <start address> <end address> <count>

DUMMY – list of MVS DASD volumes that are not dumped but
an empty volser will be created at the recovery site.

VOLSERS – list of specific DASD volumes to dump to tape.

DSNAMES – list of specific MVS datasets to dump to tape.

TAPESx – list of tape volsers to use for each cycle 0–4.

HTAPESx – list of tape volsers to use for each cycle 0–4.

DYNAMICALLY BUILD JCL

1 Submit:

"CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(££INFO££)"

2 Edit "cpssdm.hursley.itdept.cbp.cntl(££VARS££)".

Increment the CYCLE= for each of the members (note: only
four cycles 1, 2, 3, and 4 are defined). Change PREPARE=
Y.

3 EXexute 'cpssdm.hursley.itdept.cbp.cntl(££sub££)'.

4 Submit: "CPSSDM.HURSLEY.VARYOFF.SOURCE".

5 Submit: "CPSSDM.HURSLEY.VARYOFF.TARGET".

6 Submit: "CPSSDM.HURSLEY.VARYON.SOURCE".

7 Submit: "CPSSDM.HURSLEY.VARYON.TARGET".

8 Submit: "CPSSDM.CBP.**.STAGE27".

9 Edit "cpssdm.hursley.itdept.cbp.cntl(££VARS££)". Change
PREPARE= N.

10 EXexute 'cpssdm.hursley.itdept.cbp.cntl(££sub££)'.

EXECUTE THE JCL

The process sequence is as follows:

 71© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

1 "CPSSDM.CBP.**.STAGExx"

2 Vary off target devices only for Flash jobs.

3 Replication.

4 DSF Clip target volsers.

5 Vary on-line target volumes: Submit
"CPSSDM.HURSLEY.VARYON.TARGET".

6 List VTOC. Submit and once complete release any HELD
DRVTOC jobs.

7 Dump volsers.

8 Dump header information.

9 Send reports to storage taskid.

10 F HSM,RELEASE ALL.

11 Vary off target devices – wait. Only for FLASH jobs.

12 Withdraw replication – wait.

13 DSF INIT target volsers.

14 Vary on-line target volumes, or submit
"CPSSDM.HURSLEY.VARYON.TARGET".

Produce a tape report for audit purposes. Submit one of the
'CPSSDM.CBP.**.STAGE25' stages.

Eject the tapes from the ATL:

EX "CPSSDM.HURSLEY.AUDIT.EJECTS"

CNTL_INFO ($$INFO$$)
//DCOLLECT JOB MSGCLASS=H,NOTIFY=CPSSDM2,REGION=6M

//MYLIBS JCLLIB ORDER=(SYS1.SACBCNTL)

//**

//* cleanup first

//**

//DELETE EXEC PGM=IEFBR14

//DD1 DD DSN=CPSSDM.HURSLEY.DCOLLECT.OUTPUT,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

 72 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//DD2 DD DSN=CPSSDM.HURSLEY.DCOLLECT.REPORT,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

//DD3 DD DSN=CPSSDM.HURSLEY.AUDIT.EJECTS,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

//DD4 DD DSN=CPSSDM.HURSLEY.VARYON.SOURCE,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

//DD5 DD DSN=CPSSDM.HURSLEY.VARYOFF.SOURCE,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

//DD6 DD DSN=CPSSDM.HURSLEY.VARYON.TARGET,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

//DD7 DD DSN=CPSSDM.HURSLEY.VARYOFF.TARGET,

// SPACE=(TRK,(1,1)),DISP=(MOD,DELETE,DELETE)

//*

//**

//* dcollect volume information

//* exclude vse volumes +

//**

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//DCOUT DD DSN=CPSSDM.HURSLEY.DCOLLECT.OUTPUT,DISP=(NEW,CATLG),

// SPACE=(TRK,(1ØØ,1Ø)),UNIT=339Ø,

// DCB=(DSORG=PS,LRECL=264,RECFM=VB,BLKSIZE=Ø)

//SYSIN DD *

 DCOLLECT OUTFILE(DCOUT) VOLUMES(*) NODATAINFO -

 EXCLUDEVOLUMES(SLSPØ4,SL*,VSE*,DOSRES,SYWRK1,IAL*,DMTA*,#*,H9*)

//**

//* Generate volume report to include %free space

//**

//REPORT EXEC ACBJBAOB,PLIB1=SYS1.DGTPLIB,TABL2=CPSSDM.HURSLEY.ISPTABLE

//DCOLIN DD DSN=CPSSDM.HURSLEY.DCOLLECT.OUTPUT,DISP=SHR

//ISPFILE DD DSN=CPSSDM.HURSLEY.DCOLLECT.REPORT,DISP=(NEW,CATLG),

// SPACE=(TRK,(1ØØ,1Ø)),UNIT=339Ø,

// DCB=(DSORG=PS,LRECL=133,RECFM=FBA,BLKSIZE=Ø)

//SYSTSIN DD *

 PROFILE PREFIX(CPSSDM2)

 ISPSTART CMD(ACBQBAR6) +

 BATSCRW(132) BATSCRD(27) BREDIMAX(3) BDISPMAX(99999999)

/*

//SYSIN DD *

 ADDRESS

 VOLSER

 ALLOCSPC

 DEVTYPE

/*

$$SUB££

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(mvsh)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVSZ)'

 73© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS16)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS17)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS18)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS19)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS2)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS4K)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(MVS91)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXC)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXD)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXE)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXF)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXG)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXJ)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXK)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXL)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXN)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXP)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXS)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXW)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEXY)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEX1)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEX2)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEX3)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PLEX5)'

SUBMIT 'CPSSDM.HURSLEY.ITDEPT.CBP.CNTL(PYE)'

$$VARS$$
// SET PREPARE=N << Y OR N

// SET CYCLE=4 << Ø,1-4 = defined cycle number range

//**

//** Code fairly static variables **

//**

// SET OVERRIDE=N << ignore check 8 target volser label check

// SET TAPEGB=56 << Capacity of tapes + compression 2.8)

// SET VITAL=CBP << CBP

// SET METHOD=FLASH << SNAPSHOT or FLASH

// SET DRIVES=ROBOT7 << Manual, Robot7, Robot9

// SET CODE=££REXX££ << where is the local code stored ?

// SET DSN=CPSSDM.HURSLEY.ITDEPT.CODE

//**

//** This job will dump DASD volumes and datasets identified by the **

//** IBM Hursley IT Department as necessary in supporting Disaster **

//** Recovery processes. **

//** **

//** Documentation on execution and maintanence can be found in the **

//** following Lotus Notes Database: **

//** http://vØ6dblØ2.hursley.ibm.com/i_dir/itmqseries.nsf **

//** **

 74 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//** Author: Martin Hitchman, Senior IT Specialist, IBM Hursley **

//**

//** Changes: **

//**

PLEX1
//DRPLEX1 JOB MSGCLASS=H,REGION=6M,CLASS=1,USER=CPSSDMØ

// JCLLIB ORDER=(CPSSDM.HURSLEY.ITDEPT.CBP.CNTL)

// INCLUDE MEMBER=££VARS££

//**

//** system specific information **

//**

// SET SERVICE=MQ << service group

// SET SYSTEM=PLEX1 << system identifier

//**

//** Generate JCL dynamically **

//**

//BUILDJCL EXEC PGM=IKJEFTØ1,DYNAMNBR=99,

// PARM='%&CODE &PREPARE &CYCLE &TAPEGB &VITAL &SERVICE &SYSTEM X

// &METHOD &DRIVES &OVERRIDE'

//SYSEXEC DD DISP=SHR,DSN=&DSN

//SYSIN DD DUMMY

//SYSTSPRT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//INADDR DD *

 618Ø 6197 24

 62ØØ 6217 24

 628Ø 62B3 52

//OUTADDR DD *

 6198 61AF 24

 6218 622F 24

 62B4 62E7 52

//DUMMY DD *

 DRDAT1 DRDAT2

//VOLSERS DD *

//DSNAMES DD *

//TAPESØ DD *

 VBTØ27 VBTØ44 18

//TAPES1 DD *

 VBØØ93 VBØ11Ø 18

//TAPES2 DD *

 VBØ111 VBØ128 18

//TAPES3 DD *

 VBØ129 VBØ146 18

//TAPES4 DD *

 VBØ147 VBØ164 18

//HTAPESØ DD *

 VBTØ45 VBTØ45 1

 75© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//HTAPES1 DD *

 VBØ6Ø9 VBØ6Ø9 1

//HTAPES2 DD *

 VBØ61Ø VBØ61Ø 1

//HTAPES3 DD *

 VBØ611 VBØ611 1

//HTAPES4 DD *

 VBØ612 VBØ612 1

//SYSTSIN DD DUMMY

//*

Editor’s note: the rest of the code for this article, which is quite
extensive, is available from the Xephon Web site. It’s at
www.xephon.com/extras/fsfunction.txt, and contains PLEX2 and
$$REXX$$.

Martin Hitchman
Senior IT Specialist
IBM (UK) © IBM 2004

MVS news

NEON Systems has announced Shadow
Interface for Enterprise Applications, which
enables organizations with legacy, terminal-
based, enterprise applications to reuse their
mainframe resources in new composite
applications built around a SOA.

The product enables the deployment of 3270
applications using a service-oriented
architecture for distributed environments. The
product provides tools for Web-enabled
application refacing and service-enabled
application remodelling of 3270 applications,
allowing for composite applications to be
sourced from existing mainframe applications.

For further information contact:
NEON Systems, 14100 Southwest Freeway,
Suite 500, Sugar Land, TX 77478, USA.
Tel: (281) 491 4200.
URL: http://neonsys.com/Shadow/si-
enterprise_applications.asp.

* * *

IBM has announced Version 2.3 of Tivoli
System Automation for z/OS, which helps
customers who have a single processor z/OS
systems and Parallel Sysplex clusters by
providing functions that ease systems
management. It offers message management
with self-configuration and single action
automation policy. Users can navigate through a
dependency graph, and fill or overwrite start and
stop requests with customer chosen defaults.
SA z/OS automates I/O, and processor and
system operations. It includes out-of-the-box
automation for IMS, CICS, Tivoli Workload
Scheduler, DB2, mySAP, and WebSphere.

For further information contact your local IBM
representative.

* * *

Redwood Software has announced Version
6.0.1 of Cronacle, its event-driven process
automation and job scheduling platform.

The product has an enhanced interface with
JES2 and JES3 to enable the further integration
of z/OS and OS/390 processes. Also
CronacleBeans, Cronacle’s Java and J2EE
scheduling component, can now run on z/OS
systems. Complex dependencies between the
mainframe and other systems can be managed
from a single interface.

For further information contact:
Redwood Software, 3000 Aerial Center, Suite
115, Morrisville, NC 27560, USA.
Tel: (919) 460 5400.
URL: http://www.redwood.com/products/
cronacle.htm.

* * *

Blockade Systems has released ManageID
Enterprise Suite for Microsoft Identity
Integration Server 2003, Enterprise Edition.
This suite encompasses Management Agents
for z/OS and OS/390 environments (RACF,
ACF2, Top Secret), which integrate with MIIS.

The product provides real-time event detection,
which includes the ability to both detect and
apply account creations or account deletions,
and account attribute or state changes on z/OS
security environments.

For further information contact:
Blockade Systems, 2200 Yonge Street, Suite
1300, Toronto, Ontario, Canada, M4S 2C6.
Tel: (416) 482 8400.
URL: http://www.blockade.com/products/
miis.html.

* * *

x xephon

	USS processes at a glance
	VSAM System Managed Buffering
	Read spool data from a C/C++ program - part 2
	Monitoring HFS performance
	Implementation of the IBM Flashcopy/Snapshot functions in a z/OS environment
	MVS news

