
© Xephon Inc 2005

Special edition

1

In this issue

3 A simple ISPF productivity aid
6 Execute program with extended

parameter
12 System layout verification tool
21 Comparing two files
31 WLM postprocessing made

easy
39 Locating strings in files
51 Boosting VSAM performance

with SMB
70 BPXMTEXT utility
72 Subscribing and contributing to

MVS Update

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
$505.00 in the USA and Canada; £340.00 in
the UK; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00 elsewhere.
In all cases the price includes postage. Individual
issues, starting with the January 2000 issue, are
available separately to subscribers for £29.00
($43.50) each including postage.

MVS Update on-line
Code from MVS Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon
.com/mvs; you will need to supply a word from
the printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, EXECs, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in MVS Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

A simple ISPF productivity aid

We are always looking for ways to work smarter and quicker. In this
short article we offer a simple REXX program that does just that.
Three of the most common activities that most of us perform under
TSO are browsing a dataset, editing a dataset, and submitting a job.
Our REXX program will help us perform all three of these functions.
There are two other components besides the REXX program that
have to be put into place to enable this: command table entries and
the EDPANEL.

COMMAND TABLE ENTRIES

These are the entries that you need to make in the ISPF SITECMDS
table. You must make the following entries in that table:

ED 2 SELECT CMD(%ED ED &ZPARM) NEWAPPL(ISR)

BR 2 SELECT CMD(%ED BR &ZPARM) NEWAPPL(ISR)

SJ 2 SELECT CMD(%ED SJ &ZPARM) NEWAPPL(ISR)

Note that all three entries are pointing at the same command – %ED.

EDPANEL

The second item that needs to be placed in your local ISPF panel
library is the EDPANEL, which is shown below:

)ATTR

% TYPE(TEXT) INTENS(HIGH) ATTN(OFF) SKIP(ON)

+ TYPE(TEXT) INTENS(LOW) ATTN(OFF) SKIP(ON)

@ TYPE(INPUT) INTENS(HIGH) CAPS(ON) PADC(_) ATTN(OFF)

! TYPE(INPUT) INTENS(LOW) CAPS(ON) PADC(_) ATTN(OFF) COLOR(TURQ)

{ TYPE(TEXT) COLOR(WHITE) HILITE(REVERSE) INTENS(HIGH)

)BODY EXPAND($$)

%${$<< Alias Settings for ED/BR/SJ Commands >> $+$ +

%OPTION===>_ZCMD +

+

+ALIAS FULLY QUALIFIED DATASET NAME ALIAS FULLY QUALIFIED DATASET NAME

+

@A1 !D1 + @A18 !D18

@A2 !D2 + @A19 !D19

@A3 !D3 + @A2Ø !D2Ø

@A4 !D4 + @A21 !D21

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

@A5 !D5 + @A22 !D22

@A6 !D6 + @A23 !D23

@A7 !D7 + @A24 !D24

@A8 !D8 + @A25 !D25

@A9 !D9 + @A26 !D26

@A1Ø !D1Ø + @A27 !D27

@A11 !D11 + @A28 !D28

@A12 !D12 + @A29 !D29

@A13 !D13 + @A3Ø !D3Ø

@A14 !D14 + @A31 !D31

@A15 !D15 + @A32 !D32

@A16 !D16 + @A33 !D33

@A17 !D17 + @A34 !D34

+

)INIT

 .CURSOR = ZCMD

)PROC

 VPUT(A1 A2 A3 A4 A5 A6 A7 A8 A9 A1Ø) PROFILE

 VPUT(A11 A12 A13 A14 A15 A16 A17 A18 A19 A2Ø) PROFILE

 VPUT(A21 A22 A23 A24 A25 A26 A27 A28 A29 A3Ø) PROFILE

 VPUT(A31 A32 A33 A34) PROFILE

 VPUT(D1 D2 D3 D4 D5 D6 D7 D8 D9 D1Ø) PROFILE

 VPUT(D11 D12 D13 D14 D15 D16 D17 D18 D19 D2Ø) PROFILE

 VPUT(D21 D22 D23 D24 D25 D26 D27 D28 D29 D3Ø) PROFILE

 VPUT(D31 D32 D33 D34) PROFILE

)END

This is a very straightforward panel that is used to create and
maintain aliases for datasets. It allows us to associate a short name
with a full dataset. Typical entries might look like the following:

JCL hlq.my.jcl.library

SAS hlq.my.sas.library

As implemented, up to 34 entries can be created. Note that this
information is saved in your ISPF profile so that it will be preserved
across TSO sessions.

ED REXX PROGRAM

The last item that we need to consider is the REXX program itself.
We have kept the code very simple and straightforward. If you
invoke the program by entering BR, ED, or SJ without any arguments
or with ? being the only argument, the EDPANEL panel will be
displayed, so that you can maintain the aliases and their associated
datasets. If you invoke it with only a single passed parameter, it is
treated as the alias. If you invoke the program with two arguments,

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

the second of the two arguments is treated as the member name.
Several examples are given below. Once you have all of the pieces
in their respective locations, you can invoke the ED REXX program
from any command line in TSO.

/* REXX EXEC */

parse upper arg FUNC NAME MBR

if NAME = "?" | NAME = "" then

 "ISPEXEC DISPLAY PANEL(EDPANEL)"

else

 do

 X = 1

 do until NAME = ALIAS | X > 34

 AL = "A"||X ; DS = "D"||X ; CN = "C"||X

 "ISPEXEC VGET ("AL DS CN") PROFILE"

 ALIAS = value('AL') ; ALIAS = value(ALIAS)

 X = X + 1

 end

 if X > 34 then

 do

 ZEDSMSG = "Invalid alias - "||NAME

 ZEDLMSG = "Alias does not exist, or you have a spelling error"

 "ISPEXEC SETMSG MSG(ISRZØØ1)"

 exit

 end

 else

 DS1 = value('DS') ; DSN = value(DS1)

 CT1 = value('CN') ; CNT = value(CT1)

 if CNT = "" then

 CNT = Ø

 else

 CNT = CNT + 1

 CNT_DATA = CT1 ; interpret CNT_DATA ' = CNT'

 "ISPEXEC VPUT ("CN") PROFILE"

 code = LISTDSI(DSN)

 if code > Ø then

 do

 ZEDSMSG = "Invalid Dsn - "||NAME

 ZEDLMSG = "Dataset name associated with alias does not exist"

 "ISPEXEC SETMSG MSG(ISRZØØ1)"

 exit

 end

 if FUNC = "ED" then

 do

 if MBR = "" then

 "ISPEXEC EDIT DATASET("DSN")"

 else

 "ISPEXEC EDIT DATASET("DSN"("MBR")"

 if lastcc > Ø then "ISPEXEC SETMSG MSG(ISRZØØ2)"

 end

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 if FUNC = "BR" then

 do

 "ISPEXEC BROWSE DATASET("DSN")"

 if lastcc > Ø then "ISPEXEC SETMSG MSG(ISRZØØ2)"

 end

 if FUNC = "SJ" then

 do

 ADDRESS "TSO"

 "SUBMIT "DSN"("MBR")"

 if lastcc > Ø then "ISPEXEC SETMSG MSG(ISRZØØ2)"

 end

end

exit

Here are some examples:

• ED – display EDPANEL

• BR ? – display EDPANEL

• ED JCL – edit the dataset associated with JCL

• BR SAS – browse the dataset associated with SAS

• SJ JCL BR14 – submit the BR14 member of the JCL dataset.

Enterprise Data Technologies (USA) © Xephon 2005

Execute program with extended parameter

PROBLEM ADDRESSED

The EXEC parameter has always been a useful and simple means of
passing parameters to a program; rather than processing a file, five
instructions suffice to access the EXEC parameter. In particular for
compilers, there has been a dramatic increase in the number and
range of parameters. However, since time immemorial (with regard
to z/OS and its predecessors), the maximum length of the EXEC
parameter that can be specified by JCL has remained at 100
characters. This may have been appropriate when (real) memory
was literally worth its weight in gold, but nowadays this restriction
is purely artificial. No robust program should have any problem in

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

handling an EXEC parameter of any specified length (the infamous
buffer overflow problem with the associated security risks known
from the Windows world underscores the problems associated with
non-robust programs). Indeed, even some programs which explicitly
state that they can process only parameter lists with a maximum of
100 characters, when invoked dynamically can actually process
longer EXEC parameter lists (eg some COBOL compilers). A
second problem concerns the somewhat abstruse rules for the
continuation of a JCL EXEC PARM when commas, parentheses,
and apostrophes are involved.

Some, but not all, compilers solve these problems by allowing the
use of an options file that can contain additional compiler options.

EXTDPARM, the program described in this article, allows an
extended EXEC parameter, specified in the SYSPARM file, to be
passed to a program invoked dynamically. The name of the program
to receive control is specified in the EXTDPARM EXEC parameter.
This program is loaded from the current load library (STEPLIB,
LOADLIB, etc). Thus, EXTDPARM can be used to invoke any
program with an extended parameter provided the invoked program
correctly processes its EXEC parameter.

SOLUTION

EXTDPARM dynamically invokes the program specified in the
EXEC parameter with the parameter formed from the input specified
by the SYSPARM file. The trailing blanks in each line of the
SYSPARM file are removed. The resulting parameter list is formed
by concatenating each line of the SYSPARM file; any special
characters and leading blanks are passed unchanged.

Example 1:

ALPHA BETA

 GAMMA

 DELTA

produces the parameter list:

ALPHA BETA GAMMA DELTA

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Example 2:

ALPHA BETA,

 'GAMMA '

 DELTA

produces the parameter list:

ALPHA BETA, 'GAMMA ' DELTA

Invocation:

// EXEC PGM=EXTDPATM,PARM=pgmname

//STEPLIB DD DSN=loadlib,DISP=SHR

//SYSPARM DD *

parm1

parm2

...

DD statements are:

• pgmname – the name of the program to be invoked.

• loadlib – the name of the load library that contains EXTDPATM
and pgmname. If required, additional load libraries can be
concatenated.

• parm1 ... parmn – the parameters to be passed to pgmname.

Note: although SYSPARM is shown here assigned to the input
stream, it can be assigned to any PS dataset that has RECFM=FB
and LRECL<256 as file attributes.

Unless EXTDPATM detects a processing error – eg no program
name specified (or name too long), or specified parameter too long
(> 32760 characters, program constant) – it sets its completion code
to that returned from the invoked program.

Error returns:

• -1 – no external program name specified or name longer than
eight characters.

• -2 – parameter overflow.

EXTDPATM

 TITLE 'Execute Program With Extended Parameter'

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

**

* EXTDPATM: Execute (load) program with extended parameter **

Invocation:

* // EXEC EXTDPATM,PARM=execname

* //SYSPARM DD * (RECFM=FB,LRECL<256)

*

* DD:SYSPARM contains the parameters to be passed to the

* specified program. Trailing blanks are removed from each

* line. The processed lines are concatenated together (any

* required delimiters must be specified explicitly, eg

* commas, leading blanks).

*

* Return:

* Return code from the executed program

* Error returns:

* -1: no external program name specified or name longer than

* 8 characters.

* -2: parameter overflow

**

 PRINT NOGEN

 SPACE 1

EXTDPARM CSECT

EXTDPARM AMODE 31

EXTDPARM RMODE 24

* initialise addressing

 STM R14,R12,12(R13) save registers

 BASR R12,Ø base register

 USING *,R12

 LA R15,SA A(save-area)

 ST R13,4(R15) backward ptr

 ST R15,8(R13) forward ptr

 LR R13,R15 A(new save-area)

 SPACE 1

 LHI R15,-1 preload ReturnCode register

 L R2,Ø(R1) pointer to parameters

 SR R1,R1 zeroise R1

 ICM R1,3,Ø(R2) length of program name

 JZ EXIT no exec name (=error)

 CHI R1,L'EXECNAME test length

 JH EXIT too long (=error)

 BCTR R1,Ø LengthCode(parm)

 EX R1,EXMOVE store program name

 SPACE 1

 OPEN (SYSPARM,(INPUT)) open SYSPARM file

 LTR R15,R15 test OPEN return code

 JNZ NOPARM open error -> file does not exist

 LA R2,EXECDATA

 LR R3,R2

 AHI R3,DATALEN end of exec data

 USING IHADCB,SYSPARM

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

READLOOP LHI R15,-2 preload ReturnCode

 CR R2,R3 test for buffer overflow

 JNL EXIT buffer overflow

 GET SYSPARM,(R2) read logical record

* remove trailing blanks

 LH R1,DCBLRECL logical record length

 AR R2,R1 address of record-end +1

TESTLOOP BCTR R2,Ø decrement address pointer

 CLI Ø(R2),C' ' test for blank

 JNE LOOPOUT non-blank found

 JCT R1,TESTLOOP test next character

* empty record

LOOPOUT LA R2,1(R2) correct address pointer

 J READLOOP read next record

 SPACE 1

FILEEOF DS ØH EOF(DD: SYSPARM)

 S R2,=A(EXECDATA) length of buffer data

 STH R2,EXECLEN save length

 CLOSE (SYSPARM)

 SPACE 1

NOPARM DS ØH load and invoke program

 LINK EPLOC=EXECNAME,PARAM=(CALLPARM),VL=1

 SPACE 1

EXIT DS ØH job end

 L R13,4(R13) restore addr. of old save-area

 RETURN (14,12),RC=(15)

 SPACE 1

EXMOVE MVC EXECNAME(Ø),2(R2)

 SPACE 1

* symbolic register equates

RØ EQU Ø

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1Ø EQU 1Ø

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 TITLE 'Data Areas'

 LTORG

 SPACE 1

SYSPARM DCB DDNAME=SYSPARM,DSORG=PS,MACRF=GM,EODAD=FILEEOF

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 SPACE 1

SA DS 18F register save area

 SPACE 1

EXECNAME DC CL8' ' program name

 SPACE

DATALEN EQU 3276Ø

CALLPARM DS ØH

EXECLEN DC H'Ø'

EXECDATA DS CL(DATALEN)

 DS CL256 padding

 SPACE 1

 DCBD DSORG=PS,DEVD=DA

 END

SAMPLE PROGRAM

IDENTIFICATION DIVISION.

PROGRAM-ID. COBPARM.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

Ø1 EXECPARM.

 Ø2 EXECPARM-LEN PIC 9(4) BINARY.

 Ø2 EXECPARM-DATA PIC X(3276Ø).

PROCEDURE DIVISION USING EXECPARM.

 DISPLAY 'EXECPARM:' EXECPARM-DATA

 DISPLAY 'EXECPARM-LEN:' EXECPARM-LEN

 STOP RUN.

SAMPLE INVOCATION

// EXEC PGM=EXTDPATM,PARM=TESTPGM

//STEPLIB DD DSN=loadlib,DISP=SHR

//SYSPARM DD *

NOADATA ADV

 NOANALYZE APOST

 ARITH(COMPAT) NOAWO

 BUFSIZE(8192)

OUTPUT

EXECPARM:NOADATA ADV NOANALYZE APOST ARITH(COMPAT) NOAWO

BUFSIZE(8192)

EXECPARM-LEN:ØØ65

Systems Programmer
(Germany) © Xephon 2005

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

System layout verification tool

For quite some time now, a typical mainframe installation
environment comprises multiple CPUs with many partitions active.

The frequency with which the core software needs to be maintained
imposes a precise operating system design that needs to clearly
reflect the division between ‘target’, ‘distribution’, and ‘operational’
dataset types.

Generally speaking, a ‘target’ or ‘distribution’ dataset is one that has
a ‘DDDEF’ definition in its respective SMP/E zone, whereas
‘operational’ datasets are all those that contain the customizations
of a particular product or feature.

Moreover, the contents of the ‘target’ and ‘distribution’ datasets
may change completely with every upgrade of the operating system,
whereas the ‘operational’ datasets would have minimal updates if
any, and so are maintained intact with each and every release of the
core software.

This differentiation of datasets isn’t merely academic, but rather
becomes almost obligatory if one intends to have an operating
system and base software that must be easy to upgrade and maintain.

The fundamental characteristics of this software design are effectively
summed up in the following technical documents:

• OS/390 Maintenance Philosophy – An IBM View.

• SHARE SUMMER 2000 Technical Conference Session 2825,
26 July 2000.

Even the Serverpac dialogs push the systems programmer to dedicate
the RESVOL volumes only to the ‘target’ datasets, while the SMP/
E and ‘distribution’ datasets have separate volumes.

It is desirable that those ‘operational’ datasets that define the ‘image
customization set’ get allocated on a different volume from the ones
that go to a new ServerPac or CBPDO – in this case, one is often
advised to take advantage of indirect cataloguing through the use of

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

the system symbols that are defined in the member of
SYS1.PARMLIB(IEASYMxx).

Each one of us is full of good intentions, but in the end even in a job
well done the odd error can slip through and in time create problems.

To this end I have written EXAMSYS, a batch utility that will
examine (one volume at a time) all those volumes intended for the
operating system.

The end result for each selected volume is a printout listing every
file, clearly pointing out the relating SMP/E zone, the type of
cataloguing used as well as the correct type to be used, and also the
quantity of ‘operational’ datasets on that volume.

Having read through the report, one ultimately understands whether
or not that particular volume has been correctly assigned and if any
datasets have been allocated on the wrong logical volume.

To do all this I have used the standard IBM utilities as well as a few
lines of code using the REXX language.

Everything can be easily modified, should one so desire, including
the structure of the final printout (see Step/JCL with ICETOOL).

EXAMDSN REXX SAMPLE

/* REXX ------------------------------------ */

/* REXX RECORD MANIPULATION OF PRINTOUT FILE */

/* REXX ------------------------------------ */

 TRACE OFF

 " PROF NOPREF "

 WK_FILEV = 'START'

 WK_FILED = 'START'

 WK_RCD = Ø

 WK_RCV = Ø

 "EXECIO Ø DISKR FILED (OPEN"

 "EXECIO Ø DISKR FILEV (OPEN"

 "EXECIO Ø DISKW FILEP (OPEN"

/* - EMPTY FILE -------------------------- */

 IF WK_FILED = 'START' THEN DO

 "EXECIO 1 DISKR FILED "

 WK_RCD = RC

 IF WK_RCD > Ø THEN EXIT(98)

 PULL WK_FILED

 END

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 IF WK_FILEV = 'START' THEN DO

 "EXECIO 1 DISKR FILEV "

 WK_RCV = RC

 IF WK_RCV > Ø THEN EXIT(99)

 PULL WK_FILEV

 END

/* - EMPTY FILE -------------------------- */

 DO FOREVER

 SELECT

 WHEN WK_RCD > Ø

 THEN DO

 CALL PROC_PRINT

 "EXECIO 1 DISKR FILEV "

 WK_RCV = RC

 IF WK_RCV > Ø THEN LEAVE

 PULL WK_FILEV

 END

 WHEN SUBSTR(WK_FILEV,Ø2,44) = SUBSTR(WK_FILED,3Ø,44)

 THEN DO

 CALL PROC_PRINT

 "EXECIO 1 DISKR FILED "

 WK_RCD = RC

 PULL WK_FILED

 "EXECIO 1 DISKR FILEV "

 WK_RCV = RC

 IF WK_RCV > Ø THEN LEAVE

 PULL WK_FILEV

 END

 WHEN SUBSTR(WK_FILEV,Ø2,44) > SUBSTR(WK_FILED,3Ø,44)

 THEN DO

 "EXECIO 1 DISKR FILED "

 WK_RCD = RC

 PULL WK_FILED

 END

 WHEN SUBSTR(WK_FILEV,Ø2,44) < SUBSTR(WK_FILED,3Ø,44)

 THEN DO

 CALL PROC_PRINT

 "EXECIO 1 DISKR FILEV "

 WK_RCV = RC

 IF WK_RCV > Ø THEN LEAVE

 PULL WK_FILEV

 END

 OTHERWISE NOP

 END

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 END

/* -------------------------------------- */

 "EXECIO Ø DISKR FILEV (FINIS"

 "EXECIO Ø DISKR FILED (FINIS"

 "EXECIO Ø DISKW FILEP (FINIS"

 EXIT(ØØ)

/* INTERNAL ROUTINE ---------------------- */

 PROC_PRINT:

 SELECT

 WHEN INDEX(WK_FILEV,'.VTOCIX.') <> Ø THEN RETURN

 WHEN INDEX(WK_FILEV,'.VVDS.') <> Ø THEN RETURN

 WHEN INDEX(WK_FILEV,'.DATA ') <> Ø THEN RETURN

 WHEN INDEX(WK_FILEV,'.INDEX ') <> Ø THEN RETURN

 WHEN INDEX(WK_FILEV,'.CATINDEX ') <> Ø THEN RETURN

 OTHERWISE NOP

 END

/* -------------------------------------- */

 WK_DSNP = SUBSTR(WK_FILEV,Ø2,44)

 WK_ZON = 'OPERATIONAL '

 WK_DRC = ' NO '

 WK_CAT = ' NO '

 WK_FLG = '<<'

 WK_DDN = ' '

/* -------------------------------------- */

 LL = OUTTRAP(LINE.)

 "LISTC ENT("WK_DSNP") VOL"

 IF RC = Ø THEN DO

 WK_CAT = ' YES '

 I = 4

 DO UNTIL I = 9

 IF INDEX(LINE.I,"DEVTYPE------X'ØØØØØØØØ'") > Ø

 THEN WK_DRC = ' YES '

 I = I + 1

 END

 END

 LL = OUTTRAP(OFF)

/* -------------------------------------- */

 SELECT

 WHEN WK_RCD > Ø THEN NOP

 WHEN SUBSTR(WK_FILEV,Ø2,44) = SUBSTR(WK_FILED,3Ø,44)

 THEN DO

 WK_ZON = SUBSTR(WK_FILED,1Ø1,15)

 WK_DDN = SUBSTR(WK_FILED,Ø2,Ø8)

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 END

 OTHERWISE NOP

 END

/* -------------------------------------- */

 WK_FILEP = WK_DSNP WK_DDN WK_ZON WK_DRC WK_CAT WK_FLG

 PUSH WK_FILEP

 "EXECIO 1 DISKW FILEP "

/* -------------------------------------- */

 RETURN

EXAMOUT REXX SAMPLE

/* REXX ---------------------------------- */

/* REXX RECORD MANIPULATION OF OUTPUT FILE */

/* REXX ---------------------------------- */

 TRACE OFF

 WK_EMPTY = 'NOK'

 WK_ZONE = ''

 "EXECIO Ø DISKR INPØØØ (OPEN"

 "EXECIO Ø DISKW SORTIN (OPEN"

/* -------------------------------------- */

 READØØ:

 DO FOREVER

 "EXECIO 1 DISKR INPØØØ "

 WK_RC = RC

 IF WK_RC > Ø THEN LEAVE

 PULL MY_INPØØØ

 IF INDEX(MY_INPØØØ,'DDDEF ENTRIES') = Ø

 THEN DO

 WK_SORTIN = SUBSTR(MY_INPØØØ,Ø1,1ØØ)WK_ZONE

 PUSH WK_SORTIN

 "EXECIO 1 DISKW SORTIN "

 END

 ELSE DO

 WK_EMPTY = 'OK'

 WK_ZONE = SUBSTR(MY_INPØØØ,Ø2,Ø7)

 END

 END

 ENDØØ:

 "EXECIO Ø DISKR INPØØØ (FINIS"

 "EXECIO Ø DISKW SORTIN (FINIS"

/* -------------------------------------- */

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 IF WK_EMPTY = 'NOK' THEN EXIT(2Ø)

/* -------------------------------------- */

 IF WK_RC <> 2 THEN EXIT(5Ø)

/* -------------------------------------- */

 ADDRESS "LINKMVS" "ICEMAN"

 IF RC <> Ø THEN EXIT(4Ø)

/* -------------------------------------- */

 "EXECIO Ø DISKW WORKEND (OPEN"

 "EXECIO Ø DISKR SORTOUT (OPEN"

 WK_REC1 = '$$.START.$$'

 WK_REC2 = ''

 DO FOREVER

 SELECT

 WHEN WK_REC1 = '$$.END.$$'

 THEN LEAVE

 WHEN WK_REC1 = '$$.START.$$'

 THEN CALL READ_ALL

 WHEN SUBSTR(WK_REC1,2,44) = SUBSTR(WK_REC2,2,44)

 THEN DO

 WK_ZON1 = SUBSTR(WK_REC1,1Ø1,7)

 WK_ZON2 = SUBSTR(WK_REC2,1Ø1,7)

 WK_WORKEND = SUBSTR(WK_REC1,Ø1,Ø99) WK_ZON1 WK_ZON2

 PUSH WK_WORKEND

 "EXECIO 1 DISKW WORKEND "

 CALL READ_ALL

 END

 WHEN SUBSTR(WK_REC1,2,44) <> SUBSTR(WK_REC2,2,44)

 THEN DO

 WK_WORKEND = WK_REC1

 PUSH WK_WORKEND

 "EXECIO 1 DISKW WORKEND "

 WK_REC1 = WK_REC2

 CALL READ_ONE

 END

 OTHERWISE NOP

 END

 END

 "EXECIO Ø DISKR SORTOUT (FINIS"

 "EXECIO Ø DISKW WORKEND (FINIS"

 EXIT(ØØ)

/* INTERNAL ROUTINE ---------------------- */

 READ_ALL:

 "EXECIO 1 DISKR SORTOUT"

 IF RC > Ø THEN WK_REC1 = '$$.END.$$'

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 ELSE PULL WK_REC1

 READ_ONE:

 IF WK_REC1 = '$$.END.$$' THEN RETURN

 "EXECIO 1 DISKR SORTOUT"

 IF RC > Ø THEN WK_REC2 = '$$.END.$$'

 ELSE PULL WK_REC2

 RETURN

SAMPLE JCL TO RUN EXAMSYS

//...... JOB,......,CLASS=.,MSGCLASS=.,REGION=ØM,COND=(Ø,GT)

//** --- **

//** BEFORE SUBMITTING THE JOB: **

//** > IN ST1ØØ INDICATE: **

//** . THE CORRECT CSI NAME ON THE 'SMPCSI' DD CARD; **

//** . THE CORRECT ZONE NAMES ON THE 'SMPCNTL' DD CARD. **

//** > IN ST4ØØ INDICATE: **

//** . THE NAME OF THE VOLUME TO BE EXAMINED IN 'SYSIN' CARD.**

//** . THE CORRECT VOL=SER ON THE 'DISKØØ' DD CARD. **

//** --- **

//ST1ØØ EXEC PGM=GIMSMP

//SMPCSI DD DISP=SHR,DSN='your_.GLOBAL.CSI'

//SMPLIST DD DSN=&&SMPLIST,DISP=(MOD,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=(LRECL=121,BLKSIZE=726Ø,RECFM=FBA)

//SYSOUT DD SYSOUT=*

//SMPLOG DD DUMMY

//SMPLOGA DD DUMMY

//SMPRPT DD DUMMY

//SMPOUT DD DUMMY

//SMPCNTL DD *

 SET BOUNDARY(GLOBAL).

 LIST DDDEF.

 SET BOUNDARY(your_target_zone).

 LIST DDDEF.

 SET BOUNDARY(your_distribution_zone).

 LIST DDDEF.

/*

//** -- **

//ST2ØØ EXEC PGM=ICEMAN

//SORTIN DD DSN=&&SMPLIST,DISP=(OLD,PASS)

//SORTOUT DD DSN=&&DDDEF1,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=*.ST1ØØ.SMPLIST

//SYSOUT DD DUMMY

//SYSIN DD *

 SORT FIELDS=COPY

 INCLUDE COND=(12,17,CH,EQ,C'DATASET =', *

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 OR,1Ø,13,CH,EQ,C'DDDEF ENTRIES')

/*

//** --EXEC REXX - EXAMOUT ---------------------------------- **

//ST3ØØ EXEC PGM=IKJEFTØ1,PARM='%EXAMOUT'

//INPØØØ DD DSN=&&DDDEF1,DISP=(OLD,PASS)

//SORTIN DD DSN=&&DDDEF2,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=*.ST1ØØ.SMPLIST

//SORTOUT DD DSN=&&DDDEF3,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=*.ST1ØØ.SMPLIST

//WORKEND DD DSN=&&DDDEND,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=*.ST1ØØ.SMPLIST

//SYSPROC DD DISP=SHR,DSN=your_sysproc

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSOUT DD DUMMY

//SYSTSIN DD DUMMY

//SYSIN DD *

 SORT FIELDS=(3Ø,44,CH,A)

/*

//** -- **

//ST4ØØ EXEC PGM=IEHLIST

//SYSPRINT DD DSN=&&VTOCL,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=*.ST1ØØ.SMPLIST

//DISKØØ DD UNIT=339Ø,VOL=SER=your_volser,DISP=SHR

//SYSIN DD *

 LISTVTOC VOL=339Ø=your_volser

/*

//** -- **

//ST5ØØ EXEC PGM=ICEMAN

//SORTIN DD DSN=&&VTOCL,DISP=(OLD,PASS)

//SORTOUT DD DSN=&&VTOCP,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=*.ST1ØØ.SMPLIST

//SYSOUT DD DUMMY

//SYSIN DD *

 SORT FIELDS=COPY

 OMIT COND=(Ø2,Ø6,CH,EQ,C'DATE: ', *

 OR,Ø3,1Ø,CH,EQ,C'THERE ARE ', *

 OR,Ø5,12,CH,EQ,C'THERE IS A ', *

 OR,Ø5,13,CH,EQ,C'DATA SETS ARE', *

 OR,15,17,CH,EQ,C'--DATA SET NAME--', *

 OR,18,24,CH,EQ,C'CONTENTS OF VTOC ON VOL ', *

 OR,32,25,CH,EQ,C'SYSTEMS SUPPORT UTILITIES')

/*

//** --EXEC REXX - EXAMDSN ---------------------------------- **

//ST6ØØ EXEC PGM=IKJEFTØ1,PARM='%EXAMDSN'

//FILEV DD DSN=&&VTOCP,DISP=(OLD,PASS)

//FILED DD DSN=&&DDDEND,DISP=(OLD,PASS)

//FILEP DD DSN=&&OUTPØ,DISP=(,PASS),UNIT=VIO,

// SPACE=(CYL,3),DCB=(LRECL=9Ø,BLKSIZE=6Ø3Ø,RECFM=FB)

//SYSPRINT DD DUMMY

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//SYSTSPRT DD DUMMY

//SYSPROC DD DISP=SHR,DSN=*.ST3ØØ.SYSPROC

//SYSTSIN DD DUMMY

//** -- **

//ST7ØØ EXEC PGM=ICETOOL

//TOOLMSG DD DUMMY

//DFSMSG DD DUMMY

//IN1 DD DISP=(OLD,PASS),DSN=&&OUTPØ

//REPORT DD SYSOUT=*

//TOOLIN DD *

 DISPLAY FROM(IN1) LIST(REPORT) DATE TIME PAGE -

 TITLE(' SYSTEM DESIGN CHECK ') -

 HEADER('DATASET NAME ') ON(Ø1,44,CH) -

 HEADER(' SMP/E DDDEF ') ON(45,Ø8,CH) -

 HEADER(' SMP/E ZONES ') ON(54,16,CH) -

 HEADER('INDIRECT/CAT ') ON(7Ø,Ø5,CH) -

 HEADER(' CATALOGUED ') ON(76,Ø5,CH) -

 BLANK LINES(63)

/*

PRINTOUT RESULT

Ø1/28/Ø3 13:39:23 - 1 - SYSTEM DESIGN CHECK

 DATASET NAME SMP/E DDDEF SMP/E ZONES INDIRECT/CAT CATALOGUED

 ---------------- ------------ ----------- ------------ ----------

 AOP.SAOPEXEC SAOPEXE TARGET_zone YES YES

 AOP.SAOPMENU SAOPMEN TARGET_zone YES YES

 AOP.SAOPPENU SAOPPEN TARGET_zone YES YES

 ...

 GLD.SGLDLNK.COPY OPERATIONAL NO NO

 GSK.SGSKLOAD SGSKLOA TARGET_zone YES YES

 ICA.SICALMOD SICALMO TARGET_zone YES YES

 ..

 IOE.SIOEPROC SIOEPRO TARGET_zone YES YES

 ISF.SISFEXEC SISFEXE TARGET_zone YES YES

 ISF.SISFLINK SISFLIN TARGET_zone YES YES

 ISF.SISFLOAD SISFLOA TARGET_zone YES YES

 ..

 SYS1.ADGTPLIB ADGTPLI DISTRIBUTION_zone NO YES

 SYS1.AERBPWSV AERBPWS DISTRIBUTION_zone YES YES

 SYS1.PARMLIB OPERATIONAL NO YES

 ...

 SYS1.VTAMLST OPERATIONAL YES YES

 TCPIP.SEZACMTX SEZACMT TARGET_zone YES YES

 ...

Massimo Ambrosini (Italy) © Xephon 2005

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Comparing two files

The following program was written to check whether two files have
identical contents. The files being compared can be KSDS, RRDS,
ESDS, or non-VSAM. The files have DDnames INFILE1 and
INFILE2. Each record is compared with the same record of the other
file. If one of the records is shorter than the other, the shorter record
is padded with the character indicated by variable PADCHAR
within the program (space by default), and the rules of the CLCL
(compare logical long) instruction apply. This is useful, for example,
if you want to compare an ordinary 80-byte sequential file, but
where only the first 50 bytes are meaningful and the remaining are
spaces, with a 50-byte VSAM file.

If an unequal record is found, the program sends out a message to
SYSPRINT, indicating that record number, and continues the
comparison. If a predefined number of unequal records is attained
(as defined by variable DIFLIMIT), the program terminates.
Otherwise, the program continues until it reaches the end of both
files. If one of the files ends first, the program continues to read the
other up to its end, but without performing any more comparisons,
in order to find out how many records each file has. In the end, it
sends a message with that information.

You can also compare just part of each record. For example, you
have code in the first file which is 10 bytes long and occurs at offset
23, and you want to know if it matches the second file, where that
code occurs at offset 175. For this, pass a parameter to the program,
with two pairs of length-offset values, with each value separated by
commas. The first pair relates to INFILE1 and the second pair to
INFILE2:

//STEP1 EXEC PGM=VCOMPARE,PARM='1Ø,23,1Ø,175'

//INFILE1 DD DISP=SHR,DSN=first.file

//INFILE2 DD DISP=SHR,DSN=second.file

//SYSPRINT DD SYSOUT=*

This way, only the specified bytes are compared, and the rest of each
record is ignored.

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

If no parameter is given, the entire records are compared, as initially
explained. Parameters are positional, and can be partially omitted.
For example, if you just want to compare the first 25 bytes of each
record (that means, with the default offset zero), you can code either
of these:

//EXEC PGM=VCOMPARE,PARM='25,Ø,25,Ø'

//EXEC PGM=VCOMPARE,PARM='25,,25'

This also is applicable if, as in the first example, you just want to
compare the first 50 bytes of the sequential file against the entire 50-
byte VSAM. Since this last value is the default, because it is the
VSAM record length, you can omit it, and just specify the length for
the first file:

//EXEC PGM=VCOMPARE,PARM='5Ø'

which, in this particular case, would be identical to:

//EXEC PGM=VCOMPARE,PARM='5Ø,Ø,5Ø,Ø'

//EXEC PGM=VCOMPARE,PARM='5Ø,,5Ø'

This way, the remaining 30 bytes of the seqential file would be
ignored, and only the first 50 bytes would be considered.

VCOMPARE SOURCE CODE

==

* *

* VCOMPARE - Compare two files. The files can be VSAM, sequential, *

* or both, with fixed or variable length. *

* Files are assigned to DDnames INFILE1 and INFILE2. *

* Records are compared in a parallel fashion. If two records do not *

* have the same length, the smaller is considered to be padded with *

* the character stored in variable PADCHAR (space by default). *

* If inequal records are found, the program prints a message with *

* the record number and increments a counter. If a certain number of *

* unequal records is attained, the program terminates. *

* That number is set in variable DIFLIMIT. *

* *

* The program also states how many records each file has. If a file *

* ends sooner than the other, the program continues to read the *

* longer file until it ends, to determine the number of records, but *

* no more comparisons take place. *

* *

* Records can be compared totally or in part. For partial comparison *

* specify a length-offset pair for each file, with each value *

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

* separated by commas. Values are positional. If a value is not *

* specified, the defaults are assumed (the full length of each *

* record from offset zero). The first pair of values concerns file1 *

* and the second pair concerns file2. *

* *

==

&PROGRAM SETC 'VCOMPARE'

&PROGRAM AMODE 31

&PROGRAM RMODE 24

&PROGRAM CSECT

 SAVE (14,12)

 LR R12,R15

 USING &PROGRAM,R12

 ST R13,SAVEA+4

 LA R11,SAVEA

 ST R11,8(R13)

 LR R13,R11

 B GETPARMS

 DC CL16' &PROGRAM 2.1'

 DC CL8'&SYSDATE'

*

==

* Separate input parameter into its components, convert them to

* binary form, and store them in fields PARM1 thru PARM4. If any of

* the parms does not exist, those fields will remain with low-values.

* For each parm specified, set the corresponding flag field to 1, in

* order to allow CLI comparisons later on.

==

*

GETPARMS DS ØH

 LR R2,R1 Copy parameter pointer to R2.

 L R2,Ø(Ø,R2) Load parm address

 LH R3,Ø(R2) Load parm length in R3

 LTR R3,R3 Any parm entered?

 BZ OPENPRT No

*

 LR R6,R2

 AR R6,R3 R6: point after end of parms

 LA R6,2(Ø,R6) Skip 2 bytes of parmlength

 LA R2,2(Ø,R2) Skip 2 bytes of parmlength

 LR R4,R2 R4: Current char to ckeck

 LA R11,PARM1 Area to keep parms in binary form

 XR R9,R9 Clear length counter

*

LOOPARMS EQU *

 CR R4,R6 End of all parms?

 BNL CONVERT Yes, go convert the last one

 CLI Ø(R4),C',' Comma found?

 BE CONVERT Yes, go convert parm

 LA R9,1(Ø,R9) Increment index (char counter)

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 LA R4,1(Ø,R4) Increment pointer (current char)

 B LOOPARMS And continue

*

CONVERT EQU *

 LTR R9,R9 Any chars in current parm?

 BZ CONVERT2 No, skip pack and cvb instructions

 S R9,=F'1' Sub one for ex

 EX R9,PACKEX Execute pack

 LA R9,1(Ø,R9) Increment again

 CVB R7,PARMPACK Convert to binary into R7

 ST R7,Ø(R11) And store it in R11 (Parm1 to 4)

*

CONVERT2 EQU *

 CR R4,R6 End of all parms?

 BNL SETFLAG1 Yes, move ahead

 AR R2,R9 Add length to base pointer

 LA R2,1(Ø,R2) And skip comma

 XR R9,R9 Reset length

 LR R4,R2 R4: Current char

 LA R11,4(Ø,R11) Point next binary parm storarea

 B LOOPARMS

*

SETFLAG1 CLC PARM1,=F'Ø' Parm1 specified?

 BE SETFLAG2 No, try next

 MVI P1FLAG,C'1' Yes, set flag to 1

SETFLAG2 CLC PARM2,=F'Ø' Same for others

 BE SETFLAG3

 MVI P2FLAG,C'1'

SETFLAG3 CLC PARM3,=F'Ø'

 BE SETFLAG4

 MVI P3FLAG,C'1'

SETFLAG4 CLC PARM4,=F'Ø'

 BE OPENPRT

 MVI P4FLAG,C'1'

*

==

* Check what kind of files we have and try to open them.

* First attempt is to open as VSAM. If Error, assume non-VSAM file.

* If VSAM, test ACB for ESDS. If ESDS, modify RPL accordingly.

==

*

OPENPRT DS ØF Open sysprint

 OPEN (SYSPRINT,OUTPUT) for displaying messages

*

OPENACB1 EQU * Open ACB for VSAM file

 OPEN INFILEA1 If error, go open DCB for seq file

 LTR R15,R15

 BNZ OPENDCB1

 TESTCB ACB=INFILEA1, X

 ATRB=ESDS Check if VSAM ESDS

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 BNE OPENACB2 No, go open second file

*

ESDSFIL1 EQU *

 MODCB RPL=INFILER1, X

 OPTCD=ADR Modify RPL for ESDS

 B OPENACB2

*

OPENDCB1 EQU * Open DCB (sequential file)

 OPEN (INFILED1,INPUT)

 LTR R15,R15

 BNZ ERRMSG2

*

 MVI FILETYP1,C'S' Set flag sequential type (nonVSAM)

 LA R2,INFILED1 Address IHADCB of input file1

 USING IHADCB,R2

 TM DCBRECFM,DCBBIT1 Is recfm V or U (B'x1xxxxxx)

 BNO OPENACB2 No, jump ahead

 MVI FILEVAR1,C'U' set recfm undefined

 TM DCBRECFM,DCBBITØ Is recfm U (B'11xxxxxx)

 BO OPENACB2 Yes, jump ahead

 MVI FILEVAR1,C'V' set recfm variable

*

*

OPENACB2 EQU * Open ACB for VSAM file

 OPEN INFILEA2 If error, go open DCB for seq file

 LTR R15,R15

 BNZ OPENDCB2

 TESTCB ACB=INFILEA2, X

 ATRB=ESDS Check if VSAM ESDS

 BNE READFILS No, jump ahead

*

ESDSFIL2 EQU *

 MODCB RPL=INFILER2, X

 OPTCD=ADR Modify RPL for ESDS

 B READFILS

*

OPENDCB2 EQU * Open DCB (sequential file)

 OPEN (INFILED2,INPUT)

 LTR R15,R15

 BNZ ERRMSG2

*

 MVI FILETYP2,C'S' Set flag sequential type (nonVSAM)

 LA R11,INFILED2 Address IHADCB of input file2

 DROP R2

 USING IHADCB,R11

 TM DCBRECFM,DCBBIT1 Is recfm V or U (B'x1xxxxxx)

 BNO READFILS No, jump ahead

 MVI FILEVAR2,C'U' set recfm undefined

 TM DCBRECFM,DCBBITØ Is recfm U (B'11xxxxxx)

 BO READFILS Yes, jump ahead

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 MVI FILEVAR2,C'V' set recfm variable

*

==

* Now enter a loop where we read a pair of records and compare them

* If they are equal, continue reading another pair.

* If they are different, print a message with the record number within

* the file and continue. If the maximum limit of different records

* is attained, terminate the program.

==

*

READFILS EQU *

 XR R8,R8 Record count for file1

 XR R9,R9 Record count for file2

READ1 EQU *

 CLI ENDF1,C'F' End of file1 already happened?

 BE READ2 Yes, just read file2

 LA R8,1(Ø,R8) Increment file1 record counter

 CLI FILETYP1,C'V'

 BNE READSEQ1

*

READVSA1 EQU *

 GET RPL=INFILER1 Read VSAM file

 LTR R15,R15 End of file?

 BNZ ENDFILE1

 L R4,VAREA1 Get address of data in R4.

 SHOWCB RPL=INFILER1, X

 AREA=LRECL1, X

 LENGTH=4, X

 FIELDS=RECLEN

 L R5,LRECL1 Get record length in R5

 B READ2

*

READSEQ1 EQU *

 DROP R11

 USING IHADCB,R2

 GET INFILED1 Read sequential (locate method)

 LR R4,R1 copy address of data to R4.

 LH R5,DCBLRECL Load R5 with record length.

 CLI FILEVAR1,C'V' Is recfm variable?

 BNZ READ2 No, jump ahead.

 LA R4,4(Ø,R4) Yes, skip 4 bytes of RDW

 SH R5,=H'4' And reduce record length.

*

READ2 EQU *

 CLI ENDF2,C'F' End of file2 already happened?

 BE READ1 Yes, just read file1

 LA R9,1(Ø,R9) Increment file2 record counter

 CLI FILETYP2,C'V'

 BNE READSEQ2

*

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

READVSA2 EQU *

 GET RPL=INFILER2 Read VSAM file

 LTR R15,R15 End of file?

 BNZ ENDFILE2

 L R6,VAREA2 Get address of data in R6

 SHOWCB RPL=INFILER2, X

 AREA=LRECL2, X

 LENGTH=4, X

 FIELDS=RECLEN

 L R7,LRECL2 Get record length in R7

 B COMPARE

*

READSEQ2 EQU *

 DROP R2

 USING IHADCB,R11

 GET INFILED2 Read sequential (locate method)

 LR R6,R1 copy address of data to R6.

 LH R7,DCBLRECL Load R7 with record length.

 CLI FILEVAR2,C'V' Is recfm variable?

 BNZ COMPARE No, jump ahead.

 LA R6,4(Ø,R6) Yes, skip 4 bytes of RDW

 SH R7,=H'4' And reduce record length.

*

COMPARE EQU *

 CLI ENDF1,C'F' If any of the files already ended,

 BE READ2 no comparison is necessary.

 CLI ENDF2,C'F' Just continue to read the other

 BE READ1 until it ends also.

*

ASKFLAG1 CLI P1FLAG,C'Ø' If parm1 (length) not zero,

 BE ASKFLAG2 assume parm1 length for file1

 L R5,PARM1

ASKFLAG2 CLI P2FLAG,C'Ø' If parm2 (offset) not zero,

 BE ASKFLAG3 add it to the record pointer

 A R4,PARM2

ASKFLAG3 CLI P3FLAG,C'Ø' Same for file 2 parms.

 BE ASKFLAG4

 L R7,PARM3

ASKFLAG4 CLI P4FLAG,C'Ø'

 BE ASKNOMOR

 A R6,PARM4

ASKNOMOR ICM R7,B'1ØØØ',PADCHAR Insert padchar in R7

*

COMPLOOP EQU *

 CLCL R4,R6 Compare strings

 BZ READ1 Strings are equal

 BL DIFERENT Strings are different

 BH DIFERENT Strings are different

 B COMPLOOP Equal so far, continue

*

DIFERENT EQU *

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 XR RØ,RØ

 AH RØ,DIFCOUNT Increment different record counter

 AH RØ,=H'1'

 STH RØ,DIFCOUNT

 CH R8,DIFLIMIT Different limit attained?

 BE EXIT2 Yes, exit

 LR RØ,R8 Prepare different recnum

 BAL R1Ø,UNPACK for display

 MVC DIFNUM,OUT1Ø

 PUT SYSPRINT,DIFMSG Send message

 B READ1 And continue with next record

*

ENDFILE1 EQU *

 S R8,=F'1'

 LR RØ,R8 Prepare number of records

 BAL R1Ø,UNPACK for display

 MVC ENDNUM1,OUT1Ø

 PUT SYSPRINT,ENDMSG1 Send message

 MVI ENDF1,C'F'

 CLI ENDF2,C'F'

 BE EXITØ

 B READ2

*

ENDFILE2 EQU *

 S R9,=F'1'

 LR RØ,R9

 BAL R1Ø,UNPACK

 MVC ENDNUM2,OUT1Ø

 PUT SYSPRINT,ENDMSG2

 MVI ENDF2,C'F'

 CLI ENDF1,C'F'

 BE EXITØ

 B READ1

*

==

* Close files and exit

==

*

EXITØ EQU *

 CLC DIFCOUNT,=H'Ø'

 BNE EXIT1

 PUT SYSPRINT,NODIFMSG

 B EXIT1

*

EXIT2 EQU *

 PUT SYSPRINT,LIMITMSG

*

EXIT1 EQU *

 CLOSE INFILED1

 CLOSE INFILED2

 CLOSE INFILEA1

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 CLOSE INFILEA2

 CLOSE SYSPRINT

 L R13,SAVEA+4

 LM R14,R12,12(R13)

 XR R15,R15

 BR R14

*

==

* Subroutines and work areas

==

*

UNPACK EQU * Binary to display:

 CVD RØ,REGDECIM Convert binary to packed decimal

 UNPK OUT12,REGDECIM and unpack

 BR R1Ø Return

*

ERRMSG1 EQU *

 PUT SYSPRINT,=CL8Ø'>>> Error opening input file INFILE1'

 B EXIT1

ERRMSG2 EQU *

 PUT SYSPRINT,=CL8Ø'>>> Error opening input file INFILE2'

 B EXIT1

*

INFILEA1 ACB DDNAME=INFILE1 VSAM ACB

INFILER1 RPL ACB=INFILEA1, VSAM RPL X

 OPTCD=LOC, Locate method X

 AREA=VAREA1, Record buffer address X

 ARG=CHAVE1 Only needed for rrds

*

INFILED1 DCB DSORG=PS,MACRF=(GL), For sequential files X

 EODAD=ENDFILE1, X

 DDNAME=INFILE1

*

INFILEA2 ACB DDNAME=INFILE2 VSAM ACB

INFILER2 RPL ACB=INFILEA2, VSAM RPL X

 OPTCD=LOC, Locate method X

 AREA=VAREA2, Record buffer address X

 ARG=CHAVE2 Only needed for rrds

*

INFILED2 DCB DSORG=PS,MACRF=(GL), For sequential files X

 EODAD=ENDFILE2, X

 DDNAME=INFILE2

*

SYSPRINT DCB DSORG=PS,MACRF=(PM), X

 LRECL=8Ø, X

 DDNAME=SYSPRINT

*

 LTORG

SAVEA DS 18F

VAREA1 DS F Address of record buffer (VSAM)

CHAVE1 DS F Record key (rrds - VSAM)

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

LRECL1 DS F Record length (VSAM)

VAREA2 DS F Address of record buffer (VSAM)

CHAVE2 DS F Record key (rrds - VSAM)

LRECL2 DS F Record length (VSAM)

FILETYP1 DC C'V' Flag preset for VSAM

FILETYP2 DC C'V' Flag preset for VSAM

FILEVAR1 DC C'F' Flag preset to recfm F (if nonVSAM)

FILEVAR2 DC C'F' Flag preset to recfm F (if nonVSAM)

ENDF1 DC C' ' Flag for end of file 1

ENDF2 DC C' ' Flag for end of file 2

PADCHAR DC C' ' Fill char for different reclen

DIFLIMIT DC H'2Ø' Max different records

DIFCOUNT DC H'Ø' Different record count area

*

PACKEX PACK PARMPACK,Ø(Ø,R2) Pack from input parm to parmpack

PARMPACK DS D Pack and convert to binary areas

PARM1 DC F'Ø' for input parameters

PARM2 DC F'Ø'

PARM3 DC F'Ø'

PARM4 DC F'Ø'

P1FLAG DC C'Ø' Flags are set to 1

P2FLAG DC C'Ø' if parms 1 to 4 have a value

P3FLAG DC C'Ø' other than the initial zero.

P4FLAG DC C'Ø'

*

 DS ØD Convert to decimal and unpack

REGDECIM DS CL9 areas for output numbers

 DS ØF

OUT12 DS ØCL12

OUT1Ø DS CL1Ø

 DS CL2

*

NODIFMSG DC CL8Ø'** No differences found in compared records **'

LIMITMSG DC CL8Ø'++ Max number of different records attained ++'

DIFMSG DC C'Differences found in record number :'

DIFNUM DS CL1Ø

 DC CL4Ø' '

ENDMSG1 DC C'Number of records of INFILE1 . . . :'

ENDNUM1 DS CL1Ø

 DC CL4Ø' '

ENDMSG2 DC C'Number of records of INFILE2 . . . :'

ENDNUM2 DS CL1Ø

 DC CL4Ø' '

*

 DCBD DSORG=PS Ihadcb map (addressed by R2 for

 YREGS file1 and by R11 for file2)

 END

Systems Programmer
(Portugal) © Xephon 2005

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

WLM postprocessing made easy

INTRODUCTION

As is commonly known, beginning with z/OS V1R3, compatibility-
mode is no longer available and an IPLed system will run in WLM
goal-mode only. This means that each installation will be required
to have a service definition installed and a WLM policy activated.
Once a service definition is in place and the system is running in
goal-mode, performance analysts are faced with the task of trying to
understand what is going on in the system.

On the other hand, it may happen that, even though an installation
is running in goal-mode for quite some time and everything is
performing quite well, there are still changes, such as workload,
software, or hardware changes, that should cause one to review, re-
evaluate, and perhaps to modify WLM goals. This is where using a
performance reporter product can be useful.

One of the best ways to review the WLM performance metrics is
through the use of both real-time monitors (RMF Monitor III
SYSSUM report, for example) and a postprocessor.

There are several areas one will want to look at to quickly gain
knowledge of how a given workload is performing in relation to the
goals that have been set in the service policy. One should keep in
mind the fact that WLM uses three primary metrics to define how it
should manage workloads – importance levels, service objectives,
and performance index (PI):

• Importance level identifies the service classes according to the
order in which WLM is to try to satisfy stated objectives, ie the
order they should receive/donate resources. Since WLM
dynamically adjusts the resources, the importance level
determines how those adjustments are to be made and in what
order. It was noticed that there is a strong temptation to place too
many units of work into the upper importance levels and thus to
overload WLM’s decision-making capability. The consequence

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

of this is that a high importance-level workload that fails to meet
its objectives will invariably prevent lower importance level
work from being examined.

• The defined service objectives categories (response time,
response time percentile, velocity, discretionary) are telling
WLM what the standard of measure will be.

• Performance index (PI) is used to evaluate how well the stated
objectives are being met. WLM uses performance index in
conjunction with importance level to determine what action (if
any) should be taken. Most people are aware that a PI greater
than 1 indicates that goals are not being met, while a PI of less
than 1 indicates they are being exceeded.

Once the work has been classified into service classes with defined
goals, the performance index tells us whether the workload on the
system is meeting its WLM policy-defined goals, or that nothing is
acting in the way we thought it would. Besides the obvious point that
a service class is missing its objectives, this may also indicate that
a particular objective is simply too aggressive for WLM to ever
satisfy. What if you have noticed that a service class isn’t performing
well because of a WLM-managed resource such as CPU, or that a
Sysplex performance index is significantly less than a local
performance index? For those performance analysts who have a
grasp of Workload Manager concepts, constraints, and analysis
techniques, the WLM postprocessor can significantly reduce the
time required to perform daily analysis of system performance.

COLLECTING WLM DATA

As mentioned above, Workload Manager periodically assesses the
performance of each service class period by comparing the
performance achieved by the service class period against the
performance goals defined for the service class period. WLM does
this by sampling the state of the service class four times per second.
This assessment is done at each goal importance level. In this way,
WLM can determine whether the service class is using resources or
whether the service class is being delayed in a manner that may be

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

adjustable. These sorts of delay, over which WLM can exert no
control, are discarded in this assessment and do not contribute
directly to WLM’s decision making. Idle time periods are excluded
from the samples collection.

In order to document its decisions, WLM creates several SMF
records (type 99) for each policy interval, or approximately once
every 10 seconds. They can be useful in analysing and understanding
the performance characteristics of a site’s workload. The records
contain performance data for each service class period, a trace of
SRM actions, the data SRM used to decide which actions to take,
and the internal controls SRM uses to manage work. This can help
the performance analyst to determine in detail what SRM is doing
to meet workload goals defined with respect to other work, and the
types of delays the work is experiencing.

Before proceeding any further it might be helpful to clarify the
difference between SMF record type 72 (RMF Workload Activity)
subtype 3 and record type 99 (System Resource Manager Decisions)
subtype 6 since these two do overlap in some of their content.
However, they have two significant differences.

Record type 99(6) contains local and Sysplex-level performance
index values as calculated at policy adjustment time (in fact, this
subtype contains no new data – everything in it is already in other
subtypes of the type 99, but the new record compacts the needed data
in one subtype so that one can afford to write that subtype 6 record
and can suppress all other subtypes to reduce data volume).

The record type 72(3) does not include a PI value but does contain
all the data needed to calculate an average PI for the RMF recording
interval. Furthermore, type 99(6) provides the data on WLM’s
internally-used dynamic service classes, but it is only type 72(3) that
contains resource consumption data.

A detailed description of the layout of SMF type 99 record and its
subtypes can be obtained from the MVS System Management
Facilities (SMF) - SA22-7630-03 manual.

For information about how to use type 99, see z/OS MVS
Programming: Workload Management Services.

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

For information about workload management, see z/OS MVS
Planning: Workload Management.

The mapping macro, IRASMF99, for this record is supplied in
SYS1.AMODGEN.

Because SMF type 99 records are written approximately every 10
seconds, one should write them only for certain time periods and
define them (in SMFPRMxx member) like:

SYS(NOTYPE(99))

SYS(TYPE(99(6))

CODE

In order to provide a starting point from which one can begin to
gather information about the system, an example of the WLM
postprocessor JCL statements is included below.

The code is a three-part stream. In the first part (COPY996) selected
SMF records (selection being defined by INCLUDE’s condition) are
copied from the SMF dataset to a VB file, which can be used as a
base of archived records. In the second part (WLM99), the captured
records are being formatted by invoking REXX EXEC (WLMPP).
In the last part (RPT996), the formatted records are being read and
a report produced. The field reformatting capability of DFSORT’s
ICETOOL was used to produce a report from the WLMPP output.
For each service class, related information is produced – class name,
period, local and Sysplex performance index, goal type defined and
goal value measured, period importance, goal percentile, dispatching
and I/O priority.

This job stream can be used to create a flexible report of those
metrics that can quickly provide us, at a glance, with data about
service classes which are and are not meeting specified goals, local
and Sysplex-level PI. From a WLM perspective, a daily or weekly
review of the reports should be used to provide a set of measurements
to track and provide information for trend analysis. One should
choose a busy time frame
(1-3 hours) to use as a measurement period for this purpose.

//COPY996 EXEC PGM=ICETOOL

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//RAWSMF DD DSN=hlq.SMFDUMPW,DISP=SHR

//SMF99 DD DSN=your.copied.by.sort.to.VB.smf.dataset,

// SPACE=(CYL,(1)),UNIT=SYSDA,

// DISP=(NEW,PASS),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=3276Ø)

//TOOLIN DD *

 COPY FROM(RAWSMF) TO(SMF99) USING(SMFI)

//SMFICNTL DD *

 OPTION SPANINC=RC4,VLSHRT

 INCLUDE COND=(6,1,BI,EQ,99,AND,23,2,BI,EQ,6)

/*

//WLM99 EXEC PGM=IKJEFTØ1,REGION=ØM,DYNAMNBR=5Ø,PARM='%WLMPP'

//SYSEXEC DD DISP=SHR,DSN=your.rexx.library

//SMF DD DISP=(SHR,PASS),DSN=your.copied.by.sort.to.VB.smf.dataset

//OUT99 DD DSN=sysuid.output.dataset,

// SPACE=(CYL,(3Ø,15)),UNIT=SYSDA,

// DISP=(NEW,PASS),

// DCB=(RECFM=FB,LRECL=14Ø)

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DUMMY

/*

//RPT996 EXEC PGM=ICETOOL,REGION=ØM

//TOOLMSG DD SYSOUT=X

//DFSMSG DD SYSOUT=X

//REPORT DD SYSOUT=X

//OUT99 DD DISP=(SHR,KEEP),DSN=sysuid.output.dataset

//TEMP DD DSN=&&TEMPV,SPACE=(CYL,(15,15)),UNIT=SYSDA

//TOOLIN DD *

 COPY FROM(OUT99) TO(TEMP) USING(SMFI)

 DISPLAY FROM(TEMP) LIST(REPORT) -

 TITLE('WLM POSTPROCESSOR REPORT') DATE TIME -

 HEADER('TIME') ON(13,8,CH) -

 HEADER('SID') ON(23,4,CH) -

 HEADER('S.CLASS') ON(46,8,CH) -

 HEADER('PERIOD.') ON(55,1,CH) -

 HEADER('LOCAL PI') ON(57,3,CH) -

 HEADER('SYSPLEX PI') ON(62,3,CH) -

 HEADER('GOAL TYPE') ON(67,15,CH) -

 HEADER('GOAL VALUE') ON(83,3,CH) -

 HEADER('IMP') ON(87,1,CH) -

 HEADER('PERC.') ON(9Ø,2,CH) -

 HEADER('CPU DP') ON(93,3,CH) -

 HEADER('IO DP') ON(97,3,CH) -

 BREAK(1,11,CH) -

 BTITLE('DAILY REPORT') -

 BLANK

/*

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//SMFICNTL DD *

* Example: select only peak period (ie 1Ø am – 2.pm)

* In a similar fashion one may construct customized INCLUDE statement

* and select other fields (ie LPI > 1, LPI > SPI…)

 OPTION COPY

 INCLUDE COND=(13,5,CH,GT,C'1Ø:ØØ',AND,13,5,CH,LT,C'13:59')

/*

WLMPP EXEC

/* REXX EXEC to read and format SMF records */

ADDRESS TSO

 'EXECIO * DISKR SMF (STEM x. FINIS'

 do i = 1 to x.Ø

 smftype = c2d(SUBSTR(x.i,2,1)) /* SMF record type */

 smfstype = c2d(SUBSTR(x.i,19,2)) /* Record subtype */

 /*---*/

 /* Check SMF record type & subtype (ie 99.6) */

 /*---*/

 IF smftype = '99' & smfstype = '6' THEN

 DO

 offset = c2d(SUBSTR(x.i,69,4)) /* Offset to period section */

 len = c2d(SUBSTR(x.i,73,2)) /* Length of period section */

 cpon = c2d(SUBSTR(x.i,75,2)) /* Number of period sections */

 /*--*/

 /* Unpack SMF date & decode SMF time */

 /*--*/

 smfdate = SUBSTR(c2x(SUBSTR(x.i,7,4)),3,5) /* unpack SMF date */

 time = c2d(SUBSTR(x.i,3,4)) /* decode SMF time */

 time1 = time % 1ØØ

 hh = time1 % 36ØØ

 hh = RIGHT("Ø"||hh,2)

 mm = (time1 % 6Ø) - (hh * 6Ø)

 mm = RIGHT("Ø"||mm,2)

 ss = time1 - (hh * 36ØØ) - (mm * 6Ø)

 ss = RIGHT("Ø"||ss,2)

 smftime = hh||":"||mm||":"||ss /* Compose SMF time*/

 /*--*/

 /* Process all class periods */

 /*--*/

 do j = Ø to cpon

 incr = (offset + (j*len)) - 3 /* Incremental position */

 sclass = SUBSTR(x.i,incr,8) /* Class name */

 period = c2d(SUBSTR(x.i,incr+8,2)) /* Class period number */

 if period > 'Ø' then do

 sysid = SUBSTR(x.i,11,4) /* System identification */

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 syslvl = SUBSTR(x.i,53,8) /* System level */

 sysname = SUBSTR(x.i,61,8) /* System name */

 gt = c2d(SUBSTR(x.i,incr+1Ø,1)) /* Goal type */

 pct = c2d(SUBSTR(x.i,incr+11,1)) /* Goal percentile */

 /*--*/

 /* Reformat goal type values into goal description */

 /*--*/

 SELECT

 when gt=Ø then goal='System/STC/Srv '

 when gt=1 then goal='Shr.Resp (sec.)'

 when gt=2 then goal='Lng.Resp (sec.)'

 when gt=3 then goal='Velocity (%) '

 when gt=4 then goal='Discretionary '

 END

 gval = c2d(SUBSTR(x.i,incr+2Ø,4)) /* Goal value */

 imp = c2d(SUBSTR(x.i,incr+24,2)) /* Period importance */

 dp = c2d(SUBSTR(x.i,incr+26,1)) /* Dispatching prty. */

 iodp = c2d(SUBSTR(x.i,incr+27,1)) /* I/O priority */

 mpli = c2d(SUBSTR(x.i,incr+28,2)) /* MPL in-target */

 mplo = c2d(SUBSTR(x.i,incr+3Ø,2)) /* MPL out-target */

 rua = c2d(SUBSTR(x.i,incr+32,4)) /* Number of ready ASIDs*/

 pspt = c2d(SUBSTR(x.i,incr+36,4)) /* Time swapped out */

 psitar= c2d(SUBSTR(x.i,incr+4Ø,4)) /* Storage isolation */

 lpi = c2d(SUBSTR(x.i,incr+44,4)) / 1ØØ /* Local PI */

 spi = c2d(SUBSTR(x.i,incr+48,4)) / 1ØØ /* Sysplex PI */

 sdata = c2d(SUBSTR(x.i,incr+52,4)) /* Offset to server sec.*/

 slen = c2d(SUBSTR(x.i,incr+56,2)) /* Length of server sec.*/

 snum = c2d(SUBSTR(x.i,incr+58,2)) /* Number of server ent.*/

 /*-- --*/

 /* Reformat goal value according to the goal type */

 /*---*/

 SELECT

 when gt=Ø then gvvv='n/a'

 when gt=1 then gvvv=gval/1ØØØ

 when gt=2 then gvvv=gval/1ØØØ

 otherwise gvvv=gval

 END

 rec99 = left(Date('N',smfdate,'J'),11) left(smftime,9),

 left(sysid,4) left(syslvl,8) left(sysname,8),

 left(sclass,8) left(period,1) left(lpi,4),

 left(spi,4) right(goal,15) right(gvvv,3),

 left(imp,2) right(pct,2) left(dp,3),

 left(iodp,3) right(mpli,2) right(mplo,2),

 right(rua,4) right(pspt,4) right(psitar,4),

 right(sdata,4) right(slen,2) right(snum,2)

 PUSH rec99

 "EXECIO 1 DISKW OUT99"

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 end

 end

 end

 end

exit

It is strongly recommended that this report be used in conjunction
with the RMF postprocessor service class reports, which allow us to
look further into those workloads that are not performing as expected.
These reports provide more detailed information about specific
service classes. The RMF service class period report is created using
the SYSRPTS(WLMGL(SCPER)) control card with the RMF
postprocessor. Another way to gain a quick glance at service class
performance and various types of resource delays is by using the
RMF postprocessor overview record control statements. In the
example below, the service class TSO period 1 is being examined.
One would need to add control cards to specify other periods (ie
second and third period if applicable and identical control cards for
any other service classes one wants to report on).

Example:

//RMFSTEP1 EXEC PGM=ERBRMFPP,REGION=ØM

//MFPINPUT DD DISP=SHR,DSN=SMF.SORTED,DATASET

//MFPMSGDS DD SYSOUT=*

//***

//*GOAL MODE INDICATORS for TSO class - PI, USING AND DELAY SAMPLES *

//***

//SYSIN DD *

SYSOUT(O)

NOSUMMARY

OVERVIEW(REPORT)

DATE(MMDDYYYY,MMDDYYYY)

ETOD(Ø8ØØ,15ØØ)

OVW(PI(PI(S.TSO.1)),NOSYSTEMS) /* PERFORMANCE INDEX,

SC.PERIOD 1 */

OVW(ENDEDTRX(TRANSTOT(S.TSO.1)),NOSYSTEMS)/* ENDED TRANSACTIONS */

OVW(VELOCITY(EXVEL(S.TSO.1)),NOSYSTEMS) /* ACTUAL VELOCITY */

OVW(CPUUSING(CPUUSGP(S.TSO.1)),NOSYSTEMS) /* CPU USING % */

OVW(CPUDELAY(CPUDLYP(S.TSO.1)),NOSYSTEMS) /* CPU DELAY % */

OVW(IOUSING(IOUSGP(S.TSO.1)),NOSYSTEMS) /* I/O USING % */

OVW(IODELAY(IODLYP(S.TSO.1)),NOSYSTEMS) /* I/O DELAY % */

OVW(APPLPCT(APPLPER(S.TSO.1)),NOSYSTEMS) /* APPLICATION % */

OVW(UNKNOWN(UNKP(S.TSO.1)),NOSYSTEMS) /* UNKNOWN STATE % */

OVW(IDLE(IDLEP(S.TSO.1)),NOSYSTEMS) /* IDLE STATE % */

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

OVW(SWPDELAY(SWINP(S.TSO.1)),NOSYSTEMS) /* SWAP IN DELAY % */

OVW(MPLDELAY(MPLP(S.TSO.1)),NOSYSTEMS) /* MPL DELAY % */

OVW(CAPDELAY(CAPP(S.TSO.1)),NOSYSTEMS) /* CAPPING DELAY % */

OVW(DASDDISC(DISC(S.TSO.1)),NOSYSTEMS) /* DASD DISCONNECT TIME */

OVW(DASDIOSQ(IOSQ(S.TSO.1)),NOSYSTEMS) /* DASD IOSQ TIME */ /*

/*

Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2005

Locating strings in files

For most purposes, the Searchfor utility is an acceptable way to
search for strings within files. However, it lacks support for VSAM
files and a way to limit the scope of the search. For example, I need
to search for a name that should exist in a name field, but eventually
might also exist in other fields, like address, etc. If I know the
position of the field I want to search within each record, then I may
wish to restrict my search to that area. Or I may choose to search only
a limited set of records, and not the entire file.

To satisfy these needs, I wrote a search program that accepts both
sequential and VSAM files, allows the search zone to be limited to
a range of columns within each record or to a range of records,
permits the search string to be specified in hexadecimal, and also
permits case to be ignored when performing comparisons (this
applies only to strings specified as characters and to standard a-z
characters, but you can change the translation table within the
program, if you like).

The application consists of an Assembler program and a front-end
formed by a REXX EXEC and an ISPF panel. It looks like this:

 +---------------- Locate a string in a file ---------------------+

 | |

 | File......: AARCF3.TEST.BA3ØØ |

 | |

 | Search for: x'Ø3f5f4c1a3 |

 | (Enter text string or begin with X' for hexadecimal) |

 | |

 | Ignore case - only valid for text (Y,N).: Y |

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 | |

 | Search columns Search records |

 | First column. 12 First record. 1ØØØØ |

 | last column. 25 Last record. 15ØØØ |

 | |

 | Enter - execute PF3/15 cancel |

 | |

 +--+

In this example, we search for a hexadecimal string (since it begins
with x', the ending quote is optional and can be omitted) with
column boundaries 12 through to 25 and record boundaries 10,000
through to 15,000.

Since the string is hexadecimal, the ignore case field has no
meaning. The program launches a job, and the result of the search
can be found in sysprint: it states the record numbers where a match
was found, the total number of record matches, and the total number
of records searched:

 String found in record number ØØØØØ12Ø34

 String found in record number ØØØØØ12Ø35

 String found in record number ØØØØØ12Ø36

 Number of records where string found: ØØØØØØØØØ3

 Number of records searched. : ØØØØØØ5ØØ1

LOCATE ASSEMBLER PROGRAM

==

* LOCATE - Locates and counts the number of record matches of a *

* string in a file. The file can be sequential or VSAM. *

* *

* Format of the parameter received: *

* Offset Name and meaning *

* Ø Col1 initial position within records *

* 4 Col2 final position within records *

* 8 Rec1 initial search record *

* 16 Rec2 final search record *

* 24 Flag X-Hexa string Y-ignore case otherwise respect case *

* 25 String to search. *

* *

* DDnames: Infile, Sysprint *

* *

* This program reads an input file and searches for a string in each *

* record. The search can be limited to a column range within each *

* record (Col1 to Col2) or to a set of records (Rec1 to Rec2). *

* If flag = 'X', string is represented in hexadecimal. *

* If flag = 'Y', string and searched areas are uppercased before *

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

* comparison takes place (case is ignored). This applies only to *

* a-z standard EBCDIC characters. *

==

&PROGRAM SETC 'LOCATE'

&PROGRAM AMODE 31

&PROGRAM RMODE 24

&PROGRAM CSECT

 SAVE (14,12)

 LR R12,R15

 USING &PROGRAM,R12

 ST R13,SAVEA+4

 LA R11,SAVEA

 ST R11,8(R13)

 LR R13,R11

 B GETPARMS

 DC CL16' &PROGRAM 1.1'

 DC CL8'&SYSDATE'

*

==

* Check and validate parameters *

==

*

GETPARMS DS ØH

 LR R2,R1 Copy parm pointer to R2.

 L R2,Ø(Ø,R2) Load parm address

 LH R3,Ø(R2) Load parm length in R3

 OPEN (SYSPRINT,OUTPUT) Open sysprint (for error msgs)

 LTR R3,R3 Any parm entered?

 BZ EXIT1 No, error

*

 LR R6,R2

 AR R6,R3 R6: point after end of parms

 LA R6,2(Ø,R6) Skip 2 bytes of parmlength

 LA R2,2(Ø,R2)

 XR R9,R9 Clear length counter

*

CONVERT EQU *

 LA R9,3 4 byte length parms

 EX R9,EXPACK Execute pack

 CVB R7,PARMPACK Convert to binary into R7

 S R7,=F'1' Turn limit to offset

 ST R7,PARM1 And store it

*

 LA R2,4(Ø,R2) Inc parm pointer

 EX R9,EXPACK Execute pack

 CVB R7,PARMPACK Convert to binary into R7

 ST R7,PARM2 And store it

*

 LA R2,4(Ø,R2) Inc parm pointer

 LA R9,7 8 byte length parms

 EX R9,EXPACK Execute pack

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 CVB R7,PARMPACK Convert to binary into R7

 ST R7,PARM3 And store it

*

 LA R2,8(Ø,R2) Inc parm pointer

 EX R9,EXPACK Execute pack

 CVB R7,PARMPACK Convert to binary into R7

 ST R7,PARM4 And store it

*

 LA R2,8(Ø,R2) Inc parm pointer

 MVC FLAG,Ø(R2) Store flag parameter

*

 LA R2,1(Ø,R2) Inc parm pointer to string

 SR R6,R2 Length of string to search

 SH R6,=H'1' Length of string to search

 EX R6,EXMOVE Move to string

 STH R6,STRINGL Keep string length (- 1)

 CLI FLAG,C'X' Hexadecimal string?

 BNE VALIDPR No, jump ahead

*

 MVC STR1,STRING1 Convert string to real hexadecimal

 MVC STR2,STRING2 characters in three 12 byte parts

 MVC STR3,STRING3

 NC STR1,XAND

 TR STR1,XTRN

 NC STR2,XAND

 TR STR2,XTRN

 NC STR3,XAND

 TR STR3,XTRN

 PACK STRP1,STR1(13)

 PACK STRP2,STR2(13)

 PACK STRP3,STR3(13)

 MVC STRING(6),STRP1

 MVC STRING+6(6),STRP2

 MVC STRING+12(6),STRP3

*

 LH R6,STRINGL Get original length (-1)

 LA R6,1(Ø,R6) Add 1

 SRL R6,1 Divide length by two

 SH R6,=H'1' Ready for comparisons (-1)

 STH R6,STRINGL Store it

*

VALIDPR EQU * Validate parameters

 CLC PARM1,PARM2

 BH ERRMSG1

 CLC PARM3,PARM4

 BH ERRMSG2

 L R7,PARM2

 S R7,PARM1

 CR R6,R7

 BH ERRMSG3

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

*

 CLI FLAG,C'Y' Ignore case specified?

 BNE OPENACB1 No, jump ahead

 LH R1Ø,STRINGL Load string length (-1)

 LA R1Ø,1(Ø,R1Ø) Reset correct length

 LA R5,STRING

 EX R5,EXTRAN Execute uppercase translation

*

==

* Check whether file is VSAM or sequential. If VSAM, check for ESDS *

==

*

OPENACB1 EQU * Open ACB for VSAM input file

 OPEN INFILEA If error, go open the file as

 LTR R15,R15 sequential.

 BNZ OPENDCB1

 TESTCB ACB=INFILEA, File is VSAM, check for ESDS X

 ATRB=ESDS

 BNE READFILE

*

ESDSFIL1 EQU *

 MODCB RPL=INFILER, X

 OPTCD=ADR Set RPL for ESDS

 B READFILE

*

OPENDCB1 EQU * Open sequential file

 OPEN (INFILED,INPUT)

 LTR R15,R15

 BNZ ERRMSG4

 MVI FILETYP1,C'S' Set flag sequential

 LA R2,INFILED R2: IHADCB of input file

 USING IHADCB,R2

*

==

* Read loops (VSAM loop or sequential loop) and compare subroutine *

==

*

READFILE EQU *

 XR R7,R7 Record counter

 L R8,PARM3 First record

 L R9,PARM4 Last record

 CLI FILETYP1,C'V' VSAM file?

 BNE LOOPSEQ No, go to sequential

*

LOOPVSA EQU * VSAM loop

 LA R7,1(Ø,R7) Increment record counter

 GET RPL=INFILER Read VSAM file

 LTR R15,R15 End of file?

 BNZ EXITØ

 CR R7,R8 First record attained?

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 BL LOOPVSA No, read again

 CR R7,R9 Last record attained?

 BH EXITØ Yes, exit

*

 L R4,VAREA1 Get address of data in R4.

 SHOWCB RPL=INFILER, X

 AREA=LRECL1, X

 LENGTH=4, X

 FIELDS=RECLEN

 L R3,LRECL1 Get record length in R3

 BAL R1Ø,COMPARE Call compare

 B LOOPVSA

*

LOOPSEQ EQU * Sequential loop

 LA R7,1(Ø,R7) Increment record counter

 GET INFILED Read sequential

 LR R4,R1 R4: address of record

 CR R7,R8 First record attained?

 BL LOOPSEQ No, read again

 CR R7,R9 Last record attained?

 BH EXITØ Yes, exit

 LH R3,DCBLRECL Load R3 with record length.

 BAL R1Ø,COMPARE Call compare

 B LOOPSEQ

*

COMPARE EQU * Compare subroutine

 L R5,PARM1 Left limit (offset)

 L R6,PARM2 Right limit

 CR R3,R6 Record smaller than last position?

 BNL COMPAREØ No, continue.

 LR R6,R3 Yes, switch limit to record limit

*

COMPAREØ EQU *

 SR R6,R5 R6: length of searchable area

 AR R5,R4 R6: position to compare

 CLI FLAG,C'Y' Ignore case specified?

 BNE COMPARE9 No, jump ahead

 EX R6,EXTRAN Execute uppercase translation

*

COMPARE9 EQU *

 SH R6,STRINGL R6: number of searches in the line

 C R6,=F'Ø' If R6<Ø, string is greater than

 BNH COMPARE3 search area, so skip this record

*

COMPARE1 EQU *

 LH R11,STRINGL length of search string

 EX R11,EXCOMPAR Execute compare

 BNE COMPARE2 If strings not equal, exit

 LR RØ,R7

 BAL R11,UNPACK

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 MVC MSGFND2,OUT1Ø

 LR RØ,R9

 PUT SYSPRINT,MSGFND String found, send message

 L R11,TOTFOUND Inc rec found counter

 LA R11,1(Ø,R11)

 ST R11,TOTFOUND

 B COMPARE3 And return

*

COMPARE2 EQU *

 LA R5,1(Ø,R5) Increment compare position

 BCT R6,COMPARE1 Loop to next

*

COMPARE3 EQU *

 BR R1Ø return

*

==

* Send final messages, close files, and exit *

==

*

EXITØ EQU *

 L RØ,TOTFOUND

 BAL R11,UNPACK

 MVC MSGTOT2,OUT1Ø

 PUT SYSPRINT,MSGTOT

 SR R7,R8

 LR RØ,R7

 BAL R11,UNPACK

 MVC MSGFIM2,OUT1Ø

 PUT SYSPRINT,MSGFIM

*

EXIT1 EQU *

 CLOSE INFILED

 CLOSE INFILEA

 CLOSE SYSPRINT

 L R13,SAVEA+4

 LM R14,R12,12(R13)

 XR R15,R15

 BR R14

*

==

* Other subroutines, execute instructions and work areas *

==

*

EXCOMPAR EQU *

 CLC Ø(Ø,R5),STRING

*

EXMOVE EQU *

 MVC STRING,Ø(R2)

*

EXPACK EQU *

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 PACK PARMPACK,Ø(Ø,R2)

*

EXTRAN EQU *

 TR Ø(Ø,R5),TRTAB

*

UNPACK EQU *

 CVD RØ,REGDECIM

 UNPK OUT12,REGDECIM

 BR R11

*

ERRMSG1 EQU *

 PUT SYSPRINT,MSG1

 B EXITØ

*

ERRMSG2 EQU *

 PUT SYSPRINT,MSG2

 B EXITØ

*

ERRMSG3 EQU *

 PUT SYSPRINT,MSG3

 B EXITØ

*

ERRMSG4 EQU *

 PUT SYSPRINT,MSG4

 B EXITØ

*

MSG1 DC CL8Ø'Error: Parm2 smaller than parm1'

MSG2 DC CL8Ø'Error: Parm3 smaller than parm4'

MSG3 DC CL8Ø'Error: String length smaller than search interval'

MSG4 DC CL8Ø'Error opening input file'

MSG5 DC CL8Ø'Record smaller than compare position'

MSGFND DS ØCL8Ø

MSGFND1 DC C'String found in record number '

MSGFND2 DC CL5Ø' '

MSGTOT DS ØCL8Ø

MSGTOT1 DC C'Number of records where string found: '

MSGTOT2 DC CL5Ø' '

MSGFIM DS ØCL8Ø

MSGFIM1 DC C'Number of records searched. : '

MSGFIM2 DC CL5Ø' '

*

STRINGL DS H

 DS CL2

STRING DS ØCL36

STRING1 DS CL12

STRING2 DS CL12

STRING3 DS CL12

 DS CL4

STR1 DS CL12

 DC C' '

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

STR2 DS CL12

 DC C' '

STR3 DS CL12

 DC C' '

STRP1 DS CL7

STRP2 DS CL7

STRP3 DS CL7

STRP16 DS CL6

STRP26 DS CL6

STRP36 DS CL6

*

 DS ØF

XAND DC X'1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F' leave bits ØØØ11111

XTRN DC X'ØØØAØBØCØDØEØFØØØØØØØØØØØØØØØØØØ' bits Ø1111 A thru F

 DC X'ØØØ1Ø2Ø3Ø4Ø5Ø6Ø7Ø8Ø9ØØØØØØØØØØØØ' bits 11111 Ø thru 9

*

TRTAB DC X'ØØØ1Ø2Ø3Ø4Ø5Ø6Ø7Ø8Ø9ØAØBØCØDØEØF' Uppercase

 DC X'1Ø1112131415161718191A1B1C1D1E1F' translation

 DC X'2Ø2122232425262728292A2B2C2D2E2F' table

 DC X'3Ø3132333435363738393A3B3C3D3E3F'

 DC X'4Ø4142434445464748494A4B4C4D4E4F'

 DC X'5Ø5152535455565758595A5B5C5D5E5F'

 DC X'6Ø6162636465666768696A6B6C6D6E6F'

 DC X'7Ø7172737475767778797A7B7C7D7E7F'

 DC X'8ØC1C2C3C4C5C6C7C8C98A8B8C8D8E8F'

 DC X'9ØD1D2D3D4D5D6D7D8D99A9B9C9D9E9F'

 DC X'AØA1E2E3E4E5E6E7E8E9AAABACADAEAF'

 DC X'BØB1B2B3B4B5B6B7B8B9BABBBCBDBEBF'

 DC X'CØC1C2C3C4C5C6C7C8C9CACBCCCDCECF'

 DC X'DØD1D2D3D4D5D6D7D8D9DADBDCDDDEDF'

 DC X'EØE1E2E3E4E5E6E7E8E9EAEBECEDEEEF'

 DC X'FØF1F2F3F4F5F6F7F8F9FAFBFCFDFEFF'

*

INFILEA ACB DDNAME=INFILE

INFILER RPL ACB=INFILEA, X

 OPTCD=LOC, X

 AREA=VAREA1, X

 ARG=CHAVE1

INFILED DCB DSORG=PS,MACRF=(GL), X

 EODAD=EXITØ, X

 DDNAME=INFILE

SYSPRINT DCB DSORG=PS,MACRF=(PM), X

 LRECL=8Ø, X

 DDNAME=SYSPRINT

*

SAVEA DS 18F

VAREA1 DS F

CHAVE1 DS F

LRECL1 DS F

TOTFOUND DC F'Ø'

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

FILETYP1 DC C'V'

FLAG DS C

PARMPACK DS D

PARM1 DS F

PARM2 DS F

PARM3 DS F

PARM4 DS F

 DS ØD

REGDECIM DS CL9

 DS ØF

OUT12 DS ØCL12

OUT1Ø DS CL1Ø

 DS CL2

*

 LTORG

 DCBD DSORG=PS

 YREGS

 END

LOCATE REXX EXEC

/* REXX MVS *==*/

/* LOCATE - Locates a string within a file. */

/* Optional argument: file to search. */

/* */

/* This application consists of this EXEC, LOCATE ISPF panel, */

/* and LOCATE Assembler program. The load module should reside */

/* in the library indicated by the loablib variable below. */

/*===*/

arg file .

file = strip(file,,"'")

loadlib = "loadlib.with.locate.module"

tempfile = userid()||".TEMP.FILE"

I = "Y"

do forever

 address ispexec

 'addpop row(1) column(1)'

 'display panel(locate)'

 if rc = 8 then exit

 'rempop'

 address tso

 msg = ""

 hexastring = Ø

 if col1 = "" then col1 = 1

 if col2 = "" then col2 = 9999

 if rec1 = "" then rec1 = 1

 if rec2 = "" then rec2 = 99999999

 if col2 < col1 then do

 msg="Column2 cannot be smaller than column1"

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 iterate

 end

 if rec2 < rec1 then do

 msg="Record2 cannot be smaller than record1"

 iterate

 end

 str = strip(stri)

 lstr= length(str)

 if left(str,2) = "x'" | left(str,2) = "X'" then do

 hexastring = 1

 str = strip(str,"T","'")

 str = translate(substr(str,3))

 lstr= length(str)

 if datatype(str,"X") <> 1 then do

 msg="Invalid hexadecimal string"

 iterate

 end

 lok = lstr // 2

 if lok <> Ø then do

 msg="Odd number of characters in hexadecimal string"

 iterate

 end

 lstr = lstr / 2

 end

 if lstr > col2 - col1 + 1 then do

 msg="String is longer than column search zone"

 iterate

 end

 if msg = "" then leave

end

if hexastring = 1 then I = 'X'

parm = "'"right(col1,4,"Ø") || right(col2,4,"Ø") ||,

 right(rec1,8,"Ø") || right(rec2,8,"Ø") ||,

 I || str"'"

xx = msg(off)

"free dd (temp1)"

"alloc da('"tempfile"') dd(temp1) new reuse blksize(8ØØØ),

 lrecl(8Ø) recfm(f,b) dsorg(ps) space(1 1) tracks delete"

if rc <> Ø then do

 say "Error "rc" allocating" tempfile

 exit

end

queue "//"userid()"Ø JOB LOCATE,MSGCLASS=X,CLASS=A"

queue "//STEPØ EXEC PGM=LOCATE,"

queue "// PARM="parm

queue "//STEPLIB DD DISP=SHR,DSN="loadlib

queue "//INFILE DD DISP=SHR,DSN="file

 50 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

queue "//SYSPRINT DD SYSOUT=*"

queue ""

"execio * diskw temp1 (finis"

"submit '"tempfile"'"

"free dd (temp1)"

say "Job" userid()"Ø submitted"

exit

LOCATE ISPF PANEL

)ATTR

 _ TYPE(INPUT) CAPS(ON) JUST(LEFT) COLOR(RED)

 $ TYPE(INPUT) CAPS(OFF) JUST(LEFT) COLOR(RED)

 # TYPE(INPUT) CAPS(ON) JUST(RIGHT) COLOR(RED)

 ? TYPE(TEXT) INTENS(HIGH) SKIP(ON) COLOR(PINK)

 % TYPE(TEXT) INTENS(HIGH) SKIP(ON) COLOR(YELLOW)

 + TYPE(TEXT) INTENS(LOW) SKIP(ON) COLOR(GREEN)

 ! TYPE(OUTPUT) CAPS(OFF) SKIP(ON) COLOR(WHITE)

)BODY WINDOW(7Ø,17)

+

? File......:_FILE +

+

? Search for:$STRI +

? (Enter text string or begin with X' for hexadecimal)

+

+ Ignore case - only valid for text (Y,N).:_I

+

% Search columns Search records

+ First column.#COL1+ First record.#REC1 +

+ last column.#COL2+ Last record.#REC2 +

+

!MSG

+ Enter - execute PF3/15 cancel

)INIT

&ZWINTTL = 'Locate a string in a file'

)PROC

&ver='Y,N'

VER(&FILE,nonblank,dsname)

VER(&STRI,nonblank)

VER(&STRI,nonblank)

VER(&I,NONBLANK,listv,&ver)

VER(&COL1,num)

VER(&COL2,num)

VER(&REC1,num)

VER(&REC2,num)

)END

Systems Programmer (Portugal) © Xephon 2005

 51© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Boosting VSAM performance with SMB

Ever since its introduction some 30 years ago, VSAM has been a
popular and reliable data storage construct on MVS systems. VSAM
is still the cornerstone of on-line applications such as IMS and
CICS, and is widely used in ISV packages and in-house-written
batch applications. However, with 24x7 operation becoming a
necessity, batch windows must shrink in order to lessen their impact
on on-line systems. The most effective way to cut down the batch
window is to optimize I/O, and this article examines the results of
a sample tuning exercise. Of course, it is a well-known fact that the
fastest I/O is the one that is never issued. That is to say, an
application that is having I/O performance problems will perform
better if we can cut down on the number of I/Os. The whole concept
of SMS automatic blocksizes according to DASD device was to
reduce the number of I/Os for that specific DASD device type.
Similarly, for VSAM data, automatic effective buffering can
significantly reduce the number of I/Os, response time, and elapsed
job time, thereby improving application performance.

It is well known that VSAM is very important to most installations,
yet it is rarely utilized optimally. One consequence of this is that jobs
accessing VSAM files almost always run longer than necessary.
Thus, tuning native VSAM datasets is still an important part of the
overall tuning process at many installations. Almost certainly, the
largest performance gains can be achieved with good VSAM buffering
– it is in fact the single most important aspect of VSAM tuning and
will achieve the biggest performance boost. If implemented correctly,
these buffering methodologies will greatly reduce disk I/Os, reduce
CPU time, and lead to better job turnaround time. Now, with the
advent of System Managed Buffering (SMB), high performance can
be achieved through standard OS/390 system interfaces, with virtually
no application programmer effort, and with no JCL changes. System
Managed Buffering is a feature of DFSMSdfp, directed at support
for batch application processing, and is intended as a means of
achieving two things. The first one is to update the current defaults
for processing VSAM datasets. This is necessary in order to utilize

 52 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

current hardware technology to effect the processing of VSAM data.
The second one is to initiate a buffering technique, other than that
specified by the application program, that would improve application
performance.

SYSTEM MANAGED BUFFERING

Before we see how SMB works and how you can take advantage of
it, it might be useful to understand the overall buffering picture for
VSAM files. There are two ways of addressing buffering of VSAM
data offered by OS/390 and z/OS. The first method uses Non-Shared
Resources (NSR), where buffers are dedicated to the processing of
a single VSAM file. NSR means that each VSAM file in a task will
have its own dedicated buffers assigned within the program address
space, and, hence, will not share them with any other VSAM file that
is open within the task. NSR is also the automatic default type of
VSAM buffering logic. On the other hand, using Logically Shared
Resources (LSR) allows the sharing of buffer pools among multiple
VSAM files. While both NSR and LSR can be defined within an
application, there is a significant difference when it comes to how
an application maximizes its use of these buffer pools to process
data – sequential processing of data works best using NSR and
random data processing works best using LSR. Does this mean that
applications need to be changed? Sometimes they need changing.
Moreover, sometimes it is necessary to understand the type, access
method, format, and options of the file. For example, do dataset
options call for key access (KEY), sequential access (SEQ), addresses
access (ADR), or access to CI (CNV)?

System Managed Buffering (SMB) for VSAM datasets is a fairly
new facility introduced with DFSMS Version 1.4 for KSDS files
only. This was enhanced with DFSMS 1.5 to include all types of
VSAM file. Basically, the system decides how many buffers to use
for data and index portions (the case of NSR) or buffer pools size
(the case of LSR), with four basic buffer allocation algorithms that
can be chosen or specified:

• Direct Optimized (DO) – SMB optimizes for totally random
record access. This is appropriate for applications that access

 53© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

records in a dataset in totally random order. This technique will
override the user specification for using NSR buffering with an
LSR buffering implementation. Random-access VSAM
processing is automatically directed to use LSR, which will
eliminate buffer stealing, exploit look-aside processing, ESA
hiperspaces, and in-core indexes. The DO technique is elected
if the ACB specifies only the MACRF=(DIR) option for accessing
the dataset. If either SEQ or SKP are specified, in combination
with DIR or independently, DO is not selected. The selection
can be overridden by the user specification of ACCBIAS=DO
on the AMP=parameter of the associated DD statement. Note
should be taken of the fact that the MACRF type of access is just
an intention. The real type of access is declared per I/O operation
in the RPL.

• Direct Weighted (DW) – SMB optimizes for mixed-mode
processing (both direct and sequential), but ‘weights’ the buffer
allocations for key-direct. This will provide minimum read-
ahead buffers for sequential retrieval and maximum index
buffers for direct requests. The size of the dataset is a minor
factor in the storage that is required for buffering. This technique
requires approximately 100KB of processor storage for buffers,
with a default of 16MB.

• Sequential Optimized (SO) – SMB optimizes for sequential
processing. It is appropriate for applications reading the entire
dataset from the first to last record or a large percentage in
sequential order. The size of the dataset is not a factor in the
processor virtual storage that is required for buffering.
Approximately 500KB of processor virtual storage, defaulted
to above the 16MB line, is required for buffers for this technique.

• Sequential Weighted (SW) – SMB optimizes for mixed-mode
processing (both direct and sequential), but ‘weights’ the buffer
allocations for sequential. It will use read-ahead buffers for
sequential and provide additional index buffers for direct
requests. The read-ahead will not be the large amount of data
transferred as with SO. The size of the dataset is a minor factor
in the amount of processor virtual storage that buffering requires.

 54 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This technique requires approximately 100KB of processor
virtual storage for buffers, with the default above 6MB.

General discussion and guidelines related to processing with each
technique are fully documented in VSAM Demystified (SG24-
6105).

The change-over to SMB is easy enough – it can be simply done by
defining an extended format dataset through an SMS data class with
RECORD_ACCESS_BIAS=SYSTEM/USER. Or, if you prefer JCL
changes, it can be invoked in a specific job stream by specifying
ACCBIAS on the AMP parameter for the dataset’s DD statement.

In the first case, the technique that will be defaulted to by the system
is based on the application specification for the type of access
intention ACB MACRF=(DIR,SEQ,SKP) and influenced by the
specifications in the associated Storage Class (SC) for direct
millisecond response, direct bias, sequential millisecond response,
and sequential bias.

In the second case, the technique is externally specified by using the
ACCBIAS JCL subparameters of the AMP DD parameter – probably
the easiest and best option is the ACCBIAS=SYSTEM option. You
can specify ACCBIAS equal to one of the following values:

• USER – bypass SMB. This is the default if you code no
specification for the ACCBIAS subparameter. This default is
not used when the data class specifies
RECORD_ACCESS_BIAS.

• SYSTEM – force the system to determine the buffering
technique.

One can also explicitly request a specific buffer allocation algorithm
by specify the SMB buffer processing as SO/SW/DO/DW. One of
the problems with SMB arises in situations where you have a batch
program that does skip-sequential, sequential, and random processing
all in the same run. In many such cases, that we have seen it’s often
been a good compromise just to default to ACCBIAS=SYSTEM.
For a detailed description of each AMP option see MVS: JCL
Reference (SA22-7597).

 55© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

During a testing phase we turned on Systems Managed Buffering
(through DATACLASS) for a large VSAM file, but in order to see
how SMB works, as well as to prevent production problems, we
decided to bypass SMB processing by specifying
RECORD_ACCESS_BIAS=USER and later on we used JCL’s
AMP parameter ACCBIAS=SO (see below):

 VSAM file buffers & buffering management

 # of

Records Access: Buffers

Job Run date Elapsed time Cluster/Component name Records

ret'ved Excp mode bias SMB used Format Restriction

--

--

MYJOB 17 Oct 2ØØ3 ØØ:49:24:46 PROD.HISTFILE.DATA 68171123

68171123 3652Ø7 seq none none 4 Standard Extended format required

(1)

MYJOB 17 Oct 2ØØ3 ØØ:49:24:46 PROD.HISTFILE.INDEX 12Ø3Ø

Ø 11868 seq none none 2 Standard Extended format required

MYJOB 18 Oct 2ØØ3 ØØ:42:45:Ø9 PROD.HISTFILE.DATA 683791Ø7

683791Ø7 366613 seq none none 4 Standard Extended format required

MYJOB 18 Oct 2ØØ3 ØØ:42:45:Ø9 PROD.HISTFILE.INDEX 11757

Ø 11596 seq none none 2 Standard Extended format required

MYJOB 19 Oct 2ØØ3 ØØ:5Ø:Ø7:19 PROD.HISTFILE.DATA 6843Ø562

6843Ø562 367646 seq none none 4 Extended none

(2)

MYJOB 19 Oct 2ØØ3 ØØ:5Ø:Ø7:19 PROD.HISTFILE.INDEX 1Ø857

Ø 1Ø696 seq none none 2 Extended none

MYJOB 21 Oct 2ØØ3 ØØ:5Ø:57:52 PROD.HISTFILE.DATA 68667511

68667511 368Ø38 seq none none 4 Extended none

MYJOB 21 Oct 2ØØ3 ØØ:5Ø:57:52 PROD.HISTFILE.INDEX 1194Ø

Ø 11779 seq none none 2 Extended none

MYJOB 22 Oct 2ØØ3 ØØ:26:22:79 PROD.HISTFILE.DATA 68931Ø8Ø

68931Ø8Ø 21714 seq so jcl 49 Extended none

(3)

MYJOB 22 Oct 2ØØ3 ØØ:26:22:79 PROD.HISTFILE.INDEX 12234

Ø 12Ø73 seq so jcl 4 Extended none

MYJOB 23 Oct 2ØØ3 ØØ:26:41:31 PROD.HISTFILE.DATA 691Ø4677

691Ø4677 214Ø6 seq so jcl 49 Extended none

MYJOB 23 Oct 2ØØ3 ØØ:26:41:31 PROD.HISTFILE.INDEX 11683

Ø 11522 seq so jcl 4 Extended none

Notes:

(1) Job access statistics before converting dataset to extended
format.

 56 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

(2) Dataset converted to extended format with
Rec_Acc_Bias=USER (bypass SMB).

(3) JCL AMP parameter override of data class definition
(ACCBIAS=SO).

The order of precedence for specifying values that decide if and how
SMB will be invoked is this: JCL specifications, then the data class
Record_Access_Bias parameter, then the storage class parameters,
then the MACRF values. That is, whatever is specified in the JCL
will always take precedence. This also means that one may wish to
tell a lie to VSAM about intent (for example direct versus sequential
processing) and SMB will be fooled. Because SMB is not taking any
sample of behaviour, it relies on the access intent of the OPEN.
However, telling a lie is not a wise thing to do: incorrect use of a
buffering strategy will result in a significant increase in I/O, thus
causing long-running batch jobs and poor performance (see below):

 EXCPs Clock time CPU time CONN (k) Buffers

Buffering (min) (sec) (D/I)

--

NSR - Default 4Ø2472 41.4 251.16 1Ø99 4 2

ACCBIAS=SO 34991 26.Ø 233.66 918 49 4

ACCBIAS=DO 793868 45.Ø 294.28 1342 Ø Ø

--

Gain using SMB (%): 91.3 37.19 9.96 13.73

(DO vs. Default) : - 97.2 - 8.7 - 17.16 - 22.11

SMB RESTRICTIONS AND POTENTIAL PROBLEMS

There are two main restrictions to SMB. The first one is that SMB
support is currently limited to extended format VSAM files that use
NSR buffering. To be in extended format, the dataset must be system
managed (SMS) and use a data class defined with DSNTYPE=EXT.
On the other hand, SMB will get involved only when NSR buffering
is specified by the application program, ACB MACRF=(NSR). It
will not get involved with the MACRF parameters RST (ACB reset
option), UBF (USER buffering), GSR (Global Shared Resources),
LSR (Local Shared Resources), RLS (Record Level Sharing), or ICI
(Improved Control Interval processing). For releases prior to z/OS
1.3 DFSMS, processing the dataset through the alternate index of

 57© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

the path specified in the DDname is not supported. When the
conditions above are not satisfied, the job does not abend, but the
SMB services are not used and no messages are issued.

The second restriction is that SMB is invoked at dataset open
processing only: after the initial decision is made during that
process, SMB has no further involvement.

Thus far two basic storage-related problems have emerged, especially
regarding the use of the ACCBIAS=DO option. SMB ACCBIAS=DO
is in fact equivalent to BLSR in that, in both cases, VSAM LSR
buffer pools are built for each dataset opened with this technique in
a single application program. The size of the pool is based on the
actual dataset size at the time the pool is created. A separate pool is
built for both data and index components, if applicable, for each
dataset. There is no capability for a single pool to be shared by
multiple datasets. The index pool is sized to accommodate all
records in the index component. The data pool is sized to
accommodate approximately 20% of the user records in the dataset.
This also means that the processor virtual storage requirement will
increase with each OPEN after records have been added and the
dataset has been extended beyond its previous size. Thus, for very
large VSAM KSDS files, a program or job step might abend with
ACCBIAS=DO because of storage problems unless SMB’s default
options regarding buffer pool allocations are overridden.

Again, two options are available to tackle this problem. Increasing
the job’s region size to support the buffers (think multiple megabytes
just for the buffers) might avoid abends. Then again, it might not
help, as was the case with a very large VSAM KSDS file we were
testing, even though we had increased the job’s region size to the
maximum possible.

On the other hand, the use of the SMBVSP parameter on the
AMP=parameter (not present in the data class specification) can
alleviate the storage impact since it restricts the amount of virtual
storage to be obtained for buffers when opening the dataset. It is
used to override the default buffer space to be obtained, which is
calculated assuming that 20% of the data accounts for 80% of the
accesses. The buffer space acquired is split across two LSR pools –

 58 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

one for the index and one for the data.

There is also an additional AMP parameter that can be used in
conjunction with the SMBVSP parameter, and it can help to reduce
the storage problems. The SMBHWT parameter can be used to
provide buffering in hiperspace in combination with virtual buffers
for the data component. These buffers may be allocated for the base
data component of the sphere. If the CI size of the data component
is not a multiple of 4KB, both virtual space and hiperspace are
wasted. It can be specified as an integer from 0 to 99. The value
specified acts as a weighting factor for the number of hiperspace
buffers to be established. This can reduce the size required for an
application region, but does have implications related to processor
cycle requirements. That is, all application requests must orient to
a virtual buffer address. If the required data is in a hiperspace buffer,
the data must be moved to a virtual buffer after ‘stealing’ a virtual
buffer and moving that buffer to a Least Recently Used (LRU)
hiperspace buffer.

Finally, if the optimum amount of storage required for this option is
not available, SMB will reduce the number of buffers and retry the
request. The retry capability for the DO technique was added in z/
OS 1.3 DFSMS. For data, SMB will make two attempts, with a
reduced amount and a minimum amount. For an index, SMB
reduces the amount of storage only once, to a minimum amount. If
all attempts fail, the DW technique is used. The system issues an
IEC161I message to advise that this has happened.

If you are running a 24-bit program (amode=rmode=24) be aware
that the storage for buffers for SMB techniques are obtained above
16 megabytes (above the line), and in order to prevent problems
IBM recommends that RMODE31=NONE be specified on the
AMP= parameter for those datasets using SMB.

IDENTIFYING JOBS THAT MIGHT BENEFIT FROM SMB

The jobs that might benefit from SMB are those with certain
application characteristics, most important of which are a data
reference pattern and options specified by the application program

 59© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

(ACB MACRF). The best candidates are long-running jobs as well
as jobs with a high execute channel program (EXCP) count.

SMF type 64 records are probably used more frequently than any
other data source for tuning VSAM applications. Using these
records you can identify the programs with the highest amount of
VSAM activity (such as number of EXCPs, retrievals, inserts,
deletes, CI and CA splits, insert strategy), analyse the effectiveness
of buffer usage, and determine whether the dataset is being used
concurrently by other jobs or tasks. To determine candidates for
SMB, we have used SMF type 64 records to obtain information
about the SMB candidate’s processing characteristics, including
jobname, cluster/component name, change in number of EXCPs,
and ACB MACRF fields. In addition, SMF type 64 records indicate
whether a reduced or minimum amount of resource is being used for
a data pool and whether DW is used. Bits 5–7 of SMF64RSC, which
were previously reserved, are used to give more information about
Direct Optimization (DO).

A detailed description of the layout of the SMF type 64 record can
be obtained from the MVS System Management Facilities (SMF)
(SA22-7630) manual. One can also find the type 64 subtype
descriptions in macro IDASMF64 in SYS1.MACLIB.

CODE

Based on record descriptions obtained from the above mentioned
manual, a sample SMB report writer was written. The code is a two-
part stream. In the first part (COPYSMF) selected SMF records
(selection being defined by INCLUDE’s condition) are copied from
the SMF dataset to a file that can be used as a base of archived
records. In the second part, SMB64, the captured records are
formatted by invoking SMB EXEC and two reports are produced.

Each report consists of two sets of variables. The first set is a fixed
one consisting of the variables that uniquely identify the VSAM file
or job being monitored. This set is meant to be used across all
reports. The pool of variables in this set contains generated
observation number, job name, date stamp, dataset allocation elapsed

 60 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

time, cluster/component name, total number of records, number of
records retrieved in a job run, and number of EXCPs. The second set
of printed variables is area specific and pertains only to the VSAM
file performance domain being monitored. Note should be taken of
the fact that elapsed time in these reports is not the execution clock
time (wall time) that we are accustomed to thinking of. This
‘elapsed’ time in fact represents the length of time the file was kept
open (for details see APAR OW43854).

The first report shows standard VSAM file attributes and processing
activity as well as the type of access to the record – key, rba (relative
byte addresses) or cnv(access the dataset by control interval),
dataset addressability, and format. As already stated, there are some
restrictions when considering the use of SMB. This report shows
whether there are any restrictions – user buffering, ICI processing,
alternate index, NSR required, and/or if extended format is required.

The second report is a VSAM file buffer management report and it
provides buffering-related information such as number of buffers
used per component (system determined or user defined), buffer
space, addressing mode for buffers (24/31 mode), as well as whether
or not the buffers have been fixed in real storage. The more
interesting part of the report provides answers to questions like: Is
there any method to find out whether SMB gets invoked at all?
Wouldn’t it be nice not only to know that SMB is invoked but also
how much (and what) it does to the job (or datasets). This report
provides the answer to these two questions by means of SMB-
related information. Was SMB invoked at all? (no, yes: by JCL or
SYSTEM); which optimization technique was used? (DO, DW, SO,
SW, or none); and in conjunction with that, what data reference
pattern was used: sequential access (records were requested in either
ascending or descending sequence), direct access (records were
randomly requested), skip sequential (records were processed in
sequence but some records may have been skipped), or a combination
of these? In the case of the Direct Optimized (DO) technique,
additional indicators are available, such as the amount of virtual
storage set by the SMBVSP parameter, whether hiperspace buffers
were used, whether insufficient virtual storage problems occurred,
indicators of whether a reduced or minimum amount of resource is

 61© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

being used for a data pool, and whether DW is used (the case of retry
technique).

SMBJOB

//DEL EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=X

//SYSIN DD *

 DELETE hlq.SMF64.DATA

 SET MAXCC=Ø

/*

//COPYSMF EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//RAWSMF DD DSN=your.smf.dataset,DISP=SHR

//SMF64 DD DSN=hlq.SMF64.DATA,

// SPACE=(CYL,(x,y)),UNIT=SYSDA,

// DISP=(NEW,CATLG,KEEP),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=3276Ø)

//TOOLIN DD *

 COPY FROM(RAWSMF) TO(SMF64) USING(SMFI)

//SMFICNTL DD *

 OPTION SPANINC=RC4,VLSHRT

 INCLUDE COND=(6,1,BI,EQ,64,AND,43,1,BI,NE,X'2Ø') * copy SMF 64

/*

//SMB64 EXEC PGM=IKJEFTØ1,REGION=ØM

//SYSEXEC DD DISP=SHR,DSN=your.rexx.library

//SMF64 DD DISP=SHR,DSN=hlq.SMF64.DATA

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

prof nopref

%SMB

/*

SMB EXEC

/* REXX EXEC to read SMF 64 records - VSAM Component/Cluster Status */

signal ON ERROR

/*--*/

/* Part 1: Handle file allocation & dataset existence and */

/* print report header and labels */

/*--*/

Address TSO

 userid=SYSVAR(SYSUID)

 r64fa =userid||'.r64fa.rep' /* File processing/attribute*/

 r64bf =userid||'.r64bf.rep' /* Buffering report */

x = MSG('OFF')

 62 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

IF SYSDSN(r64fa) = 'OK'

THEN "DELETE "r64fa" PURGE"

IF SYSDSN(r64bf) = 'OK'

THEN "DELETE "r64bf" PURGE"

"ALLOC FILE(S64FA) DA("R64FA")",

 " UNIT(SYSALLDA) NEW TRACKS SPACE(9Ø,3Ø) CATALOG",

 " REUSE RELEASE LRECL(245) RECFM(F B)"

"ALLOC FILE(S64BF) DA("R64BF")",

 " UNIT(SYSALLDA) NEW TRACKS SPACE(9Ø,3Ø) CATALOG",

 " REUSE RELEASE LRECL(2Ø5) RECFM(F B)"

 fi.1 =left(' ',8,' '),

 ||'VSAM file processing & attribute report'||left(' ',15,' ')

 fi.2 =' '

 fi.3 =left(' ',8,' ')||'Report produced on',

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' ')||left(time(),1Ø)

 fi.4 = ' '

 fi.5 = left(' ',83,' ')||left('# of',4)||left(' ',2,' '),

 ||left('Records in this run:',2Ø)||left(' ',1Ø,' '),

 ||left('Access by:',1Ø)||left(' ',16,' ')||left('CI',2),

 ||left(' ',5,' ')||left('Index',5),

 ||left(' ',6,' ')||left('-- Split -- Insert',2Ø),

 ||left(' ',8,' ')||left('Data set:',9),

 ||left(' ',9,' ')||left('Res.',4)

 fi.6 = left('obs',3) right('Job name',8) left('Run date',11),

 left('Elapsed time',14) left('Cluster/Component name',3Ø),

 right('Excp',6) right('Records',9) right("ret'ved",8),

 left('delete insert update',21) right('Key',3),

 right('Rba',3) right('Cnv',3) right('ICI',3),

 left('Recl',4) right('kl',3) right('size',4),

 right('level',8) right('CI',7) right('CA',9),

 center('strategy',8) right('ext.',5),

 left('Address.',8) left('Format',8) left('sharing',7),

 left('Restriction',12)

 fi.7 = left('-',242,'-')

 "EXECIO * DISKW s64fa (STEM fi.)"

 bf.1 =left(' ',8,' '),

 ||'VSAM file buffers & buffering management'||left(' ',15,' ')

 bf.2 =' '

 bf.3 =left(' ',8,' ')||'Report produced on',

 ||left(' ',1,' ')||left(date(),11),

 ||left(' ',1,' ')||left('at ',3,' ')||left(time(),1Ø)

 bf.4 = left(' ',76,' ')||left('# of Records',13),

 ||left(' ',8,' ')||left('Access:',8)||left(' ',8,' '),

 ||left('Buffers:',8)||left(' ',3Ø,' ')||left('RS',2),

 ||left(' ',5,' ')||left("Direct Optimized (DO) SMB parms:",32)

 bf.5 = left('obs',3) right('Job name',8) left('Run date',11),

 left('Elapsed time',14) left('Cluster/Component name',3Ø),

 right('Records',9) right("ret'ved",8),

 right('Excp',6) left('mode',4),

 63© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 left('bias',4) left('SMB',5),

 left('used user space data index',31),

 left('bit fixed',1Ø) right('vsp',5),

 right('hwt',5) right('b31',5),

 right('cb31',5) right('ivs',5),

 right('rer',5) right('mer',5) right('hyp',5)

 bf.6 = left('-',2Ø5,'-')

 "EXECIO * DISKW s64bf (STEM bf.)"

/*--*/

/* Part 2: read and decode SMF 64 records */

/*--*/

'EXECIO * DISKR SMF64 (STEM x. FINIS'

numeric digits 1Ø

do i = 1 to x.Ø

/*--*/

/* Header/Self-defining Section */

/*--*/

 rty = c2d(substr(x.i,2,1))

 if rty <> '4Ø'x then do /* record type */

 smfdate = substr(c2x(substr(x.i,7,4)),3,5) /* unpack smf date */

 smftime = smf(c2d(substr(x.i,3,4))) /* decode smf time */

 term= c2d(substr(x.i,3,4)) /* termination time */

 jbn = substr(x.i,15,8) /* jobname */

 rst = smf(c2d(substr(x.i,23,4))) /* decode rst time */

 init= c2d(substr(x.i,23,4)) /* initiate time */

 rsd = substr(c2x(substr(x.i,27,4)),3,5) /* unpack rsd date */

/*---*/

/* Situation indicator */

/*---*/

 rin = x2b(c2x(substr(x.i,39,1)))

 z1 = substr(rin,1,1)

 z2 = substr(rin,2,1)

 z3 = substr(rin,3,1)

 z4 = substr(rin,4,1)

 z5 = substr(rin,5,1)

 z6 = substr(rin,6,1)

 z7 = substr(rin,7,1)

 if z1 =1 & z6 =1 then sit='Close on Abend '

 else if z1 =1 then sit='Component closed'

 else if z2 =1 then sit='Vol switched '

 else if z3 =1 then sit='No space avail '

 else if z4 =1 then sit='Cat or CRA rec '

 else if z5 =1 then sit='Closed type=t '

 else if z6 =1 then sit='Abend process '

 else if z7 =1 then sit='Close VVDS or ICF'

 else sit='logic error'

/*--*/

/* Indicator of component being processed */

/*--*/

 dty = x2b(c2x(substr(x.i,4Ø,1))) /* dataset attributes */

 64 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 w1 = substr(dty,1,1) /* component type */

 w2 = substr(dty,2,1) /* component type */

 w3 = substr(dty,3,1) /* file format */

 w4 = substr(dty,4,1) /* file compession */

 w5 = substr(dty,5,1) /* rls */

 w6 = substr(dty,6,1) /* rls : mmf */

 w7 = substr(dty,7,1) /* file addressibility */

 select

 when w1 =1 then comp = 'Data'

 when w2 =1 then comp = 'Index'

 end

 select

 when w3 =1 then form = 'Extended format'

 otherwise form = 'Standard format'

 end

 select

 when w4 =1 then com = 'Compressed '

 otherwise com = 'Non compressed'

 end

 select

 when w5 =1 then rls = 'RLS in effect '

 when w6 =1 then rls = 'RLS in effect MMF disabled'

 otherwise rls = 'Non rls '

 end

 select

 when w7 =1 then addr = 'Extended addressable ds'

 otherwise addr = 'Standard addressibility'

 end

 dnm = strip(substr(x.i,85,44)) /* dataset name */

 hlq = substr(dnm,1,3) /* ds hlq construct */

 hlqt= substr(dnm,1,11) /* test ds hlq */

 chr = c2d(substr(x.i,131,4)) /* current high rba/ci */

 esl = c2d(substr(x.i,135,2)) /* extent segment length*/

 #extents = esl / 26 /* no. of extents */

 offset = 135 + 2 + esl

 sln = c2d(substr(x.i,offset,4)) /* stat.segment length */

/*--*/

/* Selection filtering by: dsn or job name (sample) */

/*--*/

/* IF (hlq ¬= "SYS") & (hlq ¬= "DFH") & (hlq ¬= "BET") & ,

 (hlq ¬= "QMF") & (hlq ¬= "CIC") & ,

 (hlq ¬= "CAT") & (hlq ¬= "BK.") & ,

 (jbn ¬= "CICSPROD") & (jbn ¬= "CICSTEST") & ,

 (jbn ¬= "CICSDEV") & (comp = 'Data') */

/*--*/

/* Figure 1 selection filters used: dsn, job name, close status */

/*--*/

 IF hlqt="PROD.HISTFI" & jbn = "MYJOB " & (z1 =1)

Then do

select ;

 65© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 when sln > 28Ø

 then do ;

/*---*/

/* Statistics Section at OPEN Time */

/*---*/

 nil = c2d(substr(x.i,offset+4,4)) /* # of index levels */

 nex = c2d(substr(x.i,offset+8,4)) /* # of extents */

 nlr = c2d(substr(x.i,offset+12,4)) /* # of records */

 nde = c2d(substr(x.i,offset+16,4)) /* # of deletes */

 nin = c2d(substr(x.i,offset+2Ø,4)) /* # of inserts */

 nup = c2d(substr(x.i,offset+24,4)) /* # of updates */

 nre = c2d(substr(x.i,offset+28,4)) /* # of retrieves */

 ncs = c2d(substr(x.i,offset+36,4)) /* # of ci splits */

 nas = c2d(substr(x.i,offset+4Ø,4)) /* # of ca splits */

 nep = c2d(substr(x.i,offset+44,4)) /* # of excp count */

/*---*/

/* Change in Statistics from OPEN to time of EOV and CLOSE */

/*---*/

 dil = c2d(substr(x.i,offset+48,4)) /* # of index levels chg. */

 dex = c2d(substr(x.i,offset+52,4)) /* # of extents chg. */

 drl = c2d(substr(x.i,offset+56,4)) /* # of records chg. */

 dde = c2d(substr(x.i,offset+6Ø,4)) /* # of deleted chg. */

 din = c2d(substr(x.i,offset+64,4)) /* # of insert chg. */

 dup = c2d(substr(x.i,offset+68,4)) /* # of update chg. */

 dre = c2d(substr(x.i,offset+72,4)) /* # of retrieve chg. */

 dcs = c2d(substr(x.i,offset+8Ø,4)) /* # of ci splits chg. */

 das = c2d(substr(x.i,offset+84,4)) /* # of ca splits chg. */

 dep = c2d(substr(x.i,offset+88,4)) /* # of excp chg. */

/*---*/

/* Dataset Characteristics Section */

/*---*/

 dbs = c2d(substr(x.i,offset+92,4)) /* physical blocksize */

 dci = c2d(substr(x.i,offset+96,4)) /* control interval size */

 dls = c2d(substr(x.i,offset+1ØØ,4)) /* max. logical rec length */

 dkl = c2d(substr(x.i,offset+1Ø4,2)) /* key length */

 ddn = substr(x.i,offset+1Ø6,8) /* dd name */

 str = c2d(substr(x.i,offset+114,1)) /* string number */

 plh = c2d(substr(x.i,offset+168,2)) /* # of concurrent strings */

 bno = c2d(substr(x.i,offset+115,1)) /* # of buffers requested */

 bsp = c2d(substr(x.i,offset+116,4)) /* buffer space */

 bfd = c2d(substr(x.i,offset+12Ø,2)) /* data buffers */

 bfi = c2d(substr(x.i,offset+122,2)) /* index buffers */

/*---*/

/* First ACB MACRF flag byte */

/*---*/

mc1 = x2b(c2x(substr(x.i,offset+17Ø,1)))

 acbkey = substr(mc1,1,1) /* access data via index? key_access */

 acbadr = substr(mc1,2,1) /* access without index?' rba_access */

 acbcnv = substr(mc1,3,1) /* control interval processing? */

 acbseq = substr(mc1,4,1) /* sequential processing? */

 66 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 acbdir = substr(mc1,5,1) /* direct processing? */

 acbin = substr(mc1,6,1) /* input/get/read ? */

 acbout = substr(mc1,7,1) /* output/put/write ? */

 acbubf = substr(mc1,8,1) /* user buffers? */

if (acbout= 1) & (acbin= 1) then open='inout '

 else if acbout= 1 then open='output'

 else open='input '

/*--*/

/* Second ACB MACRF flag byte */

/*--*/

mc2 = x2b(c2x(substr(x.i,offset+171,1)))

 acbskp = substr(mc2,4,1) /* skip sequential processing */

 acblogon= substr(mc2,5,1) /* logon indicator */

 acbrst = substr(mc2,6,1) /* dataset to empty state */

 acbdsn = substr(mc2,7,1) /* shared_control_blocks' */

 acbaix = substr(mc2,8,1) /* path_aix */

if (acbdir= 1) & (acbseq= 1) then mode='mix'

 else if acbdir= 1 then mode='dir'

 else if acbskp= 1 then mode='skp'

 else mode='seq'

/*--*/

/* Third ACB MACRF flag byte */

/*--*/

mc3 = x2b(c2x(substr(x.i,offset+172,1)))

 acblsr = substr(mc3,2,1) /* local shared resource */

 acbgsr = substr(mc3,3,1) /* global shared resource */

 acbici = substr(mc3,4,1) /* improved ci processing */

 acbdfr = substr(mc3,5,1) /* deferred write */

 acbsis = substr(mc3,6,1) /* sequential insert strategy */

 acbncfx = substr(mc3,7,1) /* fixed_control_blocks */

 acbmode = substr(mc3,8,1) /* vsam 31 bit addressing */

select

 when acblsr = 1 then shr='lsr'

 when acbgsr = 1 then shr='gsr'

 otherwise shr='nsr'

end

select

 when acbncfx= 1 then fix='yes' /* cont. blocks & buffers */

 otherwise fix='no ' /* fixed in real storage */

end

select

 when acbmode = 1 then bufa='31' /* buffer addressing mode */

 otherwise bufa='24'

end

select

 when ACBSIS = '1' then ins='SIS' /* insert strategy used */

 otherwise ins='nis'

end

/*--*/

/* Fourth ACB MACRF flag byte */

 67© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/*--*/

mc4 = x2b(c2x(substr(x.i,offset+173,1)))

 acbrls = substr(mc4,1,1) /* rls processing */

 acbsnp = substr(mc4,2,1) /* snp option */

 mc43 = substr(mc4,3,1) /* reserved */

 mc44 = substr(mc4,4,1) /* reserved */

 mc45 = SUBSTR(mc4,5,1) /* reserved */

 mc46 = SUBSTR(mc4,6,1) /* reserved */

 mc47 = SUBSTR(mc4,7,1) /* reserved */

 mc48 = SUBSTR(mc4,8,1) /* reserved */

/*---*/

/* SMB Restrictions */

/* MACRF parameters not supported are: */

/* UBF(USER buffering), ICI(Improved Control Interval processing), */

/* GSR(Global Shared Resources), LSR(Local Shared Resources), */

/* RLS(Record Level Sharing), AIX(Alternate Index)- pre z/OS 1.3 rel.*/

/* non-extended format VSAM files. */

/*---*/

 if acbubf = 1 then note='USER buffering'

 else if acbici = 1 then note='ICI processing'

 else if acbaix = 1 then note='Alternate Index'

 else if shr ¬= 'nsr' then note='NSR required'

 else if acbrls =1 then note='RLS processing'

 else if w3 =Ø then note='Extended format required'

 else note='none'

/*---*/

/* SMB ACCESS BIAS Information */

/*---*/

smb = x2b(c2x(substr(x.i,offset+174,1)))

 s1 = substr(smb,1,1) /* accbias via jcl*/

 s2 = substr(smb,2,1) /* accbias via smb*/

 s3 = substr(smb,3,1) /* bias=do used */

 s4 = substr(smb,4,1) /* bias=so used */

 s5 = substr(smb,5,1) /* bias=sw used */

 s6 = substr(smb,6,1) /* bias=dw used */

 s7 = substr(smb,7,1) /* bias=co used */

 s8 = substr(smb,8,1) /* bias=cr used */

/*---*/

/* The way of SMB invocation ? */

/*---*/

select

 when s1 ='1' then smb='jcl'

 when s2 ='1' then smb='sys'

 otherwise smb='none'

end

/*--*/

/* Kind of SMB optimization technique used ? */

/*--*/

select

 when s3 ='1' then bia='do'

 68 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 when s4 ='1' then bia='so'

 when s5 ='1' then bia='sw'

 when s6 ='1' then bia='dw'

 when s7 ='1' then bia='co'

 when s8 ='1' then bia='cr'

 otherwise bia='none'

end

/*--*/

/* SMB DO Information */

/*--*/

rsc = x2b(c2x(substr(x.i,offset+175,1)))

 vsp = substr(rsc,1,1) /* do with smbvsp */

 hwt = substr(rsc,2,1) /* do with smbhwt */

 b31 = substr(rsc,3,1) /* remode31=buff used */

 cb31= substr(rsc,4,1) /* rmode31=cb used */

 ivs = substr(rsc,5,1) /* do: insufficient vs */

 rer = substr(rsc,6,1) /* do: reduced resource */

 mer = substr(rsc,7,1) /* do: minimum resource */

 hyp = substr(rsc,8,1) /* do:some or all hyperspace buffers*/

 if comp="Index" then buf =bfi

 else if compont="Data" then buf =bfd

 elapstm = smf(term-init)

/*--*/

/* File processing & attribute report */

/*--*/

fa=right(i,3,'Ø') right(jbn,8) right(date('n',rsd,'j'),11),

 left(elapstm,14) left(dnm,3Ø) right(DEP,6),

 right(nlr,9) right(dre,8) right(dde,6),

 right(din,6) right(dup,6) right(acbkey,3),

 right(acbadr,3) right(acbcnv,3) right(acbici,3),

 right(dls,5) right(dkl,3) right(DCI,5),

 right((nil + dil),4), /* index levels at the end of run */

 right((ncs + dcs),1Ø), /* ci splits at the end of run */

 right((nas + das),1Ø), /* ca splits at the end of run */

 right(ins,5),

 right((nex + dex),5), /* extents at the end of run */

 left(' ',1' ') left(addr,8) left(form,8) right(shr,4),

 left(' ',2' ') left(note,24)

 PUSH fa

 "EXECIO 1 DISKW s64fa"

/*--*/

/* File buffers & & buffering management report */

/*--*/

bff= right(i,3,'Ø') right(jbn,8) right(date('n',rsd,'j'),11),

 left(elapstm,14) left(dnm,3Ø) right(nlr,9),

 right(dre,8) right(dep,6) right(mode,4),

 left(bia,4) left(smb,4),

 right(bno,5) right(acbubf,5) right(bsp,6),

 right(bfd,5) right(bfi,5) right(bufa,5),

 right(fix,5) right(vsp,5) right(hwt,5),

 69© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 right(b31,5) right(cb31,5) right(ivs,5),

 right(rer,5) right(mer,5) right(hyp,5)

 PUSH bff

 "EXECIO 1 DISKW s64bf"

 end

 otherwise do ;

 say 'REXX program logic in error !'

 exit

 end

 end

 end

 end

 end

drop x.

/* Close & free all allocated files */

 "EXECIO Ø DISKW s64fa(FINIS "

 "EXECIO Ø DISKW s64bf(FINIS "

 say

 say 'VSAM file processing & attribute report dsn ...:'r64fa

 say 'VSAM file buffers & buffering management dsn ..:'r64bf

 say

 "free FILE(SMF64 s64fa s64bf)"

exit

/*--*/

/* Error exit routine */

/*--*/

ERROR: say 'The following command produced non-zero RC =' RC

 say SOURCELINE(SIGL)

 exit

SMF: procedure

/* REXX - convert an SMF time to hh:mm:ss:hd format */

arg time

 time1 = time % 1ØØ

 hh = time1 % 36ØØ

 hh = RIGHT("Ø"||hh,2)

 mm = (time1 % 6Ø) - (hh * 6Ø)

 mm = RIGHT("Ø"||mm,2)

 ss = time1 - (hh * 36ØØ) - (mm * 6Ø)

 ss = RIGHT("Ø"||ss,2)

 fr = time // 1ØØØ

 fr = RIGHT("Ø"||fr,2)

 rtime = hh||":"||mm||":"||ss||":"||fr

 return rtime

CONCLUSION

It is true that SMB may not be the answer to all application program
buffering requirements. Its main purpose is to provide a system

 70 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

capability for improving performance buffering options for batch
application processing beyond those provided by the standard
defaults. However, if you haven’t implemented System Managed
Buffering yet, the recommendations in this article can be applied to
any VSAM file type, and the performance improvements for batch
processing will be remarkable. If your datasets are currently in
EXTENDED format, or will be converted to EXTENDED in the
near future, you should be able to implement System Managed
Buffering, and you will be able to achieve even better performance
than is available with NSR buffering. As in all other cases, one
shouldn’t make significant changes in a production dataset’s
allocation unless they have been thoroughly tested.

REFERENCES

z/OS DFSMS: Using Data Sets (SC26-7410)

z/OS V1R3: DFSMS Technical Guide (SG24-6569-00)

VSAM Demystified (September 2003 edition) (SG24-6105)

Mile Pekic
Systems Programmer (Serbia) © Xephon 2005

BPXMTEXT utility

As non-Unix users, we are constantly challenged by the new USS
world and make lots of stupid errors! Deciphering the resultant error
messages is not really intuitive. No message numbers, eight digit
error codes, etc.

But IBM has delivered a ‘goody’ to help us!
SYS1.SBPXEXEC(BPXMTEXT) contains an EXEC that displays
short explanation messages.

For example, if you try to dismount SYS1.ROOT using ISHELL,
you get the following message, which is not very clear:

 71© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 Work with Mounted File Systems

 .--.

S | Unmount the File System | es.

U | | t or quiesce

 | CAUTION: | us Row 1 of 11

_ | The file system is about to be unmounted. | lable

_ | File system name: | lable

_ | SYS1.ROOT | lable

_ | | lable

_ | Unmount option: | lable

_ | __ 1. Normal | lable

_ | 2. Drain | lable

_ | 3. Immediate | lable

_ | 4. Force | lable

_ | | lable

u | Drain wait time 6Ø seconds | lable

 | |

 | |

 | |

 .--.

 | Errno=72x The resource is busy;

 Reason=Ø588ØØAA The file system has file |

 | systems mounted on it. Press Enter to continue. |

 '--'

Ouch! What is the meaning of the reason code 058800AA?

With BPXMTEXT, it is easy to get the answer. You only have to
enter the following command on the ISPF command line:

BPXMTEXT Ø588ØØAA

And you get the answer!

MT BPXMTEXT msg: Ø588ØØAA

BPXFSUMT Ø6/Ø5/Ø2

JRFsParentFs: The file system has file systems mounted on it

Action: An unmount request can be honoured only if there are no file

systems mounted anywhere on the requested file system.

Use the D OMVS,FILE command

from the system console to find out which file systems are mounted on

the requested file system. Unmount them before retrying this request.

Often this is enough information to determine the real error; if not,
well there is always the ‘friendly’ manual!

Systems Programmer
(France) © Xephon 2005

MVS Update

WANT TO SUBSCRIBE?

Each monthlyly issue of MVS Update is packed with ideas for improving your
MVS installation – and all of the technical details necessary for you to put those
ideas into practice.

With MVS Update you get:
• A practical toolkit of ready-made enhancements, developed and tested in a

working environment by MVS experts throughout the world.
• Tutorial articles on system internals.
• Performance tuning tips and measurements.
• Early user reports on new products and releases.

Plus:
• MVS Update will repay the cost of subscribing many times over!

All for a fraction of the cost of a single training course! So what are you waiting
for?
• Go to http://www.xephonUSA.com/subscribe now to subscribe!
• Subscribe now and receive 25% off of a 12-month subscription*!

* using promotional code MV8X41.

* * *

WANT TO CONTRIBUTE?

MVS Update is written by technical professionals just like you with a desire to
share their expert knowledge with the world.

Xephon is always seeking talented individuals to contribute articles to MVS
Update – and get paid for it!

If you have insight into how to make MVS more functional, secure, reliable, user
friendly, or to generally improve MVS performance, please visit
http://www.xephonUSA.com/contribute for more details on how you can
contribute to this definitive industry publication.

x xephon

	A simple ISPF productivity aid
	Execute program with extended parameter
	System layout verification tool
	Comparing two files
	WLM postprocessing made easy
	Locating strings in files
	Boosting VSAM performance with SMB
	BPXMTEXT utility
	Subscribing and contributing to MVS Update

