11

May 2000

]
In this issue

3 A mail system based on IMS and

MQSeries

30 An event queue monitor for OS/390 —
part 2

42 MQSeries coding standards and
guidelines

50 QM definition scripts from the BSDS
—areply

52 MQ news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road
Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955
e-mail: harryl @xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344

Fax: +1 303 438 0290

Contributions

Articlespublishedin MQ Updateare paid for
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessiit). If
you'’ ve a problem with your user-id or pass-
word call Xephon's subscription department
on +44 1635 33886.

Editor

Harry Lewis
Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

A mail system based on JMS and MQSeries

INTRODUCTION

This article describes the Java Message Service APl (IMYS), its
interaction with INDI (JavaNaming and Directory Interface), and its
use in conjunction with M QSeries Support Pack MA88. An example
application is provided that demonstrates many of the point-to-point
messaging features of the IMS.

WHAT ISIMS?

The Java platform, including its standard extensions, provides a
wealth of building blocks, from basic networking to dynamic service
| ocationand distributed transaction services. Usingthesecomponents,
it's possible to construct sophisticated enterprise applications. The
JavaMessage Service' spurposeisto act asamodel for an enterprise-
guality messaging system used by Java-based clients. JMS thus
specifiesmany of the featuresfound in established message-oriented
middleware products, even though its stated aim is not to be a
substitute for the collection of featuresfound inthese products, but to
provide an appropriate set of capabilities with which to implement
sophisticated enterprise applications.

JM S encompasses both traditional point-to-point messaging and the
new publish/subscribe model. It defines a set of Javainterfaces and,
assuch, isnot aproduct initsown right —it requires implementation
in aprogram. Although it’s possibleto create a pure Java application
that uses nothing but JMS for messaging, existing messaging
middleware can easily be used asthe basisfor a JIM S infrastructure,
where the IM S layer interacts with an underlying messaging system
either through JNI (Java Native Interface) methods or across the
network. This article concentrates on using IMS with MQSeries for

point-to-point messaging.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

STRUCTURE OF IMS

JM S primitives

JMS defines a number of object types that model the primitive
elements of a messaging system. The most fundamental of them
should be familiar to MQSeries users:

* A Message is the fundamental unit of data exchange between
applications. Sub-types of Message include messages with
particular types of content, such as TextMessage, BytesMessage,
and ObjectMessage.

« A Destination is a store to which messages are addressed and
from which they can be retrieved. A Queue is a sub-type of
Destination.

e A Connectionisan application’shandleto the JIM S provider, and
a Session isamore limited context derived from a Connection.

* A Provider istheimplementation that provides IM S services to
clients.

When applications send messages, they interact with queuesthrough
MessageProducers, and when they recelve messages, they interact
through MessageConsumers. A Connection to a JMS provider is
obtained from aConnectionFactory. Aninteresting feature of IMSis
the way that afactory islocated by a client application.

JM Sdoesnot definean addressing scheme. Theaddressof aDestination
iseffectively determined either by the naming scheme under which it
isstored inthe INDI or by the provider-specific mechanism through
which the ConnectionFactory and Destination objects are directly
instantiated.

JM S-administered objects and JNDI

Although JMS is wholly dependent on the underlying messaging
system, it is intended that JMS clients should require no direct
knowledgeof themessaging system’simpl ementation-specificidentity
or properties. A IMSclient’sconnectionto aprovider of IMSservices

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

and its access to Destination objects is obtained through IMS-
administered objects, which are, in turn, generally obtained from a
look-up service viathe JNDI.

TheJNDI, likeIM Sitself, isan abstract definition of alook-up service
for Javaclients(not necessarily JM Sclients—the INDI isindependent
of IMS). Its function is to return areference to a Java object from a
name-keyed repository to aclient. In common with IMS, INDI uses
serviceprovidersto provideacommoninterfacetovariousunderlying
look-up service implementations. The two JNDI providers that are
most likely to beusedin conjunctionwithJM Susean LDAPdirectory
and afilesystem store.

Instances of IMS-administered objects — ConnectionFactory and
Destination — are created from what are effectively templates stored
in the look-up service repository. The repository’s records contain
provider-specific attributes, including the Java class name from
which to instantiate actual objects. IMS providers are expected to
provide administration tools to create and maintain the administered
object definitions (the IMSAdmin command-line tool is provided in
the MQSeries IM S package).

M essages and message properties

UnlikeM QSeriesmessages, IM Smessagesareinherently typed. IMS
providesthestructured messagetypes MapMessage, ObjectMessage,
and StreamMessage, which are sub-types of Message, in addition to
the TextMessage and BytesMessage types. A MapMessage containsa
set of randomly-accessible named fields, an ObjectMessage can be
used to hold Java objects (a single container object can contain other
objects in the message), and a SreamMessage contains a stream of
Java data elements of primitive type (that is, smple numeric and
string types). The TextMessagetypeisexpected to bewidely used for
XML message data. A IM S provider handling messages originating
from non-JM S sourcesisexpected to handlethese messagesusing the
most appropriate IM S message type.

In addition to their content, IMS messages also have a header that
contains a set of control fields. A small set of IM S-defined fields (or

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

properties) arepresent inevery message, and provider- and application-
defined properties can be added to them. Properties can be simple
numeric types and strings. A powerful feature of IMSisitsability to
filter messages using selectors, where messages are retrieved
selectively based on field values using SQL expressions.

JM S client operation
JM S specifiesthe following stepsfor setting up atypical IMSclient:

e Use INDI to locate a ConnectionFactory object

e UseJNDI to find one or more Destination objects

e Usethe ConnectionFactory to create a JM S Connection
e Usethe Connection to create one or more Sessions

* UseaSession and Destinationsto create MessageProducersand
MessageConsumers, as required.

Once the message producers and consumers that are required are
created, theclient isthen in aposition to begin sending and receiving

Messages.

Security

JM S does not define a security model —IM S providers are expected
to implement their own security schemes. Authentication may be
performed when aConnectionisobtai ned fromaConnectionFactory.

Transactional support

JMS Sessions can support transactions, though how this is done
depends on the abilities of the provider. The choices are either to use
the provider’s own transactional support by calling methods in the
XASession class or to use JTA's (Java Transaction API) transactional
support by calling methods in the Session class.

RELATIONSHIPAND MAPPING OF IMSTO MQSERIES
For those familiar with MQSeries, there is a conveniently

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

straightforward mapping between most JIM S features and M QSeries
API features. Any awkwardnessis moreto do with the fact that MQI
isprocedural and JM S object-oriented than with differences between
the underlying design of the two APIs. (A comparison with the
MQSeries Java classes is easier to draw but perhaps not so useful.)
Furthermore, the MQSeries IMS provider uses the MQSeries Java
classesinitsimplementation. A comparison of MQSeriesand IMSis
shown in the following tables.

Objects and types:

MQSeries object or type JMS object or property

Queue manager ConnectionFactory

Queue Destination or Queue

MQOD Administered object (ConnectionFactory or
Destination)

MQHCONN Connection or Session

MQHOBJ MessageProducer, MessageConsumer, and
their subclasses

MQGMO Attributes of Session or MessageConsumer,
arguments of MessageConsumer’s methods

MQPMO Attributes of Session or MessageProducer,

arguments of MessageProducer’s methods

MOMD and other header types Attributes of Message and its subclasses

Functions and methods
MQSeries function JMS equivalent

MQCONN The acquisition or instantiation of a
ConnectionFactory, Connection, and Session

MQOPEN Session methods that create instances of
MessageProducer and MessageConsumer

MQPUT/MQPUT1 MessageProducer send methods
MQGET MessageConsumer receive methods
MQCMIT Session commit method

MQBACK Session roll-back method

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

MQCLOSE MessageProducer’s or MessageConsumer’s close methods
MQDISC Connection’s close method

MQINQ/MQSET Provider-specific methods of administered objects

Message properties

MQMD field JMS message property Set in JMS by:
MsgType JMS_IBM_MsgType IBM JMS provider
Expiry JMSExpiration Send method
Format JMS_IBM_Format IBM JMS provider
Priority JMSPriority Send method
Persistence JMSDeliveryMode Send method
Msgld JMSMessagelD Send method
Correlld JMSCorrelationID Send method
BackoutCount JMSRedelivered/JMSXDeliveryCount Provider
Userldentifier JMSXUserID Provider
PutApplType JMS_IBM_PutAppl1Type IBM JMS provider
PutAppTName JMSXAppID Provider
PutDate/PutTime JMSTimestamp Provider

GroupId JMSXGroupID Client
MsgSegNumber JMSXGroupSeq Client

JM S messages also contain arecord of their destination, storing the
destination in the IMSDestination property.

USING IMSWITH MQSERIES: AN EXAMPLE APPLICATION

About the example

Here we provide an example JM S application, IMSMail, whichisa
simple mail system with a user interface loosely based on the simple
mail client found onmany Unix systems. Theapplicationdemonstrates
thefundamental featuresof JM S spoi nt-to-point messaging, including:

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Theuseof JNDI to obtain references to administered objects
e Connection and session creation

* Theuse of message producers and consumers

 Message properties and selectors.

Pre-requisites and environment

The MQSeries IMS provider classes are supplied in the MQSeries
MAS88 support pack, which is available for free download from the
IBM MQSeriesfor WindowsNT, Al X, HP-UX, and SolarisWeb sites.
MQSeries5.1 and JDK 1.1.6 or later arerequired (therequirement is
JDK 1.1.7 or later on HP-UX). The MQSeries 5.1.1 Java classes,
which are also required, are supplied in the support pack. The
description of theexampl e applicationthat followsassumesthat these
components have been installed.

The example code has been tested and used successfully on two
platforms:

« AIX 4.1.5 with MQSeries 5.0 (this worked despite the stated
requirement for MQSeries 5.1) and JDK 1.1.6

e Microsoft Windows NT 4.0 with MQSeries 5.1 and JDK 1.2.2.

Configuring the MQSeries JM S environment for use

There are three basic steps required to set up the environment to run
MQSeries IM S applications:

* The classpath parameter must include classesin the MQSeries,
JMS, and JNDI archives.

* Toenable INDI to look up IM S-administered objects, a JINDI-
accessi blerepository must be configured and popul ated with one
or more ConnectionFactory and Destination entries.

 Any MQSeriesobjectsthat arereferred to by JIM S-administered
object definitions must have definitions in MQSeries and be
available,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

Setting the classpath
Torunany MQSeries JIM S program, it isnecessary that the classesin

thefollowing MAS8S .jar archivesare accessibleviaclasspath (thisis
in addition to the base JDK classes):

e com.ibm.mq.jar

e com.ibm.mgbind.jar

e com.ibm.mgjms.jar

e jmsjar

 |ndi.jar

o fscontext.jar

e ldap.jar

e providerutil.jar.

Thesearchivesarelocated in subdirectory java/lib (or javallib) of the
MQSeries MA88 installation.

Defining JM S-administered objects

JM S-admini stered obj ect definitionsarecreated usingthe JM SAdmin
command-lineadministration tool, which must first be configured by
editing the IMSAdmin.config configuration file. Two entriesin this
fileshould be edited: INITIAL_CONTEXT, which specifiesthe INDI

service provider’s class name and determines the mechanism used to
accesstherepository, and PROVIDER URL, whichisthe URL of the
repository.

The easiest type of repository to get up and running is a filesystem-
based repository; the provider class name of thistype of repository is

com.sun.jndi.fscontext.RefF SContextFactory and the provider URL
isafile-based URL.Asan example, thefoll owing entriescan be used:

INITIAL_CONTEXT=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/usr/mgm/java/directory

The IMSAdmin tool and the propertiesfile are found in thejava/bin
(or java\bin) sub-directory of the MQSeries MA88 installation. To

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

run IMSMail, we need definitions for:
* A gueue connection factory

* One or more destinations corresponding to mail system users
mailboxes.

Tocreateaqueueconnectionfactory calledjmsmail, which corresponds
to theloca queue manager LYCHEE.QM, and destinations chrisand
bob, which correspondto M QSeriesqueuesnamed IMSMAIL.CHRIS
and JMSVIAIL.BOB respectively, you would issue the following
JMSAdmin commands (‘ InitCtx>" isthe prompt):

InitCtx> define qcf(JMSMAIL) gmanager(LYCHEE.QM)
InitCtx> define q(chris) queue(JMSMAIL.CHRIS)
InitCtx> define q(bob) queue(JMSMAIL.BOB)

Here, the queue’ sconnection factory definition refersto alocal queue
manager by name, and this results in the use of MQSeries Java
bindings. Alternatively, aqueue connection factory can be defined as
an MQSeries client connection as follows:

InitCtx> define qcf(JMSMAIL) hostname(lychee) port(1414)
channel (CLIENT) + transport(client)

The transport type client is required in this case to indicate that this
should be a client connection. For client connections, an MQSeries
channel of type SYRCONN must be defined on the target queue
manager and either an inetd entry (Unix) or active listener must exist
on the specified port of the target host.

Creating MQSeries definitions
Finally, the real MQSeries local queues JIMSMAIL.CHRIS and
JMSMAIL.BOB must bedefined onthequeuemanager LYCHEE.QM.

I nvocation scripts

Because of theenvironmental pre-requisitesfor runningaJNDI/IM S
application, it's often convenient to create a shell script or batch file
toinvoketheapplication withthe correct configuration parameters. A
simple Korn shell script jmsmail (for Unix environments) to invoke
JMSMail would look like this:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

JMSMAIL
#1/bin/ksh

JMS_HOME=/usr/mgm/java

JMS_LIB=$JMS_HOME/Tib
JMS_CLASSPATH=/usr/jdk_base/1ib/classes.zip:\
$JIMS_LIB:\

$JIMS_LIB/com.ibm.mgjms.jar:\
$JIMS_LIB/jms.jar:\

$IMS_LIB/jndi.jar:\

$JIMS_LIB/fscontext.jar:\

$JIMS_LIB/Tdap.jar:\
$JIMS_LIB/providerutil.jar:\
$JIMS_LIB/com.ibm.mg.jar:\
$JIJMS_LIB/com.ibm.mgbind. jar:.
FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
REPOSITORY=file:$JIJMS_HOME/directory

echo Starting JMSMail...

java -classpath $JMS_CLASSPATH \
-Djava.naming.factory.initial=$FACTORY \
-Djava.naming.provider.ur1=$REPOSITORY \
JMSMail $@

The equivalent Windows batch file, jmsmail.bat, is shown below.
Notetheuseof thecontinuationcharacter, 0’ , toindicateaformatting
line break that’s not present in the original code.

JMSMAIL.BAT
@echo off

SET JMS_HOME=\MQSeries\java

SET JIMS_LIB=%JMS_HOME%\1ib

SET JMS_CLASSPATH=%JMS_LIB%;%JMS_LIB%\com.ibm.mgjms.jar;

O %JMS_LIB%\jms.jar;%JM S_LIB%\jndi.jar;%JMS_LIB%\fscontext.jar;
O %JMS_LIB%\1dap.jar;%JMS_LIB%\prov iderutil.jar;

O %JMS_LIB%\com.ibm.mqg.jar;%JMS_LIB%\com.ibm.mgbind. jar;.

SET FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

SET REPOSITORY=file:/MQSeries/mgm/java/directory

echo Starting JMSMail...
java -classpath %JMS_CLASSPATH% -Djava.naming.factory.initial=

O %FACTORY% Djava.naming.provider.ur1=%REPOSITORY% JMSMail
O %1 %2 %3 %4 %5

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

TheJMSMail code

This section discussesthe code of the sample application. For clarity,
werefer tothecodeusing linenumbers(theentiresourcecodeislisted
at theend of thearticle, including line numbers). However, remember
to strip out line numbers before compiling the code.

The IMSMail application isdesigned asasingle class, IMSMail (the
classdefinitionbeginsat line11), whichimplementstwo JM Slistener
interfaces. An instance of JMSMail maintains one JMS provider
connection and one session, which is used both for sending and
receiving messages. The mailbox queue iswhere recelved messages
areretrieved. A hash table (line 22) isused to build amap of message
indices to message identifiers, which is then used for selecting
specific messages, while the BufferedReader wrapper (line 23),
which wrapsthe standard input stream, allows usto usethereadLine
method to fetch user input a line at a time. The javax.naming and
javax.jms import statements (lines 3 and 4) allow us to refer to the
JINDI and IM S classes respectively.

Themainmethodbeginsat line35andendsat line97. Itfirstinitializes
the INDI context using the Java system properties (line41), and then
instantiates an object of the IMSMail class (line 48). The IMSMail
instance hasauser nameassociated withit that istaken either fromthe
jmsmail.user.name property (if defined) or the user’slogin name.

What happens next depends on whether any addressee names were
included in the command line — if any were, the application runsin
‘send mode’, calling the composeMessage method (line 55) to build
aJM Smessage from the user’ sinput and attempting to send it to each
addressee in turn. If no command line arguments were supplied, the
application runs in ‘receive mode’, responding to a small set of
commands that are used to view and manipul ate received messages.

When displaying JMSExceptions, it's useful to see the underlying
exception (if present), as this may give a direct insight into the
underlying provider problem. This is accessed with the
getLinkedException method in IMSException (lines 84 and 85).

ThegetConnection (lines103to 110) and getDestination (lines116to
120) methods are ‘ convenience’ methodsthat usethe JINDI's context

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

look-up and return references to administered objects.

The IMSMail constructor (lines 126 to 140) establishesaconnection
to the IM S provider. It usesthe connection to open both asession and
themailbox queuecorrespondingtotheuser. Althoughtheapplication
only accessesthemailbox queueinrecelvemode, thecomposeMessage
method also needs a reference to the queue to set the IMSReplyTo
property in messages sent.

The compose method (lines 148 to 191) creates a IM S TextMessage
instance from text entered on the command line and sets the
JMSReplyTo message property to refer to the sender’s mailbox. Two
further application-defined properties — from and subject — are set.
Thismethod is also used by ther (reply) command in receive mode.,

ThesendMessagemethod (lines197t0217) obtainsaQueuereference
using the addressee’s name and then uses a QueueSender to send the
message. The QueueSender is explicitly closed (line 216) after it's
used so asto free any resources allocated to it by the provider.

| n receive mode, the application kegpsarecord of messageidentifiers
of listed messages (seelines 224 to 238, which showsthemethod used
to find the IMSMessagel D of a message in the mailbox). These are
storedinthehashtabl etableand areaccessed by thereceivecommands
that are used to process individua messages. The hash table is
populated by the listMessages method, which returns a ‘ newline' -
delimited string describing the messages in the mailbox.

A QueueBrowser isusedinthelistMessagesmethod (lines246to 280)
to provideasnapshot of themessagesinagueue. Eachlineinthestring
returned containsanindex number, starting with index number 1. The
sender is identified by the application-defined from property, while
the timestamp is taken from the message’s IMSTimestamp property
and the subject isread from the application-defined subject property.
Aswith message producers and consumers, the browser isexplicitly
closed (line 277) after usein order to free any resources allocated to
it by the provider. For convenience, the message count isappended as
the last line of the returned string.

To obtain abrowse copy of an individual message (lines 287 to 307),
we again use a QueueBrowser. We could use a selector to limit the

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

messages available from the browser to just ones with the correct
message ID (as in the receiveMessage method in lines 314 to 325),
though we would still have to use the browser’'s getEnumeration
method to access the final message. In this case, it requires no more
work to look for the message explicitly without a selector.

To delete amessage, we need to use a QueueReceiver —asubclass of
MessageConsumer. The selector used isafilter that ensuresthat only
messages matching the specified message identifier are returned.
Whenwecall themethod to receivethe message inline320, weknow
that the message is already on the queue, so we can use the queue
recelver’s receiveNoWait method. The MessageConsumer class also
defines receive methods that block until a suitable message arrives.

The IMSMail application implements the IMS Messagel.istener
interface, which defines one method, onMessage (lines 333 to 350).
A Messagel.istener is associated with a MessageConsumer, and the
applicationregistersitself asalistener whenit entersreceivemodein
the run method (lines 371 to 461). The invocation of the onMessage
method serves as notification that a message has arrived, though the
messageitself ispassed on directly, and soisremoved from the queue
by the MessageConsumer before the method is called. This is
unfortunate from the point of view of the IMSMail application, asthe
new mail messageiseffectively retrieved assoon asit arrivesand is,
therefore, not available in the mailbox queue. However, this method
servesto illustrate the way a Messagel istener works,

TheJM SMail applicational soimplementsthe JM S ExceptionListener
interfaceand registersitself asan exception listener initsconstructor.
The onException method (lines 358 to 363) provides away for IMS
tonotify theapplicationif aproblemoccurswiththe JM Senvironment
independently of the application’s actions. JIMS exceptions raised
directly asaresult of theapplication’sinvocation of IM Smethodsare
caught in the normal way.

Therun method (lines 371 to 461) executes aset of simple actionson
theuser’'sJM SMail mailbox. Thecommandsavail abletotheuser are:

n Show message number n (setsindex to n)
| List messages (resets index)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

d Delete message at current index
r Reply to message at current index
s Send new message

g Quit.

Themessagelist produced by thel command showsindex numbersin
theleft-hand column. The messageindex maintai nedisthe number of
the last message displayed; thed and r commands act on the message
identified by thisindex. Hitting the Enter key at ablank line displays
the message at the current index and increments the index by one.

Thefirst thing the IMSMail application doesin therun method is set
up aQueueReceiver and associateitself withit asaMessagelistener.
This requires a new Session, as a single session cannot support
synchronous receive operations (which are performed in the
recelveMessage method) and asynchronousmessagedelivery using a
message listener at the same time. The QueueReceiver is established
with a selector based on the current date and time. This ensures that
only newly-arrived messagesare passed to thelistener. It isnecessary
to cast the time value to type int (line 374) to avoid a
Number FormatException in the SQL parser, which does not accept
values of type long.

Before a Connection can deliver messages to consumers, its start
method must be called (line 385). The command loop that follows
(lines 387 to 457) then processes one command per iteration until
either the user quits by issuing the g command or aJMSEXxceptionis
thrown.

Therunmethod usesthe help method (lines467 to 47), which returns
alist of available commands when it’'s invoked.

The disconnect method (lines 482 to 486) releases the connection to
the IM S provider.

Finaly, the last line of the code, line 487, is a closing brace that
Indicates the end of the class enclosure.

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

RUNNING THE IMSMAIL APPLICATION

Using JM SMail to send a message

To send amessage, invokethejmsmail script or thejmsmail.bat batch
file (both were described above) with the name of the destination user
as a parameter. Pre-requisites for this to work are that mailboxes
belonging to both the sender and the recipient must exist as JNDI
entriesand M QSeriesqueues, that aJNDI entry for thequeue manager
must al ready bedefined, andthat thequeue manager must beavailable.
A command sequence for sending a message is shown below.

$ jmsmail chris

Starting JMSMail...

Subject: This is JMS

Chris, this is a JMS message!

$

Using JM SMail in receive mode

To handle IMSMail messages received, invoke thejmsmail script or
batch filewith no arguments. For instance, asuser chris, my response
to the above message being sent would be:;

$ jmsmail
Starting JMSMail...
1 chris Mon Mar 06 18:02:12 GMT 2000 This is JMS

1 message.
?

To see the message, press Enter or type 1 (the message index). The
message is shown, displaying its properties and the message text:
JMS Message class: jms_text
IMSType: null

JMSDeliveryMode: 2
JMSExpiration: 0

JMSPriority: 4

JMSMessagelD: ID:414d51204c59434845452e514d20202038c3de6e00
0 003013

JMSTimestamp: 952365732600

JMSCorrelationID:null

JMSDestination: queue:///JMSMAIL.CHRIS
JMSReplyTo: queue:///JMSMAIL.CHRIS
JMSRedelivered: false
JMS_IBM_Format:MQSTR

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

JMS_IBM_PutApplType:6
JMSXDeliveryCount:1
JMS_IBM_MsgType:1
subject:This is JMS
from:chris
JMSXUserID:chris
JMSXAppID:

Chris, this is a JMS message!

?

For alist of other valid commands, type help (or anything that’'s not
avalid command).

ACCESSING MQSERIESADMINISTERED OBJECTSWITHOUT JNDI

Our sample application happens to be provider-independent, as the
JNDI providesaccesstothe JM Sprovider without any referencetoits
MQSeries-specific properties. However, in cases where a JNDI
repository is not available, it's possible to directly instantiate both
ConnectionFactory and Destination obj ectsthat are provider-specific.

To make our sample application use M QSeries-specific administered
objects, we' d need to make the following three changes to the code:

1

18

Add an import statement that allows usto refer to classesin the
MQSeries IM S package:

import com.ibm.mq.jms.*;
Replace our getConnection method with the following:

static QueueConnection getConnection (String name)
throws JMSException
{
MQQueueConnectionFactory factory =
new MQQueueConnectionFactory ();

factory.setQueueManager (name);

return factory.createQueueConnection ();
}

Replace the getDestination method with the following:

static Queue getDestination (String name) throws JMSException
{

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

return session.createQueue (name);
}

Note that these replacement methods do not throw an exception of
type NamingException, as no JINDI methods are invoked.

The INDI’svauein de-coupling JIM S object names from real object
namesbecomesapparent: by making theabove changes, wenow need
to match thefactory and destination namesused by IM SMail withreal
MQSeries objects. That is, we need to:

o Either define a queue manager called jmsmail or use the
jmsmail.server.nameproperty torefer to anexisting queuemanager

* Define MQSeries queues or queue aliases matching user names
used by IMSMail.

For completeness, asall INDI-related codeis now removed from the
program, the Initial Context need not be initialized.

RESOURCES
e IMSinformation:

http://java.sun.convproducts/jms/index.html
e JNDI information:
http: //java.sun.conVproducts/jndi/index.html
e MQSeries IMS implementation (support pack MA88):
http://mww.ibm.convsoftware/ts'mgseries/txppacs/mad8.htm
 MQSeries home page:
http: //mwww.ibm.convsoftware/tsmgseries/

JMSMAIL.JAVA

import java.io.*;
import java.util.*;
import javax.naming.*;
import javax.jms.*;

SOl W

/**

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

7 * JMS sample application modelling a simple mail system. The
8 * user interface is loosely based on Unix's common mail client.

9 */

10

11 public class JMSMail implements Messagelistener, ExceptionListener

12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

20

final static String NEWLINE =
File.separatorChar == "\\" 2 "\r\n" : "\n";

static InitialContext context;

String username;

QueueConnection connection;

QueueSession session;

Queue mailbox;

Hashtable table = new Hashtable ();

BufferedReader input = new BufferedReader
(new InputStreamReader (System.in));

/**

Main application's entry point. If any command-line arguments
are supplied, the application runs in send mode, so that a
message is composed and sent to each of the specified
addressees in turn. With no command-1ine arguments, the
application runs in receive mode and manipulates received
messages in the user's mailbox using simple commands.

* % o o X X

public static void main (String [] args)
{
try
{
// Set up the JNDI context.

context = new InitialContext (System.getProperties ());

// The username identifies the 'from' address to use when
// sending and the mailbox (queue) to use when receiving.

String username = System.getProperty ("Jjmsmail.user.name",
System.getProperty ("user.name"));
JMSMail app = new JMSMail (username);

if (args.length > 0)

{
// Compose a message and send it to each addressee
// specified on the command line.

Message message = app.composeMessage (null);

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

56

57 for (int i = 0; i < args.length; i++)

58 {

59 try

60 {

61 app.sendMessage (message, args [i]);

62 }

63

64 catch (NamingException ne)

65 {

66 System.err.printin (args [i] +

67 ": JNDI lookup error: " + ne);

68 }

69 }

70 }

71 else

72 {

73 // Run in receive mode operating on messages in the
74 // user's mailbox.

75

76 app.run ();

77 }

78

79 app.disconnect ();

80 }

81

82 catch (JMSException jmse)

83 {

84 System.err.printin ("JMS error: " + jmse +

85 " (" + jmse.getLinkedException () + ")');

86 }

87

88 catch (NamingException ne)

89 {

90 System.err.printin ("Invalid destination: " + ne);
91 }

92

93 catch (IOException ioe)

94 {

95 System.err.printin ("Error reading input: ™ + ioe);
96 }

97 }

98

99 /**

100 * Returns a connection using a named ConnectionFactory.
101 */

102

103 static QueueConnection getConnection (String name) throws
104 JMSException, NamingException

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

22

QueueConnectionFactory factory =
(QueueConnectionFactory) context.lookup (name);

return factory.createQueueConnection ();
}

/**
* Returns a reference to a named queue.
*/

static Queue getDestination (String name) throws
JMSException, NamingException

{
return (Queue) context.lookup (name);

}

/**

* Constructor for a JMSMail client (sender or receiver).
*/

public JMSMail (String username) throws
JMSException, NamingException
{

this.username = username;

// We normally use ConnectionFactory 'jmsmail', though this
// can be overridden using the jmsmail.server.name property.

connection = getConnection (System.getProperty
("jmsmail.server.name”™, "jmsmail™));
connection.setExceptionListener (this);
session = connection.createQueueSession
(false, Session.AUTO_ACKNOWLEDGE);
mailbox = getDestination (username);
}

/**

* Compose a JMS message from the command Tine. Text entry is
* terminated either by an EOF (CTRL-D) or a Tine containing
* only a period ('.').

*/

public Message composeMessage (String subject) throws
IOException, JMSException

{
TextMessage message = session.createTextMessage ();
StringBuffer buffer new StringBuffer ();
String line;

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

}

/**

* Send a JMS message to a named destination.

try
{
System.out.print ("Subject: ");

if (subject == null)

{

subject = input.readlLine ();
}
else
{

System.out.printin (subject);
}

while ((1ine = input.readlLine ()) != null &&
!Tine.equals ("."))

{
buffer.append (line);
buffer.append (NEWLINE);
}
}
catch (EOFException eofe)
{
}

message.setText (new String (buffer));

// Set message properties; 'from' and 'subject' are
// application-defined.

message.setJMSReplyTo (mailbox);
message.setStringProperty ("from"™, username);

message.setStringProperty ("subject™, subject);

return message;

public void sendMessage (Message message, String destination)

{

throws JMSException, NamingException

Queue queue;
QueueSender sender;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

24

try
{
queue = getDestination (destination);
}
catch (NullPointerException npe)
{
throw new NamingException ("Invalid destination: " +
destination);
}

sender = session.createSender (queue);
sender.send (message);
sender.close ();

}

/**

* Finds the JMSMessagelID property of the message in the
* mailbox with the specified index (in receive mode).
*/

String getMessagelID (int index) throws
ArrayIndexQutOfBoundsException

{
String messagelD = (String) table.get (new Integer (index));
if (messagelID == null)
{
throw new ArrayIndexOutOfBoundsException
("Invalid message number " + index + '.");
}
else
{
return messagelD;
}
}
/**

* Return a string listing the sender, timestamp, and subject
* along with the index of the messages in the mailbox

* (receive mode).

*/

public String TistMessages () throws JMSException
{
QueueBrowser browser = session.createBrowser (mailbox);
Enumeration e = browser.getEnumeration ();
StringBuffer sb = new StringBuffer ();
int i = 0;

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

252

253 synchronized (table)

254 {

255 table.clear ();

256

257 while (e.hasMoreElements ())

258 {

259 Message message = (Message) e.nextElement ();

260 String subject = message.getStringProperty ("subject");
261

262 sb.append (++i);

263 sb.append (" ");

264 sb.append (message.getStringProperty ("from"));
265 sb.append (" ");

266 sb.append (new Date (message.getJMSTimestamp ()));
267 sb.append (" ");

268 sb.append (subject == null ? "" : subject);

269 sb.append (NEWLINE);

270

271 table.put (new Integer (i), message.getdMSMessagelID ());
272 }

273 }

274

275 sb.append (i);

276 sb.append (i == 1 ? ™ message."” : " messages.");

277 browser.close ();

278

279 return new String (sb);

280 }

281

282 [**

283 * Returns the message with the specified JMSMessageID from the
284 * mailbox (receive mode).

285 */

286

287 public Message browseMessage (String messageID) throws

288 JMSException

289 {

290 QueueBrowser browser = session.createBrowser (mailbox);
291 Enumeration e = browser.getEnumeration ();

292 Message message = null;

293

294 while (e.hasMoreElements () && message == null)

295 {

296 message = (Message) e.nextElement ();

297

298 if (Imessage.getdMSMessagelID ().equals (messagelD))
299 {

300 message = null;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

26

}
browser.close ();

return message;
}

/**
* Returns the message with the specified JMSMessageld from

* the mailbox, deleting it from the queue.
*/

public Message receiveMessage (String messagelID) throws
JMSException

{
String selector = "JMSMessagelID='" + messagelID + "\'"';
QueueReceiver receiver = session.createReceiver

(mailbox, selector);

Message message = receiver.receiveNoWait ();
receiver.close ();
return message;

}

/**

* This MessagelListener method is called when a new message is

* received. The message is passed directly, and is not retained
* in the mailbox queue.

*/

public void onMessage (Message message)

{
System.out.print ((char) 0x07); // beep
try
{
System.out.printin ("\nNew mail from " +
message.getStringProperty ("from™).trim () + ": ");
}
catch (JMSException jmse)
{
System.out.printin ("\nNew mail: ");
}

System.out.println (message);
System.out.print ("? ");

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

}

/**

* This ExceptionlListener method is called if a problem occurs
* with the connection to the JMS service provider while we're
* not looking.

*/

public void onException (JMSException jmse)

{
System.err.printin ("JMS connection error: " + jmse +
" (" + jmse.getlLinkedException () + ")');
System.exit (-1);
}
/**

* Runs this JMSMail instance as a receiver, reading mailbox
* commands from the command line. For a Tlist of commands,

* see the help method.

*/

public void run () throws JMSException, I0Exception
{
String selector = "JMSTimestamp > " +
(int) System.currentTimeMillis ();
QueueSession TistenerSession = connection.createQueueSession
(false, Session.AUTO_ACKNOWLEDGE);
QueueReceiver listenerReceiver =
listenerSession.createReceiver (mailbox, selector);
String command;
int index = 0;
boolean quit = false;

listenerReceiver.setMessagelistener (this);
System.out.printin (l1istMessages ());
connection.start ();

do

{
System.out.print ("? ");
try
{

if ((command = input.readline ().trim ()).equals (""))
{
System.out.printin
(browseMessage (getMessagelD (++index)));
}
else if (command.equals ("1"))

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

399
400
401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

28

{
System.out.println (TistMessages ());
index = 0;
}
else if (command.equals ("d"))
{
receiveMessage (getMessagelID (index));
System.out.printlin
("Message " + index++ + " deleted.");
}
else if (command.equals ("r"))
{
Message message = browseMessage (getMessagelD
O (index));
sendMessage (composeMessage ("Re: " +
message.getStringProperty ("subject")),
message.getStringProperty ("from"));
System.out.printin ("Reply sent.");
}
else if (command.equals ("s"))
{
System.out.print ("To: ");
String to = input.readlLine ();
sendMessage (composeMessage (null), to);
System.out.println ("Message sent.");
}
else if (command.equals ("q"))
{
quit = true;
}
else
{
try
{
index = Integer.parselnt (command);
System.out.printin
(browseMessage (getMessagelID (index)));
}
catch (NumberFormatException nfe)
{
System.out.printin (help ());
}
}

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

447 catch (ArrayIndexOutOfBoundsException abe)
448 {

449 System.out.println (abe.getMessage ());
450 }

451

452 catch (NamingException ne)

453 {

454 System.out.printin ("Invalid destination");
455 }

456 }

457 while (lquit);

458

459 lTistenerReceiver.close ();

460 listenerSession.close ();

461 }

462

463 [**

464 * Displays a 1ist of valid commands.

465 */

466

467 public String help ()

468 {

469 return "Commands: " +

470 "\n\t<n>: show message number n (sets index to n)" +
471 "\n\tl: Tist messages (resets index)" +

472 "\n\td: delete message at current index" +
473 "\n\tr: reply to message at current index" +
474 "\n\ts: send new message" +

475 "\n\tq: quit";

476 }

477

478 [**

479 * Terminates the connection to the JMS service provider.
480 */

481

482 public void disconnect () throws JMSException

483 {

484 session.close ();

485 connection.close ();

486 }

487 }

Chris Markes

HCI Architect

IBM UK Laboratories (UK) © C Markes 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

An event queue monitor for OS/390 — part 2

This month’s instalment concludes this article on an event queue
monitor for MQ Series on OS/390.

MQSEVT.C (CONTINUED)

/* ___ */
/* Finds handler for an event with MQCFH.Reason == Reason. */
/* ___ */
EveMsgHandler* FindEveMsgHandler (MQLONG Reason)

{

static EveMsgHandler TabEveMsgHandler [] = {
{ MQRC_CHANNEL_STOPPED, ChannelStopped 1,
{ MQRC_Q_SERVICE_INTERVAL_HIGH, QServicelntervalHigh }
}s
int Count;
int TotEveMsgHandler = sizeof (TabEveMsgHandler) / sizeof
(EveMsgHandler);
for (Count = 0; Count < TotEveMsgHandler; ++Count)
if (TabEveMsgHandler[Count].Reason == Reason)
return (&TabEveMsgHandler[Count]);

return ((EveMsgHandler*) NULL);

}

/* ___ */
/* Handle events where MQCFH.Reason == MQRC_CHANNEL_STOPPED */
/* ___ */

void ChannelStopped (
MQHCONN hConn,
MQMD dEveMsg,
PMQBYTE EveMsg,
long Action
)

MQLONG FieldIds [] = {
MQIACF_REASON_QUALIFIER,
MQCACH_CHANNEL_NAME,
MQIACF_ERROR_IDENTIFIER,
MQIACF_AUX_ERROR_DATA_INT_1,

}s;

MQLONG ReasonQualifier;
MQCHAR ChannelName [MQ_CHANNEL_NAME_LENGTH + 1 1;

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQLONG Errorldentifier;
MQLONG AuxErrorDatalntl;

char Msg [MSG_LEN 1];
char cErrorldentifier [MSG_LEN 1;
int MsgSuffix;

char Cmd [CMD_LEN 1;

ReasonQualifier = 0;
ChannelName [0] = "\O0';
Errorldentifier = 0;
AuxErrorDatalntl = 0;

GetField (

/*

EveMsg,

FieldIds,

sizeof (FieldIds) / sizeof (MQLONG),
&ReasonQualifier,

ChannelName,

&Errorldentifier,

&AuxErrorDatalntl

Gets channel failure message suffix from Errorldentifier,
which has format xxxxxSSS (hexadecimal), with suffix SSS.

sprintf (cErrorIdentifier, "%1x"™, Errorldentifier);
sscanf (

/*
/*
/*
if

/*
/*
/*
if

cErrorldentifier + strlen (cErrorldentifier) - 3,
ll%dll s
&MsgSuffix

(ReasonQualifier == MQRQ_CHANNEL_STOPPED_OK)
return;

(AuxErrorDatalntl == 0x36)
return;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

31

/* Channel 1is already active - ignores. */
/~k ___ ~k/
if (ReasonQualifier == MQRQ_CHANNEL_STOPPED_ERROR &&

MsgSuffix == 514)

return;
/* ___ */
/* Message sequence error: */
/* Channel reset */
/* Channel start. */
/* ___ */

if (ReasonQualifier == MQRQ_CHANNEL_STOPPED_ERROR &&
MsgSuffix == 506) {

/* RESET CHANNEL */
sprintf (Cmd, "RESET CHANNEL(%s)"™, ChannelName);
RunCommand (hConn, Cmd);

/* START CHANNEL */
sprintf (Cmd, "START CHANNEL(%s)", ChannelName);
RunCommand (hConn, Cmd);

return;
}
/~k ___ ~k/
/* 0Other errors: */
/* Records message at the system console. */
/* ___ */

sprintf (Msg, "Channel %s with problems™, ChannelName);
/* Adds tcp/ip return code to the msg, if it exists */
if (AuxErrorDatalntl)

sprintf (Msg, "%s (tcp=%1x)", Msg, AuxErrorDatalntl);

OperatorPrintf (Action, Msg);

}

/~k ___ ~k/
/* Handle MQCFH.Reason == MQRC_Q_SERVICE_INTERVAL_HIGH events. */
/* ___ */

void QServicelntervalHigh (
MQHCONN hConn,
MQMD dEveMsg,
PMQBYTE EveMsg,
long Action)

/* Some platforms put the queue name in field QName, others */

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* put it in BaseQName, so both are extracted.

*/

/* __ */

MQLONG

FieldIds []1 = {
MQCA_Q_MGR_NAME,
MQCA_BASE_Q_NAME,

MQCA_Q_NAME
}s
MQCHAR QMgrName [MQ_Q_MGR_NAME_LENGTH + 1 1;
MQCHAR BaseQName [MQ_Q_NAME_LENGTH + 1 T;
MQCHAR QName [MQ_Q_NAME_LENGTH + 1 7;
char Msg [MSG_LEN 71;
/* __ */
/* Get fields from the event message. */
/* __ */
QMgrName [0] = '\0';
BaseQName [0] = "\0';
QName [0] = '\0';
GetField (
EveMsg,
FieldIds,
sizeof (FieldIds) / sizeof (MQLONG),
QMgrName,
BaseQName,
QName
)
/* __ */
/* Put non-blank queue name into QName. */
/* __ */
if (QName [0] == "\0")
strcpy (QName, BaseQName);
/* __ */
/* Records message at system console. */
/* __ */
sprintf (
Msg,
"Queue %s/%s is not being read",
TrimRight (QMgrName, strlen (QMgrName)),
TrimRight (QName, strlen (QName))
)
OperatorPrintf (Action, Msg);
}
/* ___ */
© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

33

/* Extracts fields from the event message, storing them in the */
/* arguments variable 1ist, according to the FieldIds vector. */

void GetField (
PMQBYTE EveMsg,
MQLONG* FieldIds,
int TotFields,
)

PMQCFH pCfh;
PMQBYTE pEventData;
PMQCFST pCfst;
PMQCFIN pCfin;
MQLONG Count;
long* pLong;
char* pChar;
void* pVoid;
va_list Arg;

/* Initializes arguments variable list */
va_start (Arg, TotFields);

/* __ */
/* Extract each FieldId from event message. */
/* __ */

for (; TotFields > 0; --TotFields, ++FieldIds) {

/* Find beginning of event data */
pCfh = (PMQCFH) EveMsg;
pEventData = EveMsg + pCfh->StruclLength;

/* __ */
/* Searches for FieldId in event structures */
/* __ */

for (Count = 0; Count < pCfh->ParameterCount; ++Count) {

/* Maps event structure */
pCfin = (PMQCFIN) pEventData;

/* Found the FieldId ! */
if (pCfin->Parameter == *Fieldlds) break;

/* Steps to next event structure */
pEventData += pCfin->StruclLength;
}

/* If the Fieldld wasn't found, removes the argument pointer
from the arguments variable 1ist and steps to the next
FieldId */

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if

}

(Count >= pCfh->ParameterCount) {
pVoid = va_arg (Arg, void*);
continue;

/* Found the FieldId: extract & store */
switch (pCfin->Type) {

case MQCFT_INTEGER:
pLong = va_arg (Arg, long*);
*pLong = pCfin->Value;
break;
case MQCFT_STRING:
pChar = va_arg (Arg, char*);
pCfst (PMQCFST) pEventData;
memmove (pChar, pCfst->String, pCfst->StringlLength);
pChar [pCfst->StringLength 1 = "\0";

break;
}

}

va_end (Arg);
}
/* ___ */
/* Runs MQSC command */
/ K o e = * /
void RunCommand (MQHCONN hConn, char* Command)
{

MQHOBJ hReplyQ;

MQOD doutQ { MQOD_DEFAULT 1};

MQOD dReplyQ = { MQOD_DEFAULT };

MQMD dOutMsg = { MQMD_DEFAULT };

MQMD dRepTyMsg = { MQMD_DEFAULT };

MQLONG oOpen;

MQLONG oClose;

MQPMO oPut = { MQPMO_DEFAULT 1};

MQGMO oGet = { MQGMO_DEFAULT 1};

MQLONG CompCode;

MQLONG Reason;

char Reply [REPLY_LEN 71;

MQLONG MsglLen;

long CmdCount;

long CmdReturn;

long CmdReason;
© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

35

36

OperatorPrintf (ACTION_EVENTUAL, "Running: %s", Command);

/~k __ ~k/
/* Opens tempdyn reply queue. */
/* __ */
strncpy (

dReplyQ.0ObjectName,
"SYSTEM.COMMAND.REPLY .MODEL",
sizeof (dReplyQ.0bjectName)

)
o0pen = MQOO_INPUT_SHARED
+ MQOO_FAIL_IF_QUIESCING;
MQOPEN (
hConn,
&dReplyaQ,
oOpen,
&hReplyQ,
&CompCode,
&Reason
)

if (CompCode != MQCC_0K) {

OperatorPrintf (
ACTION_EVENTUAL,
"MQOPEN %s: %1d",
TrimRight (dReplyQ.0bjectName, sizeof

(dReplyQ.0bjectName)),

Reason

)

return;

strncpy (
dOutQ.0ObjectName,
"SYSTEM.COMMAND.INPUT",
sizeof (dOutQ.ObjectName)

)

dOutMsg.MsgType = MQMT_REQUEST;

memmove (
dOutMsg.Format,
MQFMT_STRING,
sizeof (dOutMsg.Format)
)

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

strncpy (
dOutMsg.ReplyToQ,
dReplyQ.0bjectName,
sizeof (dOutMsg.ReplyToQ)
)
strncpy (
dOutMsg.ReplyToQMgr,
dReplyQ.0bjectQMgrName,
sizeof (dOutMsg.ReplyToQMgr)
)
oPut.Options = MQPMO_NO_SYNCPOINT
+ MQPMO_FAIL_IF_QUIESCING;
MQPUT1 (
hConn,
&doutQ,
&dOutMsg,
&oPut,
strlen (Command),
Command,
&CompCode,
&Reason

if (CompCode != MQCC_O0K) {

OperatorPrintf (
ACTION_EVENTUAL,
"MQPUT1 %s: %1d",
TrimRight (dOutQ.ObjectName, sizeof (dOutQ.ObjectName)),
Reason
)
oClose = MQCO_DELETE_PURGE;

MQCLOSE (
hConn,
&hReplyQ,
oClose,
&CompCode,
&Reason
)
return;
}
/* __ */
/* Reads all replies */
/* __ */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

37

/* Each set of replies starts with message CSQN205I, */

/* whose structure is: */
/* CSQN2051 COUNT=count, RETURN=rc, REASON=reason. */
/* __ */
memmove (

dReplyMsg.Msgld,

MQMI_NONE,

sizeof (dReplyMsg.Msgld)
)
memmove (

dReplyMsg.Correlld,

MQCI_NONE,

sizeof (dReplyMsg.Correlld)
)
oGet.Options MQGMO_NO_SYNCPOINT
MQGMO_WAIT
MQGMO_FAIL_IF_QUIESCING;

+ + 1

oGet.WaitInterval = TIME_OUT;

MQGET (
hConn,
hReplyQ,
&dReplyMsg,
&oGet,
sizeof (Reply),
Reply,
&Msglen,
&CompCode,
&Reason

if (CompCode != MQCC_0K) {

OperatorPrintf (
ACTION_EVENTUAL,
"MQGET %s: %1d",
TrimRight (dReplyQ.0ObjectName, sizeof
(dReplyQ.0ObjectName)),
Reason
)
oClose = MQCO_DELETE_PURGE;

MQCLOSE (
hConn,
&hReplyQ,
oClose,
&CompCode,
&Reason

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

)
return;

}
sscanf (
Reply, "CSQN205I COUNT=%1d, RETURN=%1x, REASON=%1x",
&CmdCount,
&CmdReturn,
&CmdReason
)
/* ReturnCode != 0 => problem processing the command */

if (CmdReturn) {

OperatorPrintf (
ACTION_EVENTUAL,
"Failed to run %s: return %1x reason %1x",
Command,
CmdReturn,
CmdReason

)

oClose = MQCO_DELETE_PURGE;

MQCLOSE (
hConn,
&hReplyQ,
oClose,
&CompCode,
&Reason
)
return;
}
/* __
/* Reads a set of replies.
/* __

/* Msg CSQN205I counts towards the msgs count, so remove it
--CmdCount;

while (CmdCount-- > 0) {

memmove (
dReplyMsg.MsglId,
MQMI_NONE,
sizeof (dReplyMsg.Msgld)
)
memmove (
dReplyMsg.Correlld,
MQCI_NONE,
sizeof (dReplyMsg.Correlld)
)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

*/

39

MQGMO_NO_SYNCPOINT
MQGMO_WAIT
MQGMO_FAIL_IF _QUIESCING;

oGet.Options

+ + |

oGet.WaitInterval = TIME_OUT;

MQGET (
hConn,
hReplyQ,
&dReplyMsg,
&oGet,
sizeof (Reply),
Reply,
&Msglen,
&CompCode,
&Reason

if (CompCode != MQCC_0K) {

OperatorPrintf (
ACTION_EVENTUAL,
"MQGET %s: %1d",
TrimRight (
dReplyQ.0ObjectName,
sizeof (dReplyQ.0ObjectName)
),
Reason
)
oClose = MQCO_DELETE_PURGE;

MQCLOSE (
hConn,
&hReplyQ,
oClose,
&CompCode,
&Reason

);

return;

}
} /* 'while' reads a set of replies */

/* Are there more sets of replies ?7? */

/* __ */
/* If there are more sets of replies, ReturnCode = 0 and */
/* Reason = 4. */
/* __ */
if (CmdReason == 4)

continue; /* Let's read the other set of replies */
else

break; /* That's all folks */

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

} /* for: Reads all replies */

/* __ */
/* Closes reply queue. */
/* __ */
oClose = MQCO_DELETE_PURGE;
MQCLOSE (
hConn,
&hReplyQ,
oClose,
&CompCode,
&Reason
)
return;
}
/* ___ */
/* printf at system console. */
/* ___ */
void OperatorPrintf (long Action, char* Fmt, ...)
{
char Msg [MSG_LEN 1;
char OperatorMsg [MSG_LEN 1;
va_list Arg;
va_start (Arg, Fmt);
vsprintf (Msg, Fmt, Arg);
va_end (Arg);
sprintf (OperatorMsg, "%s %s™, MQS_PREFIX, Msg);
exec cics write operator
text (OperatorMsg)
textlength (strlen (OperatorMsg))
action (Action)
}
/* ___ */
/* Converts C-string to Towercase */
/* ___ */
char* StrLower (char* Str)
{
for (; *Str; ++Str)
*Str = tolower (*Str);
}
/* ___ */
/* Removes trailing blanks */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

41

char* TrimRight (char* Str, int Len)
{
char* pCh;

for (pCh Str + Len - 1; pCh >= Str && *pCh == ' '; --pCh)

*(pCh+1)

|\0|;

return (Str);

Paulo Marcel Coelho Aragao (Brazl) © Xephon 2000

MQSeries coding standards and guidelines

The move by many large users from MV S to production systems on
heterogeneous platforms including Unix, OS/2, and NT has
necessitated theimplementation of reliable and secure heterogeneous
system communication. The ability to access and integrate systems
across platforms is now more critical to organizations than ever
before. Thankfully, IBM’s MQSeries has made this task relatively
simple. It's eliminated the need to connect applications directly or
make them understand underlying networking protocols.

M QSerieshandlesthenetworking calls, freeing theprogrammer from
the need to code at this level. The system’s messaging paradigm
enabl esapplicationstocommunicatesynchronoudly (conversationally)
or asynchronously. With a consistent Application Programming
Interface (API) acrossall platforms, it allowsprogrammersto bemore
productive. Once you understand the MQ API, you have the skillsto
get applications communicating on any platform supported by
MQSeries.

While MQSeries brings with it many intrinsic benefits, you must
develop and enforce standardsin order touseit effectively. I’ vefound
that, while naming standards for MQSeries objects are typically in
place before application development begins, little or no thought is

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

often given to standards or guidelines for constructing MQSeries
applicationsuntil after coding hasstarted. Thisleadstomany architects
and programmers duplicating each others work. By proactively
consolidating thiswork, building applications can be made easier, as
the groundwork is already laid. Another benefit isthat it reduces the
need to educate developers, as key concepts are documented more
concisely.

Thisarticle, which isin two parts (the second part isin next month's
issueof MQ Update), providesbackgroundinformation on messaging
models, then presents eleven standards for successful application
construction. It also explainswhy the standards arejustified and how
to use each one. Next month’sinstalment exploresten guidelinesfor
constructing MQSeries applications.

STANDARD VERSUS GUIDELINE

The difference between a standard and a guideline is that a standard
is a hard-and-fast rule that you must follow, while a guideline is a
recommendation that you should follow in most cases. If you fail to
follow a standard, negative consequences are almost certain. But if
you don’'t follow a guideline, there’s probably little or no risk to the
organization. Most organi zations allow programmersto deviatefrom
astandard only after athorough review of all theimplications. In most
cases, deviation requires permission from a senior programmer or
analyst who thoroughly understandstheimplications. For guidelines,
the good judgement of the programmers themselves is sufficient to
allow deviation — no higher-level approval isrequired.

MQSERIES MESSAGING MODELS

Knowing the common messaging models will help you understand
therequirementsfor constructing thesemodel susing M QSeries. With
this knowledge, you will see characteristics that naturally lead to
standards and guidelinesfor constructing applications. Therearetwo
basic messaging models:

 Datagram
* Request/reply.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

The datagram model, also known as ‘fire-and-forget’, is the least
complex messaging model. Init, an application builds amessage and
introducesiit to the network ssmply by putting it on aqueue. In most
cases, the application takes advantage of the ‘ once-and-once-only’
assured delivery that MQSeries provides. Hence, it needs to know
only that the receiving application will, in due course, process the
message, and doesn’t need to know when processing will take place.
Datagram messages are generally persistent, since some form of
update occurs from message creation.

The request/reply model is more complex and, consequently, its
construction requires more effort. You must consider such questions
as.

* How long should the sending application wait for areply?
» Should another request be generated if no reply isreceived?
* Will database updates occur as aresult of areply?

* Doessessionor stateinformation need to be maintained (in other
words, is this application conversational in nature)?

Answers to these questions, and many others based on business
requirements, will significantly impact application construction and
your choice of MQSeries options.

ELEVEN STANDARDS TO CONSIDER

The standardslisted below are important because they help to ensure
that MQSeries applications function predictably and are easy to
maintain. Consideration is given to MQSeries features and options
that enhance performance management, portability, scalability, and
reliability. These standards are by no means exhaustive; rather, they
address some of the typical application construction issuesthat arise
when installation begins. To determine whether a standard appliesto
your organization, ask yourself: must programmers follow it for the
application to function properly?

1 Applications must check reason and completion codes after all
MQSeriesAPI callsand take appropriate action when anon-zero

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

reason or completion code is returned.
Overview:

All MQSeries API calls return completion and reason codes
indicating the success or failure of calls.

Justification:

This ensuresthat applications are functioning according to their
design. Without checking completion and reason codes,
applicationscannot ensurethat M QSeriesmessagesare produced
or consumed correctly.

2 Applications must check the back-out count after all MQGETs
that are performed under syncpoint.

Overview:

When amessageisretrieved under syncpoint and then backed out
(explicitly or implicitly), the BackoutCount field in the message
descriptor is incremented. This indicates whether the message
was read prior to being backed out. If BackoutCount is greater
thanapre-definedthreshol d, themessageneedsspecial processing.

Justification:

Without thischeck, applications may get stuck inaninfiniteloop
of reading and backing out of messages.

3 Applications must use the FAIL IF_ QUIESCING option on
MQOPEN, MQPUT, and MQGET calls.

Overview:

The MQSeries subsystem isindependent of applicationsthat use
theservicesit provides. Itissometimesnecessary to shut it down;
whenthisoccurs, any connected applications should quiesceand
no additional applications may connect. Applications that are
connected should terminate immediately. For applicationsto be
notified of a pending shutdown, the FAIL IF QUIESCING
attribute must be specified on the appropriate MQSeries AP
cals.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

46

Justification:

Applications that do not specify the appropriate FAIL |F
QUIESCING attribute continue to run after the MQSeries
subsystem has started to quiesce. This state may persist for a
considerable time and prevent the MQSeries subsystem from
terminating. This, in turn, may compromise processing time set
asidefor maintenanceand back-up. It may ultimately benecessary
to cancel or kill MQSeries applications that don't use the
FAIL IF_QUIESCING option. If applications aren’t killed, it
increases the likelihood of data integrity problems, which are
usually costly to recover from.

Usequeue-based priority to prioritizerequests; applicationsmust
not set the priority of request messages.

Overview:

Priority is a message attribute that states the priority of the
message relative to othersin the MQSeries network. As priority
can change as new applications are introduced or existing ones
are eliminated, it's impossible for an application to hardcode a
message’s effective priority. By using queue-defined priority,
network administrators can prioritize messages by altering the
gueue' s DEFPRTY attribute.

Justification:

Controllingmessagepriority allowsgreater flexibility inmanaging
the network.

Requesting applications must not use MQOO_OUTPUT when
opening arequest queue.

Overview:

Request queues may belocal or remoteto the application making
the request. Local queues may be written to (MQPUT) or read
from (MQGET); remotequeuesmay only bewrittento. However,
requesting applications need only to put messages on the request
gueue. So, the requesting application needs to open the request
gueue only for output (MQPUT). This means it's immaterial

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

whether the queueislocal or remote, as both can be opened for
output. If a requesting application opens a request queue for
input, then the application must be local to the queue.

Justification:

This ensures that services can be moved around the MQSeries
network without impact on requesting applications.

6 Updatemessagesmust beMQPUT and MQGET under syncpoint.
Overview:

Applications can control when messages become visible to the
M QSeries network by using syncpoint options on MQPUT and
MQGET calls. When database updates have to be coordinated
with M QSeries messages, the messages must be controlled using
two M QSeries syncpoint options:

— MQPMO_SYNCPOINT
— MQGMO_SYNCPOINT.
Justification:

Using syncpoint ensures that no database updates occur when
M QSeries messages are backed out. M QSeries messages may be
backed out if thereare problemswith themessageor thedatabase.
Syncpoint options allow messages to be saved for further
processing in the event of afailure.

7 Update messages persistence attribute must be set to ‘yes'.
Overview:

M essages resulting in database updates must be logged, and the
messages themselves should survive queue manager restarts.
Only persistent messages meet these criteria

Justification:
Non-persistent messages could be lost if aqueue manager fails.

8 Applications that modify and forward messages or reply to
requests must preserve identity context information.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

10

48

Overviaw:

Every message in an MQSeries system has an identity. This
identity representstheuser who created or introduced themessage
into the MQSeries network. As messages flow through the
network, their identity must be preserved. If theoriginal message
ismodified and forwarded, or another message, such asareply,
iscreated from it, then the modified or new message should aso
be attributable to the original user through itsidentity context.

Justification:

For security and auditing, it must bepossibletotraceall messages
back to the user who originated them. Refer to the MQSeries
Application Programming Guide for more details on context
security and the Intercommunication Guide for details on the
channel attribute PUTAUT.

Update messages must not expire.
Overview:

Messages aren’'t always processed in the time expected by the
applicationsthat created them. I n an asynchronous environment,
all that can be said isthat amessage will be processed sometime
in the future, though exactly when is unknown. Because of this,
update messages should not expire, as expiration may occur
before the message is processed.

Justification:

Thisensuresno update messages are lost. Also see standard 7 on
the persistence of update messages.

The name of permanent dynamic reply queues must include a
useridor tasknamethat i spredi ctableacrossmultipleinvocations
of the same application.

Overview:

Applications that require dynamic reply queues can create
temporary or permanent versions of these queues. |n most cases,

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

the permanent queues hold recoverable messages (those that are
most likely to be persistent). This implies that the application
using the permanent reply queue must be ableto restart and open
the queue if the application abends. To facilitate this restart, the
dynamic queue name must be predictable across multiple
invocations of the application.

Justification:

This ensures that persistent replies can be processed across
multiple invocations of an application.

11 Applicationsthat usetemporary dynamic queuesfor repliesmust
ensurethat the applicationsthat handletherequestsdo not set the
persistence of their repliesto MQPER _PERS STENT.

Overviaw:

Temporary dynamicreply gueuescannot hol d persi stent messages.
Because of thisrestriction, applications that respond to requests
must know whether thequeuethat receivesthereply isatemporary
or permanent dynamic reply queue. Requesting and replying
applicationsmust coordinatethe setting of thereply’ spersistence
to ensurethat only non-persi stant messagesare put on temporary
dynamic reply queues.

Justification:

Thispreventsrepliesfromendinguponthesystem’sundeliverable
message queue.

ENFORCEMENT

Asyou can see, there are many standards that come into play when
developing MQSeries applications, and many more are possible.
Organi zationsmay defineothersbased ontheir businessrequirements.

Onequestionappliestoall organizations, however: giventhat resources
areoftenlimited, how doyou ensurethat standardsarebeingfollowed?

There are two ways to enforce standards. The first is to conduct

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

technical code reviews. This option tends to be costly, asit requires
experienced programmersto gothrough codeline-by-line. Thesecond
option isto create wrappers for MQSeriesAPI calls that application
programmers must use. You then build the organization’s standards
intothewrapper. Thismethod guaranteesthat M QSeriescallsconform
with your organization’s preferences and al so requiresacodereview
to ensure the wrapper is being used. But since the wrapper typically
simplifiesthe APl calls, codereviewstake less effort, thereby saving
your organization’sresources. Notethat awrapper will not allow your
organization to avoid code reviews completely — reviews should be
carried out whether native MQSeriesAPI calls or wrappers are used.

CONCLUSION

Standards and guidelines are essential for developing reliable and
efficient MQSeries messaging applications. They ensure that your
applications function as expected. You must be able to justify the
standards and guidelines that you choose to adopt, as programmers
tend to deviate from those that don’t make sense or offer no apparent
benefit tothemor thecodethey write. Someof thestandardspresented
inthisarticlemay make sensefor your organi zation, whileothersmay
not. Research the options and carefully choose the standards and
guidelines that reflect the goals of your organization.

| intend to discusstheissue of guidelinesin an articleto be published
in afuture issue of MQ Update.

Mark \erhiel
Candle Corporation (USA) © Candle 2000

QM definition scripts from the BSDS — a reply

The November 1999 and December 1999 editions of MQ Update
contain an article for a program that outputs a list of DEFINE
commands that can be used to recreate all the MQSeries object

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

definitions for a queue manager. However, such a program is not
needed in an MV S/ESA environment, as MQSeries for MV S/ESA
provides the same function via its CSQUTIL utility using the
MAKEDEF operand of the COMMAND function. Details of this can
be found in the MQSeries for MVSESA System Management Guide,
Sample JCL to run this utility is shown below.

SAMPLE JCL
//jobname JOB etc

/ /**
//*

/1* Generate definition statements for MQSeries objects

/1*

/ /**
//CSQUTIL EXEC PGM=CSQUTIL,REGION=4096K,PARM="qmgr"'

//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR

// DD DSN=SYS1.SCSQAUTH,DISP=SHR

//DEFINE DD DSN=your.output.dataset

//SYSPRINT DD SYSOUT=*

//CSQUCMD DD *

Khkhkkkkkhhkhkhkhkhkhkhkkhkkdhhhhhkhhkhkkkhkdhhhhhkhhkhkhkdkdhhhhhhhkhkkdkdkhhhhhhkkkkk,kkkx
*

* These DISPLAY commands are used to generate a set of DEFINE

* commands to be able to recreate MQSeries objects.
*

Khkhkhkkhkkhhhkhkhk Ak hkhkkkhdh kA A Ak hkkkkhdhhhhhkhhkkhkkddhhhhhhhkhkkdkdhhhhhhxdkkkk,k*kkx
*

DISPLAY STGCLASS(*) ALL

DISPLAY QUEUEC *) TYPE(C QLOCAL) ALL
DISPLAY QUEUE(C *) TYPE(QMODEL) ALL
DISPLAY QUEUE(C *) TYPE(QALIAS) ALL
DISPLAY QUEUE(C *) TYPE(QREMOTE) ALL
DISPLAY PROCESS(*) ALL

DISPLAY NAMELIST(*) ALL

DISPLAY CHANNEL(C *) ALL

//SYSIN DD *

COMMAND DDNAME(CSQUCMD) MAKEDEF(DEFINE)
1/

Eric Judd
Technical Consultant
Metropolitan Life (South Africa) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

MQ news

IBM, i2, and Ariba have announced an
aliance to deliver an end-to-end system for
B2B e-commerce and collaboration. The
system is to handle product integration,
global marketing, and selling of targeted
solutions. Aspart of theagreement, IBM isto
make an undisclosed equity investment in
both Aribaandi2, which, inturn, will extend
their softwaretowork withIBM’ s, including
MQSeries, WebSphere, WebSphere
Commerce Suite, and DB2, and will
optimize their software for IBM’ s servers.

Hot on the heels this announcement, IBM
announced WebSphere B2B Integrator,
which integrates businesses operational
systems with those of their trading partners.
It's built on WebSphere, MQSeries, and an
IBM XML technology called tpaML, which
isdesigned for handling contract exchange.

IBM aso announced that extensions were
added to MQSeries Workflow to support
B2B processes, and that it intends to add
more functions to WebSphere Commerce
Suite to support B2B and marketplace
commerce, including negotiation and
dynamic pricediscovery models, RFP/RFQ,
and workflow.

The first release of WebSphere B2B
Integrator will be available this summer.

For further information contact:

Ariba, 1565 Charleston Road, Mountain
View, CA 94043, USA

Tel: +1 650 930 6200

Fax: +1 650 930 6300

Web: http://www.ariba.com

Ariba United Kingdom Ltd, 1000 Great
West Road, Brentford, Middlesex TW8
9HH, UK

Tel: +44 181 261 4431
Fax: +44 181 261 4558

i2 Technologies Inc, One i2 Place, 11701
LunaRoad, Dallas, TX 75234, USA

Tel: +1 469 357 1000

Fax: +1 214 860 6060

Web: http://www.i2.com

i2 Technologies, 10th Floor, Market Square
House, St James's Street, Nottingham,
Nottinghamshire NG1 6FG, UK

Tel: +44 115 959 0880

Fax: +44 115 941 2849

* % %

New Era of Networks has enhanced its
distribution relationship with 1IBM, which
allows it to provide components of IBM’s
MQSeries Integrator. The two firms have
extended the platform coverage of MQSI
now that Version 1.1 is available on MVS
and OS/390. In addition, NEON hasworked
with IBM to port MQSI to the AS/400,
adding to existing products for AIX (and
other versions of Unix) and NT. NEON is
also to support Tivoli monitoring and
management capabilities in its integration
servers.

For further information contact:

NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA

Tel: +1 303 694 3933

Fax: +1 303 694 3885

Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK

Tel: + 44 171 329 4669

Fax:+ 44 171 329 4567

xephon

	A mail system based on JMS and MQSeries
	An event queue monitor for OS/390 – part 2
	MQSeries coding standards and guidelines
	QM definition scripts from the BSDS – a reply
	MQ news

