157

October 1999

In this issue

3

© N Ol

59
2

CA1TMC information

COBOL Il scope delimiters
JESZ recovery

Converting a Julian date to
Gregorian

PDF line commands

0OS/390 Version 2 Release 8
Selectively blocking commands

0S/390 Unix Assembler callable
services

Selecting messages from the log
MV S news

© Xephon plc 1999

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MVS Update

Published by
Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 33598

From USA: 01144 1635 33598
E-mail: xephon@compuserve.com

North American office
Xephon/QNA

1301 West Highway 407, Suite 201-405
Lewisville, TX 75067

USA

Telephone: 940 455 7050

Contributions

If you have anything original to say about
MVS, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? Thearticle need not bevery long
—two or three paragraphs could be sufficient.
Not only will you be actively helping thefree
exchange of information, which benefits all
MVS users, but you will also gain pro-
fessional recognition for your expertise, and
the expertise of your colleagues, as well as
some material reward in the form of a
publication fee — we pay at the rate of £170
($250) per 1000 words for all original
material published in MVS Update. If you
would liketo know abit more before starting
on an article, write to us a one of the above
addresses, and we'll send you full details,
without any obligation on your part.

Editor
Jaime Kaminski

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of al advice, information,
code, JCL, EXECs, and other contentsof this
journal before making any use of it.

MVS Update on-line

Code from MVS Update can be downloaded
from our Web site at http://www.xephon.
com; youwill need theuser-id shown onyour
address |abel.

Subscriptions and back-issues

A year’s subscription to MVS Update,
comprising twelve monthly issues, costs
£340.00 in the UK; $505.00 in the USA and
Canada; £346.00 in Europe; £352.00 in
Australasia and Japan; and £350.00
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
January 1992 issue, are available separately
to subscribers for £29.00 ($43.00) each
including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublicationfor useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labelscosts $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

2

CA1 TMC information

During a recent change to our DASD layout it became necessary to
moveour CA1TMC (TapeManagement Catal og) to another volume.
However, when wetried to restart CA1, wereceived an ‘ IEFTM S70
5yy-132" message. This message isissued in situations where either
theTMCor theauditfilehasbeenincorrectly defined. Although| have
worked with CA1 for quite awhile, | was unable to understand what
waswrong and had to resort to calling CA for assistance. The answer
they provided was sufficiently unexpected that it seemed worthwhile
pointing out the problemto awider audience. Apparently the message
wasissued because CA 1 could not handle 31-bit UCBs. Wehad hit the
problem by defining our new DA SD with 31-bit UCBsrather than our
old DASD’s 24-bit ones.

Having assisted various people trying to understand the operation of
CAl and its use of the TMC, there would appear to be a lot of
confusion and concern over thisparticular file. A lot of thisconfusion
seems to stem from the TMC being an immovable file that requires
‘specialist’ proceduresto moveit.

TheTMCisdefined asa340-bytefixedrecord, unblocked,immovable
file. If youwereto treat it as such and run a utility like SEL COPY to
print out the file it would consist of the following structure.

Thefirst threerecordsare control recordsresponsiblefor defining the
volume ranges in use at your site (up to 52 independent ranges) and
for controlling DSNB usage. Following these control recordswill be
onevolumerecordfor every volumedefinedinyour volumerange. At
the end of these records and marked by X'FF' inthefirst byte arethe
DSNB records.

If you look in the macro library supplied by CA, you will find two
macros—TMMTMREC and TMMDSNB. TMMTMREC definesthe
layout of thecontrol recordsandthevolumerecords, whileTMMDSNB
defines the DSNB layout. Reading these Assembler macros should
enableyoutobeabl eto seeacorrel ationbetweenthe GRW (Generalized
Report Writer) and the records. In other words you should be ableto
seethe TM C asnothing morethan astrangely unblocked ordinary file,
Using the macro layouts for information will also permit the use of
routines other than the GRW (or EARL) to read the TMC. So if you

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

lack the skillsin either of thesetools, you can ssimply usethe maps as
your guidesfor SELCOPY, etc. Soif theTMC isjust an ordinary file
with an ordinary fixed format, why all the problem when it comesto
moving it? There are two primary reasons:

« Howthel/Oisactualy donetothe TMC. When CAlis started
(or restarted) it takes note of wherethe TMCis. After this, access
tothefileisdonethroughan SV Crather than through conventional
1/O. This SV C works out the location of aTMC record and then
‘jumps’ tothedisk location. Thiscal culation of theoffsetfromthe
start of the file is done by using the control records to work out
where the currently in-use volume serial number is located and
then adding in the number of control records. To make this
clearer, assume you have two volume ranges, VOL SERs 10-19
and 30-49, and we are about to process volume 40. Thejumpis
calculated as follows. Start of file +3records (for the control
records) +10 records — VOLSER range 10-19 is 10 records —
+11records (Volser 40-30 (start of second range) is 11 records).
Hence, ajumptorecord24isrequired. Asstandard [/Oisnot done
and ismerely arelative record cal culation, and because the start
of file pointer is only obtained at start-up, should the file be
moveable and, for example, defragged el sewhere, the /O would
continuetowherethefilewaspreviously and notitsnew location.

« TheTMCmust not beinusewhilethemovetakesplace. Any use
of tapewhich could updatethe TM C whilethemoveishappening
would result in potential TM C damage. It isimperativetherefore
that tape activity is stopped while the move takes place.

Assuming you protect the TM C accordingly, you do not literaly need
to follow the procedures as stated in the manual (not that | am
recommending you do not follow them, of course). Utilities such as
DFDSS are perfectly capable of safely movingaTMC aslong astape
activity iscontrolled during thecopy processandthat CAlisrestarted
after themove. Itisthelast point that mattersmost. Youreally cantreat
theTMCasanordinary fileand read and processit accordingly aslong
as CAlisrestarted to reset itself after the move and no tape activity
has updated the TM C during your change activity.

Systems Programmer (UK) © Xephon 1999

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COBOL Il scope delimiters

INTRODUCTION

Haveyou ever needed to get into acompound ‘ IF phrase and wished
you could end one‘IF’ so you could begin another —without using a
full stop? Thisiswhere scope delimiters can be very helpful.

USING COBOL || SCOPE DELIMITERS

Consider thisexampleof aY 2K fix that would cause seriousproblems
if you were stuck with COBOL | and could not use scope delimiters,
Intheexample, datesareintheformatYYMMDD; if thereisa‘start’
date, therewill beacorresponding ‘end’ date; if thereisno’ start’ date,
therewill beno ‘end’ date:

IF INPUT-START-DATE > ZERO

MOVE INPUT-START-DATE TO WS-START-DATE-6
MOVE INPUT-END-DATE TO WS-END-DATE-6
IF WS-START-DATE-6 < 500000

MOVE 20 TO WS-START-DATE-CC
ELSE

MOVE 190 TO WS-START-DATE-CC

Now we are in trouble. We want to repeat the last four lines of code
for theend datewithout leavingthe’ IF sentence, sinceweonly doall
thisif START-DATE > zero. We could repeat the ‘ |F’ again, but that
iswasteful. In COBOL Il and above it can look like this:

IF INPUT-START-DATE > ZERO

MOVE INPUT-START-DATE TO WS-START-DATE-6
MOVE INPUT-END-DATE TO WS-END-DATE-6
IF WS-START-DATE-6 < 500000
MOVE 20 TO WS-START-DATE-CC
ELSE
MOVE 10 TO WS-START-DATE-CC
END-IF
IF WS-END-DATE-6 < 500000
MOVE 20 TO WS-END-DATE-CC
ELSE
MOVE 10 TO WS-END-DATE-CC
END-IF
END-IF.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

Thelast two ‘ END-IF sare superfluous, we could have put afull stop
after the last ‘WS-END-DATE-CC'. Some programmers include
them for style and readability.

‘END-IF terminates the scope of the immediately preceding ‘IF
without terminating the sentence. Just like ‘ELSE’ matches up with
the immediately preceding ‘ |F . Both requirethe samedegree of care
during use.

OTHER SCOPE DELIMITERS

Thereareanumber of scopedelimitersin COBOL |1. A selectionare
shown below:

« END-ADD

« END-CALL

« END-DIVIDE

« END-EVALUATE
e END-MULTIPLY
« END-READ

« END-SUBTRACT
« END-WRITE.

We will consider some of these COBOL I scope delimitersin future
issues of MVS Update.

Allan Kalar
Systems Programmer (USA) © Xephon 1999

If you want to contribute an articleto MVSUpdate, acopy
of our Notesfor contributors can be downloaded from our
Web site. The URL is. www.xephon.com/contnote.html.

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

JES2 recovery

THE PROBLEM

Recently an unusual situation occurred at our site which had not
happened for many years. One of the datasets in a JES2 procedure
concatenation had become corrupted. This meant that the batch jobs
using that concatenation were failing to find their JCL. Although we
were ableto repair thedataset, it needed to beredefined and therefore
JES2 wasunaware of the new * correct’ library. In common with most
sites, an IPL to restore matters was not exactly the preferred option!
So it wastime to try something that | had not used since the days of
MV S/ESA Version 3 Release 3 (currently we are at OS/390 Version
1 Release 3). Because it worked, the procedure may be of use should
you encounter the problem at your site.

A SOLUTION

Thecommand £PJES2, ABEND wasissued. ThisforcesJES2to stop
and issue avariety of messages, ending with aWTOR. By replying
END totheWTOR, andthenissuingaSJES2, WARM ,NOREQIitwas
possibletoget JES2torestart asa‘ hot’ start. Thisallowed JES2 tofind
itsPROCLIB concatenation again, and (the best bit) nothing stopped
or failed in the process.

Should you need to try this, an extract from the log to show all the
messages obtained is shown below. Thisisfollowed by adescription
for what a‘hot’ start ‘ officially’ meansin JES2 terms. | haveincluded
the log extract below, because the messages provided can look
decidedly worrying if you are not ready for them!

£P JES2,ABEND
*£HASP@95 JES2 CATASTROPHIC ERROR. CODE = £PJ2
£HASP@P88 JES2 ABEND ANALYSIS 842

£HASPO88
£HASP@88 FMID
£HASP@88 SUBSYS

HJE6603 LOAD MODULE = HASJES20@
JES2 0S 1.3.0

£HASP@88 DESC = OPERATOR ISSUED £PJES2, ABEND

£HASP@88 DATE 99.217 TIME = 19.27.11
£HASP@P88 MODULE MODULE OFFSET SERVICE ROUTINE
£HASPP88 NAME BASE + OF CALL LEVEL CALLED

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

£HASP0O88
£HASP@88 HASPCOMM p@P@7D828 + @PEB56 O0OW21918 *ERROR £PJ2

£HASP@88 PCE = COMM (PCA361B@)

£HASPP88 RO = 0PP8C150 @OPBF4738 Q0PPVP522E 0VPB83F44
£HASPP88 R4 = 00PP8302C @CA36B2C 00000004 @CA36B30
£HASPP88 R8 = 0PP8C150 0PP8D150 0VDVAVD VOPV6DD0

£HASP@88 R12 = 0P@P7D878 @CA361B@ @CAPSCCO @PBD37F8
£HASP?88
*£HASP198 REPLY TO £HASP@98 WITH ONE OF THE FOLLOWING: 843

END - STANDARD ABNORMAL END

END,NOHOTSTART - ABBREVIATED ABNORMAL END (HOT-START IS AT RISK)
SNAP - RE-DISPLAY £HASP@88

DUMP - REQUEST SYSTEM DUMP (WITH AN OPTIONAL TITLE)

*71 £HASP@98 ENTER TERMINATION OPTION

*72 £HASP426 SPECIFY OPTIONS - JES2 0S 1.3.0
GSVX@19I JES? is not active
R 72,WARM,NOREQ
IEE6@ABI REPLY TO 72 IS;WARM,NOREQ
TIEF1961 IEF285I SYS1.PARMLIB KEPT
IEF1961 IEF285I VOL SER NOS= SY1@A1l.
IXZ0@@11 CONNECTION TO JESXCF COMPONENT ESTABLISHED, 973
GROUP MVSJESP1 MEMBER MVSJESP1£IPO1
£HASP537 THE STATEMENTS IN THE INITIALIZATION DECK REQUIRE A 974
CHECKPOINT SIZE OF 431 4K RECORDS
IEF1961 IEF2371 108A ALLOCATED TO SYS@Q@@1
£HASP478 INITIAL CHECKPOINT READ IS FROM CKPT1 976
(SYS1.HASPCKPT ON JES@@1)
LAST WRITTEN THURSDAY, 5 AUG 1999 AT 19:27:08 (LOCAL TIME)
*£HASP493 JES2 MEMBER-IPO1 HOT START IS IN PROGRESS
£HASP492 JES2 MEMBER-IPO1 HOT START HAS COMPLETED

HOT START

The following is an extract from the JES2 commands manual that
provides a definition of a hot start:

Hot start: ahot startisawarm start of an abnormally terminated JES2
member without an intervening IPL. JES2 performs ahot start when
aparticular JES2 member hasstopped but other systemshavecontinued
tofunctionand havenot experienced problems. When JES2 hot starts,
all addressspacescontinuetoexecuteasif JES2 had never terminated.
Jobs that were processing on output devices are re-queued asif a £l
command had beenissued. Jobsoninput devicesmust beresubmitted
andlinesmust berestarted. Hot startshaveno effect on other members
inaMAS configuration.

Systems Programmer (UK) © Xephon 1999

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Converting a Julian date to Gregorian

INTRODUCTION

InMVSUpdate, Issue 156, September 1999, therewasasimpleutility
to executejob steps based on the day of theweek. The utility worked
by extracting the system date in Julian format, converting this date
into Gregorianformat and then cal cul atingtheweekday using Zeller’s
Congruence.

However, thereisno need to convert aJulian dateto Gregorianformat
before finding the day of the week. The code below doesiit directly:

DAYOWEEK CSECT

SAVE (14,2),,*

LR R2,R15

USING DAYOWEEK,R2

LA R14,SAVEAREA
ST R13,4(,R14)

ST R14,8(,R13)

LR R13,R14

TIME LINKAGE=SVC

ST R1,WORKI1+4

DP WORK1,=PL3'1000"'
ZAP WORK2,WORK1(5)
CvB R15,WORK2

M R14,=F'5"
BCTR R15,0
SRA R15,2

ZAP WORK2,WORK1+5(3)
CVB R14,WORK2

AR R15,R14

SR R14,R14

GET CURRENT DATE

STORE DATE IN @CYYDDDF FORMAT

SPLIT YEAR AND DAY
PICK UP YEAR

YEAR IN BINARY
MULTIPLY BY 5
SUBTRACT 1

DIVIDE BY 4

PICK UP DAY

DAY IN BINARY

ADD TO "YEAR"

ZEROISE EVEN REGISTER

D R14,=F'7" GET DAY OF WEEK
LR R15,R14 PUT RESULT IN REGISTER 15
L R13,4(,R13) RESTORE REGISTER 13
RETURN (14,2),RC=(15) @=SUN, 1=MON, 2=TUE, ... 6=SAT
*
SAVEAREA DC 9D'@"
WORKI ~ DC D'@' WORK AREA
WORK2 DS D WORK AREA
LTORG
YREGS
END DAYOWEEK
Dave Thorby
Systems Programmer
London Electricity plc (UK) ©Xephon 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

9

PDF line commands

INTRODUCTION

In edit mode, you can enter linecommandsin theleft margin (theline
number area). You probably already know the most common ones
suchas‘C’ opy, ‘A'fter, ‘B’ efore, ‘M’ ove, ‘D’ elete, ' I nsert, ‘ R’ epedt,
etc, and their block equivalents. There are others such as: ‘O’ verlay,
‘) shiftright, * (‘shiftleft, aswell as‘ TS text split, and‘ TF text flow.

LINE COMMANDS
Here are afew of the less common tools available;

o ‘X" will temporarily hide (or € X’ clude) aline. * XX’ isthegroup
equivalent. Thisishandy to get someintervening linesout of the
way so that you can get two groups of lines closer together,
perhaps on the same screen. Thelineor lines are replaced with a
single line of dashes. You can enter the following commandsin
theleft margin of that line (If ‘n’ isnot specified, it automatically
defaultsto ‘1’).

o ‘Fn’ will redisplay thefirst ‘n’ lines of excluded text.
 ‘Ln redisplaysthelast ‘n’ lines.

o ‘S’ redisplay ‘n’ lineswiththeleftmost indentationinablock of
excluded lines.

o ‘UC will convertal thecharactersonalineto upper case.‘ UCC’
Is the group command. ‘LC’ and ‘LCC’ are the ‘lower-case’
equivalents.

I nformation about the features that involve a‘mask’ can befound in
theinformation in HELP (PF1).

Allan Kalar
Systems Programmer (USA) © Xephon 1999

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

0S/390 Version 2 Release 8

INTRODUCTION

24 September 1999 saw the general availability of OS/390 Version 2
Release 8. Theemphasisof thenew releaseison better integration and
availability. Central to the upgrade are security and systems
management features, including the ability to manage virtual private
network encryption keys dynamically through the Internet Key
Exchange, enhanced management and administration of digital
certificates used by both server applications and end-users, higher
availability of TCP/IPinaParallel Sysplex, | SPF customization, and
the capability to print from ERP and Internet-related applications.

NEW SECURITY FEATURES

The following new security features are particularly important and
will enhance the role of OS/390 in supporting e-commerce:

» |PSecVPN providesasecurepathway between OS/390 and other
|PSec VPN-capable systems, routers, and firewalls through
encryptionusingthe System/390 hardware CM OS Cryptographic
Coprocessor.

 The exchange of encryption keys between the end-points of
IPSec VPN can now be automated and dynamically managed
through Internet Key Exchange (IKE), an IPSec protocol for
cryptographic key and security management.

» Thecentralized management of digital certificates belonging to
server applications and their related private encryption keys, is
another new feature. Thiswill allow customers and application
developers to provide common secure management of these
certificates as well as the chain of trust needed to verify user
certificates presented to these applications.

o ThereisSSL client authenticationtothe TN3270 server, alowing
TCP/1Pclientsto accesscustomer applicationstraditionally only
accessiblefroma3270screen. It al so securesagai nst unauthorized
access to SNA applications from TCP/IP users.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

LDAPDIRECECTORY ACCESS

The LDAP (Lightweight Directory Access Protocol) server has been
enhanced to support LDAP Version 3 protocol, enabling OS390
LDAP Server to interoperate with other LDAP Version 3 clientsand
servers. LDAP on OS/390 includes Java support, LDAP access to
RACF information, and LDAP client authentication using RACF. It
also supports the Secure Sockets Layer for encrypted privacy of
communication and it supports multiple LDAP servers on multiple
systemsin a Parallel Sysplex.

VIRTUAL IPADDRESSING

The SecureWWay Communications Server for OS/390 providesVirtual
IP Addressing (VIPA) Takeover, allowing real IP addresses to be
associated with a pseudo address, assigned to an end-user in the
System/390 server. If a connection fails, traffic is routed to an
alternative connection associated with the same VIPA.

PRINTER CONSOLIDATION

Another new feature is that Infoprint Server will use the Internet
printing protocol to process print jobs over the Internet securely.
Infoprint will use datastream transforms to translate data from one
printer format to another to allow printing from popular PC and
workstation applications as well as many ERP applications. It can
convert PCL, Postscript, and PDF files and is being positioned to
consolidateenterpriseprint serving functionsaround the System/390.

PARALLEL SYSPLEX CONFIGURATION

Parallel Sysplex configuration can be complex but the use of the
Parallel Sysplex configuration tool allows a Parallel Sysplex
configuration to be created interactively.

|SPF CUSTOMIZATION

Oneof the problemsof installing new rel easesof OS/390 hasbeenthat
| SPF customization needs to be redone every time. Normally this
involves using the ISRCONFG Assembler resource, and manually
reassembling and relinking to makechanges. With theintroduction of
the ‘1SPF configuration utility’ this problem is alleviated. Upon

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

entering TSO I SPCCONF, itispossibletoconverttheold | SRCONFG
Assembler sourceinto akeyword file that includes all the options or
all those changed from the defaults.

OTHER ENHANCEMENTS
Other enhancements to OS390 Version 2 Release 8 include:

 Allowing SNA users to use Triple DES encryption. Service
policy enhancementsaresaidtoimprovethecapability tomonitor
and manage network performance to service level agreements.

 The addition of a dynamic update feature to the policy agent
allows service policies to be implemented without impacting
network availability.

A new resource reservation protocol support allows users to
invoke reservation services, reserve bandwidth, and classify
reservations through an RSVPAPI.

A new SNMP SLA subagent that enablesnetwork administrators
to retrieve data and determine whether the current set of SLA
policy definitions are performing as desired.

e Improvements in Workload Manager (WLM) that alow it to
prioritize workloads at the request level.

ANALY SIS

As with other recent releases of OS/390, the emphasis on security
implies the operating system is being aggressively promoted for
electronic commerce applications. The emphasis on printer
consolidation, and Parallel Sysplex configurationagainre-emphasizes
the importance of enterprise server centralization.

OS/390 VERSION 2 RELEASE 9

In Version 2 Release 9, IBM plansto make further improvementsto
native file and print serving for Windows clients, text search support
for XML documentsand unicode, and additional Unix system services
functions. We can aso look forward to a new naming convention for
0S/390 in the new millennium.

© Xephon 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

Selectively blocking commands

THE PROBLEM

Itissometimesnecessary to block theissueof certainMV Scommands,
You may for instance have ajob that you do not want CANCEL Led
or even FORCEedwithout permissionfromthesystemsprogramming
group. There are also commands that can have an impact on system
performance (eg doing an LLA refresh on a production system).
Although this can be controlled through RACF profiles, it is a
somewhat cumbersome process and a mistake could easily end up
with the wrong groups being blocked or allowed to issue the
command(s).

A SOLUTION

A much easier way would be to have asimple facility available that
will allow systems programmersto block commands by putting them
into and removing them from a PARMLIB member.

Thefollowing facility doesexactly that. There aretwo programs—an
MV S command exit, and a routine to manage blocked commands.
The MVS command exit intercepts commands of the format ‘T
NOCM D=xx" withxx thesuffix of aPARMLIB member NOCMDxx.

This command is passed to the second routine that manages the
blocked commands. Thisroutinelooksfor themember NOCMDxx in
thePARML B concatenation and, if themember isfound, aCSA table
iISGETMAINed and the commands are copied from the member into
the table. The address of the CSA table is anchored off a subsystem
entry by the name of NCMD. (Thisentry isdynamically added when
the first ‘T NOCMD=xx’ command is entered.) The command exit
doesacheck every timethat acommand isentered. If the name of the
subsystem exists, the command iscompared with all theentriesinthe
CSA table. If amatch isfound, the command is not executed and a
messageisgiven. Todisablethecommand blocking, ssimply issuea’ T
NOCMD=NO’ command (which of course can aso be put into the
block table).

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Note that the commands are added into the PARMLIB member
without blanks, eg to block a LLA refresh the PARMLIB member
should have ‘FLLA’, on aline of its own. The comparison with the
entered command is based on the length of the command in the
PARMLIB member. For example, CANCELABC will block the
command ‘CANCEL ABCD’ but it will not block the command
‘CANCEL A'. The program is not written to accept wild cards (eg
CANCEL AB*D) but it can easily be modified to accept thisformat.

The MVS command exit also contains samples on how to intercept
other commands and will be very easy to convert to suit your
purposes. It removesthe blanks from the passed commands and then
call stheassociated entry pointsfor each matched command. Thefield
CMDWAREA contains the de-blanked command whilst CMDX @
contains the address of the original MVS command buffer. It is
installed by adding it into MPF refer to the OS/390 Initialization
Guide for a description on how to do this very easy task.

MVS COMMAND EXIT

*hkhkhkkkhkkhkkhkkhhhkhkhkhkhkhkkhkhkhhhhkhkhkhkhkkhkkhkhkhhhhhhkhkhkkhkhkhkhhhkhhkhkhkkkhkhkhkhhhkhkhhkhkkkkhkhhhhkhrhrixkkxk

MVS Command EXIT.

This module will recognize commands by comparing them to entries in

a table. It will than do a BAS to an entry point specified for the

command. If the processing is successful, it will either suppress the

command from further MVS processing or pass it to MVS, depending on

a field specified per command in the command table.

An ESTAE routine is set up to intercept any ABENDs that may result in

calling the subroutines. The ESTAE routine issues an SVC dump.

To add another command intercept:

1) Do a "F COMMTAB" 1in column 1. This is the command table and an
entry can be added The format is:

DC AL2(L"XX) .Length of command text

DC AL4A(CENTRYPT) .Address of processing routine

DC AL1(flag) .Flag to control MVS processing
XX DC C"MYCOMMND" .Command text (spaces removed)

2) The code to process command MYCOMMND should be coded at ENTRYPT.
3) Assemble and Tink.

4) Refresh LLA

5) Do a "T MPF=xx"

Module type : Reentrant, called in supervisor state key @
Addressing mode: AMODE 31, RMODE any
Register usage : R12= Base register

b R N SRR R . e S B T S S O B . e

R13= Pointer to general savearea and workareas
R P R R R R R P R b P R R b R b b b b b P b P b b b b b b

MVSCOMEX CSECT
MVSCOMEX AMODE 31

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

MVSCOMEX RMODE ANY
BAKR R14,0
LR R12,R15
USING MVSCOMEX,R12

*hkhkhkkkkkhkhkhhkhkhkhkhkhkkkkhkhhhhhhkhkhkkhkhkdkhhhhhhkhkhkkhkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkkkkkkhhhhxkx

.Save caller's status

* Main driver routine
*,hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhhkhhhkhhhkhdhhkhdhhhdhhkhhkhkhhkhkhhhkhkhhkhkdkik
L R4,0(R1) .Get CMDX Address
USING CMDX,R4
STORAGE LA R3,STORSIZE
STORAGE OBTAIN,LENGTH=(3),L0C=ANY,SP=229
LA R3,STORSIZE

LR R2,R1 .Point to getmained area
XR R9,R9
MVCL R2,R8 .Propagate binary zeros
USING STORAREA,R1
ST R13,SAVEAREA+4 .Backchain
DROP R1
LR R13,R1
USING STORAREA,R13 .Addressability to getmained area
ST R4 ,CMDX@ .Preserve adress of command buffer
BAS R14,FINDCMND .Locate command text, remove blanks
CHKPRCS BAS R14,CMNDCOMP .See if we have to process command
BAS R14,SEEKSSI .Go see if command blocking active
LTR R15,R15 JIs it?
BZ CHKOURS .No, go see if we have to intercept
BAS R14,TSTBLOCK .Compare command with "block™ table
LTR R15,R15 .Must it be blocked?
BZ CHKOURS .No, don't block the command
WTO "MVSCOMEX(W): This command has been blocked by Software X
Support',ROUTCDE=11
CHKOURS TM DOFLAG,YES .Is this an intercepted command?
BNO RETURN .No, not one of ours
BAS R14,PROCCMND .Process command
RETURN L R4,RETCODE .Pick up return code
LA R3,STORSIZE
LR R?2,R13 .Pointer to storage area

STORAGE RELEASE,LENGTH=(3),SP=229,ADDR=(2)
LR R15,R4 .Reload return code
PR .Return to our caller
hkhkhkhkhkhkhhhhhh A A hhh A A hhdhhhhkhhhkh A dhhhhhhh Ak dhhkhhhkhhkhhkhhhhhkhhkkhkhhkkkkk)k)k)k%k%x%

* This routine Tocates the command and removes all blanks
*,hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkhhhkkhhhkhdhhkhdhhkhkhhkhkhhkhkhhkhkhhhkhhhkkxk
FINDCMND BAKR R14,0
L R4,CMDXCLIP
DROP R4
USING CMDXCLIB,R4
LA R1,CMDXCMDL
ST R1,MVSCOM@

.Get command buffer address

.Access the passed command buffer
.MVS buffer of actual command text
.Preserve this address

LH
LA
POINTCMD LA

R1,CMDXCMDL
R2,CMDXCMDI
R3,CMDWAREA

.Length of command
.Access start of text
.Point to start of command wrk area

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

XR
DESPACEL EQU
CLI
BE
CLI
BE
CLM
BL
WTO
B
MOVECHAR MVC
LA
LA
BUMPUP LA
BCT
UPPERCSE 0OC
ST
FINDCMNX PR

R5,R5

*

@(rR2),C" '
BUMPUP
P(R2),X'00"
BUMPUP

R5,3,=AL2(L'CMDWAREA)

MOVECHAR

.Clear length counter

.Remove all spaces from the command
.Is it a space?

.Yes

.Is it Tow value?

.Yes

Too long?

.No

'"MVSCOMEX(E): -Command exceeds max length',ROUTCDE=13

UPPERCSE
@(1,R3),0(R2)
R3,1(R3)
R5,1(R5)
RZ2,1(R2)
R1,DESPACEL

.Only accept these characters
.Move character into wrk area
.Point to next empty space

.Bump up Tlength counter by 1
.Bump up pointer to cmd buffer
.Do for each character in the cmd

CMDWAREA(L'CMDWAREA),SPACES .Uppercase

R5,CMDLENG

.Length of de-spaced command
.Reload our return address

*khkkkhkkkkhkkhkhkhkhkkhkkhkkhkhkhkkkhkhhkhkhkkkhkhkhkhhkkhkhkhhkhhkhkhhkhkhhkhkhhkhhhkhkhhhhrkhkhkhhhkhkhkhkhhhkkxkx

* This routine gets the address of our subsystem entry
hkhkhkhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhkdddhhhdhkhhhdhdhhkkhhhdhhkdhdhhhhhhhkkkk)kkkkx%x%

SEEKSSI BAKR R14,0

L R4,16

USING CVT,R4

L R4,CVTJESCT

USING JESCT,R4

L R4,JESSSCT

USING SSCT,R4
SSCTLOOP EQU *

LTR R4,R4

BZ NOBLOCK

CLC SSCTSNAM, SUBSYSN

BE FOUNDSSI

L R4,SSCTSCTA

B SSCTLOOP
FOUNDSSI EQU *

CLC SSCTSUSE,=F'@’

BZ NOBLOCK

L R15,SSCTSUSE

ST R15,BLOCKTB@

B SEEKSSIX
NOBLOCK XR R15,R15

SEEKSSIX PR

.Start of CVT

.Establish addressability

.Get JESCT address

.Establish addressability

.Get SSCT chain address

.Set addressability

.Look for our SSCVT

.End of chain?

.Yes - not found

.Our SSCVT?

.Gotcha

.Point to next SSCVT entry

.Redo the Toop

.We have found the subsystem

.Has the CSA table been obtained?
.No, we are not blocking commands
.Return address of the CSA table
.Store the address

.Get out

.No, we are not blocking commands

Khkhkhkkkkkhhhhkhkhkhkhkkdhkdhhhhhkrhkhkdhdkddhhhhhkhkkdkhkdhhhhkhhhkdkdhkdkdhhhhrhhkdkkdkdkhhhhbrhhkixxk

* This routine checks if the command matches an entry in the
* "block™ table kept in CSA.
hkhkhkhkhkhhhhhhh A A hhh A A hhhhhhhd Ak A A dhhhhdhhhkhh A dhh Ak hkhhhkhhhhhkhhhkhhkkkkkk)k)k)k%k%x%
TSTBLOCK BAKR R14,0
L R7,BLOCKTB@ .Where the CSA "block™ table is
L R6,0(R7) .Number of entries in "block™ table
LTR R6,R6 .Any commands in the table?
BZ ALLOWCMD .No commands in "block" table

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

17

LA R7,4(R7) .Start of first command text
CARDLOOP EQU *

LA R9, 80 .Length of a "block™ cmd entry

LR R1,R7 .Point to start of "block"™ cmd

XR R8,R8 .Clear length counter
LENGLOOP CLI @(R1),X'40"' .Look for a space

BE SETLENG .Command must match this Tength

LA R1,1(R1) .Point to next character

LA R8,1(R8) .Bump up length counter by 1

BCT RO, LENGLOOP .Scan until we find a blank or EOC
SETLENG L R3,CMDLENG .Length of de-spaced command

C R3,R8 .Command buffer too short?

BL ALLOWCMD .Yes, do not block the command

LR R5,R8 .Length to compare

LR R3,R8 .Length to compare

LR R2,R7 .Point to start of this "block" cmd

LA R4,CMDWAREA .Point to start of passed command

CLCL R2,R4 .Does command match a table entry?

BE BLOCKCMD .Yes, block the command

LA R7,80(R7) .Point to the next card

BCT R6,CARDLOOQP .Compare with each table entry
ALLOWCMD XR R15,R15 .This command not blocked

B TSTBLOCX .Get out
BLOCKCMD LA R15,NOMVS .Do not let this through to MVS

ST R15,RETCODE .PTug value into return code field

TSTBLOCX PR

*hkhkkkkkhkkhkkhhhkhkhkhkhkkkhkkhkhkhhhkhkhkhkhkkhkkhkhkhhhhkhhkhkhkkhkkhkhkhhhhkhhkhkkkhkhkhkhhhkhhhkhkkkkhkhhhhkhrhhkkkxk

* This routine compares the command to entries in the table
k*hkhkhkhkhhhkhhhhhhhdhhhdhhdhhdhdhhdhdhdhhdhdhdhdhdhdhhdhdhhhhdhdhhdhhdhhkhdhhhhkhdhhkhkhhhkkkkkkkk*%x%
CMNDCOMP BAKR R14,0

LA R4,COMMTAB .Point to start of command table

DROP R4

USING COMMDSCT,R4 .Addressability to command table

LA R3,ENDOFTAB .Point to end of command table
COMPLOOP EQU * .Compare to all commands in table

ICM R2,3,COMMLENG .Pick up command Tength

STH R2,CMDTXTLN .Store into parmlist

BCTR R2,0 .Reduce length by 1

EX R2,COMCOMPR .See if there is a match

BE MATCHFND .Yes, there is

B NOMATCH
COMCOMPR CLC COMMTEXT(@),CMDWAREA .Compare command to table entry
NOMATCH XR R1,R1

ICM R1,3,COMMLENG .Pick up the length of this entry

AR R4,R1 .Bump up by the text Tength

LA R4 ,COMMHDR(R4) .Bump up by header length

CR R4,R3 .End of table?

BNL CMNDCOMX .Yes, match not found. Get out

B COMPLOOP .Redo for each table entry
MATCHFND EQU *

ST R4 ,MATCH@ .Address of matched table entry

WTL "MVSCOMEX(I): -Command analysed by exit'

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

0I DOFLAG,YES .Yes, it must be processed by us
CMNDCOMX PR .Return to our caller

*hkhkhkkkkkhkhhhkhkhkhkhkkkkhkhhhhkhkhkhkhkkhkhkhkhhhhhhkhkkkhkhkhhhhhhhkhkkhkhkhkhkhhhhhhkhkkkkhkhhhhkhhhkkkxk

* This routine sets up the ESTAE and calls the correct EP

*hkhkhkkkkhkkhkkhhhkhkhkhkhkkkhkkhkhkhhhkhkhkhkhkkhkkhkhkhhhhhkhkhkhkkhkhkhkhhhhhhkhkkkhkhkhkhhhkhhhkhkkkkhkhhhhkhrhhkkkxk

PROCCMND BAKR R14,0

LA R14,PROCCMNX .Start from here after an abend
STM R1,R14,RUBLSRGS .Preserve all our registers
MVC RUBLIST,=B'@11111111111111@" Regs 1-14 to be reloaded
LA R1,ESTAESTR .Point to ESTAE storage area
MVC @(ESTAELL,R1),ESTAEMAC
ST R13,ESTAEPRM .R13 required by recovery routine
LA R2,ESTAEPRM .Pass R13 contents as a parameter
ESTAE MF=(E,(1)),PARAM=((2))
L R4 ,MATCH@ .Address of matching cmd tble ent
ICM R15,15,COMMEP .Entry point of routine to call
BASR R14,R15 .Call command processing routine
CLC RETCODE,=F'@" .Was the processing successful?
BNZ PROCCMNX .No, pass the command to MVS
XR R15,R15
IC R15,COMMFLAG .What MVS should do when we're done
CH R15,=AL2(TODECIDE) .Dynamic decision on what to do?
BNE PROCCMNX .No, do as specified in table
L R15,DECISION .Pick up our decision

PROCCMNX ST R15,RETCODE .This is what we pass back to MVS
LA R1,ESTAESTR .Point to ESTAE storage area
MVC @(ESTAEL2,R1),ESTAEDEL
ESTAE MF=(E, (1)) .Remove ESTAE
PR .Return to our caller

kkhkkkhkkkkhkkhkhkhkkkkhkkhkhkhkkkhkhkhkhkhkkkhkhkhkhkhkkhkhkhhkhhkhkhkhkhkhhkhkhkhkhhkkhkhkhhhkhkhkhkhhhkkhkhkkhrhkhkkikx

* EXAMPLE: This routine processes the "D TS,L" command
*hkhkhkhhkhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhkhhhkhkhkhkhhkhhhkkhkhkhkhkhkkhkhhhhhhhkkk)k)k)kk*x*%x%
ROUTINEA BAKR R14,0

WTL ""D TS,L"™ Command detected’
* Add code in here to do processing for "D TS,L"...

ST R15,RetCode

PR
kkhkkhkkhkkkkhhkkhkkhkhkkhhkhkkhhkkhkhkhkkhhkhkkhhkkhkhhkkhhkkhkkhhkkhkhhkkhhkhkkhhkkhhhkkhhkhkhhkkhkhhkkhhkkhkhhkkhhhkkhhkhkhhkkhhikk
* EXAMPLE: This routine processes the "CANCEL" command

khkhkhkkkkhkkhkkhhhkhkhkhkhkhkkhkkhkhkhhhhhkhkhkhkkhkkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkhkkhkhkhkhhhhhkhkhkkkkhkhkhhhhxkx

ROUTINEB BAKR R14,@
WTL ""CANCEL" Command detected’
ST R15,RetCode
Add code in here to do processing for "CANCEL"...
Set field DECISION depending on whether the command is acceptable
* and should also be passed to MVS.

PR
*hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkkhdhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhhkkhdhhkhdhhhkhhkhkhhkhkhhhkhhhkhkhkdx
* This routine handles the "T NOCMD=' command

khkhkhkkkkkhkhhhhkhkhkhkhkkkkhkhhhhhkhhkhkkkhkhkhhhhhkhhkhkkhkhkdkhhhhhhhkhkkkhkdkdkhhhhhhhkkkkkthhhhxkx

TNOCMD EQU =
BAKR R14,0 .Preserve our registers
LA R2,CMDWAREA .Point to (compressed) command

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

ST R2,CALLPRM .Plug the address into parmarea

LA R1,CALLPRM .Address of call parms

ST R1,CALLPRM@ .Plug into pointer

LA R1,CALLPRM@ .Point to parameter area

LINK EP=TELNOCMD .Call the routine to do the work
TNOCMDX ST R15,RETCODE

PR
hkhkhkhkhkhhkhhhhh A A h A hhhh A dhh A A h A A A Ak hhhhdhhhk A h Ak hhkhkhhkhhhhkkhhkhkhhhhhkkkk)kk)k%%x%
* Constants follow
*,hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkkhdhhkhkkhhkhkkhhkhkkhhkhkkhhkhkhhkhkhhhkhhhkhdhhhkhhkhkhhkhkhhkhkhhhkhhhkhkhhkikx
COMMTAB DS aF .Add new commands in here
hkhkhkhkhhhhhhhhdhhhdhhdhhhhdhhhdhhhhhhhhhkdkhdhkhhhkhhdhhhhhkkhdhhkhkhhhhkhhhkkkkkkkx%x%
COMADESC DC AL2(L'VERBA) .Length of command text

DC AL4(ROUTINEA) .Address of processing routine

DC AL1(TOMVS) .Flag: pass command to MVS
VERBA DC c'DTS, L .Command text without blanks
k*hkhkhkhkhhhhhhhhhhhdhhdhdhdhhdhhdhdhdhdhdhdhdhdhdhdhdhdhdhhdhhhhhhdhhhhhhhhhhdhhhhkkkkkkk)kk*%x%
COMBDESC DC AL2(L'VERBB) .Length of command text

DC AL4(ROUTINEB) .Address of processing routine

DC AL1(TODECIDE) .Flag: do not pass command to MVS
VERBB DC C'CANCEL" .Command text without blanks
*hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkhhhkhhhkhdhhkhkhhhdhhkhhkhkhhkhkhhhkhkhkrkxkik
COMCDESC DC AL2(L'VERBC) .Length of command text

DC AL4(TNOCMD) .Address of processing routine

DC AL1(NOMVS) .Flag: do not pass command to MVS
VERBC DC C'TNOCMD=" .Command text without blanks

khkhkhkkkkhkkhkhhhkhkhkhkhkkkhkkhkhkhhhhkhkhkhkhkkkhkhkhhhhkhhkhkhkkkhkhkhhhkhkhhkhkhkkhkhkhkhhhhkhhkhkkkkhkhkhhhhxkx

* If the called entry point for a specific command returns a non-zero
return code, the command is always also passed to MVS, as we failed.
If the entry point returns a zero return code (in R15), a decision
as to what should be done is based on the third field for the entry
in the table, which must always be one of the following.

"TODECIDE", means that whether to pass the command to MVS

or not is to be decided. A further field called "Decision" is then

* scanned. If this field contains the value 0@, the command is also
ENDOFTAB EQU *

X X X o X X

TOMVS EQU X'00’ .Pass the command to MVS as well
NOMVS EQU X'g4° .Do not pass the command to MVS
TODECIDE EQU X'g1’ .Decision to be made on passing

kkhkkhkhkkkkhkkhkhkhkhkkhkkhkkhkhkhkkkhkhkhkhkhkkhkhhkhkhhkhkhhkhkhhkhkhkhkhhkhkhkhkhhhkhkhhkhhhkkhkhhkhhhkhkhkhhhkhkkhkixk

COMMTABL EQU *-COMMTAB

SPACES DC CL(L'CMDWAREA)" '

ESTAEMAC ESTAE RECOVER,PARAM=ESTAEMAC,ASYNCH=NO,MF=L
ESTAEL1 EQU *-ESTAEMAC

ESTAEDEL ESTAE @,MF=L

ESTAEL2 EQU *-ESTAEDEL

SUBSYSN DC CL4'NCMD' .Name of subsystem with address of
LTORG

dhkhkhkhhkh kA hhhhhhdhhhhhdhdhhhhhkhhhhkhkhhkhkhhhkhkhhkhkhkhkhhhkhkhkhkhhkhkkhkhkhkhhkkkk)k)k)k)k)k)k*x*%x%

* This routine is the ESTAE error recovery routine

E R P R R R P R b P R b b b b b b b b b b P b b b b b b b b
DS aF

RECOVER EQU *

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

NOTAVAIL

SDWAVAIL

SDUMPMAC

SDUMPLEN

LR
DROP
USING
CH
BNE
XR

BR
EQU
USING
LR

L

L

ST

ST
MVC
LA
SDUMP
L

LR

LA
SETRP
L

BR

R12,R15

R12
RECOVER,R12
RO,=H"'12'
SDWAVAIL
R15,R15

R14

*

SDWA,R1
R3,R1

R1, SDWAPARM
R13,0(1)
R@,SDWASTOR
R14,ESTAERI4

.Load our current address

.Make sure SDWAREA is available

.SDWA 1is not available
.Go Back to MVS (percolate)
.Remember SDWA address

.Preserve R1

.Address of passed parm
.Reload pointer to workarea
.Pointer to SDWA

.Qur return address

SDMPAREA(SDUMPLEN) , SDUMPMAC

R1,SDMPAREA
MF=(E, (1))

R2,RUBLSRGS+52

R1,R3
R3,RUBLIST

.Retry address
.Restore register 1

RC=4,RETADDR=(2),RETREGS=YES,RUB=(3),DUMP=YES

R14,ESTAER14
R14

.Reload our return address
.Back to MVS

SDUMPX HDR="MVSCOMEX Command exit routine ABEND',

EQU
LTORG

SDATA=(RGN, SUM) ,MF=L

*-SDUMPMAC

hhkhkhkkkkkhkhhhkhkhkhkhkhkkkhkhhhhhkhhkhkhkkhkhkdkhhhhhhkhkhkkhkhkhhhhhhhkhkhkhkdkdhhhhkhhkhkkkkkhhhhhxx

DSECTs follow

*hkhkhkkkkkhkhkhhkhkhkhkhkhkkhkhkhkhhhhhkhkhkhkkkhkhkhhhhhhkhkhkkhkhkhkhhhhhhkhkhkkhkhkhkhhhhhhkhkkkkhkhkhhhhxkx

*

.General savearea

.Command moved in here

.Length of (compressed) command
.SUBTASK's TCB

.SDUMP macro area

.Address of NCMD subsystem
.(dynamic) ret code to pass to MVS
.Length of command without blanks
.Address of matching cmdtble entry

.Local registers used by ESTAE
.Parameter passed to ESTAE routine
.Address of passed SDWA
.Back-to-MVS address for ESTAE
.ESTAE macro area

* The folowing two fields are passed to the called subroutine.

STORAREA DSECT
SAVEAREA DS 18F
CMDWAREA DS CL20@
CMDTXTLN DS H
RETCODE DS F
SDMPAREA DS CL(SDUMPLEN)
BLOCKTB@ DS F
DECISION DS F
CMDLENG DS F
MATCH@ DS F
RUBSTART DS OF
DS H
RUBLIST DS H
RUBLSRGS DS 15F
ESTAEPRM DS F
SDWASTOR DS F
ESTAER14 DS F
ESTAESTR DS CLCESTAEL1)
CALLPRM@ DS F
CMDX@ DS F

*

.Address of routine specific parms
.Address of CMDX as received

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

MVSCOM@ DS F .Address (in MVS) of command text

DOFLAG DS C .Do we process command?
YES EQU X'8@'
NO EQU X'@09°'

CALLPRM DS oF
STORSIZE EQU *-STORAREA

COMMDSCT DSECT .Command table DSECT
COMMLENG DS CL2 .Length of text to scan for
COMMEP DS AL4 ."entrypoint™ to branch to
COMMFLAG DS C .MVS to process/ ignore instruction
COMMHDR EQU *-COMMDSCT .Length of fixed part
COMMTEXT DS @ac .Variable length text to scan for
RO EQU @
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10@ EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
TIEZVX10@1
IHASDWA
CVT DSECT=YES
IEFJESCT
IEFJSCVT
END
BLOCKCMD SOURCE

This routine blocks certain commands from being entered.

BLOCKCMD CSECT

BLOCKCMD AMODE 31

BLOCKCMD RMODE 24
BAKR R14,0 .Save caller's status
LR R12,R15
USING BLOCKCMD,12

*hkhkhkkkkkhkkhkhhkhkhkhkhkhkkhkkhkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkhkhkhkhhhhhhkhkkkkhkhkhhhhhhkhkkkkkhkhhhhxkx

* Main driver routine
*hkkhkkhkhkhkkhhkkhhkhkkhhkhkkhhkkhhkhkkhhhkkhhkkhhkhkkhhhkkhhkkhhkhkkhhhkhhkkhhhkkhhhhhkkhhhkkhhkhhhkhhhkkhhkhkhhkkhhxk
LOAD L R4,0(R1) .Ptr to compressed command text addr

L R4,0(R4) .Point to compressed command text

L R5,4(R1) .Ptr to command exit info area

USING CMDX,R5 .Addressability to command info

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

STORAGE

GOGETSFX

GOREADIT

GOGETSSI

GOGETCSA

EXITMSGS

CHEMPTY1

RETURN

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

LA
A

R3,STORSIZE
R3,BUFFSIZE

.Qur requirement
.Add length of the PARMLIB buffer

STORAGE OBTAIN,SP=229,LENGTH=(3),LOC=BELOW,KEY=8

LR
LA
XR
MVCL
USING
ST
DROP
LR
USING
MVC
MVC
MVC
L
DROP
USING
BAS
LTR
BNZ
CLC
BNE
B
BAS
LTR
BNZ
BAS
LTR
BNZ
BAS
LTR
BNZ
BAS
CLC
BNE
L

LA
WTO

B
™
BO
L
LA
WTO

EQU
L
LA
A
LR

R2,R1
R3,STORSIZE
R9,R9

R2,R8
STORAREA,R1
R13,SAVEAREA+4
R1

R13,R1
STORAREA,R13
CART,CMDXCART
FROMCNID,CMDXC41ID
FROMSYS,CMDXISYN
R5,CMDXCLIP
R5
CMDXCLIB,R5
R14,GETSUFIX
R15,R15
RETURN
SUFFIX,=C'NO’
GOREADIT
GOGETSSI
R14,READPMEM
R15,R15
RETURN
R14,GETSSI@
R15,R15
EXITMSGS
R14,GETCSA@
R15,R15
EXITMSGS
R14,COPYCRDS
SUFFIX,=C'NO’
CHEMPTY1

R8, FROMCNID
R9, FROMSYS
"BLOCKCMD(I):

.Point to getmained area

.Propagate binary zeroes

.Back chain

.Addressability to getmained area
.Pick up the CART

.Where the command originated (Id)
.Where the command originated (Sys)
.Get command buffer address

.Access the passed command buffer
.Locate the data set name in the text
.Did we get the suffix?

.No, get out
.Must we turn blocking off?
.No

.Go get SSI address

.Go read the PARMLIB member
.Did we get the suffix?

.No, get out

.Go get the subsystem address
.Did we get the address?

.No, get out

.Go get the CSA table address
.Did we get the address?

.No, get out

.Go copy cards into CSA table
.Did we turn blocking off?
.No

.Where command came from
.Where command came from

-Command blocking has been turned off', X

CONSID=(8),SYSNAME=(9),CART=CART,ROUTCDE=11

RETURN
EMPTY,YES
RETURN

R8, FROMCNID
R9, FROMSYS
"BLOCKCMD(I):

.Is the PARMLIB member empty?
.Yes, get out

.Where command came from
.Where command came from

-Command blocking has been activated', X

CONSID=(8),SYSNAME=(9),CART=CART,ROUTCDE=11

*

R4,RETCODE
R3,STORSIZE
R3,BUFFSIZE
R2,R13

.Pick up return code

.Pick up return code

.Size of area to free

.Add Tength of the PARMLIB buffer
.Address of area to free

STORAGE RELEASE,LENGTH=(R3),ADDR=(R2),SP=229,KEY=8

23

LR R15,R4 .Copy return code

TOCALLER PR . .=>Caller
DS @D .ATign
EJECT

*hkhkhkkkkkhkhkhhkhkhkhkhkhkkkkhkhhhhhhkhkhkkhkhkdkhhhhhhkhkhkkhkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkkkkkkhhhhxkx

* This routine Tocates the member suffix in the text
*,hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkhkhhkhkkhhkhkkhhkhkkhhkhkkhhhkhhhkhhhkhdhhkhdhhhdhhkhhkhkhhkhkhhhkhkhhkhkdkik
GETSUFIX BAKR R14,8

USING CMDXCLIP,CMDXCLIB .Map to command length and text

CLC CMDXCMDL,=H'9" .Length must be at least 9 bytes

BL INVLSNTX .Invalid syntax

CLI 9(R4),X'40" .Must have a blank in col 9

BNE INVLSNTX ...of deblanked command buffer

CLI 8(R4),X'4Q" .Must not have a blank in col 8

BE INVLSNTX ...of deblanked command buffer

CLI 7(R4),X'40" .Must not have a blank in col 7

BNE SYNTAXOK ...of deblanked command buffer
INVLSNTX L R8,FROMCNID .Where command came from

LA R9, FROMSYS .Where command came from

WTO "BLOCKCMD(E): -Invalid command syntax, must be "T NOCMD=X
XX',CONSID=(8),SYSNAME=(9),CART=CART

LA R15,8
ST R15,RETCODE .Set non-zero return code
B GETSUFXX .Get out
SYNTAXOK MVC MEMBER,=C'NOCMD' .First part of the
MVC SUFFIX,7(R4) .Pick up the suffix from cmd buffer
MVI LASTBYTE,X'4@" .Move a blank into the last byte
XR R15,R15 .Clear return code

GETSUFXX PR

*khkhkhkkkkkhkhhhkhkhkhkhkkkhkkhkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkkhkhkhhhkhhhkhkhkkhkhkhkhhhkhkhkhkhkkkkkkhhhhxkx

* This routine Tocates the member in the PARMLIB concatenation
dhkhkkhhkhkkhhkhkkhhkhkkhhkhkhkhkkhkhkhkkhhkhkkhhkhkkhhkhkkhhkhkkhhkhkhhkhkhhkkhkhhkhkhhkhkhhkdhkhhkdhkhhkkhhkkhhdkkhhdkkhkkkkx

READPMEM BAKR R14,0

NI EMPTY,NO .Make sure 'PARMLIB empty' flag off

LA R2 ,WORKBUFF .Where we want the member content

USING PRM_READ_BUFFER,R2 .Addressability to buffer

L R1,BUFFSIZE .Total size of the buffer

ST R1,PRM_READ_BUFF_SIZE

LA R1,IEFPRMLA .Point to the macro in storage

MVC IEFPRMLACIEFPRMLL), IEFMACRO

IEFPRMLB REQUEST=ALLOCATE,CALLERNAME=CALLER,READ=YES, X
READBUF=(R2),MEMNAME=MEMNAME ,MF=(E, (1)), X
ALLOCDDNAME=PARMDD@1,RETCODE=RETCODE,RSNCODE=RSNCODE

LTR R15,R15 .Was the member read in?

BZ FREEPARM .Yes, go free it

READERR L R8,FROMCNID .Where command came from

LA R9, FROMSYS .Where command came from

MVC ALOCWTOA(CALOCWTOL),ALOCWTOM

BAS R14,CODEPRNT .Make RC and REASON printable

MVC ALOCWTOA+72(4),PRTRC
MVC ALOCWTOA+87(4),PRTRSN
LA R1,ALOCWTOA

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

FREEPARM

CHKNUM

NOCARDS

FREEERR

READPMEX

WTO MF=(E,(1)),CONSID=(8),SYSNAME=(9),CART=CART
LA R15,8

ST R15,RETCODE .Set non-zero return code

B READPMEX .Get out

IEFPRMLB REQUEST=FREE,CALLERNAME=CALLER, X
DDNAME=PARMDD@1,RETCODE=RETCODE, RSNCODE=RSNCODE

LTR R15,R15 .Was the de-allocation successful?

BNZ FREEERR .No.

CLC WORKBUFF+4(4),=F'@' .Did we get an empty PARMLIB member?

BNE READPMEX .No

L R8, FROMCNID .Where command came from

LA R9, FROMSYS .Where command came from

WTO "BLOCKCMD(W): -No commands will be blocked as PARMLIB meX
mber is empty',CONSID=(8),SYSNAME=(9),CART=CART

0I EMPTY,YES .Se 'empty' flag

XR R15,R15 .Proceeding with empty table
ST R15,RETCODE .Set non-zero return code

B READPMEX .Get out

L R8, FROMCNID .Where command came from

LA R9, FROMSYS .Where command came from

MVC FREEWTOA(CFREEWTOL), FREEWTOM

BAS R14,CODEPRNT .Make RC and REASON printable

MVC FREEWTOA+58(4),PRTRC

MVC FREEWTOA+73(4),PRTRSN

LA R1,FREEWTOA

WTO MF=(E, (1)),CONSID=(8),SYSNAME=(9),CART=CART
LA R15,8

ST R15,RETCODE .Set non-zero return code
PR

*khkhkhkkkkkhkhhhkhkhkhkhkkkhkkhkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkkhkhkhhhkhhhkhkhkkhkhkhkhhhkhkhkhkhkkkkkkhhhhxkx

*

This routine returns the address of our subsystem.

KAhkhkhkkkkhkhkhhhkhkhkhkhkkkhkdkhhhhhkhhkhkdhdkhkhhhhhhhkhkhdhkdkhhhhhkhhkhkhdkhkhhhhhrhhkdkdkdkdkihhhxx

GETSSI@

CHKEMPT1

ADSUBSYS

BAKR R14,0

BAS R14,SEEKSSI .Get our subsystem's address

LTR R15,R15 .Did we get the subsystem name?
BZ GETSSI@X .Yes, get out

CLC SUFFIX,=C'NO"' .Are we turning blocking off?
BNE CHKEMPT1 .No, go see if member 1is empty
LA R15,8 .Yes, we don't need the SSI address
B GETSSI@X .Get out

™ EMPTY,YES .Is PARMLIB member empty anyway?
BNO ADSUBSYS .No, there are entries in it

LA R15,8 .Stop further processing?

ST R15,RETCODE .PTug the return code

B GETSSI@X .Get out

EQU * .First time, add subsystem

MVC TEFSSIACIEFSSIL),IEFSSIM
LA R1,IEFSSIA

IEFSST REQUEST=ADD,SUBNAME=SUBSYSN, X
RETCODE=RETCODE,RSNCODE=RSNCODE ,MF=(E, (1))

LTR R15,R15 .Did we get the subsystem name?

BNZ SSTERROR .No, error. Display and get out

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

BAS R14,SEEKSSI .Get our subsystem's address

LTR R15,R15 .Did we get it?
BZ GETSSI@X .Yes, we have the subsystem
ABEND @@@1,DUMP .Should never occur
SSTERROR BAS R14,CODEPRNT .No, go make RC & REASON printable
L R8, FROMCNID .Where command came from
LA R9, FROMSYS .Where command came from

MVC SUBSWTOA(SUBSWTOL),SUBSWTOM
MVC SUBSWTOA+42(4),PRTRC
MVC SUBSWTOA+57(4),PRTRSN
LA R1,SUBSWTOA
WTO MF=(E,(1)),CONSID=(8),SYSNAME=(9),CART=CART
LA R15,8
GETSSI@X PR

KAhkhkhkkkkhkhkhhhkhkhkhkhkkkhkhkhdhhhkhhkhkkhdkdkdhhhhhhkhkhdhkdkhhhhhkhhhdhdkdkhhhhhrhhkdxdkdkhihhhxx

* This routine gets the address of our subsystem entry
khkkhkhkkkhkhkhkkhhkhkkhhhkkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhdhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkikhdiik

SEEKSSI BAKR R14,0

L R4,16 .Start of CVT
USING CVT,R4 .Establish addressability
L R4 ,CVTJESCT .Get JESCT address
USING JESCT,R4 .Establish addressability
L R4,JESSSCT .Get SSCT chain address
USING SSCT,R4 .Set addressability
SSCTLOOP EQU * .Look for our SSCVT
LTR R4,R4 .End of chain?
BZ NOSSCT .Yes - not found
CLC SSCTSNAM, SUBSYSN .OQur SSCVT?
BE FOUNDSSI .Got it
L R4,SSCTSCTA .Point to next SSCVT entry
B SSCTLOOP .Redo the Toop
NOSSCT LA R15,8 .Our subsystem not found
B SEEKSSIX .Get out
FOUNDSSI ST R4,0URSSI@ .Keep the address
XR R15,R15 .Clear the return code

SEEKSSIX PR

*khkhkhkkkkkhkkhkhhkhkhkhkhkhkkkhkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkkhkhkhhhkhkhhkhkkkhkhkhkhhhkhkhhkhkkkkhkhkhhhhxkx

* This routine gets the address of the CSA table
*hkhkhkhkhhhhhhhhhhhhhdhhdhhdhdhdhdhdhdhdhdhdhdhdhdhdhdhhdhdhhhhhhhhhhhhhkhhhdhhhhkhkkkkkkk*kx%k
GETCSA@ BAKR R14,0 .Get address of CSA table
L R4,0URSSI@ .Get address of subsystem entry
USING SSCT,R4 .Addressability to our SSI
CLC SSCTSUSE,=F'@" .Has the CSA table been obtained?
BE OBTAIN .No, go do getmain
XR R15,R15 .Clear return code
MVC CSATAB@, SSCTSUSE .Plug the address
B GETCSA@X .Get out
OBTAIN EQU *
CLC SUFFIX,=C'NO"' .Are we turning blocking off?
BNE CHKEMPT2 .No
LA R15,8 .We don't need the CSA address
B GETCSA@X .Get out
CHKEMPT2 TM EMPTY,YES .Is the PARMLIB member anyway empty?

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PREPCSA

GETCSA@X

BNO PREPCSA .No, we will have to obtain CSA

LA R15,8 .Yes, do not GETMAIN CSA

ST R15,RETCODE .PTug the return code

B GETCSA@X .Get out

L R3,BUFFSIZE .Length of storage to obtain

LA R3,4(R3) .Add 4 bytes (first word= length)

SL R3,=AL4(PRM_RECORD_TEXT-PRM_READ_HEADER)
STORAGE OBTAIN,SP=228,LENGTH=(3),LO0C=ANY,KEY=0

LTR R15,R15 .Did we get the storage?

BNZ GETCSA@X .No, get out

ST R1,SSCTSUSE .Plug the address into subsystem
ST R1,CSATAB@ .Plug the address

MVC 4(13,R1),=C'Uninitialized’

ST R3,0(R1) .Put the Tength in the front

PR .Return to our caller

khhkhkhkkkkkhkhhhhkhkhkhkhkkkhkhhhhhkhhkhkhkkkhkdkhhhhhhkhkkhkhkhkhhhhhhhkhkkkhkdkdhhhhkhhkhkkkkkhkihhhxx

*

% X X X % %

This routine removes all blanks from the PARMLIB cards and
copies them into the CSA table. (The size of the CSA table

is the same as that of the work bufer the data was read into.
the fact that the IEFPRMLB macro succeeded reading the data
into the buffer means that the data will also fit into the

CSA table. We cannot have a changing CSA table size as storage
allocated in CSA can only be freed by the task that allocated
it in the first place.)

*khkhkhkkkkkhkkhhhkhkhkhkhkhkkkhkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkhkhkhkhhhkhkhhkhkhkkhkhkhkhhhhkhhkhkkkkhkhkhhhhxkx

COPYCRDS

CHKEMPT3

SETCNTR1

SETCNTR2

CARDLOOP

MOVELOOQP

BAKR R14,0

CLC SUFFIX,=C'NO"' .Are we turning blocking off?
BNE CHKEMPT3 .No

XR R1,R1 .Yes, set # entries in tab to ©
L R2,CSATAB@

ST R1,0(R2) .Make card counter @

LA R15,8 .Yes, set RC to "don't proceed”
B COPYCRDX .Get out

™ EMPTY,YES .Is the PARMLIB member empty?
BNO SETCNTR2 .No, go move the cards into the tbl
XR R1,R1

L R2,CSATAB@

ST R1,0(R2) .Make card counter @

B COPYCRDX .Get out

LA R2 ,WORKBUFF .Where the PARMLIB cards are
ICM R4,15,PRM_RECORDS_READ_COUNT

L R5,CSATAB@ .Address of CSA table

ST R4,0(R5) .Number of cards in first word
LA R5,4(R5) .Where the cards will be moved

LA R2,PRM_RECORD_TEXT .Start of the first record
LR R3,R5

MVC @(80,R3),=80X"40" .Move spaces into the card
LA R6,80 .Number of bytes in a card
EQU *

CLI @(R2),X"40" .Blank in the card?

BE BUMPUP .Yes, don't move this byte
MVC @(1,R3),8(R2) .Move the byte

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

LA R3,1(R3) .Bump up "to" pointer

BUMPUP LA R2,1(R2) .Bump up "from"™ pointer
BCT R6,MOVELOOP .Move the entire card
LA R5,8@(R5) .Where next card should start
BCT R4,CARDLOOP .Do for each card

COPYCRDX PR

*hkhkhkkkkkhkkhhhhkhkhkhkkkhkkhkhkhkhhhkhhkhkhkkhkkhkkhkhhhhhhhkhkkhkhkhkhhhhhhkhkhkhkkhkhkdkhhhhhkhkhkkkkhkhkhhhhxkx

* This routine makes the RC and reason printable
*hkkhkkhhkhkkhhkkhkhkhkkhhkhkkhhkkhhhkkhhkhkkhhkhhhkkhhkhkkhhdhhhkkhhhkhhdhhhkkhhhkhhkhhhkkhhhkkhhkhhhkkhhkhkhhkhhddkk
CODEPRNT BAKR R14,0

L R1,RETCODE

CvD R1,DOUBLE

UNPK DOUBLE(4),DOUBLE+5(3)

0I DOUBLE+3,X'F@"'

MVC PRTRC,DOUBLE

L R2,RSNCODE

STCM R2,3,DOUBLE

STCM R2,3,DOUBLE+2

NC DOUBLE(2),=X"'F@F@' .Turn off right half of bytes

NC DOUBLE+2(2),=X"'@F@F' Turn off left half of bytes

TR DOUBLE(2),LFTHALVE .Make left half printable

TR DOUBLE+2(2),RGTHALVE Make right half printable

MVC DOUBLE+4(1),DOUBLE+1 Swap bytes 2 and 3

MVC DOUBLE+1(1),DOUBLE+2

MVC DOUBLE+2(1),DOUBLE+4 RSN code now printable

MVC PRTRSN,DOUBLE

CLC RSNCODE+2(2),=X"@00A"' Output area too small?

BNE CODEPRNX .No, other error

L R8,FROMCNID .Where command came from

LA R9, FROMSYS .Where command came from

WTO "BLOCKCMD(E): -Too many commands in PARMLIB member. reduX
ce number of lines or assemble with larger table', X

CONSID=(8),SYSNAME=(9),CART=CART,ROUTCDE=11
CODEPRNX PR

khkhkhkkkkkhkhhhhkhkhkhkkkkhkhkhhhhhkhkhkhkkkhkdkhhhhhhkhkkhkhkhkhhhhhhhkhkkkkhkdhhhhhhkhkkkkkkhhhhxkx

* Constants follow
dhkhkkhkhkhkkhhkhkkhhkhkhhkhkhkhkkhkhkhkdhhkhkdhhkhkdhhkhkdhhkhkkhhkhkkhhkhkkhhkhkkhhkkhhhkkhhkdhhkkhhk)hhkkkhhkhkkhkhkkhkhkkk
BUFFSIZE DS aF

DC AL4(8003)

DS aF
PARMDD@1 DC C'PARMDD@1" .DD-NAME used by IEFPRMLB
CALLER DC C'COMMAND ' .Caller name used for IEFPRMLB

IEFMACRO IEFPRMLB MF=(L,IEFPRMLB)

IEFPRMLL EQU *-TEFMACRO

IEFSSIM TEFSSI MF=(L,IEFSSIWA)

IEFSSIL EQU *-TEFSSIM

ALOCWTOM WTO "BLOCKCMD(E): -Error during allocation/ reading of parmlX
ib member,RC=XXXX(DEC), RSN=xxxx',MF=L

ALOCWTOL EQU *-ALOCWTOM .Length of the message

FREEWTOM WTO "BLOCKCMD(E): -Error during free of PARMLIB member, RC=xX
xxX(DEC), RSN=xxxx',MF=L

FREEWTOL EQU *-FREEWTOM .Length of the message

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SUBSWTOM WTO "BLOCKCMD(E): -Error during IEFSSI, RC=xxxx(dec), RSN=xxX

SUBSWTOL
LFTHALVE

VALCHARS

RGTHALVE
SUBSYSN

xx',MF=L
EQU *-SUBSWTOM .Length of the message
DS @CL24@

DC X'F@',15X'@0@"' ,X'F1',15X'0@"' ,X"F2',15X'@@0"' ,X"F3"'

DC 15X'0@"' ,X"F4',15X'@@"' ,X'F5"',15X'@0@"' ,X'F6"',15X'00@"' ,X"F7"'
DC 15X'@@' ,X'C3",15X'0@" ,X"'C4',15X'@@"' ,X'C5",15X'@0"' ,X'C6"
DS @CL256

DC 80X'Q1',X'@0',10X'@1"' ,X'00"',16X'01",2X'00"

DC 13X'@1°',2X'00"

DC 68X'@1",9X'0@",7X'01",9X'00"' ,8X'01"

DC 8X'00',6X'01"',10X'00" ,6X'01"

DC X'FOF1F2F3FAF5F6F7F8F9C1C2C3C4C5C6"

DC C"'NCMD' .Name of our subsystem entry

LTORG

*khkkkhkkkkhkkhkhkhkhkkhkkhkkhkhkhkkkhkhhkhkhkkkhkhkhkhhkkhkhkhhkhhkhkhhkhkhhkhkhhkhhhkhkhhhhrkhkhkhhhkhkhkhkhhhkkxkx

*

DSECTS follow

khhkhkhkkkkkhkhhhhkhkhkhkhkkkhkhhhhhkhhkhkhkkkhkdhhhhhhkhkkhkhkhkhhhhhhhkhkkkkdkhhhhhhhkhkkkkkhihhhxx

STORAREA
SAVEAREA
PARMSTRT
FROMCNID
FROMSYS
RETCODE
RSNCODE
PRTRC
PRTRSN
OURSSI@
CSATAB@
MEMNAME
MEMBER
SUFFIX
LASTBYTE
EMPTY
DOUBLE
CART
ALOCWTOA
FREEWTOA
SUBSWTOA
TEFPRMLA
TEFSSIA
WORKBUFF
STORSIZE
RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

DSECT

DS 18F .General savearea

DS F .Start address of passed parms
DS CL4 .Console id command came from
DS CL8 .Name of system command came from
DS F .Return code

DS F .Reason code

DS F .Return code (printable)

DS F .Reason code (printable)

DS F .Address of our subsystem

DS F .Address of the CSA table

DS @ACL8

DS CL5 .This contains "NOCMD"

DS CL2 .Suffix of PARMLIB member to obtain
DS C .This will contain a blank

DS C .Flag to indicate PARMLIB empty
DS D .Double word work area

DS CcL8

DS CLCALOCWTOL) .Work area for WTO message

DS CL(FREEWTOL) .Work area for WTO message

DS CL(SUBSWTOL) .Work area for WTO message

DS CL(IEFPRMLL) .Work area for IEFPRMLB macro
DS CL(IEFSSIL) .Work area for IEFSSI macro
EQU * .Parmlib buffer area

EQU *-STORAREA .Length of area to allocate
EQU @

EQU 1

EQU 2

EQU 3

EQU 4

EQU 5

EQU 6

EQU 7

EQU 8

EQU 9

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

NO EQU X'00"'

YES EQU X'80"'
TIEZVX10@1 .DSECT for command exit fields
IEFZB4D@
IEFZB4D2

IEFZPMAP PRM_READ_BUFFER=YES
CvT DSECT=YES

IEFJESCT

IEFJSCVT

IEFJSRC

IEFJSQRY

END

Gerty Brits
Minalore Consulting (India) © Xephon 1999

0S/390 Unix Assembler callable services

With the introduction of OpenEdition, or OS390 Unix System
Servicesasitisnow called, IBM hasprovided arich and varied set of
program callableservicesthat areavail abletoboth A ssembl er language
and TSO/E REX X programmers. The main objective of thisarticleis
to introduce the reader to the OS/390 Unix callable services that are
availableto Assembler language programsand to also makereference
to REXX callable services where applicable.

Thefirst section of thisarticle providesan overview of OS390 Unix
process management, which | have found to be an important learning
stage before attempting to write Unix-style Assembler programs or
REXX EXECs.

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PROCESS MANAGEMENT

In OS/390 Unix, achild process is created when the parent process
issues a fork service call. The creating process is called a parent
process and the newly created process is called a child process. A
parent process can have many child processes, the number of which
is controlled by the MAXPROCUSER statement in the BPXPRMxx
PARMLIB member. Each processis given aunique identifier called
the Process ID (PID). Each process also knows the ID of its parent
through the Parent Process ID (PPID). All processes are related to
each other through the PIDs and the PPIDs. The originator of all
processesiscalled the INIT process (PID = 1). In addition to having
aPID, each process belongsto a process group. A processgroup isa
collection of one or more processes. Each process group hasaunique
group ID. Process identifiers are classified as follows:

* PID —aprocess ID. A unique identifier assigned to a process
whileit runs.

» PGID —each processin aprocess group shares a process group
ID (PGID), whichisthesameasthe PID of thefirst processinthe
process group.

« PPID — aprocess that creates a new process is called a parent
process.

Process management can be broken down into the following areas:

. Processes

e Dubbing

o Threads

* Interprocess communication
e« Sgndls.

A PROCESS

A processexistsinan MV S address space and isidentified by aTCB
and related control blocks. In addition to the TCB, the OS/390 Unix
kernel address space maintains a number of control blocks that
represent a process. The following BPXPRMxx PARMLIB member
statements control OS/390 Unix processes:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

« MAXPROCSY S(nnnnn) — specifies the maximum number of
OS/390 Unix processes that the system allows.

e MAXPROCUSER(nNnnn) — specifiesthe maximum number of
processes that a single OS/390 Unix user-id can have currently
active, regardless of how the processes were created.

To control processes, the following Assembler callable services are
available,

BPX1FRK (fork service)

BPX1FRK creates a new process. The fork service replicates the
current processinto achild process, which then runsin anew address
space. The new address space contains a single task (thread) and a
single RB (Request Block) structure. The fork service is supported
from programsin PSW key 8 only. An additional requirement isthat
thestorageprotectionkey valueinthe TCBPKFfield of theTCB must
be 8. All key 8 virtual storage is copied from the parent to the child
addressspace. Thechild processhasauniquePID that doesnot match
any activeprocessgroup ID. Thechild hasitsown copy of the parent’s
open directory stream. The fork service can be requested from either
an MV Sor kernel address space. Control isgivento the child process
at the instruction following the fork service cal and not at the
program’s main entry point. In most implementations, the parent
processwill continue and the child processwill passcontrol using the
EXEC servicetoachild-specificprogram. TheBPXPRMxx PARMLIB
member statement FORKCOPY (COW|COPY') specifies how user
storage is to be copied from the parent process to the child process
during afork system call.

BPX1SPN (spawn service)

BPX1SPN spawns aprocess. The spawn service startsanew process,
but thechild processisstarted withanother programintheHierarchical
File System (HFS). After the spawn service returns to the parent
process, the two processes continue as independent processes. The
main benefit of the spawn callable serviceisthat it can create a new
process in a separate address space or in the same address space,
depending on the setting of the environment variable
‘ BPX_SHARES=YESINO'. If anapplicationismulti-threaded, you

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

must use spawn instead of the fork callable service. There are some
exceptions where, despite setting*° BPX_SHAREAS=YES', anon-
local spawn (child process startsin another address space) isdone. A
non-local spawn isdonein any of the following cases:

 Theprogram that is spawned has the sticky bit on
o Theprogramthat isspawnedisaSETUID or SETGID program
» The address space has exhausted its private storage.

A new setting of ©° BPX_SHAREAS=MUST’ was added in OS/390
Version 2 Release 6. It allows the application to force alocal spawn
or no spawn at all. The new process, whichiscalled the child process,
inheritsthefollowing attributesfrom the parent process (processthat
calls spawn):

e Session membership.
* Real user-id.
 Red group-id.

* Supplementary group-ids.
o Priority.

« Regionsize.

o Timelimit.

* Accounting data.

* Working directory.

* Root directory.

* File creation mask.

e Signa mask.

o Security information, unlessthe’ BPX_USERID’ environment
variable specifies otherwise.

« TASKLIB STEPLIB or JOBLIB DD dataset allocations, unless
the STEPLIB environment variable specifies otherwise. This
causes the child’'s address space to have the same MV S program
search order as the calling process.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

e Accounting information.

« JOBNAME of the parent ispropagated to the child and appended
with a numeric value in the range 1-9, if the JOBNAME is 7
charactersorless. If theJOBNAMEis8characters, the JOBNAME
IS propagated asis.

The executable program to berun receives control with thefollowing
attributes:

* Problem program state
 PSWkey8

« AMODE=31

Primary ASC mode.

BPX1ATX (attach_exec) service

BPX1ATX attachan OS/390 Unix program. The' attach_exec’ service
attaches atask to run an OS/390 Unix executable programin anewly
created child process of the caller. The new processis created in the
same address space asthe caller, and is a subtask of the caller’s task.
The child process has a unique PID that does not match any active
process group ID. The child process has a parent process ID of the
processthat called attach _exec. Thechild processisterminated when
its parent terminates. The executable file receives control with the
following attributes:

* Problem program state
« TCB key of thecaller
« AMODE=31
 Primary ASC mode.

The equivalent function is provided by the BPX1SPN SPAWN
Servicewith' BPX_SHAREAS=YES'.The OMV S command uses
the attach_exec system call to run the shell in the TSO/E address
space.

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BPX1ATM (attach_execmvs) service

BPX1ATM ATTACHes an MVS program. The attach_exec MV S
service creates a new child process in the same address space and
passes control to anew programinthenormal MV Ssearch order (job
pack queue, STEPLIB, LPALIB, LINKLIB). Thenew processthat is
created is run as a subtask in the address space.

BPX1EXC (EXEC) service

BPX1EXC run a program. The EXEC service does not start a new
process, but replacesthe program in the current process with another
program asindicated onthe EXEC call. A successful EXEC call will
never return control to thecalling program, but control ispassedtothe
main entry point of the new program that is specified on the EXEC
call. The executable program receives control with the following
attributes:

* Problem program state
 PSWkey8

« AMODE=31

* Primary ASC mode.

The new process inherits the following attributes from the calling
Process:

« PID

s PPID

 Thetimeleft until an alarm signal is generated
» File mode creation mask

* Process signal mask

 Pending signals

e Time accounting information.

BPX1EXM (execmvs) service

BPX1EXM runanMV Sprogram. Theexecmvsservicerunsan MV S
executable program that isin the LPA or LNKLST concatenation. If

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

it isinvoked from an address space that contains multiple processes,
the program can come from a STEPLIB. The call can invoke both
unauthorized and authorized programs:

» Unauthorized programs receive control in problem program
state, with PSW key 8.

* Authorized programs receive control in problem program state,
with PSW key 8 and APF authorization.

Additional Assembler process callable services
The following additional Assembler callable services are available:

o chpriority (BPX1CHP) — change the scheduling priority
of a process

o getpid (BPX1GPI) — et the process ID

o getppid (BPX1GPP) — et the parent process ID

* getpgid (BPX1GEP) — get the process group ID

o getpgrp (BPX1GPG) — et the process group ID

o getpriority (BPX1GPY) — get the scheduling priority of a
process

 nice (BPXINIC) — changethenicevalue of a
process

o setpgid (BPX1SPG) — setaprocessgroup ID for job
control

o setpriority (BPX1SPY) — setthe scheduling priority of a
process

« pid _affinity (BPX1PAF) — addor deleteanentryina
process's affinity list.

REXX PROCESS MANAGEMENT

There is no FORK or EXEC SYSCALL commands available in
REXX. Instead IBM recommend using SPAWN. The following
REXX process management calls are available:

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Spawn

Spawn invokes the spawn callable service to create a new process,
called the child process. The program to be run is executed from the
HFS. The child process has a unique PID that does not match any
active process group ID. The child parent ID is set to the PID of the
process that called spawn. To control whether the spawned child
process runsin aseparate address space or in the same address space,
you can specify the * BPX SHAREAS environment variable. If
‘ BPX_SHAREAS=NO' isspecified, thechild processto be created
will run in a separate address space from the parent process. If
‘ BPX_SHAREAS=YES isspecified, thechild processtobecreated
IS to run in the same address space as the parent. The following
attributes are inherited by the child process from the parent process:

» Session membership

* Real user-id

 Red group ID

o Supplementary group IDs

e Priority

« Working directory

* Root directory

* Filecreation mask

e The process group ID of the parent isinherited by the child
o Signassetignoredinthe parent are set to beignoredin the child
e Thesignal mask isinherited from the parent.

Example

The following example will spawn a new process. The new process
isspawnedtorun/bin/ls. Filedescriptorsgreater than or equal tothree
arenot availabletothenew process. fd.0tofd.2 areusedinremapping
thefiledescriptorsfromtheparent. Thecurrent environment ispassed
to the new process.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

address syscall
/* Initialize the file descriptor map. The file descriptor map is set so */
/* that the file descriptor for the new file being created is remapped */

/* to file descriptor 1 for the new process. File descriptors 0 and 2 */
will not be opened in the new process (-1). */
fd.g=-1

fd.2=-1

/* Create a new HFS file. The file descriptor is returned in RETVAL */
‘creat /tmp/remdirl 755’

fd.l=retval

/* Initialize the parameter stem. The first parameter is set to the */
pathname for the file being spawned. Additional parameters are */
/* are set in the format the program expects. The parameters specif */
/* Display extended attributes for regular files */
/* Display permissions, links, owner, group, size, time, name */
/* Enables the audit bits to be displayed */
/* The current environment is propagated (__environment) */
parm.1=‘/bin/1s’

parm.2=‘-1WE’

parm.3=‘/u/rems’

parm.0=3

/* spawn a new process */

‘spawn /bin/1s 3 fd. parm. __environment’ /* PID(process ID) is returned
in RETAIL */

pid=retval

spawnp

Spawnp invokesthe spawn call ableserviceand createsanew process,
called a child process. Spawnp functions identically to the spawn
function except that it usesthe PATH environment variableto resolve
relative filenames.

for kexecm

Forkexecminvokesthefork and execmvscallableservicestofork and
EXEC aprogram to be executed fromthe MVSLINKLIB, LPALIB,
or STEPLIB library. The call can invoke both authorized and
unauthorized MV S programs. Authorized programs receive control
in problem program state with PSW key 8 and APF authorization.
Unauthorized programs receive control in problem state, with PSW

key 8.

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Example

The following example invokes the MV'S program unixprog and
passes a parameter to the program. On input, the MV'S program
receives a single entry parameter list pointed to by Register 1. The
high order bit of the sole parameter entry is set to 1.

"forkexecm unixprog 'This is the parm info'

Dubbing

Thefirst attempt to useaOS/390 Unix servicesdubsthe MV Saddress
gpace as an OS/390 Unix process. From a Unix perspective, this
means OS/390 Unix assigns a PID (Process ID) to the process.
Address spaces created by fork are automatically dubbed when they
arecreated. Dubbing also addstheUID/GI D assignment to an address

space as follows:

Real UID

At process creation, thereal UID identifies the user who has created
the address space.

Effective UID

Each process has an effective UID. The effective UID is used to
determine owner access privileges of aprocess. Thisisnormally the
sameasthereal UID but can be changed when aprogram is executed
that has a special flag. A program with this special flag set issaid to
be a set-user-id program. This changes the effective UID of the
process to the UID of the owner of the program, to allow additional
permissions to the user while the set-user-id program is executed.

Real GID

At processcreation, thereal GID identifiesthe current connect group
of the user for which the process was created.

Effective GID

Each process has an effective GID. The effective GID is used to
determine group access privileges of aprocess. Thisis normally the
sameasthereal GID but can be changed when aprogram isexecuted
which hasaspecial flag. A program with thisspecial flagissaid to be

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

aset-group-id program. Thischangestheeffective GID of the process
totheGI D of theowner of theprogram, toallow additional permissions
to the user while the set-group-id program is executed. Undub isthe
inverse of dub. Normally atask (dubbed athread) is undubbed when
itends. Anaddressspace (dubbed aprocess) isundubbed whenthel ast
thread ends.

THE REXX SYSCALL ENVIRONMENT

IBM has provided two additional host command environments in
REXX asfollows:

« SYSCALL
« SH

TorunaREXX program with SY SCALL commands from TSO/E or
MV S batch, the syscalls (*ON’) function at the beginning of the
REXX program ensures that the address space is dubbed an OS/390
Unix process. ForaREX X programthat utilizesSY SCAL L commands
from the shell, SH is the initial host environment. The SY SCALL
environment isautomatically initialized aswell, sothereisno need to
beginthe REXX programwith asyscalls(* ON’) call. The SY SCALL
environment sets up the REXX pre-defined variables and blocks all
signals. The syscalls(* ON’) function sets the following return code
values:

O Successful completion.
4 Thesignal process mask was not set.

7 Theprocesswasdubbed, buttheSY SCALL environment wasnot
established.

8 The process could not be dubbed.

The following example shows how you can use the syscalls (‘ON’)
function at the beginning of a REXX program to establish the
SYSCALL environment and get the address space dubbed as an
0OS/390 Unix process:

If syscalls('ON') >3 Then Do
say 'Unable to establish the SYSCALL environment'
Return

End

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Or as an dternative:

/* REXX*/

address syscall ‘pipe p.’ /* Make a pipe */

‘1s>/dev/fd’ || p.2 /* run 1s command and redirect output to the
write end of the pipe */

address syscall ‘close’ p.2 .* close output side */

To end the REXX SYSCALL environment the syscalls (‘OFF)
functionendsthecurrent task and OS/390 Unix process. Thefollowing

rules apply:

o |f the REXX program was run from TSO/E or batch, thetask is
undubbed, but the REXX program continues running.

* If the REXX program was run from the shell or a program, the
REXX program is ended.

Threads

In POSIX, athread is an entity that allows multiple simultaneous
execution paths within a process. The OS/390 Unix design
implementation for creating a thread is to attach a TCB within a
process(addressspace). Threadsallow multipletaskstoruninasingle
process within an address space. It alows for concurrent and
asynchronous processing without the additional overhead associated
with creating a new address space. Each thread of a process can run
on an individual processor in a multi-processor environment. When
using Assembler as opposed to the C language, it easier to do an
ATTACH and let the tasks be dubbed as threads. Threads are created
asfollows:

 Thepthread create service
« Thefork or EXEC service
MostOS/390 Unix servicerequestsfromanundubbed MV Stask.

Thefirst routinethat isgiven control inthe new task when athread is
created withthepthread_create serviceisthepthread_create pthread-
creating task initialization routine. Each thread that is created with
pthread createrunsasaMV Ssubtask of theinitial pthread_creating
task (IPT). ThelPT isthetask that issued thefirst pthread create call
within the address space. Threads created by pthread create are

represented by a eight-character thread I1D. There are three thread
types.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

Heavy-weight threads

A heavy-weight thread hasbeen defined asatask that isattached when
needed. A heavy-weight threadiscreated by issuingthepthread create
system call and specifying PTATWEIGHT= PTATHEAVY in the
BPXY PTAT mapping macro. Whenaheavy-weight thread terminates,

thetask (TCB) that supportsitisterminatedandall EOT (end_of _task)
resource managers are called to clean up after it.

Medium-weight threads

Medium-weight threads reuse MV S tasks. A medium-weight thread
IS created by issuing the pthread create system call and specifying
PTATWEIGHT=PTATMEDIUM intheBPXY PTAT mapping macro.

When a medium-weight thread is created, it is dispatched using an
MVS task that is maintained in a pool. When a medium-thread
terminates using pthread exit, the MV S task is recycled in the pool
without goingthroughtheMV SEOT (end of task) resourcemanagers.
0OS/390 Unix reuses the task. An example of an OS/390 Unix
application that uses medium-weight threading isthe OS/390 I nternet
Connection Server.

Light-weight threads

Light-weight threads have not yet been implemented in LE/390 and
0OS/390 Unix. Thread manipulation is available using the following
0OS/390 Unix Assembler callable services:

o pthread_create (BPX1PTC) — create a thread

o pthread cancel (BPX1PTB) — cancel athread

o pthread detach BPX1PTD) — detach a thread

o pthread _exit and get (BPX1PTX) —exitand GET anew thread
e pthread_join (BPX1PTJ) —wait on athread

o pthread kill (BPX1PTK) —send asignal to athread

» pthread_quiesce (BPX1PTQ) — quiesce threads in a process

* pthread_self (BPX1PTS) —query the thread ID

o pthread security np (BPX1TLS) — create/delete thread-level
security environment for callers thread. An installation has the

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

followingtwowaysof allowingan applicationto usethisservice:

— Define the BPX.SERVER FACILITY class profile. For an
application to access this service, it must be given read
access to this profile.

— Assign the user-id a UID of O so that it operates as a
SUperuser.

o pthread setintr (BPX1PSl) — examine and change the interrupt
state

o pthread_setintrtype (BPX1PST) — examine and change the
interrupttype

o pthread tag np (BPX1PTT) — set, query, or both set and query
the callers thread tag data.

» pthread_testintr (BPX1PTI)—causeacancellation pointtooccur.

Please refer to the Unix System Services Programming: Assembler
Callable Services Reference for a detailed description of the thread
callable services.

OS/390 Unix threads are controlled by the following BPXPRMxx
PARMLIB member statements:

« MAXTHREADTA SKS(nnnnn)—specifiesthemaximumnumber
of MV Stasksthat a single process can have concurrently active
for pthread created threads.

« MAXTHREADS(nnnnn) — specifies the maximum number of
pthread created threads, including running, queued, and exited
but undetached, that a single process can have concurrently
active.

Signals

In OS/390 Unix applications, the basis for error handling is the
generation, delivery, and handling of signals. Each process has a
signal mask that defines the set of signals currently blocked from
delivery and that isinherited by achild fromits parent. Applications
can be coded to generate and send signal s, and to handle and respond
to signals delivered to it. During the time between the generation of
a signal and the delivery of a signal (when the actual signa is

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

performed), thesignal issaid to be pending. Itisvalid for the process
toblock thesignal. If asignal that isblocked isgenerated for aprocess
and the action for that signal iseither the default action or to catch the
signal, the signal remains pending for the process until the process
either unblocks the signal or changes the action to ignore the signal.

Thesignal mask, which ispassed as a parameter using the Assembl er
callableservices, isstructured asa64-bit mask (8 bytes) of signalsthat
are to be blocked during execution of the signal-catching function.
The leftmost bit represents signal number 1, and the rightmost bit
representssignal number 64. Bitsthat aresetto 1 represent signal sthat
areblocked. IntheREX X callableservices, thesignal mask isdefined
asastring of 64 characterswith valuesO or 1, representing the 64 bits
in asignal mask.

Example
Re-sets the action for signals 5-64 to their default state:

X'@FFFFFFFFFFFFFFF
Ignore signals 1-4
X' FRR0000000000000 "

Thefollowing OS/390 Unix SIGNAL callable servicesare available
for the Assembler language programmer.

BPX1SI A (sigaction service)

BPX1SIA examinesor changesasignal action. Thesigaction service
examines, changes or both examines and changes the action that is
associated with a specific signal for all threads in the process.

BPX1SA2 (_sigactionset service)

BPX1SA2 examines or changes a set of signal actions. The
_ sigactionset serviceexamines, changesor both examinesand changes
the actions that are associated with a set of signals.

BPX1SIP (sigpending service)

BPX1SIP examines pending signals. The sigpending service returns
theunion of signal sthat arepending onthethread and theset of signals

that are pending on the process.

44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BPX1SIP (sigprocmask service)

BPX1SIP examines or changes a process's signal mask. The
sigprocmask serviceexamines, changesor bothexaminesand changes
the actions that are associated with a set of signals.

BPX1SSU (sigsuspend service)

BPX1SSU changes the signal mask and suspends the thread until a
signal isdelivered. The sigsuspend servicereplacesathread’ scurrent
signal mask with a new signal mask. It then suspends the caller’s
thread until delivery of a signal whose action is either to process a
signal-catching service or to end the thread.

BPX1SWT (sigwait service)

BPX1SWT waits for a signal. The sigwait service waits for an
asynchronoussignal. If asignal that isspecifiedinthesignal setissent
to the invoker of sigwait, the value of that signal is returned to the

invoker and the sigwait service ends. The following signals are
supported:

« SIGHUP (1) Hang-up detected on controlling terminal

o SIGINT (2) Interactive attention

« SIGABRT (3) Abnormal termination

e SIGILL (4) lllegal or invalid hardware instruction

« SIGPOLL (5 Pollableevent

« SIGURG (6) Highbandwidth datais available at a socket
e SIGSTOP (7) Stop executing

« SIGFPE (8) Erroneousarithmetic operation (hardware and
software)

e SIGKILL (9) Anunconditional terminating signal
« SIGBUS (10)Buserror

« SIGSEGV (11)Invalid accessto memory (hardware and
software)

e SIGSYS (12)Bad system call

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 45

« SIGPIPE (13)Write on apipe with no readers

« SIGALRM (14) Asynchronous time-out signal generated as a
result of an alarm()

e SIGTERM (15) Termination

« SIGUSR1 (16)Reserved as an application-defined signal 1
(Software only)

« SIGUSR2 (17)Reserved as an application-defined signal 2
(Software only)

« SIGABND (18)Abend

« SIGCONT (19)Continueif stopped

e SIGCHLD (20)Child processterminated or stopped

« SIGTTIN (21)A background processis attempting aread
e SIGTTOU (22)A background processis attempting awrite
« SIGIO (23) Completion of input or output

o SIGQUIT (24)Interactive termination

o SIGTSTP (25)Interactive stop

« SIGTRAP (26)Trap used by ptrace call

« SIGIOERR (27)1/0 error. Serious software error such asa
system read or write.

« SIGWINCH (28)Change size of window

« SIGXCPU (29)CPU time limit exceeded
o SIGXFSZ (30)Filesizelimit exceeded

« SIGVTALARM (31)Virtua timer expired
« SIGPROF (32)Profiling timer expired

« SIGDCE (38)Exclusiveuseby DCE.

For afull description of signals that are available please refer to the
mapping macro BPXYSGH — Sgnal Constants in the Unix System
Services Programming: Assembler Callable Services Reference.

46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The signals SIGSTOP and SIGKILL cannot be blocked or ignored,
they are delivered to the program no matter what the signal mask
specifies. Please notethat the use of the system linkage stack with PC
and BAKR instructions prevents signals from being delivered.

REXX SIGNAL SERVICES
The following REXX signal services are available:

Sigaction—thisinvokesthesigaction callable serviceto examine
or change, or both, the action associated with aspecific signal for
all the threads in the process.

Sigpending —this invokes the sigpending callable service to
return theunion of the set of signal sthat are pending on thethread
and the set of signals pending on the process. Pending signals at
theprocesslevel aremovedtothethreadthat calledthesigpending
callable service.

Sigprocmask — this invokes the sigprocmask callable service to
examine or change the calling thread's signalmask.

Sigsuspend — this invokes the sigsuspend callable service to
replace athread’s current signal mask with anew signal; then it
suspends the caller’s thread until delivery of a signal whose
action is either to process a signal-catching service or to end the
thread.

Sleegp—thisinvokesthe sleep callable serviceto suspend running
of the calling thread (process) until the number of seconds has
elapsed (degp — number), or until a signal is delivered to the
calling thread to invoke a signal-catching function or to end the
thread.

Alarm — this invokes the alarm callable service to generate a
SIGALRM signal after the number of seconds specified has
elapsed (alarm — seconds)

Kill —thisinvokes the kill callable service to send asignal to a
process or process group (kill —pid —signal).

Pause — this invokes the pause callable service to suspend
execution of the calling thread until delivery of a signal that
either executes a signal-catching function or ends the thread.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 47

Establishing and deleting the signal interfaceroutinein REXX

The syscalls (‘SIGON’) function establishes the Signal Interface
Routine (SIR). For aREXX program runfromthe shell or aprogram,
the SIR is established by default. After the SIR has been established,
the sigaction syscall command can be issued to catch the signalsthat
areto beprocessed and thesigprocmask syscall command canbeused
to unblock the signals. The syscalls (SIGOFF') function deletes the
signal interface routine.

Thefollowing exampleenablesthe sigalarm signal. Sigactionisused
to set the action for the sigalrm to be caught. Sigprocmask is used to
unblock sigalrm. The alarm is set by using the alarm service and the
process waits for the completion of the child or the alarm:

/*REXX */

address syscall
/* Insert instructions to spawn a new process */

pid=retval

/* Child process ID from spawn */
call syscalls ('SIGON")

/* Establish the signal interface routine */

'sigaction' sigalrm sig_cat 0 'old_ handler old_flag'

/* catch a SIGALRM signal */

'sigprocmask' sig_unblock sigaddset(sigsetempty(),sigalrm) 'mask'’

/* use sigaddset and sigsetempty to create a signal */
/* mask with the sigalrm bit */
'alarm 20°'

/* set alarm to expire in 20 seconds */

'waitpid (pid) st. 0'

/* Wait for process termination or alarm */
alarm_ind=retval

/* Status */
/* Check if alarm went off */
call syscalls ('SIGOFF") /* Turn off signals */

/* Determine process status using stem variable st. returned from
waitpid */

Exit

/* A11 done */
sigsetempty: return copies(0,64)

sigaddset: return overlay(l,arg(l),arg(2))

48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

REXX statementsfor defining signal sets

REXX statements for defining signal sets are shown below. The C
function is shown first followed by the equivalent REXX statement
with its parameters and returns.

sigsetempty() sigsetempty: return copies(0,64)
Parameters. none
Returns. signal set

sigsfillset() sigfillset: return copies(1,64)
Parameters. none
Returns. signal set

sigsaddset() sigaddset: return overlay(1,arg(1),arg(2))
Parameters: signal set, signal number
Returns. signal set

sigsdel set() sigdelset: return overlay(0,arg(1),arg (2))
Parameters: signal set, signal number
Returns. signal set

sigismember() sigismember: return substr(arg(l1),arg(2),1)
Parameters: signal set, signal number
Returns. 0 (not member) or 1 (is member).

Refer to the REXX example in the section entitled Establishing and
Deleting the Sgnal Interface Routine in REXX, for the sigsetempty
and sigaddset REXX statements.

DETERMINING THE OS390 CALLABLE SERVICE LEVEL

The Aassembler language programmer can determine the OS/390
Unix release-level by interrogating the CV T featureflags. At thetime
of writing the following values are defined:

e CVTH6603 EQU X'04' HBB6603(0S390 Release 3)
functions are present

« CVTH6605 EQU X'40' HBB6605 (0S390 Release 5)
functions are present

« CVTH6606 EQU X'200 HBB6606 (0S390 Release 6)
functions are present.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 49

Assembler callable services syntax

Tocodeacallableservice, aCALL macrofollowed by thenameof the
callable service and parameter list isrequired. Therequired syntax is
shown below:

CALL Service_Name, (PARM_ 1,
PARM 2,

Return_value,
Return_code,
Reason_code)

CALL CALL istheAssembler macrothat passescontrol to
the specified program and passes a parameter list.

Service Name Call service module name in the form BPX 1xxX,
where: ‘xxx=" is athree-character symbol that is
unigue to the service. An example would be
BPX1CHM=chmod service.

PARM parameters PARM 1, PARM 2, etc, are placeholders for
variables that may be part of a service syntax.

Return value Indicate the successfailure of the callable service.

If thecallableservicefails, a-1isreturned. For most
successful callsto OS/390 Unix Services, thereturn
vaueisset to 0. The BPX1GGI and BPX1GGN
callable services return zeroes instead of -1 when
the servicefails. The fork (BPX1FRK) callable
service returns a positive return value to indicate
successful invocation.

Return_code Thereturn_code parameter is referred to as the
errno in the POSIX and X/OPEN C interface. The
Return Codeisreturned only if theservicefails. All
the Return codes and descriptions can be found in
0OS390 Unix System Services Messagesand codes.

Reason code The Reason_code parameter usually accompanies
the Return_code value when the callable service
fails. It further defines thereturn_code. All the
Reason codesand their descriptionscan befoundin
the OS390 Unix System Services Messages and
Codes.

50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Linkage conventions

The following linkage conventions are used when invoking the
Callable Services:

e R1 Parameter list address. The last word in the list must
have a 1 in the high order bit (Sign bit)

e R13 Savearea address
e R14 Return address

« RI15 Entry point address of the service stub that is being
called.

Additional notes

1 R2-R13 arerestored on return from a callable service. RO, R1,
R14, R15 are not restored.

2 The caller must be running with 31-bit addressing mode
(AMODE=31).

M apping macr os

Many of the Assembler callable services provide mapping macrosto
map the parameter options. Many can be expanded with or without a
DSECT statement. Please refer to the Unix System Services
Programming: Assembler Callable ServicesReferencefor thecomplete
list of mapping macros that are available.

0OS/390 UNIX ASSEMBLER CALLABLE SERVICES

The following list of OS/390 Unix Assembler Callable Servicesisa
subset of what is currently available. Please refer to the Unix System
Services Programming: Assembler Callable Services Reference for

the complete list.
o access (BPX1ACC) —determineif afile can be accessed.
o asyncio (BPX1AIO) — asynchronous I/O for sockets.

o auth _check resource np(BPX1ACK)-— determineauser’saccess
to protected MV Sresource. The authorization required toinvoke
this service is one of the following:

— Read access to the BPX.SERVER FACILITY class profile

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 51

52

— A UID of 0whenthe BPX.SERVER Facility classprofileis
not defined.

chattr (BPX1CHR) — change the attributes of afile or directory.
chaudit (BPX1CHA) — change audit flags for afile by path.
chdir (BPX1CHD) — change the working directory.

chmod (BPX1CHM) — change the mode of afile or directory.

chown (BPX1CHO) — change the owner or group of afile
directory.

chroot (BPX1CRT) — change the root directory.
close (BPX1CLO) —close afile.

fchattr (BPX1FCR) — change the attributes of afile or directory
by descriptor.

fchaudit (BPX1FCA)— changeaudit flagsfor afileby descriptor.
fchdir (BPX1FCD) — change the working directory.

fchmod (BPX1FCM) —change the mode of afileor directory by
descriptor.

fchown (BPX1FCO) — change the owner and group of afile or
directory by descriptor.

fstat (BPX1FST) — get status information about a file by
descriptor.

getcwd (BPX1GCW) —get thepathnameof theworking directory.
getegid (BPX1GEG) — get the effective group ID.

geteuid (BPX1GEU) — get the effective user-id.

getgid (BPX1GID) — get the real group ID.

getgroups (BPX1GGR) —get alist of supplementary group IDs.

getgroupsbyname (BPX1GUG) — get alist of supplementary
group IDs by user name.

getpwnam (BPX1GPN) — access the user database by user
name.

getpwuid (BPX1GPU) — access the user database by user-id.

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

getuid (BPX1GUI) — get the real user-id.
getpwd (BPX1GWD)—get the pathnameof theworking directory.

Ichown (BPX1LCO) — change the owner or group of afile,
directory, or symbolic link.

link (BPX1LNK) — create alink to afile.

loadhfs (BPX1LOD) — load a program into storage by HFS
pathname.

Istat (BPX1LST) — get status information about afile or
symbolic link by pathname.

mkdir (BPX1IMKD) — make a directory.
mount (BPX1MNT) —make afile system available.

mknod (BPX1MKN) — make adirectory, a FIFO, a character
specia, or aregular file.

open (BPX10OPN) — open afile.
opendir (BPX1OPD) — open adirectory.

openstat (BPX20PN) — opens afile, creates afile descriptor for
it, and obtainsits status.

pipe (BPX1PIP) — create an unnamed pipe.

quiesce (BPX1QSE) — quiesce afile system.

read (BPX1RED) —read from afile.

read extlink (BPX1RDX) — read an external symbolic link.
readdir (BPX1RDD) —read an entry from a directory.
readdir2 (BPX1RD2) — read multiple entries from a directory.
realpath (BPX1RPH) — resolve a pathname.

rename (BPX1REN) —rename afile or directory.

resource (BPX1RMG) — obtain system-wide resource
management data from the kernel address space.

set _dub default (BPX1SDD) — Get the dub default service.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 53

setegid (BPX1SEG) — set the effective GID.

seteuid (BPX1SEU) — set the effective user-id.

setgid (BPX1SGI) — set the GID.

setgroups (BPX1SGR) — set the supplementary group IDs list.
setitimer (BPX1STR) — set the value of the interval timer.
setpgid (BPX1SPG) — set a process GID for job control.
setregid (BPX1SRG) — set the real and/or effective GIDs.
setuid (BPX1SUI) — set user-ids.

stat (BPX1STA)—get statusinformation about afileby pathname.
symlink (BPX1SY M) — create a symboalic link to a pathname.
truncate (BPX1TRU) — change the size of afile.

ttyname (BPX2TY N) — (X/Open version) get the name of a
terminal.

unmask (BPX1UMK) — set the file mode creation mask.

uname (BPX1UNA) — obtain the name of the current operating
system.

unlink (BPX1UNL) —remove a directory entry.

unquiesce (BPX1UQS) — unquiesce afile system.

utime (BPX1UTI) — set file access and modification times
_wim (BPX1IWLM) —WLM interface service.

write (BPX1WRT) — writeto afile.

There are aso a number of callable services that deal with:

Socket processing

Semaphores
Memory mapping
M essage queue processing.

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Callable Service Request Table (CSRTABLE)

When link-editing an Assembler module that contains OS/390 Unix
Callable Services, aservice stub must be included as part of the load
module. The library containing the service stubs is specified in the
SY SLIB concatenationinthelinkageeditor step. Analternativetothis
method is to use the system control offsets to callable services. The
Callable Service Request Table (CSRTABLE), whose address is
contained in the CVT provides the addresses of all the callable
services. To locate the required callable service, an offset into this
tableisrequired. Thefull list of offsetsisavailableinthe Unix System
Services Programming: Assembler Callable Services Reference.

When using the offsets, the registers must be set as follows:

* Register1 Tocontaintheaddressof the parameter list. Bit O of
the last address in the list must be set on.

* Register 14 Tocontainthereturnaddressintheinvokingmodule.
 Register 15 To contain the address of the callable service code.
The following example locates and executes the chown service:

L R15,16 Address of the CVT
USING CVT,R15 Obtain addressability to The CVT
L R15,CVTCSRT Pointer to the Callable Service Request Table

L R15,24(,R15) CSR slot
L R15,64(,R15) Chown slot entry = 64
BALR R14,R15 Execute the callable service

0OS/390 UNIX ASSEMBLER CALLABLE SERVICES EXAMPLES

*hkhkhkkkkkhkhhkhkhkhkhkhkkkkhkhkhhhhkhkhkhkkhkkhkhkhhhhhhkhkkkhkhkhkhhhhhhkhkkhkhkhkdkhhhhhhkhkkkkhkhhhhhhhkkkxk

* THIS EXAMPLE OPENS, READS AND CLOSES THE ROOT DIRECTORY *
* SERVICES : OPENDIR READDIR CLOSEDIR *

*Ahkhkhkhkkhkkhkhkhhhkhkhkhkhkkkhkhkhhhhkhhkhkhkkhkhkhkhhhkhkhhkhkkkhkhkhhhhhhkhhkkkhkdkhkhhhkhhhkhkkkdkhkhhrhkhrhrixkxkxk

OPEN_READ_CLOSE_DIR EQU *
MVC CALLAREA(CALLLEN),CALLL MAKE RENT
MVC DIR_LEN,=AL4(L'ROOT) ROOT LENGTH
MVC DIR_NAME(L'ROOT),ROOT ROOT
OPEN_DIR EQU *

CALL BPX10PD, OPENDIR X
(DIR_LEN, DIRECTORY NAME LENGTH X
DIR_NAME, DIRECTORY NAME X
RETVAL, RETURN VALUE:-1 OR FD X
RETCODE, RETURN CODE X
RSNCODE), REASON CODE X

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 55

VL, X
MF=(E,CALLAREA)
ICM R15,B'1111",RETVAL TEST RETVAL
BL OPEN_DIR_ABEND BRANCH IF NEGATIVE (-1= FAILURE)
STCM R15,B'1111',DIR_DESCP ~ STORE THE DIRECTORY
READ_DIR EQU *
LA R15,DIR_READ_BUFFER DIR READ BUFFER ADDRESS
STCM R15,B'1111',DIRREAD_BUFFER@ STORE AWAY
MVC DIR_READ_BUFFER_LENGTH,=AL4(DIR_READ_BUFFER_LEN)
XC PRIMARY_ALET,PRIMARY_ALET PRIMARY ADDRESS SPACE
INVOKE_DIR_READ EQU *

CALL BPXIRDD, READDIR X
(DIR_DESCP, DIRECTORY FILE DESCRIPTOR X
DIRREAD_BUFFER@, BUFFER X
PRIMARY_ALET, BUFFER ALET X
DIR_READ _BUFFER_LENGTH, BUFFER SIZE X
RETVAL, RET VALUE: @, -1, ENTRIES READ X
RETCODE, RETURN CODE X
RSNCODE), REASON CODE X
VL, X
MF=(E, CALLAREA)

ICM R6,B'1111',RETVAL TEST RETVAL

BL READ _DIR ABEND -1= FAILURE

BZ CLOSE DIR ALL DIRECTORY ENTRIES RETURNED

LA R3,DIR_READ_BUFFER DIR READ BUFFER ADDRESS

USING DIRE,R3 ADDRESSABILITY TO DIRE

PROCESS _DIR_ENTRY EQU *
*hkkhkhkkkhhkhkkhhkhkkhhhkkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhdhhkhdhhkhkhhkhkhhkhkhhhkhhhkhhhkhkhdkhkhdkiik
* THE END OF A DIRECTORY IS INDICATED IN ONE OF TWO WAYS:

*

* 1 A RETURN_VALUE OF @ ENTRIES IS RETURNED.

*

* 2 SOME FILE SYSTEMS MAY RETURN A NULL NAME ENTRY AS THE LAST ENTRY
* IN THE CALLERS BUFFER. A NULL ENTRY HAS AN ENTRY_LENGTH OF 4

* AND A NAME_LENGTH OF @.
*hkkhkhkhkkhhkhkkhhkhkkhhhkhhhkhkhhkhdhhkhkhhkhkkhhkhkhhkhkhhhkhhhkhhhkhdhhkhdhhhkhhhkhhhkhhkhkhhhkhkhdkhkhdkiik

CLC DIRENTINFO(L'DIRENTLEN+L'DIRENTNAML),=X'00040000"

BE CLOSE DIR ALL DIRECTORY ENTRIES RETURNED

LR R4,R3 R4-> DIRE

LA R4,L'DIRENTLEN+L'DIRENTNAML(@,8) START OF NAME

SLR R5,R5 ZEROISE

ICM R5,B'@011',DIRENTNAML LOAD NAME LENGTH

ALR R4,R5 R4->END OF NAME + 1

USING DIRENTPFSDATA,R4 ADDRESS PHYSICAL FILE SYSTEM

* SPECIFIC DATA

ICM R5,B'@011',DIRENTLEN ENTRY LENGTH

ALR R3,R5 R3-> NEXT DIRE IN BUFFER

BCT R6,PROCESS DIR_ENTRY ~ PROCESS ALL DIRECTORY ENTRIES

B INVOKE_DIR_READ READ NEXT DIRE

CLOSE DIR EQU *
CALL BPXICLD, CLOSEDIR X

56 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

(DIR_DESCP,
RETVAL,
RETCODE,
RSNCODE),
VL,
MF=(E,CALLAREA)
ICM R15,B'1111',RETVAL
BL CLOSE_DIR_ABEND
BR R2
OPEN_DIR_ABEND EQU *
ABEND @@1,DUMP
CLOSE_DIR_ABEND EQU *
ABEND @@2,DUMP
READ_DIR_ABEND EQU *
ABEND @@3,DUMP
TITLE ‘STORAGE ITEMS'
CALLL CALL ,(,,,,,,,),MF=L
CALLLEN EQU *-CALLL
WORKAREA DSECT
SAVEAREA DS cL72
PREVSA EQU SAVEAREA+4,4
ROOT DC c'/'
RETVAL DS AL4
RETCODE DS AL4
RSNCODE DS AL4
DIR_DESCP DS AL4
PRIMARY_ALET DS AL4
SMODE DS XL(S_MODE#LENGTH)
DIRREAD_BUFFER@ DS AL4
DIR_OPEN_BUFFER DS @X
DIR_LEN DS AL4
DIR_NAME DS CL1@23
DIR_OPEN_LEN EQU *-DIR_OPEN_BUFFER
DIR_READ_BUFFER_AREA DS @X
DIR_READ_BUFFER_LENGTH DS XL4
DIR_READ_BUFFER DS CL4@

DIRECTORY FILE DESCRIPTOR
RETURN VALUE: @ OR -1
RETURN CODE

REASON CODE

>< X X X X

CLOSE DIR OKAY?
BRANCH IF NEGATIVE (-1= FAILURE)
RETURN TO CALLER

OPEN DIRECTORY ABEND

CLOSE DIRECTORY ABEND

READ DIRECTORY ABEND

LENGTH

SAVEAREA

@ OF PREVIOUS SAVEAREA
ROOT DIRECTORY

RETURN VALUE

RETURN CODE

REASON CODE

DIRECTORY DESCRIPTOR
PRIMARY ALET

FILE MODE FOR MKDIR
DIRECTORY BUFFER ADDRESS
DIRECTORY BUFFER FOR OPEN
DIRECTORY LENGTH
DIRECTORY NAME

OPEN DIR BUFFER LENGTH
DIRECTORY READ BUFFER
DIRECTORY BUFFER LENGTH
DIRECTORY BUFFER FOR READ

DIR_READ_BUFFER_LEN EQU *-DIR_READ_BUFFER OPEN DIR BUFFER LENGTH
CALLAREA DS CL(CALLLEN) PARM LIST AREA
WORKALEN EQU *-WORKAREA WORK AREA LENGTH

TITLE ‘MAPPING OF A DIRECTORY ENTRY'

BPXYDIRE DSECT=YES,LIST=YES

*hkhkhkkkkhkkhkkhhhkhkhkhkhkkkhkhkhkhhhkhkhkhkhkkhkkhkhkhhhhkhhkhkhkkhkhkhkhhhhkhhkhkkkhkhkhkhhhkhhkhkhkkkkhkhhhhkhrhhkkkxk

* THIS EXAMPLE WILL CHANGE THE MODE OF A DIRECTORY *
* SERVICES : CHMOD *

hhkhkhkkkkkhkhhhkhkhkhkhkkkkdkhhhhhhhkhkkkhkdhhhhhhkhkkkhkhkdhhhhkhhkhkkkhkdkhhhhhhhkhkkkkdkhhhhkhhhkixkxk

MOD_A DIR EQU *
MVC CALLAREA(CALLLEN),CALLL MAKE RENT
MVvC CHMOD_BUF(L'NEW_DIR),NEW_DIR MODIFY THE DIRECTORY
MVC ~ CHMOD_LEN,=AL4A(CL'NEW_DIR) DIRECTORY NAME LENGTH
LA R4,SMODE FILE MODE AREA

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 57

USING S_MODE,R4 ADDRESSABILITY
XC S_MODE, S_MODE CLEAR MODE FLAGS
Kk ok k ok k ok ok ok ok ok ok k ok ok ok ok ko k ok k ok ok ok ok
* OWNER= READ/WRITE/SEARCH*
* GROUP= READ/WRITE/WRITE *

* OTHER= READ/SEARCH *
* MODE = 775 *
*khkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkkhkkhkkikhkk
MVI S _MODE2,S_IRUSR 775(RWX-RWX-R-X)
MVI S_MODE3,S_IWUSR+S_IXUSR+S_IRWXG+S_IROTH+S_IXOTH
CALL BPX1CHM, CHANGE FILE MODES X
(CHMOD_LEN, PATHNAME LENGTH X
CHMOD_BUF, PATHNAME X
S_MODE, BPXYMODE AND BPXYFTYP X
RETVAL, RETURN VALUE: @ OR -1 X
RETCODE, RETURN CODE X
RSNCODE), REASON CODE X
VL, X
MF=(E, CALLAREA)
ICM R4,B'1111',RETVAL USER INFO RETURNED?
BL CHMOD_ABEND BRANCH IF NEGATIVE (-1= FAILURE)
BR R2 RETURN TO CALLER
CHMOD_ABEND EQU *
ABEND ©@4,DUMP CHMOD ABEND
TITLE “LITERAL POOL'
LTORG
TITLE ‘STORAGE ITEMS'
CALLL CALL ,(,,,,,,,),MF=L
CALLLEN EQU *-CALLL LENGTH
NEW_DIR DC CL18'/u/rem@@1l/testdir/' mkdir
WORKAREA DSECT
SAVEAREA DS CL72 SAVEAREA
PREVSA EQU SAVEAREA+4,4 @ OF PREVIOUS SAVEAREA
RETVAL DS AL4 RETURN VALUE
RETCODE DS AL4 RETURN CODE
RSNCODE DS AL4 REASON CODE
SMODE DS XL(S_MODE#LENGTH) FILE MODE FOR CHMOD
CHMOD_BUFFER DS @X CHMOD BUFFER
CHMOD_LEN DS AL4 CHMOD LENGTH
CHMOD_BUF DS CL10@ DIRECTORY NAME MAX 188 CHARS
CALLAREA DS CL(CALLLEN) PARM LIST AREA
WORKALEN EQU *-WORKAREA WORK AREA LENGTH
TITLE ‘MAPPING OF A DIRECTORY ENTRY'
BPXYDIRE DSECT=YES,LIST=YES
TITLE “FILE TYPE DEFINITIONS'
BPXYFTYP DSECT=MEANINGLESS,LIST=YES
TITLE ‘MODE CONSTANTS FOR SYSCALL'
BPXYMODE DSECT=YES,LIST=YES
TITLE “SYSCALL CONSTANTS'
BPXYCONS DSECT=MEANINGLESS,LIST=YES
Rem Perretta
Systems Programmer (UK) © Xephon 1999

58 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Selecting messages from the log

INTRODUCTION

The following program was designed to extract messages from an
MV Slogor fromalog-archivingfile. You can select aspecific period
(astart timeand an end time), themessage | Dsdesired (up to ninecan
be specified), and thetask that originated them. All these possibilities
are optional.

The main difference between this program and a regular sort is that
you can retrieve both thelinesthat contai n the sel ected messages, and
also the continuation lines. In alog there are some messagesthat span
acrossseveral lines. | call these continuation lines, and you may wish
toretrievethemal so, asan option. Furthermore, therearemessagel Ds
that appear preceded by some symbols (for example, DFH messages
appear with a plus sign before them). For a regular sort, you would
need to know this and adjust your sort specifications. This program
takescareof that, by automatically adjusting thecomparisonwhenever
the message IDsin thelog beginwitha‘+’, *-’, or ‘$. The result of
your request isplaced in afile, with the sameformat asaregular log.

Thisapplication consists of a REXX EXEC with an associated panel
that generatesajob. Thisjob copiesthe actual logto atemporary file,
or uses asinput an already existing file that you specify. Then it runs
an Assembler program that makes the selections and produces the
output file. At the beginning of this EXEC there are afew variables
that you will need to set, namely the LOADLIB containing the
Assembler program modul e, and the default output filename created.
Theinput panel is shown in Figure 1.

In the example, you want to retrieve messages starting by HASP373,
| EF403, and | EF404 that occurred between 23:00 and 1:00 hours, and
from no job or STC in particular, since that field is blank. Note that
message | Ds need not be full message | Ds, just the beginning | etters.
For example, you could specify |EF, and you would get all messages
beginning with those letters. The sameistruefor thejob / STCfield.
Thisfield refers to the job identifier as it appears in log column 38.
Also note that we are not asking for continuation lines, and that we

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 59

want toretrievethe messagesfromthe‘rea’ log, not from some back-
up archive, since we leave the ‘File’ field empty.

You can a'so bypassthe entry panel and the EXEC and work directly
withajob. Todo so, havealook at thejob generated by the EXEC. All
the DDnames and parameters needed by the Assembler program are
explained in the comment on top of it. This way, you can use this
programfor automated taskswithout the need of manual intervention.

File (empty for LOG):

Date and hour beginning / end (optional):
Date beginning (yy/mm/dd)..: 99 / @6 / 20
Hour beginning (@@ to 23)..: 23 : 00
Hour end (00 to 23)..: @1 : 00

Messages to search..: HASP373

| |
| |
| |
| |
| |
| |
| |
| Job/Stc/Tsu identifier (optional).: |
| |
| |
| |
| |
| |
| |
| |
| |

IEF4Q3
IEF404
Continuation lines (Y, N)..: N
ENTER - Execute PF3/15 - Cancel
o e e oo +

Figure 1. The input panel

LOGMESS SOURCE
/* REXX MVS * */
/* LOGMESS 1is a routine to extract selected messages from the log */
/* or from a log-like file. Its components are: */
/* */
/* LOGMESS - EXEC to generate a job to run the Assembler program.*/
/* LOGMESSP - An ISPF panel to input data for this EXEC. */
/* LOGMESSB - The Assembler program that does the work. */
/* */
loadlib = "MY.LOADLIB" /* where logmessb module is */
tempfile = userid()".TEMPFIL" /* temporary file name */
jobnome = userid()".JOBTEMP" /* temporary job file name */
/* output file name */
outfile = userid()".LOGMESS.D"right(date("S"),6)".T"time("S")

60 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

do k=1 to 9

interpret "M"k"= "
end
jobid=" "

c = "N" /* default no continuation

do forever
ADDRESS ISPEXEC "ADDPOP ROW(1) COLUMNC(L)"
ADDRESS ISPEXEC "DISPLAY PANEL(LOGMESSP)"
if rc<>@ then exit
ADDRESS ISPEXEC "REMPOP"

if yy="" & mm="" & dd="" & hi="" & hf="" & mi="" & mf="" then leave

if yy="" | mm="" | dd="" | hi="" | hf="" then do
ERRO = "Please specify start and end date/time fully"
iterate

end

if mi="" then mi = "@@"

if mf="" then mf = "@@g"
if —(datatype(yy,"W")&datatype(mm,"W")&,
datatype(dd,"W")&datatype(hi,"W")&,
datatype(hf,"W")&datatype(mi,"W")&,
datatype(mf,"W")) then do
ERRO = "Invalid non numeric value in date or time"
iterate
end
if mi > 59 | mf > 59 then do
ERRO = "Invalid minutes specified”
iterate
end
if hi > 24 | hf > 24 then do
ERRO = "Invalid hour specified”
iterate
end
if mm > 12 | dd > 31 then do
ERRO = "Invalid month or day specified”
iterate
end
leave
end
continuation = ¢
datinij = ""
datendj = ""
if yy<>"" then do
yy = right(yy,2,"0")
mm = right(mm,2,"0")
dd right(dd,2,"g")
datini = mm"/"dd"/"yy
datinij = data_jul(yy||mm||dd)
if hf < hi then datendj = datinij+l
else datendj = datinij
hi = right(hi,2,"@")":"right(mi,2,"0")
hf right(hf,2,"8")":"right(mf,2,"2")
end

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

61

if hi = "" then hi = "*"
if hf = "" then hf = "*"
beg_time = strip(datinij hi)
end_time = strip(datendj hf)
X =10
do k=1 to 9
interpret "mesg=M"k
mesg = space(translate(mesg,” ","_"),0)
if mesg <>"" then do
zz= left(mesg,1)

if zz="+"|zz="-"|zz="$"' then mesg=substr(mesg,2)
X = x+1
msg.Xx = mesg
end
end
jobid = space(translate(jobid," ","_"),0)
if jobid = "" then jobid = "*"

xX = msg(off)

delete jobnome

"free dd (jobe)"

"alloc da('"jobnome"') dd(jobe),
new blksize(8@00) Irecl(8@) recfm(f,b),
dsorg(ps) space(l 1) tracks delete "

if rc<>@ then do

say "Error "rc" allocating "jobnome
exit
end
dropbuf
queue "//"userid()"1 JOB CLASS=X,MSGCLASS=X,"
queue "// MSGLEVEL=(1,1),REGION=2000K"

queue "//*"
queue "//STEP@ EXEC PGM=IEFBR14"

if logfile = "" then do
queue "//FICTEMP DD DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,"
queue "// DSN="tempfile","
queue "// RECFM=FB,LRECL=133,BLKSIZE=13300,"
queue "// DSORG=PS,SPACE=(TRK, (90,90))"

end

queue "//SYSPRINT DD SYSQUT=*"
queue "//*"
if logfile = "" then do
queue "//STEP1 EXEC PGM=SDSF,PARM='++60,228""
queue "//ISFOUT DD DUMMY™
queue "//ISFIN DD *"
queue "LOG"
queue "PRINT ODSN '"tempfile"' * SHR"
queue "PRINT 1 999999"
queue "PRINT CLOSE"

queue "/*"

queue "//*"
end
queue "//STEP2 EXEC PGM=LOGMESSB"
if logfile = "" then ,

62 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

queue "//FICTEMP DD DISP=(OLD,DELETE),DSN="tempfile
else ,
queue "//FICTEMP DD DISP=SHR,DSN="logfile
queue "//STEPLIB DD DISP=SHR,DSN="1oadlib
queue "//SYSPRINT DD SYSOQUT=*"
queue "//SAIDA DD DISP=(NEW,CATLG,DELETE),"

queue "// SPACE=(TRK, (30,30),RLSE),"
queue "// RECFM=FB, LRECL=133,UNIT=SYSDA,"
queue "// DSN="outfile

queue "//PARMLINE DD *"
queue continuation
queue beg_time
queue end_time
queue jobid
do jg=1 to x
queue msg.]J
end
queue "/*"
queue ""
"execio * diskw jobe (finis"
"submit ""jobnome"'"
say "Job submitted; See output in "outfile
"free dd(jobe)"
exit
/*

/* data_jul converts dates from YYMMDD to YYDDD
/*

data_jul: procedure
parse arg date_in

aa left(date_in,2)

mm = substr(date_in,3,2)
dd = right(date_in,2)

if aa//4 = @ then ac =1
else ac =0

select

when mm = 1 then x = 0

when mm = 2 then x = 31

when mm = 3 then x = 59 + ac
when mm = 4 then x = 90 + ac
when mm = 5 then x = 120 + ac
when mm = 6 then x = 151 + ac
when mm = 7 then x = 181 + ac
when mm = 8 then x = 212 + ac
when mm = 9 then x = 243 + ac
when mm = 18 then x = 273 + ac
when mm = 11 then x = 304 + ac
when mm = 12 then x = 334 + ac

otherwise nop
end
j=x+dd
return aa||right(j.3,'8")

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/

63

LOGMESSP SOURCE

JATTR

TYPECINPUT) COLOR(RED) JUST(LEFT) CAPS(ON)
TYPECOUTPUT) COLOR(WHITE) SKIP(ON) INTENS(HIGH)
TYPECTEXT) COLOR(PINK) SKIP(ON) INTENS(HIGH)
5 TYPE(TEXT) COLOR(CYELLOW) SKIP(ON) INTENS(HIGH)

- |

R

TYPE(TEXT) COLOR(WHITE) SKIP(ON) INTENS(HIGH)
+ TYPE(TEXT) COLOR(GREEN) SKIP(ON) INTENS(LOW)
)BODY WINDOW(71,19)
+
? File (empty for LOG):_LOGFILE +
+
? Date and hour beginning / end (optional):
% Date beginning (yy/mm/dd)..:_YY%/_MM%/_DD+
% Hour beginning (@@ to 23)..:_HI%: MI+
% Hour end (00 to 23)..:_HF%:_MF+

? Job/Stc/Tsu identifier (optional).:_JOBID +

?7 Messages to search..:_Ml +_ M2 +_ M3 +
% _M4 +_M5 +_M6 +
% _M7 +_M8 +_M9 +
? Continuation lines (Y, N)..:_C

+

i $ERRO

| ENTER - Execute PF3/15 - Cancel
JINIT

&END = PFK(END)
&ZWINTTL = 'Log Messages'
JEND

LOGMESSB SOURCE

It's format is as follows:
Linel.:C Continuation lines (Y or N).
Line2.:YYDDD HH:MM Start date/hour or * for all.
Line3.:YYDDD HH:MM End date/hour or * for all.

* *
* *
* LOGMESSB - This program extracts messages from a log-type file, *
* including continuation lines. The input file must be *
* identical to the produced by an SDSF PRINT command (with CCs *
* at column one). The following DDnames are used in this program: *
* *
* FICTEMP - The input file containing a log print. *
* SAIDA - The output file, similar to the input, containing *
* only the desired messages. *
* SYSPRINT - Standard job output. *
* PARMLINE - Parameter file that controls message selection. *
* *
* *
* *
* *

64 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* Lined.:Job/Stc/Tsu as it appears at log column 38 or * for all.

* Lineb onwards: message identifier as it appears at 1og column 57.
* Up to 9 identifiers can be specified, one per Tine, or none.
Do not include + - $ symbols that appear at the beginning
of some messages.

* X X

*

&PROGRAM SETC 'LOGMESSB' This program's name
&JOBPOS SETC '38" Jobid column in Tog file
&NUMPOS SETC '43" Number column in Tog file
&MSGPOS SETC '57' Message column in log file
&DATPOS SETC '2@°' Date column in log file
&TL SETC '12°' Length of parm table entries
&PROGRAM CSECT (minus 4 bytes for length).
&PROGRAM AMODE 31
&PROGRAM RMODE 24

SAVE (14,12) Start stuff

LR R12,R15

USING &PROGRAM,R12

ST R13,SAVEA+4

LA R11,SAVEA

ST R11,8(R13)

LR R13,R11

B OPENPRT

DC CL16' &PROGRAM 1.1°

DC CL8'&SYSDATE"
* Open files
OPENPRT DS @H

OPEN (SYSPRINT,OUTPUT)

LTR R15,R15

BNZ EXIT
OPENSAI DS @H

OPEN (SAIDA,OUTPUT)

LTR R15,R15

BZ OPENTEMP

MVC XMSGTYPE,=C'OPEN '

MVC XMSGDSN,=CL44'SAIDA. Program terminated.'

PUT SYSPRINT,XMSGLINE

B EXIT
OPENTEMP DS @H

OPEN (FICTEMP,INPUT)

LTR R15,R15

BZ OPENPARM

MVC XMSGTYPE,=C'OPEN '

MVC XMSGDSN,=CL44'TEMPFILE. Program terminated.’

PUT SYSPRINT,XMSGLINE

B EXIT
OPENPARM DS @H

OPEN (PARMLINE, INPUT)

LTR R15,R15

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

X% X X % %

65

*

BZ
MVC
MVC
PUT
B

GETCONTN

XMSGTYPE,=C'OPEN '
XMSGDSN,=CL44'PARMLINE.

SYSPRINT,XMSGLINE
EXIT

Program terminated.’

* Read parameter file and process it.

*

GETCONTN

GETBEGTI

GETENDTI

GETJOBID

GETPARM

PARMEND

66

EQU
GET
EQU
L

L

L
XR
LA
GET
CLI
BE

EQU
GET
CLI
BE

EQU
GET
CLI
BE
SR
LA
BAL
SH
LR
EQU
GET
SR
LR
BAL
SH
ST
LA
LA
CH
BE

EQU
CLOSE
ST

XR
MVI

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*

PARMLINE, CONTINUE
*

R6,=F'-1"
R7,=F'-1"
R2,=F'-1"
R5,R5

R4 ,MSGTAB
PARMLINE,BEGTIME
BEGTIME,C'*"
GETENDTI
R6,=F'10"

*

PARMLINE, ENDTIME
ENDTIME,C'*"
GETJOBID
R7,=F'10"

*

PARMLINE, JOBID
JOBID,C'*"
GETPARM

R9,R9

R3,J0BID

R18, FINDSPC
R9,=H'1"

R2,R9

*
PARMLINE,@(8,R4)
R9,R9

R3, R4

R18, FINDSPC
R9,=H'1"
R9,&TL+@(,R4)
R4, &TL+4(@,R4)
R5,1(@,R5)
R5,=H'9"
PARMEND
GETPARM

*

PARMLINE

R5, MSGNUM

RS, RS
LMESSAGE,C'@"

Get continuation lines option

Get beginning time

Assume no begtime specified.
Assume no endtime specified.
Assume no job/stc specified.
R5 is table elements counter
Load message table address in
Get beginning date and hour

No begtime?

No, jump ahead.

Otherwise, leng is 11 (Ex 1@).

Same thing for endtime.

No endtime?

No, jump ahead.

Otherwise, leng is 11 (Ex 1@).

Get job selection

AT1 jobs?

Yes, jump

No, find jobname 1length

Copy address to R3

Call find space subroutine
Length ready for executed CLC
Keep it in R2

Get parms (msg ids)

Parm table entry

Copy initial pointer to R3
Call find space subroutine
Length ready for executed CLC
Store Tength after parm

Next tab entry (TL + 4)
Increment counter

Limit of 9 attained?

R4

Yes, ignore others and go ahead

Otherwise, get another.

Store number of table elements
Clear Tines read counter
Clear message flag

*
*
*

Read a Tine from the log file and process it.

READFILE EQU =

*

GET FICTEMP,WFICTEMP Read 1og line

CLI WFICTEMP,C'1" Header 1ine with CC on column 1
BE READFILE Yes, ignore it

LA R8,1(0,R8) Increment Tine counter

CLI CONTINUE,C'N' No continuation lines?

BNE READFIL1 Yes, jump ahead

CLC &DATPOS+WFICTEMP(23),=23C"' ' Date, time or job/stc?
BE READFILE Yes, read next

B BEGTEST Else, jump to test start date.

READFIL1 EQU *

(20 I T

CLI LMESSAGE,C'@" Message flag on?
BZ SEEKNUM No, jump ahead
CLC &DATPOS+WFICTEMP(26),=26C' ' Date, time or job/stc?
BNE SEEKNUM Yes, jump
PUT SAIDA,WFICTEMP Else, write line (type 1 Tine)
B FINDNUMB Go Took for continuation number.
*
Check for a "continuation number" in numpos (Tine type 2). *
If so, search for the number in numtable. If found, write line. *
*
EEKNUM EQU * Continuation number process
CLC NUMTOTAL,=H'@" Are there elements in numtab?
BE BEGTEST No, jump ahead.
CLC &JOBPOS+WFICTEMP(5),=5C"' " Jobpos first 5 bytes blank?
BNE BEGTEST No, jump ahead
CLC &NUMPOS+WFICTEMP(3),=3C"' ' Numpos 3 bytes blank?
BE BEGTEST Yes, jump ahead
LA R9,NUMTABLE Load numbers table address.
SEEKNUM1 EQU *
CLC @(2,R9),=C" ' Entry erased (2 spaces),
BE SEEKNEXT loop to next.
CLI @(R9),X'00" Logical end of table(lowvalue),
BE BEGTEST exit search.
CLI @(R9),X'FF' Physical end of table(highvalue),
BE BEGTEST exit search.
SEEKNUM2 EQU *
LR RO,R8 Compare current Tine (R8) minus
S RO,=F'100"' 100 with T1ine number in table.
C RO,4(0,R9) If greater, call routine to
BL SEEKNUM3 clear table entry.
BAL R11,CLEARTAB
B SEEKNEXT

SEEKNUM3 EQU *

CLC 1(3,R9),&NUMPOS+WFICTEMP Compare number

BNE SEEKNEXT No match, Toop to next entry.
PUT SAIDA,WFICTEMP Match, write Tline (type 2)

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

CLC
BNE
BAL
B

SEEKNEXT EQU
LA
B

*

WFICTEMP(2),=C" E'
READFILE
R11,CLEARTAB
READFILE

*

R9,8(0,R9)
SEEKNUM1

End multiple Tine?

No, read next

Yes, clear table entry
and read next.

Next entry (8 bytes more)

* Test for start / end hour and date.

*

BEGTEST EQU
CLC
BE
MVI
LTR
BM
EX
BL
L
B

ENDTEST EQU
LTR
BM
EX
BH

*

*

WFICTEMP(2),=C" S°'
READFILE
LMESSAGE,C'@"
R6,R6

ENDTEST
R6,COMPARE?2
READFILE
R6,=F'-1"'
JOBTEST

*

R7,R7
JOBTEST
R7,COMPARE3
EXIT

Start date hour test

Sequence (continuation) line?
Yes, read next

Reset message flag

Start specified?

If R6 negative, no, jump
Else, compare

Lower: start not reached
Start reached: destroy test
Else, accept line.

End date hour test

End specified?

If R7 negative, no, jump
Else, compare

High: end reached, exit program.

* Test for jobnames / stcnames and

*

for message ids.

JOBTEST EQU
LTR
BM
EX
BNE

MSGTEST EQU
L
LTR
BZ
LA

MSGTEST1 EQU
L
CLI
BE
CLI
BE
CLI
BE
EX
BNE

MSGTESTZ EQU
EX

*

R2,R2

MSGTEST

R2,COMPARE4

READFILE

*

R11,MSGNUM

R11,R11

WRITLING

R4 ,MSGTAB

*

R5,&TL+0@(@,R4)
&MSGPOS+WFICTEMP,C"+'
MSGTEST2
&MSGPOS+WFICTEMP,C'-"
MSGTEST?2
&MSGPOS+WFICTEMP,C'$"
MSGTEST?2

R5,COMPARE®

MSGTEST3

WRITLING

*

R5,COMPAREL

Job/stc/tsu id specified?
No, jump ahead (R2 negative)
Yes, execute compare

No match, read another line.

Number of msg ids specified.
If zero, write all Tines,
otherwise, load msg table
address for compares.

See if message match parms
Load parm length (EX ready)
Message starts by '+'?

Yes, jump to correct execute
Message starts by '-'?

Yes, jump to correct execute
Message starts by '$'?

Yes, jump to correct execute
Compare message

Not equal, Toop for next
Otherwise, junp to write line
Compare one byte ahead for

messages starting with + - §$.

68 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BE
MSGTEST3 EQU
LA
BCT
B
WRITLING EQU
PUT
CLI
BE

*

WRITLING

*

R4, &TL+4(0,R4)
R11,MSGTEST1
READFILE

*
SAIDA,WFICTEMP
CONTINUE,C'N'
READFILE

Next table address (4+TL)
Loop for number of entries.

Write line (type @ Tine).
No continuation Tines?
No, read next Tine.

* See if a 1line ends with a three-digit number.

*

FINDNUMB EQU
LA

FINDNUM EQU
CLI
BNE
BCT
B

FINDNUM1 EQU
CLI
BL
CLI
BH
S
CLI
BL
CLI
BH
S
CLI
BL
CLI
BH
S
CLI
BE

FINDNUMF EQU
MVI
B

*

R10,WFICTEMP+132
*
B(R1E), X" 40"
FINDNUM1
R18, FINDNUM
FINDNUMF

*
(R10),C'0"
FINDNUMF
B(R10),C'9"
FINDNUMF
R1G,=F'1"
B(R10),C'0"
FINDNUMF
B(R10),C'9"
FINDNUMF
R1G,=F'1"
B(R10),C'0"
FINDNUMF
B(R10),C'9"
FINDNUMF
R10,=F'1"
B(R1E),X'40"
SEEKFREE

*
LMESSAGE,C"1"
READFILE

Point to end of Tine

Look for three digits
preceded by a space.

Loop to beginning of Tine.
Empty 1line?

3 digits found, move ahead.
Not 3 digits, set message flag
and read next Tine.

Seek for a free entry in numtable to store the number.
In the way, clear old entries (over 100 lines gone by).

(N S

EEKFREE EQU

LA
SEEKLOOP EQU
CLC
BE
CLI
BE

*

R9,NUMTABLE

*

@(2,R9),=C" '
MOVENUM
@(R9),X'00"
MOVENUM

Seek for a free entry in the tab
R9 points beginning of table
Look for a free entry in the
table (either with spaces or
Tow-values).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

*
*
*
*
le

LR RO,R8 Compare current Tine (R8) minus
S RO,=F'100" 100 with Tine number in table.
C R@,4(@,R9) If greater, clear table entry.
BL SEEKFRE1
BAL R11,CLEARTAB
SEEKFRE1 EQU *
LA R9,8(8,R9) Increment tab pointer
CLI @(R9),X'"FF"' End of table?
BE READFILE Yes, abandon the search.
B SEEKLOOP Else Toop.
MOVENUM EQU * Found empty entry, move number
MVC @(4,R9),0(R10) (with initial space).
ST R8,4(0,R9) Store Tine number.
LH RO, NUMTOTAL Increment numtotal.
AH RO,=H'1"'
STH RO, NUMTOTAL
B READFILE
*
* (Close files and exit.
*
EXIT EQU *

CLOSE SAIDA
CLOSE FICTEMP
CLOSE SYSPRINT

L R13,SAVEA+4

LM R14,R12,12(R13)

XR R15,R15

BR R14
* *
* Subroutines, executed instructions and work areas. *
* *
FINDSPC EQU * Find space subroutine: counts the

CLI @(R3),X'4@" number of chars in a string up to

BE FINDSPCF the first space.

LA R9,1(0,R9) Returns the number in R9.

LA R3,1(@,R3) R3 points current position

B FINDSPC
FINDSPCF EQU *

BR R10 Return
*
CLEARTAB EQU * Clear table entry with spaces

MVC @(8,R9),=8C" "'

LH R@,NUMTOTAL Decrement numtotal.

SH RO,=H'1"'

STH RO, NUMTOTAL

BR R11 Return
*
COMPARE@ CLC &MSGPOS+WFICTEMP(@),@(R4) Compare message id
COMPARE1 CLC &MSGPOS+WFICTEMP+1(@),0(R4) Same, but 1 byte ahead
COMPARE2 CLC &DATPOS+WFICTEMP(@),BEGTIME Compare start datethour
COMPARE3 CLC &DATPOS+WFICTEMP(@),ENDTIME Compare end date+hour

70

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COMPARE4 CLC &JOBPOS+WFICTEMP(@),JOBID Compare jobnames
*
LTORG
SAVEA DS 18F Save register area
CONTINUE DS C Continuation Tines option
DS QF

BEGTIME DS CL12 Beg date and hour (yyddd hh:mm)

ENDTIME DS CL12 End date and hour.

JOBID DS CcL8 Job selection

MSGNUM DS F Number of entries in parm table

MSGTAB DS 36F 9 entries max (12+4 bytes each)

WFICTEMP DS CL133 Log Tine read area

LMESSAGE DS C Message flag (zero or one)

NUMTOTAL DC H'Q' Total entries in numtable

NUMTABLE DC 60F'0" Numbers table: 30 entries.

ENDTABLE DC X'FF' End of table mark.

XMSGLINE DS pCL8A Error messages line

DC C'===>>>>> Error in '

XMSGTYPE DC c' !

DC C' dataset '

XMSGDSN DC CL5@"

*

PARMLINE DCB DSORG=PS,RECFM=FB,MACRF=(GM), X
LRECL=84, X
EODAD=PARMEND, X
DDNAME=PARMLINE

*

FICTEMP DCB DSORG=PS,RECFM=FB,MACRF=(GM), X
LRECL=133, X
EODAD=EXIT, X
DDNAME=FICTEMP

*

SAIDA DCB DSORG=PS,RECFM=FB,MACRF=(PM), X
LRECL=133, X
DDNAME=SAIDA

*

SYSPRINT DCB DSORG=PS,RECFM=FB,MACRF=(PM), X
LRECL=80, X
DDNAME=SYSPRINT

*

YREGS
END

Luis Paulo Ribeiro

Systems Engineer

Edinfor (Portugal) © Xephon 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 71

MVS news

BMC has launched Version 2.1 of InTune
0S/390 application performance tuner,
promising an ability to share information
between systems via Parallel Sysplex, to
analyse the target application, and simplify
customization of batch reports. The product
analyses the performance of programs
running on 0OS/390, CICS, DB2, IMS,
NATURAL, ADABAS, and Datacom, and
pinpoints code efficiency problems.

Users can fine-tune applications in
production, in test, or under development.
Version 2.1 identifies application program
delays and presents this information for
analysis through an interactive interface for
both traditional and Parallel Sysplex
environments. The product lets users go
inside the code and view precisely where a
resource delay is occurring. In-built support
for Parallel Sysplex alows organizations to
share performance information between
various systemswithinthe sysplex, allowing
usersto choose al or any specificindividual
systems when invoking requests.

For further information contact:

BMC Software, Inc, 2101 Citywest Blvd,
Houston, TX 77042, USA.

Tel: (713) 918 8800

Fax: (713) 918 8000 or

BMC Software Ltd, Compass House,
207-215 London Road, Camberley, Surrey,
GU15 3E, UK.

Tel: (01276) 24622

Fax: (01276) 61201

http://www.bmc.com

* % %

PROIV has announced PROIV Mainframe
4.0, a Web-enabled version of its System/
390-based application development
software. PROIV Mainframe 4.0 has a full
Windows-style GUI, and offersthe ability to
port applicationsbetween 0S/390, Unix, and
NT.

The utility allows developers to create
Windowsand Javafront-endsfor mainframe
applications, opening up the whole
environment to the Internet and intranet
using standard Web browsers. The PROIV
JavaSuiteallowsapplicationsto bedelivered
to Web browser clients without the need to
amend application code.

PROIV applications are database-
independent and may be deployed on
mainframes running DB2, DL/l or VSAM.
PROIV Mainframe 4.0 supports the
following clients; Windows 95/98 and NT,
3270, 5550 (double-byte character support),
andWeb browsers(Java); itisalsoY ear 2000
compliant.

For further information contact:

PROIV Software Inc, 101 Academy, Suite
200, Irvine, California, USA.

Tel: (949) 823 1000

Fax: (949) 823 1010 or

PROIV Ltd, King' sHall, Parson’s Green, St
Ives, Cambridgeshire, PE17 4W7, UK.

Tel: (1480) 494330

Fax: (1480) 494 039

http://www.proiv.com

* * %

QO

xephon

	CA1 TMC information
	 COBOL II scope delimiters
	 JES2 recovery
	 Converting a Julian date to Gregorian
	PDF line commands
	 OS/390 Version 2 Release 8
	 Selectively blocking commands
	 OS/390 Unix Assembler callable services
	Selecting messages from the log
	 MVS news

