
© Xephon plc 2000

3 Using MQSeries as a transaction
coordinator

19 Invoking MQSeries tools using
ISPF panels

26 Administering MQSeries for
MVS/ESA from Unix

36 Guidelines for MQSeries for
OS/390 users

44 MQ news

March 2000

9

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryL@xephon.com

North American office

Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: +1 940 455 7050

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Using MQSeries as a transaction coordinator

INTRODUCTION

The MQSeries System Administration Guide and MQSeries
Application Programming Guide discuss the subject of a unit of work
in some detail. MQSeries treats a unit of work as local if it involves
updates in one queue manager. The unit of work is global if it involves
database updates. The coordination of a global unit of work may
include any XA-compliant relational database. An XA-compliant
relational database is defined in terms of the X/Open Distributed
Transaction Processing standard (in other words, it comes from the
XA specification). The XA specification identifies transaction
managers, resource managers, and an XA interface to achieve two-
phase commit. Most relational databases can act as resource managers,
which is another way of saying that they are XA-compliant. MQSeries
is a unique product in the sense that it can behave as either a
transaction manager or a resource manager. This behaviour is controlled
by the configuration of the queue manager, which can be that of a
resource manager to other transaction monitors or a transaction
manager to work alongside resource managers.

In this article I discuss how to use an MQSeries queue manager to
coordinate updates to an Oracle database. While the MQSeries
Application Programming Guide and System Administration Guide
provide quite good detail on how to use MQSeries with DB2, the
information on Oracle is rather sketchy. This article should provide
enough detail for someone to configure an MQSeries queue manager
and test a sample application using both commit and rollback scenarios.
To demonstrate the process of coordinating a queue manager to
update Oracle, I use MQSeries 5.0 on HP-UX 10.20 with Oracle 7.3.4.

PLANNING

The object of this exercise is to demonstrate the use of a queue
manager as a transaction coordinator and Oracle as a resource manager.
I also describe the steps necessary to configure the MQSeries queue

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

manager and verify that it is working properly. However, to verify that
our objective is really achieved, we should at least write a test
application to ensure that we are able to control transactions using
MQI calls.

Our set-up comprises a queue manager called QMGR and a queue
TESTQUEUE. Assume that, whenever a client puts a message on this
queue, an MQSeries-controlled unit of work starts. This unit of work
involves two steps:

• EXEC SQL UPDATE on the Oracle table.

• MQPUT a message on TESTQUEUE to flag that data held in
Oracle has been updated.

If the transaction is committed successfully, the database should be
updated and a confirmatory message should be present on the
TESTQUEUE. If the transaction fails, no message should be placed on
the TESTQUEUE and the Oracle table should be in the state that it was
in prior to the unit of work commencing. If necessary, the test
application can be extended to multiple tables, databases, etc. However,
our test should establish that the basic aspects of unit of work
management are functioning correctly.

CONFIGURATION

We assume that the queue manager has been created and is available.
Similarly, the instance of the database has also been created and is
available. In this section, we detail how to configure both the MQSeries
queue manager and Oracle, and how to configure details that are
specific to the test application. A number of these tasks are documented
in IBM’s MQSeries System Administration Book, including:

• Building the Oracle XA switch load file

• Configuring the queue manager

• Configuring the Oracle instance

• Application-specific configurations.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

BUILDING THE ORACLE XA SWITCH LOAD FILE

The MQSeries product provides the program source files and makefiles
required for building the Oracle XA switch load file. These files are
located in directory mqmtop/samp/xatm, and we have to copy them to
directory /home/mqm/xatm. The required files are:

• xa.h

• oraswit.c

• xaswit.mak.

The xaswit.mak makefile assumes that the switch load file is called
oraswit and is generated in the current directory. To build the file,
export the variable ORACLE_HOME and then issue the following
command:

make –f xaswit.mak oraswit

At our installation, I had to rebuild the file libclntsh.sl in the Oracle
library because of a problem with symbols.

CONFIGURATION OF THE QUEUE MANAGER

Add the lines below to the qm.ini file (this is located in /var/mqm/
qmgrs/QMGR/qm.ini for MQSeries 5.0 on HP-UX 10.20) of the
queue manager for XAResourceManager. (The continuation character,
‘➤ ’, denotes a formatting line break.)

Name=OracleXA
SwitchFile=/home/mqm/xatm/oraswit
XAOpenString=Oracle_XA+Acc=P/orauser/orapass
➤ +SesTm=35+LogDir=/tmp

Here Name is a string given by the user. The name is usually not
significant, except when you have multiple sections that refer to an
XAResourceManager and one of them is failing. Note that, while
XAOpenString has many options, we are setting only the ones that are
necessary. XAOpenString comprises a number of parameters separated
by the plus sign (‘+’). The first parameter is always Oracle_XA. The
second parameter, in this case, contains account information. Oracle
user orauser with password orapass is used to connect to the instance

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

of Oracle concerned. SesTm is a timeout parameter for the session.
This is a mandatory parameter and it denotes the maximum time that
a transaction can be inactive before the system automatically deletes
it. The last parameter of XAOpenString is LogDir, which is a directory
for writing Oracle XA log messages. Note that the mqm user id should
have permission to write to this directory. For more information on
XAOpenString, check the MQSeries System Administration Guide or
your Oracle documentation.

ORACLE SET-UP

In order for XAOpenString to work, we must be in possession of an
Oracle user id ‘orauser’ with password ‘orapass’. Additionally, we
must have access to the sys.v$xatrans$ table and the user ‘orauser’
must have SELECT permission on this table.

Log on to Oracle as sys and create v$xatrans$ using $ORACLE_HOME/
rdbms/admin/xaview.sql and sqlplus:

grant select on v$xatrans$ to orauser

TEST PLAN

The test application involves an Oracle table called representative.
The only details in this table in which we are interested are REP_ID
(‘representative id’) and FIRST_NAME. The table includes one row
in which REP_ID is ‘34567’ and FIRST_NAME is ‘Bill’.

The application first issues an SQL statement to UPDATE the row
with REP_ID ‘34567’ by changing FIRST_NAME to ‘William’ and
then it PUTs a message containing information about the change on
TESTQUEUE.

The application can accept the name of a queue and that of a queue
manager as parameters. The changes detailed in the message are
committed unless an additional, optional ‘rollback’ parameter is
specified. To initialize the test runs, we remove all the messages from
the TESTQUEUE in QMGR.

In order to demonstrate the COMMIT scenario, we issue the message

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

and run the application. The expected results of this run are as follows:

1 The UPDATE is committed and the value of FIRST_NAME is
changed to ‘William’.

2 There is one message on TESTQUEUE in QMGR that contains
information about the new name and REP_ID.

In order to demonstrate the ROLLBACK scenario, we re-initialize the
test by clearing all messages from TESTQUEUE and resetting
FIRST_NAME to ‘Bill’. We then issue the message and run the
application with the ROLLBACK option. The expected results of this
run are as follows:

1 There are no messages on TESTQUEUE.

2 The SQL UPDATE is issued and then rolled back, so that the
value of FIRST_NAME is ‘Bill’ at the end.

This test is scripted, and the script and expected results are also
included in the article.

TEST APPLICATION

The program below contains an MQBEGIN statement to indicate the
start of the unit of work. The unit of work terminates with either an
MQCMIT or an MQBACK. The EXEC SQL UPDATE and MQPUT are
executed between these transaction boundaries and thus form part of
the unit of work.

The use of MQI verbs, such as MQPUT and MQGET, within the unit
of work needs closer inspection. In the test application, we use
MQPUT with MQPMO_SYNCPOINT. This option must be used to
identify that the MQPUT is in the unit of work. When this option is
specified, the message put on the queue is not visible until the
MQCMIT is issued. If this option is not used, the default for Unix
systems is MQPMO_NO_SYNCPOINT, which results in the MQPUT
not being included in the unit of work.

The sections that follow contain the pro*C source listing, a script to
build the MqOraTest application, and a test script.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQORATEST
/**/
/* */
/* Program name: MqOraTest */
/* */
/* Description: Test proC program for MQSeries and Oracle XA */
/* */
/**/

/**/
/* */
/* MqOraTest parameters - The name of the message queue (required) */
/* - The queue manager name (required) */
/* - rollback (optional keyword) */
/* */
/**/
/* */
/**/
/* */
/* Includes */
/* */
/**/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <cmqc.h>

/**/
/* */
/* Defines */
/* */
/**/
#define OK 0 /* define OK as zero */
#define NOT_OK 1 /* define NOT_OK as one */

/**/
/* */
/* Define and declare an SQLCA (SQL Communication Area) structure */
/* */
/**/
EXEC SQL INCLUDE SQLCA;

void sql_error ();
 /*****************************/
int main(int argc, char *argv[]) /* ----- START OF MAIN ----- */
 /*****************************/
{
 EXEC SQL WHENEVER SQLERROR DO sql_error("ORACLE error--\n");

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 MQOD od = {
 MQOD_DEFAULT }; /* object descriptor */
 MQMD md = {
 MQMD_DEFAULT }; /* message descriptor */
 MQPMO pmo = {
 MQPMO_DEFAULT }; /* get message options */
 MQBO bo = {
 MQBO_DEFAULT }; /* begin options */

 MQLONG rc=OK; /* return code */
 MQHCONN hCon; /* handle to connection */
 MQHOBJ hObj; /* handle to object */
 char QMName[50]=""; /* default QM name */
 MQLONG options; /* options */
 MQLONG reason; /* reason code */
 MQLONG connReason; /* MQCONN reason code */
 MQLONG compCode; /* completion code */
 MQLONG openCompCode; /* MQOPEN completion code */
 char msgBuf[100]; /* message buffer */
 MQLONG msgBufLen; /* message buffer length */
 MQLONG msgLen; /* message length received */

 char *pStr; /* ptr to string */
 int gotMsg; /* got message from queue */
 int committedUpdate; /* committed update */
 int rollback ; /* ask for rollback */
 long balanceChange; /* balance change */

 /**/
 /* SQL host declarations */
 /**/
 EXEC SQL BEGIN DECLARE SECTION;
 char first_name[40]; /* name */
 long rep_id; /* account number */
 EXEC SQL END DECLARE SECTION;

 /**/
 /* First check we have been given correct arguments */
 /**/
 if (argc != 3 && argc != 4)
 {
 printf("Usage : %s 'queue name' 'qmgr name' '[rollback]'.\n",
 argv[0]);
 exit(99);
 }
 strcpy(QMName, argv[2]); /* qmgr name supplied */
 if (argc == 4)
 {
 if (! strcmp("rollback", argv[3]))
 rollback = 1; /* set rollback to true */

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 else
 rollback = 0; /* set rollback to false */
 }
 printf ("The current value of rollback = %d \n", rollback);

 /**/
 /* Connect to queue manager */
 /**/
 MQCONN(QMName, &hCon, &compCode, &connReason);
 if (compCode == MQCC_FAILED)
 {
 printf("MQCONN ended with reason code %li\n", connReason);
 exit((int) connReason);
 }

 /**/
 /* Use input parameter as the name of the target queue */
 /**/
 strncpy(od.ObjectName, argv[1], (size_t) MQ_Q_NAME_LENGTH);
 printf("Target queue is %s\n", od.ObjectName);

 /**/
 /* Open the target message queue for output */
 /**/
 options = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;
 MQOPEN(hCon, &od, options, &hObj, &openCompCode, &reason);
 if (reason != MQRC_NONE)
 printf("MQOPEN ended with reason code %li\n", reason);

 if (openCompCode == MQCC_FAILED)
 {
 printf("Unable to open queue for output\n");
 rc = openCompCode; /* stop further action */
 }

 /**/
 /* Set up MQPUT */
 /**/
 msgBufLen = sizeof(msgBuf) - 1;
 pmo.Options = MQPMO_SYNCPOINT;

 {
 /***/
 /* Set flags so that we can back out if something goes */
 /* wrong and not lose the message. */
 /***/
 gotMsg = 0; /* set flag to FALSE */
 committedUpdate = 0; /* set flag to FALSE */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

 /***/
 /* Start a unit of work */
 /***/
 MQBEGIN (hCon, &bo, &compCode, &reason);

 if (reason == MQRC_NONE)
 {
 printf("Unit of work started\n");
 }
 else
 {
 printf("MQBEGIN ended with reason code %li\n", reason);
 rc = NOT_OK;
 }

 if (compCode == MQCC_FAILED)
 printf("Unable to start a unit of work\n");

 /**/
 /* Put message on queue. Hardcoded. */
 /**/
 if (rc == OK)
 {
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 msgBufLen = 20 ;
 memcpy (msgBuf , "William 34567 ",12);
 msgBuf[20] = '\0' ;
 MQPUT(hCon, hObj, &md, &pmo, msgBufLen, msgBuf,
 &compCode, &reason);

 if (reason != MQRC_NONE)
 {
 printf("MQPUT ended with reason code %li\n",
 reason);
 compCode = MQCC_FAILED; /* stop looping */
 }
 else
 {
 gotMsg = 1; /* set flag to TRUE */
 }
 printf (" completed MQPUT call \n");
 }

 if (compCode != MQCC_FAILED && rc == OK)
 {
 /**/
 /* Put details in database */
 /**/
 if (rc == OK)

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 {
 rep_id = 34567 ;
 EXEC SQL SELECT first_name
 INTO :first_name
 FROM REPRESENTATIVE
 WHERE REP_ID = :rep_id
 ;

 printf ("The name is %s \n", first_name);
 printf ("The rep_id is %d \n", rep_id);
 strcpy (first_name , "William");

 EXEC SQL UPDATE REPRESENTATIVE
 SET FIRST_NAME = :first_name
 WHERE REP_ID= :rep_id
 ;

 printf (" completed SQL UPDATE statement \n");
 if (rc == OK)
 {
 /**************************************/
 /* We are going to commit the update: */
 /* even if something goes */
 /* wrong now, the message has been */
 /* used so don't back out. */
 /**************************************/
 committedUpdate = 1; /* set flag to TRUE */
 if (!rollback) {
 MQCMIT(hCon, &compCode, &reason);

 if (reason == MQRC_NONE)
 {
 printf("Unit of work successfully
 ➤ completed\n");
 }
 else
 {
 printf("MQCMIT ended with reason code
 ➤ %li completion code "
 "%li\n", reason, compCode);
 rc = NOT_OK;
 }
 }
 }
 }
 }

 /**/
 /* If we got the message, but something went wrong, */
 /* back out so that we don't lose the message. */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

 /**/
 if (rollback || (gotMsg && !committedUpdate))
 {
 MQBACK(hCon, &compCode, &reason);
 if (reason == MQRC_NONE)
 printf("MQBACK successfully issued\n");
 else
 printf("MQBACK ended with reason code %li\n", reason);
 }
 }
 /**/
 /* Close queue, if opened */
 /**/
 if (openCompCode != MQCC_FAILED)
 {
 options = 0; /* no close options */
 MQCLOSE(hCon, &hObj, options, &compCode, &reason);

 if (reason != MQRC_NONE)
 printf("MQCLOSE ended with reason code %li\n", reason);
 }

 /**/
 /* Disconnect from queue manager, if not already connected */
 /**/
 if (connReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&hCon, &compCode, &reason);

 if (reason != MQRC_NONE)
 printf("MQDISC ended with reason code %li\n", reason);
 }
 return 0;
 /*****************************/
} /* ------ END OF MAIN ------ */
 /*****************************/

void
sql_error(msg)
char *msg;
{
 char err_msg[128];
 size_t buf_len, msg_len;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 printf("\n%s\n", msg);
 buf_len = sizeof (err_msg);
 sqlglm(err_msg, &buf_len, &msg_len);
 printf("%.*s\n", msg_len, err_msg);

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 /*** EXEC SQL ROLLBACK RELEASE; ****/
 exit(1);
}

To build the application, use following commands:

proc MqOraTest.pc
cc -g -Aa -D_HPUX_SOURCE -D_REENTRANT MqOraTest.c \
-o MqOraTest \
-I $ORACLE_HOME/include -L$ORACLE_HOME/lib -lclntsh \
-L/opt/mqm/lib -lmqm -lc -lM

To test run the application, use amqsget to verify that the message is
on queue TESTQUEUE.

TEST SCRIPT
ORACLE_HOME=/oracle/product/app/oracle/7.3.4.3
export ORACLE_HOME

TWO_TASK=grc2t
export TWO_TASK

PATH=$ORACLE_HOME/bin:$PATH
export PATH

echo Restore Name to Bill
sqlplus orauser/orapass @name2
echo Query Current Values For name. Must be Bill.
sqlplus orauser/orapass @name
echo Drain queue TESTQUEUE on QMGR queue manager
echo The number of messages at this time do not matter.
amqsget TESTQUEUE QMGR
MqOraTest TESTQUEUE QMGR
sleep 5
sqlplus orauser/orapass @name
sleep 5
echo Drain queue TESTQUEUE on QMGR queue manager. Show EXACTLY
 ➤ one message.
amqsget TESTQUEUE QMGR
echo Restore Name to Bill.
sqlplus orauser/orapass @name2
echo Get Current Values For name .Now Bill .
sqlplus orauser/orapass @name
echo Drain queue TESTQUEUE on QMGR queue manager. Nothing to
 ➤ drain.
amqsget TESTQUEUE QMGR
echo Update and message PUT but then rollback.
MqOraTest TESTQUEUE QMGR rollback

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

echo Get Current Values For name .Should be Bill .
sqlplus orauser/orapass @name
echo Drain queue TESTQUEUE on QMGR queue manager. Show EXACTLY
 ➤ NO messages.
amqsget TESTQUEUE QMGR
echo End

--name.sql
set pagesize 9999
select * from representative where rep_id = 34567 ;
exit

--name2.sql
set pagesize 9999
update representative set first_name = 'Bill' where rep_id = 34567 ;
exit

TEST RESULTS
Restore Name to Bill

SQL*Plus: Release 3.3.4.0.0

1 row updated.

Disconnected from Oracle7 Server Release 7.3.4.2.0 - Production

Query Current Values For name. Must be Bill .

SQL*Plus: Release 3.3.4.0.0

 REP_ID FIRST_NAME
 34567 Bill

Disconnected from Oracle7 Server Release 7.3.4.2.0 - Production

Drain queue TESTQUEUE on QMGR queue manager
The number of messages at this time do not matter.
Sample AMQSGET0 start
no more messages
Sample AMQSGET0 end
The current value of rollback = 0
Target queue is TESTQUEUE
Unit of work started
 completed MQPUT call
The name is Bill
The rep_id is 34567
 completed SQL UPDATE statement
Unit of work successfully completed

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SQL*Plus: Release 3.3.4.0.0

 REP_ID FIRST_NAME
 34567 William

Disconnected from Oracle7 Server Release 7.3.4.2.0 - Production
Drain queue TESTQUEUE on QMGR queue manager. Show EXACTLY one message.
Sample AMQSGET0 start
message <William 34567>
no more messages
Sample AMQSGET0 end

Restore Name to Bill.

SQL*Plus: Release 3.3.4.0.0

1 row updated

Disconnected from Oracle7 Server Release 7.3.4.2.0 - Production
Get Current Values For name .Now Bill .

SQL*Plus: Release 3.3.4.0.0
 REP_ID FIRST_NAME
 34567 Bill

Disconnected from Oracle7 Server Release 7.3.4.2.0 - Production
Drain queue TESTQUEUE on QMGR queue manager .Nothing to drain..
Sample AMQSGET0 start
no more messages
Sample AMQSGET0 end
Update and message PUT but then rollback.
The current value of rollback = 1
Target queue is TESTQUEUE
Unit of work started
 completed MQPUT call
The name is Bill
The rep_id is 34567
 completed SQL UPDATE statement
MQBACK successfully issued
Get Current Values For name. Should be Bill.

SQL*Plus: Release 3.3.4.0.0

 REP_ID FIRST_NAME
 34567 Bill

Disconnected from Oracle7 Server Release 7.3.4.2.0 - Production
Drain queue TESTQUEUE on QMGR queue manager. Show EXACTLY NO messages.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

Sample AMQSGET0 start
no more messages
Sample AMQSGET0 end
End

REMARKS

Once we demonstrate transaction coordination using an MQSeries
queue manager, several other issues arise. The remarks below may
assist in answering some of them.

• The ability to coordinate database updates within MQSeries units
of work is not supported in an MQI client application. (This
ability is provided in ECI.)

• The MQI updates and database updates must both be carried out
on the same server as hosts the queue manager. This is a rather
strict constraint that may limit the usability of MQSeries’
transaction coordination, though the constraint can be relaxed in
cases such as the one dealt with by the next bullet point.

• The database server may reside on a different machine from the
queue manager server as long as the database is accessed via an
XA-compliant client provided by the database manager itself.

• Although the queue manager is itself XA-compliant, it is not
possible to configure other queue managers as participants in
global units of work. This is because only one connection at a time
can be supported.

• These restrictions also apply to MQSeries Version 5.1.

• If there are any errors in the oraclexa switch load file, or an error
in the set-up, then your queue manager will not start.

• If an error is still returned by Oracle despite the queue manager
starting, then STD_OUT may contain an error message or the
routine sql_error. Alternatively, you may find a file in the
directory named in XAOpenString’s LogDir parameter (/tmp in
this example). The file name is usually similar to
xaNULL092099.trc, where 092099 is a date. If LogDir is not
specified, you will find this file in the current directory.

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Other common problems include:

– No write permission on $LogDir.

– mqm (or the user id under which the application runs) has no
grant permission on sys.v$xatrans$.

– The Oracle environment variables ORACLE_HOME, PATH,
and ORACLE_SID or TWO_TASK and library paths
(SHLIB_PATH for HP-UX, etc) are not set before queue
manager is started.

– The attempt to compile libclntsh.sl using the makefile supplied
by Oracle is incomplete.

• There is a performance hit associated with any transactional
update. The performance hit depends on the application and may
need additional profiling.

SUMMARY

This article demonstrates the use of MQSeries as transaction
coordinator for Oracle. Both commit and rollback scenarios are
shown using a sample application, which is provided with details of
its peripheral configuration. The application should help developers
to answer several questions regarding how MQI is used for coordinating
transactions using MQBEGIN, MQCMIT, and MQBACK, as well as
highlight the changes required in options for MQPUT
(MQPMO_SYNCPOINT). It should help developers to understand
how to use embedded SQL with MQI. The article also lists the
problems that are commonly encountered and restrictions on the use
of MQSeries as transaction coordinator.

Ashish Joshi
Consultant (USA) © A Joshi 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

Invoking MQSeries tools using ISPF panels

We run many MQSeries images on different Logical Partitions as a
way of managing a wide variety of work at our site. This allows us, for
instance, to keep our test and acceptance systems separate. However,
the downside of this is the additional effort required to run the utilities
that we frequently use in both test and acceptance environments.

To handle this, we developed a panel-driven system to run our most
frequently used utilities. The main menu can be called from a PANEL
with the following statement:

+3 |Utilities
3,'PANEL(MQMUTIL)'

The utility’s main menu is shown in Figure 1.

Figure 1: Main menu

MQMUTIL ----------------- MQSeries/MVS Utilities ------------------
OPTION ===>

 BSDS management
 1 - MQ Print log MQSeries system must be stopped

 Queue management - -
 2 - copy |
 3 - empty | MQSeries system
 4 - load | must be running
 5 - print |
 6 - define entries |
 |
 Commands |
 7 - command --

MQSERIES UTILITY PANEL DEFINITIONS

The ISPF panels listed in this section are invoked.

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQMUTIL
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(OUTPUT) INTENS(LOW) CAPS(OFF) JUST(ASIS)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|-------------------------`MQSeries/MVS Utilities |--------------------------
%OPTION ===>_ZCMD
+
+
 % BSDS management
+ ~1 - MQ Print log ¢ MQSeries system must be stopped
+
+
 % Queue management ¢--
 ~2 - copy ¢ |
 ~3 - empty ¢ | MQSeries system
 ~4 - load ¢ | must be running
 ~5 - print ¢ |
 ~6 - define entries¢ |
+ ¢ |
 % Commands ¢ |
 ~7 - command ¢--
+
+
+
+
)INIT
 .HELP = TUTORPAN /* insert name of tutorial panel */
)PROC
 &ZSEL=TRANS(TRUNC(&ZCMD,'.')
 1,'CMD(MQMPRLM)'
 2,'CMD(MQMCOPY)'
 3,'CMD(MQMEMPTY)'
 4,'CMD(MQMLOAD)'
 5,'CMD(MQPRINTQ)'
 6,'CMD(MQDEFINE)'
 7,'CMD(MQMCOMM)'
 X,'EXIT'
 ' ',' '
 *,'?')

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

 &ZTRAIL = .TRAIL
 &PFKEY = .PFKEY
)END

SUBMIT
)ATTR
 _ TYPE(INPUT) CAPS(OFF) INTENS(HIGH) FORMAT(&MIXED)

)BODY WIDTH(&ZWIDTH) EXPAND(||)
%&CIVER EDIT -----------------------------|-|---------------------------------
-+
%COMMAND ===>_ZCMD | | %SCROLL ===>_Z
%
+ **** IF YOU WISH TO SUBMIT THIS JOB NOW, TYPE 'SUBMIT' AND PRESS ENTER. ****
%
)INIT
 .HELP = ISR20000
 .ZVARS = 'ZSCED'

 &MIXED = MIX
 IF (&ZPDMIX = N)
 &MIXED = EBCDIC

)PROC

)END

MQMPRLM

)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|---------------------
%COMMAND ===>_ZCMD
+
+
+ MQSeries system id $z +

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

+
+
+
+
+
+
+
+
+
+ PF3 = Exit
+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=mqmsg001)
 &pfkey=.pfkey
)END

MQMCOPY
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|----------------------
%COMMAND ===>_ZCMD
+
+
+ MQSeries system id $z +
+
+ Selection $s+ P/Q (Pageset/Queue)
+
+ Page set number $psn+ 0 to 99
+ Queue name $queue +
+
+
+
+ PF3 = Exit

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &s=' '
 &psn=' '
 &queue=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=mqmsg001)
 VER (&S,NB,MSG=mqmsg001)
 &pfkey=.pfkey
)END

MQMEMPTY
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|----------------------
%COMMAND ===>_ZCMD
+
+
+ MQSeries system id $z +
+
+ Selection $s+ P/Q (Pageset/Queue)
+
+ Page set number $psn+ 0 to 99
+ Queue name $queue +
+
+
+
+ PF3 = Exit
+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &s=' '

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 &psn=' '
 &queue=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=mqmsg001)
 VER (&S,NB,MSG=mqmsg001)
 &pfkey=.pfkey
)END

MQMLOAD
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|----------------------
%COMMAND ===>_ZCMD
+
+
+ MQSeries system id $z +
+
+
+ Queue $queue +
+
+
+
+
+ PF3 = Exit
+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &queue=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=mqmsg001)
 VER (&queue,NB,MSG=mqmsg001)
 &pfkey=.pfkey
)END

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

MQPRINTQ
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|----------------------
%COMMAND ===>_ZCMD
+
+
+ MQSeries system id $z +
+
+ Queue name $queue +
+
+
+
+
+
+
+
+ PF3 = Exit
+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &queue=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=mqmsg001)
 VER (&QUEUE,NB,MSG=mqmsg001)
 &pfkey=.pfkey
)END

This article concludes in next month’s issue of MQ Update.

Paul Jansen
System Programmer
Interpay (The Netherlands) © Xephon 2000

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Administering MQSeries for MVS/ESA from Unix

We conclude this article on remote administration of MQSeries for
MVS/ESA from Unix, which started in last month’s issue.

MYCONTROL.C (CONTINUED)
 /* Report reason, if any; stop if failed */
 if (Reason != MQRC_NONE)
 {
 printf("MQOPEN ended with reason code %ld\n", Reason);
 }

 if (OpenCode == MQCC_FAILED)
 {
 printf("unable to open server queue for output\n");
 exit(Reason);
 }

 /**/
 /* */
 /* Open the queue to receive the reply messages */
 /* */
 /**/
 O_options = MQOO_INPUT_EXCLUSIVE
 + MQOO_FAIL_IF_QUIESCING;

 strcpy(odr.ObjectName, "SYSTEM.MQSC.REPLY.QUEUE");

 strcpy(odr.DynamicQName, "*");

 MQOPEN(Hcon, /* Connection handle */
 &odr, /* Object descriptor for queue */
 O_options, /* Open options */
 &Hreply, /* Reply object handle */
 &OpenCode, /* Completion code */
 &Reason); /* Reason code */
 /* Report reason, if any; stop if failed */
 if (Reason != MQRC_NONE)
 {
 printf("MQOPEN ended with reason code %ld\n", Reason);
 }

 if (OpenCode == MQCC_FAILED)
 {
 printf("unable to open reply queue\n");

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

 }
 else
 {
 strncpy(replyQ, odr.ObjectName, MQ_Q_NAME_LENGTH);
 printf("replies to %.48s\n", replyQ);
 }

 /**/
 /* */
 /* Read lines from the file and put them to the message queue */
 /* Loop until null line or end of file, or there is a failure */
 /* */
 /**/

 CompCode = OpenCode; /* Use MQOPEN result for initial test */
 fp = stdin;

 while (CompCode != MQCC_FAILED)
 {
 if (fgets(buffer, sizeof(buffer) - 1, fp)
 != NULL) /* Read next line */
 {
 buflen = strlen(buffer) - 1; /* Length without end line */
 buffer[buflen] = '\0'; /* Remove end line */
 }
 else buflen = 0; /* Treat EOF as null line */

 /**/
 /* */
 /* Put each buffer to the message queue */
 /* */
 /**/
 if (buflen > 0)
 {
 md.MsgType = MQMT_REQUEST; /* Message is a request */

 /* Ask for exceptions to be reported with original text */
 md.Report = MQRO_EXCEPTION_WITH_DATA;

 /* Reply-to-queue name */
 strncpy(md.ReplyToQ, replyQ, MQ_Q_NAME_LENGTH);

 /* Character string format */
 memcpy(md.Format, MQFMT_STRING, MQ_FORMAT_LENGTH);

 MQPUT(Hcon, /* Connection handle */
 Hobj, /* Object handle */
 &md, /* Message descriptor */
 &pmo, /* Default options */
 buflen, /* Buffer length */

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 buffer, /* Message buffer */
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQPUT ended with reason code %ld\n", Reason);
 }
 }
 else
 /* Close the message loop if null line in file */
 CompCode = MQCC_FAILED;
 }

 /**/
 /* */
 /* Get and display the reply messages */
 /* */
 /**/
 CompCode = OpenCode; /* Only if the reply queue is open */
 gmo.WaitInterval = 60000; /* 1 minute limit for first reply */
 while (CompCode != MQCC_FAILED)
 {
 gmo.Options = MQGMO_WAIT /* Wait for replies */
 + MQGMO_CONVERT /* Request conversion */
 + MQGMO_ACCEPT_TRUNCATED_MSG; /* Can truncate */

 /** specify representation that is required **/
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;

 /**/
 /* */
 /* In order to read the messages in sequence, MsgId and */
 /* CorrelID must have the default value. MQGET sets them */
 /* to the values in the message it returns, so re-initialize */
 /* them before every call. */
 /* */
 /**/
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 /**/
 /* */
 /* Get reply message */
 /* */
 /**/
 buflen = MAX_BUFFER_LEN;
 MQGET(Hcon, /* Connection handle */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

 Hreply, /* Object handle for reply */
 &md, /* Message descriptor */
 &gmo, /* GET options */
 buflen, /* Buffer length */
 buffer, /* Message buffer */
 &replylen, /* Reply length */
 &CompCode, /* Completion code */
 &Reason); /* Reason code */
 gmo.WaitInterval = 15000; /* 15 second limit for others */

 /* Report reason, if any */
 switch(Reason)
 {
 case MQRC_NONE:
 break;
 case MQRC_NO_MSG_AVAILABLE:
 printf("no more replies\n");
 break;
 default:
 printf("MQGET ended with reason code %ld\n", Reason);
 break;
 }

 /**/
 /* */
 /* Display reply message */
 /* */
 /**/
 if (CompCode != MQCC_FAILED)
 {
 if (replylen < buflen) /* Terminate (truncated) string */
 buffer[replylen] = '\0';
 else
 buffer[buflen] = '\0';

 printf ("\n"); /*** Separator ***/
 parse_buffer () ;

 if (md.MsgType == MQMT_REPORT) /* Display report feedback */
 printf(" report with feedback = %ld\n", md.Feedback);
 }
 }

 /**/
 /* */
 /* Close server queue - program terminated if open failed */
 /* */
 /**/
 C_options = 0; /* No close options */

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 MQCLOSE(Hcon, /* Connection handle */
 &Hobj, /* Object handle */
 C_options,
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQCLOSE (server) ended with reason code %ld\n", Reason);
 }

 /**/
 /* */
 /* Close reply queue - if it was open */
 /* */
 /**/
 if (OpenCode != MQCC_FAILED)
 {
 C_options = MQCO_DELETE; /* Delete dynamic queue */
 MQCLOSE(Hcon, /* Connection handle */
 &Hreply, /* Object handle */
 C_options,
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQCLOSE (reply) ended with reason code %ld\n", Reason);
 }
 }

 /**/
 /* */
 /* Disconnect from MQM (unless previously connected) */
 /* */
 /**/
 if (CReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&Hcon, /* Connection handle */
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQDISC ended with reason code %ld\n", Reason);
 }
 }

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

 printf("mycontrol end\n");
 return(0);
}
parse_buffer ()
{

/***/
/* */
/* parse_buffer : The message buffer contains a long string of */
/* parameters and values that need to be separated */
/* */
/***/

#define UPDATING_PARAMETER 0
#define UPDATING_VALUE 1
#define HAS_PARAMETERS 2
#define NO_PARAMETERS 3

int Cbuffer = 0 ;
int CParameter = 0 ;
int CValue = 0 ;
char c ;
int flag ;
int flag2 ;

flag = UPDATING_PARAMETER ;
flag2 = NO_PARAMETERS ;
parameter[0] ='\0' ;

while (c = buffer [Cbuffer])
{
 if (c == '(')
 {
 parameter [CParameter] = '\0' ;
 display_parameter () ;
 flag = UPDATING_VALUE ;
 flag2 = HAS_PARAMETERS ;
 }
 else if (c == ')')
 {
 value [CValue] = '\0' ;
 display_value ();
 printf ("%24s : %s \n" , parameter , value);
 CParameter = 0 ; CValue = 0 ;
 flag = UPDATING_PARAMETER ;
 }
 else
 {
 if (flag == UPDATING_PARAMETER)
 {

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 parameter[CParameter] = c ;
 CParameter++ ;
 }
 if (flag == UPDATING_VALUE)
 {
 value[CValue] = c ;
 CValue ++ ;
 }
 }
 Cbuffer ++ ;
}
 if (flag2 == NO_PARAMETERS)
 {
 parameter[Cbuffer] = '\0' ;
 printf ("%s\n", parameter);
 }
}

display_parameter ()
{
/***/
/* */
/* display_parameter : The message may contain a CSQM message code */
/* that is thrown away. Certain parameters */
/* contain values and require additional */
/* processing as they don't follow the */
/* convention for parameter-value pairs. */
/* */
/***/

#define MAX_TOKENS 3
char temp_area [1000] ;
char * s1 ;
int parmeter_length ;
int i ;
int in_text ;
char * tok [MAX_TOKENS] ;

 /*** Remove CSQM identifier from the message ***/
 temp_area [0] = '\0' ;

 if (s1 = strstr (parameter , "CSQM"))
 {
 strcpy (temp_area , s1+8);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 }

 if (s1 = strstr (parameter, "NOTRIGGER"))
 {

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

 strcpy (temp_area , s1+9);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 printf ("%24s :\n", "NOTRIGGER");
 }
 if (s1 = strstr (parameter, "TRIGGER"))
 {
 strcpy (temp_area , s1+7);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 printf ("%24s :\n", "TRIGGER");
 }
 if (s1 = strstr (parameter, "NOSHARE"))
 {
 strcpy (temp_area , s1+7);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 printf ("%24s :\n", "NOSHARE");
 }
 if (s1 = strstr (parameter, "SHARE"))
 {
 strcpy (temp_area , s1+5);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 printf ("%24s :\n", "SHARE");
 }
 if (s1 = strstr (parameter, "NOHARDENBO"))
 {
 strcpy (temp_area , s1+10);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 printf ("%24s :\n", "NOHARDENBO");
 }
 if (s1 = strstr (parameter, "HARDENBO"))
 {
 strcpy (temp_area , s1+8);
 strcpy (parameter , temp_area);
 temp_area [0] = '\0' ;
 printf ("%24s :\n", "HARDENBO");
 }
}

display_value () {
/***/
/* */
/* display_value : Removes spaces before first character and after */
/* the last character. Spaces in the text are */
/* preserved. */
/* */
/***/

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

int i , j ;
char temp_value [1000] ;
int len ;

 temp_value [0] = '\0' ;
 len = strlen (value);

 /* Go forward to first non-space character */
 for (i = 0 ; (i < len) && (value [i] == ' ') ; i++)
 ;

 strcpy (temp_value , value +i) ;
 strcpy (value , temp_value);

 /* Go backward to last non-space character */
 for (i = len-1 ; (i > 0) && (value[i] == ' ') ; i--)
 {

 }
 /* What if value contains only spaces? */
 if (i > 0)
 {
 value [i+1] = '\0' ;
 }

}

Once the changes necessary to customize the application for your site
are made to the code, you’re ready for the first ‘cut’ of the remote
administration application. Compile the changed source code using
the command:

cc -g -Aa -D_HPUX_SOURCE -D_REENTRANT amqsreq0.c -lmqm
➤ -o mycontrol

The executable created is called mycontrol, and it can be invoked as
illustrated in the example below.

INVOKING MYCONTROL
hp$mycontrol MVMQ HPMQ
mycontrol start
display qmgr all

CSQN205I COUNT= 3, RETURN=00000000, REASON=00000000

 QMNAME : MVMQ
 DESCR : MVMQ, IBM MQSeries for MVS/ESA - V1.2

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 PLATFORM : MVS
 CPILEVEL : 100
 CMDLEVEL : 120
 CCSID : 500
 MAXPRTY : 9
 MAXMSGL : 4194304
 SYNCPT : AVAILABLE
 COMMANDQ : SYSTEM.COMMAND.INPUT
 DEADQ : MQT1.DEAD.QUEUE
 TRIGINT : 999999999
 MAXHANDS : 256
 AUTHOREV : DISABLED
 INHIBTEV : DISABLED
 LOCALEV : DISABLED
 REMOTEEV : DISABLED
 STRSTPEV : ENABLED
 PERFMEV : DISABLED
 DEFXMITQ : MVMQ.DEFXMIT.QUEUE

CSQ9022I]MVM CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION

The application can be refined further to achieve better formatting and
parsing, as required.

SUMMARY

This article has discussed the remote administration of MQSeries for
MVS/ESA from MQSeries for HP-UX Version 5, presenting a working
set-up. Except for a few basic start-up issues, most MQSeries-related
activities can be managed using remote administration.

Despite the benefits of remote administration, the limitation of having
to use the default queue manager is likely to be a problem at many
installations, and this will probably result in many writing their own
custom remote administration applications. There are other reasons
why a custom administration application may be implemented, such
as handling the presentation of message data and implementing
‘decision layers’. This article also presents a sample MQSeries
application that provides a framework for your own custom application.

Ashish Joshi
Consultant (USA) © A Joshi 2000

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Guidelines for MQSeries for OS/390 users

This article provides a series of guidelines for MQSeries for OS/390
users. I’ve compiled them from my notes and procedures that I have
developed and implemented. The article specifically relates to the
MQSeries Message Queuing Service for MVS Version 1.4.1 product
that’s supplied with ProductPac for OS/390 V2R4.

INSTALLATION

Install MQSeries on OS/390 V2R4 via SMP/E. The product runs in
the MVS SMP/E environment for OS/390 V2R4. Note that you
should remove the middle qualifier and replace the DDDEFs for the
relevant datasets.

NAMING CONVENTION

Naming convention is an important issue for MQSeries users and a
number of systems have been adopted by various organizations. I
recommend the one set out below for OS/390 users.

MQSeries queue managers
I use a naming convention comprising two types of queue manager
name. The first type of name takes the form MQxn, where:

• x is the LPAR id.

• n is used to identify the role of the system: n=0 is a testing system
dedicated to verifying system changes, n=1 is an acceptance
system dedicated to application changes, etc.

Hence, MQx1 is a queue manager with LPAR id x, and the value n=1
signifies an acceptance system.

If the queue manager’s name takes the form MQPn, then P indicates
a production system and n is a number that identifies an application
dedicated to a specific queue manager. Subsequent production systems
would then use queue manager names MQP2, MQP3, etc for additional
applications that require dedicated queue managers. Production queue

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

manager names are, therefore, not dependent on LPAR ids.

Subsystem names

Use the same naming convention for subsystems as described above
for queue managers.

Subsystem command prefix

The most common convention is to prefix all subsystem names with
a forward slash (‘/’). If you’d like to adopt a different convention, a list
of characters that can be used is available in the MQSeries Systems
Management Guide.

Procedure names

In keeping with the convention for naming queue managers,
MQxnMSTR is a master address space, where x is the LPAR id and n
signifies a test, acceptance, or production environment. The suffix
MSTR is mandatory.

Similarly, MQxnCHIN is a channel initiator, where x is the LPAR id
and n signifies a test, acceptance, or production environment. As
before, the suffix CHIN is mandatory.

Queue names

The default queue definitions supplied with the system should be left
unchanged.

Queue manager-specific queue names

• Local queues – use the convention: QL.Subsystem_Name.*.

For example:

QL.MQxn.*

Project-specific queue names

• Local queues – use the convention: QL.Project_id.*.

For example:

QL.APPL.*

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Remote queues – use the convention: QR.project id.*.

For example:

QR.APPL.*

• Alias queues – use the convention: QA.project id.*.

For example:

QA.APPL.*

• Processes – use the convention: PR.project id.*.

For example:

PR.APPL.*

Destination-specific queue definitions
• The convention for receiver channels (type RCVR) is:

CH.Sender_id.TO.Receiver_id.Protocol_id

For example:

CH.4D100.TO.MQxn.LU

Here the channel is to receive messages on MQxn from queue
manager 4D100.

• The convention for a sender channel (type SDR) is:

CH.Receiver_id.TO.Sender_id.Protocol_id

For example:

CH.MQC0.TO.20003.LU

Here the channel is to send messages to 20003 from MQxn.

• The convention for an XMIT local queue is:

QL.XMIT.TO.Remote_Queue_Manager_Name

For example:

QL.XMIT.TO.17817

is an XMIT queue to queue manager 17817.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

STARTING AND STOPPING TASKS

Below are commands that can be used for starting and stopping
various types of task using either the console or SDSF.

Starting and stopping MQxnMSTR tasks using SDSF:

/ /MQxn START QMGR PARM(CSQZMQxn)
/ /MQxn STOP QMGR

Starting and stopping MQxnMSTR tasks using the console:

/MQxn START QMGR PARM(CSQZMQxn)
/MQxn STOP QMGR

Starting and stopping MQxnCHIN tasks (only) using SDSF:

/ /MQxn START CHINIT PARM(CSQXMQxn)
/ /MQxn STOP CHINIT

Starting and stopping MQxnCHIN tasks (only) using the console:

/MQxn START CHINIT PARM(CSQXMQxn)
/MQxn STOP CHINIT

CLIENT ATTACHMENT FEATURE

This is an MQSeries component that facilitates Distributed Queuing
Management (DQM) and is necessary to allow an MQSeries application
running on an MQSeries client to interact with one or more MQSeries
servers and connect to their queue managers by means of a
communication protocol. It comes free with both MQSeries for MVS
and OS/390, and it can be used to avoid the cost of multiple MQSeries
installs, as well as the associated licence cost at the client, once it’s
installed on the server (the mainframe) and the communication
architecture described above is implemented.

The MQSeries Client Attachment Feature can be ordered as a separate
FMID and supplied as part of the base MQSeries V1.1.4 product when
ordered with OS/390.

SYSTEM UPDATES

After installing MQSeries on your S/390, the items listed below need
to be updated on your system.

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PROCLIB

SYSx.PROCLIB:

• MQxnMSTR.

The queue manager started task (set TIME=NOLIMIT).

• MQxnCHIN.

The channel initiator started task.

PARMLIB

SYS1.PARMLIB

• APPCPMxx

The MVSMQxx ACBNAME definition.

• IEFSSNxx

Subsystem names and the command prefix.

• LNKLSTxx

MQM.SCSQAUTH/SCSQLINK/SCSQSNLE should be added.

• PROGxx

Ensure MQM.SCSQANLE is APF-authorized.

• SCHEDxx

The PPT entry for CSQYASCP module.

• IEAIPSxx

The SRM parameters for MQ started tasks.

• IEAICSxx

The SRM parameters for MQ started tasks.

RACF
• STASK entries should be added for new MQ* started tasks.

• The following items in your datasets’ profile set-up:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

– MQM.*

MQ subsystems.

– MQARCH.*

MQ subsystems log archiving.

– MQxn.*

MQ subsystem PAGE and BOOTSTARP datasets.

• The profiles require access list entries for MQxnMSTR tasks (in
other words, UPDATE the MQM.* profiles and ALTER the
MQARCH.* profile). READ access to DASDVOL is required at
installation for allocating LOGs, etc.

VTAM/network

• Add a SideInfo entry to the APPC.APPCSI dataset and stop and
restart the APPC task.

• MVSMQxn ACBNAMEs need to be defined to VTAM in the
VTAMLST(APPLxxxx) member.

• Nodenames need to be defined to provide links to remote MQ
subsystems.

• All required nodes should be added and activated via the
VTAMLST(ATCCONxx) member.

• The APPC/LU62 built-in protocol should be used to communicate
between MQ subsystems.

• Further customization is required if TCP/IP is also to be used to
communicate between MQ subsystems.

ISPF

• Set up the dynamic (LIBDEF) MQ/ISPF interface by creating a
new clist called ‘MQ’. Ensure that the Hlq of all datasets with
references in this clist are the same.

• Add MQ to a clist library in the SYSPROC concatenation.

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Catalogue MQM.SCSQ* ISPFLIBs to ensure their availability in
the MQ clist.

• Include MQM.SCSQEXEC dataset in the system SYSEXEC or
SYSPROC concatenations.

• Copy base members supplied in the MQM.SCSQPROC dataset to
create procedures that are specific to LPAR and MQ subsystems.
Update and further customize these procedures to suit each MQ
subsystem’s requirement.

Additional requirements

• Request SMS disk space for the MQARCH.MQ* log archive’s
datasets and define an SMS rule for it.

• Define and catalogue a new Hlq alias for MQARCH.

MQ CUSTOMIZATION

Copy base options members CSQ4ZPRM/CSQ4XPRM supplied in
library SCSQAUTH and allocate a new dataset called
MQM.PRMMODS to contain the updated options modules created for
each MQ subsystem. Concatenate MQM.PRMMODS above any
other loadlibs in the JCL steplibs of the started task procedure.

The options modules must be specified on the START command. For
example, the MQPn start commands are:

/MQnx START QMGR PARM(CSQZMQnx)
/MQnx START CHI PARM(CSQXMQnx)

Note that, if the PARM is omitted, Lmods are used that have default
values set by IBM. This would probably cause errors.

Update the base batch adapter options module CSQBDEFV that is
supplied in library SCSQAUTH so that it contains the MQ subsystem
name and copy it to MQM.PRMMODS. Application programs connect
to the subsystem defined in this module, if the subsystem is not
specified in the MQCONN call.

This module cannot be renamed, though it may contain different MQ
subsystem names.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

New members should be created in SCSQPROC dataset:

• CSQ4MQ**

These are subsystem-specific queue definitions. Rename members
to identify the subsystem suffix and change the subsystem
reference to the correct name.

• CSQ4CHNL

The start channel initiator, command server, and channel
definitions. Change the subsystem reference to the correct name.

• CSQ4APPL

Application-specific queue definitions.

Note that, to keep customization to a minimum, additional applications
and relative queue definitions require only the addition of a member
similar to existing ones.

This article concludes in next month’s issue of MQ Update.

Saida Davies (UK) © Xephon 2000

Contributing to MQ Update

Contributions to MQ Update may be sent to the editor,
Harry Lewis, at: MQ Update, Xephon, 27-35 London
Road, Newbury, Berkshire RG14 1JL, UK. You may also
e-mail articles to harryl@xephon.com. For more
information about contributing, please download a copy
of Notes for contributors from Xephon’s Web site at
www.xephon.com.

MQ news

IBM has unveiled VisualAge Interspace
Version 6.0, which now includes MQSeries
Clients V5 and CICS Universal Clients
Version 3. Formerly known as Planetworks
Interspace, VisualAge Interspace is aimed at
designers working with middleware. The
development framework integrates desktop
development tools with MQSeries, CICS,
Encina, and VisualAge Generator,
integrating front-end and back-end
applications and providing productivity
tools in the application development life-
cycle.

Out now, prices start at US$2,695.

The company also announced that it’s to
resell Extricity Software’s AllianceSeries of
B2B e-commerce software, adding it to its
MQSeries range of integration and
collaboration tools. AllianceSeries is an
XML-based family of products that use the
Internet to automate business processes.

For further information contact your local
IBM representative.

* * *

Candle has announced that it’s incorporated
Tibco’s TIB/Rendezvous publish/subscribe
messaging technology APIs into CandleNet
product. This is a family of e-business
lifecycle products that includes the Service
Provider Platform, which provides workload
balancing, PKI-based security, QoS, and
change management for Web applications,

also offering performance monitoring for
MQSeries, Web applications, and database
servers. The product also helps developers
build Web sites, Internet portals, and e-
business back-end integration systems.
Tibco’s software manages the delivery of
real-time information to a subscriber-based
audience. Each message traverses the
network only once, but the software carries it
to all subscribers on the network.

Roma’s support for Tibco’s APIs is available
for field test, with general availability
expected in the coming quarter.

In a separate announcement, Candle stated
that it’s re-aligning its Enterprise Computing
Group to make better use of its system,
application, and middleware management
technologies in the e-business market. The
re-alignment includes moving MQSeries
management to the ECG.

For further information contact:
Candle Corp, 2425 Olympic Blvd, Santa
Monica, CA 90404, USA
Tel: +1 310 829 5800
Fax: +1 310 582 4287
Web: http://www.candle.com

Candle Ltd, 1 Archipelago, Lyon Way,
Frimley, Camberley, Surrey GU16 5ER, UK
Tel: +44 1276 4147000
Fax: +44 1276 414777

* * *

x xephon

	Using MQSeries as a transaction coordinator
	Invoking MQSeries tools using ISPF panels
	Administering MQSeries for MVS/ESA from Unix
	Guidelines for MQSeries for OS/390 users
	MQ news

