
© Xephon plc 2000

May 2000

11

3 A mail system based on JMS and
MQSeries

30 An event queue monitor for OS/390 –
part 2

42 MQSeries coding standards and
guidelines

50 QM definition scripts from the BSDS
– a reply

52 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

A mail system based on JMS and MQSeries

INTRODUCTION

This article describes the Java Message Service API (JMS), its
interaction with JNDI (Java Naming and Directory Interface), and its
use in conjunction with MQSeries Support Pack MA88. An example
application is provided that demonstrates many of the point-to-point
messaging features of the JMS.

WHAT IS JMS?

The Java platform, including its standard extensions, provides a
wealth of building blocks, from basic networking to dynamic service
location and distributed transaction services. Using these components,
it’s possible to construct sophisticated enterprise applications. The
Java Message Service’s purpose is to act as a model for an enterprise-
quality messaging system used by Java-based clients. JMS thus
specifies many of the features found in established message-oriented
middleware products, even though its stated aim is not to be a
substitute for the collection of features found in these products, but to
provide an appropriate set of capabilities with which to implement
sophisticated enterprise applications.

JMS encompasses both traditional point-to-point messaging and the
new publish/subscribe model. It defines a set of Java interfaces and,
as such, is not a product in its own right – it requires implementation
in a program. Although it’s possible to create a pure Java application
that uses nothing but JMS for messaging, existing messaging
middleware can easily be used as the basis for a JMS infrastructure,
where the JMS layer interacts with an underlying messaging system
either through JNI (Java Native Interface) methods or across the
network. This article concentrates on using JMS with MQSeries for
point-to-point messaging.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

STRUCTURE OF JMS

JMS primitives
JMS defines a number of object types that model the primitive
elements of a messaging system. The most fundamental of them
should be familiar to MQSeries users:

• A Message is the fundamental unit of data exchange between
applications. Sub-types of Message include messages with
particular types of content, such as TextMessage, BytesMessage,
and ObjectMessage.

• A Destination is a store to which messages are addressed and
from which they can be retrieved. A Queue is a sub-type of
Destination.

• A Connection is an application’s handle to the JMS provider, and
a Session is a more limited context derived from a Connection.

• A Provider is the implementation that provides JMS services to
clients.

When applications send messages, they interact with queues through
MessageProducers, and when they receive messages, they interact
through MessageConsumers. A Connection to a JMS provider is
obtained from a ConnectionFactory. An interesting feature of JMS is
the way that a factory is located by a client application.

JMS does not define an addressing scheme. The address of a Destination
is effectively determined either by the naming scheme under which it
is stored in the JNDI or by the provider-specific mechanism through
which the ConnectionFactory and Destination objects are directly
instantiated.

JMS-administered objects and JNDI

Although JMS is wholly dependent on the underlying messaging
system, it is intended that JMS clients should require no direct
knowledge of the messaging system’s implementation-specific identity
or properties. A JMS client’s connection to a provider of JMS services

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

and its access to Destination objects is obtained through JMS-
administered objects, which are, in turn, generally obtained from a
look-up service via the JNDI.

The JNDI, like JMS itself, is an abstract definition of a look-up service
for Java clients (not necessarily JMS clients – the JNDI is independent
of JMS). Its function is to return a reference to a Java object from a
name-keyed repository to a client. In common with JMS, JNDI uses
service providers to provide a common interface to various underlying
look-up service implementations. The two JNDI providers that are
most likely to be used in conjunction with JMS use an LDAP directory
and a filesystem store.

Instances of JMS-administered objects – ConnectionFactory and
Destination – are created from what are effectively templates stored
in the look-up service repository. The repository’s records contain
provider-specific attributes, including the Java class name from
which to instantiate actual objects. JMS providers are expected to
provide administration tools to create and maintain the administered
object definitions (the JMSAdmin command-line tool is provided in
the MQSeries JMS package).

Messages and message properties

Unlike MQSeries messages, JMS messages are inherently typed. JMS
provides the structured message types MapMessage, ObjectMessage,
and StreamMessage, which are sub-types of Message, in addition to
the TextMessage and BytesMessage types. A MapMessage contains a
set of randomly-accessible named fields, an ObjectMessage can be
used to hold Java objects (a single container object can contain other
objects in the message), and a StreamMessage contains a stream of
Java data elements of primitive type (that is, simple numeric and
string types). The TextMessage type is expected to be widely used for
XML message data. A JMS provider handling messages originating
from non-JMS sources is expected to handle these messages using the
most appropriate JMS message type.

In addition to their content, JMS messages also have a header that
contains a set of control fields. A small set of JMS-defined fields (or

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

properties) are present in every message, and provider- and application-
defined properties can be added to them. Properties can be simple
numeric types and strings. A powerful feature of JMS is its ability to
filter messages using selectors, where messages are retrieved
selectively based on field values using SQL expressions.

JMS client operation

JMS specifies the following steps for setting up a typical JMS client:

• Use JNDI to locate a ConnectionFactory object

• Use JNDI to find one or more Destination objects

• Use the ConnectionFactory to create a JMS Connection

• Use the Connection to create one or more Sessions

• Use a Session and Destinations to create MessageProducers and
MessageConsumers, as required.

Once the message producers and consumers that are required are
created, the client is then in a position to begin sending and receiving
messages.

Security
JMS does not define a security model – JMS providers are expected
to implement their own security schemes. Authentication may be
performed when a Connection is obtained from a ConnectionFactory.

Transactional support
JMS Sessions can support transactions, though how this is done
depends on the abilities of the provider. The choices are either to use
the provider’s own transactional support by calling methods in the
XASession class or to use JTA’s (Java Transaction API) transactional
support by calling methods in the Session class.

RELATIONSHIP AND MAPPING OF JMS TO MQSERIES

For those familiar with MQSeries, there is a conveniently

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

straightforward mapping between most JMS features and MQSeries
API features. Any awkwardness is more to do with the fact that MQI
is procedural and JMS object-oriented than with differences between
the underlying design of the two APIs. (A comparison with the
MQSeries Java classes is easier to draw but perhaps not so useful.)
Furthermore, the MQSeries JMS provider uses the MQSeries Java
classes in its implementation. A comparison of MQSeries and JMS is
shown in the following tables.

Objects and types:
MQSeries object or type JMS object or property

Queue manager ConnectionFactory

Queue Destination or Queue

MQOD Administered object (ConnectionFactory or
Destination)

MQHCONN Connection or Session

MQHOBJ MessageProducer, MessageConsumer, and
their subclasses

MQGMO Attributes of Session or MessageConsumer,
arguments of MessageConsumer’s methods

MQPMO Attributes of Session or MessageProducer,
arguments of MessageProducer’s methods

MQMD and other header types Attributes of Message and its subclasses

Functions and methods
MQSeries function JMS equivalent

MQCONN The acquisition or instantiation of a
ConnectionFactory, Connection, and Session

MQOPEN Session methods that create instances of
MessageProducer and MessageConsumer

MQPUT/MQPUT1 MessageProducer send methods

MQGET MessageConsumer receive methods

MQCMIT Session commit method

MQBACK Session roll-back method

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQCLOSE MessageProducer’s or MessageConsumer’s close methods

MQDISC Connection’s close method

MQINQ/MQSET Provider-specific methods of administered objects

Message properties
MQMD field JMS message property Set in JMS by:

MsgType JMS_IBM_MsgType IBM JMS provider

Expiry JMSExpiration Send method

Format JMS_IBM_Format IBM JMS provider

Priority JMSPriority Send method

Persistence JMSDeliveryMode Send method

MsgId JMSMessageID Send method

CorrelId JMSCorrelationID Send method

BackoutCount JMSRedelivered/JMSXDeliveryCount Provider

UserIdentifier JMSXUserID Provider

PutApplType JMS_IBM_PutApplType IBM JMS provider

PutApplName JMSXAppID Provider

PutDate/PutTime JMSTimestamp Provider

GroupId JMSXGroupID Client

MsgSeqNumber JMSXGroupSeq Client

JMS messages also contain a record of their destination, storing the
destination in the JMSDestination property.

USING JMS WITH MQSERIES: AN EXAMPLE APPLICATION

About the example

Here we provide an example JMS application, JMSMail, which is a
simple mail system with a user interface loosely based on the simple
mail client found on many Unix systems. The application demonstrates
the fundamental features of JMS’s point-to-point messaging, including:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

• The use of JNDI to obtain references to administered objects

• Connection and session creation

• The use of message producers and consumers

• Message properties and selectors.

Pre-requisites and environment

The MQSeries JMS provider classes are supplied in the MQSeries
MA88 support pack, which is available for free download from the
IBM MQSeries for Windows NT, AIX, HP-UX, and Solaris Web sites.
MQSeries 5.1 and JDK 1.1.6 or later are required (the requirement is
JDK 1.1.7 or later on HP-UX). The MQSeries 5.1.1 Java classes,
which are also required, are supplied in the support pack. The
description of the example application that follows assumes that these
components have been installed.

The example code has been tested and used successfully on two
platforms:

• AIX 4.1.5 with MQSeries 5.0 (this worked despite the stated
requirement for MQSeries 5.1) and JDK 1.1.6

• Microsoft Windows NT 4.0 with MQSeries 5.1 and JDK 1.2.2.

Configuring the MQSeries JMS environment for use
There are three basic steps required to set up the environment to run
MQSeries JMS applications:

• The classpath parameter must include classes in the MQSeries,
JMS, and JNDI archives.

• To enable JNDI to look up JMS-administered objects, a JNDI-
accessible repository must be configured and populated with one
or more ConnectionFactory and Destination entries.

• Any MQSeries objects that are referred to by JMS-administered
object definitions must have definitions in MQSeries and be
available.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Setting the classpath

To run any MQSeries JMS program, it is necessary that the classes in
the following MA88 .jar archives are accessible via classpath (this is
in addition to the base JDK classes):

• com.ibm.mq.jar

• com.ibm.mqbind.jar

• com.ibm.mqjms.jar

• jms.jar

• jndi.jar

• fscontext.jar

• ldap.jar

• providerutil.jar.

These archives are located in subdirectory java/lib (or java\lib) of the
MQSeries MA88 installation.

Defining JMS-administered objects

JMS-administered object definitions are created using the JMSAdmin
command-line administration tool, which must first be configured by
editing the JMSAdmin.config configuration file. Two entries in this
file should be edited: INITIAL_CONTEXT, which specifies the JNDI
service provider’s class name and determines the mechanism used to
access the repository, and PROVIDER_URL, which is the URL of the
repository.

The easiest type of repository to get up and running is a filesystem-
based repository; the provider class name of this type of repository is
com.sun.jndi.fscontext.RefFSContextFactory and the provider URL
is a file-based URL. As an example, the following entries can be used:

INITIAL_CONTEXT=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/usr/mqm/java/directory

The JMSAdmin tool and the properties file are found in the java/bin
(or java\bin) sub-directory of the MQSeries MA88 installation. To

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

run JMSMail, we need definitions for:

• A queue connection factory

• One or more destinations corresponding to mail system users’
mailboxes.

To create a queue connection factory called jmsmail, which corresponds
to the local queue manager LYCHEE.QM, and destinations chris and
bob, which correspond to MQSeries queues named JMSMAIL.CHRIS
and JMSMAIL.BOB respectively, you would issue the following
JMSAdmin commands (‘InitCtx>’ is the prompt):

InitCtx> define qcf(JMSMAIL) qmanager(LYCHEE.QM)
InitCtx> define q(chris) queue(JMSMAIL.CHRIS)
InitCtx> define q(bob) queue(JMSMAIL.BOB)

Here, the queue’s connection factory definition refers to a local queue
manager by name, and this results in the use of MQSeries Java
bindings. Alternatively, a queue connection factory can be defined as
an MQSeries client connection as follows:

InitCtx> define qcf(JMSMAIL) hostname(lychee) port(1414)
channel(CLIENT) + transport(client)

The transport type client is required in this case to indicate that this
should be a client connection. For client connections, an MQSeries
channel of type SVRCONN must be defined on the target queue
manager and either an inetd entry (Unix) or active listener must exist
on the specified port of the target host.

Creating MQSeries definitions
Finally, the real MQSeries local queues JMSMAIL.CHRIS and
JMSMAIL.BOB must be defined on the queue manager LYCHEE.QM.

Invocation scripts
Because of the environmental pre-requisites for running a JNDI/JMS
application, it’s often convenient to create a shell script or batch file
to invoke the application with the correct configuration parameters. A
simple Korn shell script jmsmail (for Unix environments) to invoke
JMSMail would look like this:

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

JMSMAIL
#!/bin/ksh

JMS_HOME=/usr/mqm/java
JMS_LIB=$JMS_HOME/lib
JMS_CLASSPATH=/usr/jdk_base/lib/classes.zip:\
$JMS_LIB:\
$JMS_LIB/com.ibm.mqjms.jar:\
$JMS_LIB/jms.jar:\
$JMS_LIB/jndi.jar:\
$JMS_LIB/fscontext.jar:\
$JMS_LIB/ldap.jar:\
$JMS_LIB/providerutil.jar:\
$JMS_LIB/com.ibm.mq.jar:\
$JMS_LIB/com.ibm.mqbind.jar:.
FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
REPOSITORY=file:$JMS_HOME/directory

echo Starting JMSMail...

java -classpath $JMS_CLASSPATH \
-Djava.naming.factory.initial=$FACTORY \
-Djava.naming.provider.url=$REPOSITORY \
JMSMail $@

The equivalent Windows batch file, jmsmail.bat, is shown below.
Note the use of the continuation character, ‘➤ ’, to indicate a formatting
line break that’s not present in the original code.

JMSMAIL.BAT

@echo off

SET JMS_HOME=\MQSeries\java
SET JMS_LIB=%JMS_HOME%\lib
SET JMS_CLASSPATH=%JMS_LIB%;%JMS_LIB%\com.ibm.mqjms.jar;
➤ %JMS_LIB%\jms.jar;%JM S_LIB%\jndi.jar;%JMS_LIB%\fscontext.jar;
➤ %JMS_LIB%\ldap.jar;%JMS_LIB%\prov iderutil.jar;
➤ %JMS_LIB%\com.ibm.mq.jar;%JMS_LIB%\com.ibm.mqbind.jar;.
SET FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
SET REPOSITORY=file:/MQSeries/mqm/java/directory

echo Starting JMSMail...

java -classpath %JMS_CLASSPATH% -Djava.naming.factory.initial=
➤ %FACTORY% Djava.naming.provider.url=%REPOSITORY% JMSMail
➤ %1 %2 %3 %4 %5

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

The JMSMail code

This section discusses the code of the sample application. For clarity,
we refer to the code using line numbers (the entire source code is listed
at the end of the article, including line numbers). However, remember
to strip out line numbers before compiling the code.

The JMSMail application is designed as a single class, JMSMail (the
class definition begins at line 11), which implements two JMS listener
interfaces. An instance of JMSMail maintains one JMS provider
connection and one session, which is used both for sending and
receiving messages. The mailbox queue is where received messages
are retrieved. A hash table (line 22) is used to build a map of message
indices to message identifiers, which is then used for selecting
specific messages, while the BufferedReader wrapper (line 23),
which wraps the standard input stream, allows us to use the readLine
method to fetch user input a line at a time. The javax.naming and
javax.jms import statements (lines 3 and 4) allow us to refer to the
JNDI and JMS classes respectively.

The main method begins at line 35 and ends at line 97. It first initializes
the JNDI context using the Java system properties (line 41), and then
instantiates an object of the JMSMail class (line 48). The JMSMail
instance has a user name associated with it that is taken either from the
jmsmail.user.name property (if defined) or the user’s login name.

What happens next depends on whether any addressee names were
included in the command line – if any were, the application runs in
‘send mode’, calling the composeMessage method (line 55) to build
a JMS message from the user’s input and attempting to send it to each
addressee in turn. If no command line arguments were supplied, the
application runs in ‘receive mode’, responding to a small set of
commands that are used to view and manipulate received messages.

When displaying JMSExceptions, it’s useful to see the underlying
exception (if present), as this may give a direct insight into the
underlying provider problem. This is accessed with the
getLinkedException method in JMSException (lines 84 and 85).

The getConnection (lines 103 to 110) and getDestination (lines 116 to
120) methods are ‘convenience’ methods that use the JNDI’s context

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

look-up and return references to administered objects.

The JMSMail constructor (lines 126 to 140) establishes a connection
to the JMS provider. It uses the connection to open both a session and
the mailbox queue corresponding to the user. Although the application
only accesses the mailbox queue in receive mode, the composeMessage
method also needs a reference to the queue to set the JMSReplyTo
property in messages sent.

The compose method (lines 148 to 191) creates a JMS TextMessage
instance from text entered on the command line and sets the
JMSReplyTo message property to refer to the sender’s mailbox. Two
further application-defined properties – from and subject – are set.
This method is also used by the r (reply) command in receive mode.

The sendMessage method (lines 197 to 217) obtains a Queue reference
using the addressee’s name and then uses a QueueSender to send the
message. The QueueSender is explicitly closed (line 216) after it’s
used so as to free any resources allocated to it by the provider.

In receive mode, the application keeps a record of message identifiers
of listed messages (see lines 224 to 238, which shows the method used
to find the JMSMessageID of a message in the mailbox). These are
stored in the hash table table and are accessed by the receive commands
that are used to process individual messages. The hash table is
populated by the listMessages method, which returns a ‘newline’-
delimited string describing the messages in the mailbox.

A QueueBrowser is used in the listMessages method (lines 246 to 280)
to provide a snapshot of the messages in a queue. Each line in the string
returned contains an index number, starting with index number 1. The
sender is identified by the application-defined from property, while
the timestamp is taken from the message’s JMSTimestamp property
and the subject is read from the application-defined subject property.
As with message producers and consumers, the browser is explicitly
closed (line 277) after use in order to free any resources allocated to
it by the provider. For convenience, the message count is appended as
the last line of the returned string.

To obtain a browse copy of an individual message (lines 287 to 307),
we again use a QueueBrowser. We could use a selector to limit the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

messages available from the browser to just ones with the correct
message ID (as in the receiveMessage method in lines 314 to 325),
though we would still have to use the browser’s getEnumeration
method to access the final message. In this case, it requires no more
work to look for the message explicitly without a selector.

To delete a message, we need to use a QueueReceiver – a subclass of
MessageConsumer. The selector used is a filter that ensures that only
messages matching the specified message identifier are returned.
When we call the method to receive the message in line 320, we know
that the message is already on the queue, so we can use the queue
receiver’s receiveNoWait method. The MessageConsumer class also
defines receive methods that block until a suitable message arrives.

The JMSMail application implements the JMS MessageListener
interface, which defines one method, onMessage (lines 333 to 350).
A MessageListener is associated with a MessageConsumer, and the
application registers itself as a listener when it enters receive mode in
the run method (lines 371 to 461). The invocation of the onMessage
method serves as notification that a message has arrived, though the
message itself is passed on directly, and so is removed from the queue
by the MessageConsumer before the method is called. This is
unfortunate from the point of view of the JMSMail application, as the
new mail message is effectively retrieved as soon as it arrives and is,
therefore, not available in the mailbox queue. However, this method
serves to illustrate the way a MessageListener works.

The JMSMail application also implements the JMS ExceptionListener
interface and registers itself as an exception listener in its constructor.
The onException method (lines 358 to 363) provides a way for JMS
to notify the application if a problem occurs with the JMS environment
independently of the application’s actions. JMS exceptions raised
directly as a result of the application’s invocation of JMS methods are
caught in the normal way.

The run method (lines 371 to 461) executes a set of simple actions on
the user’s JMSMail mailbox. The commands available to the user are:

n Show message number n (sets index to n)

l List messages (resets index)

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

d Delete message at current index

r Reply to message at current index

s Send new message

q Quit.

The message list produced by the l command shows index numbers in
the left-hand column. The message index maintained is the number of
the last message displayed; the d and r commands act on the message
identified by this index. Hitting the Enter key at a blank line displays
the message at the current index and increments the index by one.

The first thing the JMSMail application does in the run method is set
up a QueueReceiver and associate itself with it as a MessageListener.
This requires a new Session, as a single session cannot support
synchronous receive operations (which are performed in the
receiveMessage method) and asynchronous message delivery using a
message listener at the same time. The QueueReceiver is established
with a selector based on the current date and time. This ensures that
only newly-arrived messages are passed to the listener. It is necessary
to cast the time value to type int (line 374) to avoid a
NumberFormatException in the SQL parser, which does not accept
values of type long.

Before a Connection can deliver messages to consumers, its start
method must be called (line 385). The command loop that follows
(lines 387 to 457) then processes one command per iteration until
either the user quits by issuing the q command or a JMSException is
thrown.

The run method uses the help method (lines 467 to 47), which returns
a list of available commands when it’s invoked.

The disconnect method (lines 482 to 486) releases the connection to
the JMS provider.

Finally, the last line of the code, line 487, is a closing brace that
indicates the end of the class enclosure.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

RUNNING THE JMSMAIL APPLICATION

Using JMSMail to send a message
To send a message, invoke the jmsmail script or the jmsmail.bat batch
file (both were described above) with the name of the destination user
as a parameter. Pre-requisites for this to work are that mailboxes
belonging to both the sender and the recipient must exist as JNDI
entries and MQSeries queues, that a JNDI entry for the queue manager
must already be defined, and that the queue manager must be available.
A command sequence for sending a message is shown below.

$ jmsmail chris
Starting JMSMail...
Subject: This is JMS
Chris, this is a JMS message!
.
$

Using JMSMail in receive mode
To handle JMSMail messages received, invoke the jmsmail script or
batch file with no arguments. For instance, as user chris, my response
to the above message being sent would be:

$ jmsmail
Starting JMSMail...
1 chris Mon Mar 06 18:02:12 GMT 2000 This is JMS
1 message.
?

To see the message, press Enter or type 1 (the message index). The
message is shown, displaying its properties and the message text:

JMS Message class: jms_text
 JMSType: null
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 JMSMessageID: ID:414d51204c59434845452e514d20202038c3de6e00
 ➤ 003013
 JMSTimestamp: 952365732600
 JMSCorrelationID:null
 JMSDestination: queue:///JMSMAIL.CHRIS
 JMSReplyTo: queue:///JMSMAIL.CHRIS
 JMSRedelivered: false
 JMS_IBM_Format:MQSTR

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 JMS_IBM_PutApplType:6
 JMSXDeliveryCount:1
 JMS_IBM_MsgType:1
 subject:This is JMS
 from:chris
 JMSXUserID:chris
 JMSXAppID:
Chris, this is a JMS message!

?

For a list of other valid commands, type help (or anything that’s not
a valid command).

ACCESSING MQSERIES ADMINISTERED OBJECTS WITHOUT JNDI

Our sample application happens to be provider-independent, as the
JNDI provides access to the JMS provider without any reference to its
MQSeries-specific properties. However, in cases where a JNDI
repository is not available, it’s possible to directly instantiate both
ConnectionFactory and Destination objects that are provider-specific.

To make our sample application use MQSeries-specific administered
objects, we’d need to make the following three changes to the code:

1 Add an import statement that allows us to refer to classes in the
MQSeries JMS package:

import com.ibm.mq.jms.*;

2 Replace our getConnection method with the following:

static QueueConnection getConnection (String name)
 throws JMSException
{
 MQQueueConnectionFactory factory =
 new MQQueueConnectionFactory ();

 factory.setQueueManager (name);

 return factory.createQueueConnection ();
}

3 Replace the getDestination method with the following:

static Queue getDestination (String name) throws JMSException
{

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

 return session.createQueue (name);
}

Note that these replacement methods do not throw an exception of
type NamingException, as no JNDI methods are invoked.

The JNDI’s value in de-coupling JMS object names from real object
names becomes apparent: by making the above changes, we now need
to match the factory and destination names used by JMSMail with real
MQSeries objects. That is, we need to:

• Either define a queue manager called jmsmail or use the
jmsmail.server.name property to refer to an existing queue manager

• Define MQSeries queues or queue aliases matching user names
used by JMSMail.

For completeness, as all JNDI-related code is now removed from the
program, the InitialContext need not be initialized.

RESOURCES

• JMS information:

http://java.sun.com/products/jms/index.html

• JNDI information:

http://java.sun.com/products/jndi/index.html

• MQSeries JMS implementation (support pack MA88):

http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html

• MQSeries home page:

http://www.ibm.com/software/ts/mqseries/

JMSMAIL.JAVA
 1 import java.io.*;
 2 import java.util.*;
 3 import javax.naming.*;
 4 import javax.jms.*;
 5
 6 /**

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 7 * JMS sample application modelling a simple mail system. The
 8 * user interface is loosely based on Unix's common mail client.
 9 */
 10
 11 public class JMSMail implements MessageListener, ExceptionListener
 12 {
 13 final static String NEWLINE =
 14 File.separatorChar == '\\' ? "\r\n" : "\n";
 15
 16 static InitialContext context;
 17
 18 String username;
 19 QueueConnection connection;
 20 QueueSession session;
 21 Queue mailbox;
 22 Hashtable table = new Hashtable ();
 23 BufferedReader input = new BufferedReader
 24 (new InputStreamReader (System.in));
 25
 26 /**
 27 * Main application's entry point. If any command-line arguments
 28 * are supplied, the application runs in send mode, so that a
 29 * message is composed and sent to each of the specified
 30 * addressees in turn. With no command-line arguments, the
 31 * application runs in receive mode and manipulates received
 32 * messages in the user's mailbox using simple commands.
 33 */
 34
 35 public static void main (String [] args)
 36 {
 37 try
 38 {
 39 // Set up the JNDI context.
 40
 41 context = new InitialContext (System.getProperties ());
 42
 43 // The username identifies the 'from' address to use when
 44 // sending and the mailbox (queue) to use when receiving.
 45
 46 String username = System.getProperty ("jmsmail.user.name",
 47 System.getProperty ("user.name"));
 48 JMSMail app = new JMSMail (username);
 49
 50 if (args.length > 0)
 51 {
 52 // Compose a message and send it to each addressee
 53 // specified on the command line.
 54
 55 Message message = app.composeMessage (null);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

 56
 57 for (int i = 0; i < args.length; i++)
 58 {
 59 try
 60 {
 61 app.sendMessage (message, args [i]);
 62 }
 63
 64 catch (NamingException ne)
 65 {
 66 System.err.println (args [i] +
 67 ": JNDI lookup error: " + ne);
 68 }
 69 }
 70 }
 71 else
 72 {
 73 // Run in receive mode operating on messages in the
 74 // user's mailbox.
 75
 76 app.run ();
 77 }
 78
 79 app.disconnect ();
 80 }
 81
 82 catch (JMSException jmse)
 83 {
 84 System.err.println ("JMS error: " + jmse +
 85 " (" + jmse.getLinkedException () + ')');
 86 }
 87
 88 catch (NamingException ne)
 89 {
 90 System.err.println ("Invalid destination: " + ne);
 91 }
 92
 93 catch (IOException ioe)
 94 {
 95 System.err.println ("Error reading input: " + ioe);
 96 }
 97 }
 98
 99 /**
100 * Returns a connection using a named ConnectionFactory.
101 */
102
103 static QueueConnection getConnection (String name) throws
104 JMSException, NamingException

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

105 {
106 QueueConnectionFactory factory =
107 (QueueConnectionFactory) context.lookup (name);
108
109 return factory.createQueueConnection ();
110 }
111
112 /**
113 * Returns a reference to a named queue.
114 */
115
116 static Queue getDestination (String name) throws
117 JMSException, NamingException
118 {
119 return (Queue) context.lookup (name);
120 }
121
122 /**
123 * Constructor for a JMSMail client (sender or receiver).
124 */
125
126 public JMSMail (String username) throws
127 JMSException, NamingException
128 {
129 this.username = username;
130
131 // We normally use ConnectionFactory 'jmsmail', though this
132 // can be overridden using the jmsmail.server.name property.
133
134 connection = getConnection (System.getProperty
135 ("jmsmail.server.name", "jmsmail"));
136 connection.setExceptionListener (this);
137 session = connection.createQueueSession
138 (false, Session.AUTO_ACKNOWLEDGE);
139 mailbox = getDestination (username);
140 }
141
142 /**
143 * Compose a JMS message from the command line. Text entry is
144 * terminated either by an EOF (CTRL-D) or a line containing
145 * only a period ('.').
146 */
147
148 public Message composeMessage (String subject) throws
149 IOException, JMSException
150 {
151 TextMessage message = session.createTextMessage ();
152 StringBuffer buffer = new StringBuffer ();
153 String line;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

154
155 try
156 {
157 System.out.print ("Subject: ");
158
159 if (subject == null)
160 {
161 subject = input.readLine ();
162 }
163 else
164 {
165 System.out.println (subject);
166 }
167
168 while ((line = input.readLine ()) != null &&
169 !line.equals ("."))
170 {
171 buffer.append (line);
172 buffer.append (NEWLINE);
173 }
174 }
175
176 catch (EOFException eofe)
177 {
178 ;
179 }
180
181 message.setText (new String (buffer));
182
183 // Set message properties; 'from' and 'subject' are
184 // application-defined.
185
186 message.setJMSReplyTo (mailbox);
187 message.setStringProperty ("from", username);
188 message.setStringProperty ("subject", subject);
189
190 return message;
191 }
192
193 /**
194 * Send a JMS message to a named destination.
195 */
196
197 public void sendMessage (Message message, String destination)
198 throws JMSException, NamingException
199 {
200 Queue queue;
201 QueueSender sender;
202

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

203 try
204 {
205 queue = getDestination (destination);
206 }
207
208 catch (NullPointerException npe)
209 {
210 throw new NamingException ("Invalid destination: " +
211 destination);
212 }
213
214 sender = session.createSender (queue);
215 sender.send (message);
216 sender.close ();
217 }
218
219 /**
220 * Finds the JMSMessageID property of the message in the
221 * mailbox with the specified index (in receive mode).
222 */
223
224 String getMessageID (int index) throws
225 ArrayIndexOutOfBoundsException
226 {
227 String messageID = (String) table.get (new Integer (index));
228
229 if (messageID == null)
230 {
231 throw new ArrayIndexOutOfBoundsException
232 ("Invalid message number " + index + '.');
233 }
234 else
235 {
236 return messageID;
237 }
238 }
239
240 /**
241 * Return a string listing the sender, timestamp, and subject
242 * along with the index of the messages in the mailbox
243 * (receive mode).
244 */
245
246 public String listMessages () throws JMSException
247 {
248 QueueBrowser browser = session.createBrowser (mailbox);
249 Enumeration e = browser.getEnumeration ();
250 StringBuffer sb = new StringBuffer ();
251 int i = 0;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

252
253 synchronized (table)
254 {
255 table.clear ();
256
257 while (e.hasMoreElements ())
258 {
259 Message message = (Message) e.nextElement ();
260 String subject = message.getStringProperty ("subject");
261
262 sb.append (++i);
263 sb.append (" ");
264 sb.append (message.getStringProperty ("from"));
265 sb.append (" ");
266 sb.append (new Date (message.getJMSTimestamp ()));
267 sb.append (" ");
268 sb.append (subject == null ? "" : subject);
269 sb.append (NEWLINE);
270
271 table.put (new Integer (i), message.getJMSMessageID ());
272 }
273 }
274
275 sb.append (i);
276 sb.append (i == 1 ? " message." : " messages.");
277 browser.close ();
278
279 return new String (sb);
280 }
281
282 /**
283 * Returns the message with the specified JMSMessageID from the
284 * mailbox (receive mode).
285 */
286
287 public Message browseMessage (String messageID) throws
288 JMSException
289 {
290 QueueBrowser browser = session.createBrowser (mailbox);
291 Enumeration e = browser.getEnumeration ();
292 Message message = null;
293
294 while (e.hasMoreElements () && message == null)
295 {
296 message = (Message) e.nextElement ();
297
298 if (!message.getJMSMessageID ().equals (messageID))
299 {
300 message = null;

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

301 }
302 }
303
304 browser.close ();
305
306 return message;
307 }
308
309 /**
310 * Returns the message with the specified JMSMessageId from
311 * the mailbox, deleting it from the queue.
312 */
313
314 public Message receiveMessage (String messageID) throws
315 JMSException
316 {
317 String selector = "JMSMessageID='" + messageID + '\'';
318 QueueReceiver receiver = session.createReceiver
319 (mailbox, selector);
320 Message message = receiver.receiveNoWait ();
321
322 receiver.close ();
323
324 return message;
325 }
326
327 /**
328 * This MessageListener method is called when a new message is
329 * received. The message is passed directly, and is not retained
330 * in the mailbox queue.
331 */
332
333 public void onMessage (Message message)
334 {
335 System.out.print ((char) 0x07); // beep
336
337 try
338 {
339 System.out.println ("\nNew mail from " +
340 message.getStringProperty ("from").trim () + ": ");
341 }
342
343 catch (JMSException jmse)
344 {
345 System.out.println ("\nNew mail: ");
346 }
347
348 System.out.println (message);
349 System.out.print ("? ");

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

350 }
351
352 /**
353 * This ExceptionListener method is called if a problem occurs
354 * with the connection to the JMS service provider while we're
355 * not looking.
356 */
357
358 public void onException (JMSException jmse)
359 {
360 System.err.println ("JMS connection error: " + jmse +
361 " (" + jmse.getLinkedException () + ')');
362 System.exit (-1);
363 }
364
365 /**
366 * Runs this JMSMail instance as a receiver, reading mailbox
367 * commands from the command line. For a list of commands,
368 * see the help method.
369 */
370
371 public void run () throws JMSException, IOException
372 {
373 String selector = "JMSTimestamp > " +
374 (int) System.currentTimeMillis ();
375 QueueSession listenerSession = connection.createQueueSession
376 (false, Session.AUTO_ACKNOWLEDGE);
377 QueueReceiver listenerReceiver =
378 listenerSession.createReceiver (mailbox, selector);
379 String command;
380 int index = 0;
381 boolean quit = false;
382
383 listenerReceiver.setMessageListener (this);
384 System.out.println (listMessages ());
385 connection.start ();
386
387 do
388 {
389 System.out.print ("? ");
390
391 try
392 {
393 if ((command = input.readLine ().trim ()).equals (""))
394 {
395 System.out.println
396 (browseMessage (getMessageID (++index)));
397 }
398 else if (command.equals ("l"))

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

399 {
400 System.out.println (listMessages ());
401 index = 0;
402 }
403 else if (command.equals ("d"))
404 {
405 receiveMessage (getMessageID (index));
406 System.out.println
407 ("Message " + index++ + " deleted.");
408 }
409 else if (command.equals ("r"))
410 {
411 Message message = browseMessage (getMessageID
 ➤ (index));
412
413 sendMessage (composeMessage ("Re: " +
414 message.getStringProperty ("subject")),
415 message.getStringProperty ("from"));
416 System.out.println ("Reply sent.");
417 }
418 else if (command.equals ("s"))
419 {
420 System.out.print ("To: ");
421
422 String to = input.readLine ();
423
424 sendMessage (composeMessage (null), to);
425 System.out.println ("Message sent.");
426 }
427 else if (command.equals ("q"))
428 {
429 quit = true;
430 }
431 else
432 {
433 try
434 {
435 index = Integer.parseInt (command);
436 System.out.println
437 (browseMessage (getMessageID (index)));
438 }
439
440 catch (NumberFormatException nfe)
441 {
442 System.out.println (help ());
443 }
444 }
445 }
446

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

447 catch (ArrayIndexOutOfBoundsException abe)
448 {
449 System.out.println (abe.getMessage ());
450 }
451
452 catch (NamingException ne)
453 {
454 System.out.println ("Invalid destination");
455 }
456 }
457 while (!quit);
458
459 listenerReceiver.close ();
460 listenerSession.close ();
461 }
462
463 /**
464 * Displays a list of valid commands.
465 */
466
467 public String help ()
468 {
469 return "Commands: " +
470 "\n\t<n>: show message number n (sets index to n)" +
471 "\n\tl: list messages (resets index)" +
472 "\n\td: delete message at current index" +
473 "\n\tr: reply to message at current index" +
474 "\n\ts: send new message" +
475 "\n\tq: quit";
476 }
477
478 /**
479 * Terminates the connection to the JMS service provider.
480 */
481
482 public void disconnect () throws JMSException
483 {
484 session.close ();
485 connection.close ();
486 }
487 }

Chris Markes
HCI Architect
IBM UK Laboratories (UK) © C Markes 2000

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

An event queue monitor for OS/390 – part 2

This month’s instalment concludes this article on an event queue
monitor for MQ Series on OS/390.

MQSEVT.C (CONTINUED)
/*---*/
/* Finds handler for an event with MQCFH.Reason == Reason. */
/*---*/
EveMsgHandler* FindEveMsgHandler (MQLONG Reason)
{
 static EveMsgHandler TabEveMsgHandler [] = {
 { MQRC_CHANNEL_STOPPED, ChannelStopped },
 { MQRC_Q_SERVICE_INTERVAL_HIGH, QServiceIntervalHigh }
 };
 int Count;
 int TotEveMsgHandler = sizeof (TabEveMsgHandler) / sizeof
 (EveMsgHandler);
 for (Count = 0; Count < TotEveMsgHandler; ++Count)
 if (TabEveMsgHandler[Count].Reason == Reason)
 return (&TabEveMsgHandler[Count]);

 return ((EveMsgHandler*) NULL);
}

/*---*/
/* Handle events where MQCFH.Reason == MQRC_CHANNEL_STOPPED. */
/*---*/
void ChannelStopped (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action
)
{
 MQLONG FieldIds [] = {
 MQIACF_REASON_QUALIFIER,
 MQCACH_CHANNEL_NAME,
 MQIACF_ERROR_IDENTIFIER,
 MQIACF_AUX_ERROR_DATA_INT_1,
 };

 MQLONG ReasonQualifier;
 MQCHAR ChannelName [MQ_CHANNEL_NAME_LENGTH + 1];

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

 MQLONG ErrorIdentifier;
 MQLONG AuxErrorDataInt1;

 char Msg [MSG_LEN];
 char cErrorIdentifier [MSG_LEN];
 int MsgSuffix;

 char Cmd [CMD_LEN];

 /*---*/
 /* Get fields from the event message. */
 /*---*/
 ReasonQualifier = 0;
 ChannelName [0] = '\0';
 ErrorIdentifier = 0;
 AuxErrorDataInt1 = 0;

 GetField (
 EveMsg,
 FieldIds,
 sizeof (FieldIds) / sizeof (MQLONG),
 &ReasonQualifier,
 ChannelName,
 &ErrorIdentifier,
 &AuxErrorDataInt1
);

 /*---*/
 /* Gets channel failure message suffix from ErrorIdentifier, */
 /* which has format xxxxxSSS (hexadecimal), with suffix SSS. */
 /*---*/
 sprintf (cErrorIdentifier, "%lx", ErrorIdentifier);
 sscanf (
 cErrorIdentifier + strlen (cErrorIdentifier) - 3,
 "%d",
 &MsgSuffix
);

 /*---*/
 /* Disconnect interval expired - ignores. */
 /*---*/
 if (ReasonQualifier == MQRQ_CHANNEL_STOPPED_OK)
 return;

 /*---*/
 /* Connection reset by peer - ignores. */
 /*---*/
 if (AuxErrorDataInt1 == 0x36)
 return;

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 /*---*/
 /* Channel is already active - ignores. */
 /*---*/
 if (ReasonQualifier == MQRQ_CHANNEL_STOPPED_ERROR &&
 MsgSuffix == 514)
 return;

 /*---*/
 /* Message sequence error: */
 /* Channel reset */
 /* Channel start. */
 /*---*/
 if (ReasonQualifier == MQRQ_CHANNEL_STOPPED_ERROR &&
 MsgSuffix == 506) {

 /* RESET CHANNEL */
 sprintf (Cmd, "RESET CHANNEL(%s)", ChannelName);
 RunCommand (hConn, Cmd);

 /* START CHANNEL */
 sprintf (Cmd, "START CHANNEL(%s)", ChannelName);
 RunCommand (hConn, Cmd);

 return;
 }

 /*---*/
 /* Other errors: */
 /* Records message at the system console. */
 /*---*/
 sprintf (Msg, "Channel %s with problems", ChannelName);
 /* Adds tcp/ip return code to the msg, if it exists */
 if (AuxErrorDataInt1)
 sprintf (Msg, "%s (tcp=%lx)", Msg, AuxErrorDataInt1);

 OperatorPrintf (Action, Msg);
}

/*---*/
/* Handle MQCFH.Reason == MQRC_Q_SERVICE_INTERVAL_HIGH events. */
/*---*/
void QServiceIntervalHigh (
 MQHCONN hConn,
 MQMD dEveMsg,
 PMQBYTE EveMsg,
 long Action)
{
 /*--*/
 /* Some platforms put the queue name in field QName, others */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

 /* put it in BaseQName, so both are extracted. */
 /*--*/
 MQLONG FieldIds [] = {
 MQCA_Q_MGR_NAME,
 MQCA_BASE_Q_NAME,
 MQCA_Q_NAME
 };

 MQCHAR QMgrName [MQ_Q_MGR_NAME_LENGTH + 1];
 MQCHAR BaseQName [MQ_Q_NAME_LENGTH + 1];
 MQCHAR QName [MQ_Q_NAME_LENGTH + 1];

 char Msg [MSG_LEN];

 /*--*/
 /* Get fields from the event message. */
 /*--*/
 QMgrName [0] = '\0';
 BaseQName [0] = '\0';
 QName [0] = '\0';

 GetField (
 EveMsg,
 FieldIds,
 sizeof (FieldIds) / sizeof (MQLONG),
 QMgrName,
 BaseQName,
 QName
);

 /*--*/
 /* Put non-blank queue name into QName. */
 /*--*/
 if (QName [0] == '\0')
 strcpy (QName, BaseQName);

 /*--*/
 /* Records message at system console. */
 /*--*/
 sprintf (
 Msg,
 "Queue %s/%s is not being read",
 TrimRight (QMgrName, strlen (QMgrName)),
 TrimRight (QName, strlen (QName))
);
 OperatorPrintf (Action, Msg);
}

/*---*/

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* Extracts fields from the event message, storing them in the */
/* arguments variable list, according to the FieldIds vector. */
/*---*/
void GetField (
 PMQBYTE EveMsg,
 MQLONG* FieldIds,
 int TotFields,
 ...)
{
 PMQCFH pCfh;
 PMQBYTE pEventData;
 PMQCFST pCfst;
 PMQCFIN pCfin;
 MQLONG Count;
 long* pLong;
 char* pChar;
 void* pVoid;
 va_list Arg;

 /* Initializes arguments variable list */
 va_start (Arg, TotFields);

 /*--*/
 /* Extract each FieldId from event message. */
 /*--*/
 for (; TotFields > 0; --TotFields, ++FieldIds) {

 /* Find beginning of event data */
 pCfh = (PMQCFH) EveMsg;
 pEventData = EveMsg + pCfh->StrucLength;

 /*--*/
 /* Searches for FieldId in event structures */
 /*--*/
 for (Count = 0; Count < pCfh->ParameterCount; ++Count) {

 /* Maps event structure */
 pCfin = (PMQCFIN) pEventData;

 /* Found the FieldId ! */
 if (pCfin->Parameter == *FieldIds) break;

 /* Steps to next event structure */
 pEventData += pCfin->StrucLength;
 }

 /* If the FieldId wasn't found, removes the argument pointer
 from the arguments variable list and steps to the next
 FieldId */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 if (Count >= pCfh->ParameterCount) {
 pVoid = va_arg (Arg, void*);
 continue;
 }

 /* Found the FieldId: extract & store */
 switch (pCfin->Type) {
 case MQCFT_INTEGER:
 pLong = va_arg (Arg, long*);
 *pLong = pCfin->Value;
 break;
 case MQCFT_STRING:
 pChar = va_arg (Arg, char*);
 pCfst = (PMQCFST) pEventData;
 memmove (pChar, pCfst->String, pCfst->StringLength);
 pChar [pCfst->StringLength] = '\0';
 break;
 }
 }
 va_end (Arg);
}

/*---*/
/* Runs MQSC command. */
/*---*/
void RunCommand (MQHCONN hConn, char* Command)
{
 MQHOBJ hReplyQ;

 MQOD dOutQ = { MQOD_DEFAULT };
 MQOD dReplyQ = { MQOD_DEFAULT };
 MQMD dOutMsg = { MQMD_DEFAULT };
 MQMD dReplyMsg = { MQMD_DEFAULT };

 MQLONG oOpen;
 MQLONG oClose;
 MQPMO oPut = { MQPMO_DEFAULT };
 MQGMO oGet = { MQGMO_DEFAULT };

 MQLONG CompCode;
 MQLONG Reason;

 char Reply [REPLY_LEN];
 MQLONG MsgLen;

 long CmdCount;
 long CmdReturn;
 long CmdReason;

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 OperatorPrintf (ACTION_EVENTUAL, "Running: %s", Command);

 /*--*/
 /* Opens tempdyn reply queue. */
 /*--*/
 strncpy (
 dReplyQ.ObjectName,
 "SYSTEM.COMMAND.REPLY.MODEL",
 sizeof (dReplyQ.ObjectName)
);

 oOpen = MQOO_INPUT_SHARED
 + MQOO_FAIL_IF_QUIESCING;

 MQOPEN (
 hConn,
 &dReplyQ,
 oOpen,
 &hReplyQ,
 &CompCode,
 &Reason
);

 if (CompCode != MQCC_OK) {
 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQOPEN %s: %ld",
 TrimRight (dReplyQ.ObjectName, sizeof
 (dReplyQ.ObjectName)),
 Reason
);
 return;
 }

 /*--*/
 /* Puts command into system command input queue. */
 /*--*/
 strncpy (
 dOutQ.ObjectName,
 "SYSTEM.COMMAND.INPUT",
 sizeof (dOutQ.ObjectName)
);
 dOutMsg.MsgType = MQMT_REQUEST;

 memmove (
 dOutMsg.Format,
 MQFMT_STRING,
 sizeof (dOutMsg.Format)
);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

 strncpy (
 dOutMsg.ReplyToQ,
 dReplyQ.ObjectName,
 sizeof (dOutMsg.ReplyToQ)
);
 strncpy (
 dOutMsg.ReplyToQMgr,
 dReplyQ.ObjectQMgrName,
 sizeof (dOutMsg.ReplyToQMgr)
);
 oPut.Options = MQPMO_NO_SYNCPOINT
 + MQPMO_FAIL_IF_QUIESCING;
 MQPUT1 (
 hConn,
 &dOutQ,
 &dOutMsg,
 &oPut,
 strlen (Command),
 Command,
 &CompCode,
 &Reason
);
 if (CompCode != MQCC_OK) {

 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQPUT1 %s: %ld",
 TrimRight (dOutQ.ObjectName, sizeof (dOutQ.ObjectName)),
 Reason
);
 oClose = MQCO_DELETE_PURGE;

 MQCLOSE (
 hConn,
 &hReplyQ,
 oClose,
 &CompCode,
 &Reason
);
 return;
 }

 /*--*/
 /* Reads all replies */
 /*--*/

 for (; ;) {

 /*--*/

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 /* Each set of replies starts with message CSQN205I, */
 /* whose structure is: */
 /* CSQN205I COUNT=count, RETURN=rc, REASON=reason. */
 /*--*/

 memmove (
 dReplyMsg.MsgId,
 MQMI_NONE,
 sizeof (dReplyMsg.MsgId)
);
 memmove (
 dReplyMsg.CorrelId,
 MQCI_NONE,
 sizeof (dReplyMsg.CorrelId)
);
 oGet.Options = MQGMO_NO_SYNCPOINT
 + MQGMO_WAIT
 + MQGMO_FAIL_IF_QUIESCING;

 oGet.WaitInterval = TIME_OUT;

 MQGET (
 hConn,
 hReplyQ,
 &dReplyMsg,
 &oGet,
 sizeof (Reply),
 Reply,
 &MsgLen,
 &CompCode,
 &Reason
);
 if (CompCode != MQCC_OK) {

 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQGET %s: %ld",
 TrimRight (dReplyQ.ObjectName, sizeof
 (dReplyQ.ObjectName)),
 Reason
);
 oClose = MQCO_DELETE_PURGE;

 MQCLOSE (
 hConn,
 &hReplyQ,
 oClose,
 &CompCode,
 &Reason

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

);
 return;
 }
 sscanf (
 Reply, "CSQN205I COUNT=%ld, RETURN=%lx, REASON=%lx",
 &CmdCount,
 &CmdReturn,
 &CmdReason
);
 /* ReturnCode != 0 => problem processing the command */
 if (CmdReturn) {
 OperatorPrintf (
 ACTION_EVENTUAL,
 "Failed to run %s: return %lx reason %lx",
 Command,
 CmdReturn,
 CmdReason
);
 oClose = MQCO_DELETE_PURGE;

 MQCLOSE (
 hConn,
 &hReplyQ,
 oClose,
 &CompCode,
 &Reason
);
 return;
 }

 /*--*/
 /* Reads a set of replies. */
 /*--*/

 /* Msg CSQN205I counts towards the msgs count, so remove it */
 --CmdCount;

 while (CmdCount-- > 0) {

 memmove (
 dReplyMsg.MsgId,
 MQMI_NONE,
 sizeof (dReplyMsg.MsgId)
);
 memmove (
 dReplyMsg.CorrelId,
 MQCI_NONE,
 sizeof (dReplyMsg.CorrelId)
);

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 oGet.Options = MQGMO_NO_SYNCPOINT
 + MQGMO_WAIT
 + MQGMO_FAIL_IF_QUIESCING;

 oGet.WaitInterval = TIME_OUT;

 MQGET (
 hConn,
 hReplyQ,
 &dReplyMsg,
 &oGet,
 sizeof (Reply),
 Reply,
 &MsgLen,
 &CompCode,
 &Reason
);
 if (CompCode != MQCC_OK) {

 OperatorPrintf (
 ACTION_EVENTUAL,
 "MQGET %s: %ld",
 TrimRight (
 dReplyQ.ObjectName,
 sizeof (dReplyQ.ObjectName)
),
 Reason
);
 oClose = MQCO_DELETE_PURGE;

 MQCLOSE (
 hConn,
 &hReplyQ,
 oClose,
 &CompCode,
 &Reason
);
 return;
 }
 } /* 'while' reads a set of replies */

 /* Are there more sets of replies ??? */
 /*--*/
 /* If there are more sets of replies, ReturnCode = 0 and */
 /* Reason = 4. */
 /*--*/
 if (CmdReason == 4)
 continue; /* Let's read the other set of replies */
 else
 break; /* That's all folks */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

 } /* for: Reads all replies */

 /*--*/
 /* Closes reply queue. */
 /*--*/
 oClose = MQCO_DELETE_PURGE;

 MQCLOSE (
 hConn,
 &hReplyQ,
 oClose,
 &CompCode,
 &Reason
);
 return;
}

/*---*/
/* printf at system console. */
/*---*/
void OperatorPrintf (long Action, char* Fmt, ...)
{
 char Msg [MSG_LEN];
 char OperatorMsg [MSG_LEN];
 va_list Arg;

 va_start (Arg, Fmt);
 vsprintf (Msg, Fmt, Arg);
 va_end (Arg);

 sprintf (OperatorMsg, "%s %s", MQS_PREFIX, Msg);

 exec cics write operator
 text (OperatorMsg)
 textlength (strlen (OperatorMsg))
 action (Action)
 ;
}

/*---*/
/* Converts C-string to lowercase */
/*---*/
char* StrLower (char* Str)
{
 for (; *Str; ++Str)
 *Str = tolower (*Str);
}

/*---*/
/* Removes trailing blanks */

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/*---*/
char* TrimRight (char* Str, int Len)
{
 char* pCh;

 for (pCh = Str + Len - 1; pCh >= Str && *pCh == ' '; --pCh)
 ;
 *(pCh+1) = '\0';

 return (Str);
}

Paulo Marcel Coelho Aragão (Brazil) © Xephon 2000

MQSeries coding standards and guidelines

The move by many large users from MVS to production systems on
heterogeneous platforms including Unix, OS/2, and NT has
necessitated the implementation of reliable and secure heterogeneous
system communication. The ability to access and integrate systems
across platforms is now more critical to organizations than ever
before. Thankfully, IBM’s MQSeries has made this task relatively
simple. It’s eliminated the need to connect applications directly or
make them understand underlying networking protocols.

MQSeries handles the networking calls, freeing the programmer from
the need to code at this level. The system’s messaging paradigm
enables applications to communicate synchronously (conversationally)
or asynchronously. With a consistent Application Programming
Interface (API) across all platforms, it allows programmers to be more
productive. Once you understand the MQ API, you have the skills to
get applications communicating on any platform supported by
MQSeries.

While MQSeries brings with it many intrinsic benefits, you must
develop and enforce standards in order to use it effectively. I’ve found
that, while naming standards for MQSeries objects are typically in
place before application development begins, little or no thought is

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

often given to standards or guidelines for constructing MQSeries
applications until after coding has started. This leads to many architects
and programmers duplicating each others’ work. By proactively
consolidating this work, building applications can be made easier, as
the groundwork is already laid. Another benefit is that it reduces the
need to educate developers, as key concepts are documented more
concisely.

This article, which is in two parts (the second part is in next month’s
issue of MQ Update), provides background information on messaging
models, then presents eleven standards for successful application
construction. It also explains why the standards are justified and how
to use each one. Next month’s instalment explores ten guidelines for
constructing MQSeries applications.

STANDARD VERSUS GUIDELINE

The difference between a standard and a guideline is that a standard
is a hard-and-fast rule that you must follow, while a guideline is a
recommendation that you should follow in most cases. If you fail to
follow a standard, negative consequences are almost certain. But if
you don’t follow a guideline, there’s probably little or no risk to the
organization. Most organizations allow programmers to deviate from
a standard only after a thorough review of all the implications. In most
cases, deviation requires permission from a senior programmer or
analyst who thoroughly understands the implications. For guidelines,
the good judgement of the programmers themselves is sufficient to
allow deviation – no higher-level approval is required.

MQSERIES MESSAGING MODELS

Knowing the common messaging models will help you understand
the requirements for constructing these models using MQSeries. With
this knowledge, you will see characteristics that naturally lead to
standards and guidelines for constructing applications. There are two
basic messaging models:

• Datagram

• Request/reply.

44 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The datagram model, also known as ‘fire-and-forget’, is the least
complex messaging model. In it, an application builds a message and
introduces it to the network simply by putting it on a queue. In most
cases, the application takes advantage of the ‘once-and-once-only’
assured delivery that MQSeries provides. Hence, it needs to know
only that the receiving application will, in due course, process the
message, and doesn’t need to know when processing will take place.
Datagram messages are generally persistent, since some form of
update occurs from message creation.

The request/reply model is more complex and, consequently, its
construction requires more effort. You must consider such questions
as:

• How long should the sending application wait for a reply?

• Should another request be generated if no reply is received?

• Will database updates occur as a result of a reply?

• Does session or state information need to be maintained (in other
words, is this application conversational in nature)?

Answers to these questions, and many others based on business
requirements, will significantly impact application construction and
your choice of MQSeries options.

ELEVEN STANDARDS TO CONSIDER

The standards listed below are important because they help to ensure
that MQSeries applications function predictably and are easy to
maintain. Consideration is given to MQSeries features and options
that enhance performance management, portability, scalability, and
reliability. These standards are by no means exhaustive; rather, they
address some of the typical application construction issues that arise
when installation begins. To determine whether a standard applies to
your organization, ask yourself: must programmers follow it for the
application to function properly?

1 Applications must check reason and completion codes after all
MQSeries API calls and take appropriate action when a non-zero

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 45

reason or completion code is returned.

Overview:

All MQSeries API calls return completion and reason codes
indicating the success or failure of calls.

Justification:

This ensures that applications are functioning according to their
design. Without checking completion and reason codes,
applications cannot ensure that MQSeries messages are produced
or consumed correctly.

2 Applications must check the back-out count after all MQGETs
that are performed under syncpoint.

Overview:

When a message is retrieved under syncpoint and then backed out
(explicitly or implicitly), the BackoutCount field in the message
descriptor is incremented. This indicates whether the message
was read prior to being backed out. If BackoutCount is greater
than a pre-defined threshold, the message needs special processing.

Justification:

Without this check, applications may get stuck in an infinite loop
of reading and backing out of messages.

3 Applications must use the FAIL_IF_QUIESCING option on
MQOPEN, MQPUT, and MQGET calls.

Overview:

The MQSeries subsystem is independent of applications that use
the services it provides. It is sometimes necessary to shut it down;
when this occurs, any connected applications should quiesce and
no additional applications may connect. Applications that are
connected should terminate immediately. For applications to be
notified of a pending shutdown, the FAIL_IF_QUIESCING
attribute must be specified on the appropriate MQSeries API
calls.

46 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Justification:

Applications that do not specify the appropriate FAIL_IF_
QUIESCING attribute continue to run after the MQSeries
subsystem has started to quiesce. This state may persist for a
considerable time and prevent the MQSeries subsystem from
terminating. This, in turn, may compromise processing time set
aside for maintenance and back-up. It may ultimately be necessary
to cancel or kill MQSeries applications that don’t use the
FAIL_IF_QUIESCING option. If applications aren’t killed, it
increases the likelihood of data integrity problems, which are
usually costly to recover from.

4 Use queue-based priority to prioritize requests; applications must
not set the priority of request messages.

Overview:

Priority is a message attribute that states the priority of the
message relative to others in the MQSeries network. As priority
can change as new applications are introduced or existing ones
are eliminated, it’s impossible for an application to hardcode a
message’s effective priority. By using queue-defined priority,
network administrators can prioritize messages by altering the
queue’s DEFPRTY attribute.

Justification:

Controlling message priority allows greater flexibility in managing
the network.

5 Requesting applications must not use MQOO_OUTPUT when
opening a request queue.

Overview:

Request queues may be local or remote to the application making
the request. Local queues may be written to (MQPUT) or read
from (MQGET); remote queues may only be written to. However,
requesting applications need only to put messages on the request
queue. So, the requesting application needs to open the request
queue only for output (MQPUT). This means it’s immaterial

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 47

whether the queue is local or remote, as both can be opened for
output. If a requesting application opens a request queue for
input, then the application must be local to the queue.

Justification:

This ensures that services can be moved around the MQSeries
network without impact on requesting applications.

6 Update messages must be MQPUT and MQGET under syncpoint.

Overview:

Applications can control when messages become visible to the
MQSeries network by using syncpoint options on MQPUT and
MQGET calls. When database updates have to be coordinated
with MQSeries messages, the messages must be controlled using
two MQSeries syncpoint options:

– MQPMO_SYNCPOINT

– MQGMO_SYNCPOINT.

Justification:

Using syncpoint ensures that no database updates occur when
MQSeries messages are backed out. MQSeries messages may be
backed out if there are problems with the message or the database.
Syncpoint options allow messages to be saved for further
processing in the event of a failure.

7 Update messages’ persistence attribute must be set to ‘yes’.

Overview:

Messages resulting in database updates must be logged, and the
messages themselves should survive queue manager restarts.
Only persistent messages meet these criteria.

Justification:

Non-persistent messages could be lost if a queue manager fails.

8 Applications that modify and forward messages or reply to
requests must preserve identity context information.

48 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Overview:

Every message in an MQSeries system has an identity. This
identity represents the user who created or introduced the message
into the MQSeries network. As messages flow through the
network, their identity must be preserved. If the original message
is modified and forwarded, or another message, such as a reply,
is created from it, then the modified or new message should also
be attributable to the original user through its identity context.

Justification:

For security and auditing, it must be possible to trace all messages
back to the user who originated them. Refer to the MQSeries
Application Programming Guide for more details on context
security and the Intercommunication Guide for details on the
channel attribute PUTAUT.

9 Update messages must not expire.

Overview:

Messages aren’t always processed in the time expected by the
applications that created them. In an asynchronous environment,
all that can be said is that a message will be processed sometime
in the future, though exactly when is unknown. Because of this,
update messages should not expire, as expiration may occur
before the message is processed.

Justification:

This ensures no update messages are lost. Also see standard 7 on
the persistence of update messages.

10 The name of permanent dynamic reply queues must include a
userid or taskname that is predictable across multiple invocations
of the same application.

Overview:

Applications that require dynamic reply queues can create
temporary or permanent versions of these queues. In most cases,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 49

the permanent queues hold recoverable messages (those that are
most likely to be persistent). This implies that the application
using the permanent reply queue must be able to restart and open
the queue if the application abends. To facilitate this restart, the
dynamic queue name must be predictable across multiple
invocations of the application.

Justification:

This ensures that persistent replies can be processed across
multiple invocations of an application.

11 Applications that use temporary dynamic queues for replies must
ensure that the applications that handle the requests do not set the
persistence of their replies to MQPER_PERSISTENT.

Overview:

Temporary dynamic reply queues cannot hold persistent messages.
Because of this restriction, applications that respond to requests
must know whether the queue that receives the reply is a temporary
or permanent dynamic reply queue. Requesting and replying
applications must coordinate the setting of the reply’s persistence
to ensure that only non-persistant messages are put on temporary
dynamic reply queues.

Justification:

This prevents replies from ending up on the system’s undeliverable
message queue.

ENFORCEMENT

As you can see, there are many standards that come into play when
developing MQSeries applications, and many more are possible.
Organizations may define others based on their business requirements.
One question applies to all organizations, however: given that resources
are often limited, how do you ensure that standards are being followed?

There are two ways to enforce standards. The first is to conduct

50 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

technical code reviews. This option tends to be costly, as it requires
experienced programmers to go through code line-by-line. The second
option is to create wrappers for MQSeries API calls that application
programmers must use. You then build the organization’s standards
into the wrapper. This method guarantees that MQSeries calls conform
with your organization’s preferences and also requires a code review
to ensure the wrapper is being used. But since the wrapper typically
simplifies the API calls, code reviews take less effort, thereby saving
your organization’s resources. Note that a wrapper will not allow your
organization to avoid code reviews completely – reviews should be
carried out whether native MQSeries API calls or wrappers are used.

CONCLUSION

Standards and guidelines are essential for developing reliable and
efficient MQSeries messaging applications. They ensure that your
applications function as expected. You must be able to justify the
standards and guidelines that you choose to adopt, as programmers
tend to deviate from those that don’t make sense or offer no apparent
benefit to them or the code they write. Some of the standards presented
in this article may make sense for your organization, while others may
not. Research the options and carefully choose the standards and
guidelines that reflect the goals of your organization.

I intend to discuss the issue of guidelines in an article to be published
in a future issue of MQ Update.

Mark Verhiel
Candle Corporation (USA) © Candle 2000

QM definition scripts from the BSDS – a reply

The November 1999 and December 1999 editions of MQ Update
contain an article for a program that outputs a list of DEFINE
commands that can be used to recreate all the MQSeries object

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 51

definitions for a queue manager. However, such a program is not
needed in an MVS/ESA environment, as MQSeries for MVS/ESA
provides the same function via its CSQUTIL utility using the
MAKEDEF operand of the COMMAND function. Details of this can
be found in the MQSeries for MVS/ESA System Management Guide.
Sample JCL to run this utility is shown below.

SAMPLE JCL
//jobname JOB etc
//**
//*
//* Generate definition statements for MQSeries objects
//*
//**
//CSQUTIL EXEC PGM=CSQUTIL,REGION=4096K,PARM='qmgr'
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//DEFINE DD DSN=your.output.dataset
//SYSPRINT DD SYSOUT=*
//CSQUCMD DD *
**
*
* These DISPLAY commands are used to generate a set of DEFINE
* commands to be able to recreate MQSeries objects.
*
**
*
DISPLAY STGCLASS(*) ALL
DISPLAY QUEUE(*) TYPE(QLOCAL) ALL
DISPLAY QUEUE(*) TYPE(QMODEL) ALL
DISPLAY QUEUE(*) TYPE(QALIAS) ALL
DISPLAY QUEUE(*) TYPE(QREMOTE) ALL
DISPLAY PROCESS(*) ALL
DISPLAY NAMELIST(*) ALL
DISPLAY CHANNEL(*) ALL
//SYSIN DD *
 COMMAND DDNAME(CSQUCMD) MAKEDEF(DEFINE)
//

Eric Judd
Technical Consultant
Metropolitan Life (South Africa) © Xephon 2000

MQ news

IBM, i2, and Ariba have announced an
alliance to deliver an end-to-end system for
B2B e-commerce and collaboration. The
system is to handle product integration,
global marketing, and selling of targeted
solutions. As part of the agreement, IBM is to
make an undisclosed equity investment in
both Ariba and i2, which, in turn, will extend
their software to work with IBM’s, including
MQSeries, WebSphere, WebSphere
Commerce Suite, and DB2, and will
optimize their software for IBM’s servers.

Hot on the heels this announcement, IBM
announced WebSphere B2B Integrator,
which integrates businesses’ operational
systems with those of their trading partners.
It’s built on WebSphere, MQSeries, and an
IBM XML technology called tpaML, which
is designed for handling contract exchange.

IBM also announced that extensions were
added to MQSeries Workflow to support
B2B processes, and that it intends to add
more functions to WebSphere Commerce
Suite to support B2B and marketplace
commerce, including negotiation and
dynamic price discovery models, RFP/RFQ,
and workflow.

The first release of WebSphere B2B
Integrator will be available this summer.

For further information contact:
Ariba, 1565 Charleston Road, Mountain
View, CA 94043, USA
Tel: +1 650 930 6200
Fax: +1 650 930 6300
Web: http://www.ariba.com

Ariba United Kingdom Ltd, 1000 Great
West Road, Brentford, Middlesex TW8
9HH, UK

Tel: +44 181 261 4431
Fax: +44 181 261 4558

i2 Technologies Inc, One i2 Place, 11701
Luna Road, Dallas, TX 75234, USA
Tel: +1 469 357 1000
Fax: +1 214 860 6060
Web: http://www.i2.com

i2 Technologies , 10th Floor, Market Square
House, St James’s Street, Nottingham,
Nottinghamshire NG1 6FG, UK
Tel: +44 115 959 0880
Fax: +44 115 941 2849

* * *

New Era of Networks has enhanced its
distribution relationship with IBM, which
allows it to provide components of IBM’s
MQSeries Integrator. The two firms have
extended the platform coverage of MQSI
now that Version 1.1 is available on MVS
and OS/390. In addition, NEON has worked
with IBM to port MQSI to the AS/400,
adding to existing products for AIX (and
other versions of Unix) and NT. NEON is
also to support Tivoli monitoring and
management capabilities in its integration
servers.

For further information contact:
NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA
Tel: +1 303 694 3933
Fax: +1 303 694 3885
Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK
Tel: + 44 171 329 4669
Fax:+ 44 171 329 4567

x xephon

	A mail system based on JMS and MQSeries
	An event queue monitor for OS/390 – part 2
	MQSeries coding standards and guidelines
	QM definition scripts from the BSDS – a reply
	MQ news

