
© Xephon plc 2000

3 The Application Messaging
Interface

23 A system generator for MQSeries
(part 3)

42 MQSeries for MVS – a quick
primer

47 MQSeries SupportPacs
48 MQ news

January 2000

7

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryL@xephon.com

North American office

Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: +1 940 455 7050

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

The Application Messaging Interface

INTRODUCTION

Application developers have become accustomed to using the
MQSeries Interface (MQI) for enterprise application integration.
MQI is a simple interface with which to begin developing messaging
applications – for instance, there are only thirteen MQI calls to learn.
All this apparent simplicity comes at a cost, the cost being the
incredible number of options available under MQI. This makes MQI
a rich, low-level messaging API. However, application developers
often protest at being overwhelmed with MQI’s details, which they
consider unrelated to business logic. This is also a problem for
MQSeries administrators as MQI allows access to almost all aspects
of the middleware. Another common problem is that, once the
application is deployed, changing any of its attributes, such as
message persistence, priority, and wait time for receiving applications,
needs redevelopment and redeployment.

Application architects and developers address these issues by designing
wrapper APIs that hide the complexity of the MQI from application
developers. These wrappers usually aren’t general enough to
accommodate centralized control of the messaging details. They are
also organization-specific and fail adequately to distinguish the duties
of MQSeries administrators from those of application developers in
a logical way. Application developers also face the challenge of
learning several messaging interfaces, if they need to develop
applications that use several messaging products.

Therefore, a need exists for a messaging API that provides both a
higher level of message abstraction and standardization. The Open
Applications Group (www.openapplications.org), which is a non-
profit consortium of leading enterprise software developers, realized
this and worked on the requirements for a standard messaging API.
Recently, it accepted IBM’s proposal for the Application Messaging
Interface to be adopted as the Open Application Middleware API
specification. IBM has quickly followed up the AMI specification
with an implementation via support packs MA0F and MA0G.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

In this article, I introduce the AMI and its underlying model. I then
explore the API and its use for developing standard messaging
applications. The article contains working samples of application
programs that demonstrate significant differences between the MQI
and AMI.

THE MAIN FEATURES OF THE AMI

The AMI has three main components:

• The message

• The service

• The policy.

The message is what is being sent (or received). The service is defined
as the location where the message is sent (or received). The policy
determines how the message is sent or received.

For the purpose of mapping these components to the MQI, an AMI
message is a ‘most probably’ subset of an MQI message. In other
words, there are several attributes that are available in the MQI that are
not available in a message as defined by the AMI. One can’t really say
that an AMI message is a subset of an MQI message as the
implementation of an AMI message is not visible.

A service can be mapped onto a queue and queue manager combination.
There is more to a service than just a queue name, though a queue
name is a good approximation of a service.

A policy is a new concept that takes some attributes from MQI
messages and some from MQI applications and makes them available
at a central location. This separation of the policy from the message
is one of the greatest strengths of the AMI, making it a very attractive
interface, even if MQSeries is currently the only messaging middleware
in use in the organization.

In order to use the AMI, developers should specify the message data,
the service, and the policy. Developers can choose to use the default
services and policy that are provided with the AMI. MQSeries
administrators can also create additional services and policies, which

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

may then be stored in a repository. Support pack MA0F provides a
default implementation of the repository.

AMI currently supports basic messaging applications that:

• Send a message

• Receive a message

• Request/respond

• Publish/subscribe.

The API provision of request/response facilities satisfies a pent-up
demand for this functionality. Application developers have always
been able to develop this type of application before by managing the
message id/correlation id. However, this is not an intuitive way of
doing things. On the other hand, the AMI doesn’t seem to have support
for other parts of the MQSeries framework, including the Trigger
Monitor Interface and the Message Channel Interface (Publish-and-
Subscribe is a new area of functionality in MQSeries 5.1). Nevertheless,
the AMI is interoperable with other MQSeries interfaces – you can
exchange messages with other applications that use MQI using the
AMI.

The AMI is currently available in C, C++, and Java. For the C version,
the AMI is available in two ‘levels’: a high-level procedural interface
and a low-level object interface.

AMI COMPONENTS

The AMI requires three main components: the message, the service,
and the policy. In this section I provide a more detailed definition of
each component.

The message

The message comprises message attributes and message data. As far
as the AMI is concerned, message data is application data and the AMI
does not act on it. Message attributes, such as the MessageID and
CorrelID, are properties of the message itself. The AMI uses properties
of the message object, along with the policy, to construct MQSeries

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

headers and descriptors. Message attributes can be mapped to MQMD
members. However, not all MQMD fields are available in the message
object – some, such as persistence and expiry, are not attributes of the
AMI message. The AMI lets you name message objects, which is a
useful feature. Developers have to use message names in request/
response-type applications to match request and response messages.

The AMI then has functions to set and get each of the message
attributes and functions to read and write message data.

The service

To the AMI, a service is a location where a message can be sent or
received. In MQSeries terminology, a destination is a queue residing
in a queue manager. The service is set up by an MQSeries administrator
and, consequently, the complexity of setting up and managing queues
is hidden from application programmers. There are five types of
service available via the AMI:

1 Sender

2 Receiver

3 Distribution list

4 Publisher

5 Subscriber.

A sender service establishes one-way communication for sending
messages. A receiver service establishes one-way communication for
receiving messages. A distribution list contains a list of senders to
which messages can be sent. A publisher contains a sender that
publishes messages to the publish/subscribe broker. A subscriber
contains a sender, for subscribing to a broker, and a receiver, to get
publications from a broker.

The AMI has functions explicitly to open and close services. Services
can also be opened and closed implicitly by other functions. Functions
are also provided for exception processing. Services use policy
objects to get the correct MQSeries options.

The AMI provides a default example of each type of service. Application
programmers can use the AMI’s default services or ones provided by

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

the MQSeries administrator. Administrators use the AMI Admin tool
to set up and manage custom MQSeries services, and the custom
services they set up can be stored in a repository.

The current implementation of the repository does not appear to
distinguish a sending service from a receiving service. As a
consequence, one can use a sending service in a receive-only type
application. This means that the distinction between a sending and
receiving service depends on the context in this implementation.

The policy

The policy is one of the most interesting aspects of the AMI, and it
controls how AMI functions operate. Policies control items relating to
the message object and service objects. For example, the priority and
persistence of the message are controlled by the policy. In the case of
sender and receiver services, the policy defines whether together they
participate in a unit of work. The policy also determines the retry
options for services.

It’s possible for each AMI call to use a different policy. For example,
when an application exchanges the same message with a number of
other applications, each message can be sent using a policy that’s
linked to the recipient. The other approach would be to use one policy
that’s shared by every call in an application. This would make a policy
change impact the behaviour of the entire application. This kind of
flexibility can be provided with policies.

In common with services, some default policies are provided with the
AMI. Policies can be customized and stored in a repository, with the
AMI Admin Tool being used to create and manage them.

Other AMI objects

There are two other AMI objects of which one should be aware: the
session and connection objects. The session object is a container for
all message, service, and policy objects. It contains a connection
object that’s not visible to applications. The session object creates and
manages other objects, and also provides the default scope of a unit of
work. AMI contains functions to create, initialize, open, close, and
terminate a session. Within a session, AMI provides an API to create,

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

manage, and destroy other objects. Functions are provided to control
transaction processing and error handling.

THE AMI API

As mentioned earlier, the AMI supports two APIs for C. The high-
level C API comprises the thirteen functions listed below (in this
article, we concentrate on the first seven of them).

• Session management:

– amInitialize

– amTerminate.

• Send message:

– amSendMsg

– amSendRequest

– amSendResponse.

• Receive message:

– amReceiveMsg

– amReceiveRequest.

• Publish/subscribe

– amPublish

– amSubscribe

– amUnsubscribe

– amReceivePublication.

• Transaction support:

– amCommit

– amBackout.

The low-level APIs provide greater access to constructors, destructors,
‘set’ and ‘get’ functions for individual messages, and service and
policy objects.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

AMI IMPLEMENTATION

The AMI implementation comprises language support for AMI-
specified functions and repository support for storing services and
policies. Services and policies may be stored in XML files. Support
pack MA0G provides a GUI interface to an XML repository, though
(at the time of writing) only an NT version was released. This AMI
Administration Tool is used to create new policies and services and
maintain the repository.

ENVIRONMENT

In this article, we look at the details of the AMI and its current
implementation. The samples provided with this article use MQSeries
5.1 on Windows NT 4 (a minimum of SP3 is recommended). As
mentioned earlier, support packs MA0F and MA0G should be installed.

APPLICATION DEVELOPMENT IN AMI

To illustrate application development in C using the high-level API,
we develop application programs that demonstrate AMI concepts and
make use of the salient features of the API. Hence, we develop small
programs to:

• Send a message to sender service SAMPLE.SENDER (see
samplesend.c).

• Receive a message from receiver service SAMPLE.RECEIVER
(see samplercv.c).

• Carry out request/response type processing (sampleclt.c illustrates
client-side processing and samplesvr.c server-side processing).

Administrative actions
To achieve these objectives, we need to carry out the following
administrative activities:

• Set up a sender service called SAMPLE.SENDER. For this, you
need to specify at least the queue name. Let’s call the queue
SAMPLE.REQUEST.QUEUE, as this is the name used in
samplesend.c.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Set up a receiver service called SAMPLE.RECEIVER. The queue
name specified is SAMPLE.REQUEST.QUEUE (the name used
in samplercv.c).

• Set up a sender service called REQUEST.SERVICE with queue
name SAMPLE.REQUEST.QUEUE (the name used in
sampleclt.c).

• Set up a receiver service RESPONSE.SERVICE with queue name
SAMPLE.RESPONSE.QUEUE (the name used in sampleclt.c).

• Set up a receiver service REQUEST.RECEIVE.SERVICE with
queue name SAMPLE.REQUEST.QUEUE (the name used in
samplesvr.c).

• Set up a policy called SAMPLE.POLICY.

• Create queue SAMPLE.REQUEST.QUEUE in the default queue
manager.

• Create queue SAMPLE.RESPONSE.QUEUE in the default queue
manager.

As mentioned before, several MQMD-related message attributes and
MQPUT options are controlled by means of the sender service and
policy.

Sending a message using the AMI
The application has following structure:

• Create and initialize session

• Send message

• Terminate the session.

Unlike an MQI application, there are no explicit MQCONN and
MQDISC calls and their associated drawbacks (for example, MQCONN
needs to be passed the name of the queue manager, which is usually
coded in the application). The AMI model stores the queue manager
name in the sender service, which means that no application changes
are necessary if the queue manager name in MQCONN needs to be
changed.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

The calls used in the sample program are:

hSession = amInitialize (name, myPolicy, pCompCode, pReason)

The above call creates and opens the named session.

success = amSendMsg (hSession, mySender, myPolicy, dateLen,
➤ pData,NULL, pCompCode, pReason)

The above call creates a sender object, a policy object, and a message
object, and then invokes ‘send’ (note the use of the continuation
character, ‘➤ ’, to indicate that one line of code maps to more than one
line of print).

success = amTerminate (&hSession, myPolicy, pCompCode, pReason)

This call closes and deletes the session. The process of deleting a
session, in turn, implicitly closes and deletes the message object,
sender object, and the policy object.

amInitialize returns a handle to session object. amSendMessge and
amTerminate both return an AMBOOL type that may take the value
AMB_TRUE or AMB_FALSE.

The include file amtc.h defines all function prototypes and constants,
including AMB_TRUE, AMB_FALSE, and AMH_NULL_HANDLE.

Receiving a message using AMI
The receiver application is very similar at the conceptual level.
Obviously you need a receiver service, SAMPLE.RECEIVER, to pick
up messages from SAMPLE.REQUEST.QUEUE.

We continue to use both amInitialize and amTerminate calls, and
additionally use amReceiverMsg calls:

success = amReceiveMsg (hSession, myReceiver, myPolicy,
➤ selMessageName, dataLen, pData, rcvMsgName, pCompCode,
➤ pReason)

Here, selMessageName is a message object that can be constructed
using the low-level AMI API for C. It is typically used for selecting
messages based on correlation id. In our example, we use NULL as our
selection criterion (in other words, we use the default selection
criterion).

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Request/response-type processing using AMI

The AMI provides special support for request/response-type
applications. Our client program is structured as follows:

• Create and open session (amInitialize)

• Send request (amSendRequest)

• Receive response, possibly with wait (amReceiveMsg)

• Terminate session (amTerminate).

amSendRequest differs from amSendMsg in that it allows you to
specify a receiver to whom the response is sent. The sender message
name is then used with an amReceiveMsg call to select the matching
response.

success= amSendRequest (hSession, mySender, myPolicy,
➤ myReceiver, dateLen, pData, NULL, pCompCode, pReason)

In the amSendRequest call, mySender and myReceiver are existing
service points (the NULL default specification is accepted). If either
doesn’t exist, you get an error when the code completes.

The server program is structured as follows:

• Create and open a session (amInitialize)

• Receive a request (amReceiveRequest)

• Send response (amSendResponse)

• Terminate session (amTerminate).

amReceiveRequest takes the name of the sender service that is used for
the response. Unlike the amReceiveMsg call, it doesn’t support
selection criteria. The response is sent using an amSendResponse call.
This causes the CorrelId and MessageId to be set in the response
message, based on the flags in the request message. The
amSendResponse call uses the sender service and the response message
name specified by the request message received by amReceiveRequest.

Success = amReceiveRequest (hSession, myReceiver, myPolicy,
➤ buffLen, pDataLen, pData, rcvMsgName, mySender, pCompCode,
➤ pReason)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

In an amReceiveRequest call, the name of mySender should be
specified as one that doesn’t exist in the AMI repository. This allows
the request message to dictate which sender service should be used for
the response. If mySender exists in the repository, you will receive a
completion code of ‘2’ and a reason code of ‘70’.

success = amSendResponse (hSession, mySender, myPolicy,
➤ rcvMsgName, dataLen, pData, sndMsgName, pCompCode, pReason)

The sender name for the amSendResponse call is the same as that
specified in the amReceiveRequest call.

SAMPLESEND.C

/**/
/* File Name: samplesend.c */
/* Purpose: Send a message to the sender service SAMPLE using */
/* policy SAMPLE.POLICY. */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <amtc.h>

#define SAMPLE_SESSION_NAME "SAMPLE.SESSION"
#define SAMPLE_SENDER_NAME "SAMPLE.SENDER"
#define SAMPLE_MESSAGE_NAME "SAMPLE.SEND.MESSAGE"
#define SAMPLE_POLICY_NAME "SAMPLE.POLICY"
#define SAMPLE_MESSAGE_DATA "Application data for sample send program"

int main(int argc, char** argv)
{
 AMHSES hSession = AMH_NULL_HANDLE;
 AMLONG compCode;
 AMLONG reason;
 AMBOOL success = AMB_FALSE;
 AMHMSG hMessage = AMH_NULL_HANDLE;
 char sampleMsg[256];

/**/
/* Initialize (create and open) the session with the specified */
/* name. */
/**/

printf("Starting samplesend program \n");
hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */
 ,SAMPLE_POLICY_NAME /* policy */
 , &compCode /* completion code */

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 , &reason); /* reason code */
 if (hSession == AMH_NULL_HANDLE)
 {
 printf("*** amInitialize() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf(" Completed samplesend \n");
 return EXIT_FAILURE;
 }
 printf("amInitialize() succeeded \n");

/**/
/* Send the message using the sample data. */
/**/
 sprintf(sampleMsg, "%s", SAMPLE_MSG_DATA);

/**/
/* Send the message as a datagram using amSendMsg. */
/**/
 success = amSendMsg(hSession /* session handle */
 , SAMPLE_SENDER_NAME /* sender */
 , SAMPLE_POLICY_NAME /* policy */
 , strlen(sampleMsg)+1 /* data length */
 , (unsigned char *)sampleMsg /* message buffer */
 , SAMPLE_MESSAGE_NAME /* message object */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amSendMsg() failed cc = %d, rc = %d \n",
 compCode, reason);
 amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
 printf(" Completed samplesend \n");
 return EXIT_FAILURE;
 }
 printf(" amSendMsg() succeeded \n");

/**/
/* Terminate the session. */
/**/
 success = amTerminate(&hSession /* session handle */
 , "SAMPLE.POLICY" /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amTerminate() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf(" Completed samplesend \n");
 return EXIT_FAILURE;
 }

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

 printf(" amTerminate() succeeded \n");

 printf(" Completed samplesend\n");
 return EXIT_SUCCESS;
}

SAMPLERCV.C
/***/
/* File name: samplercv.c */
/***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <amtc.h>

#define SAMPLE_SESSION_NAME "SAMPLE.SESSION"
#define SAMPLE_RECEIVER_NAME "SAMPLE.RECEIVER"
#define SAMPLE_POLICY_NAME "SAMPLE.POLICY"
#define SAMPLE_MESSAGE_NAME "SAMPLE.RECEIVE.MESSAGE"

int main(int argc, char **argv)
{
 AMLONG compCode;
 AMLONG reason;
 AMHSES hSession = AMH_NULL_HANDLE;
 AMBOOL success = AMB_FALSE;
 AMLONG dataLength;
 AMLONG msgCount = 0;
 char data[256];

/**/
/* Initialize (create and open) the session with the specified */
/* name. */
/**/
 printf("<<< Starting samplercv >>>\n");
 hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */
 , "SAMPLE.POLICY" /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (hSession == AMH_NULL_HANDLE)
 {
 printf("*** amInitialize() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf("<<< Completed samplercv >>>\n");
 return EXIT_FAILURE;
 }
 printf(" amInitialize() succeeded \n");

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/**/
/* Receive the message using amReceiveMsg. */
/**/
 success = amReceiveMsg(hSession /* session handle */
 , SAMPLE_RECEIVER_NAME /* receiver service name */
 , "SAMPLE.POLICY" /* policy */
 , NULL /* No selection message */
 , sizeof(data) /* buffer length */
 , &dataLength /* data length */
 , (unsigned char *)data /* messsage data */
 , SAMPLE_MESSAGE_NAME /* message */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amReceiveMsg() failed cc = %d, rc = %d \n",
 compCode, reason);
 amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
 printf("<<< Completed samplercv >>>\n");
 return EXIT_FAILURE;
 }
 data[dataLength] = '\0';
 printf(" %s\n", data);

/**/
/* Terminate the session. */
/**/
 success = amTerminate(&hSession /* session handle */
 , "SAMPLE.POLICY" /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amTerminate() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf("<<< Completed samplercv >>>\n");
 return EXIT_FAILURE;
 }
 printf(" amTerminate() succeeded \n");

 printf("<<< Completed samplercv >>>\n");
 return EXIT_SUCCESS;
}

SAMPLECLT.C

/***/
/* File name: sampleclt */
/***/

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <amtc.h>

#define SAMPLE_SESSION_NAME "REQUEST.SESSION"
#define SAMPLE_POLICY_NAME "SAMPLE.POLICY"
#define SAMPLE_SENDER_NAME "REQUEST.SERVICE"
#define SAMPLE_RECEIVER_NAME "RESPONSE.SERVICE"
#define SAMPLE_SEND_MESSAGE_NAME "REQUEST.MESSAGE"
#define SAMPLE_RECEIVE_MESSAGE_NAME "RESPONSE.MESSAGE"

#define SAMPLE_MSG_DATA " REQUEST "

int main(int argc , char ** argv)
{
 AMLONG compCode;
 AMLONG reason;
 AMHSES hSession;
 AMBOOL success;
 char request[1024];
 char reply[1024];
 AMLONG dataRead = 0;

/**/
/* Initialize (create and open) the session with the specified */
/* name. */
/**/
 printf(" Starting sampleclt \n");
 hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */
 , SAMPLE_POLICY_NAME /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (hSession == AMH_NULL_HANDLE)
 {
 printf("*** amInitialize() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf(" Completed sampleclt \n");
 return EXIT_FAILURE;
 }
 printf(" amInitialize() succeeded \n");

 memset(request, 0, sizeof(request));
 sprintf(request, "sampleclt%s\0", SAMPLE_MSG_DATA);

/**/
/* Send the request message using amSendRequest. */
/**/
 success = amSendRequest(hSession /* session handle */
 , SAMPLE_SENDER_NAME /* sender service name */

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 , SAMPLE_POLICY_NAME /* policy */
 , SAMPLE_RECEIVER_NAME /* receiver svc name */
 , strlen(request)+1 /* data length */
 , (unsigned char *)request /* messsage data */
 , SAMPLE_SEND_MESSAGE_NAME /* message name */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amSendRequest() failed cc = %d, rc = %d \n",
 compCode, reason);
 amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
 printf(" Completed sampleclt \n");
 return EXIT_FAILURE;
 }
 printf(" SENT\n");
 printf(" %s\n", request);

/**/
/* Receive the response message using amReceiveMsg. */
/**/
 success = amReceiveMsg(hSession /* session handle */
 , SAMPLE_RECEIVER_NAME /* receiver svc name */
 , SAMPLE_POLICY_NAME /* policy name */
 , SAMPLE_SEND_MESSAGE_NAME /* sel message name */
 , sizeof(reply) /* buffer length */
 , &dataRead /* returned data length */
 , (unsigned char *)reply /* messsage data */
 , SAMPLE_RECEIVE_MESSAGE_NAME /* reply message name */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 if (reason == AMRC_NO_MSG_AVAILABLE)
 {
 printf("*** REPLY did not arrive within the specified policy \
 wait time\n");
 }
 else
 {
 printf("amReceiveMsg() failed cc = %d, rc = %d \n",
 compCode, reason);
 amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
 printf(" Completed sampleclt \n");
 return EXIT_FAILURE;
 }
 }
 reply[dataRead] = '\0';
 printf(" RECEIVED\n");
 printf(" %s\n", reply);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

/**/
/* Terminate the session. */
/**/
 success = amTerminate(&hSession /* session handle */
 , SAMPLE_POLICY_NAME /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amTerminate() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf(" Completed sampleclt \n");
 return EXIT_FAILURE;
 }
 printf(" amTerminate() succeeded \n");

 printf(" Completed sampleclt \n");
 return EXIT_SUCCESS;
}

SAMPLESVR.C
/***/
/* File name: samplesvr */
/***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <amtc.h>
#define SAMPLE_SESSION_NAME "RESPONSE.SESSION"
#define SAMPLE_POLICY_NAME "SAMPLE.POLICY"
#define SAMPLE_RECEIVER_NAME "REQUEST.RECEIVE.SERVICE"
#define SAMPLE_SENDER_NAME "RESPONDER.SERVICE"
#define SAMPLE_SEND_MESSAGE_NAME "RESPONSE.MESSAGE"
#define SAMPLE_RECEIVE_MESSAGE_NAME "REQUEST.MESSAGE"

int main(int argc, char **argv)
{
 AMLONG compCode;
 AMLONG reason;
 AMHSES hSession = AMH_NULL_HANDLE;
 AMBOOL success = AMB_FALSE;
 AMLONG dataRead = 0;
 AMLONG msgCount = 0;
 char request[1024];
 char reply[1024];

/**/
/* Initialize (create and open) the session with the specified */

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* name. */
/**/
 printf(" Starting samplesvr \n");
 hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */
 , SAMPLE_POLICY_NAME /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (hSession == AMH_NULL_HANDLE)
 {
 printf("*** amInitialize() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf(" Completed samplesvr \n");
 return EXIT_FAILURE;
 }
 printf(" amInitialize() succeeded \n");

/**/
/* Receive requests. */
/**/
 success = amReceiveRequest(hSession /* session handle */
 , SAMPLE_RECEIVER_NAME /* receiver name */
 , SAMPLE_POLICY_NAME /* policy */
 , sizeof(request) /* buffer length */
 , &dataRead /* data length */
 , (unsigned char *)request /* messsage data */
 , SAMPLE_RECEIVE_MESSAGE_NAME /* message name */
 , SAMPLE_SENDER_NAME /* response sender */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amReceiveRequest() failed cc = %d, rc = %d \n",
 compCode, reason);
 amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
 printf(" Completed samplesvr \n");
 return EXIT_FAILURE;
 }
 else
 {
 printf(" RECEIVED request\n");
 request[dataRead]='\0';
 printf(" %s\n", request);
 }

/***/
/* Send the reply. */
/***/
 sprintf(reply, "samplesvr REPLY ");
 success = amSendResponse(hSession /* session handle */
 , SAMPLE_SENDER_NAME /* sender svc name */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

 , SAMPLE_POLICY_NAME /* policy */
 , SAMPLE_RECEIVE_MESSAGE_NAME /* request msgname */
 , 1+strlen(reply) /* data length */
 , (unsigned char *)reply /* messsage data */
 , SAMPLE_SEND_MESSAGE_NAME /* reply message name */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("*** amSendResponse() failed cc = %d, rc = %d \n",
 compCode, reason);
 amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
 printf(" Completed samplesvr \n");
 return EXIT_FAILURE;
 }
 printf(" SENT reply\n");
 printf(" %s\n", reply);

/**/
/* Terminate the session. */
/**/
 printf("Calling amTerminate \n");
 success = amTerminate(&hSession /* session handle */
 , SAMPLE_POLICY_NAME /* policy */
 , &compCode /* completion code */
 , &reason); /* reason code */
 if (success == AMB_FALSE)
 {
 printf("amTerminate() failed cc = %d, rc = %d \n",
 compCode, reason);
 printf(" Completed samplesvr \n");
 return EXIT_FAILURE;
 }
 printf(" amTerminate() succeeded \n");

 printf(" Completed samplesvr \n");
 return EXIT_SUCCESS;
}

COMPILE AND LINK

Using Visual C 98 running on Windows NT, the commands needed to
compile and link are:

set lib=%lib%;d:\mq\bin
d:\program files\microsoft visual studio\vc98\bin\vcvars32.bat
cl -ID:\mq\amt\include /Fsamplesend samplesend.c amt.LIB

Other programs are compiled by replacing the C files and executables.

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SUMMARY

In this article, I introduced the Application Messaging Interface,
which is an emerging alternative to the MQI. The AMI has several
advantages over MQI: it provides a higher level of abstraction for
developing messaging applications, it is an industry-standard API
(which will hopefully result in support from other messaging products),
and the AMI model clearly demarcates MQSeries (or other middleware
product) administration from application development. For this reason,
AMI separates services and policies from the message itself, with
services and policies being administered externally to the messaging
application. This is clearly a superior model, and it enhances the
adaptability of messaging applications to changing requirements.

AMI currently supports C, C++, and Java. Two APIs for C are
provided: a high-level procedural API and a low-level object API.
While MQSeries’ AMI implementation lacks support for COBOL, I
suspect this cannot be far behind its support for C. However, its lack
of support for Perl may be a disadvantage.

In this article I used the high-level C API to demonstrate standard
messaging applications that send and receive messages and implement
request/response processing using asynchronous messaging. The
request/response-type processing demonstrates the strength of the
AMI – application developers no longer have to worry about how the
request/response model is implemented, as they can use the AMI
administration tool to change the policy and, hence, many of the
message’s attributes, including priority, persistence, and wait time for
the receiving application.

In summary, the AMI is an exciting development for MQSeries
application developers and MQSeries administrators. The AMI delivers
on the promise of providing a higher level of abstraction and better
application control. It deserves the endorsement of the industry that it
has received and it sets a new standard in the development of
messaging applications.

Ashish Joshi
Consultant (USA) © A Joshi 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

A system generator for MQSeries (part 3)

This is the third and concluding part of this article on generating an
MQ system automatically (the first part appeared in the November
1999 issue of MQ Update).

MQSDEFA
* Trigger attributes
 NOTRIGGER +
 TRIGTYPE(FIRST) +
 TRIGDPTH(1) +
 TRIGMPRI(0) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*

DEFINE QLOCAL('SYSTEM.ADMIN.PERFM.EVENT') +

* Common queue attributes
 DESCR('System performance related event queue') +
 LIKE('SYSTEM.ADMIN.QMGR.EVENT')
*

DEFINE QLOCAL('SYSTEM.ADMIN.CHANNEL.EVENT') +

* Common queue attributes
 DESCR('System channel related event queue') +
 LIKE('SYSTEM.ADMIN.QMGR.EVENT')
*
*

* NON-SYSTEM DEFINITIONS

*
* The queue manager-specific commands define the dead-letter local
* queue for a particular queue manager.
*
* This is a SAMPLE definition of what is needed.
*
* The name of the dead letter queue may be specified in the ALTER
* QMGR command below. While the attributes of the dead-letter queue
* may be changed, if they are changed in such a way that, when the
* queue manager tries to PUT a message on the dead-letter queue,
* the operation fails, the result is the message being discarded.

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*

DEFINE QLOCAL('&SYSID..DEAD.QUEUE') +

* Common queue attributes
 DESCR('&SYSID DEAD-LETTER QUEUE') +
 PUT(DISABLED) +
 DEFPRTY(0) +
 DEFPSIST(YES) +

* Local queue attributes
 GET(DISABLED) +
 SHARE +
 DEFSOPT(SHARED) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(999999999) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSTEM') +
 USAGE(NORMAL) +

* Event control attributes
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* Trigger attributes
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*

* Alter the queue manager attributes for this instance.
*
ALTER QMGR +
 DESCR('&SYSID , MQSERIES FOR MVS/ESA - V1.1.4') +
 TRIGINT(300000) +
 MAXHANDS(256) +
 INHIBTEV(ENABLED) +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

 LOCALEV(ENABLED) +
 REMOTEEV(ENABLED) +
 STRSTPEV(ENABLED) +
 PERFMEV(ENABLED) +
 DEADQ('&SYSID..DEAD.QUEUE')
*
*

* CICS ADAPTER DEFINITIONS

*
* The CICS initiation queue is used by the CKTI CICS transaction.
* This queue is required for communication between CICS and the
* queue manager.
*
* This is a SAMPLE definition of what is needed.
*
* You may change the name of the CICS initiation queue if you wish.
* The name should match the one in the CICS system initialization
* table or the SYSIN override in the statement below.
*
* INITPARM=(CSQCPARM='IQ=CICS01.INITQ, ...
*

DEFINE QLOCAL('&CICID..INITQ') +

* Common queue attributes
 DESCR('CKTI initiation queue') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +

* Local queue attributes
 GET(ENABLED) +
 SHARE +
 DEFSOPT(EXCL) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(100) +
 MAXMSGL(1000) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSTEM') +
 USAGE(NORMAL) +

* Event control attributes
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* Trigger attributes
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*
*

* start chinit / listener/ channels

START CHINIT PARM(&SYSID.CHIP)

* End of CSQ4INP2

./ ADD NAME=CSQ4DISX

*
* MQSeries for MVS/ESA
* CSQDISX sample for distributed queueing without CICS
*

*
* In order to use distributed queueing facilites without CICS,
* the objects in this section of code must be created the first
* time that a queue manager is started. This can be done by
* including this data set in the CSQINP2 DD concatenation in the
* queue manager started task procedure, as shown in the sample
* procedure CSQ4MSTR.
*
* Once the objects are successfully created, there is no need to
* redefine them on subsequent queue manager starts, so this data
* set can be removed from the CSQINP2 DD concatenation. If the data
* set is not removed from CSQINP2, define operations will fail
* with an error message stating that the object already exists. You
* can also add the keyword REPLACE to each command if the definitions
* are to be reset on every start-up.
*

*
* The following sample definitions show what is required at the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

* sending and receiving ends to send messages. They show a
* sender-receiver channel pair using tcp/ip as the transport.
*
* Changes necessary to use a server-requester channel pair and
* to use LU6.2 as the transport are included.
*

* Sending-end definitions

*

* Common definitions

*
* These definitions are required to use
* the distributed queueing facility.
*

DEFINE QLOCAL('SYSTEM.CHANNEL.SYNCQ') +

* COMMON QUEUE ATTRIBUTES
 DESCR('SYSTEM CHANNEL SYNCHRONIZATION QUEUE') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +

* LOCAL QUEUE ATTRIBUTES
 GET(ENABLED) +
 SHARE +
 DEFSOPT(EXCL) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(10000) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSTEM') +

* EVENT CONTROL ATTRIBUTES
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* TRIGGER ATTRIBUTES
 NOTRIGGER +

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*

DEFINE QLOCAL('SYSTEM.CHANNEL.INITQ') +

* COMMON QUEUE ATTRIBUTES
 DESCR('SYSTEM CHANNEL INITIATION QUEUE') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +

* LOCAL QUEUE ATTRIBUTES
 GET(ENABLED) +
 SHARE +
 DEFSOPT(EXCL) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(1000) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSTEM') +

* EVENT CONTROL ATTRIBUTES
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* TRIGGER ATTRIBUTES
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*

DEFINE QLOCAL('SYSTEM.CHANNEL.REPLY.INFO') +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

* COMMON QUEUE ATTRIBUTES
 DESCR('SYSTEM CHANNEL COMMAND REPLY DATA QUEUE') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +

* LOCAL QUEUE ATTRIBUTES
 GET(ENABLED) +
 SHARE +
 DEFSOPT(EXCL) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(1000) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSTEM') +

* EVENT CONTROL ATTRIBUTES
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* TRIGGER ATTRIBUTES
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*
*

* END OF CSQ4DISX

./ ADD NAME=CSQ4STGC

* *
*

*
* MQSeries for MVS/ESA
* CSQ4STGC sample for storage class definitions
*

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*
* This sample contains a set of storage class definitions that
* associate storage classes with page sets. They may be invoked from
* the CSQINP2 concatenation every time the queue manager is started.
*
* The storage class definitions below are required.
* SYSTEM
* REMOTE
* DEFAULT
* NODEFINE
*
* It is recommended that storage classes REMOTE, DEFAULT, and
* NODEFINE are not defined as mapping to page set 00 (this sample
* shows them mapped to page set 01) so as to keep user and system
* messages on separate page sets. Compliance with this standard
* requires that at least two page data sets are defined.
*
* Further storage class definitions should be added to this sample
* as required.
*

*

* STGCLASS definitions - please change them for your own needs

*
* Associate storage classes with page sets.

DEFINE STGCLASS('SYSTEM') +
 PSID(00)

DEFINE STGCLASS('SYSTEMST') +
 DESCR(' DEFINE STORAGE CLASS WITH DEFAULTS') +
 XCFGNAME(' ') +
 XCFMNAME(' ') +
 PSID(01)

DEFINE STGCLASS('REMOTE') +
 PSID(01)

DEFINE STGCLASS('NODEFINE') +
 PSID(01)

DEFINE STGCLASS('STGRABFB') +
 PSID(02)

DEFINE STGCLASS('STGRABTG') +
 PSID(03)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

DEFINE STGCLASS('STGAABFB') +
 PSID(04)

DEFINE STGCLASS('STGAABTG') +
 PSID(05)

DEFINE STGCLASS('STGINGFB') +
 PSID(06)

DEFINE STGCLASS('STGINGTG') +
 PSID(07)

DEFINE STGCLASS('STGRSTFB') +
 PSID(08)

DEFINE STGCLASS('STGRSTTG') +
 PSID(09)

*

* End of CSQ4STGC

./ ADD NAME=CSQINPX

* *

*
* MQSeries for MVS/ESA
* CSQINPX sample
*

*
* This sample data set contains an example of a set of commands
* that could be issued whenever distributed queuing without CICS
* is started.
*

* Start Listeners

*
* You must start a listener for each communication protocol you use.
*

START LISTENER TRPTYPE(LU62) LUNAME(LIST&SYSID)
*
*

* Start and stop channels

*

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* The sender channels normally start automatically when a trigger
* message is put on the channel initiation queue. Similarly,
* receiver and server channels start automatically when a message
* is received from a remote queue manager. They stop automatically
* when there is no more work for them.
*
* It is necessary to restart channels manually only when they
* stopped as the result of an error or were stopped manually.
* Both these conditions are cleared when the channel initiator
* is started, so there is no need to issue any START CHANNEL
* commands.
*
* However, if you don't want some channels to start manually,
* then issue STOP commands for them when the channel initiator
* starts. Later, when you want them to start, you will have to issue
* START commands for them.
*

* Display channel status

*
* Show the status of all the channels that are currently defined.
*

DISPLAY CHSTATUS(*) CURRENT ALL

*

* End of CSQ4INPX

./ ENDUP
/*

MQSDEFB

//&USERID.J JOB (,EXP),'&USERID',
// NOTIFY=&USERID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// TIME=3
//*
/*ROUTE XEQ &LPAR
//*
//* THIS JOB CREATES THE MQSERIES BDSDS AND LOGCOPIES
//*
//**/
//* JOB NAME = MQSDEFB */
//* */
//* (C) COPYRIGHT INTERPAY 1999 */
//* */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

//* STATUS = VERSION 1 */
//* */
//* FUNCTION = DEFINE MQSERIES DATASETS */
//* */
//* NOTES */
//* 1. THE INSTALL CLIST SHOULD DO MOST OF THE WORK, THOUGH THE */
//* INSTALLER MAY INSPECT THE AMS COMMANDS AND JCL AND EDIT */
//* THEM WHERE NECESSARY TO SUIT YOUR SITE'S REQUIREMENTS. */
//* 2. DSNAMES, CONTROL INTERVAL SIZE, RECORDSIZE, LINEAR, */
//* NONORDERED, AND SHAREOPTIONS MUST NOT BE CHANGED FOR */
//* DIRECTORY AND CATALOGUE DATA. */
//* 3. MANY PARAMETERS DO NOT APPLY TO DIRECTORY AND CATALOGUE */
//* DATA, INCLUDING SPANNED, EXCEPTIONEXIT, SPEED, */
//* BUFFERSPACE, AND WRITECHECK. */
//* 4. DATA SET SIZES, PASSWORDS, AND VOLUMES MAY BE CHANGED. */
//* MSS STAGING OPTIONS MAY BE ADDED. */
//* */
//CSQLOG2 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(&SYSID..BSDS01) -
 VOLUMES(&BSDS1VOL) -
 REUSE -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..BSDS01.DATA) -
 RECORDS(200 100) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(&SYSID..BSDS01.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))

 DEFINE CLUSTER -
 (NAME(&SYSID..BSDS02) -
 VOLUMES(&BSDS2VOL) -
 REUSE -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..BSDS02.DATA) -
 RECORDS(200 100) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 (NAME(&SYSID..BSDS02.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))

 DEFINE CLUSTER -
 (NAME (&SYSID..LOGCOPY1.DS01) -
 LINEAR -
 REUSE -
 VOLUMES(&LOG11VOL) -
 CYLINDERS(&CYLS)) -
 DATA -
 (NAME(&SYSID..LOGCOPY1.DS01.DATA))

 DEFINE CLUSTER -
 (NAME (&SYSID..LOGCOPY1.DS02) -
 LINEAR -
 REUSE -
 VOLUMES(&LOG12VOL) -
 CYLINDERS(&CYLS)) -
 DATA -
 (NAME(&SYSID..LOGCOPY1.DS02.DATA))

 DEFINE CLUSTER -
 (NAME (&SYSID..LOGCOPY1.DS03) -
 LINEAR -
 REUSE -
 VOLUMES(&LOG13VOL) -
 CYLINDERS(&CYLS)) -
 DATA -
 (NAME(&SYSID..LOGCOPY1.DS03.DATA))

 DEFINE CLUSTER -
 (NAME (&SYSID..LOGCOPY2.DS01) -
 LINEAR -
 REUSE -
 VOLUMES(&LOG21VOL) -
 CYLINDERS(&CYLS)) -
 DATA -
 (NAME(&SYSID..LOGCOPY2.DS01.DATA))

 DEFINE CLUSTER -
 (NAME (&SYSID..LOGCOPY2.DS02) -
 LINEAR -
 REUSE -
 VOLUMES(&LOG22VOL) -
 CYLINDERS(&CYLS)) -
 DATA -
 (NAME(&SYSID..LOGCOPY2.DS02.DATA))

 DEFINE CLUSTER -

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 (NAME (&SYSID..LOGCOPY2.DS03) -
 LINEAR -
 REUSE -
 VOLUMES(&LOG23VOL) -
 CYLINDERS(&CYLS)) -
 DATA -
 (NAME(&SYSID..LOGCOPY2.DS03.DATA))

/*
//CSQTLOG EXEC PGM=CSQJU003
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQAUTH
//SYSUT1 DD DISP=OLD,DSN=&SYSID..BSDS01
//SYSUT2 DD DISP=OLD,DSN=&SYSID..BSDS02
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 NEWLOG DSNAME=&SYSID..LOGCOPY1.DS01,COPY1
 NEWLOG DSNAME=&SYSID..LOGCOPY1.DS02,COPY1
 NEWLOG DSNAME=&SYSID..LOGCOPY1.DS03,COPY1
 NEWLOG DSNAME=&SYSID..LOGCOPY2.DS01,COPY2
 NEWLOG DSNAME=&SYSID..LOGCOPY2.DS02,COPY2
 NEWLOG DSNAME=&SYSID..LOGCOPY2.DS03,COPY2
/*
//

MQSDEFC
//&USERID.J JOB (,EXP),'&USERID',
// NOTIFY=&USERID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// TIME=3
//*
/*ROUTE XEQ &LPAR
//*
//**/
//* JOB NAME = MQSDEFC */
//* */
//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM */
//* */
//* LICENSED MATERIALS - PROPERTY OF INTERPAY */
//* */
//* (C) COPYRIGHT INTERPAY 1999 */
//* */
//* STATUS = VERSION 1 */
//* */
//* FUNCTION = DEFINE MQSERIES DEFAULT BATCH/TSO ADAPTER */
//* */
//* */
//* NOTES */
//* 1. THE INSTALL CLIST SHOULD DO MOST OF THE WORK, THOUGH THE */

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//* INSTALLER MAY INSPECT THE AMS COMMANDS AND JCL AND EDIT */
//* THEM WHERE NECESSARY TO SUIT YOUR SITE'S REQUIREMENTS. */
//* 2. DSNAMES, CONTROL INTERVAL SIZE, RECORDSIZE, LINEAR, */
//* NONORDERED, AND SHAREOPTIONS MUST NOT BE CHANGED FOR */
//* DIRECTORY AND CATALOGUE DATA. */
//* 3. MANY PARAMETERS DO NOT APPLY TO DIRECTORY AND CATALOGUE */
//* DATA, INCLUDING SPANNED, EXCEPTIONEXIT, SPEED, */
//* BUFFERSPACE, AND WRITECHECK. */
//* 4. DATA SET SIZES, PASSWORDS, AND VOLUMES MAY BE CHANGED. */
//* MSS STAGING OPTIONS MAY BE ADDED. */
//* */
//**/
//DEFLIBS EXEC PGM=IEFBR14
//DD1 DD DISP=(NEW,CATLG,DELETE),
// DSN=&SYSID..PERM.LOAD,
// SPACE=(CYL,(1,1,20)),UNIT=SYSDA,VOL=SER=&VOL,
// DCB=(BLKSIZE=32760,RECFM=U,DSORG=PO)
//* */
//ASM EXEC PGM=IEV90,
// REGION=1024K,
// PARM='DECK,NOOBJECT,LIST'
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//**
// DD DSN=MQM.SCSQMACS,DISP=SHR
// DD DSN=&SYSID..SCSQPROC,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPUNCH DD DSN=&LOAD,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//**
//* CHANGE USERSRC.ASSEMBLE TO THE DATASET CONTAINING SOURCE
//**
//SYSIN DD DSN=&SYSID..SCSQPROC(CSQBDEFV),DISP=SHR
//SYSPRINT DD SYSOUT=*
//*
//**
//* LINK-EDIT
//**
//LKED EXEC PGM=IEWL,REGION=1024K,
// PARM=(LIST,LET,XREF,RENT),COND=(7,LT,ASM)
//**
//SYSOBJ DD DSN=MQM.SCSQLOAD,DISP=SHR
//**
//* CHANGE USER.LOADLIB TO THE LIBRARY THAT WILL CONTAIN THE
//* TRANAEXT LOAD MODULE. THIS LIBRARY NEEDs TO BE CONCATENATED
//* TO DD CSQXLIB IN THE CHANNEL INITIATOR JCL.
//**
//SYSLMOD DD DSN=&SYSID..PERM.LOAD,DISP=(SHR,KEEP)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&LOAD,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//**
//* NOTE: CSQBSTUB HAS BEEN INCLUDED IN THE LOAD MODULE, BUT IS
//* NECESSARY ONLY IF THE EXIT WILL ISSUE MQI CALLS.
//**
//SYSIN DD *
 INCLUDE SYSOBJ(CSQBSTUB)
 NAME CSQBDEFV(R)
/*

MQSDEFP
//&USERID.J JOB (,EXP),'&USERID',
// NOTIFY=&USERID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// TIME=3
//*
/*ROUTE XEQ &LPAR
//*
//* THIS JOB CREATES THE MQSERIES PAGESETS
//*
//**/
//* JOB NAME = MQSDEFP */
//* */
//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM */
//* */
//* LICENSED MATERIALS - PROPERTY OF INTERPAY */
//* */
//* (C) COPYRIGHT INTERPAY 1999 */
//* */
//* STATUS = VERSION 1 */
//* */
//* FUNCTION = DEFINE MQSERIES DATASETS */
//* */
//* NOTES */
//* 1. THE INSTALL CLIST SHOULD DO MOST OF THE WORK, THOUGH THE */
//* INSTALLER MAY INSPECT THE AMS COMMANDS AND JCL AND EDIT */
//* THEM WHERE NECESSARY TO SUIT YOUR SITE'S REQUIREMENTS. */
//* 2. DSNAMES, CONTROL INTERVAL SIZE, RECORDSIZE, LINEAR, */
//* NONORDERED, AND SHAREOPTIONS MUST NOT BE CHANGED FOR */
//* DIRECTORY AND CATALOGUE DATA. */
//* 3. MANY PARAMETERS DO NOT APPLY TO DIRECTORY AND CATALOGUE */
//* DATA, INCLUDING SPANNED, EXCEPTIONEXIT, SPEED, */
//* BUFFERSPACE, AND WRITECHECK. */
//* 4. DATA SET SIZES, PASSWORDS, AND VOLUMES MAY BE CHANGED. */

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//* MSS STAGING OPTIONS MAY BE ADDED. */
//* */
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID00) -
 RECORDS(2000 1000) -
 LINEAR -
 VOLUMES(&VOL1PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID00.DATA))

DEFINE CLUSTER -
 (NAME(&SYSID..PSID01) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL2PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID01.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID02) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL1PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID02.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID03) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL2PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID03.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID04) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL1PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID04.DATA))

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID05) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL2PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID05.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID06) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL1PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID06.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID07) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL2PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID07.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID08) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL1PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID08.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID09) -
 RECORDS(3000 1000) -
 LINEAR -
 VOLUMES(&VOL2PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID09.DATA))

 DEFINE CLUSTER -
 (NAME(&SYSID..PSID10) -
 RECORDS(3000 1000) -
 LINEAR -

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 VOLUMES(&VOL1PS) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(&SYSID..PSID10.DATA))

/*
//FORM EXEC PGM=CSQUTIL
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQAUTH
//CSQP0000 DD DISP=OLD,DSN=&SYSID..PSID00
//CSQP0001 DD DISP=OLD,DSN=&SYSID..PSID01
//CSQP0002 DD DISP=OLD,DSN=&SYSID..PSID02
//CSQP0003 DD DISP=OLD,DSN=&SYSID..PSID03
//CSQP0004 DD DISP=OLD,DSN=&SYSID..PSID04
//CSQP0005 DD DISP=OLD,DSN=&SYSID..PSID05
//CSQP0006 DD DISP=OLD,DSN=&SYSID..PSID06
//CSQP0007 DD DISP=OLD,DSN=&SYSID..PSID07
//CSQP0008 DD DISP=OLD,DSN=&SYSID..PSID08
//CSQP0009 DD DISP=OLD,DSN=&SYSID..PSID09
//CSQP0010 DD DISP=OLD,DSN=&SYSID..PSID10
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
FORMAT
/*
//

MQSDEFS

//&USERID.P JOB (ACCT#),'INSTALL',CLASS=A,MSGCLASS=X,
// NOTIFY=&USERID
//**/
//* JOB NAME = MQSERIES PROCEDURES */
//* */
//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM */
//* */
//* FUNCTION = MVS MODIFICATIONS */
//* */
//* PSEUDOCODE = */
//* MQIPM STEP FOR UPDATING THE MVS PROCLIB WITH CICS: */
//* 1) STARTUP PROCEDURES */
//* */
//* NOTES = */
//* PLEASE CHECK THIS JOB CAREFULLY TO ENSURE THAT THE SYSTEM */
//* LIBRARY NAMES ARE THE CORRECT ONES FOR YOUR SITE. */
//***
//* ADD CATALOGED PROCEDURES TO PROCLIB *
//***
/*ROUTE XEQ &LPAR
//***
//MQIPM EXEC PGM=IEBUPDTE,PARM=NEW

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB.DB2 < or another proclib
//SYSIN DD DATA
./ ADD NAME=&SYSID.MSTR
//&SYSID.MSTR EXEC PGM=CSQYASCP,REGION=7168K
//STEPLIB DD DSN=MQM.SCSQANLE,DISP=SHR
// DD DSN=MQMP.SMQMEXIT,DISP=SHR
//BSDS1 DD DSN=&SYSID..BSDS01,DISP=SHR
//BSDS2 DD DSN=&SYSID..BSDS02,DISP=SHR
//CSQINP1 DD DSN=&SYSID..SCSQPROC(CSQ4INP1),DISP=SHR
//CSQINP2 DD DSN=&SYSID..SCSQPROC(CSQ4STGC),DISP=SHR
// DD DSN=&SYSID..SCSQPROC(CSQ4DISX),DISP=SHR
// DD DSN=&SYSID..SCSQPROC(CSQ4INP2),DISP=SHR
//CSQOUT1 DD SYSOUT=X
//CSQOUT2 DD SYSOUT=X
//CSQP0000 DD DSN=&SYSID..PSID00,DISP=SHR
//CSQP0001 DD DSN=&SYSID..PSID01,DISP=SHR
//CSQP0002 DD DSN=&SYSID..PSID02,DISP=SHR
//CSQP0003 DD DSN=&SYSID..PSID03,DISP=SHR
//CSQP0004 DD DSN=&SYSID..PSID04,DISP=SHR
//CSQP0005 DD DSN=&SYSID..PSID05,DISP=SHR
//CSQP0006 DD DSN=&SYSID..PSID06,DISP=SHR
//CSQP0007 DD DSN=&SYSID..PSID07,DISP=SHR
//CSQP0008 DD DSN=&SYSID..PSID08,DISP=SHR
//CSQP0009 DD DSN=&SYSID..PSID09,DISP=SHR
//CSQP0010 DD DSN=&SYSID..PSID10,DISP=SHR
//*
./ ADD NAME=&SYSID.CHIN
//&SYSID.CHIN EXEC PGM=CSQXJST,REGION=7168K,TIME=1440
//STEPLIB DD DSN=MQM.SCSQANLE,DISP=SHR
// DD DSN=MQMP.SMQMEXIT,DISP=SHR
// DD DSN=EDC.SEDCLINK,DISP=SHR
//CSQXLIB DD DSN=MQMP.SMQMEXIT,DISP=SHR
//CSQINPX DD DSN=&SYSID..SCSQPROC(CSQINPX),DISP=SHR
//CSQOUTX DD SYSOUT=X
./ ENDUP

LOCAL CUSTOMIZATION

It may be necessary for you to make some minor changes to the system
generator tool to accommodate such factors as local naming
conventions.

In particular, you need to consider the following:

• The CICS system name (MQSDEFA skeleton) for initiation
queues, which is also used in the CSQCPARM (INITPARM) for
your CICS region.

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• The ‘proclib’ name (MQSDEFS), which is for the
SYS1.PROCLIB.DB2 environment in our example, though this
could be for a different environment in your case.

• The QMANAGER trigger interval, which is set to 300,000
(instead of the default 999,999,999).

• The MSTR and CHIN procedure expect the parameter modules
in a library called MQMP.SMQMEXIT (this should be APF-
authorized).

• You have to create the parameter modules separately from the
generator tool.

• CSQ4INP2 (which is a member of SCSQPROC) contains a
START statement for the channel initiator address space. This
expects a parameter module with the name &SYSIDCHIP (for
instance, CSQ4CHIP).

• The ‘stgclass’ names should be changed to suit your requirements.

Paul Jansen
Systems Programmer
Interpay (The Netherlands) © Xephon 2000

MQSeries for MVS – a quick primer

This article is intended as a ‘quick primer’ for those starting with
MQSeries on MVS.

THE BASICS

MQSeries lets MVS applications use message queueing to participate
in message-driven processing. Applications can communicate across
different platforms using the appropriate message queueing software
products, such as MQSeries for MVS/ESA and MQSeries for OS/2.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

MQSeries products use a common application programming interface,
the MQI, on whatever platforms they run. This means that the calls
made by applications and the messages they exchange are common
between platforms.

Applications can be created in:

• MVS’s batch and TSO environment

• CICS’s transaction environment

• IMS’s transaction environment.

A queue manager provides queueing services to applications. More
than one queue manager (subsystem) may run within each MQSeries
system. Distributed queueing supports communication between queue
managers. Either CICS intersystem communication or native MVS
communication without CICS can be used for distributed queueing.

Both types of queueing can be enabled and used simultaneously on the
same instance of MQSeries. However, neither has any knowledge of
each other’s channels and, therefore, it’s necessary to ensure that the
queue names they use are distinct.

The Client Attachment feature is a component of the MQSeries
product that facilitates Distributed Queue Management (DQM). An
MQSeries application can be run on an MQSeries client that interacts
with one or more MQSeries servers and connects to their queue
managers by means of a communications protocol. This feature is free
with MQSeries for MVS, so, when installed on a mainframe-based
MQSeries server using the communications set-up described above,
multiple MQSeries installs and their associated licence cost at the
client end (such as NT or OS/2) are saved.

QUEUES

Various types of queue are available in MQSeries, and queues belong
to queue managers that maintain them. Queues can be local or remote,
and messages are sent across different queue managers using the
distributed queueing facility, with communication with MVS being
handled either by CICS, TCP/IP, or LU 6.2.

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

TYPES OF QUEUE

System default queues
These are a set of queue definitions supplied with MQSeries.

Local queue
A local queue is used for processing messages within the same
platform on which the queue manager is running.

Event queues
A local or remote queue used to hold messages.

Transmission queue
This is a local queue that has ‘usage attribute’ XMIT. This type of
queue should be associated with a sender channel. Any messages
flowing from the queue manager through such a channel are essentially
taken from the associated transmission queue.

A queue manager can include a default transmission queue. When the
queue manager is not able to resolve the channel to be used for a
message addressed to a remote queue manager in the network, it puts
the message on the default transmission queue, so the message is then
moved to the next queue manager, where its address may be resolved.

Initiation queue

A local queue can be used as an initiation queue by a triggered local
queue. If a local queue definition states that the queue can trigger a
process under certain conditions, a trigger message is written to the
initiation queue specified when the conditions arise. The long running
trigger monitor task reads this message and the appropriate queue
manager process is triggered.

Dead letter queue

A queue manager in a distributed environment should include a dead
letter queue. When the queue manager is unable to process a message
for whatever reason, it retains the message in the dead letter queue,
which prevents channels from coming to a halt.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

Remote queue

A remote queue is used for forwarding a message to another queue
manager, which should be available on the network using the distributed
queueing facility.

Model queue

A queue used as a template for creating dynamic queues. These queues
cannot be accessed by any application for putting or getting messages.

Alias queue

Applications connect to either a local or remote queue via this queue.

Dynamic queue

A queue created for use as a ‘scratch pad’ by an application and deleted
when no longer required. Dynamic queues are created using the
template from a model queue.

There are two types of dynamic queue.

• Temporary dynamic queue
A queue that will always get deleted when the application that
created it issues an MQCLOSE.

• Permanent dynamic queue
A queue that can remain in the queue manager even after an
application has finished.

System-command input queue

A local queue to which suitably authorized applications can send
MQSeries commands. These commands are then retrieved by the
Command Server.

CHANNELS

A channel is an MQSeries object that is used to move messages from
one queue manager to another or from a client queue manager to a
server queue manager. Channels must be in a ‘running’ state for
messages to be transmitted across the network. Channels use the base
networking support provided by the APPC or TCP/IP.

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The channel initiator is an independent process that enables an
MQSeries queue manager to communicate with the network. When
successfully started, it allows all the channels to start and makes the
network support available on demand.

A sender channel

This should be defined with exactly the same name as a receiver
channel on the other queue manager.

A receiver channel

This should be defined as a receiver channel with exactly the same
name as a sender channel on the other queue manager.

Channel sequence number queue

A queue that is used to number sequential messages for the unit of
work processed when MQSeries subsystems are communicating.

Channel command queue

A queue used to handle commands for channels.

Channel initiation queue

A queue that sends commands to channels.

Channel synchronization queue

A queue that is used to number sequential messages for the unit of
work information handled when MQSeries subsystems are
communicating.

Channel reply information queue

A queue that handles replies from channel commands.

COMMAND SERVER AND COMMAND PROCESSOR

Messages are read and verified by the command server and the valid
ones are passed to the command processor. The command processor
processes message, putting replies on to a reply-to queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

LISTENERS

This process is also started separately for receiving messages coming
on the network that are addressed to an MQSeries queue manager.
Separate listener processes need to be started for LU62 and TCP/IP.

Saida Davies (UK) © Xephon 2000

MQSeries SupportPacs

IBM has released new MQSeries SupportPacs for download from
http://www.ibm.com/software/mqseries/txppacs. The SupportPacs,
which contain MQSeries client components, are:

• MAC6: MQSeries V5.1 Client for AIX

• MAC7: MQSeries V5.1 Client for HP-UX V10

• MAC8: MQSeries V5.1 Client for HP-UX V11

• MAC9: MQSeries V5.1 Client for Sun Solaris.

One problem when installing SupportPac MA85 for Sun Solaris on a
Solaris 2.6 host with MQSeries 5.0 and CSD03 comes when you issue
instruction:

perl Makefile.PL

which results in error message:

Perl must be recompiled with '-lthread -lc', and '-D_REENTRANT'
➤ on Solaris

The solution to this problem is to upgrade to MQSeries Perl API 1.06,
which is now available from http://www.perl.com/cpan.

To navigate to it, follow the sequence: Modules, Modules by name,
MQSeries.

© Xephon 2000

MQ news

New Era of Networks has announced
NEONadapter for XML, which allows
NEON Integration Servers to integrate XML
business-to-business systems with other
applications in their enterprise. The software
can be used to integrate systems using
different XML dialects, such as Microsoft’s
BizTalk and RosettaNet. It features the
ability to parse XML document type
definitions and generate formats for the
NEONFormatter. It also allows users to add
prefixes to the DTD format. A choice of
connectivity options is available, allowing
any new application that’s queue-enabled to
work with the adapter. The version for
Solaris is out now and supports IBM’s
MQSeries Integrator for NT and Unix as well
as NEON’s MQIntegrator for MVS.
Availability on NT, AIX, and HP-UX is
planned for late 1999. Prices start at
US$65,000.

For further information contact:
NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA
Tel: +1 303 694 3933
Fax: +1 303 694 3885
Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK
Tel: + 44 171 329 4669
Fax:+ 44 171 329 4567

* * *

Progress Software has announced SonicMQ,
a Java-based Internet messaging server. The

software is designed to simplify the
development of distributed Internet
applications and integrates with the
company’s own Apptivity Java application
server and development suite. SonicMQ
uses the new Java Message Service (JMS)
standard that’s also supported by MQSeries
5. This is a messaging standard that enables
Java developers to add enterprise messaging
capabilities to their applications.

Progress is to ship both a Developer and
Enterprise Edition of SonicMQ, starting
November. The Developer Edition is free
and the price of the Enterprise Edition is
available on request.

For further information contact:
Progress Software, 14 Oak Park, Bedford
MA 01730, USA
Tel: +1 781 280 4000
Fax: +1 781 280 4095
Web: http://www.progress.com

Progress Software, The Square, Basingview,
Basingstoke, Hants RG21 2EQ, UK
Tel: +44 1256 816668
Fax: +44 1256 463226

* * *

IBM has announced that the launch of
MQSeries Integrator V2 has been delayed in
order to ‘address customer requirements’
(the lack of supported platforms and some
missing functionality). The planned
availability date was 10 December and is
now 31 March.

x xephon

	The Application Messaging Interface
	A system generator for MQSeries (part 3)
	MQSeries for MVS – a quick primer
	MQSeries SupportPacs
	MQ news

