v

January 2000

]
In this issue

3 TheApplication Messaging
Interface

23 A system generator for MQSeries
(part 3)

42 MQSeriesfor MVS—aquick
primer

47 MQSeries SupportPacs

48 MOQ news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road
Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955
e-mail: HarryL @xephon.com

North American office

Xephon/QNA

1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150

USA

Telephone: +1 940 455 7050

Contributions

ArticlespublishedinMQ Updatearepaidfor
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessiit). If
you' ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor

Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal giveany warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’'s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsawhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
theprior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promation, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 |abels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

The Application Messaging Interface

INTRODUCTION

Application developers have become accustomed to using the
MQSeries Interface (MQI) for enterprise application integration.
MQI isasimpleinterface with which to begin devel oping messaging
applications—for instance, there are only thirteen MQI callsto learn.
All this apparent ssimplicity comes at a cost, the cost being the
incredible number of options available under MQI. Thismakes MQI
arich, low-level messaging API. However, application developers
often protest at being overwhelmed with MQI’s details, which they
consider unrelated to business logic. This is also a problem for
MQSeries administrators as MQI allows accessto almost all aspects
of the middleware. Another common problem is that, once the
application is deployed, changing any of its attributes, such as
messagepersistence, priority, andwaittimefor receiving applications,
needs redevel opment and redeployment.

Applicationarchitectsand devel opersaddresstheseissuesby designing
wrapper APIs that hide the complexity of the MQI from application
developers. These wrappers usually aren’t general enough to
accommaodate centralized control of the messaging details. They are
also organization-specificandfail adequately to distinguishtheduties
of MQSeries administrators from those of application developersin
a logical way. Application developers also face the challenge of
learning several messaging interfaces, if they need to develop
applications that use several messaging products.

Therefore, a need exists for a messaging API that provides both a
higher level of message abstraction and standardization. The Open
Applications Group (www.openapplications.org), which is a non-
profit consortium of |eading enterprise software devel opers, realized
this and worked on the requirements for a standard messaging API.
Recently, it accepted IBM’s proposal for the Application Messaging
Interface to be adopted as the Open Application Middleware API
specification. IBM has quickly followed up the AMI specification
with an implementation via support packs MAOF and MAOG.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

In this article, | introduce the AMI and its underlying model. | then
explore the APl and its use for developing standard messaging
applications. The article contains working samples of application
programs that demonstrate significant differences between the MQI
and AMI.

THE MAIN FEATURES OF THEAMI
The AMI has three main components;

 Themessage
» Theservice
o Thepoalicy.

Themessageiswhat isbeing sent (or received). Theserviceisdefined
as the location where the message is sent (or received). The policy
determines how the message is sent or received.

For the purpose of mapping these components to the MQI, an AMI
message is a ‘“most probably’ subset of an MQI message. In other
words, thereareseveral attributesthat areavailableintheM QI that are
not avail ablein amessage asdefined by theAMI. Onecan’'treally say
that an AMI message is a subset of an MQI message as the
implementation of an AMI message is not visible.

A servicecanbemapped onto aqueueand queue manager combination,
There is more to a service than just a qgueue name, though a queue
name is a good approximation of a service.

A policy is a new concept that takes some attributes from MQI
messages and somefrom M QI applicationsand makesthemavailable
at acentral location. This separation of the policy from the message
isone of the greatest strengths of theAMI, making it avery attractive
interface, evenif MQSeriesiscurrently theonly messaging middlieware
In use in the organization.

In order to usetheAMI, devel opers should specify the message data,
the service, and the policy. Devel opers can choose to use the default
services and policy that are provided with the AMI. MQSeries
administrators can al so create additional servicesand policies, which

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

may then be stored in a repository. Support pack MAOF provides a
default implementation of the repository.

AMI currently supports basic messaging applications that:
* Send amessage

» Receive amessage

* Reguest/respond

» Publish/subscribe.

The API provision of request/response facilities satisfies a pent-up
demand for this functionality. Application developers have always
been able to develop thistype of application before by managing the
message id/correlation id. However, this is not an intuitive way of
doingthings. Ontheother hand, theAM | doesn’ t seemto have support
for other parts of the MQSeries framework, including the Trigger
Monitor Interface and the Message Channel Interface (Publish-and-
Subscribeisanew areaof functionality inM QSeries5.1). Neverthel ess,
the AMI isinteroperable with other MQSeries interfaces — you can
exchange messages with other applications that use MQI using the
AMI.

TheAMI iscurrently availablein C, C++, and Java. For theC version,
theAMI isavailableintwo ‘levels : ahigh-level procedural interface
and alow-level object interface.

AMI COMPONENTS

The AMI requires three main components. the message, the service,
and the policy. In this section | provide amore detailed definition of
each component.

The message

The message comprises message attributes and message data. Asfar
astheAMI isconcerned, messagedataisapplicationdataandtheAM|
does not act on it. Message attributes, such as the MessagelD and
CorrelID, arepropertiesof themessageitself. TheAMI usesproperties
of the message object, along with the policy, to construct MQSeries

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

headersand descriptors. M essageattri butescan bemappedtoMQMD
members. However, notall MQMD fieldsareavailableinthemessage
object —some, such aspersistence and expiry, are not attributes of the
AMI message. The AMI lets you name message objects, whichisa
useful feature. Developers have to use message names in request/
response-type applications to match request and response messages.

The AMI then has functions to set and get each of the message
attributes and functions to read and write message data.

The service

To the AMI, a service is alocation where a message can be sent or
received. In MQSeriesterminology, adestination isaqueueresiding
Inaqueuemanager. Theserviceisset up by anM QSeriesadministrator
and, consequently, the complexity of setting up and managing queues
is hidden from application programmers. There are five types of
service available viathe AMI:;

1 Sender

2 Recever

3 Distribution list
4 Publisher

5 Subscriber.

A sender service establishes one-way communication for sending
messages. A receiver service establishesone-way communication for
recelving messages. A distribution list contains a list of senders to
which messages can be sent. A publisher contains a sender that
publishes messages to the publish/subscribe broker. A subscriber
contains a sender, for subscribing to a broker, and a receiver, to get
publications from a broker.

TheAMI hasfunctionsexplicitly to open and close services. Services
can also beopened and closedimplicitly by other functions. Functions
are also provided for exception processing. Services use policy
objects to get the correct M QSeries options.

TheAMI providesadefault exampleof eachtypeof service. Application
programmers can use the AMI’sdefault services or ones provided by

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

the M QSeries administrator. AdministratorsusetheAMI Admin tool
to set up and manage custom MQSeries services, and the custom
services they set up can be stored in arepository.

The current implementation of the repository does not appear to
distinguish a sending service from a receiving service. As a
conseguence, one can use a sending service in a receive-only type
application. This means that the distinction between a sending and
receiving service depends on the context in this implementation.

The policy

The policy is one of the most interesting aspects of the AMI, and it
controlshow AMI functionsoperate. Policiescontrol itemsrelatingto
the message object and service objects. For example, the priority and
persistence of the message are controlled by the policy. In the case of
sender and receiver services, the policy defineswhether together they
participate in a unit of work. The policy also determines the retry
options for services.

It'spossiblefor each AMI call to use adifferent policy. For example,
when an application exchanges the same message with a number of
other applications, each message can be sent using a policy that's
linked to therecipient. The other approach would beto use onepolicy
that’sshared by every call inanapplication. Thiswould makeapolicy
change impact the behaviour of the entire application. This kind of
flexibility can be provided with policies.

In common with services, somedefault policiesare provided with the
AMI. Policies can be customized and stored in arepository, with the
AMI Admin Tool being used to create and manage them.

Other AMI objects

There are two other AMI objects of which one should be aware: the
session and connection objects. The session object is acontainer for
all message, service, and policy objects. It contains a connection
object that’ snot visibleto applications. The session object createsand
manages other objects, and al so providesthe default scope of aunit of
work. AMI contains functions to create, initialize, open, close, and
terminate asession. Within asession, AMI providesan APl to create,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

manage, and destroy other objects. Functions are provided to control
transaction processing and error handling.

THEAMI API

As mentioned earlier, the AMI supports two APIs for C. The high-
level C APl comprises the thirteen functions listed below (in this
article, we concentrate on the first seven of them).

e Session management:
— aminitialize
— amlerminate.
* Send message:
— amSendMsg
— amSendRequest
— amSendResponse.
* Receive message:
— amReceiveMsg
— amReceiveRequest.
* Publish/subscribe
— amPublish
— amSubscribe
— amUnsubscribe
— amReceivePublication.
» Transaction support:
— amCommit
— amBackout.

Thelow-level APIsprovidegreater accessto constructors, destructors,
‘set’ and ‘get’ functions for individual messages, and service and
policy objects.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

AMI IMPLEMENTATION

The AMI implementation comprises language support for AMI-
specified functions and repository support for storing services and
policies. Services and policies may be stored in XML files. Support
pack MAOG provides a GUI interface to an XML repository, though
(at the time of writing) only an NT version was released. ThisAMI
Administration Tool is used to create new policies and services and
maintain the repository.

ENVIRONMENT

In this article, we look at the details of the AMI and its current
implementation. ThesamplesprovidedwiththisarticleuseM QSeries
5.1 on Windows NT 4 (a minimum of SP3 is recommended). As
mentioned earlier, support packsMAOF and MAOG should beinstal l ed.

APPLICATION DEVELOPMENT IN AMI

To illustrate application development in C using the high-level AP,
wedevel op application programsthat demonstrateAM| conceptsand
make use of the salient features of the API. Hence, we develop small
programs to:

« Send a message to sender service SAMPLE.SENDER (see
samplesend.c).

* Receive amessage from receiver service SAMPLE.RECEIVER
(see samplercv.c).

» Carryoutrequest/responsetypeprocessing (sampleclt.cillustrates
client-side processing and samplesvr.c server-side processing).

Administrative actions
To achieve these objectives, we need to carry out the following
administrative activities:

o Set up asender service called SAMPLE.SENDER. For this, you
need to specify at least the queue name. Let’s call the queue
SAMPLE.REQUEST.QUEUE, as this is the name used in
samplesend.c.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 Setupareceiver servicecaled SAMPLE.RECEIVER. Thequeue
name specified is SAMPLE.REQUEST.QUEUE (the name used
in samplercv.c).

o Set up asender service called REQUEST.SERVICE with queue
name SAMPLE.REQUEST.QUEUE (the name used in
sampleclt.c).

o Setupareceiver serviceRESPONSE.SERVICE with queuename
SAMPLE.RESPONSE.QUEUE (the name used in sampleclt.c).

o Set up areceiver service REQUEST.RECEIVE.SERVICE with
gueue name SAMPLE.REQUEST.QUEUE (the name used in
samplesvr.c).

e Setupapolicy called SAMPLE.POLICY.

* Create queue SAMPLE.REQUEST.QUEUE in the default queue
manager.

* Createqueue SAMPLE.RESPONSE.QUEUE Inthedefault queue
managey.

Asmentioned before, several MQM D-rel ated message attributesand
MQPUT options are controlled by means of the sender service and
policy.

Sending a message using the AM |
The application has following structure:

e Create and initialize session
» Send message
e Terminate the session.

Unlike an MQI application, there are no explicit MQCONN and
MQDICcallsandtheir associated drawbacks(for example, MQCONN
needs to be passed the name of the queue manager, which is usually
coded in the application). The AMI model stores the queue manager
namein the sender service, which meansthat no application changes
are necessary if the queue manager name in MQCONN needs to be
changed.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The calls used in the sample program are:

hSession = amInitialize (name, myPolicy, pCompCode, pReason)

The above call creates and opens the named session.

success = amSendMsg (hSession, mySender, myPolicy, datelen,
O pData,NULL, pCompCode, pReason)

Theabove call creates asender object, apolicy object, and amessage
object, and then invokes ‘send’ (note the use of the continuation
character, ‘0’ toindicatethat oneline of code mapsto morethan one
line of print).

success = amTerminate (&hSession, myPolicy, pCompCode, pReason)

This call closes and deletes the session. The process of deleting a
session, in turn, implicitly closes and deletes the message object,
sender object, and the policy object.

aminitialize returns a handle to session object. amSendMessge and
amTer minate both return an AMBOOL type that may take the value
AMB TRUE or AMB_FALSE.

Theincludefileamtc.h definesall function prototypesand constants,
including AMB_TRUE, AMB_FALSE, and AMH_NULL_HANDLE.

Receiving a message usingAM|

The receiver application is very similar at the conceptual level,
Obviously you need areceiver service, SAMPLE.RECEIVER, to pick
up messages from SAMPLE.REQUEST.QUEUE.

We continue to use both aminitialize and amTerminate calls, and
additionally use amReceiverMsg calls:

success = amReceiveMsg (hSession, myReceiver, myPolicy,
0O selMessageName, datalen, pData, rcvMsgName, pCompCode,
O pReason)

Here, selMessageName is a message object that can be constructed
using the low-level AMI API for C. It istypically used for selecting
messagesbased on correlationid. Inour example, weuseNULL asour
selection criterion (in other words, we use the default selection
criterion).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

Request/response-type processing usng AM|

The AMI provides special support for request/response-type
applications. Our client program is structured as follows:

» Create and open session (aminitialize)

* Send request (amSendRequest)

* Recelveresponse, possibly with wait (amReceiveMsg)

o Terminate session (amTerminate).

amSendRequest differs from amSendMsg in that it allows you to
specify areceiver to whom the responseis sent. The sender message
name is then used with an amReceiveMsg call to select the matching
response.

success= amSendRequest (hSession, mySender, myPolicy,
0 myReceiver, datelen, pData, NULL, pCompCode, pReason)

In the amSendRequest call, mySender and myReceiver are existing
service points (the NULL default specification is accepted). If either
doesn’t exist, you get an error when the code compl etes.

The server program is structured as follows.
* Create and open asession (aminitialize)
* Recelve arequest (amRecei veRequest)

» Send response (amSendResponse)

e Terminate session (amTerminate).

amRecel veRequest takesthename of thesender servicethat isusedfor
the response. Unlike the amReceiveMsg call, it doesn’'t support
selection criteria. Theresponseissent using an amSendResponsecall.
This causes the Correlld and Messageld to be set in the response
message, based on the flags in the request message. The
amSendResponsecall usesthesender serviceandtheresponsemessage
namespecified by therequest messagerecel ved by amRecel veRequest.
Success = amReceiveRequest (hSession, myReceiver, myPolicy,

0 bufflLen, pDatalLen, pData, rcvMsgName, mySender, pCompCode,
O pReason)

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

In an amReceiveRequest call, the name of mySender should be
specified as onethat doesn’t exist in the AMI repository. Thisallows
therequest messageto dictatewhich sender service should beusedfor
the response. If mySender existsin the repository, you will receive a
completion code of ‘2" and areason code of ‘ 70’.

success = amSendResponse (hSession, mySender, myPolicy,
O rcvMsgName, datalen, pData, sndMsgName, pCompCode, pReason)

The sender name for the amSendResponse call is the same as that
specified in the amReceiveRequest call.

SAMPLESEND.C

/**/
/* File Name: samplesend.c */
/* Purpose: Send a message to the sender service SAMPLE using */
/* policy SAMPLE.POLICY. */

/**/

f#finclude <stdio.h>
##include <stdlib.h>
#include <string.h>
f#include <amtc.h>

f#fdefine SAMPLE_SESSION_NAME "SAMPLE.SESSION"

fidefine SAMPLE_SENDER_NAME "SAMPLE.SENDER"

ffdefine SAMPLE_MESSAGE_NAME "SAMPLE.SEND.MESSAGE"

fidefine SAMPLE_POLICY_NAME "SAMPLE.POLICY"

ffidefine SAMPLE_MESSAGE_DATA "Application data for sample send program"

int main(int argc, char** argv)
{
AMHSES hSession
AMLONG compCode;
AMLONG reason;

AMH_NULL_HANDLE;

AMBOOL success = AMB_FALSE;

AMHMSG hMessage = AMH_NULL_HANDLE;

char sampleMsg[256];
/**/
/* Initialize (create and open) the session with the specified */
/* name. */

/**/

printf("Starting samplesend program \n");

hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */
, SAMPLE_POLICY_NAME /* policy */
, &compCode /* completion code */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

, &reason); /* reason code */

if (hSession == AMH_NULL_HANDLE)
{

printf("*** amInitialize() failed cc = %d, rc = %d \n",

compCode, reason);

printf(" Completed samplesend \n");

return EXIT_FAILURE;
}
printf("amInitialize() succeeded \n");

/**/

/* Send the message using the sample data. */
/**/

sprintf(sampleMsg, "%s", SAMPLE_MSG_DATA);

/**/

/* Send the message as a datagram using amSendMsg. */
/**/
success = amSendMsg(hSession /* session handle */
, SAMPLE_SENDER_NAME /* sender */
, SAMPLE_POLICY_NAME /* policy */
, strlen(sampleMsg)+1 /* data length */
, (unsigned char *)sampleMsg /* message buffer */
, SAMPLE_MESSAGE_NAME /* message object */
, &compCode /* completion code */
, &reason); /* reason code */
if (success == AMB_FALSE)
{

printf("*** amSendMsg() failed cc = %d, rc = %d \n",
compCode, reason);
amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
printf(" Completed samplesend \n");
return EXIT_FAILURE;
}
printf(" amSendMsg() succeeded \n");

/**/

/* Terminate the session. */
/**/
success = amTerminate(&hSession /* session handle */
, "SAMPLE.POLICY" /* policy */
, &compCode /* completion code */
, &reason); /* reason code */
if (success == AMB_FALSE)
{

printf("*** amTerminate() failed cc = %d, rc = %d \n",
compCode, reason);
printf(" Completed samplesend \n");
return EXIT_FAILURE;
}

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

printf("

printf("

amTerminate() succeeded \n");

Completed samplesend\n™);

return EXIT_SUCCESS;

}

SAMPLERCV.C

/***/

/* File name: samplercv.c
/***/
f##include <stdio.h>
f#finclude <stdlib.h>
f#Finclude <string.h>
ffinclude <amtc.h>

fidefine SAMPLE_SESSION_NAME "SAMPLE.SESSION"
fidefine SAMPLE_RECEIVER_NAME "SAMPLE.RECEIVER"
ffdefine SAMPLE_POLICY_NAME "SAMPLE.POLICY"
f#fdefine SAMPLE_MESSAGE_NAME "SAMPLE.RECEIVE.MESSAGE"
int main(int argc, char **argv)
{

AMLONG compCode;

AMLONG reason;

AMHSES hSession = AMH_NULL_HANDLE;

AMBOOL success = AMB_FALSE;

AMLONG datalength;

AMLONG msgCount = 0;

char data[256];

*

/**/

/* Initialize (create and open) the session with the specified

/* name.

*/
*/

/**/

printf("<<< Starting samplercv >>>\n");

hSession = amInitialize(SAMPLE_SESSION_NAME /* session name
, "SAMPLE.POLICY" /* policy
, &compCode /* completion code
, &reason); /* reason code
if (hSession == AMH_NULL_HANDLE)
{
printf("*** amInitialize() failed cc = %d, rc = %d \n",
compCode, reason);
printf("<<< Completed samplercv >>>\n");
return EXIT_FAILURE;
}
printf(" amInitialize() succeeded \n");
© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/
*/

/

15

/**/

/* Receive the message using amReceiveMsg. */
/**/

success = amReceiveMsg(hSession /* session handle */
, SAMPLE_RECEIVER_NAME /* receiver service name */
, "SAMPLE.POLICY" /* policy */
, NULL /* No selection message */
, Sizeof(data) /* buffer Tength */
, &datalength /* data length */
, (unsigned char *)data /* messsage data */
, SAMPLE_MESSAGE_NAME /* message */
, &compCode /* completion code */
, &reason); /* reason code */

if (success == AMB_FALSE)

{

printf("*** amReceiveMsg() failed cc = %d, rc = %d \n",
compCode, reason);

amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);

printf("<<< Completed samplercv >>>\n");

return EXIT_FAILURE;

}
data[datalength] = "\0"';
printf(" %s\n", data);

/**/

/* Terminate the session. */
/**/

success = amTerminate(&hSession /* session handle */
, "SAMPLE.POLICY" /* policy */
, &compCode /* completion code */
, &reason); /* reason code */

if (success == AMB_FALSE)

{

printf("*** amTerminate() failed cc = %d, rc = %d \n",
compCode, reason);
printf("<<< Completed samplercv >>>\n");
return EXIT_FAILURE;
}
printf(" amTerminate() succeeded \n");

printf("<<< Completed samplercv >>>\n");
return EXIT_SUCCESS;

}
/***/
/* File name: sampleclt */

/***/

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ffinclude <stdio.h>
ffinclude <stdlib.h>
#include <string.h>
f#include <amtc.h>

ffdefine SAMPLE_SESSION_NAME "REQUEST.SESSION"
ffdefine SAMPLE_POLICY_NAME "SAMPLE.POLICY"

ffdefine SAMPLE_SENDER_NAME "REQUEST.SERVICE™
ffdefine SAMPLE_RECEIVER_NAME "RESPONSE.SERVICE™
ffdefine SAMPLE_SEND_MESSAGE_NAME "REQUEST.MESSAGE™

ffdefine SAMPLE_RECEIVE_MESSAGE_NAME "RESPONSE.MESSAGE"
ffdefine SAMPLE_MSG_DATA " REQUEST ™

int main(int argc , char ** argv)
{

AMLONG compCode;

AMLONG reason;

AMHSES hSession;

AMBOOL success;

char request[10247;

char reply[1024];

AMLONG dataRead = 0;

/**/

/* Initialize (create and open) the session with the specified */
/* name. */
/**/
printf("™ Starting sampleclt \n");
hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */

, SAMPLE_POLICY_NAME /* policy */

, &compCode /* completion code */

, &reason); /* reason code */
if (hSession == AMH_NULL_HANDLE)

{
printf("*** amlnitialize() failed cc = %d, rc = %d \n",
compCode, reason);
printf(™ Completed sampleclt \n");
return EXIT_FAILURE;
}
printf(" amInitialize() succeeded \n");

memset(request, 0, sizeof(request));
sprintf(request, "sampleclt%s\0", SAMPLE_MSG_DATA);

/**/

/* Send the request message using amSendRequest. */
/**/

success = amSendRequest(hSession /* session handle */
, SAMPLE_SENDER_NAME /* sender service name */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

, SAMPLE_POLICY_NAME /* policy */

, SAMPLE_RECEIVER_NAME /* receiver svc name */
, strlen(request)+1l /* data length */
, (unsigned char *)request /* messsage data */
, SAMPLE_SEND_MESSAGE_NAME /* message name */
, &compCode /* completion code */
, &reason); /* reason code */

if (success == AMB_FALSE)

{

printf("*** amSendRequest() failed cc = %d, rc = %d \n",

compCode, reason);

amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
printf(" Completed sampleclt \n");
return EXIT_FAILURE;

}
printf(" SENT\n");
printf(" %s\n", request);

/**/

/* Receive the response message using amReceiveMsg. */
/**/
success = amReceiveMsg(hSession /* session handle */

, SAMPLE_RECEIVER_NAME /* receiver svc name */

, SAMPLE_POLICY_NAME /* policy name */

, SAMPLE_SEND_MESSAGE_NAME /* sel message name */

, sizeof(reply) /* buffer Tength */

, &dataRead /* returned data length */

, (unsigned char *)reply /* messsage data */

, SAMPLE_RECEIVE_MESSAGE_NAME /* reply message name */

, &compCode /* completion code */

, &reason); /* reason code */

if (success == AMB_FALSE)

{

}

if (reason == AMRC_NO_MSG_AVAILABLE)

{

}

printf("*** REPLY did not arrive within the specified policy \
wait time\n");

else

{

}

printf("amReceiveMsg() failed cc = %d, rc = %d \n",
compCode, reason);
amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
printf(" Completed sampleclt \n");
return EXIT_FAILURE;

reply[dataRead] = "\0';
printf(" RECEIVED\n");
printf(” %s\n", reply);

18

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/*******

/* Termi
/*******

Ssucces

if (s
{

prin

prin

retu
}
printf

printf
return

***/

nate the session. */
***/
s = amTerminate(&hSession /* session handle */
, SAMPLE_POLICY_NAME /* policy */
, &compCode /* completion code */
, &reason); /* reason code */
uccess == AMB_FALSE)

tf("*** amTerminate() failed cc = %d, rc = %d \n",
compCode, reason);

tf(" Completed sampleclt \n");

rn EXIT_FAILURE;

" amTerminate() succeeded \n");

(" Completed sampleclt \n");
EXIT_SUCCESS;

SAMPLESVR.C

/***/

name: samplesvr */
/***/

/* File

ffinclude
ffinclude
ffinclude
fFinclude
ffdefine
ffdefine
ffdefine
ffdefine
ffdefine
ffdefine

int main

{
AMLONG
AMLONG
AMHSES
AMBOOL
AMLONG
AMLONG
char
char

/*******

/* Initi

<stdio.h>

<stdlib.h>

<string.h>

<amtc.h>

SAMPLE_SESSION_NAME "RESPONSE.SESSION"
SAMPLE_POLICY_NAME "SAMPLE.POLICY"
SAMPLE_RECEIVER_NAME "REQUEST.RECEIVE.SERVICE"
SAMPLE_SENDER_NAME "RESPONDER.SERVICE"
SAMPLE_SEND_MESSAGE_NAME "RESPONSE.MESSAGE"
SAMPLE_RECEIVE_MESSAGE_NAME "REQUEST.MESSAGE"

(int argc, char **argv)

compCode;

reason;

hSession = AMH_NULL_HANDLE;
success AMB_FALSE;
dataRead 0;

msgCount 0;
request[10241];

reply[1024];

***/

alize (create and open) the session with the specified */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

19

/* name. */
/**/
printf(" Starting samplesvr \n");
hSession = amInitialize(SAMPLE_SESSION_NAME /* session name */

, SAMPLE_POLICY_NAME /* policy */

, &compCode /* completion code */

, &reason); /* reason code */
if (hSession == AMH_NULL_HANDLE)

{
printf("*** amInitialize() failed cc = %d, rc = %d \n",
compCode, reason);
printf(" Completed samplesvr \n");
return EXIT_FAILURE;
}
printf(" amInitialize() succeeded \n");

/**/

/* Receive requests. */
/**/
success = amReceiveRequest(hSession /* session handle */
, SAMPLE_RECEIVER_NAME /* receiver name */
, SAMPLE_POLICY_NAME /* policy */
, sizeof(request) /* buffer length */
, &dataRead /* data length */
, (unsigned char *)request /* messsage data */
, SAMPLE_RECEIVE_MESSAGE_NAME /* message name */
, SAMPLE_SENDER_NAME /* response sender */
, &compCode /* completion code */
, &reason); /* reason code */
if (success == AMB_FALSE)
{

printf("*** amReceiveRequest() failed cc = %d, rc = %d \n",
compCode, reason);

amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);

printf(" Completed samplesvr \n");

return EXIT_FAILURE;

}

else

{
printf(" RECEIVED request\n");
request[dataRead]="\0";
printf(" %s\n", request);

}

/***/

/* Send the reply. */

/***/
sprintf(reply, "samplesvr REPLY ");

success = amSendResponse(hSession /* session handle */

, SAMPLE_SENDER_NAME /* sender svc name */

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

, SAMPLE_POLICY_NAME /* policy */
, SAMPLE_RECEIVE_MESSAGE_NAME /* request msgname */

, 1+strlen(reply) /* data length */

, (unsigned char *)reply /* messsage data */

, SAMPLE_SEND_MESSAGE_NAME /* reply message name */

, &compCode /* completion code */

, &reason); /* reason code */
if (success == AMB_FALSE)

{
printf("*** amSendResponse() failed cc = %d, rc = %d \n",
compCode, reason);
amTerminate(&hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
printf(" Completed samplesvr \n");
return EXIT_FAILURE;

}
printf(" SENT reply\n");
printf(" %s\n", reply);

/**/

/* Terminate the session. */
/**/

printf("Calling amTerminate \n");

success = amTerminate(&hSession /* session handle */
, SAMPLE_POLICY_NAME /* policy */
, &compCode /* completion code */
, &reason); /* reason code */

if (success = AMB_FALSE)

{

printf("amTerminate() failed cc = %d, rc = %d \n",
compCode, reason);

printf(" Completed samplesvr \n");

return EXIT_FAILURE;

}
printf(" amTerminate() succeeded \n");

printf(" Completed samplesvr \n");
return EXIT_SUCCESS;

COMPILE AND LINK

Using Visua C 98 running on WindowsNT, the commands needed to
compile and link are:

set 1ib=%1ib%;d:\mg\bin

d:\program files\microsoft visual studio\vc98\bin\vcvars32.bat

cl -ID:\mg\amt\include /Fsamplesend samplesend.c amt.LIB

Other programsarecompiled by replacing the Cfilesand executables.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

SUMMARY

In this article, | introduced the Application Messaging Interface,
which is an emerging alternative to the MQI. The AMI has severdl
advantages over MQI: it provides a higher level of abstraction for
developing messaging applications, it is an industry-standard AP
(whichwill hopefully resultinsupport from other messaging products),
andtheAMI model clearly demarcatesM QSeries(or other middleware
product) administrationfromapplication devel opment. For thisreason,
AMI separates services and policies from the message itself, with
services and policies being administered externally to the messaging
application. This is clearly a superior model, and it enhances the
adaptability of messaging applications to changing requirements.

AMI currently supports C, C++, and Java. Two APIs for C are
provided: a high-level procedural APl and a low-level object API.
While MQSeries AMI implementation lacks support for COBOL, |
suspect this cannot be far behind its support for C. However, itslack
of support for Perl may be a disadvantage.

In this article | used the high-level C API to demonstrate standard
messaging appli cationsthat send and recel vemessagesand i mplement
request/response processing using asynchronous messaging. The
request/response-type processing demonstrates the strength of the
AMI —application developers no longer haveto worry about how the
request/response model is implemented, as they can use the AMI
administration tool to change the policy and, hence, many of the
message’ sattributes, including priority, persistence, andwait timefor
the receiving application.

In summary, the AMI is an exciting development for MQSeries
applicationdevel opersand M QSeriesadministrators. TheAMI delivers
on the promise of providing a higher level of abstraction and better
application control. It deservesthe endorsement of theindustry that it
has received and it sets a new standard in the development of

messaging applications.

Ashish Joshi
Consultant (USA) © A Joshi 2000

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A system generator for MQSeries (part 3)

Thisisthe third and concluding part of this article on generating an
MQ system automatically (the first part appeared in the November
1999 issue of MQ Update).

MQSDEFA

* Trigger attributes
NOTRIGGER +
TRIGTYPE(FIRST) +
TRIGDPTH(1) +
TRIGMPRI(C 0) +

TRIGDATAC ' ') +
PROCESS(C " ") +
INITQC " ")

*

]k ok ok ke k

DEFINE QLOCAL('SYSTEM.ADMIN.PERFM.EVENT') +

* Common queue attributes
DESCR('System performance related event queue') +
LIKE('SYSTEM.ADMIN.QMGR.EVENT')

*
*hkkkk*k

DEFINE QLOCAL(C 'SYSTEM.ADMIN.CHANNEL.EVENT"') +

* Common queue attributes
DESCR('System channel related event queue') +
LIKEC 'SYSTEM.ADMIN.QMGR.EVENT")

*
*
khkhkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkkhkhhhkhhkhkhkhkkhkkhkkhhhhkhhhkhkkhkhkhkhhhhhhhhkhkkhkhkhkhhhkhhhkhkkkkkhihhxkx

* NON-SYSTEM DEFINITIONS

hhkhkhkhkkkkhkhkhhhkhkhkhkhkkhkhkhkhhhhhhhkhkdhdhkhkhhhhhhhkhdhdhkhkhhhhhhhhdhdkhkhhhhhrhhkdkdkhkhhhhxx

The queue manager-specific commands define the dead-Tetter Tlocal
queue for a particular queue manager.

This is a SAMPLE definition of what is needed.

The name of the dead letter queue may be specified in the ALTER
QMGR command below. While the attributes of the dead-letter queue
may be changed, if they are changed in such a way that, when the
queue manager tries to PUT a message on the dead-letter queue,
the operation fails, the result is the message being discarded.

L I I R I . S S S

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

*
*hkkkk*k

DEFINE QLOCAL('&SYSID..DEAD.QUEUE") +

* Common queue attributes
DESCR('"&SYSID DEAD-LETTER QUEUE") +
PUT(DISABLED) +
DEFPRTY(0) +
DEFPSIST(YES) +

* Local queue attributes
GET(DISABLED) +
SHARE +
DEFSOPT(SHARED) +
MSGDLVSQ(FIFO) +
RETINTVL(999999999) +
MAXDEPTH(999999999) +
MAXMSGL(4194304) +
NOHARDENBO +
BOTHRESH(0) +
BOQNAME(C " ") +
STGCLASS('SYSTEM') +
USAGE(NORMAL) +

* Event control attributes
QDPMAXEV(ENABLED
QDPHIEV(DISABLED
QDEPTHHI(80) +
QDPLOEV(DISABLED) +
QDEPTHLO(40) +
QSVCIEV(NONE) +
QSVCINT(999999999) +

+ +

* Trigger attributes
NOTRIGGER +
TRIGTYPE(NONE) +
TRIGMPRI(0) +
TRIGDPTH(1) +
TRIGDATAC ' ') +
PROCESS(C " ") +
INITQC " ")

*
*kkkkk
* Alter the queue manager attributes for this instance.
*
ALTER QMGR +
DESCR('&SYSID , MQSERIES FOR MVS/ESA - V1.1.4") +
TRIGINT(300000) +
MAXHANDS(256) +
INHIBTEV(ENABLED) +

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LOCALEV(ENABLED) +
REMOTEEV(ENABLED) +
STRSTPEV(ENABLED) +
PERFMEV(ENABLED) +
DEADQ('&SYSID..DEAD.QUEUE")

*
*
khkhkhkhkkkkkhkhhhkhkhkhkhkkkhkhkhhhhhhhkhkkhkhkkhkhhhhhhhkhkkhkhkhkhhhhhhhkhkkhkhkhkdhhhhhhkhkkkhkhkkiiihikx

* CICS ADAPTER DEFINITIONS

khkhkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhkhhhkhhkhkhkhkkhkhkhkhhhkhhhkhkhkkhkhkhhhhkhhhkhkhkhkhkhkhhhkhhkhhkkkkhkhkihhxkx

*

* The CICS initiation queue is used by the CKTI CICS transaction.
* This queue is required for communication between CICS and the

* queue manager.

*

* This is a SAMPLE definition of what is needed.

*

* You may change the name of the CICS initiation queue if you wish.
* The name should match the one in the CICS system initialization
* table or the SYSIN override in the statement below.

*

* INITPARM=(CSQCPARM='IQ=CICSO1.INITQ,

*

*kkkkk

DEFINE QLOCAL('&CICID..INITQ") +

* Common queue attributes
DESCR('CKTI initiation queue') +
PUT(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

* Local queue attributes
GET(ENABLED) +
SHARE +
DEFSOPT(EXCL) +
MSGDLVSQ(FIFO) +
RETINTVL(999999999) +
MAXDEPTH(100) +
MAXMSGL(1000) +
NOHARDENBO +
BOTHRESH(0) +
BOQNAME(' ') +
STGCLASS('SYSTEM') +
USAGE(NORMAL) +

* Event control attributes
QDPMAXEV(ENABLED) +
QDPHIEV(DISABLED) +
QDEPTHHI(80) +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

25

QDPLOEV(DISABLED) +
QDEPTHLO(40) +
QSVCIEV(NONE) +
QSVCINT(999999999) +

* Trigger attributes
NOTRIGGER +
TRIGTYPE(NONE) +
TRIGMPRI(C 0) +
TRIGDPTH(1) +
TRIGDATAC ' ") +
PROCESS(C " ') +
INITQC " ")

*
*
*khkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhhhhkhkhkhkhkhkkhkhkhkhhhhkhhkhkhkkhkhkhkhhhkhkhhkhkhkkhkhkhkhhhkhkhhkhkkkkkkhhhhxkx

* start chinit / Tistener/ channels
dhkhkkhhkhkkhhkhkkhhkhkkhhkkhkhhkkhkhkhkkhkhkhkkhkhhkkhhkhkkhhkhkkhhkhkhhkhkhhkhkhhkhkhhdhkhhkdhkhhkdhkhhkkhkhkkhkhkkhhkkhkkkkx

START CHINIT PARM(&SYSID.CHIP)

khkhkhkkkkkhkhhhhkhkhkhkhkkkhkhkhhhhkhkhkhkhkkhkhkhkhhhhhhkhkhkkhkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkkkkkhkihhhxkx

* End of CSQ4INP2

*khkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhhhhkhkhkhkhkhkkhkhkhkhhhhkhhkhkhkkhkhkhkhhhkhkhhkhkhkkhkhkhkhhhkhkhhkhkkkkkkhhhhxkx

./ ADD NAME=CSQ4DISX

hhkhkhkhkkkkhkhhhkhkhkhkhkkkhkhkhhhhhkhhkhkhkdkhkhhhhhhhhkhdhkhkhhhhhkhhhkdhkhkdkhhhhkhhhkdkdkdkdhhhhxx

*hkhkhkkkkkhkhhkhkhkhkhkhkhkkkhkhkhhhhkhkhkhkhkkhkhkhkhhhhhhkhkkhkhkhkhkhhhhhhkhkkkhkhkhkhhhhhhkhkkkkkhkhhhhxkx
*

* MQSeries for MVS/ESA
* CSQDISX sample for distributed queueing without CICS

*

khkhkhkkkkkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkkhkkhkhkdhhhhhhkhkhkkkhkdkhhhhhhkhkkkkhkdkhhhhhhkhkkkkhkhkhhhhxkx

In order to use distributed queueing facilites without CICS,
the objects in this section of code must be created the first
time that a queue manager is started. This can be done by
including this data set in the CSQINP2 DD concatenation in the
queue manager started task procedure, as shown in the sample
procedure CSQ4MSTR.

Once the objects are successfully created, there is no need to
redefine them on subsequent queue manager starts, so this data

set can be removed from the CSQINP2 DD concatenation. If the data
set is not removed from CSQINP2, define operations will fail

with an error message stating that the object already exists. You
can also add the keyword REPLACE to each command if the definitions
are to be reset on every start-up.

X% %k % % o 3k 3k X X X X X X o

hhkhkhkkkkkhkhhhhkhkhkhkhkkkdkhhhhhkhhkhkhkdkhkhhhhhhhhkkhdkdkhhhhhhhhkkhdkdkdkhhhhhhkhkdkdkdkdkhhhhxx
*

* The following sample definitions show what is required at the

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

sending and receiving ends to send messages. They show a
sender-receiver channel pair using tcp/ip as the transport.

*
*
*
* Changes necessary to use a server-requester channel pair and
* to use LU6.2 as the transport are included.

*

KAk A A A A A A A A A kA A A A hkhhkkhkhkdk%
* Sending-end definitions

*hkAkA Ak Ak Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk%
*
*hkkhkkhkhkhkkhhkhkhkhkkhhkhkkhhkhkhkhkkhhkhkkhhhhhkkhhhkkhhhhhkkhhkhkkhhhhhkhhhkkhhhhhkkhhkhkhhkhhhkkhhhkkhhkhhxk
* Common definitions

KAk A A A A A A A A A kA A A A hkhhkkhkhkdk%
*

* These definitions are required to use

* the distributed queueing facility.
*

*kkkk*k

DEFINE QLOCAL('SYSTEM.CHANNEL.SYNCQ') +

* COMMON QUEUE ATTRIBUTES
DESCR("SYSTEM CHANNEL SYNCHRONIZATION QUEUE") +
PUT(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

* LOCAL QUEUE ATTRIBUTES
GET(ENABLED) +
SHARE +
DEFSOPT(EXCL) +
MSGDLVSQ(FIFO) +
RETINTVL(999999999) +
MAXDEPTH(10000) +
MAXMSGL(4194304) +
NOHARDENBO +
BOTHRESH(0) +
BOQNAME(C " ") +
STGCLASS("SYSTEM') +

* EVENT CONTROL ATTRIBUTES
QDPMAXEV(ENABLED) +
QDPHIEV(DISABLED) +
QDEPTHHI(80) +
QDPLOEV(DISABLED) +
QDEPTHLO(C 40) +
QSVCIEV(NONE) +
QSVCINT(999999999) +

* TRIGGER ATTRIBUTES
NOTRIGGER +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

27

TRIGTYPE(NONE) +
TRIGMPRI(C 0) +
TRIGDPTH(1) +
TRIGDATA(C " ") +
PROCESS(" ") +
INITQC " ")

*
*hkkkk*k

DEFINE QLOCAL('SYSTEM.CHANNEL.INITQ') +

* COMMON QUEUE ATTRIBUTES
DESCR('SYSTEM CHANNEL INITIATION QUEUE') +
PUT(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

* LOCAL QUEUE ATTRIBUTES
GET(ENABLED) +
SHARE +
DEFSOPT(EXCL) +
MSGDLVSQ(FIFQ) +
RETINTVL(999999999) +
MAXDEPTH(1000) +
MAXMSGL(4194304) +
NOHARDENBO +
BOTHRESH(0) +
BOQNAME(' ') +
STGCLASS('SYSTEM') +

* EVENT CONTROL ATTRIBUTES
QDPMAXEV(ENABLED
QDPHIEV(DISABLED
QDEPTHHI(80) +
QDPLOEV(DISABLED) +
QDEPTHLO(C 40) +
QSVCIEV(NONE) +
QSVCINT(999999999) +

+ +

* TRIGGER ATTRIBUTES
NOTRIGGER +
TRIGTYPE(NONE) +
TRIGMPRI(0) +
TRIGDPTH(1) +
TRIGDATAC " ') +
PROCESSC " ') +
INITQC " ")

*
*kkkk*k

DEFINE QLOCAL(C 'SYSTEM.CHANNEL.REPLY.INFO') +

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* COMMON QUEUE ATTRIBUTES
DESCR('SYSTEM CHANNEL COMMAND REPLY DATA QUEUE') +
PUT(ENABLED) +
DEFPRTY(5) +
DEFPSIST(YES) +

* LOCAL QUEUE ATTRIBUTES
GET(ENABLED) +
SHARE +
DEFSOPT(EXCL) +
MSGDLVSQ(FIFO) +
RETINTVL(999999999) +
MAXDEPTH(1000) +
MAXMSGL(4194304) +
NOHARDENBO +
BOTHRESH(0) +
BOQNAME(C " ") +
STGCLASS('SYSTEM') +

* EVENT CONTROL ATTRIBUTES
QDPMAXEV(ENABLED
QDPHIEV(DISABLED
QDEPTHHI(80) +
QDPLOEV(DISABLED) +
QDEPTHLO(40) +
QSVCIEV(NONE) +
QSVCINT(999999999) +

+ +

* TRIGGER ATTRIBUTES
NOTRIGGER +
TRIGTYPE(NONE) +
TRIGMPRI(C 0) +
TRIGDPTH(1) +
TRIGDATAC " ") +
PROCESS(C " ") +
INITQC " ")

*
*
khkhkhkhkkkkhkkhkhhhkhkhkhkhkkhkkhkhkhhhhhhkhkhkhkkhkhkhkhhhhhhkhkhkkhkhkhhhhhhhkhkhkkhkhkhhhhhhkhkhkkkkhkhihhxkx

* END OF CSQ4DISX

*hkkhkkhkhkhkkhhkhkhkhkkhhkhkkhhkhkhhkkhhkhkkhhhkhhkhhkhkkhhhhhkkhhkhkkhhhhhkhhhkkhhhhhkkhhhkkhhkhhhkkhhhkhhkhhxk
./ ADD NAME=CSQ4STGC
kkhkkhkhkkkhkhkkkhkhkhkkhkhkhkkhhhkkhkhhkhhhkkhkhhkhkhhhkhkhkhkkhhkhkhhhkhhhkhhhkhhhkhkhhkhkhhhkhhkhkhhhkhhhkhhiik
* *

*
*hkkhkhkkhkkhhkhkkhhkhkkhhkhkhhkhkhhhkhhhkhkkhhhkhhhkhhkhkkhhkhkhhhkhhhkhhhkhhhkhkhhkhkhhhkhhkhkhhhkhhhkhhkdkiik
*

MQSeries for MVS/ESA
CSQ4STGC sample for storage class definitions

* o %

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

*hkhkhkkkkkhkhhkhkhkhkhkhkkkkhkhhhhhkhhkhkkkkhkdhhhhhhkhkhkkkhkdhhhhhhkhkkhkhkhkdhhhhhhkhkkkkkhkhhhhxx

This sample contains a set of storage class definitions that
associate storage classes with page sets. They may be invoked from
the CSQINP2 concatenation every time the queue manager 1is started.
The storage class definitions below are required.

SYSTEM

REMOTE

DEFAULT

NODEFINE

It is recommended that storage classes REMOTE, DEFAULT, and
NODEFINE are not defined as mapping to page set 00 (this sample
shows them mapped to page set 01) so as to keep user and system
messages on separate page sets. Compliance with this standard
requires that at least two page data sets are defined.

Further storage class definitions should be added to this sample
as required.

ook o o F % 3 3k ok 3k X X X Xk % % %k %k F %

*hkkhkhkhkkhhkhkkhhkhkkhhkhkkhhhkkhkhhkkhdhhkhkkhhkhkkhhkhkhhkhkkhhhkhhhkhhhkhdhhkhkhhhkhhhkhhkhkhhkhkhhhkhhhkhhdkiik
*
kkhkkhkhkkkhhkhkkhkhkhkkhkhkhkkhkhhkkhkhhkkhkhhhkhhhkkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkikhhkikhiisk
* STGCLASS definitions - please change them for your own needs
*hkkhkhkkkhkhkhkkhhkhkkhhhkkhkhhkkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhdhhkhdhhkhdhhkhkhhkhkhhhkhhhkhhhkhhhkikhdkiik
*

* Associate storage classes with page sets.

DEFINE STGCLASS('"SYSTEM') +
PSID(00)

DEFINE STGCLASS('SYSTEMST') +
DESCR(" DEFINE STORAGE CLASS WITH DEFAULTS') +

XCFGNAME(C " ') +
XCFMNAME(C " ") +
PSID(C 01)

DEFINE STGCLASS('REMOTE') +
PSID(01)

DEFINE STGCLASS('NODEFINE') +
PSID(C 01)

DEFINE STGCLASS('STGRABFB') +
PSID(02)

DEFINE STGCLASS('STGRABTG') +
PSID(03)

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DEFINE STGCLASS('STGAABFB') +
PSID(04)

DEFINE STGCLASS('STGAABTG') +
PSID(05)

DEFINE STGCLASS('STGINGFB') +
PSID(06)

DEFINE STGCLASS('STGINGTG') +
PSID(07)

DEFINE STGCLASS('STGRSTFB') +
PSID(08)

DEFINE STGCLASS('STGRSTTG') +
PSID(09)

*
khkhkhkhkkkkkhkhhhkhkhkhkhkkkkhkkhhhhhhkhkhkhkkhkhkhhhhhhhkhkkhkhkhkhhhhhhhkhkkhkhkhkdhhhhhhkhkkkhkhkiiihikx

* End of CSQ4STGC

khkhkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhkhhhkhhkhkhkhkkhkhkhkhhhkhhhkhkhkkhkhkhhhhkhhhkhkhkhkhkhkhhhkhhkhhkkkkhkhkihhxkx
hhkhkhkhkkkkhkhkhkhhkhkhkhkhkkkhkhkhhhhhhhkhkdhkhkdkhhhhhhhhkhdhkhkhhhhhhhhdhdkhhhhhhhhhkdkdkhkhhhhxx
* *
khkhkhkhkkkkkhkhhhkhkhkhkhkkhkkhkhkkhhhhhhkhkhkkhkhkhkhhhhhhhkhkkhkhkhkhhhhhhhkhkkhkhkhkhhhhhhkhkhkkkhkhkiiihikx
*

* MQSeries for MVS/ESA
* CSQINPX sample

*
khkhkhkhkkkkkhkhhhkhkhkhkhkkkkhkkhhhhhkhhkhkkkkhkhhhhkhhhkhkkhkhkhkhhhhhhhkhkkkhkhkdhhhkhhhkhkkkkhkiihhxx

This sample data set contains an example of a set of commands
that could be issued whenever distributed queuing without CICS
is started.

* X X X X

KAk A A A A A A A A A kA A A A hkhhkkhkhkdk%
* Start Listeners

hkAk Ak Ak hhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkkkkkk
*

* You must start a listener for each communication protocol you use.
*

*),k)k k%

START LISTENER TRPTYPE(LU62) LUNAME(LIST&SYSID)

*

*
*hkkhkkhkhkhkkhhkkhkhkhkkhhkhkkhhkkhkhhkkhhkhkkhhhhhkkhhkhkkhhhkhhkkhhkhkkhhhhhkhhhkkhhhhhkkhhhkkhhkhhhkkhhhkkhhkhiik
* Start and stop channels

KAk A A A A A A A A A kA A A A hkhhkkhkhkdk%
*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

The sender channels normally start automatically when a trigger
message is put on the channel initiation queue. Similarly,
receiver and server channels start automatically when a message
is received from a remote queue manager. They stop automatically
when there is no more work for them.

It is necessary to restart channels manually only when they
stopped as the result of an error or were stopped manually.
Both these conditions are cleared when the channel initiator
is started, so there is no need to issue any START CHANNEL
commands.

However, if you don't want some channels to start manually,

then issue STOP commands for them when the channel initiator
starts. Later, when you want them to start, you will have to issue
START commands for them.

X% % % 3 3k 3k Sk X X X % % %k F X %

*hkhkhkhkhkhhhhhhhhhhdhhhhdhhhdhdhdhdhhdhhhdhhdhkhdhhhhdhhhhhhhkhhhkdhhhkhhhhhkhkhkkkkkkk*k%k
* Display channel status
hkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhkhhhhhkhhhhhkhhkhkhkhkhkhhkhkhhkhkhkhkhhhkhhhkkk)k)k)k),)kk%x%x%
*

* Show the status of all the channels that are currently defined.

*

*),k k%%

DISPLAY CHSTATUS(*) CURRENT ALL

*
*khkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhhhhkhkhkhkhkhkkhkhkhkhhhhkhhkhkhkkhkhkhkhhhkhkhhkhkhkkhkhkhkhhhkhkhhkhkkkkkkhhhhxkx

* End of CSQ4INPX

hhkhkhkkkkkhkhhhhkhkhkhkhkkkdkhhhhhkhhkhkhkdkhkhhhhhhhhkkhdkdkhhhhhhhhkkhdkdkdkhhhhhhkhkdkdkdkdkhhhhxx

./ ENDUP
/*
MQSDEFB

//&USERID.J JOB (,EXP),'&USERID",
// NOTIFY=&USERID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),

// TIME=3
/1%
/*ROUTE XEQ &LPAR
/1%
//* THIS JOB CREATES THE MQSERIES BDSDS AND LOGCOPIES

*
jj**/
//* JOB NAME = MQSDEFB */
/1% */
//* (C) COPYRIGHT INTERPAY 1999 */
/1% */

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//* STATUS = VERSION 1

/1%

//* FUNCTION = DEFINE MQSERIES DATASETS

/1*

//* NOTES

/1% 1. THE INSTALL CLIST SHOULD DO MOST OF THE WORK, THOUGH THE
/1* INSTALLER MAY INSPECT THE AMS COMMANDS AND JCL AND EDIT
/1% THEM WHERE NECESSARY TO SUIT YOUR SITE'S REQUIREMENTS.
//* 2. DSNAMES, CONTROL INTERVAL SIZE, RECORDSIZE, LINEAR,

/1* NONORDERED, AND SHAREOPTIONS MUST NOT BE CHANGED FOR
/1% DIRECTORY AND CATALOGUE DATA.

//* 3. MANY PARAMETERS DO NOT APPLY TO DIRECTORY AND CATALOGUE
/1* DATA, INCLUDING SPANNED, EXCEPTIONEXIT, SPEED,

/1% BUFFERSPACE, AND WRITECHECK.

//* 4. DATA SET SIZES, PASSWORDS, AND VOLUMES MAY BE CHANGED.
/1* MSS STAGING OPTIONS MAY BE ADDED.

/1*

//CSQLOG2 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER -
(NAME(&SYSID..BSDS01) -
VOLUMES(&BSDS1VOL) -
REUSE -
SHAREOPTIONS(2 3)) -
DATA -
(NAME (&SYSID. .BSDS01.DATA) -
RECORDS (200 100) -
RECORDSIZE(4089 4089) -
CONTROLINTERVALSIZE(4096) -
FREESPACE(0 20) -
KEYS(4 0)) -
INDEX -
(NAME(&SYSID..BSDSO1.INDEX) -
RECORDS(5 5) -
CONTROLINTERVALSIZE(1024))

DEFINE CLUSTER -
(NAME(&SYSID. .BSDS02) -
VOLUMES(&BSDS2VOL) -
REUSE -
SHAREOPTIONS(2 3)) -

DATA -
(NAME(&SYSID..BSDS02.DATA) -
RECORDS(200 100) -
RECORDSIZE(4089 4089) -
CONTROLINTERVALSIZE(4096) -
FREESPACE(0 20) -
KEYS(4 0)) -
INDEX -

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

33

(NAME (&SYSID. .BSDS02.INDEX) -
RECORDS(5 5) -
CONTROLINTERVALSIZE(1024))

DEFINE CLUSTER -
(NAME (&SYSID..LOGCOPY1.DS01) -
LINEAR -
REUSE -
VOLUMES(&LOG11VOL) -
CYLINDERS(&CYLS)) -
DATA -
(NAME (&SYSID..LOGCOPY1.DS01.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..LOGCOPY1.DS02) -
LINEAR -
REUSE -
VOLUMES(&L0OG12VOL) -
CYLINDERS(&CYLS)) -
DATA -
(NAME(&SYSID..LOGCOPY1.DS02.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..LOGCOPY1.DS03) -
LINEAR -
REUSE -
VOLUMES(&LOG13VOL) -
CYLINDERS(&CYLS)) -
DATA -
(NAME (&SYSID..LOGCOPY1.DS03.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..LOGCOPY2.DS01) -
LINEAR -
REUSE -
VOLUMES(&L0OG21VOL) -
CYLINDERS(&CYLS)) -
DATA -
(NAME(&SYSID..LOGCOPY2.DS01.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..LOGCOPY2.DS02) -
LINEAR -
REUSE -
VOLUMES (&L0G22VOL) -
CYLINDERS(&CYLS)) -
DATA -
(NAME (&SYSID..LOGCOPY2.DS02.DATA))

DEFINE CLUSTER -

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

(NAME (&SYSID..LOGCOPY2.DS03) -

LINEAR
REUSE

VOLUMES(&L0OG23VOL) -
CYLINDERS(&CYLS)) -

DATA

/*

(NAME(&SYSID.

.LOGCOPY2.DS03.DATA))

//CSQTLOG EXEC PGM=CSQJUO03

//STEPLIB DD DISP=SHR,DSN=MQM.SCSQAUTH
DD DISP=0OLD,DSN=&SYSID..BSDSO1
DD DISP=0OLD,DSN=&SYSID..BSDS02

//SYSUT1
//SYSUT2
//SYSPRINT DD

//SYSIN
NEWLOG
NEWLOG
NEWLOG
NEWLOG
NEWLOG
NEWLOG

/*

/1

DD *

DSNAME=&SYSID.
DSNAME=&SYSID.
DSNAME=&SYSID.
DSNAME=&SYSID.
DSNAME=&SYSID.
DSNAME=&SYSID.

MQSDEFC

//&USERID.J JOB (,EXP),"&USERID',
// NOTIFY=&USERID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// TIME=3

/1*
/*ROUTE
/1%

XEQ &LPAR

SYSOUT=*,DCB=BLKSIZE=629

.LOGCOPY1.DS01,COPY1
.LOGCOPY1.DS02,COPY1
.LOGCOPY1.DS03,COPY1
.LOGCOPY2.DS01,COPY2
.LOGCOPY2.DS02,COPY2
.LOGCOPY2.DS03,COPY2

//**/

//* JOB NAME = MQSDEFC

INSTALLATION JOB STREAM

//* LICENSED MATERIALS - PROPERTY OF INTERPAY

DEFINE MQSERIES DEFAULT BATCH/TSO ADAPTER

/1%

//* DESCRIPTIVE NAME =
/1*

/1%

//* (C) COPYRIGHT INTERPAY 1999
/1%

//* STATUS = VERSION 1
/1*

//* FUNCTION =

/1%

/1%

//* NOTES

/1% 1.

THE INSTALL CLIST SHOULD DO MOST OF THE WORK, THOUGH THE

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

35

/1* INSTALLER MAY INSPECT THE AMS COMMANDS AND JCL AND EDIT */

/1* THEM WHERE NECESSARY TO SUIT YOUR SITE'S REQUIREMENTS. */
//* 2. DSNAMES, CONTROL INTERVAL SIZE, RECORDSIZE, LINEAR, */
/1* NONORDERED, AND SHAREOPTIONS MUST NOT BE CHANGED FOR */
/1% DIRECTORY AND CATALOGUE DATA. */
//* 3. MANY PARAMETERS DO NOT APPLY TO DIRECTORY AND CATALOGUE */
/1* DATA, INCLUDING SPANNED, EXCEPTIONEXIT, SPEED, */
/1* BUFFERSPACE, AND WRITECHECK. */
//* 4. DATA SET SIZES, PASSWORDS, AND VOLUMES MAY BE CHANGED. */
/1* MSS STAGING OPTIONS MAY BE ADDED. */
/1* */

//**/

//DEFLIBS EXEC PGM=IEFBR14

//DD1 DD DISP=(NEW,CATLG,DELETE),

// DSN=&SYSID..PERM.LOAD,

// SPACE=(CYL,(1,1,20)),UNIT=SYSDA,VOL=SER=&VOL,
// DCB=(BLKSIZE=32760,RECFM=U,DSORG=PO)

/1* */
//ASM EXEC PGM=IEV90,

/7 REGION=1024K,

// PARM="'DECK,NOOBJECT,LIST'

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

[] F kA ko ok
// DD DSN=MQM.SCSQMACS,DISP=SHR

// DD DSN=&SYSID..SCSQPROC,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1700, (400,400))

//SYSUT2 DD UNIT=SYSDA,SPACE=(1700, (400,400))

//SYSUT3 DD UNIT=SYSDA,SPACE=(1700, (400,400))

//SYSPUNCH DD DSN=&LOAD,

// UNIT=SYSDA,DISP=(,PASS),

// SPACE=(400,(100,100,1))

//**

//* CHANGE USERSRC.ASSEMBLE TO THE DATASET CONTAINING SOURCE

[] kA Ak kok ok k ek ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok
//SYSIN DD DSN=&SYSID..SCSQPROC(CSQBDEFV),DISP=SHR

//SYSPRINT DD SYSOUT=*

/1*

//**

//* LINK-EDIT

[] kA Ak kok ok k ek ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok
//LKED EXEC PGM=IEWL,REGION=1024K,

// PARM=(LIST,LET,XREF,RENT),COND=(7,LT,ASM)

//**

//SYSOBJ DD DSN=MQM.SCSQLOAD,DISP=SHR

[] KK dk gk ok dok ok dok ok dok ok dok ok ok ok ok k ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok k ok k ok ok k
//* CHANGE USER.LOADLIB TO THE LIBRARY THAT WILL CONTAIN THE

//* TRANAEXT LOAD MODULE. THIS LIBRARY NEEDs TO BE CONCATENATED

//* TO DD CSQXLIB IN THE CHANNEL INITIATOR JCL.

//**

//SYSLMOD DD DSN=&SYSID..PERM.LOAD,DISP=(SHR,KEEP)

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&LOAD,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
[] *HEx gk ok ko kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkk*x
//* NOTE: CSQBSTUB HAS BEEN INCLUDED IN THE LOAD MODULE, BUT IS
//* NECESSARY ONLY IF THE EXIT WILL ISSUE MQI CALLS.
[] > KKk ok ok ok ok ok e okok ke okok k
//SYSIN DD *

INCLUDE SYSOBJ(CSQBSTUB)

NAME CSQBDEFV(R)
/*

MQSDEFP

//&USERID.J JOB (,EXP),'&USERID",
// NOTIFY=&USERID,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),

// TIME=3

//*

/*ROUTE XEQ &LPAR

//*

//* THIS JOB CREATES THE MQSERIES PAGESETS

//*

][ke ek ek ok ok ok ok ok ko ok ko ok
//* JOB NAME = MQSDEFP */
/1* */
//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM */
//* */
//* LICENSED MATERIALS - PROPERTY OF INTERPAY */
//* */
//* (C) COPYRIGHT INTERPAY 1999 */
//* */
//* STATUS = VERSION 1 */
//* */
//* FUNCTION = DEFINE MQSERIES DATASETS */
//* */
//* NOTES */
/1* 1. THE INSTALL CLIST SHOULD DO MOST OF THE WORK, THOUGH THE */
//* INSTALLER MAY INSPECT THE AMS COMMANDS AND JCL AND EDIT */
//* THEM WHERE NECESSARY TO SUIT YOUR SITE'S REQUIREMENTS. */
/1* 2. DSNAMES, CONTROL INTERVAL SIZE, RECORDSIZE, LINEAR, */
/1* NONORDERED, AND SHAREOPTIONS MUST NOT BE CHANGED FOR */
/1* DIRECTORY AND CATALOGUE DATA. */
/1* 3. MANY PARAMETERS DO NOT APPLY TO DIRECTORY AND CATALOGUE */
//* DATA, INCLUDING SPANNED, EXCEPTIONEXIT, SPEED, */
//* BUFFERSPACE, AND WRITECHECK. */
/1* 4. DATA SET SIZES, PASSWORDS, AND VOLUMES MAY BE CHANGED. */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

/1* MSS STAGING OPTIONS MAY BE ADDED. */
/1% */
//DEFINE EXEC PGM=IDCAMS,REGION=4M

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

DEFINE CLUSTER -

(NAME (&SYSID..PSIDO0O) -

RECORDS (2000 1000) -

LINEAR -

VOLUMES (&VOL1PS) -

SHAREOPTIONS(2 3)) -

DATA -
(NAME (&SYSID..PSID0O.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..PSIDO1) -
RECORDS (3000 1000) -
LINEAR -
VOLUMES(&VOL2PS) -
SHAREOPTIONS(2 3)) -
DATA -

(NAME (&SYSID..PSIDO1.DATA))

DEFINE CLUSTER -

(NAME (&SYSID. .PSID02) -

RECORDS (3000 1000) -

LINEAR -

VOLUMES (&VOL1PS) -

SHAREOPTIONS(2 3)) -

DATA -
(NAME (&SYSID..PSID02.DATA))

DEFINE CLUSTER -

(NAME (&SYSID..PSIDO3) -

RECORDS (3000 1000) -

LINEAR -

VOLUMES(&VOL2PS) -

SHAREOPTIONS(2 3)) -

DATA -
(NAME (&SYSID..PSID03.DATA))

DEFINE CLUSTER -

(NAME (&SYSID. .PSID04) -

RECORDS (3000 1000) -

LINEAR -

VOLUMES (&VOL1PS) -

SHAREOPTIONS(2 3)) -

DATA -
(NAME (&SYSID..PSID04.DATA))

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DEFINE CLUSTER -
(NAME(&SYSID. .PSIDO5) -
RECORDS (3000 1000) -

LINEAR -

VOLUMES (&VOL2PS) -
SHAREOPTIONS(2 3)) -

DATA -

(NAME(&SYSID..PSIDO5.DATA))

DEFINE CLUSTER -
(NAME (&SYSID. .PSIDO06) -
RECORDS(3000 1000) -

LINEAR -
VOLUMES(&VOL1PS) -
SHAREOPTIONS(2 3)) -

DATA -

(NAME (&SYSID..PSID06.DATA))

DEFINE CLUSTER -
(NAME(&SYSID. .PSIDO7) -
RECORDS (3000 1000) -

LINEAR -

VOLUMES (&VOL2PS) -
SHAREOPTIONS(2 3)) -

DATA -

(NAME(&SYSID..PSIDO7.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..PSIDO08) -
RECORDS(3000 1000) -

LINEAR -
VOLUMES(&VOL1PS) -
SHAREOPTIONS(2 3)) -

DATA -

(NAME (&SYSID..PSID08.DATA))

DEFINE CLUSTER -
(NAME(&SYSID. .PSIDO09) -
RECORDS (3000 1000) -

LINEAR -

VOLUMES (&VOL2PS) -
SHAREOPTIONS(2 3)) -

DATA -

(NAME(&SYSID..PSID09.DATA))

DEFINE CLUSTER -
(NAME (&SYSID..PSID10) -
RECORDS(3000 1000) -
LINEAR -

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

39

VOLUMES (&VOL1PS) -

SHAREOPTIONS(2 3)) -
DATA -

(NAME (&SYSID..PSID10.DATA))

/*
//FORM EXEC PGM=CSQUTIL

//STEPLIB DD DISP=SHR,DSN=MQM.SCSQAUTH
//CSQP0O000 DD DISP=0LD,DSN=&SYSID..PSIDOO
//CSQP0O001 DD DISP=0LD,DSN=&SYSID..PSIDO1
//CSQP0002 DD DISP=0LD,DSN=&SYSID..PSID02
//CSQP0O003 DD DISP=0OLD,DSN=&SYSID..PSIDO3
//CSQP0004 DD DISP=0LD,DSN=&SYSID..PSID04
//CSQP0O005 DD DISP=0LD,DSN=&SYSID..PSIDO5
//CSQP0006 DD DISP=0LD,DSN=&SYSID..PSIDO6
//CSQP0O007 DD DISP=0LD,DSN=&SYSID..PSIDO7
//CSQP0008 DD DISP=0LD,DSN=&SYSID..PSIDO08
//CSQP0009 DD DISP=0LD,DSN=&SYSID..PSID09
//CSQP0010 DD DISP=0LD,DSN=&SYSID..PSID10
//SYSPRINT DD SYSoUT=*

//SYSIN DD *

FORMAT

/*

/1

MQSDEFS

//&USERID.P JOB (ACCT#), "INSTALL",CLASS=A,MSGCLASS=X,
/7 NOTIFY=&USERID

//**/

//* J0OB NAME = MQSERIES PROCEDURES */
/1* */
//* DESCRIPTIVE NAME = INSTALLATION JOB STREAM */
/1% */
//* FUNCTION = MVS MODIFICATIONS */
/1% */
//* PSEUDOCODE = */
//* MQIPM STEP FOR UPDATING THE MVS PROCLIB WITH CICS: */
/1* 1) STARTUP PROCEDURES */
/1% */
//* NOTES = */
//* PLEASE CHECK THIS JOB CAREFULLY TO ENSURE THAT THE SYSTEM */
/1% LIBRARY NAMES ARE THE CORRECT ONES FOR YOUR SITE. */
//***

/1* ADD CATALOGED PROCEDURES TO PROCLIB *

//***

/*ROUTE XEQ &LPAR

//***

//MQIPM EXEC PGM=IEBUPDTE,PARM=NEW

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

//SYSUT2
//SYSIN

DD DISP=SHR,DSN=SYS1.PROCLIB.DB2
DD DATA

./ ADD NAME=&SYSID.MSTR
//&SYSID.MSTR EXEC PGM=CSQYASCP,REGION=7168K
DSN=MQM.SCSQANLE,DISP=SHR
DSN=MQMP.SMQMEXIT,DISP=SHR

//STEPLIB
/7

//BSDS1
//BSDS2
//CSQINP1
//CSQINP2
/7

/7
//CSQOUT1
//CSQOUT2
//CSQP0000
//CSQP0001
//CSQP0002
//CSQP0O003
//CSQP0004
//CSQP0O005
//CSQP0006
//CSQP0007
//CSQP0O008
//CSQP0009
//CSQP0O010
/1*

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.

SYSOUT=X
SYSOUT=X

DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID.
DSN=&SYSID..
DSN=&SYSID.
DSN=&SYSID.

./ ADD NAME=&SYSID.CHIN
//&SYSID.CHIN EXEC PGM=CSQXJST,REGION=7168K,TIME=1440

.BSDS01,DISP=SHR
.BSDS02,DISP=SHR
.SCSQPROC(CSQ4INP1),DISP=SHR
.SCSQPROC(CSQ4STGC) ,DISP=SHR
.SCSQPROC(CSQ4DISX),DISP=SHR
.SCSQPROC(CSQ4INP2),DISP=SHR

.PSIDOO,DISP=SHR
.PSIDO1,DISP=SHR
.PSID02,DISP=SHR
.PSIDO3,DISP=SHR
.PSID04,DISP=SHR
.PSID05,DISP=SHR
.PSIDO6,DISP=SHR
.PSIDO7,DISP=SHR

PSID08,DISP=SHR

.PSID09,DISP=SHR
.PSID10,DISP=SHR

//STEPLIB DD DSN=MQM.SCSQANLE,DISP=SHR

/7 DD DSN=MQMP.SMQMEXIT,DISP=SHR

/7 DD DSN=EDC.SEDCLINK,DISP=SHR

//CSQXLIB DD DSN=MQMP.SMQMEXIT,DISP=SHR

//CSQINPX DD DSN=&SYSID..SCSQPROC(CSQINPX),DISP=SHR
//CSQOUTX DD SYSOUT=X

./ ENDUP

< or another proclib

LOCAL CUSTOMIZATION

It may benecessary for youto make someminor changestothesystem
generator tool to accommodate such factors as local naming
conventions.

In particular, you need to consider the following:

« The CICS system name (MQSDEFA skeleton) for initiation
gueues, whichisaso used inthe CSQCPARM (INITRPARM) for
your CICS region.

41

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

e The ‘proclib® name (MQSDEFS), which is for the
SY S1.PROCLIB.DB2 environment in our example, though this
could be for a different environment in your case.

« The QMANAGER trigger interval, which is set to 300,000
(instead of the default 999,999,999).

« TheMSTR and CHIN procedure expect the parameter modules
in alibrary called MOMPSMQMEXIT (this should be APF-
authorized).

* You have to create the parameter modules separately from the
generator tool.

o« CSQ4INP2 (which is a member of SCSQPROC) contains a
START statement for the channel initiator address space. This
expects a parameter module with the name & SY SIDCHIP (for
instance, CSQ4CHIP).

o The'stgclass namesshouldbechangedto suit your requirements.

Paul Jansen
Systems Programmer
Interpay (The Netherlands) © Xephon 2000

MQSeries for MVS — a quick primer

This article is intended as a ‘quick primer’ for those starting with
MQSerieson MVS,

THE BASICS

MQSeriesletsMV Sapplications use message queueing to participate
In message-driven processing. Applications can communicate across
different platforms using the appropriate message queueing software
products, such as MQSeriesfor MV SESA and MQSeriesfor OS/2.

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

M QSeriesproductsuseacommon application programminginterface,
the MQI, on whatever platforms they run. This means that the calls
made by applications and the messages they exchange are common
between platforms.

Applications can be created in:

« MVSshbatch and TSO environment
» CICS'stransaction environment

« |IMS'stransaction environment.

A queue manager provides queueing services to applications. More
than one queue manager (subsystem) may run within each MQSeries
system. Distributed gueuei ng supportscommuni cation between queue
managers. Either CICS intersystem communication or native MVS
communication without CICS can be used for distributed queueing.

Bothtypesof queuei ng can beenabled and used simultaneously onthe
sameinstance of MQSeries. However, neither has any knowledge of
each other’s channels and, therefore, it's necessary to ensure that the
gueue names they use are distinct.

The Client Attachment feature is a component of the MQSeries
product that facilitates Distributed Queue Management (DQM). An
M QSeries application can berun on an MQSeriesclient that interacts
with one or more MQSeries servers and connects to their queue
managersby meansof acommunicationsprotocol. Thisfeatureisfree
with MQSeries for MVS, so, when installed on a mainframe-based
MQSeries server using the communications set-up described above,
multiple MQSeries installs and their associated licence cost at the
client end (such asNT or OS/2) are saved.

QUEUES

Varioustypesof queueareavailablein MQSeries, and queues bel ong
to queue managersthat maintai nthem. Queuescan belocal or remote,
and messages are sent across different queue managers using the
distributed queueing facility, with communication with MV S being
handled either by CICS, TCP/IP, or LU 6.2.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

TYPES OF QUEUE

System default queues
These are a set of queue definitions supplied with MQSeries.

L ocal queue

A local queue is used for processing messages within the same
platform on which the queue manager is running.

Event queues
A local or remote queue used to hold messages.

Transmission queue

Thisis aloca gueue that has ‘usage attribute’ XMIT. This type of
gueue should be associated with a sender channel. Any messages
flowingfromthequeuemanager through suchachannel areessentially
taken from the associated transmission queue.

A queue manager can include adefault transmission queue. When the
gueue manager is not able to resolve the channel to be used for a
message addressed to aremote queue manager in the network, it puts
the message on the default transmission queue, so the messageisthen
moved to the next queue manager, whereitsaddress may beresolved.

| nitiation queue

A local queue can be used as an initiation queue by atriggered local
queue. If alocal queue definition states that the queue can trigger a
process under certain conditions, a trigger message is written to the
initiation queue specified whentheconditionsarise. Thelong running
trigger monitor task reads this message and the appropriate queue
manager process is triggered.

Dead letter queue

A queue manager in adistributed environment should include adead
|etter queue. When the queue manager isunableto processamessage
for whatever reason, it retains the message in the dead letter queue,
which prevents channels from coming to a halt.

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Remote queue

A remote queue is used for forwarding a message to another queue
manager, which shouldbeavailableonthenetwork usingthedistributed
gueueing facility.

Model queue

A queueused asatemplatefor creating dynamic queues. Thesequeues
cannot be accessed by any applicationfor putting or getting messages.

Alias queue
Applications connect to either alocal or remote queue viathisqueue,

Dynamic queue
A gqueuecreatedfor useasa’ scratch pad’ by anapplicationand del eted

when no longer required. Dynamic queues are created using the
template from a model queue.

There are two types of dynamic queue.

e Temporary dynamic queue
A queue that will always get deleted when the application that
created it issues an MQCLOSE.

* Permanent dynamic queue
A queue that can remain in the queue manager even after an
application has finished.

System-command input queue

A local queue to which suitably authorized applications can send
MQSeries commands. These commands are then retrieved by the
Command Server.

CHANNELS

A channel isan MQSeries object that is used to move messagesfrom
one queue manager to another or from a client queue manager to a
server queue manager. Channels must be in a ‘running’ state for
messagesto betransmitted acrossthe network. Channelsusethe base
networking support provided by the APPC or TCP/IP.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

The channel initiator is an independent process that enables an
M QSeries queue manager to communicate with the network. When
successfully started, it allows all the channels to start and makesthe
network support available on demand.

A sender channed

This should be defined with exactly the same name as a receiver
channel on the other queue manager.

A receiver channel

This should be defined as areceiver channel with exactly the same
name as a sender channel on the other queue manage.

Channel sequence number queue

A queue that is used to number sequential messages for the unit of
work processed when M QSeries subsystems are communicating.

Channel command queue
A queue used to handle commands for channels.

Channél initiation queue
A queue that sends commands to channels.

Channel synchronization queue

A queue that is used to number sequential messages for the unit of
work information handled when MQSeries subsystems are
communicating.

Channel reply infor mation queue
A queue that handles replies from channel commands.

COMMAND SERVER AND COMMAND PROCESSOR

M essages are read and verified by the command server and the valid
ones are passed to the command processor. The command processor
processes message, putting replies on to a reply-to queue.

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LISTENERS

Thisprocessisalso started separately for receiving messages coming
on the network that are addressed to an MQSeries queue manage.
Separate listener processes need to be started for LU62 and TCF/IP.

Saida Davies (UK) © Xephon 2000

MQSeries SupportPacs

IBM has released new MQSeries SupportPacs for download from
http: //www.ibm.convsoftware/mqgseries/txppacs. The SupportPacs,
which contain MQSeries client components, are:

« MACG6: MQSeries V5.1 Client for AlX

e MAC7: MQSeries V5.1 Client for HP-UX V10
« MACS8: MQSeries V5.1 Client for HP-UX V11
e MAC9: MQSeries V5.1 Client for Sun Solaris.

One problemwhen installing SupportPac MA85 for Sun Solarison a
Solaris2.6 host withM QSeries5.0 and CSD03 comeswhenyouissue
Instruction:

perl Makefile.PL
which results in error message:

Per1l must be recompiled with '-1thread -1c', and '-D_REENTRANT'
O on Solaris

Thesolutiontothisproblemisto upgradeto MQSeries Perl API 1.06,
which is now available from http://www.per|.com/cpan.

To navigate to it, follow the sequence: Modules, Modules by name,
MQSeries.

© Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

MQ news

New Era of Networks has announced
NEONadapter for XML, which allows
NEON Integration Serverstointegrate XML
business-to-business systems with other
applicationsintheir enterprise. Thesoftware
can be used to integrate systems using
different XML diaects, such as Microsoft’s
BizTak and RosettaNet. It features the
ability to parse XML document type
definitions and generate formats for the
NEONFormatter. It also allows usersto add
prefixes to the DTD format. A choice of
connectivity options is available, allowing
any new application that’ s queue-enabled to
work with the adapter. The version for
Solaris is out now and supports IBM’s
MQSeriesIntegrator for NT and Unix aswell
as NEON’s MQIntegrator for MVS.
Availability on NT, AIX, and HP-UX is
planned for late 1999. Prices start at
US$65,000.

For further information contact:

NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA

Tel: +1 303 694 3933

Fax: +1 303 694 3885

Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK

Tel: + 44 171 329 4669

Fax:+ 44 171 329 4567

* % %

Progress Softwarehasannounced SonicM Q,
aJava-based Internet messaging server. The

software is designed to simplify the
development of distributed Internet
applications and integrates with the
company’s own Apptivity Java application
server and development suite. SonicMQ
uses the new Java Message Service (IMS)
standard that’ s also supported by MQSeries
5. Thisisamessaging standard that enables
Javadevel opersto add enterprise messaging
capabilities to their applications.

Progress is to ship both a Developer and
Enterprise Edition of SonicMQ, starting
November. The Developer Edition is free
and the price of the Enterprise Edition is
available on request.

For further information contact:

Progress Software, 14 Oak Park, Bedford
MA 01730, USA

Tel: +1 781 280 4000

Fax: +1 781 280 4095

Web: http://www.progress.com

Progress Software, The Square, Basingview,
Basingstoke, Hants RG21 2EQ, UK

Tel: +44 1256 816668

Fax: +44 1256 463226

* % %

IBM has announced that the launch of
MQSeriesIntegrator V2 hasbeendelayedin
order to ‘address customer requirements
(the lack of supported platforms and some
missing functionality). The planned
availability date was 10 December and is
now 31 March.

QO

xephon

	The Application Messaging Interface
	A system generator for MQSeries (part 3)
	MQSeries for MVS – a quick primer
	MQSeries SupportPacs
	MQ news

