
October 1999

157

© Xephon plc 1999

3 CA1 TMC information
5 COBOL II scope delimiters
7 JES2 recovery
9 Converting a Julian date to

Gregorian
10 PDF line commands
11 OS/390 Version 2 Release 8
14 Selectively blocking commands
30 OS/390 Unix Assembler callable

services
59 Selecting messages from the log
72 MVS news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MVS Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Jaime Kaminski

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

MVS Update on-line
Code from MVS Update can be downloaded
from our Web site at http://www.xephon.
com; you will need the user-id shown on your
address label.

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
£340.00 in the UK; $505.00 in the USA and
Canada; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1992 issue, are available separately
to subscribers for £29.00 ($43.00) each
including postage.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 33598
From USA: 01144 1635 33598
E-mail: xephon@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75067
USA
Telephone: 940 455 7050

Contributions
If you have anything original to say about
MVS, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
– two or three paragraphs could be sufficient.
Not only will you be actively helping the free
exchange of information, which benefits all
MVS users, but you will also gain pro-
fessional recognition for your expertise, and
the expertise of your colleagues, as well as
some material reward in the form of a
publication fee – we pay at the rate of £170
($250) per 1000 words for all original
material published in MVS Update. If you
would like to know a bit more before starting
on an article, write to us at one of the above
addresses, and we’ll send you full details,
without any obligation on your part.

 3© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

CA1 TMC information

During a recent change to our DASD layout it became necessary to
move our CA1 TMC (Tape Management Catalog) to another volume.
However, when we tried to restart CA1, we received an ‘IEFTMS70
5yy-132’ message. This message is issued in situations where either
the TMC or the audit file has been incorrectly defined. Although I have
worked with CA1 for quite a while, I was unable to understand what
was wrong and had to resort to calling CA for assistance. The answer
they provided was sufficiently unexpected that it seemed worthwhile
pointing out the problem to a wider audience. Apparently the message
was issued because CA1 could not handle 31-bit UCBs. We had hit the
problem by defining our new DASD with 31-bit UCBs rather than our
old DASD’s 24-bit ones.

Having assisted various people trying to understand the operation of
CA1 and its use of the TMC, there would appear to be a lot of
confusion and concern over this particular file. A lot of this confusion
seems to stem from the TMC being an immovable file that requires
‘specialist’ procedures to move it.

The TMC is defined as a 340-byte fixed record, unblocked, immovable
file. If you were to treat it as such and run a utility like SELCOPY to
print out the file it would consist of the following structure.

The first three records are control records responsible for defining the
volume ranges in use at your site (up to 52 independent ranges) and
for controlling DSNB usage. Following these control records will be
one volume record for every volume defined in your volume range. At
the end of these records and marked by X'FF' in the first byte are the
DSNB records.

If you look in the macro library supplied by CA, you will find two
macros – TMMTMREC and TMMDSNB. TMMTMREC defines the
layout of the control records and the volume records, while TMMDSNB
defines the DSNB layout. Reading these Assembler macros should
enable you to be able to see a correlation between the GRW (Generalized
Report Writer) and the records. In other words you should be able to
see the TMC as nothing more than a strangely unblocked ordinary file.
Using the macro layouts for information will also permit the use of
routines other than the GRW (or EARL) to read the TMC. So if you

 4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

lack the skills in either of these tools, you can simply use the maps as
your guides for SELCOPY, etc. So if the TMC is just an ordinary file
with an ordinary fixed format, why all the problem when it comes to
moving it? There are two primary reasons:

• How the I/O is actually done to the TMC. When CA1 is started
(or restarted) it takes note of where the TMC is. After this, access
to the file is done through an SVC rather than through conventional
I/O. This SVC works out the location of a TMC record and then
‘jumps’ to the disk location. This calculation of the offset from the
start of the file is done by using the control records to work out
where the currently in-use volume serial number is located and
then adding in the number of control records. To make this
clearer, assume you have two volume ranges, VOLSERs 10-19
and 30-49, and we are about to process volume 40. The jump is
calculated as follows. Start of file +3records (for the control
records) +10 records – VOLSER range 10-19 is 10 records –
+11records (Volser 40-30 (start of second range) is 11 records).
Hence, a jump to record 24 is required. As standard I/O is not done
and is merely a relative record calculation, and because the start
of file pointer is only obtained at start-up, should the file be
moveable and, for example, defragged elsewhere, the I/O would
continue to where the file was previously and not its new location.

• The TMC must not be in use while the move takes place. Any use
of tape which could update the TMC while the move is happening
would result in potential TMC damage. It is imperative therefore
that tape activity is stopped while the move takes place.

Assuming you protect the TMC accordingly, you do not literaly need
to follow the procedures as stated in the manual (not that I am
recommending you do not follow them, of course). Utilities such as
DFDSS are perfectly capable of safely moving a TMC as long as tape
activity is controlled during the copy process and that CA1 is restarted
after the move. It is the last point that matters most. You really can treat
the TMC as an ordinary file and read and process it accordingly as long
as CA1 is restarted to reset itself after the move and no tape activity
has updated the TMC during your change activity.

Systems Programmer (UK) © Xephon 1999

 5© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

COBOL II scope delimiters

INTRODUCTION

Have you ever needed to get into a compound ‘IF’ phrase and wished
you could end one ‘IF’ so you could begin another – without using a
full stop? This is where scope delimiters can be very helpful.

USING COBOL II SCOPE DELIMITERS

Consider this example of a Y2K fix that would cause serious problems
if you were stuck with COBOL I and could not use scope delimiters.
In the example, dates are in the format YYMMDD; if there is a ‘start’
date, there will be a corresponding ‘end’ date; if there is no ‘start’ date,
there will be no ‘end’ date:

IF INPUT-START-DATE > ZERO
 MOVE INPUT-START-DATE TO WS-START-DATE-6
 MOVE INPUT-END-DATE TO WS-END-DATE-6
 IF WS-START-DATE-6 < 5ØØØØØ
 MOVE 2Ø TO WS-START-DATE-CC
 ELSE
 MOVE 1Ø TO WS-START-DATE-CC

Now we are in trouble. We want to repeat the last four lines of code
for the end date without leaving the ‘IF’ sentence, since we only do all
this if START-DATE > zero. We could repeat the ‘IF’ again, but that
is wasteful. In COBOL II and above it can look like this:

IF INPUT-START-DATE > ZERO
 MOVE INPUT-START-DATE TO WS-START-DATE-6
 MOVE INPUT-END-DATE TO WS-END-DATE-6
 IF WS-START-DATE-6 < 5ØØØØØ
 MOVE 2Ø TO WS-START-DATE-CC

ELSE
 MOVE 1Ø TO WS-START-DATE-CC

END-IF
IF WS-END-DATE-6 < 5ØØØØØ

 MOVE 2Ø TO WS-END-DATE-CC
ELSE

 MOVE 1Ø TO WS-END-DATE-CC
END-IF

 END-IF.

 6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The last two ‘END-IF’s are superfluous, we could have put a full stop
after the last ‘WS-END-DATE-CC’. Some programmers include
them for style and readability.

‘END-IF’ terminates the scope of the immediately preceding ‘IF’
without terminating the sentence. Just like ‘ELSE’ matches up with
the immediately preceding ‘IF’. Both require the same degree of care
during use.

OTHER SCOPE DELIMITERS

There are a number of scope delimiters in COBOL II. A selection are
shown below:

• END-ADD

• END-CALL

• END-DIVIDE

• END-EVALUATE

• END-MULTIPLY

• END-READ

• END-SUBTRACT

• END-WRITE.

We will consider some of these COBOL II scope delimiters in future
issues of MVS Update.

Allan Kalar
Systems Programmer (USA) © Xephon 1999

If you want to contribute an article to MVS Update, a copy
of our Notes for contributors can be downloaded from our
Web site. The URL is: www.xephon.com/contnote.html.

 7© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

JES2 recovery

THE PROBLEM

Recently an unusual situation occurred at our site which had not
happened for many years. One of the datasets in a JES2 procedure
concatenation had become corrupted. This meant that the batch jobs
using that concatenation were failing to find their JCL. Although we
were able to repair the dataset, it needed to be redefined and therefore
JES2 was unaware of the new ‘correct’ library. In common with most
sites, an IPL to restore matters was not exactly the preferred option!
So it was time to try something that I had not used since the days of
MVS/ESA Version 3 Release 3 (currently we are at OS/390 Version
1 Release 3). Because it worked, the procedure may be of use should
you encounter the problem at your site.

A SOLUTION

The command £P JES2, ABEND was issued. This forces JES2 to stop
and issue a variety of messages, ending with a WTOR. By replying
END to the WTOR, and then issuing a S JES2,WARM,NOREQ it was
possible to get JES2 to restart as a ‘hot’ start. This allowed JES2 to find
its PROCLIB concatenation again, and (the best bit) nothing stopped
or failed in the process.

Should you need to try this, an extract from the log to show all the
messages obtained is shown below. This is followed by a description
for what a ‘hot’ start ‘officially’ means in JES2 terms. I have included
the log extract below, because the messages provided can look
decidedly worrying if you are not ready for them!

£P JES2,ABEND
*£HASPØ95 JES2 CATASTROPHIC ERROR. CODE = £PJ2
 £HASPØ88 JES2 ABEND ANALYSIS 842
 £HASPØ88 ———————————————————————
 £HASPØ88 FMID = HJE66Ø3 LOAD MODULE = HASJES2Ø
 £HASPØ88 SUBSYS = JES2 OS 1.3.Ø
 £HASPØ88 DATE = 99.217 TIME = 19.27.11
 £HASPØ88 DESC = OPERATOR ISSUED £PJES2, ABEND
 £HASPØ88 MODULE MODULE OFFSET SERVICE ROUTINE
 £HASPØ88 NAME BASE + OF CALL LEVEL CALLED

 8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 £HASPØ88 ———— ———— ——— ——— —————
 £HASPØ88 HASPCOMM ØØØ7D828 + ØØEB56 OW21918 *ERROR £PJ2
 £HASPØ88 PCE = COMM (ØCA361BØ)
 £HASPØ88 RØ = ØØØ8C15Ø ØØBF4738 ØØØØ522E ØØØ83F44
 £HASPØ88 R4 = ØØØ83Ø2C ØCA36B2C ØØØØØØØ4 ØCA36B3Ø
 £HASPØ88 R8 = ØØØ8C15Ø ØØØ8D15Ø ØØØØØØØØ ØØØØ6ØØØ
 £HASPØ88 R12 = ØØØ7D878 ØCA361BØ ØCAØ5CCØ ØØØD37F8
 £HASPØ88 ———————————————————————
*£HASP198 REPLY TO £HASPØ98 WITH ONE OF THE FOLLOWING: 843
 END - STANDARD ABNORMAL END
 END,NOHOTSTART - ABBREVIATED ABNORMAL END (HOT-START IS AT RISK)
 SNAP - RE-DISPLAY £HASPØ88
 DUMP - REQUEST SYSTEM DUMP (WITH AN OPTIONAL TITLE)
*71 £HASPØ98 ENTER TERMINATION OPTION

*72 £HASP426 SPECIFY OPTIONS - JES2 OS 1.3.Ø
 GSVXØ19I JES2 is not active
 R 72,WARM,NOREQ
 IEE6ØØI REPLY TO 72 IS;WARM,NOREQ
 IEF196I IEF285I SYS1.PARMLIB KEPT
 IEF196I IEF285I VOL SER NOS= SY1ØA1.
 IXZØØØ1I CONNECTION TO JESXCF COMPONENT ESTABLISHED, 973
 GROUP MVSJESP1 MEMBER MVSJESP1£IPO1
 £HASP537 THE STATEMENTS IN THE INITIALIZATION DECK REQUIRE A 974
 CHECKPOINT SIZE OF 431 4K RECORDS
 IEF196I IEF237I 1Ø8A ALLOCATED TO SYSØØØØ1
 £HASP478 INITIAL CHECKPOINT READ IS FROM CKPT1 976
 (SYS1.HASPCKPT ON JESØØ1)
 LAST WRITTEN THURSDAY, 5 AUG 1999 AT 19:27:Ø8 (LOCAL TIME)
*£HASP493 JES2 MEMBER-IPO1 HOT START IS IN PROGRESS
£HASP492 JES2 MEMBER-IPO1 HOT START HAS COMPLETED

HOT START

The following is an extract from the JES2 commands manual that
provides a definition of a hot start:

Hot start: a hot start is a warm start of an abnormally terminated JES2
member without an intervening IPL. JES2 performs a hot start when
a particular JES2 member has stopped but other systems have continued
to function and have not experienced problems. When JES2 hot starts,
all address spaces continue to execute as if JES2 had never terminated.
Jobs that were processing on output devices are re-queued as if a £I
command had been issued. Jobs on input devices must be resubmitted
and lines must be restarted. Hot starts have no effect on other members
in a MAS configuration.

Systems Programmer (UK) © Xephon 1999

 9© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Converting a Julian date to Gregorian

INTRODUCTION

In MVS Update, Issue 156, September 1999, there was a simple utility
to execute job steps based on the day of the week. The utility worked
by extracting the system date in Julian format, converting this date
into Gregorian format and then calculating the weekday using Zeller’s
Congruence.

However, there is no need to convert a Julian date to Gregorian format
before finding the day of the week. The code below does it directly:

DAYOWEEK CSECT
 SAVE (14,2),,*
 LR R2,R15
 USING DAYOWEEK,R2
 LA R14,SAVEAREA
 ST R13,4(,R14)
 ST R14,8(,R13)
 LR R13,R14
 TIME LINKAGE=SVC GET CURRENT DATE
 ST R1,WORK1+4 STORE DATE IN ØCYYDDDF FORMAT
 DP WORK1,=PL3'1ØØØ' SPLIT YEAR AND DAY
 ZAP WORK2,WORK1(5) PICK UP YEAR
 CVB R15,WORK2 YEAR IN BINARY
 M R14,=F'5' MULTIPLY BY 5
 BCTR R15,Ø SUBTRACT 1
 SRA R15,2 DIVIDE BY 4
 ZAP WORK2,WORK1+5(3) PICK UP DAY
 CVB R14,WORK2 DAY IN BINARY
 AR R15,R14 ADD TO "YEAR"
 SR R14,R14 ZEROISE EVEN REGISTER
 D R14,=F'7' GET DAY OF WEEK
 LR R15,R14 PUT RESULT IN REGISTER 15
 L R13,4(,R13) RESTORE REGISTER 13
 RETURN (14,2),RC=(15) Ø=SUN, 1=MON, 2=TUE, ... 6=SAT
*
SAVEAREA DC 9D'Ø'
WORK1 DC D'Ø' WORK AREA
WORK2 DS D WORK AREA
 LTORG
 YREGS
 END DAYOWEEK

Dave Thorby
Systems Programmer
London Electricity plc (UK) ©Xephon 1999

 10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PDF line commands

INTRODUCTION

In edit mode, you can enter line commands in the left margin (the line
number area). You probably already know the most common ones
such as ‘C’opy, ‘A’fter, ‘B’efore, ‘M’ove, ‘D’elete, ‘I’nsert, ‘R’epeat,
etc, and their block equivalents. There are others such as: ‘O’verlay,
‘)’ shift right, ‘(‘shift left, as well as ‘TS’ text split, and ‘TF’ text flow.

LINE COMMANDS

Here are a few of the less common tools available:

• ‘X’ will temporarily hide (or e‘X’clude) a line. ‘XX’ is the group
equivalent. This is handy to get some intervening lines out of the
way so that you can get two groups of lines closer together,
perhaps on the same screen. The line or lines are replaced with a
single line of dashes. You can enter the following commands in
the left margin of that line (If ‘n’ is not specified, it automatically
defaults to ‘1’).

• ‘Fn’ will redisplay the first ‘n’ lines of excluded text.

• ‘Ln’ redisplays the last ‘n’ lines.

• ‘Sn’ redisplay ‘n’ lines with the leftmost indentation in a block of
excluded lines.

• ‘UC’ will convert all the characters on a line to upper case. ‘UCC’
is the group command. ‘LC’ and ‘LCC’ are the ‘lower-case’
equivalents.

Information about the features that involve a ‘mask’ can be found in
the information in HELP (PF1).

Allan Kalar
Systems Programmer (USA) © Xephon 1999

 11© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

OS/390 Version 2 Release 8

INTRODUCTION

24 September 1999 saw the general availability of OS/390 Version 2
Release 8. The emphasis of the new release is on better integration and
availability. Central to the upgrade are security and systems
management features, including the ability to manage virtual private
network encryption keys dynamically through the Internet Key
Exchange, enhanced management and administration of digital
certificates used by both server applications and end-users, higher
availability of TCP/IP in a Parallel Sysplex, ISPF customization, and
the capability to print from ERP and Internet-related applications.

NEW SECURITY FEATURES

The following new security features are particularly important and
will enhance the role of OS/390 in supporting e-commerce:

• IPSec VPN provides a secure pathway between OS/390 and other
IPSec VPN-capable systems, routers, and firewalls through
encryption using the System/390 hardware CMOS Cryptographic
Coprocessor.

• The exchange of encryption keys between the end-points of
IPSec VPN can now be automated and dynamically managed
through Internet Key Exchange (IKE), an IPSec protocol for
cryptographic key and security management.

• The centralized management of digital certificates belonging to
server applications and their related private encryption keys, is
another new feature. This will allow customers and application
developers to provide common secure management of these
certificates as well as the chain of trust needed to verify user
certificates presented to these applications.

• There is SSL client authentication to the TN3270 server, allowing
TCP/IP clients to access customer applications traditionally only
accessible from a 3270 screen. It also secures against unauthorized
access to SNA applications from TCP/IP users.

 12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LDAP DIRECECTORY ACCESS

The LDAP (Lightweight Directory Access Protocol) server has been
enhanced to support LDAP Version 3 protocol, enabling OS/390
LDAP Server to interoperate with other LDAP Version 3 clients and
servers. LDAP on OS/390 includes Java support, LDAP access to
RACF information, and LDAP client authentication using RACF. It
also supports the Secure Sockets Layer for encrypted privacy of
communication and it supports multiple LDAP servers on multiple
systems in a Parallel Sysplex.

VIRTUAL IP ADDRESSING

The SecureWay Communications Server for OS/390 provides Virtual
IP Addressing (VIPA) Takeover, allowing real IP addresses to be
associated with a pseudo address, assigned to an end-user in the
System/390 server. If a connection fails, traffic is routed to an
alternative connection associated with the same VIPA.

PRINTER CONSOLIDATION

Another new feature is that Infoprint Server will use the Internet
printing protocol to process print jobs over the Internet securely.
Infoprint will use datastream transforms to translate data from one
printer format to another to allow printing from popular PC and
workstation applications as well as many ERP applications. It can
convert PCL, Postscript, and PDF files and is being positioned to
consolidate enterprise print serving functions around the System/390.

PARALLEL SYSPLEX CONFIGURATION

Parallel Sysplex configuration can be complex but the use of the
Parallel Sysplex configuration tool allows a Parallel Sysplex
configuration to be created interactively.

ISPF CUSTOMIZATION

One of the problems of installing new releases of OS/390 has been that
ISPF customization needs to be redone every time. Normally this
involves using the ISRCONFG Assembler resource, and manually
reassembling and relinking to make changes. With the introduction of
the ‘ISPF configuration utility’ this problem is alleviated. Upon

 13© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

entering TSO ISPCCONF, it is possible to convert the old ISRCONFG
Assembler source into a keyword file that includes all the options or
all those changed from the defaults.

OTHER ENHANCEMENTS

Other enhancements to OS/390 Version 2 Release 8 include:

• Allowing SNA users to use Triple DES encryption. Service
policy enhancements are said to improve the capability to monitor
and manage network performance to service level agreements.

• The addition of a dynamic update feature to the policy agent
allows service policies to be implemented without impacting
network availability.

• A new resource reservation protocol support allows users to
invoke reservation services, reserve bandwidth, and classify
reservations through an RSVP API.

• A new SNMP SLA subagent that enables network administrators
to retrieve data and determine whether the current set of SLA
policy definitions are performing as desired.

• Improvements in Workload Manager (WLM) that allow it to
prioritize workloads at the request level.

ANALYSIS

As with other recent releases of OS/390, the emphasis on security
implies the operating system is being aggressively promoted for
electronic commerce applications. The emphasis on printer
consolidation, and Parallel Sysplex configuration again re-emphasizes
the importance of enterprise server centralization.

OS/390 VERSION 2 RELEASE 9

In Version 2 Release 9, IBM plans to make further improvements to
native file and print serving for Windows clients, text search support
for XML documents and unicode, and additional Unix system services
functions. We can also look forward to a new naming convention for
OS/390 in the new millennium.

 © Xephon 1999

 14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Selectively blocking commands

THE PROBLEM

It is sometimes necessary to block the issue of certain MVS commands.
You may for instance have a job that you do not want CANCELLed
or even FORCEed without permission from the systems programming
group. There are also commands that can have an impact on system
performance (eg doing an LLA refresh on a production system).
Although this can be controlled through RACF profiles, it is a
somewhat cumbersome process and a mistake could easily end up
with the wrong groups being blocked or allowed to issue the
command(s).

A SOLUTION

A much easier way would be to have a simple facility available that
will allow systems programmers to block commands by putting them
into and removing them from a PARMLIB member.

The following facility does exactly that. There are two programs – an
MVS command exit, and a routine to manage blocked commands.
The MVS command exit intercepts commands of the format ‘T
NOCMD=xx’ with xx the suffix of a PARMLIB member NOCMDxx.

This command is passed to the second routine that manages the
blocked commands. This routine looks for the member NOCMDxx in
the PARMLIB concatenation and, if the member is found, a CSA table
is GETMAINed and the commands are copied from the member into
the table. The address of the CSA table is anchored off a subsystem
entry by the name of NCMD. (This entry is dynamically added when
the first ‘T NOCMD=xx’ command is entered.) The command exit
does a check every time that a command is entered. If the name of the
subsystem exists, the command is compared with all the entries in the
CSA table. If a match is found, the command is not executed and a
message is given. To disable the command blocking, simply issue a ‘T
NOCMD=NO’ command (which of course can also be put into the
block table).

 15© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Note that the commands are added into the PARMLIB member
without blanks, eg to block a LLA refresh the PARMLIB member
should have ‘FLLA’, on a line of its own. The comparison with the
entered command is based on the length of the command in the
PARMLIB member. For example, CANCELABC will block the
command ‘CANCEL ABCD’ but it will not block the command
‘CANCEL A’. The program is not written to accept wild cards (eg
CANCEL AB*D) but it can easily be modified to accept this format.

The MVS command exit also contains samples on how to intercept
other commands and will be very easy to convert to suit your
purposes. It removes the blanks from the passed commands and then
calls the associated entry points for each matched command. The field
CMDWAREA contains the de-blanked command whilst CMDX@
contains the address of the original MVS command buffer. It is
installed by adding it into MPF refer to the OS/390 Initialization
Guide for a description on how to do this very easy task.

MVS COMMAND EXIT

* MVS Command EXIT.
* This module will recognize commands by comparing them to entries in
* a table. It will than do a BAS to an entry point specified for the
* command. If the processing is successful, it will either suppress the
* command from further MVS processing or pass it to MVS, depending on
* a field specified per command in the command table.
* An ESTAE routine is set up to intercept any ABENDs that may result in
* calling the subroutines. The ESTAE routine issues an SVC dump.
* To add another command intercept:
* 1) Do a "F COMMTAB" in column 1. This is the command table and an
* entry can be added The format is:
* DC AL2(L'XX) .Length of command text
* DC AL4(ENTRYPT) .Address of processing routine
* DC AL1(flag) .Flag to control MVS processing
* XX DC C'MYCOMMND' .Command text (spaces removed)
* 2) The code to process command MYCOMMND should be coded at ENTRYPT.
* 3) Assemble and link.
* 4) Refresh LLA
* 5) Do a "T MPF=xx"
* Module type : Reentrant, called in supervisor state key Ø
* Addressing mode: AMODE 31, RMODE any
* Register usage : R12= Base register
* R13= Pointer to general savearea and workareas
**
MVSCOMEX CSECT
MVSCOMEX AMODE 31

 16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MVSCOMEX RMODE ANY
 BAKR R14,Ø .Save caller's status
 LR R12,R15
 USING MVSCOMEX,R12

* Main driver routine

 L R4,Ø(R1) .Get CMDX Address
 USING CMDX,R4
STORAGE LA R3,STORSIZE
 STORAGE OBTAIN,LENGTH=(3),LOC=ANY,SP=229
 LA R3,STORSIZE
 LR R2,R1 .Point to getmained area
 XR R9,R9
 MVCL R2,R8 .Propagate binary zeros
 USING STORAREA,R1
 ST R13,SAVEAREA+4 .Backchain
 DROP R1
 LR R13,R1
 USING STORAREA,R13 .Addressability to getmained area
 ST R4,CMDX@ .Preserve adress of command buffer
 BAS R14,FINDCMND .Locate command text, remove blanks
CHKPRCS BAS R14,CMNDCOMP .See if we have to process command
 BAS R14,SEEKSSI .Go see if command blocking active
 LTR R15,R15 .Is it?
 BZ CHKOURS .No, go see if we have to intercept
 BAS R14,TSTBLOCK .Compare command with "block" table
 LTR R15,R15 .Must it be blocked?
 BZ CHKOURS .No, don't block the command
 WTO 'MVSCOMEX(W): This command has been blocked by Software X
 Support',ROUTCDE=11
CHKOURS TM DOFLAG,YES .Is this an intercepted command?
 BNO RETURN .No, not one of ours
 BAS R14,PROCCMND .Process command
RETURN L R4,RETCODE .Pick up return code
 LA R3,STORSIZE
 LR R2,R13 .Pointer to storage area
 STORAGE RELEASE,LENGTH=(3),SP=229,ADDR=(2)
 LR R15,R4 .Reload return code
 PR .Return to our caller

* This routine locates the command and removes all blanks

FINDCMND BAKR R14,Ø
 L R4,CMDXCLIP .Get command buffer address
 DROP R4
 USING CMDXCLIB,R4 .Access the passed command buffer
 LA R1,CMDXCMDL .MVS buffer of actual command text
 ST R1,MVSCOM@ .Preserve this address
 LH R1,CMDXCMDL .Length of command
 LA R2,CMDXCMDI .Access start of text
POINTCMD LA R3,CMDWAREA .Point to start of command wrk area

 17© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 XR R5,R5 .Clear length counter
DESPACEL EQU * .Remove all spaces from the command
 CLI Ø(R2),C' ' .Is it a space?
 BE BUMPUP .Yes
 CLI Ø(R2),X'ØØ' .Is it low value?
 BE BUMPUP .Yes
 CLM R5,3,=AL2(L'CMDWAREA) Too long?
 BL MOVECHAR .No
 WTO 'MVSCOMEX(E): -Command exceeds max length',ROUTCDE=13
 B UPPERCSE .Only accept these characters
MOVECHAR MVC Ø(1,R3),Ø(R2) .Move character into wrk area
 LA R3,1(R3) .Point to next empty space
 LA R5,1(R5) .Bump up length counter by 1
BUMPUP LA R2,1(R2) .Bump up pointer to cmd buffer
 BCT R1,DESPACEL .Do for each character in the cmd
UPPERCSE OC CMDWAREA(L'CMDWAREA),SPACES .Uppercase
 ST R5,CMDLENG .Length of de-spaced command
FINDCMNX PR .Reload our return address

* This routine gets the address of our subsystem entry

SEEKSSI BAKR R14,Ø
 L R4,16 .Start of CVT
 USING CVT,R4 .Establish addressability
 L R4,CVTJESCT .Get JESCT address
 USING JESCT,R4 .Establish addressability
 L R4,JESSSCT .Get SSCT chain address
 USING SSCT,R4 .Set addressability
SSCTLOOP EQU * .Look for our SSCVT
 LTR R4,R4 .End of chain?
 BZ NOBLOCK .Yes - not found
 CLC SSCTSNAM,SUBSYSN .Our SSCVT?
 BE FOUNDSSI .Gotcha
 L R4,SSCTSCTA .Point to next SSCVT entry
 B SSCTLOOP .Redo the loop
FOUNDSSI EQU * .We have found the subsystem
 CLC SSCTSUSE,=F'Ø' .Has the CSA table been obtained?
 BZ NOBLOCK .No, we are not blocking commands
 L R15,SSCTSUSE .Return address of the CSA table
 ST R15,BLOCKTB@ .Store the address
 B SEEKSSIX .Get out
NOBLOCK XR R15,R15 .No, we are not blocking commands
SEEKSSIX PR

* This routine checks if the command matches an entry in the
* "block" table kept in CSA.

TSTBLOCK BAKR R14,Ø
 L R7,BLOCKTB@ .Where the CSA "block" table is
 L R6,Ø(R7) .Number of entries in "block" table
 LTR R6,R6 .Any commands in the table?
 BZ ALLOWCMD .No commands in "block" table

 18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 LA R7,4(R7) .Start of first command text
CARDLOOP EQU *
 LA R9,8Ø .Length of a "block" cmd entry
 LR R1,R7 .Point to start of "block" cmd
 XR R8,R8 .Clear length counter
LENGLOOP CLI Ø(R1),X'4Ø' .Look for a space
 BE SETLENG .Command must match this length
 LA R1,1(R1) .Point to next character
 LA R8,1(R8) .Bump up length counter by 1
 BCT R9,LENGLOOP .Scan until we find a blank or EOC
SETLENG L R3,CMDLENG .Length of de-spaced command
 C R3,R8 .Command buffer too short?
 BL ALLOWCMD .Yes, do not block the command
 LR R5,R8 .Length to compare
 LR R3,R8 .Length to compare
 LR R2,R7 .Point to start of this "block" cmd
 LA R4,CMDWAREA .Point to start of passed command
 CLCL R2,R4 .Does command match a table entry?
 BE BLOCKCMD .Yes, block the command
 LA R7,8Ø(R7) .Point to the next card
 BCT R6,CARDLOOP .Compare with each table entry
ALLOWCMD XR R15,R15 .This command not blocked
 B TSTBLOCX .Get out
BLOCKCMD LA R15,NOMVS .Do not let this through to MVS
 ST R15,RETCODE .Plug value into return code field
TSTBLOCX PR

* This routine compares the command to entries in the table

CMNDCOMP BAKR R14,Ø
 LA R4,COMMTAB .Point to start of command table
 DROP R4
 USING COMMDSCT,R4 .Addressability to command table
 LA R3,ENDOFTAB .Point to end of command table
COMPLOOP EQU * .Compare to all commands in table
 ICM R2,3,COMMLENG .Pick up command length
 STH R2,CMDTXTLN .Store into parmlist
 BCTR R2,Ø .Reduce length by 1
 EX R2,COMCOMPR .See if there is a match
 BE MATCHFND .Yes, there is
 B NOMATCH
COMCOMPR CLC COMMTEXT(Ø),CMDWAREA .Compare command to table entry
NOMATCH XR R1,R1
 ICM R1,3,COMMLENG .Pick up the length of this entry
 AR R4,R1 .Bump up by the text length
 LA R4,COMMHDR(R4) .Bump up by header length
 CR R4,R3 .End of table?
 BNL CMNDCOMX .Yes, match not found. Get out
 B COMPLOOP .Redo for each table entry
MATCHFND EQU *
 ST R4,MATCH@ .Address of matched table entry
 WTL 'MVSCOMEX(I): -Command analysed by exit'

 19© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 OI DOFLAG,YES .Yes, it must be processed by us
CMNDCOMX PR .Return to our caller

* This routine sets up the ESTAE and calls the correct EP

PROCCMND BAKR R14,Ø
 LA R14,PROCCMNX .Start from here after an abend
 STM R1,R14,RUBLSRGS .Preserve all our registers
 MVC RUBLIST,=B'Ø11111111111111Ø' Regs 1-14 to be reloaded
 LA R1,ESTAESTR .Point to ESTAE storage area
 MVC Ø(ESTAEL1,R1),ESTAEMAC
 ST R13,ESTAEPRM .R13 required by recovery routine
 LA R2,ESTAEPRM .Pass R13 contents as a parameter
 ESTAE MF=(E,(1)),PARAM=((2))
 L R4,MATCH@ .Address of matching cmd tble ent
 ICM R15,15,COMMEP .Entry point of routine to call
 BASR R14,R15 .Call command processing routine
 CLC RETCODE,=F'Ø' .Was the processing successful?
 BNZ PROCCMNX .No, pass the command to MVS
 XR R15,R15
 IC R15,COMMFLAG .What MVS should do when we're done
 CH R15,=AL2(TODECIDE) .Dynamic decision on what to do?
 BNE PROCCMNX .No, do as specified in table
 L R15,DECISION .Pick up our decision
PROCCMNX ST R15,RETCODE .This is what we pass back to MVS
 LA R1,ESTAESTR .Point to ESTAE storage area
 MVC Ø(ESTAEL2,R1),ESTAEDEL
 ESTAE MF=(E,(1)) .Remove ESTAE
 PR .Return to our caller

* EXAMPLE: This routine processes the "D TS,L" command

ROUTINEA BAKR R14,Ø
 WTL '"D TS,L" Command detected'
* Add code in here to do processing for "D TS,L"...
 ST R15,RetCode
 PR

* EXAMPLE: This routine processes the "CANCEL" command

ROUTINEB BAKR R14,Ø
 WTL '"CANCEL" Command detected'
 ST R15,RetCode
* Add code in here to do processing for "CANCEL"...
* Set field DECISION depending on whether the command is acceptable
* and should also be passed to MVS.
 PR
**
* This routine handles the "T NOCMD=' command
**
TNOCMD EQU *
 BAKR R14,Ø .Preserve our registers
 LA R2,CMDWAREA .Point to (compressed) command

 20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 ST R2,CALLPRM .Plug the address into parmarea
 LA R1,CALLPRM .Address of call parms
 ST R1,CALLPRM@ .Plug into pointer
 LA R1,CALLPRM@ .Point to parameter area
 LINK EP=TELNOCMD .Call the routine to do the work
TNOCMDX ST R15,RETCODE
 PR

* Constants follow
**
COMMTAB DS ØF .Add new commands in here

COMADESC DC AL2(L'VERBA) .Length of command text
 DC AL4(ROUTINEA) .Address of processing routine
 DC AL1(TOMVS) .Flag: pass command to MVS
VERBA DC C'DTS,L' .Command text without blanks

COMBDESC DC AL2(L'VERBB) .Length of command text
 DC AL4(ROUTINEB) .Address of processing routine
 DC AL1(TODECIDE) .Flag: do not pass command to MVS
VERBB DC C'CANCEL' .Command text without blanks

COMCDESC DC AL2(L'VERBC) .Length of command text
 DC AL4(TNOCMD) .Address of processing routine
 DC AL1(NOMVS) .Flag: do not pass command to MVS
VERBC DC C'TNOCMD=' .Command text without blanks

* If the called entry point for a specific command returns a non-zero
* return code, the command is always also passed to MVS, as we failed.
* If the entry point returns a zero return code (in R15), a decision
* as to what should be done is based on the third field for the entry
* in the table, which must always be one of the following.
* "TODECIDE", means that whether to pass the command to MVS
* or not is to be decided. A further field called "Decision" is then
* scanned. If this field contains the value ØØ, the command is also
ENDOFTAB EQU *
TOMVS EQU X'ØØ' .Pass the command to MVS as well
NOMVS EQU X'Ø4' .Do not pass the command to MVS
TODECIDE EQU X'Ø1' .Decision to be made on passing
**
COMMTABL EQU *-COMMTAB
SPACES DC CL(L'CMDWAREA)' '
ESTAEMAC ESTAE RECOVER,PARAM=ESTAEMAC,ASYNCH=NO,MF=L
ESTAEL1 EQU *-ESTAEMAC
ESTAEDEL ESTAE Ø,MF=L
ESTAEL2 EQU *-ESTAEDEL
SUBSYSN DC CL4'NCMD' .Name of subsystem with address of
 LTORG

* This routine is the ESTAE error recovery routine

 DS ØF
RECOVER EQU *

 21© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 LR R12,R15 .Load our current address
 DROP R12
 USING RECOVER,R12
 CH RØ,=H'12' .Make sure SDWAREA is available
 BNE SDWAVAIL
NOTAVAIL XR R15,R15 .SDWA is not available
 BR R14 .Go Back to MVS (percolate)
SDWAVAIL EQU * .Remember SDWA address
 USING SDWA,R1
 LR R3,R1 .Preserve R1
 L R1,SDWAPARM .Address of passed parm
 L R13,Ø(1) .Reload pointer to workarea
 ST RØ,SDWASTOR .Pointer to SDWA
 ST R14,ESTAER14 .Our return address
 MVC SDMPAREA(SDUMPLEN),SDUMPMAC
 LA R1,SDMPAREA
 SDUMP MF=(E,(1))
 L R2,RUBLSRGS+52 .Retry address
 LR R1,R3 .Restore register 1
 LA R3,RUBLIST
 SETRP RC=4,RETADDR=(2),RETREGS=YES,RUB=(3),DUMP=YES
 L R14,ESTAER14 .Reload our return address
 BR R14 .Back to MVS
SDUMPMAC SDUMPX HDR='MVSCOMEX Command exit routine ABEND', x
 SDATA=(RGN,SUM),MF=L
SDUMPLEN EQU *-SDUMPMAC
 LTORG

* DSECTs follow

STORAREA DSECT
SAVEAREA DS 18F .General savearea
CMDWAREA DS CL2ØØ .Command moved in here
CMDTXTLN DS H .Length of (compressed) command
RETCODE DS F .SUBTASK's TCB
SDMPAREA DS CL(SDUMPLEN) .SDUMP macro area
BLOCKTB@ DS F .Address of NCMD subsystem
DECISION DS F .(dynamic) ret code to pass to MVS
CMDLENG DS F .Length of command without blanks
MATCH@ DS F .Address of matching cmdtble entry
RUBSTART DS ØF
 DS H
RUBLIST DS H
RUBLSRGS DS 15F .Local registers used by ESTAE
ESTAEPRM DS F .Parameter passed to ESTAE routine
SDWASTOR DS F .Address of passed SDWA
ESTAER14 DS F .Back-to-MVS address for ESTAE
ESTAESTR DS CL(ESTAEL1) .ESTAE macro area
* The folowing two fields are passed to the called subroutine.
CALLPRM@ DS F .Address of routine specific parms
CMDX@ DS F .Address of CMDX as received
*

 22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MVSCOM@ DS F .Address (in MVS) of command text
DOFLAG DS C .Do we process command?
YES EQU X'8Ø'
NO EQU X'ØØ'
CALLPRM DS ØF
STORSIZE EQU *-STORAREA
COMMDSCT DSECT .Command table DSECT
COMMLENG DS CL2 .Length of text to scan for
COMMEP DS AL4 ."entrypoint" to branch to
COMMFLAG DS C .MVS to process/ ignore instruction
COMMHDR EQU *-COMMDSCT .Length of fixed part
COMMTEXT DS ØC .Variable length text to scan for
RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 IEZVX1Ø1
 IHASDWA
 CVT DSECT=YES
 IEFJESCT
 IEFJSCVT
 END

BLOCKCMD SOURCE

This routine blocks certain commands from being entered.

BLOCKCMD CSECT
BLOCKCMD AMODE 31
BLOCKCMD RMODE 24
 BAKR R14,Ø .Save caller's status
 LR R12,R15
 USING BLOCKCMD,12

* Main driver routine

LOAD L R4,Ø(R1) .Ptr to compressed command text addr
 L R4,Ø(R4) .Point to compressed command text
 L R5,4(R1) .Ptr to command exit info area
 USING CMDX,R5 .Addressability to command info

 23© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 LA R3,STORSIZE .Our requirement
 A R3,BUFFSIZE .Add length of the PARMLIB buffer
STORAGE STORAGE OBTAIN,SP=229,LENGTH=(3),LOC=BELOW,KEY=8
 LR R2,R1 .Point to getmained area
 LA R3,STORSIZE
 XR R9,R9
 MVCL R2,R8 .Propagate binary zeroes
 USING STORAREA,R1
 ST R13,SAVEAREA+4 .Back chain
 DROP R1
 LR R13,R1
 USING STORAREA,R13 .Addressability to getmained area
 MVC CART,CMDXCART .Pick up the CART
 MVC FROMCNID,CMDXC4ID .Where the command originated (Id)
 MVC FROMSYS,CMDXISYN .Where the command originated (Sys)
 L R5,CMDXCLIP .Get command buffer address
 DROP R5
 USING CMDXCLIB,R5 .Access the passed command buffer
GOGETSFX BAS R14,GETSUFIX .Locate the data set name in the text
 LTR R15,R15 .Did we get the suffix?
 BNZ RETURN .No, get out
 CLC SUFFIX,=C'NO' .Must we turn blocking off?
 BNE GOREADIT .No
 B GOGETSSI .Go get SSI address
GOREADIT BAS R14,READPMEM .Go read the PARMLIB member
 LTR R15,R15 .Did we get the suffix?
 BNZ RETURN .No, get out
GOGETSSI BAS R14,GETSSI@ .Go get the subsystem address
 LTR R15,R15 .Did we get the address?
 BNZ EXITMSGS .No, get out
GOGETCSA BAS R14,GETCSA@ .Go get the CSA table address
 LTR R15,R15 .Did we get the address?
 BNZ EXITMSGS .No, get out
 BAS R14,COPYCRDS .Go copy cards into CSA table
EXITMSGS CLC SUFFIX,=C'NO' .Did we turn blocking off?
 BNE CHEMPTY1 .No
 L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 WTO 'BLOCKCMD(I): -Command blocking has been turned off', X
 CONSID=(8),SYSNAME=(9),CART=CART,ROUTCDE=11
 B RETURN
CHEMPTY1 TM EMPTY,YES .Is the PARMLIB member empty?
 BO RETURN .Yes, get out
 L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 WTO 'BLOCKCMD(I): -Command blocking has been activated', X
 CONSID=(8),SYSNAME=(9),CART=CART,ROUTCDE=11
RETURN EQU * .Pick up return code
 L R4,RETCODE .Pick up return code
 LA R3,STORSIZE .Size of area to free
 A R3,BUFFSIZE .Add length of the PARMLIB buffer
 LR R2,R13 .Address of area to free
 STORAGE RELEASE,LENGTH=(R3),ADDR=(R2),SP=229,KEY=8

 24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 LR R15,R4 .Copy return code
TOCALLER PR , .=>Caller
 DS ØD .Align
 EJECT

* This routine locates the member suffix in the text

GETSUFIX BAKR R14,Ø
 USING CMDXCLIP,CMDXCLIB .Map to command length and text
 CLC CMDXCMDL,=H'9' .Length must be at least 9 bytes
 BL INVLSNTX .Invalid syntax
 CLI 9(R4),X'4Ø' .Must have a blank in col 9
 BNE INVLSNTX ...of deblanked command buffer
 CLI 8(R4),X'4Ø' .Must not have a blank in col 8
 BE INVLSNTX ...of deblanked command buffer
 CLI 7(R4),X'4Ø' .Must not have a blank in col 7
 BNE SYNTAXOK ...of deblanked command buffer
INVLSNTX L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 WTO 'BLOCKCMD(E): -Invalid command syntax, must be "T NOCMD=X
 XX',CONSID=(8),SYSNAME=(9),CART=CART
 LA R15,8
 ST R15,RETCODE .Set non-zero return code
 B GETSUFXX .Get out
SYNTAXOK MVC MEMBER,=C'NOCMD' .First part of the
 MVC SUFFIX,7(R4) .Pick up the suffix from cmd buffer
 MVI LASTBYTE,X'4Ø' .Move a blank into the last byte
 XR R15,R15 .Clear return code
GETSUFXX PR

* This routine locates the member in the PARMLIB concatenation

READPMEM BAKR R14,Ø
 NI EMPTY,NO .Make sure 'PARMLIB empty' flag off
 LA R2,WORKBUFF .Where we want the member content
 USING PRM_READ_BUFFER,R2 .Addressability to buffer
 L R1,BUFFSIZE .Total size of the buffer
 ST R1,PRM_READ_BUFF_SIZE
 LA R1,IEFPRMLA .Point to the macro in storage
 MVC IEFPRMLA(IEFPRMLL),IEFMACRO
 IEFPRMLB REQUEST=ALLOCATE,CALLERNAME=CALLER,READ=YES, X
 READBUF=(R2),MEMNAME=MEMNAME,MF=(E,(1)), X
 ALLOCDDNAME=PARMDDØ1,RETCODE=RETCODE,RSNCODE=RSNCODE
 LTR R15,R15 .Was the member read in?
 BZ FREEPARM .Yes, go free it
READERR L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 MVC ALOCWTOA(ALOCWTOL),ALOCWTOM
 BAS R14,CODEPRNT .Make RC and REASON printable
 MVC ALOCWTOA+72(4),PRTRC
 MVC ALOCWTOA+87(4),PRTRSN
 LA R1,ALOCWTOA

 25© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 WTO MF=(E,(1)),CONSID=(8),SYSNAME=(9),CART=CART
 LA R15,8
 ST R15,RETCODE .Set non-zero return code
 B READPMEX .Get out
FREEPARM IEFPRMLB REQUEST=FREE,CALLERNAME=CALLER, X
 DDNAME=PARMDDØ1,RETCODE=RETCODE,RSNCODE=RSNCODE
 LTR R15,R15 .Was the de-allocation successful?
 BNZ FREEERR .No.
CHKNUM CLC WORKBUFF+4(4),=F'Ø' .Did we get an empty PARMLIB member?
 BNE READPMEX .No
NOCARDS L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 WTO 'BLOCKCMD(W): -No commands will be blocked as PARMLIB meX
 mber is empty',CONSID=(8),SYSNAME=(9),CART=CART
 OI EMPTY,YES .Se 'empty' flag
 XR R15,R15 .Proceeding with empty table
 ST R15,RETCODE .Set non-zero return code
 B READPMEX .Get out
FREEERR L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 MVC FREEWTOA(FREEWTOL),FREEWTOM
 BAS R14,CODEPRNT .Make RC and REASON printable
 MVC FREEWTOA+58(4),PRTRC
 MVC FREEWTOA+73(4),PRTRSN
 LA R1,FREEWTOA
 WTO MF=(E,(1)),CONSID=(8),SYSNAME=(9),CART=CART
 LA R15,8
 ST R15,RETCODE .Set non-zero return code
READPMEX PR

* This routine returns the address of our subsystem.

GETSSI@ BAKR R14,Ø
 BAS R14,SEEKSSI .Get our subsystem's address
 LTR R15,R15 .Did we get the subsystem name?
 BZ GETSSI@X .Yes, get out
 CLC SUFFIX,=C'NO' .Are we turning blocking off?
 BNE CHKEMPT1 .No, go see if member is empty
 LA R15,8 .Yes, we don't need the SSI address
 B GETSSI@X .Get out
CHKEMPT1 TM EMPTY,YES .Is PARMLIB member empty anyway?
 BNO ADSUBSYS .No, there are entries in it
 LA R15,8 .Stop further processing?
 ST R15,RETCODE .Plug the return code
 B GETSSI@X .Get out
ADSUBSYS EQU * .First time, add subsystem
 MVC IEFSSIA(IEFSSIL),IEFSSIM
 LA R1,IEFSSIA
 IEFSSI REQUEST=ADD,SUBNAME=SUBSYSN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,(1))
 LTR R15,R15 .Did we get the subsystem name?
 BNZ SSIERROR .No, error. Display and get out

 26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 BAS R14,SEEKSSI .Get our subsystem's address
 LTR R15,R15 .Did we get it?
 BZ GETSSI@X .Yes, we have the subsystem
 ABEND ØØØ1,DUMP .Should never occur
SSIERROR BAS R14,CODEPRNT .No, go make RC & REASON printable
 L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 MVC SUBSWTOA(SUBSWTOL),SUBSWTOM
 MVC SUBSWTOA+42(4),PRTRC
 MVC SUBSWTOA+57(4),PRTRSN
 LA R1,SUBSWTOA
 WTO MF=(E,(1)),CONSID=(8),SYSNAME=(9),CART=CART
 LA R15,8
GETSSI@X PR

* This routine gets the address of our subsystem entry

SEEKSSI BAKR R14,Ø
 L R4,16 .Start of CVT
 USING CVT,R4 .Establish addressability
 L R4,CVTJESCT .Get JESCT address
 USING JESCT,R4 .Establish addressability
 L R4,JESSSCT .Get SSCT chain address
 USING SSCT,R4 .Set addressability
SSCTLOOP EQU * .Look for our SSCVT
 LTR R4,R4 .End of chain?
 BZ NOSSCT .Yes - not found
 CLC SSCTSNAM,SUBSYSN .Our SSCVT?
 BE FOUNDSSI .Got it
 L R4,SSCTSCTA .Point to next SSCVT entry
 B SSCTLOOP .Redo the loop
NOSSCT LA R15,8 .Our subsystem not found
 B SEEKSSIX .Get out
FOUNDSSI ST R4,OURSSI@ .Keep the address
 XR R15,R15 .Clear the return code
SEEKSSIX PR

* This routine gets the address of the CSA table

GETCSA@ BAKR R14,Ø .Get address of CSA table
 L R4,OURSSI@ .Get address of subsystem entry
 USING SSCT,R4 .Addressability to our SSI
 CLC SSCTSUSE,=F'Ø' .Has the CSA table been obtained?
 BE OBTAIN .No, go do getmain
 XR R15,R15 .Clear return code
 MVC CSATAB@,SSCTSUSE .Plug the address
 B GETCSA@X .Get out
OBTAIN EQU *
 CLC SUFFIX,=C'NO' .Are we turning blocking off?
 BNE CHKEMPT2 .No
 LA R15,8 .We don't need the CSA address
 B GETCSA@X .Get out
CHKEMPT2 TM EMPTY,YES .Is the PARMLIB member anyway empty?

 27© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 BNO PREPCSA .No, we will have to obtain CSA
 LA R15,8 .Yes, do not GETMAIN CSA
 ST R15,RETCODE .Plug the return code
 B GETCSA@X .Get out
PREPCSA L R3,BUFFSIZE .Length of storage to obtain
 LA R3,4(R3) .Add 4 bytes (first word= length)
 SL R3,=AL4(PRM_RECORD_TEXT-PRM_READ_HEADER)
 STORAGE OBTAIN,SP=228,LENGTH=(3),LOC=ANY,KEY=Ø
 LTR R15,R15 .Did we get the storage?
 BNZ GETCSA@X .No, get out
 ST R1,SSCTSUSE .Plug the address into subsystem
 ST R1,CSATAB@ .Plug the address
 MVC 4(13,R1),=C'Uninitialized'
 ST R3,Ø(R1) .Put the length in the front
GETCSA@X PR .Return to our caller

* This routine removes all blanks from the PARMLIB cards and
* copies them into the CSA table. (The size of the CSA table
* is the same as that of the work bufer the data was read into.
* the fact that the IEFPRMLB macro succeeded reading the data
* into the buffer means that the data will also fit into the
* CSA table. We cannot have a changing CSA table size as storage
* allocated in CSA can only be freed by the task that allocated
* it in the first place.)

COPYCRDS BAKR R14,Ø
 CLC SUFFIX,=C'NO' .Are we turning blocking off?
 BNE CHKEMPT3 .No
 XR R1,R1 .Yes, set # entries in tab to Ø
 L R2,CSATAB@
 ST R1,Ø(R2) .Make card counter Ø
 LA R15,8 .Yes, set RC to "don't proceed"
 B COPYCRDX .Get out
CHKEMPT3 TM EMPTY,YES .Is the PARMLIB member empty?
 BNO SETCNTR2 .No, go move the cards into the tbl
 XR R1,R1
 L R2,CSATAB@
SETCNTR1 ST R1,Ø(R2) .Make card counter Ø
 B COPYCRDX .Get out
SETCNTR2 LA R2,WORKBUFF .Where the PARMLIB cards are
 ICM R4,15,PRM_RECORDS_READ_COUNT
 L R5,CSATAB@ .Address of CSA table
 ST R4,Ø(R5) .Number of cards in first word
 LA R5,4(R5) .Where the cards will be moved
 LA R2,PRM_RECORD_TEXT .Start of the first record
CARDLOOP LR R3,R5
 MVC Ø(8Ø,R3),=8ØX'4Ø' .Move spaces into the card
 LA R6,8Ø .Number of bytes in a card
MOVELOOP EQU *
 CLI Ø(R2),X'4Ø' .Blank in the card?
 BE BUMPUP .Yes, don't move this byte
 MVC Ø(1,R3),Ø(R2) .Move the byte

 28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 LA R3,1(R3) .Bump up "to" pointer
BUMPUP LA R2,1(R2) .Bump up "from" pointer
 BCT R6,MOVELOOP .Move the entire card
 LA R5,8Ø(R5) .Where next card should start
 BCT R4,CARDLOOP .Do for each card
COPYCRDX PR
**
* This routine makes the RC and reason printable
**
CODEPRNT BAKR R14,Ø
 L R1,RETCODE
 CVD R1,DOUBLE
 UNPK DOUBLE(4),DOUBLE+5(3)
 OI DOUBLE+3,X'FØ'
 MVC PRTRC,DOUBLE
 L R2,RSNCODE
 STCM R2,3,DOUBLE
 STCM R2,3,DOUBLE+2
 NC DOUBLE(2),=X'FØFØ' .Turn off right half of bytes
 NC DOUBLE+2(2),=X'ØFØF' Turn off left half of bytes
 TR DOUBLE(2),LFTHALVE .Make left half printable
 TR DOUBLE+2(2),RGTHALVE Make right half printable
 MVC DOUBLE+4(1),DOUBLE+1 Swap bytes 2 and 3
 MVC DOUBLE+1(1),DOUBLE+2
 MVC DOUBLE+2(1),DOUBLE+4 RSN code now printable
 MVC PRTRSN,DOUBLE
 CLC RSNCODE+2(2),=X'ØØØA' Output area too small?
 BNE CODEPRNX .No, other error
 L R8,FROMCNID .Where command came from
 LA R9,FROMSYS .Where command came from
 WTO 'BLOCKCMD(E): -Too many commands in PARMLIB member. reduX
 ce number of lines or assemble with larger table', X
 CONSID=(8),SYSNAME=(9),CART=CART,ROUTCDE=11
CODEPRNX PR

* Constants follow

BUFFSIZE DS ØF
 DC AL4(8ØØØ)
 DS ØF
PARMDDØ1 DC C'PARMDDØ1' .DD-NAME used by IEFPRMLB
CALLER DC C'COMMAND ' .Caller name used for IEFPRMLB
IEFMACRO IEFPRMLB MF=(L,IEFPRMLB)
IEFPRMLL EQU *-IEFMACRO
IEFSSIM IEFSSI MF=(L,IEFSSIWA)
IEFSSIL EQU *-IEFSSIM
ALOCWTOM WTO 'BLOCKCMD(E): -Error during allocation/ reading of parmlX
 ib member,RC=XXXX(DEC), RSN=xxxx',MF=L
ALOCWTOL EQU *-ALOCWTOM .Length of the message
FREEWTOM WTO 'BLOCKCMD(E): -Error during free of PARMLIB member, RC=xX
 xxx(DEC), RSN=xxxx',MF=L
FREEWTOL EQU *-FREEWTOM .Length of the message

 29© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

SUBSWTOM WTO 'BLOCKCMD(E): -Error during IEFSSI, RC=xxxx(dec), RSN=xxX
 xx',MF=L
SUBSWTOL EQU *-SUBSWTOM .Length of the message
LFTHALVE DS ØCL24Ø
 DC X'FØ',15X'ØØ',X'F1',15X'ØØ',X'F2',15X'ØØ',X'F3'
 DC 15X'ØØ',X'F4',15X'ØØ',X'F5',15X'ØØ',X'F6',15X'ØØ',X'F7'
 DC 15X'ØØ',X'C3',15X'ØØ',X'C4',15X'ØØ',X'C5',15X'ØØ',X'C6'
VALCHARS DS ØCL256
 DC 8ØX'Ø1',X'ØØ',1ØX'Ø1',X'ØØ',16X'Ø1',2X'ØØ'
 DC 13X'Ø1',2X'ØØ'
 DC 68X'Ø1',9X'ØØ',7X'Ø1',9X'ØØ',8X'Ø1'
 DC 8X'ØØ',6X'Ø1',1ØX'ØØ',6X'Ø1'
RGTHALVE DC X'FØF1F2F3F4F5F6F7F8F9C1C2C3C4C5C6'
SUBSYSN DC C'NCMD' .Name of our subsystem entry
 LTORG

* DSECTS follow

STORAREA DSECT
SAVEAREA DS 18F .General savearea
PARMSTRT DS F .Start address of passed parms
FROMCNID DS CL4 .Console id command came from
FROMSYS DS CL8 .Name of system command came from
RETCODE DS F .Return code
RSNCODE DS F .Reason code
PRTRC DS F .Return code (printable)
PRTRSN DS F .Reason code (printable)
OURSSI@ DS F .Address of our subsystem
CSATAB@ DS F .Address of the CSA table
MEMNAME DS ØCL8
MEMBER DS CL5 .This contains "NOCMD"
SUFFIX DS CL2 .Suffix of PARMLIB member to obtain
LASTBYTE DS C .This will contain a blank
EMPTY DS C .Flag to indicate PARMLIB empty
DOUBLE DS D .Double word work area
CART DS CL8
ALOCWTOA DS CL(ALOCWTOL) .Work area for WTO message
FREEWTOA DS CL(FREEWTOL) .Work area for WTO message
SUBSWTOA DS CL(SUBSWTOL) .Work area for WTO message
IEFPRMLA DS CL(IEFPRMLL) .Work area for IEFPRMLB macro
IEFSSIA DS CL(IEFSSIL) .Work area for IEFSSI macro
WORKBUFF EQU * .Parmlib buffer area
STORSIZE EQU *-STORAREA .Length of area to allocate
RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9

 30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
NO EQU X'ØØ'
YES EQU X'8Ø'
 IEZVX1Ø1 .DSECT for command exit fields
 IEFZB4DØ
 IEFZB4D2
 IEFZPMAP PRM_READ_BUFFER=YES
 CVT DSECT=YES
 IEFJESCT
 IEFJSCVT
 IEFJSRC
 IEFJSQRY
 END

Gerty Brits
Minalore Consulting (India) © Xephon 1999

OS/390 Unix Assembler callable services

With the introduction of OpenEdition, or OS/390 Unix System
Services as it is now called, IBM has provided a rich and varied set of
program callable services that are available to both Assembler language
and TSO/E REXX programmers. The main objective of this article is
to introduce the reader to the OS/390 Unix callable services that are
available to Assembler language programs and to also make reference
to REXX callable services where applicable.

The first section of this article provides an overview of OS/390 Unix
process management, which I have found to be an important learning
stage before attempting to write Unix-style Assembler programs or
REXX EXECs.

 31© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

PROCESS MANAGEMENT

In OS/390 Unix, a child process is created when the parent process
issues a fork service call. The creating process is called a parent
process and the newly created process is called a child process. A
parent process can have many child processes, the number of which
is controlled by the MAXPROCUSER statement in the BPXPRMxx
PARMLIB member. Each process is given a unique identifier called
the Process ID (PID). Each process also knows the ID of its parent
through the Parent Process ID (PPID). All processes are related to
each other through the PIDs and the PPIDs. The originator of all
processes is called the INIT process (PID = 1). In addition to having
a PID, each process belongs to a process group. A process group is a
collection of one or more processes. Each process group has a unique
group ID. Process identifiers are classified as follows:

• PID – a process ID. A unique identifier assigned to a process
while it runs.

• PGID – each process in a process group shares a process group
ID (PGID), which is the same as the PID of the first process in the
process group.

• PPID – a process that creates a new process is called a parent
process.

Process management can be broken down into the following areas:

• Processes

• Dubbing

• Threads

• Interprocess communication

• Signals.

A PROCESS

A process exists in an MVS address space and is identified by a TCB
and related control blocks. In addition to the TCB, the OS/390 Unix
kernel address space maintains a number of control blocks that
represent a process. The following BPXPRMxx PARMLIB member
statements control OS/390 Unix processes:

 32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• MAXPROCSYS(nnnnn) – specifies the maximum number of
OS/390 Unix processes that the system allows.

• MAXPROCUSER(nnnnn) – specifies the maximum number of
processes that a single OS/390 Unix user-id can have currently
active, regardless of how the processes were created.

To control processes, the following Assembler callable services are
available.

BPX1FRK (fork service)

BPX1FRK creates a new process. The fork service replicates the
current process into a child process, which then runs in a new address
space. The new address space contains a single task (thread) and a
single RB (Request Block) structure. The fork service is supported
from programs in PSW key 8 only. An additional requirement is that
the storage protection key value in the TCBPKF field of the TCB must
be 8. All key 8 virtual storage is copied from the parent to the child
address space. The child process has a unique PID that does not match
any active process group ID. The child has its own copy of the parent’s
open directory stream. The fork service can be requested from either
an MVS or kernel address space. Control is given to the child process
at the instruction following the fork service call and not at the
program’s main entry point. In most implementations, the parent
process will continue and the child process will pass control using the
EXEC service to a child-specific program. The BPXPRMxx PARMLIB
member statement FORKCOPY(COW|COPY) specifies how user
storage is to be copied from the parent process to the child process
during a fork system call.

BPX1SPN (spawn service)

BPX1SPN spawns a process. The spawn service starts a new process,
but the child process is started with another program in the Hierarchical
File System (HFS). After the spawn service returns to the parent
process, the two processes continue as independent processes. The
main benefit of the spawn callable service is that it can create a new
process in a separate address space or in the same address space,
depending on the setting of the environment variable
‘_BPX_SHARES=YES|NO’. If an application is multi-threaded, you

 33© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

must use spawn instead of the fork callable service. There are some
exceptions where, despite setting ‘_BPX_SHAREAS=YES’, a non-
local spawn (child process starts in another address space) is done. A
non-local spawn is done in any of the following cases:

• The program that is spawned has the sticky bit on

• The program that is spawned is a SETUID or SETGID program

• The address space has exhausted its private storage.

A new setting of ‘_BPX_SHAREAS=MUST’ was added in OS/390
Version 2 Release 6. It allows the application to force a local spawn
or no spawn at all. The new process, which is called the child process,
inherits the following attributes from the parent process (process that
calls spawn):

• Session membership.

• Real user-id.

• Real group-id.

• Supplementary group-ids.

• Priority.

• Region size.

• Time limit.

• Accounting data.

• Working directory.

• Root directory.

• File creation mask.

• Signal mask.

• Security information, unless the ‘_BPX_USERID’ environment
variable specifies otherwise.

• TASKLIB STEPLIB or JOBLIB DD dataset allocations, unless
the STEPLIB environment variable specifies otherwise. This
causes the child’s address space to have the same MVS program
search order as the calling process.

 34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Accounting information.

• JOBNAME of the parent is propagated to the child and appended
with a numeric value in the range 1-9, if the JOBNAME is 7
characters or less. If the JOBNAME is 8 characters, the JOBNAME
is propagated as is.

The executable program to be run receives control with the following
attributes:

• Problem program state

• PSW key 8

• AMODE=31

• Primary ASC mode.

BPX1ATX (attach_exec) service

BPX1ATX attach an OS/390 Unix program. The ‘attach_exec’ service
attaches a task to run an OS/390 Unix executable program in a newly
created child process of the caller. The new process is created in the
same address space as the caller, and is a subtask of the caller’s task.
The child process has a unique PID that does not match any active
process group ID. The child process has a parent process ID of the
process that called attach_exec. The child process is terminated when
its parent terminates. The executable file receives control with the
following attributes:

• Problem program state

• TCB key of the caller

• AMODE=31

• Primary ASC mode.

The equivalent function is provided by the BPX1SPN SPAWN
Service with ‘_BPX_SHAREAS=YES’. The OMVS command uses
the attach_exec system call to run the shell in the TSO/E address
space.

 35© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

BPX1ATM (attach_execmvs) service

BPX1ATM ATTACHes an MVS program. The attach_exec MVS
service creates a new child process in the same address space and
passes control to a new program in the normal MVS search order (job
pack queue, STEPLIB, LPALIB, LINKLIB). The new process that is
created is run as a subtask in the address space.

BPX1EXC (EXEC) service

BPX1EXC run a program. The EXEC service does not start a new
process, but replaces the program in the current process with another
program as indicated on the EXEC call. A successful EXEC call will
never return control to the calling program, but control is passed to the
main entry point of the new program that is specified on the EXEC
call. The executable program receives control with the following
attributes:

• Problem program state

• PSW key 8

• AMODE=31

• Primary ASC mode.

The new process inherits the following attributes from the calling
process:

• PID

• PPID

• The time left until an alarm signal is generated

• File mode creation mask

• Process signal mask

• Pending signals

• Time accounting information.

BPX1EXM (execmvs) service

BPX1EXM run an MVS program. The execmvs service runs an MVS
executable program that is in the LPA or LNKLST concatenation. If

 36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

it is invoked from an address space that contains multiple processes,
the program can come from a STEPLIB. The call can invoke both
unauthorized and authorized programs:

• Unauthorized programs receive control in problem program
state, with PSW key 8.

• Authorized programs receive control in problem program state,
with PSW key 8 and APF authorization.

Additional Assembler process callable services

The following additional Assembler callable services are available:

• chpriority (BPX1CHP) – change the scheduling priority
of a process

• getpid (BPX1GPI) – get the process ID

• getppid (BPX1GPP) – get the parent process ID

• getpgid (BPX1GEP) – get the process group ID

• getpgrp (BPX1GPG) – get the process group ID

• getpriority (BPX1GPY) – get the scheduling priority of a
process

• nice (BPX1NIC) – change the nice value of a
process

• setpgid (BPX1SPG) – set a process group ID for job
control

• setpriority (BPX1SPY) – set the scheduling priority of a
process

• _pid_affinity (BPX1PAF) – add or delete an entry in a
process’s affinity list.

REXX PROCESS MANAGEMENT

There is no FORK or EXEC SYSCALL commands available in
REXX. Instead IBM recommend using SPAWN. The following
REXX process management calls are available:

 37© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Spawn

Spawn invokes the spawn callable service to create a new process,
called the child process. The program to be run is executed from the
HFS. The child process has a unique PID that does not match any
active process group ID. The child parent ID is set to the PID of the
process that called spawn. To control whether the spawned child
process runs in a separate address space or in the same address space,
you can specify the ‘_BPX_SHAREAS’ environment variable. If
‘_BPX_SHAREAS=NO’ is specified, the child process to be created
will run in a separate address space from the parent process. If
‘_BPX_SHAREAS=YES’ is specified, the child process to be created
is to run in the same address space as the parent. The following
attributes are inherited by the child process from the parent process:

• Session membership

• Real user-id

• Real group ID

• Supplementary group IDs

• Priority

• Working directory

• Root directory

• File creation mask

• The process group ID of the parent is inherited by the child

• Signals set ignored in the parent are set to be ignored in the child

• The signal mask is inherited from the parent.

Example

The following example will spawn a new process. The new process
is spawned to run /bin/ls. File descriptors greater than or equal to three
are not available to the new process. fd.0 to fd.2 are used in remapping
the file descriptors from the parent. The current environment is passed
to the new process.

 38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

address syscall
/* Initialize the file descriptor map. The file descriptor map is set so */
/* that the file descriptor for the new file being created is remapped */
/* to file descriptor 1 for the new process. File descriptors 0 and 2 */
will not be opened in the new process (-1). */

fd.Ø=-1
fd.2=-1
/* Create a new HFS file. The file descriptor is returned in RETVAL */
‘creat /tmp/remdirl 755’
fd.1=retval
/* Initialize the parameter stem. The first parameter is set to the */
pathname for the file being spawned. Additional parameters are */
/* are set in the format the program expects. The parameters specif */
/* Display extended attributes for regular files */
/* Display permissions, links, owner, group, size, time, name */
/* Enables the audit bits to be displayed */
/* The current environment is propagated (__environment) */
parm.1=‘/bin/ls’
parm.2=‘-lWE’
parm.3=‘/u/rems’
parm.0=3
/* spawn a new process */
‘spawn /bin/ls 3 fd. parm. __environment’ /* PID(process ID) is returned
in RETAIL */
pid=retval

spawnp

Spawnp invokes the spawn callable service and creates a new process,
called a child process. Spawnp functions identically to the spawn
function except that it uses the PATH environment variable to resolve
relative filenames.

forkexecm

Forkexecm invokes the fork and execmvs callable services to fork and
EXEC a program to be executed from the MVS LINKLIB, LPALIB,
or STEPLIB library. The call can invoke both authorized and
unauthorized MVS programs. Authorized programs receive control
in problem program state with PSW key 8 and APF authorization.
Unauthorized programs receive control in problem state, with PSW
key 8.

 39© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Example

The following example invokes the MVS program unixprog and
passes a parameter to the program. On input, the MVS program
receives a single entry parameter list pointed to by Register 1. The
high order bit of the sole parameter entry is set to 1.

 "forkexecm unixprog 'This is the parm info'

Dubbing

The first attempt to use a OS/390 Unix services dubs the MVS address
space as an OS/390 Unix process. From a Unix perspective, this
means OS/390 Unix assigns a PID (Process ID) to the process.
Address spaces created by fork are automatically dubbed when they
are created. Dubbing also adds the UID/GID assignment to an address
space as follows:

Real UID

At process creation, the real UID identifies the user who has created
the address space.

Effective UID

Each process has an effective UID. The effective UID is used to
determine owner access privileges of a process. This is normally the
same as the real UID but can be changed when a program is executed
that has a special flag. A program with this special flag set is said to
be a set-user-id program. This changes the effective UID of the
process to the UID of the owner of the program, to allow additional
permissions to the user while the set-user-id program is executed.

Real GID

At process creation , the real GID identifies the current connect group
of the user for which the process was created.

Effective GID

Each process has an effective GID. The effective GID is used to
determine group access privileges of a process. This is normally the
same as the real GID but can be changed when a program is executed
which has a special flag. A program with this special flag is said to be

 40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

a set-group-id program. This changes the effective GID of the process
to the GID of the owner of the program, to allow additional permissions
to the user while the set-group-id program is executed. Undub is the
inverse of dub. Normally a task (dubbed a thread) is undubbed when
it ends. An address space (dubbed a process) is undubbed when the last
thread ends.

THE REXX SYSCALL ENVIRONMENT

IBM has provided two additional host command environments in
REXX as follows:

• SYSCALL

• SH

To run a REXX program with SYSCALL commands from TSO/E or
MVS batch, the syscalls (‘ON’) function at the beginning of the
REXX program ensures that the address space is dubbed an OS/390
Unix process. For a REXX program that utilizes SYSCALL commands
from the shell, SH is the initial host environment. The SYSCALL
environment is automatically initialized as well, so there is no need to
begin the REXX program with a syscalls(‘ON’) call. The SYSCALL
environment sets up the REXX pre-defined variables and blocks all
signals. The syscalls(‘ON’) function sets the following return code
values:

0 Successful completion.

4 The signal process mask was not set.

7 The process was dubbed, but the SYSCALL environment was not
established.

8 The process could not be dubbed.

The following example shows how you can use the syscalls (‘ON’)
function at the beginning of a REXX program to establish the
SYSCALL environment and get the address space dubbed as an
OS/390 Unix process:

 If syscalls('ON') >3 Then Do
 say 'Unable to establish the SYSCALL environment'
 Return
 End

 41© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Or as an alternative:

/* REXX*/
address syscall ‘pipe p.’ /* Make a pipe */
‘ls>/dev/fd’ || p.2 /* run ls command and redirect output to the
 write end of the pipe */
address syscall ‘close’ p.2 .* close output side */

To end the REXX SYSCALL environment the syscalls (‘OFF’)
function ends the current task and OS/390 Unix process. The following
rules apply:

• If the REXX program was run from TSO/E or batch, the task is
undubbed, but the REXX program continues running.

• If the REXX program was run from the shell or a program, the
REXX program is ended.

Threads

In POSIX, a thread is an entity that allows multiple simultaneous
execution paths within a process. The OS/390 Unix design
implementation for creating a thread is to attach a TCB within a
process (address space). Threads allow multiple tasks to run in a single
process within an address space. It allows for concurrent and
asynchronous processing without the additional overhead associated
with creating a new address space. Each thread of a process can run
on an individual processor in a multi-processor environment. When
using Assembler as opposed to the C language, it easier to do an
ATTACH and let the tasks be dubbed as threads. Threads are created
as follows:

• The pthread_create service

• The fork or EXEC service

• Most OS/390 Unix service requests from an undubbed MVS task.

The first routine that is given control in the new task when a thread is
created with the pthread_create service is the pthread_create pthread-
creating task initialization routine. Each thread that is created with
pthread_create runs as a MVS subtask of the initial pthread_creating
task (IPT). The IPT is the task that issued the first pthread_create call
within the address space. Threads created by pthread_create are
represented by a eight-character thread ID. There are three thread
types.

 42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Heavy-weight threads

A heavy-weight thread has been defined as a task that is attached when
needed. A heavy-weight thread is created by issuing the pthread_create
system call and specifying PTATWEIGHT= PTATHEAVY in the
BPXYPTAT mapping macro. When a heavy-weight thread terminates,
the task (TCB) that supports it is terminated and all EOT (end_of_task)
resource managers are called to clean up after it.

Medium-weight threads

Medium-weight threads reuse MVS tasks. A medium-weight thread
is created by issuing the pthread_create system call and specifying
PTATWEIGHT= PTATMEDIUM in the BPXYPTAT mapping macro.

When a medium-weight thread is created, it is dispatched using an
MVS task that is maintained in a pool. When a medium-thread
terminates using pthread_exit, the MVS task is recycled in the pool
without going through the MVS EOT (end_of_task) resource managers.
OS/390 Unix reuses the task. An example of an OS/390 Unix
application that uses medium-weight threading is the OS/390 Internet
Connection Server.

Light-weight threads

Light-weight threads have not yet been implemented in LE/390 and
OS/390 Unix. Thread manipulation is available using the following
OS/390 Unix Assembler callable services:

• pthread_create (BPX1PTC) – create a thread

• pthread_cancel (BPX1PTB) – cancel a thread

• pthread_detach BPX1PTD) – detach a thread

• pthread_exit_and_get (BPX1PTX) – exit and GET a new thread

• pthread_join (BPX1PTJ) – wait on a thread

• pthread_kill (BPX1PTK) – send a signal to a thread

• pthread_quiesce (BPX1PTQ) – quiesce threads in a process

• pthread_self (BPX1PTS) – query the thread ID

• pthread_security_np (BPX1TLS) – create/delete thread-level
security environment for callers thread. An installation has the

 43© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

following two ways of allowing an application to use this service:

– Define the BPX.SERVER FACILITY class profile. For an
application to access this service, it must be given read
access to this profile.

– Assign the user-id a UID of 0 so that it operates as a
superuser.

• pthread_setintr (BPX1PSI) – examine and change the interrupt
state

• pthread_setintrtype (BPX1PST) – examine and change the
interrupttype

• pthread_tag_np (BPX1PTT) – set, query, or both set and query
the callers thread tag data.

• pthread_testintr (BPX1PTI) – cause a cancellation point to occur.

Please refer to the Unix System Services Programming: Assembler
Callable Services Reference for a detailed description of the thread
callable services.

OS/390 Unix threads are controlled by the following BPXPRMxx
PARMLIB member statements:

• MAXTHREADTASKS(nnnnn) – specifies the maximum number
of MVS tasks that a single process can have concurrently active
for pthread_created threads.

• MAXTHREADS(nnnnn) – specifies the maximum number of
pthread_created threads, including running, queued, and exited
but undetached, that a single process can have concurrently
active.

Signals

In OS/390 Unix applications, the basis for error handling is the
generation, delivery, and handling of signals. Each process has a
signal mask that defines the set of signals currently blocked from
delivery and that is inherited by a child from its parent. Applications
can be coded to generate and send signals, and to handle and respond
to signals delivered to it. During the time between the generation of
a signal and the delivery of a signal (when the actual signal is

 44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

performed), the signal is said to be pending. It is valid for the process
to block the signal. If a signal that is blocked is generated for a process
and the action for that signal is either the default action or to catch the
signal, the signal remains pending for the process until the process
either unblocks the signal or changes the action to ignore the signal.

The signal mask, which is passed as a parameter using the Assembler
callable services, is structured as a 64-bit mask (8 bytes) of signals that
are to be blocked during execution of the signal-catching function.
The leftmost bit represents signal number 1, and the rightmost bit
represents signal number 64. Bits that are set to 1 represent signals that
are blocked. In the REXX callable services, the signal mask is defined
as a string of 64 characters with values 0 or 1, representing the 64 bits
in a signal mask.

Example

Re-sets the action for signals 5-64 to their default state:

 X'ØFFFFFFFFFFFFFFF'

Ignore signals 1-4

 X'FØØØØØØØØØØØØØØØ'

The following OS/390 Unix SIGNAL callable services are available
for the Assembler language programmer.

BPX1SIA (sigaction service)

BPX1SIA examines or changes a signal action. The sigaction service
examines, changes or both examines and changes the action that is
associated with a specific signal for all threads in the process.

BPX1SA2 (_sigactionset service)

BPX1SA2 examines or changes a set of signal actions. The
_sigactionset service examines, changes or both examines and changes
the actions that are associated with a set of signals.

BPX1SIP (sigpending service)

BPX1SIP examines pending signals. The sigpending service returns
the union of signals that are pending on the thread and the set of signals
that are pending on the process.

 45© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

BPX1SIP (sigprocmask service)

BPX1SIP examines or changes a process’s signal mask. The
sigprocmask service examines, changes or both examines and changes
the actions that are associated with a set of signals.

BPX1SSU (sigsuspend service)

BPX1SSU changes the signal mask and suspends the thread until a
signal is delivered. The sigsuspend service replaces a thread’s current
signal mask with a new signal mask. It then suspends the caller’s
thread until delivery of a signal whose action is either to process a
signal-catching service or to end the thread.

BPX1SWT (sigwait service)

BPX1SWT waits for a signal. The sigwait service waits for an
asynchronous signal. If a signal that is specified in the signal set is sent
to the invoker of sigwait, the value of that signal is returned to the
invoker and the sigwait service ends. The following signals are
supported:

• SIGHUP (1) Hang-up detected on controlling terminal

• SIGINT (2) Interactive attention

• SIGABRT (3) Abnormal termination

• SIGILL (4) Illegal or invalid hardware instruction

• SIGPOLL (5) Pollable event

• SIGURG (6) High bandwidth data is available at a socket

• SIGSTOP (7) Stop executing

• SIGFPE (8) Erroneous arithmetic operation (hardware and
software)

• SIGKILL (9) An unconditional terminating signal

• SIGBUS (10)Bus error

• SIGSEGV (11) Invalid access to memory (hardware and
software)

• SIGSYS (12)Bad system call

 46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• SIGPIPE (13)Write on a pipe with no readers

• SIGALRM (14)Asynchronous time-out signal generated as a
result of an alarm()

• SIGTERM (15)Termination

• SIGUSR1 (16)Reserved as an application-defined signal 1
(Software only)

• SIGUSR2 (17)Reserved as an application-defined signal 2
(Software only)

• SIGABND (18)Abend

• SIGCONT (19)Continue if stopped

• SIGCHLD (20)Child process terminated or stopped

• SIGTTIN (21)A background process is attempting a read

• SIGTTOU (22)A background process is attempting a write

• SIGIO (23)Completion of input or output

• SIGQUIT (24)Interactive termination

• SIGTSTP (25)Interactive stop

• SIGTRAP (26)Trap used by ptrace call

• SIGIOERR (27)I/O error. Serious software error such as a
system read or write.

• SIGWINCH (28)Change size of window

• SIGXCPU (29)CPU time limit exceeded

• SIGXFSZ (30)File size limit exceeded

• SIGVTALARM (31)Virtual timer expired

• SIGPROF (32)Profiling timer expired

• SIGDCE (38)Exclusive use by DCE.

For a full description of signals that are available please refer to the
mapping macro BPXYSIGH – Signal Constants in the Unix System
Services Programming: Assembler Callable Services Reference.

 47© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

The signals SIGSTOP and SIGKILL cannot be blocked or ignored,
they are delivered to the program no matter what the signal mask
specifies. Please note that the use of the system linkage stack with PC
and BAKR instructions prevents signals from being delivered.

REXX SIGNAL SERVICES

The following REXX signal services are available:

• Sigaction – this invokes the sigaction callable service to examine
or change, or both, the action associated with a specific signal for
all the threads in the process.

• Sigpending – this invokes the sigpending callable service to
return the union of the set of signals that are pending on the thread
and the set of signals pending on the process. Pending signals at
the process level are moved to the thread that called the sigpending
callable service.

• Sigprocmask – this invokes the sigprocmask callable service to
examine or change the calling thread’s signalmask.

• Sigsuspend – this invokes the sigsuspend callable service to
replace a thread’s current signal mask with a new signal; then it
suspends the caller’s thread until delivery of a signal whose
action is either to process a signal-catching service or to end the
thread.

• Sleep – this invokes the sleep callable service to suspend running
of the calling thread (process) until the number of seconds has
elapsed (sleep – number), or until a signal is delivered to the
calling thread to invoke a signal-catching function or to end the
thread.

• Alarm – this invokes the alarm callable service to generate a
SIGALRM signal after the number of seconds specified has
elapsed (alarm – seconds)

• Kill – this invokes the kill callable service to send a signal to a
process or process group (kill – pid – signal).

• Pause – this invokes the pause callable service to suspend
execution of the calling thread until delivery of a signal that
either executes a signal-catching function or ends the thread.

 48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Establishing and deleting the signal interface routine in REXX

The syscalls (‘SIGON’) function establishes the Signal Interface
Routine (SIR). For a REXX program run from the shell or a program,
the SIR is established by default. After the SIR has been established,
the sigaction syscall command can be issued to catch the signals that
are to be processed and the sigprocmask syscall command can be used
to unblock the signals. The syscalls (‘SIGOFF’) function deletes the
signal interface routine.

The following example enables the sigalarm signal. Sigaction is used
to set the action for the sigalrm to be caught. Sigprocmask is used to
unblock sigalrm. The alarm is set by using the alarm service and the
process waits for the completion of the child or the alarm:

/*REXX */
address syscall
/* Insert instructions to spawn a new process */
.......
.......
pid=retval
/* Child process ID from spawn */
call syscalls ('SIGON')
/* Establish the signal interface routine */
'sigaction' sigalrm sig_cat 0 'old_ handler old_flag'
/* catch a SIGALRM signal */
'sigprocmask' sig_unblock sigaddset(sigsetempty(),sigalrm) 'mask'
 /* use sigaddset and sigsetempty to create a signal */

/* mask with the sigalrm bit */
'alarm 20'
/* set alarm to expire in 20 seconds */
'waitpid (pid) st. 0'
/* Wait for process termination or alarm */
alarm_ind=retval
/* Status */
/* Check if alarm went off */
.......
.......
call syscalls ('SIGOFF') /* Turn off signals */
/* Determine process status using stem variable st. returned from
waitpid */
.........
.........
Exit
/* All done */
sigsetempty: return copies(0,64)
sigaddset: return overlay(1,arg(1),arg(2))

 49© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

REXX statements for defining signal sets

REXX statements for defining signal sets are shown below. The C
function is shown first followed by the equivalent REXX statement
with its parameters and returns.

sigsetempty() sigsetempty: return copies(0,64)
Parameters: none
Returns: signal set

sigsfillset() sigfillset: return copies(1,64)
Parameters: none
Returns: signal set

sigsaddset() sigaddset: return overlay(1,arg(1),arg(2))
Parameters: signal set, signal number
Returns: signal set

sigsdelset() sigdelset: return overlay(0,arg(1),arg (2))
Parameters: signal set, signal number
Returns: signal set

sigismember() sigismember: return substr(arg(1),arg(2),1)
Parameters: signal set, signal number
Returns: 0 (not member) or 1 (is member).

Refer to the REXX example in the section entitled Establishing and
Deleting the Signal Interface Routine in REXX, for the sigsetempty
and sigaddset REXX statements.

DETERMINING THE OS/390 CALLABLE SERVICE LEVEL

The Aassembler language programmer can determine the OS/390
Unix release-level by interrogating the CVT feature flags. At the time
of writing the following values are defined:

• CVTH6603 EQU X'04' HBB6603 (OS/390 Release 3)
functions are present

• CVTH6605 EQU X'40' HBB6605 (OS/390 Release 5)
functions are present

• CVTH6606 EQU X'20' HBB6606 (OS/390 Release 6)
functions are present.

 50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Assembler callable services syntax

To code a callable service, a CALL macro followed by the name of the
callable service and parameter list is required. The required syntax is
shown below:

 CALL Service_Name,(PARM_1,
 PARM_2,
 .
 .
 Return_value,
 Return_code,
 Reason_code)

CALL CALL is the Assembler macro that passes control to
the specified program and passes a parameter list.

Service_Name Call service module name in the form BPX1xxx,
where: ‘xxx=’ is a three-character symbol that is
unique to the service. An example would be
BPX1CHM=chmod service.

PARM parameters PARM_1, PARM_2, etc, are placeholders for
variables that may be part of a service syntax.

Return_value Indicate the success failure of the callable service.

If the callable service fails, a -1 is returned. For most
successful calls to OS/390 Unix Services, the return
value is set to 0. The BPX1GGI and BPX1GGN
callable services return zeroes instead of -1 when
the service fails. The fork (BPX1FRK) callable
service returns a positive return value to indicate
successful invocation.

Return_code The return_code parameter is referred to as the
errno in the POSIX and X/OPEN C interface. The
Return Code is returned only if the service fails. All
the Return codes and descriptions can be found in
OS/390 Unix System Services Messages and codes.

Reason_code The Reason_code parameter usually accompanies
the Return_code value when the callable service
fails. It further defines the return_code. All the
Reason codes and their descriptions can be found in
the OS/390 Unix System Services Messages and
Codes.

 51© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Linkage conventions

The following linkage conventions are used when invoking the
Callable Services:

• R1 Parameter list address. The last word in the list must
have a 1 in the high order bit (Sign bit)

• R13 Savearea address

• R14 Return address

• R15 Entry point address of the service stub that is being
called.

Additional notes

1 R2-R13 are restored on return from a callable service. R0, R1,
R14, R15 are not restored.

2 The caller must be running with 31-bit addressing mode
(AMODE=31).

Mapping macros

Many of the Assembler callable services provide mapping macros to
map the parameter options. Many can be expanded with or without a
DSECT statement. Please refer to the Unix System Services
Programming: Assembler Callable Services Reference for the complete
list of mapping macros that are available.

OS/390 UNIX ASSEMBLER CALLABLE SERVICES

The following list of OS/390 Unix Assembler Callable Services is a
subset of what is currently available. Please refer to the Unix System
Services Programming: Assembler Callable Services Reference for
the complete list.

• access (BPX1ACC) – determine if a file can be accessed.

• asyncio (BPX1AIO) – asynchronous I/O for sockets.

• auth_check_resource_np (BPX1ACK) – determine a user’s access
to protected MVS resource. The authorization required to invoke
this service is one of the following:

– Read access to the BPX.SERVER FACILITY class profile

 52 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

– A UID of 0 when the BPX.SERVER Facility class profile is
not defined.

• chattr (BPX1CHR) – change the attributes of a file or directory.

• chaudit (BPX1CHA) – change audit flags for a file by path.

• chdir (BPX1CHD) – change the working directory.

• chmod (BPX1CHM) – change the mode of a file or directory.

• chown (BPX1CHO) – change the owner or group of a file
directory.

• chroot (BPX1CRT) – change the root directory.

• close (BPX1CLO) – close a file.

• fchattr (BPX1FCR) – change the attributes of a file or directory
by descriptor.

• fchaudit (BPX1FCA) – change audit flags for a file by descriptor.
fchdir (BPX1FCD) – change the working directory.

• fchmod (BPX1FCM) – change the mode of a file or directory by
descriptor.

• fchown (BPX1FCO) – change the owner and group of a file or
directory by descriptor.

• fstat (BPX1FST) – get status information about a file by
descriptor.

• getcwd (BPX1GCW) – get the pathname of the working directory.

• getegid (BPX1GEG) – get the effective group ID.

• geteuid (BPX1GEU) – get the effective user-id.

• getgid (BPX1GID) – get the real group ID.

• getgroups (BPX1GGR) – get a list of supplementary group IDs.

• getgroupsbyname (BPX1GUG) – get a list of supplementary
group IDs by user name.

• getpwnam (BPX1GPN) – access the user database by user
name.

• getpwuid (BPX1GPU) – access the user database by user-id.

 53© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

• getuid (BPX1GUI) – get the real user-id.

• getpwd (BPX1GWD) – get the pathname of the working directory.

• lchown (BPX1LCO) – change the owner or group of a file,
directory, or symbolic link.

• link (BPX1LNK) – create a link to a file.

• loadhfs (BPX1LOD) – load a program into storage by HFS
pathname.

• lstat (BPX1LST) – get status information about a file or
symbolic link by pathname.

• mkdir (BPX1MKD) – make a directory.

• mount (BPX1MNT) – make a file system available.

• mknod (BPX1MKN) – make a directory, a FIFO, a character
special, or a regular file.

• open (BPX1OPN) – open a file.

• opendir (BPX1OPD) – open a directory.

• openstat (BPX2OPN) – opens a file, creates a file descriptor for
it, and obtains its status.

• pipe (BPX1PIP) – create an unnamed pipe.

• quiesce (BPX1QSE) – quiesce a file system.

• read (BPX1RED) – read from a file.

• read_extlink (BPX1RDX) – read an external symbolic link.

• readdir (BPX1RDD) – read an entry from a directory.

• readdir2 (BPX1RD2) – read multiple entries from a directory.

• realpath (BPX1RPH) – resolve a pathname.

• rename (BPX1REN) – rename a file or directory.

• resource (BPX1RMG) – obtain system-wide resource
management data from the kernel address space.

• set _dub_default (BPX1SDD) – Get the dub default service.

 54 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• setegid (BPX1SEG) – set the effective GID.

• seteuid (BPX1SEU) – set the effective user-id.

• setgid (BPX1SGI) – set the GID.

• setgroups (BPX1SGR) – set the supplementary group IDs list.

• setitimer (BPX1STR) – set the value of the interval timer.

• setpgid (BPX1SPG) – set a process GID for job control.

• setregid (BPX1SRG) – set the real and/or effective GIDs.

• setuid (BPX1SUI) – set user-ids.

• stat (BPX1STA) – get status information about a file by pathname.

• symlink (BPX1SYM) – create a symbolic link to a pathname.

• truncate (BPX1TRU) – change the size of a file.

• ttyname (BPX2TYN) – (X/Open version) get the name of a
terminal.

• unmask (BPX1UMK) – set the file mode creation mask.

• uname (BPX1UNA) – obtain the name of the current operating
system.

• unlink (BPX1UNL) – remove a directory entry.

• unquiesce (BPX1UQS) – unquiesce a file system.

• utime (BPX1UTI) – set file access and modification times

• _wlm (BPX1WLM) – WLM interface service.

• write (BPX1WRT) – write to a file.

There are also a number of callable services that deal with:

• Socket processing

• Semaphores

• Memory mapping

• Message queue processing.

 55© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Callable Service Request Table (CSRTABLE)

When link-editing an Assembler module that contains OS/390 Unix
Callable Services, a service stub must be included as part of the load
module. The library containing the service stubs is specified in the
SYSLIB concatenation in the linkage editor step. An alternative to this
method is to use the system control offsets to callable services. The
Callable Service Request Table (CSRTABLE), whose address is
contained in the CVT provides the addresses of all the callable
services. To locate the required callable service, an offset into this
table is required. The full list of offsets is available in the Unix System
Services Programming: Assembler Callable Services Reference.

When using the offsets, the registers must be set as follows:

• Register 1 To contain the address of the parameter list. Bit 0 of
the last address in the list must be set on.

• Register 14 To contain the return address in the invoking module.

• Register 15 To contain the address of the callable service code.

The following example locates and executes the chown service:

 L R15,16 Address of the CVT
USING CVT,R15 Obtain addressability to The CVT
 L R15,CVTCSRT Pointer to the Callable Service Request Table
 L R15,24(,R15) CSR slot
 L R15,64(,R15) Chown slot entry = 64
BALR R14,R15 Execute the callable service

OS/390 UNIX ASSEMBLER CALLABLE SERVICES EXAMPLES

* THIS EXAMPLE OPENS, READS AND CLOSES THE ROOT DIRECTORY *
* SERVICES : OPENDIR READDIR CLOSEDIR *

OPEN_READ_CLOSE_DIR EQU *
 MVC CALLAREA(CALLLEN),CALLL MAKE RENT
 MVC DIR_LEN,=AL4(L'ROOT) ROOT LENGTH
 MVC DIR_NAME(L'ROOT),ROOT ROOT
OPEN_DIR EQU *
 CALL BPX1OPD, OPENDIR X
 (DIR_LEN, DIRECTORY NAME LENGTH X
 DIR_NAME, DIRECTORY NAME X
 RETVAL, RETURN VALUE:-1 OR FD X
 RETCODE, RETURN CODE X
 RSNCODE), REASON CODE X

 56 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 VL, X
 MF=(E,CALLAREA)
 ICM R15,B'1111',RETVAL TEST RETVAL
 BL OPEN_DIR_ABEND BRANCH IF NEGATIVE (-1= FAILURE)
 STCM R15,B'1111',DIR_DESCP STORE THE DIRECTORY
READ_DIR EQU *
 LA R15,DIR_READ_BUFFER DIR READ BUFFER ADDRESS
 STCM R15,B'1111',DIRREAD_BUFFER@ STORE AWAY
 MVC DIR_READ_BUFFER_LENGTH,=AL4(DIR_READ_BUFFER_LEN)
 XC PRIMARY_ALET,PRIMARY_ALET PRIMARY ADDRESS SPACE
INVOKE_DIR_READ EQU *
 CALL BPX1RDD, READDIR X
 (DIR_DESCP, DIRECTORY FILE DESCRIPTOR X
 DIRREAD_BUFFER@, BUFFER X
 PRIMARY_ALET, BUFFER ALET X
 DIR_READ_BUFFER_LENGTH, BUFFER SIZE X
 RETVAL, RET VALUE: Ø, -1, ENTRIES READ X
 RETCODE, RETURN CODE X
 RSNCODE), REASON CODE X
 VL, X
 MF=(E,CALLAREA)
 ICM R6,B'1111',RETVAL TEST RETVAL
 BL READ_DIR_ABEND -1= FAILURE
 BZ CLOSE_DIR ALL DIRECTORY ENTRIES RETURNED
 LA R3,DIR_READ_BUFFER DIR READ BUFFER ADDRESS
 USING DIRE,R3 ADDRESSABILITY TO DIRE
PROCESS_DIR_ENTRY EQU *

* THE END OF A DIRECTORY IS INDICATED IN ONE OF TWO WAYS:
*
* 1 A RETURN_VALUE OF Ø ENTRIES IS RETURNED.
*
* 2 SOME FILE SYSTEMS MAY RETURN A NULL NAME ENTRY AS THE LAST ENTRY
* IN THE CALLERS BUFFER. A NULL ENTRY HAS AN ENTRY_LENGTH OF 4
* AND A NAME_LENGTH OF Ø.

 CLC DIRENTINFO(L'DIRENTLEN+L'DIRENTNAML),=X'ØØØ4ØØØØ'
 BE CLOSE_DIR ALL DIRECTORY ENTRIES RETURNED
 LR R4,R3 R4-> DIRE
 LA R4,L'DIRENTLEN+L'DIRENTNAML(Ø,Ø) START OF NAME
 SLR R5,R5 ZEROISE
 ICM R5,B'ØØ11',DIRENTNAML LOAD NAME LENGTH
 ALR R4,R5 R4->END OF NAME + 1
 USING DIRENTPFSDATA,R4 ADDRESS PHYSICAL FILE SYSTEM
* SPECIFIC DATA
 ICM R5,B'ØØ11',DIRENTLEN ENTRY LENGTH
 ALR R3,R5 R3-> NEXT DIRE IN BUFFER
 BCT R6,PROCESS_DIR_ENTRY PROCESS ALL DIRECTORY ENTRIES
 B INVOKE_DIR_READ READ NEXT DIRE
CLOSE_DIR EQU *
 CALL BPX1CLD, CLOSEDIR X

 57© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 (DIR_DESCP, DIRECTORY FILE DESCRIPTOR X
 RETVAL, RETURN VALUE: Ø OR -1 X
 RETCODE, RETURN CODE X
 RSNCODE), REASON CODE X
 VL, X
 MF=(E,CALLAREA)
 ICM R15,B'1111',RETVAL CLOSE DIR OKAY?
 BL CLOSE_DIR_ABEND BRANCH IF NEGATIVE (-1= FAILURE)
 BR R2 RETURN TO CALLER
OPEN_DIR_ABEND EQU *
 ABEND ØØ1,DUMP OPEN DIRECTORY ABEND
CLOSE_DIR_ABEND EQU *
 ABEND ØØ2,DUMP CLOSE DIRECTORY ABEND
READ_DIR_ABEND EQU *
 ABEND ØØ3,DUMP READ DIRECTORY ABEND
 TITLE ‘STORAGE ITEMS'
CALLL CALL ,(,,,,,,,),MF=L
CALLLEN EQU *-CALLL LENGTH
WORKAREA DSECT
SAVEAREA DS CL72 SAVEAREA
PREVSA EQU SAVEAREA+4,4 @ OF PREVIOUS SAVEAREA
ROOT DC C'/' ROOT DIRECTORY
RETVAL DS AL4 RETURN VALUE
RETCODE DS AL4 RETURN CODE
RSNCODE DS AL4 REASON CODE
DIR_DESCP DS AL4 DIRECTORY DESCRIPTOR
PRIMARY_ALET DS AL4 PRIMARY ALET
SMODE DS XL(S_MODE#LENGTH) FILE MODE FOR MKDIR
DIRREAD_BUFFER@ DS AL4 DIRECTORY BUFFER ADDRESS
DIR_OPEN_BUFFER DS ØX DIRECTORY BUFFER FOR OPEN
DIR_LEN DS AL4 DIRECTORY LENGTH
DIR_NAME DS CL1Ø23 DIRECTORY NAME
DIR_OPEN_LEN EQU *-DIR_OPEN_BUFFER OPEN DIR BUFFER LENGTH
DIR_READ_BUFFER_AREA DS ØX DIRECTORY READ BUFFER
DIR_READ_BUFFER_LENGTH DS XL4 DIRECTORY BUFFER LENGTH
DIR_READ_BUFFER DS CL4Ø DIRECTORY BUFFER FOR READ
DIR_READ_BUFFER_LEN EQU *-DIR_READ_BUFFER OPEN DIR BUFFER LENGTH
CALLAREA DS CL(CALLLEN) PARM LIST AREA
WORKALEN EQU *-WORKAREA WORK AREA LENGTH
 TITLE ‘MAPPING OF A DIRECTORY ENTRY'
 BPXYDIRE DSECT=YES,LIST=YES

* THIS EXAMPLE WILL CHANGE THE MODE OF A DIRECTORY *
* SERVICES : CHMOD *

MOD_A_DIR EQU *
 MVC CALLAREA(CALLLEN),CALLL MAKE RENT
 MVC CHMOD_BUF(L'NEW_DIR),NEW_DIR MODIFY THE DIRECTORY
 MVC CHMOD_LEN,=AL4(L'NEW_DIR) DIRECTORY NAME LENGTH
 LA R4,SMODE FILE MODE AREA

 58 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 USING S_MODE,R4 ADDRESSABILITY
 XC S_MODE,S_MODE CLEAR MODE FLAGS

* OWNER= READ/WRITE/SEARCH*
* GROUP= READ/WRITE/WRITE *
* OTHER= READ/SEARCH *
* MODE = 775 *

 MVI S_MODE2,S_IRUSR 775(RWX-RWX-R-X)
 MVI S_MODE3,S_IWUSR+S_IXUSR+S_IRWXG+S_IROTH+S_IXOTH
 CALL BPX1CHM, CHANGE FILE MODES X
 (CHMOD_LEN, PATHNAME LENGTH X
 CHMOD_BUF, PATHNAME X
 S_MODE, BPXYMODE AND BPXYFTYP X
 RETVAL, RETURN VALUE: Ø OR -1 X
 RETCODE, RETURN CODE X
 RSNCODE), REASON CODE X
 VL, X
 MF=(E,CALLAREA)
 ICM R4,B'1111',RETVAL USER INFO RETURNED?
 BL CHMOD_ABEND BRANCH IF NEGATIVE (-1= FAILURE)
 BR R2 RETURN TO CALLER
CHMOD_ABEND EQU *
 ABEND ØØ4,DUMP CHMOD ABEND
 TITLE ‘LITERAL POOL'
 LTORG
 TITLE ‘STORAGE ITEMS'
CALLL CALL ,(,,,,,,,),MF=L
CALLLEN EQU *-CALLL LENGTH
NEW_DIR DC CL18'/u/remØØ1/testdir/' mkdir
WORKAREA DSECT
SAVEAREA DS CL72 SAVEAREA
PREVSA EQU SAVEAREA+4,4 @ OF PREVIOUS SAVEAREA
RETVAL DS AL4 RETURN VALUE
RETCODE DS AL4 RETURN CODE
RSNCODE DS AL4 REASON CODE
SMODE DS XL(S_MODE#LENGTH) FILE MODE FOR CHMOD
CHMOD_BUFFER DS ØX CHMOD BUFFER
CHMOD_LEN DS AL4 CHMOD LENGTH
CHMOD_BUF DS CL1ØØ DIRECTORY NAME MAX 1ØØ CHARS
CALLAREA DS CL(CALLLEN) PARM LIST AREA
WORKALEN EQU *-WORKAREA WORK AREA LENGTH
 TITLE ‘MAPPING OF A DIRECTORY ENTRY'
 BPXYDIRE DSECT=YES,LIST=YES
 TITLE ‘FILE TYPE DEFINITIONS'
 BPXYFTYP DSECT=MEANINGLESS,LIST=YES
 TITLE ‘MODE CONSTANTS FOR SYSCALL'
 BPXYMODE DSECT=YES,LIST=YES
 TITLE ‘SYSCALL CONSTANTS'
 BPXYCONS DSECT=MEANINGLESS,LIST=YES

Rem Perretta
Systems Programmer (UK) © Xephon 1999

 59© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Selecting messages from the log

INTRODUCTION

The following program was designed to extract messages from an
MVS log or from a log-archiving file. You can select a specific period
(a start time and an end time), the message IDs desired (up to nine can
be specified), and the task that originated them. All these possibilities
are optional.

The main difference between this program and a regular sort is that
you can retrieve both the lines that contain the selected messages, and
also the continuation lines. In a log there are some messages that span
across several lines. I call these continuation lines, and you may wish
to retrieve them also, as an option. Furthermore, there are message IDs
that appear preceded by some symbols (for example, DFH messages
appear with a plus sign before them). For a regular sort, you would
need to know this and adjust your sort specifications. This program
takes care of that, by automatically adjusting the comparison whenever
the message IDs in the log begin with a ‘+’, ‘-’, or ‘$’. The result of
your request is placed in a file, with the same format as a regular log.

This application consists of a REXX EXEC with an associated panel
that generates a job. This job copies the actual log to a temporary file,
or uses as input an already existing file that you specify. Then it runs
an Assembler program that makes the selections and produces the
output file. At the beginning of this EXEC there are a few variables
that you will need to set, namely the LOADLIB containing the
Assembler program module, and the default output filename created.
The input panel is shown in Figure 1.

In the example, you want to retrieve messages starting by HASP373,
IEF403, and IEF404 that occurred between 23:00 and 1:00 hours, and
from no job or STC in particular, since that field is blank. Note that
message IDs need not be full message IDs, just the beginning letters.
For example, you could specify IEF, and you would get all messages
beginning with those letters. The same is true for the job / STC field.
This field refers to the job identifier as it appears in log column 38.
Also note that we are not asking for continuation lines, and that we

 60 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

want to retrieve the messages from the ‘real’ log, not from some back-
up archive, since we leave the ‘File’ field empty.

You can also bypass the entry panel and the EXEC and work directly
with a job. To do so, have a look at the job generated by the EXEC. All
the DDnames and parameters needed by the Assembler program are
explained in the comment on top of it. This way, you can use this
program for automated tasks without the need of manual intervention.

LOGMESS SOURCE

/* REXX MVS *==*/
/* LOGMESS is a routine to extract selected messages from the log */
/* or from a log-like file. Its components are: */
/* */
/* LOGMESS - EXEC to generate a job to run the Assembler program.*/
/* LOGMESSP - An ISPF panel to input data for this EXEC. */
/* LOGMESSB - The Assembler program that does the work. */
/*===*/
loadlib = "MY.LOADLIB" /* where logmessb module is */
tempfile = userid()".TEMPFIL" /* temporary file name */
jobnome = userid()".JOBTEMP" /* temporary job file name */
 /* output file name */
outfile = userid()".LOGMESS.D"right(date("S"),6)".T"time("S")

 +----------------------------- Log Messages --------------------------+
 | File (empty for LOG): |
 | |
 | Date and hour beginning / end (optional): |
 | Date beginning (yy/mm/dd)..: 99 / Ø6 / 2Ø |
 | Hour beginning (ØØ to 23)..: 23 : ØØ |
 | Hour end (ØØ to 23)..: Ø1 : ØØ |
 | |
 | Job/Stc/Tsu identifier (optional).: ________ |
 | |
 | Messages to search..: HASP373_____ ____________ ____________ |
 | IEF4Ø3______ ____________ ____________ |
 | IEF4Ø4______ ____________ ____________ |
 | |
 | Continuation lines (Y, N)..: N |
 | |
 | ENTER - Execute PF3/15 - Cancel |
 +---+

Figure 1: The input panel

 61© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

do k = 1 to 9
 interpret "M"k"=____________"
end
jobid="________"
c = "N" /* default no continuation */
do forever
 ADDRESS ISPEXEC "ADDPOP ROW(1) COLUMN(1)"
 ADDRESS ISPEXEC "DISPLAY PANEL(LOGMESSP)"
 if rc<>Ø then exit
 ADDRESS ISPEXEC "REMPOP"
 if yy="" & mm="" & dd="" & hi="" & hf="" & mi="" & mf="" then leave
 if yy="" | mm="" | dd="" | hi="" | hf="" then do
 ERRO = "Please specify start and end date/time fully"
 iterate
 end
 if mi="" then mi = "ØØ"
 if mf="" then mf = "ØØ"
 if ¬(datatype(yy,"W")&datatype(mm,"W")&,
 datatype(dd,"W")&datatype(hi,"W")&,
 datatype(hf,"W")&datatype(mi,"W")&,
 datatype(mf,"W")) then do
 ERRO = "Invalid non numeric value in date or time"
 iterate
 end
 if mi > 59 | mf > 59 then do
 ERRO = "Invalid minutes specified"
 iterate
 end
 if hi > 24 | hf > 24 then do
 ERRO = "Invalid hour specified"
 iterate
 end
 if mm > 12 | dd > 31 then do
 ERRO = "Invalid month or day specified"
 iterate
 end
 leave
end
continuation = c
datinij = ""
datendj = ""
if yy<>"" then do
 yy = right(yy,2,"Ø")
 mm = right(mm,2,"Ø")
 dd = right(dd,2,"Ø")
 datini = mm"/"dd"/"yy
 datinij = data_jul(yy||mm||dd)
 if hf < hi then datendj = datinij+1
 else datendj = datinij
 hi = right(hi,2,"Ø")":"right(mi,2,"Ø")
 hf = right(hf,2,"Ø")":"right(mf,2,"Ø")
end

 62 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if hi = "" then hi = "*"
if hf = "" then hf = "*"
beg_time = strip(datinij hi)
end_time = strip(datendj hf)
x = Ø
do k = 1 to 9
 interpret "mesg=M"k
 mesg = space(translate(mesg," ","_"),Ø)
 if mesg <>"" then do
 zz= left(mesg,1)
 if zz="+"|zz="-"|zz='$' then mesg=substr(mesg,2)
 x = x+1
 msg.x = mesg
 end
end
jobid = space(translate(jobid," ","_"),Ø)
if jobid = "" then jobid = "*"
xx = msg(off)
delete jobnome
"free dd (jobe)"
"alloc da('"jobnome"') dd(jobe),
 new blksize(8ØØØ) lrecl(8Ø) recfm(f,b),
 dsorg(ps) space(1 1) tracks delete "
if rc<>Ø then do
 say "Error "rc" allocating "jobnome
 exit
end
dropbuf
queue "//"userid()"1 JOB CLASS=X,MSGCLASS=X,"
queue "// MSGLEVEL=(1,1),REGION=2ØØØK"
queue "//*"
queue "//STEPØ EXEC PGM=IEFBR14"
if logfile = "" then do
 queue "//FICTEMP DD DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,"
 queue "// DSN="tempfile","
 queue "// RECFM=FB,LRECL=133,BLKSIZE=133ØØ,"
 queue "// DSORG=PS,SPACE=(TRK,(9Ø,9Ø))"
end
queue "//SYSPRINT DD SYSOUT=*"
queue "//*"
if logfile = "" then do
 queue "//STEP1 EXEC PGM=SDSF,PARM='++6Ø,228'"
 queue "//ISFOUT DD DUMMY"
 queue "//ISFIN DD *"
 queue "LOG"
 queue "PRINT ODSN '"tempfile"' * SHR"
 queue "PRINT 1 999999"
 queue "PRINT CLOSE"
 queue "/*"
 queue "//*"
end
queue "//STEP2 EXEC PGM=LOGMESSB"
if logfile = "" then ,

 63© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 queue "//FICTEMP DD DISP=(OLD,DELETE),DSN="tempfile
else ,
 queue "//FICTEMP DD DISP=SHR,DSN="logfile
queue "//STEPLIB DD DISP=SHR,DSN="loadlib
queue "//SYSPRINT DD SYSOUT=*"
queue "//SAIDA DD DISP=(NEW,CATLG,DELETE),"
queue "// SPACE=(TRK,(3Ø,3Ø),RLSE),"
queue "// RECFM=FB,LRECL=133,UNIT=SYSDA,"
queue "// DSN="outfile
queue "//PARMLINE DD *"
queue continuation
queue beg_time
queue end_time
queue jobid
do j = 1 to x
 queue msg.j
end
queue "/*"
queue ""
"execio * diskw jobe (finis"
"submit '"jobnome"'"
say "Job submitted; See output in "outfile
"free dd(jobe)"
exit
/*===*/
/* data_jul converts dates from YYMMDD to YYDDD */
/*===*/
data_jul: procedure
parse arg date_in
aa = left(date_in,2)
mm = substr(date_in,3,2)
dd = right(date_in,2)
if aa//4 = Ø then ac = 1
else ac = Ø
select
 when mm = 1 then x = Ø
 when mm = 2 then x = 31
 when mm = 3 then x = 59 + ac
 when mm = 4 then x = 9Ø + ac
 when mm = 5 then x = 12Ø + ac
 when mm = 6 then x = 151 + ac
 when mm = 7 then x = 181 + ac
 when mm = 8 then x = 212 + ac
 when mm = 9 then x = 243 + ac
 when mm = 1Ø then x = 273 + ac
 when mm = 11 then x = 3Ø4 + ac
 when mm = 12 then x = 334 + ac
 otherwise nop
end
j = x + dd
return aa||right(j,3,'Ø')

 64 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LOGMESSP SOURCE

)ATTR
 _ TYPE(INPUT) COLOR(RED) JUST(LEFT) CAPS(ON)
 $ TYPE(OUTPUT) COLOR(WHITE) SKIP(ON) INTENS(HIGH)
 ? TYPE(TEXT) COLOR(PINK) SKIP(ON) INTENS(HIGH)
 % TYPE(TEXT) COLOR(YELLOW) SKIP(ON) INTENS(HIGH)
 # TYPE(TEXT) COLOR(WHITE) SKIP(ON) INTENS(HIGH)
 + TYPE(TEXT) COLOR(GREEN) SKIP(ON) INTENS(LOW)
)BODY WINDOW(71,19)
+
? File (empty for LOG):_LOGFILE +
+
? Date and hour beginning / end (optional):
% Date beginning (yy/mm/dd)..:_YY%/_MM%/_DD+
% Hour beginning (ØØ to 23)..:_HI%:_MI+
% Hour end (ØØ to 23)..:_HF%:_MF+
+
? Job/Stc/Tsu identifier (optional).:_JOBID +
+
? Messages to search..:_M1 +_M2 +_M3 +
% _M4 +_M5 +_M6 +
% _M7 +_M8 +_M9 +
+
? Continuation lines (Y, N)..:_C
+
$ERRO
| ENTER - Execute PF3/15 - Cancel
)INIT
&END = PFK(END)
&ZWINTTL = 'Log Messages'
)END

LOGMESSB SOURCE

===
* *
* LOGMESSB - This program extracts messages from a log-type file, *
* including continuation lines. The input file must be *
* identical to the produced by an SDSF PRINT command (with CCs *
* at column one). The following DDnames are used in this program: *
* *
* FICTEMP - The input file containing a log print. *
* SAIDA - The output file, similar to the input, containing *
* only the desired messages. *
* SYSPRINT - Standard job output. *
* PARMLINE - Parameter file that controls message selection. *
* It's format is as follows: *
* Line1.:C Continuation lines (Y or N). *
* Line2.:YYDDD HH:MM Start date/hour or * for all. *
* Line3.:YYDDD HH:MM End date/hour or * for all. *

 65© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

* Line4.:Job/Stc/Tsu as it appears at log column 38 or * for all. *
* Line5 onwards: message identifier as it appears at log column 57. *
* Up to 9 identifiers can be specified, one per line, or none. *
* Do not include + - $ symbols that appear at the beginning *
* of some messages. *
* *
===
&PROGRAM SETC 'LOGMESSB' This program's name
&JOBPOS SETC '38' Jobid column in log file
&NUMPOS SETC '43' Number column in log file
&MSGPOS SETC '57' Message column in log file
&DATPOS SETC '2Ø' Date column in log file
&TL SETC '12' Length of parm table entries
&PROGRAM CSECT (minus 4 bytes for length).
&PROGRAM AMODE 31
&PROGRAM RMODE 24
 SAVE (14,12) Start stuff
 LR R12,R15
 USING &PROGRAM,R12
 ST R13,SAVEA+4
 LA R11,SAVEA
 ST R11,8(R13)
 LR R13,R11
 B OPENPRT
 DC CL16' &PROGRAM 1.1'
 DC CL8'&SYSDATE'
* Open files
OPENPRT DS ØH
 OPEN (SYSPRINT,OUTPUT)
 LTR R15,R15
 BNZ EXIT
OPENSAI DS ØH
 OPEN (SAIDA,OUTPUT)
 LTR R15,R15
 BZ OPENTEMP
 MVC XMSGTYPE,=C'OPEN '
 MVC XMSGDSN,=CL44'SAIDA. Program terminated.'
 PUT SYSPRINT,XMSGLINE
 B EXIT

OPENTEMP DS ØH
 OPEN (FICTEMP,INPUT)
 LTR R15,R15
 BZ OPENPARM
 MVC XMSGTYPE,=C'OPEN '
 MVC XMSGDSN,=CL44'TEMPFILE. Program terminated.'
 PUT SYSPRINT,XMSGLINE
 B EXIT
OPENPARM DS ØH
 OPEN (PARMLINE,INPUT)
 LTR R15,R15

 66 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 BZ GETCONTN
 MVC XMSGTYPE,=C'OPEN '
 MVC XMSGDSN,=CL44'PARMLINE. Program terminated.'
 PUT SYSPRINT,XMSGLINE
 B EXIT
===
* Read parameter file and process it. *
===
GETCONTN EQU * Get continuation lines option
 GET PARMLINE,CONTINUE
GETBEGTI EQU * Get beginning time
 L R6,=F'-1' Assume no begtime specified.
 L R7,=F'-1' Assume no endtime specified.
 L R2,=F'-1' Assume no job/stc specified.
 XR R5,R5 R5 is table elements counter
 LA R4,MSGTAB Load message table address in R4
 GET PARMLINE,BEGTIME Get beginning date and hour
 CLI BEGTIME,C'*' No begtime?
 BE GETENDTI No, jump ahead.
 L R6,=F'1Ø' Otherwise, leng is 11 (Ex 1Ø).
GETENDTI EQU *
 GET PARMLINE,ENDTIME Same thing for endtime.
 CLI ENDTIME,C'*' No endtime?
 BE GETJOBID No, jump ahead.
 L R7,=F'1Ø' Otherwise, leng is 11 (Ex 1Ø).
GETJOBID EQU *
 GET PARMLINE,JOBID Get job selection
 CLI JOBID,C'*' All jobs?
 BE GETPARM Yes, jump
 SR R9,R9 No, find jobname length
 LA R3,JOBID Copy address to R3
 BAL R1Ø,FINDSPC Call find space subroutine
 SH R9,=H'1' Length ready for executed CLC
 LR R2,R9 Keep it in R2
GETPARM EQU *
 GET PARMLINE,Ø(Ø,R4) Get parms (msg ids)
 SR R9,R9 Parm table entry
 LR R3,R4 Copy initial pointer to R3
 BAL R1Ø,FINDSPC Call find space subroutine
 SH R9,=H'1' Length ready for executed CLC
 ST R9,&TL+Ø(Ø,R4) Store length after parm
 LA R4,&TL+4(Ø,R4) Next tab entry (TL + 4)
 LA R5,1(Ø,R5) Increment counter
 CH R5,=H'9' Limit of 9 attained?
 BE PARMEND Yes, ignore others and go ahead
 B GETPARM Otherwise, get another.
PARMEND EQU *
 CLOSE PARMLINE
 ST R5,MSGNUM Store number of table elements
 XR R8,R8 Clear lines read counter
 MVI LMESSAGE,C'Ø' Clear message flag

 67© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

===
* Read a line from the log file and process it. *
===
READFILE EQU *
 GET FICTEMP,WFICTEMP Read log line
 CLI WFICTEMP,C'1' Header line with CC on column 1
 BE READFILE Yes, ignore it
 LA R8,1(Ø,R8) Increment line counter
 CLI CONTINUE,C'N' No continuation lines?
 BNE READFIL1 Yes, jump ahead
 CLC &DATPOS+WFICTEMP(23),=23C' ' Date, time or job/stc?
 BE READFILE Yes, read next
 B BEGTEST Else, jump to test start date.
*
READFIL1 EQU *
 CLI LMESSAGE,C'Ø' Message flag on?
 BZ SEEKNUM No, jump ahead
 CLC &DATPOS+WFICTEMP(26),=26C' ' Date, time or job/stc?
 BNE SEEKNUM Yes, jump
 PUT SAIDA,WFICTEMP Else, write line (type 1 line)
 B FINDNUMB Go look for continuation number.
===
* Check for a "continuation number" in numpos (line type 2). *
* If so, search for the number in numtable. If found, write line. *
===
SEEKNUM EQU * Continuation number process
 CLC NUMTOTAL,=H'Ø' Are there elements in numtab?
 BE BEGTEST No, jump ahead.
 CLC &JOBPOS+WFICTEMP(5),=5C' ' Jobpos first 5 bytes blank?
 BNE BEGTEST No, jump ahead
 CLC &NUMPOS+WFICTEMP(3),=3C' ' Numpos 3 bytes blank?
 BE BEGTEST Yes, jump ahead
 LA R9,NUMTABLE Load numbers table address.
SEEKNUM1 EQU *
 CLC Ø(2,R9),=C' ' Entry erased (2 spaces),
 BE SEEKNEXT loop to next.
 CLI Ø(R9),X'ØØ' Logical end of table(lowvalue),
 BE BEGTEST exit search.
 CLI Ø(R9),X'FF' Physical end of table(highvalue),
 BE BEGTEST exit search.
SEEKNUM2 EQU *
 LR RØ,R8 Compare current line (R8) minus
 S RØ,=F'1ØØ' 1ØØ with line number in table.
 C RØ,4(Ø,R9) If greater, call routine to
 BL SEEKNUM3 clear table entry.
 BAL R11,CLEARTAB
 B SEEKNEXT
SEEKNUM3 EQU *
 CLC 1(3,R9),&NUMPOS+WFICTEMP Compare number
 BNE SEEKNEXT No match, loop to next entry.
 PUT SAIDA,WFICTEMP Match, write line (type 2)

 68 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 CLC WFICTEMP(2),=C' E' End multiple line?
 BNE READFILE No, read next
 BAL R11,CLEARTAB Yes, clear table entry
 B READFILE and read next.
SEEKNEXT EQU *
 LA R9,8(Ø,R9) Next entry (8 bytes more)
 B SEEKNUM1
===
* Test for start / end hour and date. *
===
BEGTEST EQU * Start date hour test
 CLC WFICTEMP(2),=C' S' Sequence (continuation) line?
 BE READFILE Yes, read next
 MVI LMESSAGE,C'Ø' Reset message flag
 LTR R6,R6 Start specified?
 BM ENDTEST If R6 negative, no, jump
 EX R6,COMPARE2 Else, compare
 BL READFILE Lower: start not reached
 L R6,=F'-1' Start reached: destroy test
 B JOBTEST Else, accept line.
ENDTEST EQU * End date hour test
 LTR R7,R7 End specified?
 BM JOBTEST If R7 negative, no, jump
 EX R7,COMPARE3 Else, compare
 BH EXIT High: end reached, exit program.
===
* Test for jobnames / stcnames and for message ids. *
===
JOBTEST EQU *
 LTR R2,R2 Job/stc/tsu id specified?
 BM MSGTEST No, jump ahead (R2 negative)
 EX R2,COMPARE4 Yes, execute compare
 BNE READFILE No match, read another line.
MSGTEST EQU *
 L R11,MSGNUM Number of msg ids specified.
 LTR R11,R11 If zero, write all lines,
 BZ WRITLINØ otherwise, load msg table
 LA R4,MSGTAB address for compares.
MSGTEST1 EQU * See if message match parms
 L R5,&TL+Ø(Ø,R4) Load parm length (EX ready)
 CLI &MSGPOS+WFICTEMP,C'+' Message starts by '+'?
 BE MSGTEST2 Yes, jump to correct execute
 CLI &MSGPOS+WFICTEMP,C'-' Message starts by '-'?
 BE MSGTEST2 Yes, jump to correct execute
 CLI &MSGPOS+WFICTEMP,C'$' Message starts by '$'?
 BE MSGTEST2 Yes, jump to correct execute
 EX R5,COMPAREØ Compare message
 BNE MSGTEST3 Not equal, loop for next
 B WRITLINØ Otherwise, junp to write line
MSGTEST2 EQU * Compare one byte ahead for
 EX R5,COMPARE1 messages starting with + - $.

 69© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 BE WRITLINØ
MSGTEST3 EQU *
 LA R4,&TL+4(Ø,R4) Next table address (4+TL)
 BCT R11,MSGTEST1 Loop for number of entries.
 B READFILE
WRITLINØ EQU *
 PUT SAIDA,WFICTEMP Write line (type Ø line).
 CLI CONTINUE,C'N' No continuation lines?
 BE READFILE No, read next line.
===
* See if a line ends with a three-digit number. *
===
FINDNUMB EQU *
 LA R1Ø,WFICTEMP+132 Point to end of line
FINDNUM EQU *
 CLI Ø(R1Ø),X'4Ø' Look for three digits
 BNE FINDNUM1 preceded by a space.
 BCT R1Ø,FINDNUM Loop to beginning of line.
 B FINDNUMF Empty line?
FINDNUM1 EQU *
 CLI Ø(R1Ø),C'Ø'
 BL FINDNUMF
 CLI Ø(R1Ø),C'9'
 BH FINDNUMF
 S R1Ø,=F'1'
 CLI Ø(R1Ø),C'Ø'
 BL FINDNUMF
 CLI Ø(R1Ø),C'9'
 BH FINDNUMF
 S R1Ø,=F'1'
 CLI Ø(R1Ø),C'Ø'
 BL FINDNUMF
 CLI Ø(R1Ø),C'9'
 BH FINDNUMF
 S R1Ø,=F'1'
 CLI Ø(R1Ø),X'4Ø'
 BE SEEKFREE 3 digits found, move ahead.
FINDNUMF EQU * Not 3 digits, set message flag
 MVI LMESSAGE,C'1' and read next line.
 B READFILE
===
* Seek for a free entry in numtable to store the number. *
* In the way, clear old entries (over 1ØØ lines gone by). *
===
SEEKFREE EQU * Seek for a free entry in the table
 LA R9,NUMTABLE R9 points beginning of table
SEEKLOOP EQU * Look for a free entry in the
 CLC Ø(2,R9),=C' ' table (either with spaces or
 BE MOVENUM low-values).
 CLI Ø(R9),X'ØØ'
 BE MOVENUM

 70 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 LR RØ,R8 Compare current line (R8) minus
 S RØ,=F'1ØØ' 1ØØ with line number in table.
 C RØ,4(Ø,R9) If greater, clear table entry.
 BL SEEKFRE1
 BAL R11,CLEARTAB
SEEKFRE1 EQU *
 LA R9,8(Ø,R9) Increment tab pointer
 CLI Ø(R9),X'FF' End of table?
 BE READFILE Yes, abandon the search.
 B SEEKLOOP Else loop.
MOVENUM EQU * Found empty entry, move number
 MVC Ø(4,R9),Ø(R1Ø) (with initial space).
 ST R8,4(Ø,R9) Store line number.
 LH RØ,NUMTOTAL Increment numtotal.
 AH RØ,=H'1'
 STH RØ,NUMTOTAL
 B READFILE
===
* Close files and exit. *
===
EXIT EQU *
 CLOSE SAIDA
 CLOSE FICTEMP
 CLOSE SYSPRINT
 L R13,SAVEA+4
 LM R14,R12,12(R13)
 XR R15,R15
 BR R14
===
* Subroutines, executed instructions and work areas. *
===
FINDSPC EQU * Find space subroutine: counts the
 CLI Ø(R3),X'4Ø' number of chars in a string up to
 BE FINDSPCF the first space.
 LA R9,1(Ø,R9) Returns the number in R9.
 LA R3,1(Ø,R3) R3 points current position
 B FINDSPC
FINDSPCF EQU *
 BR R1Ø Return
*
CLEARTAB EQU * Clear table entry with spaces
 MVC Ø(8,R9),=8C' '
 LH RØ,NUMTOTAL Decrement numtotal.
 SH RØ,=H'1'
 STH RØ,NUMTOTAL
 BR R11 Return
*
COMPAREØ CLC &MSGPOS+WFICTEMP(Ø),Ø(R4) Compare message id
COMPARE1 CLC &MSGPOS+WFICTEMP+1(Ø),Ø(R4) Same, but 1 byte ahead
COMPARE2 CLC &DATPOS+WFICTEMP(Ø),BEGTIME Compare start date+hour
COMPARE3 CLC &DATPOS+WFICTEMP(Ø),ENDTIME Compare end date+hour

 71© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

COMPARE4 CLC &JOBPOS+WFICTEMP(Ø),JOBID Compare jobnames
*
 LTORG
SAVEA DS 18F Save register area
CONTINUE DS C Continuation lines option
 DS ØF
BEGTIME DS CL12 Beg date and hour (yyddd hh:mm)
ENDTIME DS CL12 End date and hour.
JOBID DS CL8 Job selection
MSGNUM DS F Number of entries in parm table
MSGTAB DS 36F 9 entries max (12+4 bytes each)
WFICTEMP DS CL133 Log line read area
LMESSAGE DS C Message flag (zero or one)
NUMTOTAL DC H'Ø' Total entries in numtable
NUMTABLE DC 6ØF'Ø' Numbers table: 3Ø entries.
ENDTABLE DC X'FF' End of table mark.
XMSGLINE DS ØCL8Ø Error messages line
 DC C'===>>>>> Error in '
XMSGTYPE DC C' '
 DC C' dataset '
XMSGDSN DC CL5Ø' '
*
PARMLINE DCB DSORG=PS,RECFM=FB,MACRF=(GM), X
 LRECL=8Ø, X
 EODAD=PARMEND, X
 DDNAME=PARMLINE
*
FICTEMP DCB DSORG=PS,RECFM=FB,MACRF=(GM), X
 LRECL=133, X
 EODAD=EXIT, X
 DDNAME=FICTEMP
*
SAIDA DCB DSORG=PS,RECFM=FB,MACRF=(PM), X
 LRECL=133, X
 DDNAME=SAIDA
*
SYSPRINT DCB DSORG=PS,RECFM=FB,MACRF=(PM), X
 LRECL=8Ø, X
 DDNAME=SYSPRINT
*
 YREGS
 END

Luis Paulo Ribeiro
Systems Engineer
Edinfor (Portugal) © Xephon 1999

BMC has launched Version 2.1 of InTune
OS/390 application performance tuner,
promising an ability to share information
between systems via Parallel Sysplex, to
analyse the target application, and simplify
customization of batch reports. The product
analyses the performance of programs
running on OS/390, CICS, DB2, IMS,
NATURAL, ADABAS, and Datacom, and
pinpoints code efficiency problems.

Users can fine-tune applications in
production, in test, or under development.
Version 2.1 identifies application program
delays and presents this information for
analysis through an interactive interface for
both traditional and Parallel Sysplex
environments. The product lets users go
inside the code and view precisely where a
resource delay is occurring. In-built support
for Parallel Sysplex allows organizations to
share performance information between
various systems within the sysplex, allowing
users to choose all or any specific individual
systems when invoking requests.

For further information contact:

BMC Software, Inc, 2101 Citywest Blvd,
Houston, TX 77042, USA.
Tel: (713) 918 8800
Fax: (713) 918 8000 or

BMC Software Ltd, Compass House,
207-215 London Road, Camberley, Surrey,
GU15 3E, UK.
Tel: (01276) 24622
Fax: (01276) 61201
http://www.bmc.com

 * * *

PROIV has announced PROIV Mainframe
4.0, a Web-enabled version of its System/
390-based application development
software. PROIV Mainframe 4.0 has a full
Windows-style GUI, and offers the ability to
port applications between OS/390, Unix, and
NT.

The utility allows developers to create
Windows and Java front-ends for mainframe
applications, opening up the whole
environment to the Internet and intranet
using standard Web browsers. The PROIV
JavaSuite allows applications to be delivered
to Web browser clients without the need to
amend application code.

PROIV applications are database-
independent and may be deployed on
mainframes running DB2, DL/I or VSAM.
PROIV Mainframe 4.0 supports the
following clients; Windows 95/98 and NT,
3270, 5550 (double-byte character support),
and Web browsers (Java); it is also Year 2000
compliant.

For further information contact:

PROIV Software Inc, 101 Academy, Suite
200, Irvine, California, USA.
Tel: (949) 823 1000
Fax: (949) 823 1010 or

PROIV Ltd, King’s Hall, Parson’s Green, St
Ives, Cambridgeshire, PE17 4W7, UK.
Tel: (1480) 494330
Fax: (1480) 494 039
http://www.proiv.com

 * * *

x xephon

MVS news

	CA1 TMC information
	 COBOL II scope delimiters
	 JES2 recovery
	 Converting a Julian date to Gregorian
	PDF line commands
	 OS/390 Version 2 Release 8
	 Selectively blocking commands
	 OS/390 Unix Assembler callable services
	Selecting messages from the log
	 MVS news

