
© Xephon plc 2000

3 An MQSeries PLTPI
9 Web-enabling legacy applications

with MQSeries
14 Invoking MQSeries tools using

ISPF panels
23 Guidelines for MQSeries for

OS/390 users
30 Client Attachment Feature
31 An event queue monitor for OS/390
44 MQ news

April 2000

10

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryL@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

An MQSeries PLTPI

When we migrated from MQSeries for Windows NT 5.0 to Version
5.1 we encountered a small problem: we previously ran Microsoft
SNA Server’s TPStart program using a start-up file that was registered
using the MQSeries scmmqm command. However, MQSeries 5.1
doesn’t include scmmqm. Thus, while the migration process ensures
that most commands that were run from the start-up file are
automatically started when the queue manager starts, TPStart is an
exception. Also, we could not solve our problem using the Windows
Startup folder as a user is not always logged on to our MQSeries
servers.

My first attempt at a solution was to try to run TPStart as an NT
service. However, this program is obviously not designed to run as a
service as event messages were logged notifying that the TPStart
service did not respond to the start or control functions in a timely
fashion.

We then developed a simple C program that executes a list of
commands contained in messages in the program’s trigger queue. The
queue and process definitions ensure that the program is run only once
after MQSeries starts and is not run again unless additional messages
are put on the queue. For this reason, CICS programmers will
understand why the program is called ‘MQPLTPI’.

At present, the only command message in the queue is ‘START
TPSTART’. However, other commands could be added, if required.

Below are sample queue and process definitions for MQPLTPI.

SAMPLE QUEUE DEFINITION
DEFINE QLOCAL ('PLTPI.QUEUE') +
 DESCR(' ') +
 PUT(ENABLED) +
 DEFPRTY(0) +
 DEFPSIST(YES) +
 SCOPE(QMGR) +
 GET(ENABLED) +
 MAXDEPTH(5000) +

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 MAXMSGL(4194304) +
 SHARE +
 DEFSOPT(SHARED) +
 MSGDLVSQ(PRIORITY) +
 HARDENBO +
 USAGE(NORMAL) +
 TRIGGER +
 TRIGTYPE(EVERY) +
 TRIGDPTH(1) +
 TRIGMPRI(0) +
 TRIGDATA(' ') +
 PROCESS('PLTPI.PROCESS') +
 INITQ('TEST.INITIATION.QUEUE') +
 RETINTVL(999999999) +
 BOTHRESH(0) +
 BOQNAME(' ') +
 QDEPTHHI(80) +
 QDEPTHLO(20) +
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDPLOEV(DISABLED) +
 QSVCINT(999999999) +
 QSVCIEV(NONE) +
 DISTL(NO) +
 CLUSTER(' ') +
 CLUSNL(' ') +
 DEFBIND(OPEN) +
 REPLACE

SAMPLE PROCESS DEFINITION

DEFINE PROCESS ('PLTPI.PROCESS') REPLACE +
 DESCR('Programs to run at MQ startup') +
 APPLTYPE(WINDOWSNT) +
 APPLICID('C:\MQpltpi\PLTPI.exe >C:\MQpltpi\PLTPI.log') +
 USERDATA(' ') +
 ENVRDATA(' ')

A few points to note are:

• An initiation queue (TEST.INITIATION.QUEUE in this case)
that has a trigger monitor running is also needed.

• The queue needs to be defined with TRIGTYPE(EVERY), as the
triggered program doesn’t perform destructive GETs. Instead, it
browses the queue so that commands can be run again the next
time the queue manager is started. If we had used either
TRIGTYPE(FIRST) or DEPTH in the queue definition, MQSeries

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

would issue another trigger message each time the program
closes the queue, as the queue would not be empty.

• The process’s APPLICID specifies that output should be directed
to a log file to assist in debugging.

The source code of the C program is listed below.

PLTPI.C

 /**/
 /* */
 /* Function: */
 /* */
 /* This program browses messages on a queue and issues commands */
 /* to the system using the contents of this queue. It's intended */
 /* to run at MQSeries start-up as a triggered program, and, as */
 /* such, performs a similar function to CICS's PLTPI. */
 /* */
 /* The program: */
 /* */
 /* - Gets messages from a queue whose name is in the trigger */
 /* parameter. The content of the message is the command to */
 /* be issued. */
 /* */
 /* - Stops when the end of the input queue is reached. */
 /* */
 /* - Stops if any MQ error is detected. */
 /* */
 /* Program logic: */
 /* MQCONNect to message queue manager */
 /* MQOPEN message queue for shared input */
 /* while no MQI failures: */
 /* - MQGET (with browse option) next message in input queue */
 /* - Prepare command if GET is successful */
 /* - Issue command to system */
 /* MQCLOSE queue */
 /* MQDISConnect from queue manager */
 /* */
 /* PLTPI has one parameter - a string (MQTMC2) based on the */
 /* initiation trigger message. Only the QName and queue manager */
 /* name fields are used. */
 /* */
 /**/
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* includes for MQI */
 #include <cmqc.h>

 int main(int argc, char **argv)
 {

 /* Declare MQI structures needed */
 MQOD odG = {MQOD_DEFAULT}; /* Object descriptor for GET */
 MQMD md = {MQMD_DEFAULT}; /* Message descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* GET message options */
 MQTMC2 *trig; /* Trigger message structure */

 MQHCONN Hcon; /* Connection handle */
 MQHOBJ Hobj; /* Object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* Completion code */
 MQLONG Reason; /* Reason code */
 MQBYTE buffer[256]; /* Message buffer */
 MQLONG buflen; /* Buffer length */
 MQLONG messlen; /* Message length received */

 printf("PLTPI start\n");

 if (argc < 2)
 {
 printf("Missing parameter - start program by MQI trigger\n");
 exit(99);
 }

 /**/
 /* */
 /* Set the program argument in the trigger message */
 /* */
 /**/
 trig = (MQTMC2*)argv[1]; /* -> trigger message */

 /**/
 /* */
 /* Connect to queue manager */
 /* */
 /**/
 MQCONN(trig->QMgrName, /* Queue manager */
 &Hcon, /* Connection handle */
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason if any and stop */
 if (Reason != MQRC_NONE)
 {

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

 printf("MQCONN ended with reason code %ld\n", Reason);
 exit(Reason);
 }

 /**/
 /* */
 /* Open the message queue for shared input */
 /* */
 /**/
 memcpy(odG.ObjectName, /* Name of input queue */
 trig -> QName, MQ_Q_NAME_LENGTH);
 O_options = MQOO_INPUT_SHARED /* Open queue for shared */
 + MQOO_BROWSE /* input with browse */
 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
 MQOPEN(Hcon, /* Connection handle */
 &odG, /* Object descriptor for queue */
 O_options, /* Open options */
 &Hobj, /* Object handle */
 &CompCode, /* MQOPEN completion code */
 &Reason); /* Reason code */

 /* Report reason if any and stop */
 if (Reason != MQRC_NONE)
 {
 printf("MQOPEN ended with reason code %ld\n", Reason);
 exit(Reason);
 }

 /**/
 /* */
 /* Get messages from the message queue */
 /* Loop until there is a warning or failure */
 /* */
 /**/
 buflen = sizeof(buffer) - 1;
 while (Reason == MQRC_NONE)
 {
 gmo.Options = MQGMO_BROWSE_NEXT
 + MQGMO_NO_WAIT; /* no wait */

 /***/
 /* */
 /* In order to read the messages in sequence, MsgId and */
 /* CorrelID must have the default value. MQGET sets them */
 /* to the values in the message it returns, so re-initialize */
 /* them before every call. */
 /* */
 /***/
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 MQGET(Hcon, /* Connection handle */
 Hobj, /* Object handle */
 &md, /* Message descriptor */
 &gmo, /* GET options */
 buflen, /* Buffer length */
 buffer, /* Message buffer */
 &messlen, /* Message length */
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason, if any, and stop */
 if (Reason != MQRC_NONE)
 {
 printf("MQGET ended with reason code %ld\n", Reason);
 }
 else
 /* Issue command */
 {
 buffer[messlen] = '\0'; /* end string ready to use */
 printf("%s\n", buffer);
 system(buffer);
 }
 } /* End GET message loop */

 /**/
 /* */
 /* Close queue when no messages left */
 /* */
 /**/
 C_options = 0; /* No close options */
 MQCLOSE(Hcon, /* Connection handle */
 &Hobj, /* Object handle */
 C_options,
 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* Report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQCLOSE ended with reason code %ld\n", Reason);
 }

 /**/
 /* */
 /* Disconnect from MQM */
 /* */
 /**/
 MQDISC(&Hcon, /* Connection handle */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 &CompCode, /* Completion code */
 &Reason); /* Reason code */

 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 printf("MQDISC ended with reason code %ld\n", Reason);
 }

 /**/
 /* */
 /* END OF PLTPI */
 /* */
 /**/
 printf("PLTPI processing ended\n");
 return(0);
 }

Eric Judd
Technical Consultant
Metropolitan Life (South Africa) © Xephon 2000

Web-enabling legacy applications with MQSeries

For the past 40 years, programmers have written mainframe code for
data processing, number crunching, and maintaining billions of
records of mission-critical data. To a young Web developer like
myself, this code and the systems it runs on have always been referred
to as ‘legacy’. However, the term ‘legacy’ is not entirely fair considering
the number of large companies that depend on it. (Not to mention how
important it is to my own work.) The most important aspect of many
companies’ Web development initiative today is providing the ability
to access mission-critical ‘legacy’ applications over the Internet.

My experience is that many companies expect this to be the direction
in which Web development will of necessity go. For instance, many
financial institutions now have some form of Internet banking service,

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

while on-line shopping is resulting in price wars in many sectors, as
price comparisons are now just a finger-click away.

However, regardless of industry sector, and of type of process being
Web-enabled and back-end system being accessed, the factors that
drive the decision on what connectivity to use are performance and
reliability. In this article I have laid out the argument for using
MQSeries to provide Web connectivity and have also furnished some
views on how this is accomplished.

RELIABILITY

MQSeries has been a part of many large company’s infrastructure for
a long time. It provides a reliable architecture for the transfer of data
from one system to another. The importance of this needs no
explanation, especially to MQ Update’s audience, but what is often
overlooked is that this reliability is part of MQSeries’ run-time
architecture and is independent of the applications that are using it.

A queue manager running on a server, such as a Web server, runs as
an independent program and so doesn’t affect the server, even if it’s
frequently stopped and restarted. Moreover, the impact of this is very
modest, as only minimal resources are used for establishing a
connection to MQ and sending and receiving messages. The value of
this is easily realized by implementing an application that is capable
of starting an MQ connection, testing it, detecting a failure, and (on
detection of a failure) stopping and restarting the queue manager to fix
the problem and try again. MQ’s open architecture affords much
potential for providing failover redundancy by using multiple queue
managers and channels that connect to multiple back-end systems
from more than one Web server. As this is the standard way an MQ
system is meant to be deployed, it can handle this architecture
extremely well. The amount of reliability provided by the MQ
connection then depends on how comprehensive a system of
redundancy the administrator is willing to build.

SESSION VERSUS NON-SESSION

When a browser sends a request to a Web server, the connection is

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

referred to as ‘session-less’. Each request the browser makes is
effectively a new session that ends when the request is fulfilled. This
is in stark contrast to standard 3270-type terminal connections that are
traditionally used to connect to mainframe systems, and this difference
can pose a serious technical problem when it comes to providing a
Web-based interface to an application on a mainframe system.

The session-less nature of the Web browser connection makes
MQSeries an excellent match for connecting Web applications to
back-end systems. MQ sends messages and receives them
independently in an asynchronous manner. The process that sends the
message is independent of the process that receives it, and no session
needs to be maintained between the sending and receiving applications.
Therefore, while processing an update to data on a back-end system
over the Web, the connection to the system that holds the appropriate
record need not be maintained. This is a critical component of Web
access to legacy systems, as a number of things can go wrong between
requesting and updating data. It’s important that the data is not
affected if the machine running the browser crashes or the user
updating the data gets bored and decides to surf the Web for deals on
a new car.

There are, however, issues that must be dealt with related to the
session-less nature of the connection. Transactions on the back-end
system have to be designed for session-less connections. This means
that they should not require multiple independent inputs from a user,
or, if they do, the transaction must provide both rollback and timeout
functionality to handle the possibility of the user aborting in the
middle of a multi-screen transaction.

A more serious problem occurs when updating information that first
passes to the browser and is then edited and returned to the back-end
system. The problem is that the record being edited cannot be locked,
as the user may decide not to submit the changes, which may result in
the record never being released. However, if the record is not locked,
then two people could edit it at the same time, causing one set of
changes to be lost. Fortunately, there are simple solutions to this. For
instance, when the information is brought to the browser, two copies
of it are stored – one of them is edited and the another is stored in its

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

original form. The updated version is submitted to the Web server
along with the original, and the original is compared to the record
currently on file and, if it matches, the update is performed. This
functionality is critical for Web-based transactions, as it can easily
take several minutes to do an update (several hours, if the user happens
to go for a coffee or lunch in the middle of an update).

CLIENT VERSUS SERVER

While the decision to use MQSeries is an easy one, the decision to use
an MQ client or MQ server at the Web server side of the connection
is not so simple. The are advantages to both and the decision depends
on a number of factors, such as cost, type of transport layer, functionality
required, and the configuration of the Web server or Web farm. I have
found that, from a performance standpoint, the choice of client versus
server doesn’t make a noticeable difference. However, it could make
an indirect difference to performance depending on a number of other
factors that are dealt with in the sections below.

Using the client component for connectivity at the Web server
provides cost benefits, ease of set-up and maintenance, and (potentially)
better performance for the server as a whole. The cost issue is simple,
as acquiring MQ Server for every Web server quickly drives up
software costs. By contrast, a large Web server cluster using multiple
clients requires only one MQ server to be set up, thus reducing cost.
Set-up and maintenance is also easier in a clustered environment, as
all the MQ set-up is done on one server and clients are simply directed
to it. Web server performance can also be enhanced, particularly if it
uses MQ for only a small percentage of its workload. The MQ client
is a relatively dormant component that uses few resources when it is
not being accessed. In general, the client is less intrusive on the
system.

The MQ server option, while more costly and difficult to implement
and maintain than the client option, is better for Web servers that use
MQ heavily. The main reason for this is simply that MQ Server is a
server. This allows the Web server to use applications that are
triggered when a message is received. The potential uses of this

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

include dynamic updates to Web pages, automated maintenance of
administrative data, and Web server monitoring.

An MQ server can also be used as a dynamic local database system in
which data can easily be stored and shared without taxing other
critical Web systems that may already be under a heavy load. An
example of this is a back-end process that runs at night and sends
update messages to queue on a Web server that maintains customer
statements. When customers query their statements the following day,
they’re already on the server and can be accessed quickly. While a
relational database can be used to achieve this, using the system
described above provides a performance advantage – one that increases
if the database is under heavy use by other dynamic components of
Web applications. In this case the MQ Server provides a simple
functional option that would require the purchase of another database
server to handle the additional load.

DISTRIBUTED PROCESSING

As Web applications become more complex and server loads increase,
so the need to distribute the load over clustered systems becomes
critical. A number of options are available for clustering servers, the
options being dependent on reliable middleware for handling
connectivity. MQ provides an ideal solution for multi-tier applications
in clustered Web environments. The key benefits of MQ in this
environment are its minimal overhead, its constantly active connection,
and its ability to trigger applications.

In a large Web farm, dedicated servers can be set up to handle specific
tasks. Thus, a CPU-intensive process in an application can be hived
off to a separate server. This set-up also allows advanced management
based on the ‘unit of work’ – a technique that can be used to guarantee
accurate results when managing complex applications that run over
multiple servers. The increasing loads on today’s systems is already
driving the need for clustering at server farms. New technologies, like
Enterprise Java Beans, provide additional motivation to move towards
distributed processing. MQ provides the connectivity in such complex
environments.

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

FUTURE CONSIDERATIONS

E-commerce is expanding in every industry – a process that’s being
driven by companies’ need to keep up with the competition. As
Internet-based back-end applications grow in number and complexity,
so does the load on back-end systems. A typical mainframe accessed
via 3270 terminals will handle only a few hundred users on any given
day. The addition of Web-based access can increase load several
hundred fold. MQSeries provides an excellent means of connecting
these systems, as it controls the processor load on the mainframe by
controlling the transaction triggering process. The important thing to
bear in mind is that the load on the system will eventually increase
beyond the system’s capacity to handle it. While the front-end Web
and application servers can be clustered and upgraded relatively
inexpensively, back-end mainframe system upgrades are considerably
more expensive. It has been my experience that MQSeries allows this
architecture to be used efficiently and flexibly.

Rich O’Neill (rich@dwl.com)
Solutions Architect
DWL Incorporated (Canada) © Xephon 2000

Invoking MQSeries tools using ISPF panels

This month’s instalment concludes this article on using ISPF panels
to invoke MQSeries utilities (the first part of the article appeared in
last month’s issue).

MQDEFINE
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|----------------------
%COMMAND ===>_ZCMD
+
+
+ MQSeries system id $z +
+
+
+
+
+
+
+ PF3 = Exit
+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=mqmsg001)
 &pfkey=.pfkey
)END

MQMCOMM
)ATTR
@ TYPE(OUTPUT) INTENS(HIGH) CAPS(OFF) JUST(LEFT)
$ TYPE(INPUT) INTENS(LOW) PAD(_)
% TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(GREEN)
¢ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(red)
~ TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(WHITE)
? TYPE(TEXT) INTENS(LOW) JUST(ASIS) COLOR(YELLOW)
TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(YELLOW)
` TYPE(TEXT) INTENS(HIGH) JUST(ASIS) COLOR(green) HILITE(REVERSE)
| TYPE(TEXT) INTENS(high) JUST(ASIS) COLOR(blue)
+ TYPE(TEXT) INTENS(LOW) color(white)
_ TYPE(INPUT) INTENS(LOW)
)BODY
|------------------------------`MQSeries Utility Panel|----------------------
%COMMAND ===>_ZCMD
+
+

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

+ MQSeries system id $z +
+
+
+ MQSeries command $comm1 +
+ MQSeries command $comm2 +
+ MQSeries command $comm3 +
+ MQSeries command $comm4 +
+
+
+
+
+ PF3 = Exit
+
)INIT
 .ZVARS = 'SYSID'
 .HELP = TUTORPAN /* Insert name of tutorial panel */
 &sysid=' '
 &COMM1=' '
 &COMM2=' '
 &COMM3=' '
 &COMM4=' '
 &pfkey=.pfkey
)PROC
 VER (&SYSID,NB,MSG=MQMSG001)
 VER (&COMM1,NB,MSG=MQMSG001)
 &pfkey=.pfkey
)END

MQSERIES UTILITY EXEC DEFINITIONS

The following EXECs are invoked:

MQMPRLM
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"
USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"
DO
"DISPLAY PANEL (MQMPRLM)"
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQMPRLM'
'FTCLOSE NAME(MQMPRLM)'
"EDIT DATASET('your.jcl.lib(MQMPRLM)') PANEL(SUBMIT)"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

END
RETURN

MQMCOPY
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"
USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"
"DISPLAY PANEL (MQMCOPY)"
PS = PSN
QUE = QUEUE
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQMCOPY'
'FTCLOSE NAME(MQMCOPY)'
"EDIT DATASET('your.jcl.lib(MQMCOPY)') PANEL(SUBMIT)"
RETURN

MQMEMPTY
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"
USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"
"DISPLAY PANEL (MQMEMPTY)"
PS = PSN
QUE = QUEUE
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQMEMPTY'
'FTCLOSE NAME(MQMEMPTY)'
"EDIT DATASET('your.jcl.lib(MQMEMPTY)') PANEL(SUBMIT)"
RETURN

MQMLOAD
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"
USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

"DISPLAY PANEL (MQMLOAD)"
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQMLOAD'
'FTCLOSE NAME(MQMLOAD)'
"EDIT DATASET('your.jcl.lib(MQMLOAD)') PANEL(SUBMIT)"
RETURN

MQPRINTQ
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"
USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"
"DISPLAY PANEL (MQPRINTQ)"
PS = PSN
QUE = QUEUE
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQPRINTQ'
'FTCLOSE NAME(MQPRINTQ)'
"EDIT DATASET('your.jcl.lib(MQPRINTQ)') PANEL(SUBMIT)"
RETURN

MQDEFINE
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"
USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"
"DISPLAY PANEL (MQDEFINE)"
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQDEFINE'
'FTCLOSE NAME(MQDEFINE)'
"EDIT DATASET('your.jcl.lib(MQDEFINE)') PANEL(SUBMIT)"
RETURN

MQMCOMM
/* REXX */
ADDRESS TSO
"ALLOC F(ISPFILE) DA('your.jcl.lib') SHR REUSE"

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

USERID=USERID()
ADDRESS ISPEXEC
"LIBDEF ISPSLIB DATASET ID('your.skel.lib')"
"ADDPOP ROW(2) COLUMN(10)"
"DISPLAY PANEL (MQMCOMM)"
DO WHILE (PFKEY¬=PF03)
SYS='MQM'||SYSID
'FTOPEN'
'FTINCL MQMCOMM'
'FTCLOSE NAME(MQMCOMM)'
"EDIT DATASET('your.jcl.lib(MQMCOMM)') PANEL(SUBMIT)"
"ADDPOP ROW(2) COLUMN(10)"
"DISPLAY PANEL (MQMUTIL)"
END
RETURN

MQSERIES UTILITY SKELETON DEFINITIONS

The following skeleton JCL job streams are invoked:

MQMPRLM
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO LIST INFORMATION ABOUT THE LOG
//*
//MQM&SYSID EXEC PGM=CSQJU004
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSUT1 DD DISP=SHR,DSN=&SYSID..BSDS01

MQMCOPY
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO COPY A QUEUE OR PAGESET TO A DATASET
//*
)SEL &S = P
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//CSQUOUT DD DSN=&USERID..CSQUTIL.OUTPUT,
// DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=23200)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* COPY PAGESET TO 'CSQUOUT'
 COPY PSID(&PSN)
)ENDSEL
)SEL &S = Q
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//CSQUOUT DD DSN=&USERID..CSQUTIL.OUTPUT,
// DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=23200)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* COPY QUEUE TO 'CSQUOUT'
 COPY QUEUE(&QUE)
)ENDSEL

MQMEMPTY
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO EMPTY A PAGESET OR A QUEUE
//*
)SEL &S = P
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* EMPTY PAGE SET
 EMPTY PSID(&PS)
)ENDSEL
)SEL &S = Q
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* EMPTY QUEUE
 EMPTY QUEUE(&QUE)
)ENDSEL

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

MQMLOAD
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO RESTORE DATASET TO A QUEUE
//*
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//OUTPUTA DD DSN=&USERID..CSQUTIL.OUTPUT,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LOAD QUEUE(&QUEUE) DD(OUTPUTA)

MQPRINTQ
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO PRINT AN MQSERIES QUEUE
//* (ONLY THE FIRST 80 CHARACTERS)
//PRINTQ EXEC PGM=CSQ4BVA1,PARM='&SYSID,&QUE'
//STEPLIB DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=MQM.SCSQANLE,DISP=SHR
// DD DSN=MQM.SCSQLOAD,DISP=SHR
// DD DSN=your.MQM.LOAD,DISP=SHR
//SYSDBOUT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

MQDEFINE
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO GENERATE A BACKUP SET
//* OF YOUR CONFIGURATION
//*
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//OUTPUT1 DD DISP=SHR,DSN=&SYSID..SCSQPROC(DEFS)
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COMMAND DDNAME(CMDINP) MAKEDEF(OUTPUT1)
/*
//CMDINP DD *
DISPLAY STGCLASS(*)
DISPLAY QUEUE(*) ALL
DISPLAY NAMELIST(*) ALL
DISPLAY PROCESS(*) ALL
DISPLAY CHANNEL(*) ALL

MQMCOMM
//&USERID.S JOB (999,PJJ),'&USERID',
// CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X,NOTIFY=&USERID
//*
//* THIS PROCEDURE IS USED TO RUN COMMANDS IN BATCH
//*
//MQM&SYSID EXEC PGM=CSQUTIL,PARM=('&SYSID')
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQANLE
// DD DISP=SHR,DSN=MQM.SCSQAUTH
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//INPUT DD *
 &COMM1
 &COMM2
 &COMM3
 &COMM4
//SYSIN DD *
 COMMAND DDNAME(INPUT)

MQSERIES UTILITY MESSAGE DEFINITIONS

The following message is invoked:

MQMSG00
MQMSG001 'GELDIG IS' .ALARM=YES
'No valid value !!!!'
MQMSG002 'GELDIG IS' .ALARM=YES
'No valid value !!!!'

LOCAL CUSTOMIZATION

• The MQPRINTQ option requires program CSQ4BVA1 (a sample
program) to be in library your.MQM.LOAD.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

• The source for CSQ4BVA1 is available in the IBM-supplied
library MQMvrm.SCSQCOBS.

• The LOAD option defaults to the dataset generated by the COPY
option.

Paul Jansen
System Programmer
Interpay (The Netherlands) © Xephon 2000

Guidelines for MQSeries for OS/390 users

This month’s instalment concludes this article on installing and
configuring MQSeries on OS/390 (the first part appeared in last
month’s issue).

CHANGES MADE WHEN CREATING A NEW QUEUE MANAGER

Update the following parm members in the MQM.SCSQPROC datasets
and run jobs indicated.

• CSQ4CHNL

Start channel initiator command and queue definitions.

• CSQ4INP1, CSQ4INP2, CSQ4DISX, and CSQ4DISQ

Where necessary, comment out queue definitions and add any
required keywords.

• CSQ4DISP

This contains display commands.

• CSQ4BSDS

This job defines MQ subsystem bootstrap and log datasets.

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• CSQ4PAGE

This job defines and formats the MQ subsystem’s page set
datasets.

• CSQ4SIDE

This job defines ‘SideInfo’ for APPC support.

• CSQ4INPX

This starts the LISTENER , TRPTYPE(LU62), and
TRPTYPE(TCP).

• CSQ4INPX

This defines the correct LU name for the listener (the name must
be unique to each MQ subsystem). TCP/IP port 1414 is reserved
by MQ and is the same for all subsystems.

• CSQ4APPL

This handles application-related queue definitions.

• CSQ4MQxn

This amends queue names for a specific subsystem id.

• CSQ4ZPRM

This job creates the queue manager options module (see
CSQZMQxx), defines the archive datasets, and re-links module
CSQZPARM.

• CSQ4XPRM

This job creates the channel initiator options module (see
CSQXMQxx), defines the correct LU and TCP/IP task names, and
re-links module CSQXPARM.

• CSQ4DEFV

This job creates the batch adapter module, defines the correct
subsystem name in member CSQ4DEFV, and re-links module
CSQBDEFV.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

Options

Review and, if necessary, set up the required MQ options in the
MQ**.SCSQPROC datasets’ CSQ4ZPRM and CSQ4XPRM members.
Use SMP/E’s ‘usermod’ to track the options’ macros. An example
naming convention that we adopted is:

Subsystem QMGR options Lmod ChannelInit options Lmod

MQxn CSQZMQxn CSQXMQxn

MQPn CSQZMQPn CSQXMQPn

Below are examples of new QMGR option members set up for
different subsystems.

• MQC0(CSQZMQC0) and MQC1(CSQZMQC1)

These are unique names used for archive log file.

• MQP1(CSQZMQPH)

Used on SYSH with the same log file when SMF data gathering
is active.

• MQP1(CSQZMQPA)

Used on SYSA with the same log file when SMF data gathering
is not active.

Below are examples of new CHINIT option members set up for
different subsystems.

• MQC0(CSQXMQC0) and MQC1(CSQXMQC1)

These are unique LU ACBNAMEs and TCP/IP started task
names.

• MQP1(CSQXMQPH)

Used on SYSH with the same ACBNAME, this is the unique
TCP/IP started task name.

• MQP1(CSQXMQPA)

Used on SYSA with the same ACBNAME, this is the unique
TCP/IP started task name.

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COMMANDS TO ACTIVATE SMF ACTIVITY DYNAMICALLY
/ /MQPn DISPLAY TRACE(*)
/ /MQPn START TRACE(ACCTG) DEST(SMF) CLASS(*)
/ /MQPn START TRACE(STAT) DEST(SMF) CLASS(*)

It’s important to note that you should not start global data gathering
unless you intend to implement it for only a very short period. The
reason for this restriction is that global data gathering increases CPU
activity by about 50%. SMF activity can also be changed dynamically.
Refer to the ALTER command.

AUTOMATION

After successful testing, we chose to use automation software to
control the starting up and closing down of all MQ and accompanying
APPC/ASCH tasks. The queue manager is started using the command
shown in the first part of this article, which, in turn, issues the channel
initiator task start command from the MQM.SCSQPROC(CSQ4CHNL)
member.

OPERATING INSTRUCTIONS

Document all MQ** and related application started tasks instructions
and commands.

MANUALS

Download the on-line manuals.

SHARING MQ SUBSYSTEM IN A PARALLEL SYSPLEX

MQ set-up in a Sysplex environment is designed to facilitate command
routing across subsystems in the Sysplex.

All CPFs (command prefix) are registered with MQSeries to enable
commands to be entered from any console in the Sysplex and routed
to the appropriate system for execution. Command responses are then
returned to the originating console.

SCOPE, defined as part of the subsystem name in
SYS1.PARMLIB(IEFSSNxx), is used to determine the type of CPF

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

registration performed by the MQSeries subsystem. A Sysplex started
SCOPE [S] registers the CPF with MVS at the time the MQSeries
subsystem is started and remains active until it terminates.

It is easy to issue START commands for multiple subsystems from one
LPAR within a Sysplex via the ROUTE command – enter the following
commands from any LPAR in the same Sysplex to initiate two MQ
subsystems on another LPAR

/SYSC /MQC0 START QMGR and /SYSC /MQC1 START QMGR

The subsystems initiate on SYSH and SYSA respectively.

Note that this option must be used with caution when a subsystem with
the same name is shared across two LPARs in a Sysplex. In other
words, the commands:

/SYSH /MQP1 START QMGR

followed by:

/SYSA /MQP1 START QMGR

will initiate the same subsystem on both SYSH and SYSA if entered
from another LPAR in the same Sysplex. The later eventually terminates
producing voluminous messages stating that the BSDS datasets are
already in use by another task.

SHARED ENVIRONMENT SETUP

• The subsystem is called MQP1.

• The command prefix used is: /MQP1.

• MQP1MSTR and MQP1CHIN members are created in a shared
PROCLIB on shared volume SYS000.

• Bootstrap, log, and page files are allocated using a unique Hlq on
a shared volume.

• QMGR MQP1 is started using the CSQZMQPH option member
on SYSH and QMGR MQP1 is started using the CSQZMQPA
option member on SYSA.

• The channel initiator and command server are started separately

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

on SYSH/A using the additional CSQ4CHNA/H member in
SCSQPROC and different CSQXMQPA/H option members.

• Member CSQ4CHNL is concatenated on SYSH/A so it shares
channel queue (MQP1) definitions.

Switching shared systems MQP1 from SYSH to SYSA

• Ensure that the STOP command is entered on SYSH and verify
that the subsystem has terminated successfully.

• Issue the START command on SYSA and verify that the subsystem
has initiated successfully.

Note that, if MQP1 is not stopped on SYSH and a subsequent start
command is issued from SYSA, abnormal termination error messages
are sent to SYSH SYSLOG. (See the CPF and SCOPE sections above.)

• If a VTAM node is set up to support links to remote MQ systems,
and the subsystem is required to be switched across shared
LPARs, ensure that the links are de-activated before stopping the
QMGR task on the current LPAR. Issue VTAM command:

V NET,ACT,ID=linkname,INACT,I

Then activate the links on the other LPAR before restarting the
same QMGR task. Issue VTAM command:

V NET,ACT,ID=linkname,SCOPE=ALL

The relative links of the channels defined on the MQ subsystem
also need to be re-activated. This can be done either by restarting
the channel initiator (channels defined in MQxnCHNL) or
manually using MQ panels.

DOS AND DON’TS

It is important that the MQM.SCSQPROC(member) concatenation
order is not changed in the procedure supplied for the started task.
Failure to observe this rule will result in abnormal termination.

Consider the example below.

//CSQINP1 DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4INP1),DISP=SHR

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

//CSQINP2 DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4STGC),DISP=SHR
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4INP2),DISP=SHR
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4DISQ),DISP=SHR
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4DISX),DISP=SHR
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4CHN&LPAR),DISP=SHR CHINI
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4CHNL),DISP=SHR
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4MQP1),DISP=SHR MQP1DEFS
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4TLOG),DISP=SHR
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4INPX),DISP=SHR START LU
// DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4DISP),DISP=SHR
//* DD DSN=SYSXA.MQP1.SCSQPROC(CSQ4IVP),DISP=SHR
//CSQOUT1 DD SYSOUT=*
//CSQOUT2 DD SYSOUT=*
//*

When checking through abnormal failures, ensure that the channel
initiator is started before the listeners.

If a VTAM node is set up to support links to remote MQ systems, and
its connections are disturbed when the links are active, the relative
links to channels defined in all affected MQ systems need to be
reactivated. To do this, first issue the following VTAM command:

V NET,ACT,ID=linkname

After a few minutes you should see a message in the MQxnCHIN log
similar to:

CSQX500I CHANNEL.linkname.TO.MQxn.LU started

If this message isn’t logged, reactivate the links manually using MQ’s
panels. For ease of recognition, set the second qualifier in the channel
definition to be the same as the link name used in the VTAM
definition.

If you need to stop the MVS MQ subsystem when remote activity is
taking place (for instance, during SEND/RECEIVE operations to
other MQ subsystems or when the MVS MQ panels are active), then
use QUIESCE MODE. This requires a bit of patience, as this mode
takes a while to implement – don’t be tempted to use the FORCE
command or cancel the task.

Note that, if after about ten minutes MQxnCHIN has stopped but
MQxnMSTR is still running and there is no remote activity, then there
are MQ panels still active. To remedy this, notify all users to exit
panels.

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ABEND 5C6 and 6C6 are critical errors that you may encounter. If you
do come across them, then you’ll probably have to recover using
either LOGCOPY or ARCHIVE files. One cause for this abend is
UNSYNCHRONIZED LOG and PAGE datasets.

If LOG files are redefined, make sure that the PAGE datasets are also
redefined. If not, the task will abend with CODE 5C6 and 6C6 (refer
to CSQ4BSDS and CSQ4PAGE in the MQM.SCSQPROC dataset). In
a test environment, the quickest solution is to redefine these files. In
a production environment, other recovery tasks may need to be
performed.

Saida Davies
IBM (UK) © Xephon 2000

Client Attachment Feature

I thought I’d clarify the status of the Client Attachment Feature for
OS/390 that I mentioned in my article ‘Guidelines for MQSeries for
OS/390 users’ (published in the March 2000 issue of MQ Update,
page 40).

This feature is both chargeable and optional. It’s required only if you
are going to attach clients to your MQSeries for MVS/ESA subsystem.
Once you’ve installed it, it’s ready for use and requires no configuration
parameters before you can attach clients to MQSeries for MVS/ESA.
Note that client administration is available even if you don’t install
this feature.

For further information on pricing, refer to the following Web sites:

• Client Attachment Feature

http://www.ehone.ibm.com/public/applications/price/cgibin/
pricesw.cgi?Country=GB&LceKey=962E0000&MachType=5695
&MachModel=137&Feature=

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

• Licence for fifty client attachments to MQSeries for OS/390

http://www.ehone.ibm.com/public/applications/price/cgibin/
pricesw.cgi?Country=GB&LceKey=CBF90000&MachType=5655
&MachModel=A95&Feature=

Saida Davies
IBM (UK) © Xephon 2000

An event queue monitor for OS/390

INTRODUCTION

Applications that use MQSeries typically have components running
on more than one platform. In such an environment, it’s no trivial task
to guarantee the availability of each queue manager and the channels
that connect them. This demands close monitoring of key resources,
such as channel status and queue usage.

MQSeries provides a mechanism to allow the monitoring of its
resources. When certain resources change their status, event messages
are put onto event queues, and these queues can be triggered so that
their messages are read by appropriate programs.

MQSEVT is a program written in ANSI C that runs as a CICS
transaction triggered by an event queue. It analyses each event
message and takes simple actions, such as writing a message to a
system console or resetting and starting a channel. It takes actions on
a limited set of event messages, but may easily be tailored to handle
other event messages as well.

This article describes the key features of MQSEVT and the site-related
assumptions that guided its development. This should assist an
MQSeries administrator in deploying it adequately in a new scenario.

A full listing of the program may found at the end of the article.

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DEPLOYMENT SCENARIO

MQSEVT was designed to run on a star-shaped TCP/IP MQSeries
network in which an OS/390 queue manager running MQSeries for
MVS Version 1.2 acts as the central hub to approximately 30 remote
queue managers that are connected to it and run MQSeries for HP-UX
Version 2.2.1 and MQSeries for Windows NT Version 5.0. Its useful
deployment is based on the following assumptions:

• Console operators are available at the OS/390 site 7x24 hours.

• Remote nodes send their event messages to the OS/390 hub.
Remote channel event messages are suppressed.

• Queues names start with the prefix of the application that consumes
its messages.

• Channel names follow the standard:

<local-qmgr>.<remote-qmgr>

• Every queue manager name is defined in DNS as an alias for the
node on which it runs.

• KeepAlive is appropriately configured at every node to avoid
orphaned receiver channels.

• Sender channels are configured to allow for infinite retries.

EVENT HANDLING POLICY

MQSEVT’s main goal is to monitor queue servicing and channel
status. Therefore, only performance and channel-related events are
handled. The specific events handled were chosen after careful
observation of how applications behave and the errors that have a
significant impact on their availability.

When a channel goes down, MQSEVT sends a message with the
channel name and TCP/IP return code to the system console. After the
underlying link problem is fixed, the channel retry mechanism
automatically restarts the channel.

Out-of-sequence messages are handled to allow for the way that
Version 2 queue managers control channel status information. This

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

situation is detected by looking out for different source IP addresses
from the same channel. MQSEVT resets and starts the channel when
this occurs.

When message production and consumption are simultaneous, the
queue service rate will reveal problems more quickly than the queue
depth. Thus, if a program stops getting messages off a queue or starts
to do so too slowly, a queue service high event may reveal an
upcoming problem even if queue depth is still insignificant. MQSEVT
then sends a message to the system console with the queue name and
the queue manager name. Queue depth events are not handled, though
this may easily be added.

MODIFYING EVENT HANDLING POLICY

Each event is handled by a separate function and its name should
mirror the associated reason code name. All handlers must receive the
same argument list and return void. For example, the handler definition
for MQRC_CHANNEL_STOPPED should take the form:

void ChannelStopped (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action
)

{
...
}

A table identifies each handled event along with its handler:

static EveMsgHandler TabEveMsgHandler [] = {
 { MQRC_CHANNEL_STOPPED, ChannelStopped },
 { MQRC_Q_SERVICE_INTERVAL_HIGH, QServiceIntervalHigh }
};

where EveMsgHandler is a user-defined type:

typedef struct {
 MQLONG Reason;
 void (* Handler) (
 MQHCONN hConn,
 MQMD dEveMsg,

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 PMQBYTE EveMsg,
 long Action
);
 } EveMsgHandler;

To add a new handler:

• Add a handler prototype to section:

/*--*/
/* prototypes */
/*--*/

• Add the event reason code and the handler function name to the
events table:

EveMsgHandler* FindEveMsgHandler (MQLONG Reason)
{
 static EveMsgHandler TabEveMsgHandler [] = {
 { MQRC_CHANNEL_STOPPED, ChannelStopped },
 { MQRC_Q_SERVICE_INTERVAL_HIGH, QServiceIntervalHigh }
 };

 ...

}

• Code the new handler function, following the example of the
prototype below:

void (* Handler) (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action
);

To code a new handler function:

• Code a table with all fields that need to be extracted from the event
message. The table should contain the MQLONG constants that
identify each field, for instance:

MQLONG FieldIds [] = {
 MQIACF_REASON_QUALIFIER,
 MQCACH_CHANNEL_NAME,
 MQIACF_ERROR_IDENTIFIER,
 MQIACF_AUX_ERROR_DATA_INT_1,
 };

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

• Define appropriate variables to hold each field, for instance:

MQLONG ReasonQualifier;
MQCHAR ChannelName [MQ_CHANNEL_NAME_LENGTH + 1];
MQLONG ErrorIdentifier;
MQLONG AuxErrorDataInt1;

• Extract the fields by calling GetField. The fields need to be
initialized, as GetField doesn’t fill variables for fields that are not
found in the event message data. For example:

ReasonQualifier = 0;
ChannelName [0] = '\0';
ErrorIdentifier = 0;
AuxErrorDataInt1 = 0;

GetField (
 EveMsg,
 FieldIds,
 sizeof (FieldIds) / sizeof (MQLONG),
 &ReasonQualifier,
 ChannelName,
 &ErrorIdentifier,
 &AuxErrorDataInt1
);

• Code the appropriate action based on the fields extracted.

SETTING UP THE ENVIRONMENT

• Delete all remote event queues. Redefine QMGR and performance
event queues as remote, and point them to the equivalent OS/390
queue manager queues.

• Use ‘trigger first’ on all OS/390 event queues, pointing them to
a single process and initq. The process should be a CICS transaction
associated with MQSEVT in the CICS region chosen.

• Code the process attribute ENVRDATA to establish how messages
behave on the system console. Its possible values are:

– EVENTUAL

– IMMEDIATE

– CRITICAL.

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

These correspond to their related CICS ACTION_* constants.
The ACTION_DEFAULT macro is used if the attribute is not
coded.

• Enable performance events on all monitored queue managers,
and code adequate queue service interval values for each monitored
queue.

IMPLEMENTATION DETAILS

• The function GetField accepts a variable number of arguments
and hides the complexity of dealing with PCF structures and
undefined parameter order in event messages.

• When extracting queue names, it is advisable to extract both
MQCA_Q_BASE_NAME and MQCA_Q_NAME, and use the
non-empty one. Different platforms and versions are not the same
in this respect.

• The function RunCommand does not check whether the command
was performed successfully. It can, however, be tailored to do so,
as it processes all replies from the command server.

• The function OperatorPrintf has the same syntax as printf, albeit
with an added parameter to determine how the message will
behave on the system console.

• All internal error messages and commands issued are sent to the
system console.

• The macro MQS_PREFIX is prefixed to every message sent to
the system console.

• The Macro TIME_OUT determines the wait interval in seconds.

The program may be adapted to run on non-MVS platforms:

• Remove all CICS command-level verbs: exec cics address,
retrieve, write operator, and return.

• Adapt function OperatorPrintf to send messages to the local
console.

• Modify function RunCommand to send PCF commands.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

MQSEVT.C
/*
 Processes event messages.

 All unhandled event messages are discarded.

 Messages issued by the program are recorded on the system console
 with a prefix from macro MQS_PREFIX. The 'EnvironmentData' attribute
 from process MQS.ADMIN.EVENT controls how the messages
 are recorded:

 EVENTUAL Rolls up the screen (ACTION_EVENTUAL).
 IMMEDIATE Highlight, then wait for operator deletion
 (ACTION_IMMEDIATE)
 CRITICAL Highlight, then wait for operator deletion
 (ACTION_CRITICAL).

 Error messages and actions taken are recorded with attribute
 ACTION_EVENTUAL. Triggered-first under CICS.

 Events handled (based on MQMD.Reason):

 MQRC_CHANNEL_STOPPED
 MQRC_Q_SERVICE_INTERVAL_HIGH

 Situations handled when MQRC_CHANNEL_STOPPED:

 - Disconnect interval expired:
 ReasonQualifier == MQRQ_CHANNEL_STOPPED_OK.

 Ignores.

 - Connection reset by peer:

 1 Remote machine went down. Sender channels still running.
 KeepAlive probes are sent, no reply received. TCP stack
 returns 36, and sender channel ends abnormally.

 2 Remote machine went down and came back. Sender channels still
 running. An application tries to send data through the channel.
 Remote TCP stack sends reset, as the connection no longer
 exists. Local TCP stack returns 36, and sender channel ends
 abnormally.
 TCP/IP return code == 36.

 Ignores.

 - Channel is already active:
 Sender channel running and communication link goes down. Sender
 channel goes to retry. Link comes back, sender channel tries to

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 start new connection, but former receiver channel is still running.
 Receiver channel eventually dropped as a result of KeepAlive
 mechanism.
 ReasonQualifier == MQRQ_CHANNEL_STOPPED_ERROR &&
 ErrorIdentifier == xxxxx514 (msg CSQX514E).

 Ignores.

 - Message sequence error:
 ReasonQualifier == MQRQ_CHANNEL_STOPPED_ERROR &&
 ErrorIdentifier == xxxxx506 (msg CSQX506E).

 Channel reset
 Channel start.

 - Other errors:

 Records the message below at the system console:

 Channel <channel-name> with problems (tcp=<return-code>)

 - Observations:

 1 'Network unreachable' and 'Connection or remote listener
 unavailable' are not given special treatment any more.
 2 Consequences of the channel being stopped manually are not
 handled - with ptf UQ18727, an event is raised with reason
 code MQRC_CHANNEL_STOPPED_BY_USER.

 Situations handled when MQRC_Q_SERVICE_INTERVAL_HIGH:

 - Records msg at the system console:

 Queue <qmgr>/<queue> is not being read.

*/

/*--*/
/* Includes. */
/*--*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <cmqc.h>
#include <cmqcfc.h>

/*--*/
/* Defines. */
/*--*/

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

#define REPLY_LEN 4096
#define BUF_LEN 1024
#define MSG_LEN 160
#define CMD_LEN 80
#define MQS_PREFIX "MQSEVENT"
#define TIME_OUT 5

#define ACTION_EVENTUAL 3
#define ACTION_IMMEDIATE 2
#define ACTION_CRITICAL 11
#define ACTION_DEFAULT ACTION_EVENTUAL

/*---*/
/* User-defined data types. */
/*---*/
typedef struct {
 MQLONG Reason;
 void (* Handler) (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action
);
 } EveMsgHandler;

/*---*/
/* Prototypes. */
/*---*/
void ChannelStopped (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action
);
void QServiceIntervalHigh (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action
);
void GetField (PMQBYTE EveMsg, MQLONG* FieldIds, int TotFields,
 ...);
void RunCommand (MQHCONN hConn, char* Command);
void OperatorPrintf (long Action, char* Fmt, ...);
char* TrimRight (char* Str, int Len);
char* StrLower (char* Str);

EveMsgHandler* FindEveMsgHandler (MQLONG Reason);

/*---*/

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* Main. */
/*---*/
void main (int argc, char** argv)
{
 MQHCONN hConn = MQHC_DEF_HCONN;
 MQHOBJ hEveQ;

 MQOD dEveQ = { MQOD_DEFAULT };
 MQMD dEveMsg = { MQMD_DEFAULT };

 MQLONG oOpen;
 MQLONG oClose;
 MQGMO oGet = { MQGMO_DEFAULT };

 MQLONG CompCode;
 MQLONG Reason;

 MQLONG MsgLen;
 MQCHAR Buf [BUF_LEN];

 int Action;
 char* pAction;

 EveMsgHandler* pEveMsgHandler;

 DFHEIBLK* pEib;
 MQTM TrigMsg;
 short int TrigMsgLen;
 long int Resp;

 /*--*/
 /* Address CICS EIB. */
 /*--*/
 exec cics address
 eib (pEib)
 ;

 /*--*/
 /* Receives trigger msg handed by CKTI. */
 /*--*/
 TrigMsgLen = sizeof (TrigMsg);

 exec cics retrieve
 into (&TrigMsg)
 length (TrigMsgLen)
 resp (Resp)
 ;

 if (Resp != DFHRESP(NORMAL))
 exec cics return;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

 /*--*/
 /* Message handling for system console. */
 /*--*/
 pAction = TrimRight (TrigMsg.EnvData, sizeof (TrigMsg.EnvData));
 StrLower (pAction);

 if (strcmp (pAction, "eventual") == 0)
 Action = ACTION_EVENTUAL;
 else if (strcmp (pAction, "immediate") == 0)
 Action = ACTION_IMMEDIATE;
 else if (strcmp (pAction, "critical") == 0)
 Action = ACTION_CRITICAL;
 else
 Action = ACTION_DEFAULT;

 /*--*/
 /* Opens event queue */
 /*--*/
 strncpy (
 dEveQ.ObjectName,
 TrigMsg.QName,
 sizeof (dEveQ.ObjectName)
);

 oOpen = MQOO_INPUT_AS_Q_DEF
 + MQOO_FAIL_IF_QUIESCING;

 MQOPEN (
 hConn,
 &dEveQ,
 oOpen,
 &hEveQ,
 &CompCode,
 &Reason
);

 if (CompCode != MQCC_OK) {
 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQOPEN %s: %ld",
 TrimRight (dEveQ.ObjectName, sizeof (dEveQ.ObjectName)),
 Reason
);
 exec cics return;
 }

 /*---*/
 /* Analyses all event messages. */
 /*---*/
 for (; ;) {

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 /*---*/
 /* Get next event message. */
 /*---*/
 memmove (dEveMsg.MsgId, MQMI_NONE, sizeof (dEveMsg.MsgId));
 memmove (dEveMsg.CorrelId, MQCI_NONE, sizeof
 (dEveMsg.CorrelId));

 oGet.Options = MQGMO_WAIT
 + MQGMO_NO_SYNCPOINT
 + MQGMO_CONVERT
 + MQGMO_FAIL_IF_QUIESCING;

 oGet.WaitInterval = TIME_OUT * 1000;

 MQGET (
 hConn,
 hEveQ,
 &dEveMsg,
 &oGet,
 sizeof (Buf),
 Buf,
 &MsgLen,
 &CompCode,
 &Reason
);

 /*--*/
 /* Queue is empty: there's nothing else to do... */
 /*--*/
 if (Reason == MQRC_NO_MSG_AVAILABLE) break;

 if (CompCode != MQCC_OK) {
 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQGET %s: %ld",
 TrimRight (dEveQ.ObjectName, sizeof
 (dEveQ.ObjectName)),
 Reason
);
 exec cics return;
 }

 /*---*/
 /* Ignores non-event messages, in case the transaction */
 /* is run against a non-event queue. */
 /*---*/
 if (strncmp (dEveMsg.Format, MQFMT_EVENT, MQ_FORMAT_LENGTH))
 continue;

 /*---*/

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

 /* Finds a handler for this event message using */
 /* MQCFH.Reason. */
 /*---*/
 pEveMsgHandler = FindEveMsgHandler (((PMQCFH) Buf)->Reason);

 /*---*/
 /* Ignores messages that don't have a handler. */
 /*---*/
 if (pEveMsgHandler == (EveMsgHandler*) NULL)
 continue;

 /*---*/
 /* Handles message. */
 /*---*/
 (* pEveMsgHandler->Handler) (hConn, dEveMsg, (PMQBYTE) Buf,
 Action);
 }

 /*---*/
 /* Closes event queue. */
 /*---*/
 oClose = MQCO_NONE;

 MQCLOSE (
 hConn,
 &hEveQ,
 oClose,
 &CompCode,
 &Reason
);

 if (CompCode != MQCC_OK) {
 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQCLOSE %s: %ld",
 TrimRight (dEveQ.ObjectName, sizeof (dEveQ.ObjectName)),
 Reason
);
 exec cics return;
 }
 exec cics return;
}

This article concludes in next month’s issue of MQ Update with the
remainder of the code for MQSEVT.C.

Paulo Marcel Coelho Aragão (Brazil) © Xephon 2000

MQ news

Unisys is to sell MQSeries on its ClearPath
HMP IX Enterprise Servers. Unisys is to
provide MQSeries product functionality as
an X/Open-compliant Resource Manager
with the Unisys Open/OLTP 2200
Transaction Manager. This, says Unisys,
allows message queuing functionality to be
tied to the recovery, availability,
transactional persistency, and high
performance attributes of the ClearPath IX
and related 2200 Series systems.

General product availability is targeted for
second quarter of this year.

For further information contact:

Unisys Corp, PO Box 500, Blue Bell, PA
19424-0001, USA
Tel: +1 215 986 4011
Web: http://www.unisys.com

Unisys Ltd, Bakers Court, Bakers Road,
Uxbridge UB8 1RG, UK
Tel: +44 1895 237137
Fax: +44 1895 862093

* * *

ETI Software has announced ETI*Extract
Version 4.1. The company says that the
product’s enhancements are aimed at
improving integration between e-
commerce, back-office, and decision
support applications. Although no mention
was made to improvements to the product’s
support for MQSeries (which, admitedly,
was only introduced in November last year),
other enhancements include an upgraded
MetaStore, which gets improved security
and distributed support, an audit trail for

metadata, and improvements to the
product’s ergonomics to reduce the number
of keystrokes required to achieve
administrative tasks.

The product is out now; details on pricing are
available on request from the vendor.

For further information contact:

Evolutionary Technologies International,
816 Congress Avenue, Suite 1300, Frost
Bank Plaza, Austin, TX 78701, USA
Tel: +1 512 327 6994
Fax: +1 512 327 6117
Web: http://www.eti.com

Evolutionary Technologies Limited,
Denmark Court, 18 Market Place,
Wokingham, Berkshire RG40 1AL, UK
Tel: +44 118 977 1221
Fax: +44 118 977 9800

* * *

Meanwhile, IBM announced that it’s
reselling ETI’s ETI*Accelerator for
MQSeries, which combines data access and
transformation with the message delivery
attributes of MQSeries. It’s aimed at users
building enterprise application integration
infrastructures and adding new levels of data
transformation and metadata management to
data messaging.

Out now on AIX, Solaris, HP-UX, and NT
servers, it costs US$30,000.

IBM also has announced that it’s ported
MQSeries and Tivoli Storage Manager to
NUMA-Q.

x xephon

	An MQSeries PLTPI
	Web-enabling legacy applications with MQSeries
	Invoking MQSeries tools using ISPF panels
	Guidelines for MQSeries for OS/390 users
	Client Attachment Feature
	An event queue monitor for OS/390
	MQ news

