
© Xephon plc 2000

3 Accessing OS/390 data from
Microsoft Word

14 E-mail generation from
MQSeries using Notes

36 Administering MQSeries for
MVS/ESA from Unix

47 MQSeries and NT screen
resolution

48 MQ news

February 2000

8

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryL@xephon.com

North American office

Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: +1 940 455 7050

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Accessing OS/390 data from Microsoft Word

The exchange of messages between programs using MQSeries is
asynchronous. This means that the sending program is de-coupled
from the receiving one, and processing continues without the sender
waiting for a response from the receiver. But quasi-synchronous data
exchange can be simulated using a request/reply scenario. This may
be used for accessing host-based data by calling host programs from
Windows NT-based applications. The architecture is shown in Figure
1 overleaf.

THE ARCHITECTURE

The NT-based MQSeries client

MQSeries clients for all platforms may be downloaded from the
SupportPac library (www.software.ibm.com/ts/mqseries/txppacs). The
client software is available free of charge and is classified as ‘category
3’, which means that it is supplied under the terms and conditions of
the International Program License Agreement (IPLA) and, hence,
comes with a program defect service.

An application that is to run in the MQSeries client environment must
be linked to the relevant client library. The link between the application
and the MQSeries client code is established dynamically at runtime.
The MQI channel, the communication type, and the address of the
server must be known to the MQSeries client application. The
simplest way of doing this is to use the client’s MQSERVER
environment variable:

SET MQSERVER=CLIENTCHANNEL/TCP/server-address(port)

The NT-based MQSeries client application

The complete range of MQI calls is available to client applications.
The calls are synchronous and are actually executed on the server, so
that the client must wait for their completion and reason code (and
maybe a return message) before they may proceed. A communication
error results in the failure of the call.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQ client MQ client MQ client MQ client

WIN/NT MQ
server

CLIENT CHANNEL
type SRVCONN

1. Remote queue for request message
2. Model queue for reply message
3. Transmit queue for CHANNEL 1
4. Process for channel triggering

CHANNEL 1
type SDR

CHANNEL 2
type RCVR

1. Local queue for request message
2. Process for application triggering
3. Remote queue for reply message
4. Transmit queue for CHANNEL 2
5. Process for channel triggering

CHANNEL 1
type RCVR

CHANNEL 2
type SDR

Triggering

TRNID

CICS BATCH

JOB

VSAMDB2

MQSeries

OS/390

Figure 1: The basic architecture

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

As the process of updating queues is not local to the application,
updates cannot be coordinated along with local resource updates. This
means that a user-id/password pair must be sent from the client to the
server for both authentication and access control (when required).
User-written security exits may be used. In a request/reply scenario,
the client application MQOPENs a model queue and gets back a
unique, non-persistent temporary queue name. A request message is
MQPUT on the remote queue with the REPYTOQUEUE parameter.
The temporary queue is MQOPENed for MQGET with the WAIT
option. The client application then waits for the reply message.

The NT-based MQSeries server system

Once an MQSeries server installation is complete, it is necessary to
define the following objects on the server if a request/reply set-up is
to be used:

1 The MQI channel. For example:

DEFINE CHANNEL (CLIENTCHANNEL) +
 CHLTYPE (SVRCONN) +
 TRPTYPE (TCP) +
 DESCR ('MQSeries Client channel')

2 The sender channel to the OS/390 queue manager.

3 The receiver channel from the OS/390 queue manager.

4 The transmit queue for the sender channel, complete with
TRIGGER, PROCESS, and INITQ specifications.

5 The process definition related to channel triggering.

6 The remote queue for the request messages. For example:

DEFINE QREMOTE ('REQUESTDATA') +
DESCR ('Remote queue for desktop data request') +
RNAME ('REQUESTDATA') +
RQMNAME (OS/390 qmgr name) +
XMITQ (transmission queue name)

 7 The model queue for reply queues. For example:

DEFINE QMODEL ('REPLYDATA.MODEL.QUEUE') +
LIKE ('SYSTEM.DEFAULT.MODEL.QUEUE') +
DESCR ('Model queue for desktop data reply')

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Message retry should be disabled on the receiver channel, as the
temporary reply queue is deleted when a client application terminates
abnormally, and so the receiving MCA is unable to put messages on
the target queue. Instead, define and specify a dead letter queue for the
queue manager to use for replies that cannot be delivered. Additionally,
the channel initiator process (runmqchi or START CHINIT) and the
listener process (runmqlsr or START LISTENER) must be enabled.

The OS/390 MQSeries queue manager

To create a request/reply set-up on the host queue manager, we need
to implement Distributed Queue Management (DQM), which requires
definitions of the following objects:

1 The receiver channel for the Windows NT-based queue manager.

2 The sender channel to the Windows NT-based queue manager.

3 The transmit queue for the sender channel, along with TRIGGER,
PROCESS, and INITQ specifications.

4 The related process definition for channel triggering.

5 The local queue for the request messages with TRIGGER,
PROCESS, and INITQ specifications.

6 The process definition related to application triggering.

7 The remote queue (queue manager alias) for reply messages. For
example:

QUEUE NAME = WIN/NT qmgr name
REMOTE NAME = ''
REMOTE QUEUE MANAGER = WIN/NT qmgr name
TRANSMISSION QUEUE = sender channel xmit queue

A trigger monitor for the CICS environment is supplied with the
OS/390 version of MQSeries. For triggering batch jobs, you must
write your own batch trigger monitor. This task is discussed in MQ
Update Issue 4 (October 1999), which also provides sample code.

The OS/390 MQSeries application

The application is triggered by the local request queue. The request

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

queue is MQOPENed and messages are retrieved using an MQGET
call. The buffer area contains code for each required host function.
Before the reply message for each request is MQPUT1 on the remote
queue, the MQMD and MQOD fields of the reply message should be
set as follows:

MSGTYPE = MQMT_REPLY
PERSISTENCE = MQPER_NOT_PERSISTENT
FORMAT = MQFMT_STRING (for sender channel data conversion)
OBJECTNAME = replytoq name from MQMD of request message
OBJECTQMGRNAME = replytoqmgr name from MQMD of request message

Each reply message is syncpointed and, once all requests are performed,
the request queue is MQCLOSEd and the application exits.

Sample code for an MQSeries client application

The sample code is written using Visual Basic for Applications
(VBA). Hence, it can be called from any standard Microsoft application
that includes VBA, such as Word, Excel, and Access.

The sample code is for an application that retrieves the address of a
customer from a host database. The customer id is given to a host
service module by the client application using MQSeries. The requested
customer address is then returned by the service module to the client
application via the reply queue.

Note that the module that is automatically loaded when a Word
template is opened must be called ‘autonew’, and that it has to contain
a procedure called ‘main’.

In order to be able to program MQSeries using either VB or VBA, it
is necessary to download and install both the communication DLLs
and the standard include member that allow either VB or VBA to use
the MQI. These are available from category 2 SupportPac MA04 at
the following URL:

http://www.software.ibm.com/ts/mqseries/txppacs/txpm1.html#win

Two DLLs (mqicstd.dll and mqmcstd.dll) have to be copied to the
MQSeries client’s bin directory.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SAMPLE VBA CODE
'**'
'* Include : *'
'* Global definitions *'
'* Data structures *'
'* Constants *'
'* *'
'* Author : j.langnau *'
'**'

Dim Rc As Long
Dim Cc As Long
Dim Rc1 As Long
Dim aHconn As Long
Dim aHobj As Long
Dim aHobjTemp As Long
Dim aTempQueue As String
Dim aDataLength As Long
Dim aBufferLength As Long
Dim aBuffer As String
Dim aCustomer As tCustomerVs
Dim aStart As Integer
Dim sendDataStruc As Srv_Parameters
Dim receiveDataStruc As RetParameters
Dim aMsgDesc As MQMD
Dim aObjDesc As MQOD
Dim aGetMsgOpts As MQGMO
Dim aPutMsgOpts As MQPMO

Global Const gRemoteQueue = "DTC1.REQUESTDATA"
Global Const gReplyModelQueue = "DTC1.REPLYDATA.MODEL.QUEUE"
Global Const gDynamicQueueName = "DTC1.REPLYDATA.*"
Global Const gWaitInterval = 6000
Global Const gMaxBufferLength = 512

Type tCustomerVs 'Data-area
 CUSTCOUNTID As String * 2 ' Country code
 CUSTOMERID As String * 4 ' Customer Id
 CUSTOMERFACTORINGID As String * 9 ' Factoring number
 CUSTOMERNAME As String * 30 ' Name
 CUSTOMERNAME2 As String * 30 ' Name 2
 CUSTOMERSTREET As String * 30 ' Street
 CUSTOMERZIPCODE As String * 5 ' Zip code
 CUSTOMERCITY As String * 30 ' City
 CUSTOMERFACS As String * 21 ' Fax
 CUSTOMERCOUNTRYNAME As String * 20 ' Country
End Type

'**'

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

Type Srv_Parameters ' Structure for Service module
 SrvModuleType As String * 2
 SrvModul As String * 8
 SrvId As String * 2
 SrvVer As String * 1
 SrvSubId As String * 2
 SrvSubVer As String * 1
 SrvLanguage As String * 2
 SrvMaxLenReplyQ As String * 10
End Type
Const SrvHeaderLength = 24

'**'
'* Structure of Returnheader (Service module)
'**'
Type RetParameters
 Rtc As String * 1
 RsType As String * 8
 Rsc As String * 10
 msg As String * 80
End Type

Const RetHeaderLength = 99

'**'
' Set defaults for Service module
'**'

Sub Srv_Parameters_defaults(struc As Srv_Parameters, aSrvId As String)
 With struc
 .SrvModuleType = "01"
 .SrvModul = "CRSTAM " ' PLI service module
 .SrvId = aSrvId ' Id for service dispatcher
 .SrvVer = "1" ' Version
 .SrvSubId = " "
 .SrvSubVer = " "
 .SrvLanguage = "DE" ' Language code for messages
 .SrvMaxLenReplyQ = "0000000000" 'init
 Mid(.SrvMaxLenReplyQ, Len(.SrvMaxLenReplyQ) - 2, 3) = _
 gMaxBufferLength
 End With
End Sub
'**'
'*
'**'
Sub put_Parms_into_buffer(struc As Srv_Parameters, Buffer As String)
 Buffer = ""
 With struc
 Buffer = .SrvModuleType
 Buffer = Buffer + .SrvModul

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Buffer = Buffer + .SrvId
 Buffer = Buffer + .SrvVer
 Buffer = Buffer + .SrvSubId
 Buffer = Buffer + .SrvSubVer
 Buffer = Buffer + .SrvLanguage
 Buffer = Buffer + .SrvMaxLenReplyQ
 End With
End Sub
'**'
'*
'**'
Sub get_Parms_from_Buffer(struc As RetParameters, Buffer As String)
'receive the Returnheader from the buffer
Dim pos As Integer
 pos = 1
 With struc
 .Rtc = Mid(Buffer, pos, Len(.Rtc))
 pos = pos + Len(.Rtc)
 .RsType = Mid(Buffer, pos, Len(.RsType))
 pos = pos + Len(.RsType)
 .Rsc = Mid(Buffer, pos, Len(.Rsc))
 pos = pos + Len(.Rsc)
 .msg = Mid(Buffer, pos, Len(.msg))
 End With
End Sub

'**'
'*
'**'
Sub put_buffer_in_tCustomervs(struc As tCustomerVs, aBuffer As String)

Dim pos As Integer
'jl aBuffer = Qcv_ansi(aBuffer)
 pos = RetHeaderLength + 1
 With struc
 .CUSTOMERFACTORINGID = Mid(aBuffer, pos, _
 Len(.CUSTOMERFACTORINGID))
 pos = pos + Len(.CUSTOMERFACTORINGID)
 .CUSTOMERNAME = Mid(aBuffer, pos, Len(.CUSTOMERNAME))
 pos = pos + Len(.CUSTOMERNAME)
 .CUSTOMERNAME2 = Mid(aBuffer, pos, Len(.CUSTOMERNAME2))
 pos = pos + Len(.CUSTOMERNAME2)
 .CUSTOMERSTREET = Mid(aBuffer, pos, Len(.CUSTOMERSTREET))
 pos = pos + Len(.CUSTOMERSTREET)
 .CUSTOMERZIPCODE = Mid(aBuffer, pos, Len(.CUSTOMERZIPCODE))
 pos = pos + Len(.CUSTOMERZIPCODE)
 .CUSTOMERCITY = Mid(aBuffer, pos, Len(.CUSTOMERCITY))
 pos = pos + Len(.CUSTOMERCITY)
 .CUSTOMERFACS = Mid(aBuffer, pos, Len(.CUSTOMERFACS))
 pos = pos + Len(.CUSTOMERFACS)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

 .CUSTOMERCOUNTRYNAME = Mid(aBuffer, pos, _
 Len(.CUSTOMERCOUNTRYNAME))
 End With
End Sub

'**'
'*
'**'
Sub put_tCustomerVs_in_buffer(struc As tCustomerVs, Buffer As String)
Dim pos As Integer
 With struc
 Buffer = Buffer + .CUSTCOUNTID
 Buffer = Buffer + .CUSTOMERID
 End With
End Sub

'**'
Sub DoWriteText(aText As String, aUnit As Integer)
 Selection.Text = aText
 Selection.EndOf 1
 Selection.Next
End Sub
Function DoOpenTempQueue(aHconn As Long, aHobj As Long) As String
Dim Cc, Rc As Long
Dim aObjDesc As MQOD
Dim aOption As Long

 MQOD_DEFAULTS aObjDesc

 aObjDesc.ObjectName = gReplyModelQueue
 aOption = MQOO_INPUT_SHARED

 MQOPEN aHconn, aObjDesc, aOption, Hobj, Cc, Rc

 If Cc > 0 Then
 DoOpenTempQueue = ""
 MsgBox "Unable to open the queue " & aObjDesc.ObjectName _
 & " ! RC(" & Rc & ")", vbCritical, "MQSeries"
 Else
 DoOpenTempQueue = aObjDesc.ObjectName
 aHobj = Hobj
 End If

End Function

'**'
'* *'
'* Module name: Main *'
'* *'
'* Description: This procedure is called when a new document *'

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

'* is created. *'
'* *'
'* Author : j.langnau *'
'* *'
'**'

Sub Main()
Dim Rc As Boolean
Dim kd As tCustomerVs
Dim msg As String

 kd.CUSTOMERID = 12345 ' static input
 kd.CUSTCOUNTID = 0 ' static input

 DoSearchCustomer kd, msg

 If msg = "" Then
 With kd
 ' Printout the result to the Word Template
 DoWriteText .CUSTOMERNAME & Chr(13), 1
 End With
 Else
 DoWriteText msg & Chr(13), 1
 End If
End Sub

'**'
'* *'
'* Module name: mFunction *'
'* *'
'* Description: This module contains functions that can be *'
'* called by the application. *'
'* *'
'* Author : j.langnau *'
'* *'
'**'

Sub DoSearchCustomer(aCustomer As tCustomerVs, retMsg As String)
 Dim dataBuffer As String

 put_tCustomerVs_in_buffer aCustomer, dataBuffer

 PerformFunction dataBuffer, "RK"

 If receiveDataStruc.Rtc = "O" Then
 put_buffer_in_tCustomervs aCustomer, dataBuffer
 retMsg = ""
 Else
 retMsg = receiveDataStruc.msg
 End If
End Sub

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

'**'
'* *'
'* Name : PerformFunction *'
'* *'
'* Description : Service dispatcher for data access. *'
'* Our sample contains only one service. *'
'* *'
'* Steps : 1. Connect to the queue manager *'
'* 2. Open the temporary reply queue defined as *’
‘* modelqueue *' *’
'* 3. Open the output queue that triggers the host *'
'* program. *'
'* 4. Write to the output queue *'
'* 5. Close the output queue *'
'* 6. Get/wait for reply *'
'* 7. Output the result to the new document *'
'* 8. Close the temporary reply queue *'
'* (option=delete). *'
'**'
Sub PerformFunction(dataBuffer As String, SrvId As String)
'connect to the queue manager
 MQCONN QMgrName, aHconn, Cc, Rc
'create temporary reply queue
 aTempQueue = DoOpenTempQueue(aHconn, aHobjTemp)
'open output queue
 MQOD_DEFAULTS aObjDesc
 aObjDesc.ObjectName = gRemoteQueue
 aOption = MQOO_OUTPUT
 MQOPEN aHconn, aObjDesc, aOption, aHobj, Cc, Rc
'set SrvParameters
 Srv_Parameters_defaults sendDataStruc, SrvId
 put_Parms_into_buffer sendDataStruc, aBuffer
 aBuffer = aBuffer + dataBuffer
'MQPUT
 MQMD_DEFAULTS aMsgDesc
 aMsgDesc.MsgType = MQMT_REQUEST
 MQPMO_DEFAULTS aPutMsgOpts
 aBufferLength = Len(aBuffer)
 aMsgDesc.Format = MQFMT_STRING
 'aMsgDesc.ReplyToQ = aReplyQueue
 aMsgDesc.ReplyToQ = aTempQueue
 aMsgDesc.ReplyToQMgr = aReplyQMgr
 MQPUT aHconn, aHobj, aMsgDesc, aPutMsgOpts, aBufferLength, _
 aBuffer, Cc, Rc
'close the output queue
 MQCLOSE aHconn, aHobj, aOption, Cc, Rc1
'MQGet Wait
 MQMD_DEFAULTS aMsgDesc
 MQGMO_DEFAULTS aGetMsgOpts
 aGetMsgOpts.Options = MQGMO_WAIT

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 aGetMsgOpts.WaitInterval = gWaitInterval
 aBuffer = Space(gMaxBufferLength)
 aMsgDesc.CodedCharSetId = 437
 aBufferLength = Len(aBuffer)
 MQGET aHconn, aHobjTemp, aMsgDesc, aGetMsgOpts, aBufferLength, _
 aBuffer, aDataLength, Cc, Rc1
 get_Parms_from_Buffer receiveDataStruc, aBuffer

 Select Case Rc1
 Case MQRC_NONE
 If receiveDataStruc.Rtc = "O" Then
 dataBuffer = aBuffer
 End If
 Case Else
 receiveDataStruc.msg = Rc1 & "-" & ErrorText
 End Select
'close the temp queue
 aOption = MQCO_DELETE
 MQCLOSE aHconn, aHobjTemp, aOption, Cc, Rc1
 End Sub

I would like to thank Joachim Langnau of LANGNAU Consulting
(http://www.langnau.com) for his contribution to this article, especially
for writing the MQSeries client program.

Raimund Kleebaur
MQSeries Programmer
Hugo Boss AG (Germany) © Xephon 2000

E-mail generation from MQSeries using Notes

REQUIREMENT

Many applications, including ones running on mainframes, need to
generate e-mail messages as a result of business transactions. The
question then arises how to interface the program to the corporate
e-mail system. Using MQSeries as middleware has the benefit of de-
coupling the application from the e-mail system, which may, in any
case, be on a different platform. The asynchronous nature of e-mail is
also a good match to MQSeries’ approach. This article describes how

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

to build a bridge between MQSeries messages and Lotus Notes, where
the primary use of the bridge is to handle outgoing e-mail.

ALTERNATIVES

There are many ways in which to join Notes and MQSeries, though
most of them are designed from the point of view of the Notes
application needing access to data on other platforms. In this sense,
the Notes application initiates the request. By contrast, in our case the
request is coming from the MQSeries side (for example, from a CICS
transaction) as far as the e-mail application is concerned. What’s
needed is a means of transporting the message data to a Notes
application and generating a Notes e-mail based on the message’s
contents.

Having researched the alternatives, I decided that the best approach
was to write a Notes program (known as an ‘agent’) in Lotuscript and
to connect to MQSeries using the Lotuscript Extension for MQSeries
(MQLSX). This requires the least programming effort and represents
a standard approach to Notes programming. As Lotuscript is interpreted,
no compilers are required and most technical staff should be able to
understand how the code works without special training.

Another advantage of this approach is that it incurs no purchase costs
for the integration software, as MQLSX is free. Some other approaches
require components, such as the Lotus Notes MQSeries Enterprise
Integration product (MQEI), which are chargeable. The alternative
approaches also require at least as much programming overall to
achieve the same end result – while they tend to simplify the mainframe
connection (something that is not complex with MQSeries anyway,
especially using TCP/IP), they incur a greater programming overhead
than Lotuscript for generating e-mail.

COMPONENTS

As usual in the era of the Internet, it’s possible to find examples on
linking MQSeries and Notes on the Web, the nearest one to my
requirements being one from IBM called ‘MQSeries link extra agent
for Notes’. This provides a complete working agent to transform
MQSeries messages into documents in a Notes database. It does not,

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

however, provide any specific support for e-mail generation, and so
we decided not to use it but to write a smaller, purpose-built agent.
However, I mention the availability of this IBM sample code as it may
be useful to other readers.

One of the nice things about Notes is the high degree of integration
between its various components, most of which are stored in a single
Notes database. This includes the configuration data, the agent code,
the saved messages (if required), and the various forms and views.
This article includes an exported version of the agent; to recreate the
Notes version, simply import the ASCII text file (which is available
to MQ Update subscribers at Xephon’s Web site) into a Notes database
when editing an agent component (you may need a Notes developer
to do this, though it’s a fairly straightforward procedure).

You also need to obtain the Lotuscript extension for MQSeries and the
MQSeries Trigger Monitor for Lotus Notes (they’re available from
the IBM MQSeries Web site free of charge).

In addition, you need either an MQSeries client (free) or an MQSeries
server installed on the Notes server. For the purpose of my development,
Windows NT was used to run Notes, though the code should be
portable to any other MQSeries and Notes platform. Either a Notes
client or Notes server can be used, though many sites will find it
convenient to host this bridge on an existing Notes server.

MODE OF OPERATION

The agent is designed to be triggered on message arrival, though it
could alternatively wait for messages, the choice being essentially
about whether you want the agent to run continuously (this decision
has implications for Notes agent threads). The agent has a configuration
document that’s part of the database, and the mode of operation is set
as a parameter in this document and does not require coding to change.
To use triggering, the trigger monitor program runs as a separate
Windows NT task and waits for trigger messages to arrive. On the
arrival of a message, the Notes agent starts immediately. Other ways
to execute the agent include using a standard Notes agent schedule and
manually running the agent from the database action menu.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

The agent provided can be set to wait for MQSeries messages, and
may also be configured to retry as many times as desired. Beware,
though, that using MQGET with ‘wait’ causes the Notes thread to
remain in use – it will not release control back to Notes. My
recommendation is to trigger on arrival, perhaps wait for a second or
so for subsequent messages, and then terminate. It’s important to
coordinate the mode of operation with the type of triggering defined
in MQSeries. As this is a complex subject, and it’s beyond the scope
of this article to explore it in detail, I’d just suggest using both
TRIGGER(FIRST) and scheduling the agent to run occasionally to
clear up any problems that can happen with triggering when the agent
fails.

FUNCTION

The Lotuscript agent carries out the following actions when it’s
invoked:

1 Declare various variables used by the agent program.

2 Read parameters from the configuration document in the current
database.

3 Connect to the queue manager and open the input queue.

4 Get the first message from the queue and parse it into fields based
on offsets.

5 Build the mail document using these fields.

6 Send the document either using the ‘send’ method or saving it in
‘mail.box’.

7 Commit the message syncpoint, deleting it from the input queue.

8 Get the next message from the queue (if the queue is empty, then
either retry, wait, or exit, depending on the configuration
parameters).

9 Close the input queue and disconnect from the queue manager.

10 Terminate (return control back to Notes).

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A test agent to generate an MQSeries message on a queue is provided
at the end of the article.

AGENT PROGRAM LOGIC

The agent processes the entire input MQSeries queue until it’s empty.
The MQGET issued can wait for a message, and the time to wait is
coded as a parameter. The agent also retries after the queue is empty,
and the number of retries is also coded as a parameter.

While no retries are actually required, I recommend using one to catch
any messages that may have arrived in the short time that the agent is
running. The best setting for you depends on how your agent is run –
if it’s scheduled, then retries are probably sensible; if it’s triggered,
then they’re not essential.

However, the agent should neither retry frequently nor have long wait
periods, as either may unnecessarily tie up the server (unless agents
are set to multithreaded, with the number of threads being greater than
one). Another option is to use a retry value of ‘999’ for indefinite
looping in the agent.

CONFIGURATION OF THE AGENT

A configuration document is created using a form in the database. This
method avoids hard-coding values, such as the name of the queue
manager. These values are read by the agent when it initializes. An
example configuration is shown below.

• Name of configuration: Default
Use ‘Default’ for live version.

• MQSeries queue manager: TST1
Change as required.

• MQSeries incoming queue: TEST.EMAIL.QUEUE
Change as required.

• MQSeries GET wait interval: 1000
Milliseconds

• GET retries after no messages available: 2

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

‘0’ means exit immediately if the queue is empty, ‘999’ means
loop continuously, and any values between are allowed.

• Mail type: Create
‘Send’ is the standard (for Notes client), ‘Create’ results in a new
document in the server’s mail.box.

• Mail ‘from/reply-to’, if blank: e-mail Gateway
Match the mailing database entry.

• Destination to use if blank in message: Dead e-mails
Notes address to which to default.

Most of the values are self-explanatory. An interesting one is the mail
type – if e-mail is sent using the standard Notes ‘send document’
method, it acquires the ‘from’ address of either the Notes client or
server that executes the agent (it may also inherit the agent signature).
For this sort of bridge, the apparent origin of the e-mail (and therefore
the ‘reply-to’ address) is application-dependent and should be supplied
in the MQSeries message. In order to ‘fake’ this address, the e-mail
should be created directly in the server’s mail box file (the agent has
code to handle this).

I have also provided default values for both the ‘from’ and ‘dest’
addresses in case they’re left blank in the MQSeries message. This is
mainly useful for testing. The MQSeries message layout is a simple
string with various fields that are extracted and used to create the
document. The layout can be changed as required.

DEALING WITH REPLIES

As the Notes ‘from/reply-to’ field is set in the outgoing e-mail, replies
can be directed automatically either to a person who has a mail box on
the same server or a group mailbox for manual processing. If automated
reply handling is required, then a ‘mail in’ record can be configured
on the Notes server for a reply address. Replies are then stored in a
Notes database automatically as documents, and a Notes agent can
either be developed or configured to process them on or after arrival.

You can use a ‘mail in’ technique that’s similar to the reverse of the
process used in this agent to convert incoming e-mail into MQSeries

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

messages. Sample Lotuscript code for this can be found at http://
www.lotus411.com and http://www.lotus.com (and other locations).

INSTALLING THE MQSERIES CLIENT

Although you could use an MQSeries server as the client, it’s cheaper
and simpler to use an MQSeries client. These are free of charge and
downloadable from the Web as support pack MAC4 (see http://
www.software.ibm.com/mqseries). Use the latest client version (Version
5.1 at the time of writing) for Windows 32-bit platforms, which is
installed on the Notes server using setup.exe.

INSTALLING THE MQLSX FILES

The MQLSX files are supplied free of charge by IBM as support pack
MA7D (go to http://www.software.ibm.com/mqseries, where the file
ma7d.zip needs to be downloaded). setup.exe is executed on the
Notes server to install the support pack, which includes comprehensive
documentation on the use of MQSeries LSX.

INSTALLING THE TRIGGER MONITOR FOR LOTUS NOTES

Although I don’t normally recommend triggering, it is suitable for this
type of application, and IBM provides a Trigger Monitor for Notes
Agents in support pack MA7E. Two versions of the trigger monitor
executable are provided – one for MQSeries clients and one for
MQSeries servers.

Full details of the configuration of the trigger monitor are provided in
the support pack. Using the trigger monitor requires the correct
MQSeries definitions, including:

1 The MQSeries e-mail request queue (the application data queue).
Triggering should be enabled on this queue.

2 An initiation queue linked to the above.

3 A process entry linked to the above. This contains the Notes agent
name and database name, which must match the names on the
Notes server and in the Notes database. The trigger monitor’s
documentation has more details on this.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

It is possible (and even desirable) to make the bridge program act as
a direct MQSeries client of an MVS queue manager. It can also be
triggered directly from an MVS initiation queue. However, in order to
set the right APPLTYPE (NotesAgent or 22) on an MVS process
object, an APAR (PQ21707) needs to be installed on MQSeries for
MVS. If this fails, contact IBM Hursley for a modified client trigger
monitor program that circumvents this.

The trigger type should be set to FIRST on the request queue. This
creates a trigger message when the queue depth changes from zero to
one. The agent then reads all messages on the queue, which is,
therefore, ready for the next trigger. However, if the agent fails and the
queue depth is left at a value greater than zero, the queue is then unable
to generate any more triggers. To avoid this, the Notes agent should
be scheduled to run at regular intervals (perhaps daily, depending on
your requirements) using a standard Notes schedule.

EXAMPLE MESSAGE LAYOUT

• Field: E-mail destination ‘send-to’
Offset: 001
Length: 80
Description: Notes’ ‘send-to’ field, left justified and blank

padded.

• Field: E-mail destination ‘CC’
Offset: 081
Length: 80
Description: Notes’ ‘CC’ field, left justified and blank padded.

• Field: E-mail destination ‘BC’
Offset: 161
Length: 80
Description: Notes’ ‘BC’ field, left justified and blank padded.

• Field: E-mail subject
Offset: 241
Length: 80
Description: Notes’ ‘subject title’, left justified and blank padded.

• Field: E-mail ‘reply-to/from’

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Offset: 321
Length: 80
Description: Notes’ ‘reply-to field’, left justified and blank

padded (set as ‘from’ field).

• Field: Number of body lines
Offset: 401
Length: 5
Description: Number of lines, as char ‘99999’ (with leading

zeros).

• Field: Body text data (lines)
Offset: 406
Length: N x 80
Description: As required.

ENVIRONMENT VARIABLES FOR MQ CLIENT

• Name: MQCCSID
Value: 850
Comment: Character set number.

• Name: MQSERVER
Value: CHANNEL1/TCP/TST1.YOURDOMAIN.COM
Comment: Alternative to channel table.

• Name: MQ_USER_ID
Value: USER1
Comment: Suitable RACF user-id.

ADDITIONAL NOTES COMPONENTS

To complete the Notes database set-up, some additional GUI
components are needed. These are created by using the ‘Design’
feature of the Notes client when editing the Notes database – you need
to create a new standard Notes database to contain the components,
which is fairly simple to do.

• Create a form to edit the configuration document and give the
form the name ‘Agent Configuration’. On this form you need to

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

create fields to allow the entry of the following text variables that
are read by the agent (the variables could also be hard-coded):

Description Variable Name (field name)
Name of configuration document Form_Config_Name
MQSeries queue manager name Form_Queue_Manager
MQSeries incoming queue name Form_Input_Queue
MQSeries GET wait interval Form_Get_Wait
GET retries after no msg available Form_Get_Retries
Mail send type ('Send' or 'Create') Form_Send_Type
Mail from/reply-to if blank in msg Form_Mail_From
Dest to use if blank in message Form_Missing_Dest

• Create another form with the name ‘Memo’ and make this the
default form. Add some e-mail fields to the form, such as subject,
send-to, and body, for displaying any saved e-mail documents.

• Create a view to allow the configuration document to be displayed
and modified (the view must have the name ‘Agent
Configuration’). Define columns in the view to include some of
the above fields. This view is also used by the agent to locate the
configuration document. Set the following value in the view
selection box:

SELECT Form = "Agent Configuration"

• Creating an ‘all documents’ view is useful if you intend to save
documents in the database. If so, include some mail field names,
such as ‘send-to’ and ‘subject’, in the view. Leave the view
selection box blank. To be able to see replies (if any), de-select the
view design option ‘Show response documents in hierarchy’.

• Remember that right-clicking a document shown in a view allows
all fields in the document to be displayed. This is very useful
during development. Also note that Lotuscript can be run in
debug mode, which allows stepping through the code as it
executes (enable this from File, Tools on the Notes client interface).
I suggest testing the code on your workstation using Notes client
and MQ client before moving it to a Notes server. I prefer to
continue using the MQ client even on the Notes server.

(Note the use of the continuation character, ‘➤ ’, in the code below to
indicate that one line of code maps to more than one line of print.)

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

THE MQSERIES TO E-MAIL AGENT LOTUSCRIPT CODE
'MQAGENT:

' Comments are denoted by an apostrophe

Option Declare
Uselsx "mqlsx" ' This call loads the MQLSX

' Warning - do not change the agent name without changing the
' MQ trigger data.

Public doc As NotesDocument
Public MQFatalError As Integer ' Indicates a fatal error

' MQ Variables

Dim MQqms As MQSession
Dim MQqmgr As MQQueueManager
Dim MQq As MQQueue
Dim MQgmo As MQGetMessageOptions
Dim MQMsg As MQMessage

Dim Queue_Manager As NotesItem ' Queue manager name
Dim Msgdata As NotesItem ' The data to put on the queue
Dim Input_Queue As NotesItem ' The name of the i/p queue
Dim Get_Wait_Time As NotesItem ' Wait time
Dim Get_Retries As NotesItem ' Retries if queue empty
Dim Send_Type As NotesItem ' Send or create
Dim Missing_Dest As NotesItem ' Destination if missing in msg
Dim Mail_From As NotesItem ' Mail origin if missing in msg

Dim BodyString As String ' String for e-mail body field
Dim OutString As String ' String for the message data
Dim ritem As NotesRichTextItem

Sub Initialize

 Print "MQSeries Agent Started"

' This is the main routine for this agent
' Create some Notes session objects to use

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Dim mqdefdoc As NotesDocument
 Dim view As NotesView
 Dim Retries As Long
 Dim Count As Long

 Set db = session.CurrentDatabase

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

 Set doc = New NotesDocument(db)

' Load script parameters from configuration view document (or
' hard-code)

 Set view = db.GetView("Agent Configuration")
 Set mqdefdoc = view.GetDocumentByKey("Default")
 Set Queue_Manager = mqdefdoc.GetFirstItem("Form_Queue_Manager")
 Set Input_Queue = mqdefdoc.GetFirstItem("Form_Input_Queue")
 Set Get_Wait_Time = mqdefdoc.GetFirstItem("Form_Get_Wait")
 Set Get_Retries = mqdefdoc.GetFirstItem("Form_Get_Retries")
 Set Send_Type = mqdefdoc.GetFirstItem("Form_Send_Type")
 Set Missing_Dest = mqdefdoc.GetFirstItem("Form_Missing_Dest")
 Set Mail_From = mqdefdoc.GetFirstItem("Form_Mail_From")

 Print "Queue Name " + Queue_Manager.text + " " + Input_Queue.text

' Connect to MQ, open the input queue

 MQFatalError = False
 ConnectToMQ
 If MQFatalError = True Then Exit Sub

 OpenQForInput
 If MQFatalError = True Then Exit Sub

 Retries = Clng(Get_Retries.text) + 1

' Loop round until no message received after n retries

 Count = 0
 Do
 GetMsgFromQ
 If MQFatalError = True Then Exit Sub

' No message available, so decrement retry count (if count not 999)

 If OutString = "No Message" Then
 If Retries <> 999+1 Then
 Retries = Retries - 1
 End If

' If a message available, then send the e-mail and get next message

 Else
 If MQmsg.BackoutCount < 3 Then
 count = count + 1
 ParseTheMsg ' Pick fields out of the message
 SendTheEmail ' Send e-mail to mail system
 Print "Message processed data is " + OutString

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Set doc = New NotesDocument(db) ' New doc for next msg
 Else
 Print "Message skipped, backout count high" + Outstring
 End If
 MQqmgr.Commit
 Retries = Clng(Get_Retries.text) + 1 ' Reset retry count
 End If

 Loop Until (Retries = 0)

 CloseQForInput
 DisconnectfromMQ

 Print "MQSeries agent ended, msgs read " &count

End Sub

Sub SendTheEmail

' Set any fixed values for the e-mail document

 doc.Form = "Memo" ' e-mail form name
 doc.DeliveryReport = "" ' e-mail delivery reporting flags

' Set up the rich text body field

 Call doc.RemoveItem("Body")
 Set ritem = doc.CreateRichTextItem("Body")
 Call ritem.AppendText(BodyString)

' Send the document to the mail system (no form attached)
' The document could be saved now in the database if desired
' using code like If doc.Save(True,True) Then …

 If Send_Type.text = "Create" Then
 SendEmailFrom ' Direct mail document creation
 Else
 Call doc.Send(False) ' Standard mail send (sets From = Agent id)
 End If

 Messagebox "Email Sent to " &doc.SendTo(0) + " " + doc.subject(0)

End Sub

Sub ParseTheMsg

' All message field offsets are coded in this subroutine; these can
' be changed to suit your message layout. Keep the body data as the
' last field.
'

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

' 001 – Send-to address - notes format (length 80 bytes)
' 081 – Copy-to address (80)
' 161 - Blind copy to address (80)
' 241 - Subject field (80)
' 321 – Reply-to address (80) - this also becomes the From address
' 401 - Body number of lines (NNNNN) (a 5 byte character number)
' 406 - Body lines x NNNNN each of 80 bytes - as required (last field)

 Dim BodyCount As Long
 Dim BodyOff As Long
 Dim I As Long
 Dim Flag As Variant
 Dim Temp As String

' Extract Notes e-mail fields from the message payload

 Temp = Trim(Mid(Outstring,001,80))
 If Temp <> "" Then
 doc.SendTo = Temp
 Else
 doc.SendTo = Missing_Dest.text ' Default if blank
 End If

 doc.CopyTo = Trim(Mid(Outstring,081,80))
 doc.BlindCopyTo = Trim(Mid(Outstring,161,80))

 Temp = Trim(Mid(Outstring,241,80))
 If Temp <> "" Then
 doc.Subject = Temp
 Else
 doc.Subject = "No Subject data" ' Default if blank
 End If

 Temp = Trim(Mid(Outstring,321,80))
 If Temp <> "" Then
 doc.ReplyTo = Temp
 Else
 doc.ReplyTo = Mail_From.text ' Default if blank
 End If

' Extract body of e-mail - nnnnn lines, as supplied

 Flag = False

 Temp = Trim(Mid(Outstring,401,5)) ' e-mail number of lines (NNNNN)
 If Isnumeric(Temp) = False Then
 Temp = "No Email Body length"
 Flag = True
 End If

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 If Flag = True Then
 BodyString = Temp
 Exit Sub ' Note the exit here
 End If

 Temp = Trim(Mid(Outstring,401,5)) ' e-mail number of lines (NNNNN)
 BodyCount = Clng(Temp)
 BodyOff = 406 ' Start of body lines
 Temp = ""

' Build temp, remove trailing spaces and add return char per line

 For I = 1 To BodyCount
 Temp = Temp & Rtrim(Mid(Outstring,BodyOff,80)) & Chr(13)
 BodyOff = BodyOff + 80
 Next

' Body data complete

 BodyString = Temp

End Sub

Sub SendEmailFrom

' This is an alternative way of sending the mail by creating a
' document directly in the mail box of the server. The from field can
' be set to any value, rather than always being the name of the
' id running the agent.

 Dim msess As New NotesSession
 Dim mcurr As NotesDatabase
 Dim mailbox As New NotesDatabase("","")
 Dim maildoc As NotesDocument
 Dim myitem As Notesitem

' Get handle to mail.box on the current mail server of the user

 Set mcurr = msess.CurrentDatabase
 Call mailbox.Open(mcurr.server, "mail.box")

' Create a new document in the mail box of the sever - use ReplyTo
' field as From field

 Set maildoc = mailbox.CreateDocument

 maildoc.Form = doc.Form
 maildoc.From = doc.ReplyTo
 maildoc.SendFrom = doc.ReplyTo
 maildoc.SendTo = doc.SendTo

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

 maildoc.Recipients = doc.SendTo
 maildoc.Subject = doc.Subject
 maildoc.DeliveryReport = doc.DeliveryReport
 maildoc.DeliveryPriority = doc.DeliveryPriority

 Set myitem = doc.GetFirstItem("Body")
 Call myitem.CopyItemToDocument (maildoc, "")

 maildoc.PostedDate = Now()
 maildoc.ComposedDate = Now()
 maildoc.DeliveredDate = Now()
 maildoc.Principal = doc.ReplyTo
 maildoc.EncryptOnSend = False

 Call maildoc.Save(True, False)

End Sub

Public Sub ConnectToMQ

' This sub connects to MQSeries using the AccessQueueManager call
' Event handlers for the MQ session are registered

 If MQqms Is Nothing Then
 Set MQqms = New MQSession
' The event handlers for the MQ session need to be registered here
 On Event MQWARNING From MQqms Call WarningFromMQqms
 On Event MQERROR From MQqms Call ErrorFromMQqms
 End If

' If not already connected to the queue manager, try to connect

 If MQqmgr Is Nothing Then
 ' Print "Accessing MQ Queue Manager"
 Set MQqmgr = MQqms.AccessQueueManager(Queue_Manager.Text)

' MQqmgr.ConnectionStatus is now TRUE if this call completed
' successfully. The error event handlers for the MQ queue manger
' need to be registered here.

 On Event MQWARNING From MQqmgr Call WarningFromMQqmgr
 On Event MQERROR From MQqmgr Call ErrorFromMQqmgr
 End If

 If MQqmgr.ConnectionStatus = True Then ' successfully connected
 Print "MQ connect successful"
 Else
 Delete MQqmgr ' Delete queue manager object
 End If

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

End Sub

Sub WarningFromMQqms (MQsess As MQSession)

' Called when an Mqwarning event is raised on the MQ Session

 Messagebox "Warning from MQ session, reason code "
 ➤ &MQSess.ReasonCode
 MQSess.ClearErrorCodes

End Sub

Sub ErrorFromMQqms (MQsess As MQSession)

' Called when an Mqerror is raised on the MQ session

 Messagebox "Error from MQ session, reason code " &MQsess.ReasonCode

 MQFatalError = True
 MQsess.ClearErrorCodes ' Remember to clear the error codes

End Sub

Public Sub DisconnectFromMQ

 If MQqmgr Is Nothing Then
 Exit Sub
 End If

 MQqmgr.Disconnect ' Disconnect from MQ; changes are committed
 Delete MQqmgr ' Clean up by deleting the MQ objects
 Delete MQqms

End Sub

Public Sub OpenQForInput

 Dim OpenOptions As Long

' This subroutine is called to create the queue object
' Set up open options for input and create a new queue object

 OpenOptions = MQOO_INPUT_SHARED + MQOO_FAIL_IF_QUIESCING
 Set MQq = MQQmgr.AccessQueue(Input_Queue.Text,OpenOptions,"","","")

' Now register the event handlers for this new queue object

 On Event MQWARNING From MQq Call WarningFromMQq
 On Event MQERROR From MQq Call ErrorFromMQq

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

End Sub

Public Sub GetMsgFromQ

' This subroutine gets the first message on the queue and reads
' the message data.

' Create a new message object and options

 Set MQMsg = New MQMessage
 Set MQgmo = New MQGetMessageOptions

' Set GetMessageOptions and GET msg (auto buffer management)

 MQgmo.Options = MQGMO_WAIT + MQGMO_FAIL_IF_QUIESCING +
 ➤ MQGMO_CONVERT + MQGMO_SYNCPOINT
 MQgmo.WaitInterval = Clng(Get_Wait_Time.text)

' Print "MQ Get with wait time " + Get_Wait_Time.text
 MQq.Get MQMsg, MQgmo

' If everything went well, read the message in full, as a string

 If MQFatalError = False Then
 OutString = MQMsg.ReadString(MQMsg.MessageLength)
 If Len(OutString) = 0 Then
 OutString = "No Message"
 End If
 End If

End Sub

Public Sub CloseQForInput

' Make sure that every object is deleted

 If MQq Is Nothing Then
 Exit Sub
 End If

 Delete MQq
 Delete MQMsg
 Delete MQgmo

End Sub

Sub WarningFromMQqmgr (MQqmgr As MQQueueManager)

' Called when an Mqwarning event is raised on an MQ queue manager
' object

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Messagebox "Warning from MQ queue manager, reason code "
 ➤ &MQqmgr.ReasonCode

' Clear the error codes

 MQqmgr.ClearErrorCodes

End Sub

Sub ErrorFromMQqmgr (MQqmgr As MQQueueManager)

' Called when an Mqerror event is raised on an MQ queue manager object

 Messagebox "Error from MQ queue manager, reason code "
 ➤ &MQqmgr.ReasonCode

 MQqmgr.ClearErrorCodes ' Clear the error codes
 MQFatalError = True ' Mark this as a fatal error

End Sub

Sub WarningFromMQq(MQq As MQQueue)

' Called when an Mqwarning event is raised on an MQ queue object

 Messagebox "Warning from MQ queue, reason code" &MQq.ReasonCode

' Clear the error codes

 MQq.ClearErrorCodes

End Sub

Sub ErrorFromMQq (MQq As MQQueue)

' Called when an Mqerror event is raised on an MQ queue object

 If MQq.ReasonCode = MQRC_NO_MSG_AVAILABLE Then
 Print "Input queue empty - no msg available"
 Outstring = "No message"
 Else
 Messagebox "Error from MQ queue, reason code" &MQq.ReasonCode
 MQFatalError = True
 End If

' Clear the error codes

 MQq.ClearErrorCodes

End Sub

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

EXAMPLE AGENT TO WRITE A TEST MESSAGE TO MQSERIES
'WRITE TEST MESSAGE:

Option Declare
Uselsx "mqlsx"

' This agent is self-contained and does not read the configuration
' document, so it can be moved to other dbs. Changes to queue names
' etc are made here in init sub.

' Write a test message to MQ:

' Object variables

Public doc As NotesDocument
Public MQFatalError As Integer ' Indicates a fatal error

' MQ variables

Dim MQqms As MQSession
Dim MQqmgr As MQQueueManager
Dim MQq As MQQueue
Dim MQpmo As MQPutMessageOptions
Dim MQMsg As MQMessage

Dim QMgr_Name As NotesItem ' Queue manager name from form
Dim Msgdata As NotesItem ' The data to put on the queue
Dim Queue_name As NotesItem ' The name of the queue
Dim ConnectedQMgrName As Variant ' Name of the queue manager

Dim OutString As String ' String containing MQMessage

Sub Initialize

 Dim session As New NotesSession
 Dim db As NotesDatabase
 Set db = session.CurrentDatabase
 Set doc = New NotesDocument(db)
 Set QMgr_Name = New NotesItem(doc,"QMgr_Name", "TST1")
 Set Queue_name = New NotesItem(doc,"Queue_name",
 ➤ "TEST.EMAIL.QUEUENAME")

' Format a test message

 Dim BodyCount As Long
 Dim BodyOff As Long
 Dim I As Long

 Outstring = Space(1000)

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

' Set up some fields

 Mid(Outstring,001,80) = " " ' Send to (blank to pick up default)

 Mid(Outstring,081,80) = " " ' Copy to
 Mid(Outstring,161,80) = " " ' BCC

 Mid(Outstring,241,80) = "test message" ' Subject
 Mid(Outstring,321,80) = " " ' Reply to (Blank gets
 ' default)

 Mid(Outstring,401,5) = "00010"

 BodyCount = 10
 BodyOff = 406

 For I = 1 To BodyCount
 Mid(Outstring,BodyOff,80) = "Test message line number" &I
 BodyOff = BodyOff + 80
 Next

' Connect to MQ, open the queue, PUT message, and close

 MQFatalError = False
 If MQFatalError = False Then ConnectToMQ
 If MQFatalError = False Then OpenQForOutput
 If MQFatalError = False Then PutMsgOnQ
 If MQFatalError = False Then MQqmgr.commit
 If MQFatalError = False Then CloseQForOutput
 If MQFatalError = False Then DisconnectFromMQ

 Messagebox "Message Data is " + OutString

End Sub

Public Sub OpenQForOutput

' Create the queue object and open on the real MQ queue

 Dim OpenOptions As Long

' Set the open options
 OpenOptions = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING
 Set MQq = MQQmgr.AccessQueue(Queue_name.Text,OpenOptions,"","","")
 On Event MQWARNING From MQq Call WarningFromMQq
 On Event MQERROR From MQq Call ErrorFromMQq

End Sub

Public Sub PutMsgOnQ

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

' Place on the queue as a string.

 Set Msgdata = New NotesItem(doc,"Msgdata", Outstring)

' Create a new message object and the PUT message options

 Set MQMsg = New MQMessage
 Set MQpmo = New MQPutMessageOptions ' Set the PutMessageOptions
 MQpmo.Options = MQPMO_FAIL_IF_QUIESCING + MQPMO_NO_SYNCPOINT

' Write as a string into our new message

 MQMsg.writestring (Msgdata.Text)

' Before putting message on the queue, set more options

 MQMsg.MessageType = MQMT_DATAGRAM
 MQMsg.Format = MQFMT_STRING

' Now we can put the message on the output queue

 If MQMsg.messagelength <> 0 Then
 MQq.Put MQMsg, MQpmo
 End If
 Print "MQ Message put complete"

End Sub

' Copy the code for the subroutines below from the agent example
' **

Sub WarningFromMQqmgr (MQqmgr As MQQueueManager)

Sub ErrorFromMQqmgr (MQqmgr As MQQueueManager)

Sub WarningFromMQq(MQq As MQQueue)

Sub ErrorFromMQq (MQq As MQQueue)

Public Sub ConnectToMQ

Sub WarningFromMQqms (MQsess As MQSession)

Sub ErrorFromMQqms (MQsess As MQSession)

Public Sub DisconnectFromMQ

© Xephon 2000

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Administering MQSeries for MVS/ESA from Unix

INTRODUCTION

In this article I discuss how to administer MQSeries for MVS/ESA
remotely from a Unix system using MQSeries for HP-UX Version 5.0.
In this context, administration is restricted to MQ objects, such as
queues and processes. The article describes key concepts used in
remote administration and then shows you how to implement them
using the facilities provided by MQSeries.

The set-up discussed here makes life easier for administrators who are
more familiar with Unix than MVS and would like to control MQSeries
for MVS/ESA from their Unix environment. Another benefit is to
establish a single point of control. I find that the availability of remote
administration makes every aspect of defining and changing queues
and other MQSeries objects easier, as objects can be created and
managed, and their version controlled, using non-mainframe
repositories. I also find this method is more intuitive than using a
CSQUTIL-like interface.

In this article I also discuss some common problems that face those
using remote administration. Some of these problems can be addressed
by customizing the administration application, and we discuss a
number of possible solutions.

KEY CONCEPTS IN REMOTE ADMINISTRATION

In this section I summarize some of the concepts necessary for remote
administration: command formats, command messages, command
queues, and command servers.

Command formats
We can administer MQSeries objects using either mqsc or PCF
(Programmable Command Format) commands. With MQSeries for
HP-UX V5.0, it’s possible interactively to create, change, and delete
MQ objects using mqsc commands run from the runmqsc utility
that’s provided with MQSeries.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

Command messages and command queues

For remote administration, an MQSeries queue manager is used to
send commands to another, possibly remote, queue manager.
Commands are sent as messages, referred to as ‘command messages’.
In general, command messages contain either an mqsc or PCF
command (though command messages for MQSeries for MVS/ESA
version 1.2 may contain only mqsc commands). While the format of
the message generally determines the destination queue, messages
containing PCF commands for MQSeries for Unix always use
SYSTEM.ADMIN.COMMAND.QUEUE as the destination queue and
those containing mqsc commands always use
SYSTEM.COMMAND.INPUT.

Command server

A command server processes command messages. A command server
is included in the MQSeries product. MQSeries Version 5 products
use strmqcsv to start the command server, while MQSeries for MVS/
ESA Version 1.2 uses the queue manager command below to start the
command processor.

+cpf START CMDSERV

Administration application

Any authorized application can put command messages on the
command queue. The application can be either local or remote, though
remote applications require intersystem communication support. The
administration application is usually client/server-based, with the
administration application acting as the client and the command
server acting as the server. Command messages are just requests to the
command server – the administration application specifies the reply-
to-queue in the request, the command server processes the requests
and then it puts the reply on the reply-to-queue specified. The
administration application then collects replies to mqsc requests. In
the case of MQSeries for HP-UX Version 5, SYSTEM.MQSC.REPLY.
QUEUE is defined as the model queue that can be used to receive
replies.

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Setting up remote administration

The MQSeries set-up required for remote administration is shown in
Figure 1. Here, HPMQ is the queue manager on an HP-UX system and
MVMQ is the queue manager on an MVS/ESA host. Queue managers
are known to each other using alias queue manager definitions. The
alias is simply a remote queue definition that identifies the transmission
queue to be used during intersystem communication. We match the
name of the alias queue manager with the name of an actual partner
queue manager. The remote queue MVMQ, defined on queue manager
HPMQ, is an alias for the MVMQ queue manager. Similarly the
remote queue HPMQ, defined on the MVS/ESA queue manager, is an
alias for the HP system’s queue manager. The transmission queue
requires a definition, as do the sender and receiver channels. These
definitions are shown in the following sections, and the names of
machines, queue managers, port numbers, and so on need to be
customized to your site’s requirements.

MQSeries definitions for HP-UX

The following script can be used on the MQSeries queue manager
HPMQ to provide the definitions required for the system shown in
Figure 1.

Figure 1: Set-up for remote administration

HPMQ MVMQ

MVMQ SYSTEM.
COMMAND.INPUT

XMIT.MVMQ

HPMQ.TO.MVMQ

HPMQ

SYSTEM.MQSC.
REPLY.QUEUE

MVMQ.TO.HPMQ

XMIT.HPMQ

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

HPMQ SCRIPT
DEFINE QLOCAL ('XMITQ.MVMQ') +
 LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE) +
 REPLACE SHARE USAGE(XMITQ) +
 TRIGGER +
 TRIGTYPE(FIRST) +
 TRIGDATA ('HPMQ.TO.MVMQ') +
 PROCESS (P1)
 INITQ ('SYSTEM.CHANNEL.INITQ') +
 DESCR('XMIT Queue for connection to MVS MQ ')

DEFINE QREMOTE ('MVMQ') +
 RQMNAME ('MVMQ') +
 REPLACE +
 XMITQ('XMITQ.MVMQ') +
 LIKE(SYSTEM.DEFAULT.REMOTE.QUEUE) +
 DESCR('Alias Qmanager for MVMQ ')

DEFINE CHANNEL('HPMQ.TO.MVMQ') CHLTYPE(SDR) +
 TRPTYPE(TCP) CONNAME('host(1414)') +
 LIKE (SYSTEM.DEF.SENDER) +
 XMITQ('XMITQ.MVMQ') +
 CONVERT(YES) +
 REPLACE DESCR('Sender channel to MVMQ ')

DEFINE CHANNEL('MVMQ.TO.HPMQ') CHLTYPE(RCVR) +
 LIKE (SYSTEM.DEF.RECEIVER) +
 REPLACE DESCR(' channel to receive from MVMQ')

DEFINE PROCESS (P1) USERDATA ('HPMQ.TO.MVMQ')

Make sure that the files /etc/inetd.conf and /etc/services include the
following entries (the continuation character, ‘➤ ’, denotes a formatting
line break that should not appear in the actual entry):

• /etc/inetd.conf:

MQSeries stream tcp nowait mqm /opt/mqm/bin/amqcrsta
➤ amqcrsta -m HPMQ

• /etc/services:

MQSeries 1414/tcp

After you add these entries, kill and then start the inetd daemon.

The most common error in this type of set-up is to forget to include
CONVERT(YES) in the sender channel definition.

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQSeries definition for MVS/ESA

On the MVS/ESA queue manager (MVMQ) customize CSQ4DISX or
use ISPF panels to implement the following definitions.

MVMQ DEFINITIONS
DEFINE QLOCAL('XMITQ.HPMQ') +

* Common queue attributes
 DESCR('Transmission queue for HPMQ') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +

* Local queue attributes
 GET(ENABLED) +
 SHARE +
 DEFSOPT(EXCL) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(10000) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('REMOTE') +
 USAGE(XMITQ) +
 INDXTYPE(NONE) +

* Event control attributes
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* Trigger attributes
 TRIGGER +
 TRIGTYPE(FIRST) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS('HPMQ.SEND.PROCESS') +
 INITQ('SYSTEM.CHANNEL.INITQ')
*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

DEFINE PROCESS('HPMQ.SEND.PROCESS') +

* Process attributes
 DESCR('Process for sending messages to HPMQ') +
 APPLTYPE(MVS) +
 APPLICID('CSQX START') +
 USERDATA('MVMQ.TO.HPMQ') +
 ENVRDATA(' ')
*

DEFINE CHANNEL('MVMQ.TO.HPMQ') +
 CHLTYPE(SDR) +

* Sender channel attributes
 DESCR('Channel for sending messages to HPMQ') +
 TRPTYPE(TCP) +
 XMITQ('XMITQ.HPMQ') +
 MCAUSER(' ') +
 BATCHSZ(50) +
 DISCINT(6000) BATCHINT(0) +
 SHORTRTY(10) SHORTTMR(60) +
 LONGRTY(999999999) LONGTMR(1200) +
 SCYEXIT(' ') SCYDATA(' ') +
 MSGEXIT(' ') MSGDATA(' ') +
 SENDEXIT(' ') SENDDATA(' ') +
 RCVEXIT(' ') RCVDATA(' ') +
 SEQWRAP(999999999) +
 CONVERT(YES) +
 NPMSPEED(FAST) HBINT(300) +
 MAXMSGL(4194304) +

* Connection name attribute
 CONNAME('hp(1414)')

DEFINE QREMOTE('HPMQ') +

* Common queue attributes
* DESCR('Queue for accessing TARGET.QUEUE on HPMQ') +
 DESCR('Alias Queue Manager for HPMQ') +
 PUT(ENABLED) +
 DEFPSIST(YES) +
 DEFPRTY(9) +
 RQMNAME(HPMQ) +
 XMITQ('XMITQ.HPMQ')

DEFINE CHANNEL('HPMQ.TO.MVMQ') +
 CHLTYPE(RCVR) +

* Receiver channel attributes

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 DESCR('Channel for receiving messages from HPMQ') +
 TRPTYPE(TCP) +
 BATCHSZ(50) +
 SCYEXIT(' ') SCYDATA(' ') +
 MSGEXIT(' ') MSGDATA(' ') +
 SENDEXIT(' ') SENDDATA(' ') +
 RCVEXIT(' ') RCVDATA(' ') +
 MCAUSER(' ') +
 PUTAUT(DEF) +
 SEQWRAP(999999999) +
 NPMSPEED(FAST) HBINT(300) +
 MAXMSGL(4194304)

Make sure that the command server starts whenever queue manager
MVMQ is started.

OPERATION OF REMOTE ADMINISTRATION

1 Start the channels:

On the HP system, use the command runmqsc HPMQ to start
channels using:

start channel (HPMQ.TO.MVMQ)
start channel (MVMQ.TO.HPMQ)

On the MVS/ESA host, use ISPF panels first to start the channel
initiator and then the channels. The set-up is suitable for triggered
channels. If the channel initiator is started with the queue manager,
the channels are triggered when messages arrive on the
transmission queue.

2 Verify that the sender and receiver channels’ status is RUNNING.
On the HP system, use the runmqsc HPMQ command to verify
the status using:

display chstatus (*)

On the MVS/ESA host, you can use ISPF panels to determine the
channels’ status.

3 Use the runmqsc command to send messages to the remote
queue manager. This command has two flags that are required for
the remote administration of MQSeries for MVS/ESA: the –w
flag puts the runmqsc command in indirect mode, which means

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

that mqsc commands passed to runmqsc are run on the remote
queue manager. The replies/reports are returned to the local
queue manager. The –w flag requires a ‘wait time’ in seconds. The
–x flag specifies that the target queue manager is running under
MVS/ESA.

A sample session for remote administration is captured as follows:

hp$runmqsc -w 30 -x MVMQ
84H2002, 5765-B74 (C) Copyright IBM Corp. 1994, 1997
ALL RIGHTS RESERVED.
Starting MQSeries Commands.

display qmgr
 1 : display qmgr
CSQN205I COUNT=3, RETURN=00000000, REASON=00000000
CSQM409I QMNAME(MVMQ)
CSQ9022I]MVM CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION
display qmgr all
 2 : display qmgr all
CSQN205I COUNT=3, RETURN=00000000, REASON=00000000
CSQM409I QMNAME(MVMQ) DESCR(MVMQ, IBM MQSeries for MVS/ESA - V1.2)
PLATFORM(MVS) CPILEVEL(100) CMDLEVEL(120) CCSID(500) MAXPRTY(9)
MAXMSGL(4194304) SYNCPT(AVAILABLE) COMMANDQ(SYSTEM.COMMAND.INPUT)
DEADQ(MVMQ.DEAD.QUEUE) TRIGINT(999999999) MAXHANDS(256)
AUTHOREV(DISABLED) INHIBTEV(DISABLED) LOCALEV(DISABLED)
REMOTEEV(DISABLED) STRSTPEV(ENABLED) PERFMEV(DISABLED)
DEFXMITQ(MVMQ.DEFXMIT.QUEUE)
CSQ9022I]MVM CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION
end
 3 : end
2 MQSC commands read.
2 command responses received.

The runmqsc session terminates when you issue the command end
(this is true of any runmqsc session). Every reply contains at least
three messages: the first contains information about the number of
messages being sent, the return code, and reason code for the request.
The last message carries information about the status of the command
being executed, and the remaining messages contain data specific to
the results of the request. The runmqsc command does not format the
output data, making it somewhat hard to interpret.

If any problems occur, check the following log files:

/var/mqm/errors/AMQERR01.LOG
/var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/var/mqm/qmgrs/HPMQ/errors/AMQERR01.LOG

LIMITATIONS

The use of runmqsc in indirect mode has one severe limitation – the
local queue manager used by this command must be the default queue
manager. This means that, in Figure 1, HPMQ must be the default
queue manager, as it’s the local queue manager used by runmqsc.

Additionally, remote administration cannot boot itself. In other words,
you cannot start or stop the MVS/ESA queue managers remotely. You
can stop the channels, but you cannot start the channels if the channels
are stopped.

One of the most irritating problems with MQSeries for MVS/ESA
V1.2 is that the channel initiator has to be stopped and re-started when
TCP/IP is shut down and restarted. Remote administration cannot be
used to fix this problem.

CUSTOM ADMINISTRATION APPLICATION

Given the limitation that runmqsc works only with the default queue
manager, you may be forced to write your own administration
application. Writing administration applications is explained here
with reference to some sections in Chapter 14 of MQSeries’ System
Management Guide.

As described earlier, the remote administration application is essentially
a client/server application. Requests are put on the command queue
(SYSTEM.COMMAND.QUEUE) of the remote queue manager, with
the reply-to-queue specified as a dynamic queue using the
SYSTEM.MQSC.REPLY.QUEUE model. The message buffer should
contain mqsc commands.

The message buffer size should be set to 32 KB, as neither the
command nor reply should exceed 32 KB. The additional requirement
is that we should be able to specify the local queue manager.

A simple remote administration application is listed below. In this
program, the output is formatted so that the parameter and values
being displayed are easy to read.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

MYCONTROL.C
/***/
/* */
/* mycontrol.c : A simple MQ remote administration application. */
/* */
/* The application accepts two parameters, the second of which */
/* is optional: */
/* - The name of remote QManager (MVS/ESA) */
/* - The name of local queue manager that is able to communicate */
/* with the remote queue manager. */
/* */
/* If second parameter is not specified, the default queue manager */
/* is used. */
/* */
/* The application accepts mqsc commands from stdin. Each command */
/* should be on a line by itself, and you can issue any number of */
/* commands. */
/* */
/* To terminate command input, enter an empty line. If stdin is */
/* redirected from a file, EOF terminates input. */
/* */
/***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* includes for MQI */
#include <cmqc.h>

#define MAX_BUFFER_LEN 32000

FILE *fp ;
MQCHAR buffer [MAX_BUFFER_LEN] ;
MQLONG buflen ;

MQOD od = {MQOD_DEFAULT}; /* Object descriptor */
MQOD odr = {MQOD_DEFAULT}; /* Object descriptor for reply */
MQMD md = {MQMD_DEFAULT}; /* Message descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* GET message options */
MQPMO pmo = {MQPMO_DEFAULT}; /* PUT message options */
MQHCONN Hcon; /* Connection handle */
MQHOBJ Hobj; /* Object handle for server */
MQHOBJ Hreply; /* Object handle for reply */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* Completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* Reason code */
MQLONG CReason; /* Reason code for MQCONN */

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQLONG replylen; /* Reply length */
MQCHAR48 replyQ; /* Reply queue name */

char QMName[49]; /* Queue manager name */
char RemoteQMName[49]; /* Remote queue manager name */
char parameter [256];
char value [1024];

int main(int argc, char **argv)
{
 printf("mycontrol start\n");
 if (argc < 2)
 {
 printf("Required parameter missing - queue name\n");
 exit(99);
 }
 strcpy (RemoteQMName, argv[1]);

 /**/
 /* */
 /* Connect to queue manager */
 /* */
 /**/
 QMName[0] = 0; /* default */

 if (argc > 2)
 strcpy(QMName, argv[2]);

 MQCONN(QMName, /* Queue manager */
 &Hcon, /* Connection handle */
 &CompCode, /* Completion code */
 &CReason); /* Reason code */

 /* Report reason and stop if it failed */
 if (CompCode == MQCC_FAILED)
 {
 printf("MQCONN ended with reason code %ld\n", CReason);
 exit(CReason);
 }

 strncpy(od.ObjectName, "SYSTEM.COMMAND.INPUT" , MQ_Q_NAME_LENGTH);
 strncpy(od.ObjectQMgrName, RemoteQMName , MQ_Q_NAME_LENGTH);

#ifdef DEBUG
 printf("remote queue is %s\n", od.ObjectName);
 printf("remote queue manager is %s\n", od.ObjectQMgrName);
#endif

 /**/
 /* */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

 /* Open the request message queue for output */
 /* */
 /**/
 O_options = MQOO_OUTPUT /* Open queue for output */
 + MQOO_FAIL_IF_QUIESCING; /* But not if MQM stopping */
 MQOPEN(Hcon, /* Connection handle */
 &od, /* Object descriptor for queue */
 O_options, /* Open options */
 &Hobj, /* Object handle */
 &OpenCode, /* Completion code */
 &Reason); /* Reason code */

This article concludes in next month’s issue of MQ Update.

Ashish Joshi
Consultant (USA) © A Joshi 2000

MQSeries and NT screen resolution

Of all the things you’d expect not to affect middleware, screen
resolution would probably be one of them. However, I experienced a
problem installing MQSeries Server on an NT system with a display
of less than 800 by 600 pixels. Every time I tried to install, I got the
following message: “Server component cannot be installed without
800x600 or better screen resolution”.

A lengthy search on the Web revealed that I’m not alone – while the
800x600 requirement is documented in the readme.txt on the CD,
there is a workaround. To stop the installation program checking
screen resolution, launch the installation using the following command:

setup -noprereqnonvga

System Administrator (UK) © Xephon 2000

MQ news

BEA has announced a range of new eLink
products aimed at integrating enterprise
processes and applications both within
businesses and across the Web. eLink
products are supported by a range of
packaged adapters that provide interfaces
between eLink and ERP, CRM, mainframe-
based applications, and other technologies.
These include a new adapter for MQSeries,
which integrates third-party applications
with MQSeries, adding to an updated
adapter for mainframe TCP, which
integrates OS/390 CICS and IMS
applications running over TCP/IP.

Adapters for MQSeries are currently
available on HP-UX. Availability on AIX,
Solaris, and Windows NT is expected
imminently. Prices are available on request
from the vendor.

For further information contact:
BEA Systems Inc, 385 Moffet Park Drive,
Sunnyvale, CA 94089
Tel: +1 408 743 4000
Fax: +1 408 734 9234
Web: http://www.beasys.com

BEA Systems Ltd, Windsor Court,
Kingsmead Business Park, Frederick Place,
London Road, High Wycombe, Bucks HP11
1JV, UK
Tel: +44 1494 559500
Fax: +44 1494 452202

* * *

New Era of Networks has announced NEON
e-Business Adapter Development Kit, or
e-ADK, which is a set of tools and libraries
for developing adapters to interface
applications with NEON e-Business

Integration Servers. The kit includes a
complete architectural framework for
building a NEON adapter. Users can
configure the kit to work with any supported
transport, such as IBM MQSeries, Microsoft
MSMQ, or flat files, and developers don’t
need to know details of low-level
programming for each transport supported
by the e-ADK.

It’s out now for NT 4.0 and Solaris 2.6 and 7.
Availability on AIX and HP/UX is planned
for Q1 2000. Prices were not announced.

For further information contact:
NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA
Tel: +1 303 694 3933
Fax: +1 303 694 3885
Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK
Tel: + 44 171 329 4669
Fax:+ 44 171 329 4567

* * *

IBM has announced that Version 1.6 of its
Business Integration Suite for Windows NT
is to include MQSeries V5.1. Other
components include: eNetwork
Communications Server 6.02 (including
Host On-Demand Entry V3.0), DB2
Universal Database Workgroup Edition 6.1
(including NetData V2.0.5 and DB2
Extenders), Lotus Domino 5.0, WebSphere
Application Server Standard Edition V2.03
(including IBM HTTP Server V1.3), and
SecureWay Directory V3.1. The Integration
suite is priced at US$6,500.

x xephon

	Accessing OS/390 data from Microsoft Word
	E-mail generation from MQSeries using Notes
	Administering MQSeries for MVS/ESA from Unix
	MQSeries and NT screen resolution
	MQ news

