12

June 2000

]
In this issue

3 MQSC commands, throughput, and
Perl scripting

12 MQSeries and high availability

21 More MQSeries standards and
guidelines

27 Modifying and setting up a batch
trigger monitor

32 MQSeries Everyplace

40 July 1999 — June 2000 index

44 MQ news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road
Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955
e-mail: harryl @xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344

Fax: +1 303 438 0290

Contributions

Articlespublishedin MQ Updateare paid for
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessiit). If
you'’ ve a problem with your user-id or pass-
word call Xephon's subscription department
on +44 1635 33886.

Editor

Harry Lewis
Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

MQSC commands, throughput, and Perl scripting

INTRODUCTION

MQSC commands are generally used to manage queue manager
objects, such as channels, queues, and processdefinitions. Withthese
commands it is possible to define, delete, and alter the attributes of
these objects. Each OS suppliesitsown interfaceto these commands,
On OS/390 they can be issued either as operator commands or by
means of panels. On Unix, VMS, and Windows NT, the commands
can be executed using the runmgasc utility.

In this article, we focus on issuing MQSC commands using the
runmgsc executable. More specifically, we focus on using MQSC
commands to extract active channel status information in order to
generate extended reports on throughput.

MQSeries has several commands that are used to query the current
statusof queuemanager objects. TheDISCHSTATU SM QSC command
Is specific to channels and can be used to query the status of active
channels in the system. It can return, for example, the SHORTRTS
statusattribute, whichrecordshow many ‘ shortretry’ attemptsareleft
onthechannel, or the CONNAME attribute, which (inthiscase) shows
the address of the machine at the other end of the channel — if the
transport protocol used by the channel is TCP/IP, it returns the IP
address of the machine. Channels that serve client connections
(SVRCONN) may have multiple instances active; in such
circumstances, the CONNAME attribute can be used to differentiate
between machines when querying their status.

Nevertheless, all these attributes provide only basic measurements
about channdl status, leaving a lot of information. One of the most
fundamental measurements that we, at our installation, felt was
missing from reportsisthe throughput of active channels. We needed
the answer to questions such as. how many bytes areflowing in each
direction and at what rate? How many messages pass per second?
What is the average size of messages passing through a channel ?

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

There are some hefty third-party software packages around that can
beused to command and control queue managersand dig out statistics
suchasthosementioned above. However, thesepackagesareexpensive,
they require training, and they consume afair chunk of amachine’'s
resources. In this article, we present alightweight and simple script
that provides the statistics we need and others may also find of great
value.

The script requires no complex and expensive command and control
software. It'swrittenin Perl (Version 5) and doesn’t even usethe M QI
(or any other API, for that matter) — it uses only the MQSeries
runmgsc utility for querying M QSeries. Thisscript wastested on HP-
UX versions 10.20 and 11.0 and Windows NT 4.0. | will also
demonstrate how the script can easily be run indirectly on any other
platform, such as IBM OS/390.

In general, what the script does is capture status information on the
gpecified channel at fixed intervals. Status information is captured
using replies from the DIS CHSTATUS MQSC command. The
difference (or so-called ‘delta’) between each two measurements is
printed. Take, for example, thefield BYTSSENT. Supposethat, at one
invocation of thescript, it reads‘ 150" and, at the next invocation, five
seconds later, its value is *180'. From this, it is concluded that the
average send rate was six bytes per second during that specific
interval, as.

(180 - 150) / 5 =6

The same method is used on severa other fields.

The script is listed here in its simplest form. Many additions and
enhancements can be made to it, and some are discussed after the
listing.

MQTPPL

#!/usr/local/bin/perl -w

i# This perl script computes MQSeries channel throughput statistics

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

¥ at fixed time intervals. It prints averages for the send rate,

¥ receive rate, message rate, and message size during the interval.
i
¥ For simplicity, all interaction with MQSeries is made using MQSC
¥ commands and not the MQI or any other API set.
i
¥ This script can be run on any platform that supports Perl and
the runmgsc executable.
i
USAGE:
##
mqTP.p1 <chl name> <sampling interval>
#
* "chl name" is the name of the channel to sample. This can
i# be a channel of any type.
i
¥ * "sampling interval" is the number of seconds between
each measurement.
#
i * The runmgsc executable must be in the path environment
it variable.
i
i Example:
i
perl mqTP.pl MQ.CHANNEL1 5
#
INTERNALS:
i
i * Channel status hash variables: the status of a channel is
i stored as a hash variable containing the following fields:
#
active Either 1 (channel is active) or 0 (otherwise).
i now The time when a sample is taken.
¥ msgs The number of messages sent and receijved. This
i corresponds to the MSGS channel status attribute.
i sent The total number of bytes sent through the channel.
i rcvd The total number of bytes received through the
channel.
i
AUTHOR:
##
i jb, feb 00. jb@lando.net
#
hrmm oo
if ($#fARGV+1 < 2)
{
&print_usage ();
die("\n");
}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

$ch1l_name = $ARGV[O];
$sleep_time = $ARGV[1];

%01d_chs = &get_chs ($chl_name);
&check_chs (%o0ld_chs);

while (1)
{
sleep ($sleep_time);

%new_chs = &get_chs ($chl_name);
&check_chs (%new_chs);

print_stats (old_chs, new_chs);

%01d_chs = %new_chs unless $new_chs{"msgs"}-$01d_chs{"msgs"} <= 0;

e TR R TP E R e PR TP LR EEPEPE PR

Execute given runmgsc command and return response Tlines.

1
TAKES: one-line string containing the mgsc command.
GIVES: one-line string containing the runmgsc response.

sub runmgsc

{
my ($1ine, $1ines);
This pipes the given mgsc command through runmgsc and
grabs the output.
open (CMDOUT, "echo \"$_[O0I\" | runmgsc |") ||
die("unable to runmgsc given command $_[0]1");
$lines = "";
while($1ine=<CMDOUT>)
{
$1ines .= $1line;
}
close (CMDOUT);
return ($1ines);
}
AR P PREEE
Retrieve channel status measurements.
#

TAKES: one string containing the name of the channel.
GIVES: a hash variable containing the channel status measurements.

b o
sub get_chstatus

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

my (%chstatus, $response);

%chstatus = ("active" => 0,

"msgs" => 0,
"rcvd” => 0,
"sent” => 0,
"now"=> "");

$chstatus{"now"} = time ();
$response = &runmgsc("dis chstatus($_[0]) all");

Look up phrase "status(running)”™ in mgsc response.
If found, the channel is active.

if ($response =~ /status\(running\)/i)
{
$chstatus {"active™} = 1;
}
else
{
return (%chstatus);
}

Look up phrases " msgs(*)", "bytssent(*)", and "bytsrcvd(*)".
Note the blank before the phrase "msgs"™ to differentiate it
from the similar expression "curmsgs(*)".

$response =~ / msgs\((\d*)\)/i;
$chstatus{"msgs"} = $1;

$response =~ /bytssent\((\d*)\)/i;
$chstatus{"sent"} = $1;

$response =~ /bytsrcvd\((\d*)\)/i;
$chstatus{"rcvd"} = $1;

return (%chstatus);

b o
Calculate statistics and print them out.
i
TAKES: previous and current channel status measurements.
GIVES: nothing.
b
sub print_stats
{
my ($deltat, $deltas,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

$deltar, $deltam, $BSPS, $BRPS, $BPM, $MPS);

#H%01d_chstatus = $_[0]; %new_chstatus = $_[1];

$deltat = $new_chstatus{"now"} - $old_chstatus{"now"};
$deltas = $new_chstatus{"sent"} - $old_chstatus{"sent"};
$deltar $new_chstatus{"rcvd"} - $old_chstatus{"rcvd"};
$deltam $new_chstatus{"msgs"} - $old_chstatus{"msgs"};

if ($deltat <= 0)

{
die("deltat must be > 0 ! aborting..\n");
}s
if ($deltam == 0)
{
$deltam = 1;
}
$BSPS = $deltas / $deltat; # Bytes sent per second
$BRPS = $deltar / $deltat; # Bytes received per second
$MPS = $deltam / $deltat; # Messages per second (S/R)

$BPM = ($deltas + $deltar)/ $deltam; # Bytes per message.

printf ("snd %7.7s KB/sec | ", $BSPS/1000);
printf ("rcv %7.7s KB/sec | "™, $BRPS/1000);
printf ("%7.7s msg/sec | ",$MPS);

printf ("%7.7s KB/msg", $BPM/1000);

printf ("\n");

b o
Print usage summary.
i
TAKES and GIVES nothing.
b o
sub print_usage
{
print "USAGE: perl mgTP <chl name> <sampling interval>\n";
}

I i
Check the status of a channel.

#

TAKES: the channel status hash variable.

GIVES: true (channel is active) or false (inactive).

I
sub check_chstatus

{
my (%chstatus) = @_;
if ($chstatus{"active"} == 0)

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}

die("channel inactive or does not exist, so stopped.\n");

Below is some sample output of the script run on a sender channel

(type SDR) that connectstwo queue managers communicating over a
WAN link. Note that the average send rate is 130 KBytes per second
(with arather large standard deviation). Thereceive byterateisvery
low compared to the send rate, as would be expected on an SDR
channel.

> perl mgTP.pl CHANNEL1 5

snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd
snd

45.388 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 226.94 KB/msg
48.63 KB/sec | rcv 0 KB/sec | 0.1 msg/sec | 486.3 KB/msg
48.63 KB/sec | rcv 0 KB/sec | 0.0625 msg/sec | 778.08 KB/msg

61.4911 KB/sec | rcv 0 KB/sec | 0.14285 msg/sec | 430.438 KB/msg
47.8628 KB/sec | rcv 0 KB/sec | 0.4 msg/sec | 119.657 KB/msg
116.104 KB/sec | rcv 0 KB/sec | 2 msg/sec | 58.052 KB/msg
128.124 KB/sec | rcv 0 KB/sec | 1.2 msg/sec | 106.77 KB/msg
126.558 KB/sec | rcv 0 KB/sec | 2 msg/sec | 63.2790 KB/msg
171.397 KB/sec | rcv 0 KB/sec | 0.8 msg/sec | 214.246 KB/msg
175.175 KB/sec | rcv 0.0056 KB/sec | 3 msg/sec | 58.3936 KB/msg
139.182 KB/sec | rcv 0 KB/sec | 0.4 msg/sec | 347.956 KB/msg
140.790 KB/sec | rcv 0 KB/sec | 2 msg/sec | 70.3950 KB/msg
196.703 KB/sec | rcv 0 KB/sec | 0.4 msg/sec | 491.758 KB/msg
142.387 KB/sec | rcv 0 KB/sec | 2.2 msg/sec | 64.7214 KB/msg
162.711 KB/sec | rcv 0 KB/sec | 0.5 msg/sec | 325.422 KB/msg
202.157 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 1010.78 KB/msg
202.157 KB/sec | rcv 0 KB/sec | 0.1 msg/sec | 2021.57 KB/msg
188.671 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 943.359 KB/msg
81.8728 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 409.364 KB/msg
142.515 KB/sec | rcv 0.00466 KB/sec | 2.66666 msg/sec | 53.445 KB/msg

POSSIBLE ENHANCEMENTS TO THE SCRIPT

1

Thescript currently cal cul ates average measurements over fixed
intervals. A useful improvement would beto catchthe‘*C’ break
signal and print overall averagesfor theentireduration of therun.
A possible way of implementing this would be to modify the
script to generate an output log of the results, and then use the
logged values off-line to calculate the overall averages and plot
them.

The script currently quits if it finds the specified channdl is

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

inactive. It may be extended to ‘endure’ thisin amanner similar
to that of the TCP/IP ping utility.

The script may aso be modified to display the status of the
corresponding transmission queue. Each channel has a specific
XMITQ that it feeds from. This attribute can be queried and the
current status of that queue (in other words, current queue depth,
|PPROCS, OPPROCS, etc.) can be displayed.

The script is meant to run on systems that use the runmqgsc
executable, as stated above. It is possible, though, to alter the
script sothat it can berun ‘remotely’ on another machine. Thisis
explained in more detail in the section below.

NOTES

This is a concise ‘walk through’ that describes how to use the
runmgscexecutableto manageremote M QSeriesobjects. Full details
on this can be found in the Administering remote MQSeries objects
chapter in the MQSeries System Administration Guide.

runmgsc can be used to administer objects that belong to both local
and remote queue managers. However, before runmgsc is run,
several M QSeries objects should be defined and configured on both
the local and the target remote queue manager.

Configuration on thelocal queue

1

10

A local queue manager must be used and, furthermore, it must be
thedefault queuemanager. Thereasonfor thisisthat therunmqgsc
utility is invoked with only two parameters. the timeout (see
bel ow) and the nameof thetarget queuemanager. Thereisnoway
of specifying the name of alocal queue manager, so the default
must beused. Thelocal queue manager should havethefollowing
items defined on it:

— A sender channel that will convey the MQSC command
messages from the source queue manager to the remote
gueue manager.

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

— A recelver channel that will receive the responses coming
from the target queue manager.

— A transmission gqueue with the name of the target queue
manage.

2 Thetarget queue manager isthequeue manager whoseobjectswe

plan to control remotely. It should have definitions for the
following items:

— A receiver channel for receiving MQSC commands.

— A sender channel for sending responses back to the source
gueue manager.

— Atransmission queueto beused by thetarget queue manager
for temporarily holding responses until the sender channel
ships them. Again, the name of the XMITQ should be the
same as that of the source queue manage.

Thetimeout flag -w must be specified when the runmaqsc executable
Isinvoked. This servestwo purposes: to indicate that the utility isto
runin ‘indirect mode’ on aremote queue manager and to specify the
timeout used for commandsissued. The second parameter isthename
of the target remote queue manager.

Now that |’ ve outlined the set-up, I'll mention afew points that are
pertinent to the mechanism used.

Remember that the transmission queues should have the same
name as the participating queue managers.

| recommend that you use channel trigger definitions in the
transmission queue. This ensures that the sender channel is
launched automatically. If trigger definitions don’t exist, you
haveto start both sender andreceiver channelsmanually, otherwise
the MQSC command messages and the replies are left unsent in
the queue manager where they originate.

Remember that the SYSTEM.ADMIN.COMMAND.QUEUE
command queue must be defined on thetarget queue manager. If
itisn't, the commands are sent to the dead-| etter queueinstead of
the command queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

 Remember that the command server must be running on the
remote queue manager. If isn’t, the MQSC command messages
are not picked up from the command queue, in the target queue
manager.

JB (jb@lando.net)
MQSeries Specialist (Israel) © Xephon 2000

MQSeries and high availability

INTRODUCTION

Thisarticledescribestheconcept of highavailability (HA), describing
thefundamental approachesto minimizing theamount of timeduring
which critical servicesor applicationsare not accessible by clientsor
business processes.

The article describes how high availability relates to MQSeries,
examining the relationship between MQSeries Queue Manager
Clusters and HA clusters. However, in order to tackle thistopic, it is
necessary first to do some groundwork on the subject of high
availability. Those already familiar with HA may consider moving
directly to the section entitled MQSeries and HA.

WHAT ISHIGH AVAILABILITY?

Modern businesses are increasingly operating on a round-the-clock
basis. The rapid growth of the Internet and the need to conduct
business on-line have led to the need to provide access to business
systems on a 24-hour basis, as clients from around the world initiate
e-business transactions around the clock.

It is, therefore, becoming increasingly important that critical
applications are kept running day and night. This includes Web

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

servers, application servers, enterprise databases, and all the
infrastructure that binds these systems together.

Therearetimeswhen acomputer system hasto be shut downin order
to perform planned maintenance. Thereareal so timeswhen hardware
or software failures cause unplanned system outages. These periods
arereferred to as‘downtime' . Of key interest to enterprisesishow to
minimize periods of downtime, whether planned or accidental.

The availability of asystem iscommonly expressed as a‘number of
nines . People talk about ‘three nines’ or ‘five nines availability.
These are references to the percentage of time for which asystemis
available. Three nines meansthat a system is available 99.9% of the
time. Five ninesmeansthat it’ savailable 99.999% of thetime. While
these may sound similar — both indicate that the system is available
virtually all thetime—they become much morerevealingif instead of
looking at the time for which a system is available one looks at the
figures in terms of downtime over a fixed period. For example, a
system with 99.9% availability can be expected to suffer over 8.5
hours of downtime ayear, while a system with 99.999% availability
will bedownfor only alittle over 30 secondsayear. Such availability
does not come cheap, and there is a cost involved in minimizing
downtime. To be ableto replace afaulty component or move afailed
system’s workload in just 30 seconds is no mean feat. This would
either require hardware that has a mean-time-between-failures of far
more than ayear, so that an average of 30 seconds per year could be
sustained, or that can switch either components or workload very
rapidly. Alternatively, youwould need to employ thefastest hardware
engineersinthewest, and they would havetotakeupresidenceinyour
machine room.

Apart from all the ‘nines’, there are other less specific terms used to
describesystemsthat maximizeavail ability. Theseinclude’ continuous
availability’, which strictly speaking means that there should be no
discernible downtime, even in the event of a component failure. A
continuously available system shoul d detect an error that woul d result
inalossof availability immediately and bein apositionto providean
alternative component that’s already ‘revved up’ and ready to go. A
continuously available system should also support the scheduling of

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

planned maintenance by allowing workload to be seamlessly
transferred away from the components or subsystems that are the
subject of maintenance activity. Another common term is ‘fault
tolerance’, which means almost the same as continuous availability,
but is used to describe systems that can switch to a replacement
component in amatter of afew millisecondsin the event of afailure,
this being fast enough to be described as‘ near instant’. Further down
thescaleishigh availability, which generally meansthat asystem can
detect a single failure and react to it automatically in a matter of at
most afew minutes. Therearetwo significant aspectstothisdefinition
of highavailability: thesystem should surviveasinglefailure, though
a second failure may result in aloss of service, and the detection of
faults and the triggering of action to accommodate faults should be
automatic, requiring no manual intervention.

It should be apparent from the above that high availability is much
cheaper than either continuous availability or fault tolerance. High
avallability isgenerally achieved by grouping relatively inexpensive
hardware systems and connecting them together using common
Interconnections and storage mechanisms. Thisreplication of whole
computersisconsi derably cheaper thanalternativesthat useproprietary
hardware architectures and is sufficient for many organizations.
Systems built thisway are often called ‘HA clusters’ or ‘ shared disk
clusters’, becausethey frequently rely onthe presenceof shared disks,
as described below.

HOW DOES AN HA CLUSTER WORK?

Thephysical architectureof anHA cluster isthat therearetwo or more
complete computersthat are connected together. Each computer runs
a separate operating system image and the computers are referred to
as‘nodes’ . Most vendorsof HA cluster technol ogy offer scalability of
between four and 32 nodes participating in asingle cluster, although
therearesomethat arelimited to two nodes. If onenodefails, thenthe
(highly available) workload that was running on the node is made to
‘failover’ to another node in the cluster.

In order to achieveafailover, all nodesmust beableto accessthedata,
and thisisapre-requisiteto the service. Thisdoesn’'t mean that more

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

than one node needs to be able to access the data at the sametime, it
just means that critical data should not be stored in the disks or
memory of just one node. Otherwise, if the nodeweretofail, thedata
would be inaccessible until the node is recovered. There are two
principal means of achieving common access to critical data. Oneis
to replicate the data by mirroring it, and there are a number of
commercially-available systemsthat providethissort of support. The
other istoattachthenodesphysically to ashared databusandto attach
the disks containing the critical data to the bus. The shared bus is
normally based on SCSI technology, though there is increasing
support for higher bandwidth interconnects, such as Fibre Channel or
Memory Channel.

Both these approaches have their advantages and disadvantages. A
mirrored system can providegreater separation between nodes, which
is useful if the cause of a node failure is environmental, such as an
earthquake, landdlide, or power outagethat affectsawholecommunity.
The drawback with mirrored systems is that they are either slower
(sometimes as a result of the greater distance between nodes) or
asynchronous (which may mean that, at thetime of afailure, theonly
up-to-date copy of the datais at the node that has just been rendered
inaccessible). The advantages of a shared disk system are that it's
cheap and synchronous, its disadvantages are that it offers less
protection from environmental disasters, asonly one copy of thedata
exists. Another disadvantage of shared disksisthat the SCSI standard
restrictsthemaximum separation betweennodesto 25metrestypicaly,
though aseparation of asmuch asonekilometreispossibleif repeaters
are used.

To address all these issues is outside the scope of this article, which
will focuson shared disk HA clusters, but itisimportant for those that
require high availability to consider all possible risks and to develop
plansto counter or mitigateeachtype. A robust back-up procedureand
adisaster recovery plan can both complement a shared disk solution.

Aswell asrequiring accessto critical data on shared disk, each node
in the cluster also needsto be monitored by some other node, so that,
if anodeunexpectedly fails, themonitoring nodecanreport thefailure
and the remaining nodes in the cluster can initiate corrective action.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

Inatwo-nodecluster, both monitoring andinitiation are performed by
the surviving node, but more scalable cluster architectures can adopt
various topologies, including ‘rings and ‘trees’. For a node to be
monitored by another node, some kind of connection must exist
between the nodes. In genera this is implemented as an additional
‘private’ network between the nodes. There are alternatives, such as
using a public network or a SCSI channel, though a private network
generally benefits from being immune to other traffic and more
secure. A private network can be implemented cheaply by adding a
second Ethernet adapter to each node. In the case of a two-node
cluster, the nodes Ethernet adapters can be directly connected by a
crossover cable.

Thereareanumber of other featuresthat may befoundonHA clusters,
including multiple private and public networks (to avoid the network
being asingle point of failure) and RAID storage for data. The more
robust cluster offerings enforce these features and will prevent you
from configuring or starting acluster that has fewer than two private
networksor hasdatathat isstored on asingledrive. Such clusterscan
also employ advanced fault detection algorithms that are able to
analysetheresponse from anetwork to determinewhether afault lies
inthelocal network adapter, the cable (or network infrastructure), the
remote network adapter, or the remote node.

It is also necessary to consider the question of client connectivity. If
network clients connect to aservice or application running on anode
that subsequently fails, it is necessary somehow to move those
network connections to the node to which the service itself has been
moved. Moving network connections is not easy — in generd, it is
necessary to break the connections, which happens to be a natural
consequence of the failure of a node in TCP/IP, and to remake the
connectionswiththenodetowhichtheserviceor application hasbeen
moved. Clients, therefore, need to be written in such away that they
tolerate abroken connectionand will try, perhapsfor alimitedtimeor
number of attempts, to reconnect. For these reconnection attemptsto
succeed, the address (or name) to which they are trying to connect
must be transferred to the new node. Some clusters support the
failover of SNA (LU 6.2) LUNAMEs, while others support the
failover of |P addresses. Some clusters support both. The failover of

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

anlPaddressisknownas‘ |PAddressTakeover’ or IPAT. During | PAT,
network routing information isupdated, so that future packets sent to
the | P address being failed over arerouted to the MAC address of the
new node.

From an administrative point of view, it is simplest if a cluster is
treated asasingle computing resource. If thenodesareidentical inall
respects other than network address and name, and all have identical
versionsof softwareinstalled onthem, thenitisfar easier to configure
applications and servicesto run on the cluster in such away that they
provide the same functionality and performance regardless of which
nodethey arerunning on. Aspart of thissymmetry, itisalsopreferable
if the cluster has a common namespace and security model.

From a capacity planning point of view, it is important to provide
enough spare capacity on each node to enable it to cope with the
additional demandsthat could beplaced onit should other nodesinthe
cluster fail. Inthisregard, it isimportant to decide whether you want
to run the cluster in ‘ Active/Passive mode', which means that some
nodes merely act as standbys for other nodes, or in ‘fully Active
mode’, which meansthat all nodes have their own workload and also
act as standbys for one or more other nodes. A popular way of
distributing workload and standby responsibility inacluster isto run
the production workload (the work that has to be performed to keep
the businessgoing) on somenodes, while othershandleworkload that
is less critical (for example, development work) and also act as
standby nodes for those that run the production workload.

MQSERIESAND HA

Oneof thekey conceptsinan HA cluster isthe*unit of failover’. This
IS the term used to describe the smallest indivisible collection of
resources, data, and processesthat haveto be present onthe samenode
for thedesired servicetobeprovided. Theunit of failover differsfrom
one type of application or service to another. For a ssimple name
service, it may comprise one disk file that contains a directory or
database and a daemon that reads the file and responds to queries
arriving over an IP network. In thiscase it would be inappropriate to
move just thedisk file, the daemon, or the I P address to another node

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

—failover worksonly if they are all moved. In the case of MQSeries,
thesmallest unit of failover isaQueue Manager. Thisisbecause each
Queue Manager hasasinglerecovery log, whichisreplayed onrestart
to recover incomplete unitsof work. It would not make sensetotry to
move just a queue to a new node without moving the whole Queue
Manager to which the queue belongs.

When making an MQSeries Queue Manager highly available, as
many asthree different types of datamay need to be accessible by the
standby node. Two of them are both obvious and essential —they are
therecovery log and the queuefiles. These should be stored on shared
disk drives. Thethird type of datathat may be needed, depending on
the platform, is configuration settings, which may, for example, be
stored in amachine’s registry.

To make an M QSeries Queue Manager operate within an HA cluster,
and be able to move from one node to another, the Queue Manager
needs to be configured so that its log and queue files are on shared
disks. The Queue Manager could be created thisway or reconfigured
either manually or (preferably) programmatically. An example of the
latter isin the MQSeries SupportPac MC74 for Windows NT, which
provides Microsoft Cluster Server support and includes a utility that
will modify an existing Queue Manager whose files are on a local
drive and move the files to a shared drive (chosen by the user). The
utility also updatestherelevant registry entriesaccordingly. Thesame
utility is able to move files back to the local drive, should the need
arise.

Thestepsneededtointegrate M QSerieswithan HA cluster dependon
the platform that is used and the choice of clustering software. The
most common approach requires the creation of a number of scripts
that know how to start, stop, and monitor the state of a Queue
Manager. Theinterfaceto andimplementation of these scriptsdepends
on the specific clustering support that is being used, which in turn
generally varies from one platform to another, even if the basic
principles are fairly consistent.

Some platforms use a style of HA clustering that doesn’'t rely on
scripts, instead offering a choice of either very simple stop/start

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

actions, which are not customizable to a particular application or
service, or programming of a custom library of methods that must
conform to an interface specified by the cluster software. Most Unix
platformssupport script-styleclustering, whileWindowsNT supports
both the generic and custom approaches. Asit’susually better to stop
most types of service and application under controlled conditions, |
recommend the writing of scripts or a custom resource library to
handle this task. This has already been done for MQSeries on some
platforms — at the time of writing, the MQSeries SupportPac site
contains solutions for AIX, HP-UX, and Windows NT.

On most clustering systems, it's possible to configure the cluster so
that the cluster software performs an IP Address Takeover and
migrates(inother words, takescontrol of) shared disks. Consequently,
by the time MQSeries-specific scripts and methods are called, the
only thingsthat need to be handled are starting or stopping the Queue
Manager and starting or stopping any fault monitoring processesthat
are used to keep track of the Queue Manager. Before MQSeries
Version 5.1, it was a so necessary to restart channel s, though channel
states are now bound to the recovery log. When a Queue Manager is
restarted on a new node, channels maintain their previous states. An
exception to this is ‘Requester’ channels, though, in fairness, it's
unlikely that channels of this type will be used on a server cluster.

RELATIONSHIP TO MQSERIES QUEUE MANAGER CLUSTERS

M QSerieshasbuilt-in support for QueueManager Clusters. Theseare
different from HA clusters and the two are complementary. A Queue
Manager Cluster can be used to provide much simpler administration
and workload distributionand higher availability than waspreviously
available with normal distributed queueing.

The simpler administration isaresult of the introduction of * Cluster
Repositories'. Theseallow you to define one cluster-receiver channel
and one cluster-sender channel per Queue Manager, and MQSeries
takes care of therest. Thissimplifiesthe addition of Queue Managers
as they ‘learn’ from the repositories and additional channels are
automatically defined on your behalf. Furthermore, it is possible to
connect to any Cluster Queue M anager and put amessageonaCluster

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

Queue. Cluster Queue Managers can locate Cluster Queues on your
behalf, again using the repositories.

Theability to distributeworkload isderived from the ability to define
multiple instances of the same Cluster Queue on different Cluster
Queue Managers. A message that is put on a Cluster Queue of which
there are multiple instances can be automatically routed to any of the
Instances. Furthermore, you can definehow theworkload distribution
is handled. The improvement in the availability of Queue Manager
Clustersresultsfromthefact that, if anodefailsand a Cluster Queue
Manager becomes unavailable, other Cluster Queue Managers still
provide access to the remaining instances of the Cluster Queue. New
messages being put on the Cluster Queue just by-pass the failed
Instance. A message that was previously routed to the failed Queue
Manager and iswaiting on atransmit queueto makethefina ‘hop’ is
automatically re-routed to one of the surviving instances of the
Cluster Queue.

The limitation to how much Queue Manager Clusters can improve
avallability centresonwhat happensto messagesthat werepreviously
routed to the failed Cluster Queue Manager and have either been
received (and acknowledged) by that Queue Manager or have not yet
been acknowledged and are consequently ‘In-Doubt’. Unless these
messages were the subject of an MQGET before the failure, the
delivered messageswill be stored in thefailed instance of the Cluster
Queue. Such messages will not be retrievable until the failed Queue
Manager is brought back on-line. In-Doubt messages cannot be re-
routed without breaking thetransactional model provided by MQSeries
and so remain In-Doubt until the failed Queue Manager is brought
back on-line. Thisiswhere an HA cluster can help — if each node of
the Queue Manager Cluster has a standby node that, on failure, can
takeover andrestart any Queue Managersrunning onthefailed node,
then problemsassociated with messagesbeing held up, either because
they are In-Doubt or irretrievable, can be resolved quickly and
automatically.

Graham Wallis (wallisgd@hursley.ibm.com)
MQSeries Design
IBM Hursley (UK) © Xephon 2000

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

More MQSeries standards and guidelines

In my previousarticle (MQSeries coding standardsand guidelinesin
theMay 2000issueof MQSeriesUpdate), | discussedthecritical need
for reliable and secure middleware and showed the ability of IBM’s
MQSeries to meet this need relatively seamlessly. | also established
that, to use MQSeries effectively, you must implement standards and
guidelines for application construction before coding begins. This
makes it easier to build applications as much of the MQSeries
groundwork is aready laid. In addition, this method of educating
developers is relatively simple as key concepts are concisely
documented. My previous article presented essential background
information on messaging models, followed by eleven standards for
application construction. Thisarticle providesten guidelinesthat you
can use to establish successful application construction. As with my
previous article, it also explains the justification for each guideline.

TEN CONSTRUCTION GUIDELINES

The following ten guidelines are important as they help ensure that
M QSeriesapplicationsfunction predictably and are easy to maintain.
Whendrawingthemup, considerationwasgivento M QSeriesfeatures
and optionsthat enabl eeffectiveperf ormancemanagement, portability,
scalability, and reliability. This list of guidelines is by no means
exhaustive. Rather, it addresses some of the typical application
construction issues that arise when installation begins. Bear in mind
that aguidelineis arecommendation that you should follow in most
cases, but that exceptions are bound to arise. If you don't follow a
guideline, the effect on your organizationisunlikely to be disastrous.
However, the fact remains that your organization would also benefit
if you followed the guidelinesin most cases.

1 Applications should use the queue attributes BOTHRESH and
BOQNAME when checking the back-out count.

Overview
Whenamessageisretrieved under syncpoint andissubsequently

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

22

backed out (either explicitly or implicitly), the BackoutCount
field inthe Message Descriptor isincremented. |f BackoutCount
isabove apredefined threshold, alternative processing should be
used to handle the message. Applications may hard-code a
threshold to which BackoutCount is then compared, but amore
dynamic method uses the queue attributes BOTHRESH and
BOQNAME. These may be obtained using the MQIng API call.
Theback-out countisthencomparedtotheBOTHRESH attribute's
value. If it exceedsthisvalue, the messageismoved to the queue
named in the BOQNAME attribute for subsequent processing.

Justification

Externalizing both the back-out count threshold and the pointer
to the queue where the problematic messageis moved makesthe
application more flexible and less likely to require changes if
processing conditions change.

Applications should check the FeedBack code after MQGETS.
Overview

MQSeries enables applications to communicate through the
FeedBack codeinthe M essage Descriptor. Whilethiscodecan be
used to control applications, if the applicationsthemselvesdon’t
check it, then this feature can’t be relied upon and is, therefore,
unavailable. After receiving amessage successfully, applications
should execute a block of code that checks the Message
Descriptor’s FeedBack field. Additional processing may then be
carried out, based on thevalue of thisfield. An exampleof thisis
aproduct that usesMQFB_QUITtosendasignal toanapplication
that it should end gracefully. Another example would be an
application that defines codes that are used to enable or disable
additional processing, such aslogging.

Justification

Checking the FeedBack code will result in more flexible and
dynamic applications.

Do not use queue-defined message persistence — applications
should, instead, explicitly set a message’s persistence.

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Overview

Message persistence is an attribute that is message-specific. In
most cases, only the originator of the message knowsthe impact
of losingit. Therefore, theoriginator should explicitly set message
persistence and avoid using the queue-defined value. Consider
the following example: an application that generates update
messages happens to use the queue-defined value of message
persistence. Thisapplicationisnow vulnerableto thevalueof the
gueue attribute DEFPS ST —if thisisunintentionally set to ‘ no’,
update messages may be | ost.

Justification

Using the queue-defined value of message persistence will not
ensurethat amessage’spersistenceisset to an appropriate value.
Setting this value explicitly ensures that it is appropriate to the
needs of the originating application.

4 Applications should set the persistence of inquiry messages to
‘no’.
Overview

In most cases, there are no adverse consequences if an inquiry
messageislost, asit’susually acceptabl eto expect therequesting
application to re-send it. Therefore, there is no need to set the
persistenceattribute of aninquiry messagesto ‘yes asthe Queue
Manager doesn’t need to restore it. Making inquiry messages
non-persistent prevents them from being logged and decreases
the impact on the network.

Justification

This reduces MQSeries resource consumption and increases
throughput.

5 When sending messages between applications on heterogeneous
systems, use string format.

Overview
A benefit of MQSeries is that it has built-in support for data

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

24

conversion betweendifferent character setsandtypesof encoding.
For MQSeries to convert a message successfully, it must know
the CCID and encoding of both the sending and receiving
systems, as well as the message’s format. In most cases, the
CC3D and encoding are handled automatically and thereis no
need for the application to process them. However, the message
format must beexplicitly setfor M QSeriestocarry outaconversion
request. A number of formatsship with product andwill allow for
conversion. These areindicated by the eight-character constants
MQFMT _*.

Justification

MQFMT _STRING is the only format that both allows the
application data portion of an MQSeries message to be anything
you want and permits conversion. The data, however, must bein
string format and is further restricted to the subset of characters
that is ‘displayable’.

Inquiry and reply messages should havetheir expiry attribute set
to avoid stale messages.
Overview

In most cases, requesting applications expect replies to arrive
withinareasonabletimeperiod. If repliesdonot arriveinatimely
manner, then the request is either aborted or re-sent by the
requesting application. If request messages and their replies are
not processed in aspecified timeframe, they should be discarded
asthey are stale.

Justification

Setting messages to expire if they are not processed within a
specified timeframe saves resources. This setting prevents
messages from accumulating when the applications or systems
that are responsible for replying to them are not available.

Set the message type to reflect the message content.
Overview

M QSeries does not enforce the use of the message type attribute.

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Setting it in the Message Descriptor field —whether the message
is a datagram, request, reply, or report, for example — can help
determine how the message should be processed.

Justification

Setting themessagetypeattributei mprovesmessage management.
Thisattribute can also be used when the messages expected on a
reply queue may vary depending on the options in place (for
example, reports and replies going to the same queue).

8 By default, usethe convert option when getting messagesfrom a
gueue unless message conversionisnever required. Notethat the
format MQFMT_NONE may be used for individual messages
that should not be converted.

Overview

MQSeries providesbuilt-infacilitiesto perform dataconversion
between heterogeneous environments. These facilities may be
invoked either by coding the convert parameter on the sender-
side channel to ‘yes’ or by using the convert option on the
MQGET call (MQGMO_CONVERT). Thereceiving application
should performthisconversion, not thechannel. If noconversion
isrequired, the Message Descriptor’s format field should be set
to‘none’ (MQFMT_NONE). Thisoption suppresses conversion.

Justification

By explicitly specifying dataconversiononthe MQGET call and
avoiding the channel convert parameter, you prevent messages
from being sent to the system’s undeliverable message queue.
Also, if the message channel agent is used to convert messages,
channel performance decreases and effective throughput is
reduced.

9 Applications should not over-allocate buffer space for MQGET
and MQPUT requests.

Overview

The MQSeries Server alocates memory based on the buffer size
specified on the MQGET or MQPUT call. If applications over-

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

10

allocatethe buffer space on aget or put operation, then the queue
manager will allocate memory to handle these requests, wasting
memory.

Justification

This reduces memory requirements of the queue manager
subsystem.

Applications that handle request queues should open the queues
for inquiry.

Overview

An application handling request queues should check the back-
out count after successfully getting a message. The application
may also need to inquire about the back-out threshold and/or
back-out queue attributes in order to determine whether the
message hasexceeded apre-determined back-out value. Toallow
this, the application should open the input queue for inquiry as
well asinput.

Justification

This alows for both MQGET and MQINQ (inquiry) callson a
queue.

CONCLUSION

The guidelines set out in this article are not universal — some may
makesensefor your organization whileothersmay not. It’salsoworth
remembering that thislist isby no means comprehensive. You should
research the optionsthat are available and carefully choose those that
reflect the goals of your organization.

Marc Verhiel Marc_(\Verhiel @candle.com)
Candle Corporation (USA) © Candle 2000

26

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Modifying and setting up a batch trigger monitor

As a result of the increased use of MQSeries in our company —
especially inthehandling of EDI messages—therequirement arosefor
amethod of executing abatch job when one or more messagesarrive
inaqueue. Whilewedid not have amechanismin place at thetimeto
implement this functionality, we were aware of the existence of
something called a * batch trigger monitor’, and that sounded like it
would do the job.

So weinvestigated the subject and found that abatch trigger monitor
is an MQSeries trigger monitor that will indeed start batch jobs or
schedules when messages arrive in atriggered queue.

Theprocessislikethat of aClICSor IMStrigger monitor, except that,
instead of starting a CICS or IMS transaction when a message is
placed inaninitiation queue, abatch trigger monitor will start abatch
job (or interface with some other function to start a batch job).

THE PROCESS

When amessage is MQPUT in aqueuethat has both triggering set to
‘Y’ and a batch trigger monitor’s InitQ defined, MQSeries places a
trigger message in the defined InitQ. The batch trigger monitor waits
for a message to be placed on its InitQ (with an MQGET Wait
Interval), retrieving the trigger message when it arrives. The batch
trigger monitor then starts the required job.

In our case, there is really no need for an additional process (an
MQSeries definition). While a process definition could be used to
provideavaluefor that particular queue (something that could also be
achieved using trigger data, for that matter), our implementation does
not require this,

OUR REQUIREMENTS

We had certain requirements that needed to be met to implement this
process successfully at our company. They were:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

 Tomakethe processassimple aspossible—in other words, stick
to the ‘KISS principle (Keep It Smple, Stupid).

e To use our existing job scheduling product to handle all job
starting and scheduling. This ensures a centrally controlled and
(better still) automatically tracked and monitored process. This
requirement meanswe cannot submit any jobsor start any started
tasks and must instead find a way to interface with our job
scheduler.

» Tofindsourcecodeinalanguagewithwhichwewerecomfortable,
as we had to modify the code based on our other requirements.

OUR IMPLEMENTATION

The IBM-provided Batch Trigger Monitor in Support Pac MA12isa
COBOL implementation that writes JCL from aDD statement to the
INTRDRtokick off abatchjob. Whilethisisfine, wewanted aprocess
that would interface with our MV S scheduler instead, as this would
then be responsible for kicking off the required schedule. We used a
schedule instead of just one batch job in case we need more than one
job to process the incoming message or messages.

We found the source for an Assembler Batch Trigger Monitor in one
of the M QSeries Red Booksthat worked asimilar way tothe COBOL
offering. One major difference was that this processissued an MV S
START command to kick off the job. As we were more comfortable
with Assembler, and the method used to start the batch job was closer
to our preferred method, we contacted the author (Dave Shogren of
IBM) and asked him if he could send us the source code for the
program. He agreed and sent it along with an accompanying source
module that was aso required to get the process working (this
additional program was a subtask that was attached to send aWTOR
and process the responses).

We looked at the code and found that we would have to make three
major changesto it to satisfy our requirements and fix a problem:

1 We changed the Sart process (which directly started ajob) to a
WTOthat wouldjustindicatethat amessagewasfoundinabatch-
triggered queue. We then arranged for our MV'S automation

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

packageto catch this message and contact the MV S schedul er to
kick off the schedule (see the sample below).

When attaching the subtask that issuesthe WTOR, we passed the
gueue manager name so that the WTOR message would contain
that valueinitsbody. Thiswasrequiredto allow usto distinguish
between the various batch trigger monitorswe have running (we
useoneper queue manager), sinceweautomatethestart-up of our
batch trigger monitors.

We aso had to change the MQGET Wait Interval process to a
S GNAL process, astheorigina Wait processwasn’t working. So
now, we issue an MQGET with the SGNAL option, wait on the
ECB, and re-issue the MQGET to retrieve the trigger message,
when it’s posted.

IMPLEMENTATION STEPS

The changes required to implement the batch trigger monitor are as
follows:

Code and test the changes to the assembler code and link the
modulesinto aload library that is accessible by the batch trigger
monitor Proc.

Implement the changes needed by the automation software
(rules, scripts, etc).

I mplement the changes needed by the scheduler software. This
includes a table that the scheduler uses to kick off the required
schedul e based on the queue namein the message from the batch
trigger monitor.

Set up the required MQSeries definitions (IniltQ and Process)
and addtrigger parameterstothequeuesthat requirethe’kick off’
process.

Ensure MQSeries security rules are in place to allow the batch
trigger monitor to accessits InitQ.

Create the Proc for the batch trigger monitor.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

 Arrange for a user-id, ‘Down’ and ‘Up’ instructions, and
performanceparametersfor thebatchtrigger monitor STC (Started
Task).

» Ensurethat thebatchtrigger monitor isstarted when required and
stopped during an outage.

Note that a batch trigger monitor should be used only in certain
situations—namely when messagesarearrivinginaqueuethat require
immediate processing. If messagesarriveinaqueueand requirerapid
processing, but not to such an extent asto warrant the use of atrigger,
then my adviceistoleavethem queued and scheduleabatchjobtorun
on aregular basisto process them.

Below are samples of the MQSeries set-up items.

Trigger monitor (STC) messagesat start-up and kick off the schedul er
messages:

+MQM04: PARAMETERS ACCEPTED. MONITOR WILL CONNECT TO : MCElL
921 MCE1l: Batch Trigger Monitor Running. To Terminate reply "STOP"
+MQM50 MCE1: TRIGGER SCHEDULE FOR CISR.MKTT404I

The MQMS50 message is the one that’s trapped by our automation
package; the other two messages are the batch trigger monitor start-

Up Messages.

BATCH TRIGGER MONITOR PROC

// PROC

//*

/ /**
//* REVISION:TSSPEEG # 0001 04 JUNE 1998 (NEW PROC) *
/ /**
/1% IBM MQSeries for MVS/ESA *
//* STARTED TASK PROCEDURE FOR THE BATCH TRIGGER MONITOR *

/ /**

/1%
//PROCSTEP EXEC PGM=MQMMON,

// PARM="MCP1,BATCH.MONITOR.INITQ"
//STEPLIB DD DISP=SHR,DSN=SYSMQS.SUPA.LOAD
1/ DD DISP=SHR,DSN=SYSMQS.MCP1.AUTH

//SYSPRINT DD SYSQUT=*
//SYSUDUMP DD SYSOQUT=*

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

- MQSeries definitions

DEFINE NOREPLACE
QLOCAL("BATCH.MONITOR.INITQ")
STGCLASS('SYSTEM")

DESCR('Batch Trigger Monitor Initiation Queue')

PUT(ENABLED)
DEFPRTY(5)
DEFPSIST(NO)
MAXDEPTH(100)
PROCESS(" ")
NOTRIGGER
MAXMSGL(1000)
BOTHRESH(0)
BOQNAME(' ")
INITQC" ")

USAGE (NORMAL)
SHARE
DEFSOPT(EXCL)
MSGDLVSQ(FIFO)
RETINTVL(999999999)
TRIGTYPE(NONE)
TRIGDPTH(1)
TRIGMPRI(0)
TRIGDATA(C" ")
NOHARDENBO
GET(ENABLED)
QDEPTHHI(80)
QDEPTHLO(40)
QDPMAXEV (ENABLED)
QDPHIEV(DISABLED)
QDPLOEV(DISABLED)
QSVCINT(999999999)
QSVCIEV(NONE)

DEFINE NOREPLACE
PROCESS("BATCH.MONITOR.PROC")
DESCR('Process for starting Scheduled
APPLTYPE('MVS")

APPLICID(" ")

USERDATA(' ")

ENVRDATA(' ")

Batch Production Jobs')

Scott Morningstar
Computer Systems Officer
CN (Canada)

© Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

31

MQSeries Everyplace

INTRODUCTION

MQSeries Everyplace (MQSE — it was originally launched as
‘MQSeries Everywhere') is the newest member of the MQSeries
family. It’ salightweight derivative of MQSeriestargeted at handheld
computers, telephones, personal information managers, PDAS, and
the like. Its main objective is to provide reliable messaging and
gueuing between the above types of device and MQSE servers, plus
connectivity to MQSeries, MQSeries Integrator, and MQSeries
Workflow.

Thisarticle, alongwith afollow-up articleon MQSE configurationin
next month’sissue, examinestheoriginsof MQSE anditsplaceinthe
MQSeries family. This includes consideration of:

 What are the differences between MQSeries and MQSE
* How they’ll work together

e The broad shape and availability of MQSE

* Possible applications.

THE UNDERLYING CONCEPT

The development of MQSeries Everyplace started around 1998 as
part of IBM’s ‘Pervasive Computing’ initiative. Today, the MQSE
project iswell advanced and Version 1.0 for Windows is now out.

As a member of the MQSeries family, MQSE provides entry-level
messaging and message queuing. In practice this means that, with
MQSE, IBM will offer reliable messaging software that is compact
enough for the smallest devices — MQSE has a target base memory
requirement of just 70 kilobytes (about two orders of magnitude
smaller than standard M QSeries). That being said, if you add some of
the additional functions, such as queue managers and security, the
base memory requirement grows, so that a reasonably-featured
implementation of MQSE will probably need between 100 and 250

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

kilobytes of memory, though thisis still acceptable for both today’s
and tomorrow’s handheld devices.

M QSE hasnot forgotten M QSeries. What M QSE hasincommonwith
MQSeriesisthat it:

* Isequally general purpose (perhaps more so)
« Offersthe same reliable, once-only messaging model
Workswith MQSeries itself.

MQSE is, however, built on abrand new code base. Opting to deliver
the product thisway has enabled IBM to take advantage of many of
the lessons learned from M QSeries over the past decade.

In addition, MQSE provides small-footprint messaging capabilities
to other IBM offerings. For example, DB2 Everywhere (DB2E)
makes use of MQSE's communications technology. Other 1BM
Pervasive Computing solutions are also likely to exploit MQSE, as
partof IBM’seffortsto capturewhat L ou Gerstner hasdescribed asthe
opportunity to connect “abillion people interacting with amillion e-
businesses with atrillion intelligent devices’.

THE MARKET FOR MQSE

There are four basic reasons to explain why IBM’s customers and
partnersneed MQSE. Thefirstissimply theability to exploit reliable
messaging and queuing using small devices.

This is important because it allows organizations to build their
businesses and applications around such capabilities. While many
organizations already use MQSeries, they are now looking to extend
messaging and queuing out to the new ranges of device — mobile
phones, PDAs etc —that will support future geographically dispersed
business.

The second reason concerns the use of mobile computing devicesin
“hostilecommunicationsenvironments', wherepeoplehavetogointo
tunnels, down manholes, or to locations supported by poor
communications infrastructures. The common factors here are that:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

e Communications have to work in a hostile environment.

e Interruptions are frequent (both in terms of transmissions and
work patterns).

 Datavolumesare small.
» Locations are dispersed and diverse.

‘Big’ MQSeries was not designed to work in a world like this. It
presumes that a ‘fat’ network is mostly present and available and
much of thework involved with M QSeriesfocuses on how to recover
from those few occasions during which the network is not working.

By contrast, the hostile communications environments for which
MQSE isintended comprisenetworksthat areassumedto beinherently
unreliable and lacking in capacity. MQSE’s design addresses these
needs without losing key M QSeries capabilities.

Thethird reason for interest in MQSE issimply the need for physical
mobility. Thisisrequired by those who need to connect to a network
from different places at different times: today it may be London,

tomorrow San Francisco, andtheday after Tokyo. Supportingreliable
roaming communication links in a flexible way is a significant
development goal, and the result is that MQSE’s solution is
fundamentally different from MQSeries approach.

Finally, thefourth reason for interest in MQSE isthat many usersand
| T managers want to reduce the administrative overhead associated
with a messaging infrastructure. These people don’'t want to know
about channels, trigger monitors, and all the other paraphernaliathat
accompaniesthe standard M QSeriesproduct. They want to minimize
the number of things that may go wrong and need administrators to
fix. Instead, they want acommunications environment that’s simple,
reliable, and transparent.

APPLICATION SCENARIOS

There appear to be four broad categories of application for which
MQSE may be relevant:

* Personal productivity applications

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

o Consumer applications
 Mobile workforce applications
e Control applications.

The first of these is reasonably familiar — for instance, replicating
mail, updating calendars, updating databases (for example, on sales,
prices and inventory), taking orders, etc. People who today lug a
laptop around typically want something smaller. But that smaller
device, beitaPDA or anenhanced phoneor whatever comesnext, will
only aid the task in hand if it benefits from dependable and reliable
communication.

The second and third categories embrace consumer applications and
themobileworkforce. For example, supermarkets might want to give
away MQSE-equipped devices to customers in return for customer
loyalty (essentially the customer receives asmall, cheap device with
an attractive user interface that’s proprietary to one store chain).
Similarly, you canimaginethe application of custom devicesneeding
consistent communications in a mobile workforce environment.
Examples of industries where such devices would provide benefits
includetravel, ticketing, restaurants(waitersordering fromthekitchen),
package delivery, etc. In the case of package delivery, a recipient
might sign for adelivery and that signature is then (within seconds)
transmitted directly to the originator.

Finally, control applicationsarelikely to be asource of major interest
in MQSE. Oil, gas, water, electricity and similar utility-type
organizations have a need to be able to send and receive sensor
information from difficult locations.

USER REQUIREMENTS

Asmight beimagined fromtherangeand diversity of theabove, there
isalong list of requirements that must be satisfied. For MQSE to be
successful, it needs to deliver on as many of them asis practical (as
well ason some of therequirements‘inherited’ from ‘big’ MQSeries
—functionsthat customersrequested but have not yet been delivered,
asthelogical place for themisin anew product like MQSE).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

Thefirst requirementisasmall footprint. WhileIBM’sinitial objective
wastofit the baseproduct to 50 KB, therevised requirement of 70 KB
doesn’t seem that much of an increase given that some of the more
Interesting functionswill take atypical implementation up to the 100
KB t0250 KB rangementioned already (thereisevenapossibility that
the core product will shrink below 70 KB threshold when MQSE
ships).

The second requirement isfor dependable messaging in both reliable
and unreliablecommuni cationsenvironments, together with automatic
recovery and support for TCP/IP, HTTP, and WAP (Wireless
Application Protocol). Of these, perhaps the most interesting is the
HTTPsupport. Therationale behind requiring thisprotocol issimple:
many organi zationsalready possessfirewallsconfiguredfor HTTP. If
MQSE can providereliable communication viaHT TP, aminimum of
reconfiguration and testing is needed. This is, therefore, a mgor
benefit that may even make up for some of HTTP' s inadequacies.

A third requirement is for atight, efficient protocol that resultsin as
small a message as possible being sent. This was (and still is) not a
strength of‘big’ MQSeries, which shows a clear preference for fat
communication pipes, though thisis not, in fairness, aproblemin a
datacentre environment. By contrast, bandwidth may be narrow and/
or expensiveinhostileenvironments, andfat pipesmay beuneconomic,
impractical, or both.

Thisexplainswhy IBM devised anew, efficient protocol for MQSE.
Indeed, the justification is demonstrated in a control application
example. If datafrom remote pumping stations has to be transmitted
by satellite, reducing each message's length by just a few bytes can
deliver mgjor cost savings aswell asreducing the bandwidth needed.

In MQSE, IBM appears to have achieved this without losing the
reliable messaging and queuing for which the MQSeries family is
known.

CODE BASESAND PLATFORMS

IBM initialy thought that one code base would be sufficient for the
entire MQSE family. By building the product to run on aJavaVirtual

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Machine (JVM), IBM hoped it would work on multiple operating
systems. This, however, turned out to be less than straightforward.

Theprincipal problemwassize: any JVM takes up valuable memory
initsown right. In addition, MQSE would sit on top of the VM. To
add to this, the application that is the raison d’ étre of the customer’s
investment would sit on top of the combined MQSE and JVM.

Therisk wasthat, by requiringaJV M beneath M QSE, therewould be
toolittlespaceleft on somekey platformsfor applications. Furthermore,
several target devices(likethePalmPilot or specific controllers) don't
support multi-threading or have peculiar memory model sthat don’ t fit
the VM model.

Intheend, IBM decided to accept the burden of delivering MQSE on
several small operating systems, including the following:

* Windows (CE, 95/98, Windows NT, Windows 2000)
e Java

e PamOS

« EPOC (Psion, etc.)

e Zaurus (Sharp).

The downside is that, in order to support such a wide variety of
environments without an intermediate VM, IBM has to maintain
more than one code base. That being said, none of the code baseswill
bethat large (remember that MQSE isonly 70KB to 250 KB intotal),
so the maintenance of the various code bases shouldn’t present IBM
with too onerous a task.

OPERATIONAL CONSIDERATIONS

MQSE provides assured delivery for both synchronous and
asynchronous messaging and message queuing. In MQSE,
synchronous messaging is additional to what the standard M QSeries
product offers. Providing this functionality enables a sending
application to know in real-time that amessage has arrived (delivery
occurs when the message is queued at the destination — not at the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

sender, as would be the case in the asynchronous model). Banking
applications, in particular, have for sometime needed this capability.

To facilitate a broader range of operational possibilities, MQSE also
includes:

* Roaming support via device-to-device connectivity, as well as
device-to-server connectivity.

* Remote and local queue access, including support for mailbox-
type delivery.

 Minimal administration needs alongside high availability.

* Policy-based operation/administrationfor customizingtheuser’s
environment.

In the case of the last of the above points, MQSE even addresses
circumstanceslikefading batteries. You can set policiestotell MQSE
what prioritiesto observe—and which messagesto send—if, say, only
five minutes of battery power remain.

An equally important operational requirement is compatibility with
existing M QSeriesinstall ations, though this requirement bringswith
it @ number of complications. For example, the nature of the
environment in which MQSE has to work (MQSE must operate in
diverse and exposed environments, including the Internet) demands
avery strong security implementation. By contrast, standard M QSeries
is generally protected by a corporate | S security structure.

Theresult isthat IBM has built security directly into MQSE. Out of
the box, it will include support for:

e Authentication

* Encryption

* Non-repudiation
e Compression.

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ELABORATING ON SECURITY

To achieve its security objectives, MQSE delivers security at three
distinct levels, providing security in ways that enable potential users
and developers to select and shape how the levels are applied.

Thethree levels are:

* Determinationof identity (thereareanumber of optionsavailable
toachievethis, suchastheuseof certificatesor authenticationvia
operating system services).

* Queue-based security, where you have some target queuethat is
going to receive messages. To make everything secure, al you
need to do is to set the attributes for encryption, compression,
and/or authentication at the target queue (and everything else
that’s needed is handled automatically and transparently — even
to the point of creating new channels to assure end-to-end
Security).

 Message-based security, which is independent of both where
messages are going to be sent and the channel sand linksthrough
which they may pass. Thisrequires application-level encryption
and authentication, and MQSE supplies the necessary services
for this,

For message-based security MQSE uses public keysand asymmetric
encryption. Whilethisissl ower than queue-based security, youend up
with both proof of the sender’s identity and protection for the
message’ s contents.

Charles Brett
President
C3B Consulting (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

July 1999 — June 2000 index

Below isan index of all topics covered in MQ Update since Issue 1,
July 1999. The numbers in bold are issue numbers and the onesin
brackets are page numbers. Back issues of MQ Update are available
from Xephon — see page 2 for details.

Topic Issue (page)
Administration 8 (36-47), 9 (26-35)
Alias Queue 7 (45)
AMI 7 (3-22)
API 7 (8)
Message 7 (5-6)
Policy 7(7)
Service 7 (6-7)
XML 709

Application Messaging Interface
See AM1

ARM 1(4)
Automatic Restart Manage
See ARM
Batch
Trigger Monitor 4 (25-40),
12 (27-31)
Bootstrap datasets
See BSDS
BSDS
Recovery 1(34-43), 2 (18-31),
5 (29-47), 6 (8-20),
11 (50-51)
Channels
Naming standards 5 (12-16)
CICS 7 (43)
Client/server 4 (16-19)
Monitoring 10 (31-43), 11 (30-42)
PLTPI 10 (3-9)
Trigger Monitor 4 (3-16), 8 (6)
Circular logs
Recovery 3 (42-43)

Client Attachment Feature
9 (39), 10 (30)

Client for Java 6 (23)

Topic Issue (page)
Client/server

CICS/ESA 4 (16-19)

MQ@Series for OS /390 2 (3-10)

REXX 4 (41-47)
Coding standards

11 (42-50), 12 (21-26)

Correllld 6(4),7012)
CSQOREXX

Object definitions 5(29)
DB2 Everywhere

See DB2E
DB2E

MQSE 12 (33)
Dead Letter Queue 7 (44)
Development

Standards 11 (42-50), 12 (21-26)

Distributed Queue Management
See DQM

DQM 7 (43), 8 (6), 9 (39)
DWD 1(7-10)
Dynamic Queue 7 (45)

Dynamic Workload Distribution
See DWD

e-mail

Lotus Notes 8 (14-35)

Utility 11 (3-29)
EJB 10 (13)
Enterprise Java Beans

See EJB
Event Queue 7 (44)
FFST 1 (19-20)
File transfer 6 (3-8)

First Failure Support Technology
See FFST

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Topic Issue (page)
HA 12 (12-20)
IPAT 12 (17)
QM Clusters 12 (19-20), 12 (12)
High Availability
See HA
HTTP
MQ@QSE 12 (36)
Initiation Queue 7 (44)

Intern’l Program Licence Agreement
See IPLA

IP Address Takeover
See IPAT
IPAT 12 (17)
IPLA 8(3)
ISPF 9(41-42)
MQSeries tools 9 (19-25), 10 (14-23)
Object definitions 3 (25)
System generator 5 (16-28),

6 (39-51), 7 (23-42)

Java 1(5), 11 (3-29)
EJB 10 (13)
MQ@SE 12 (36-37)
PCF programming 3 (3-25),

6 (20-39)

Java Messaging Service
See JMS
Java Naming and Directory Service

See JNDI
Java Native Interface

See JNI
Java Transaction API

See JTA
JMS 11 (3-29)
JMSAdmin 11 (5), 11 (10-11)
JNDI 11 (3-29)
JNI 11 (3)
JTA 11 (6)
LANGNAU Consulting 8 (14)
LDAP

JNDI 11 (5)
LDS

Recovery 1(33-34)
Local Queue 7 (44)

Topic Issue (page)
Lotus Notes 8 (14-35)
MQEI 8 (15)
MQLSX 8 (15)
Trigger Monitor 8 (16), 8 (20)

Lotus Notes MQSeries Enterprise
See MQEI

LotusScript Extensions for MQSeries
See MQLSX

MCAUSER 1(14), 2(11-12)

Message Manager Objects 1 (26-32)
Message segmentation 6 (3)
Messageld 6(4),7(12)
Messaging models 11 (43-44),

12 (21-26)

Microsoft Cluster Server
See MSCS

Microsoft Management Console
See MMC

Microsoft SNA Server

See SNA Server
Microsoft Word

See MS Word
MMC 1(6)
Model Queue 7 (45)
Monitoring 4 (20-25)

Utility 10 (31-43), 11 (30-42)
MQCONN

Thread affinity 1(23-32)
MQControl 2(4)
MQEI

Lotus Notes 8 (15)
MQI

Client/server options 2(9)
mqic.dll

Visual Basic 5(3)
mgqicstd.dll

Visual Basic 8(7)
MQLSX 8 (20)

Lotus Notes 8 (15)
mqgmecstd.dll

Visual Basic 8(7)
MQOPEN

Reason code 2018 1 (24-25)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

Topic Issue (page)

MQSC 12 (3-12)
MQSE 12 (32-39)
DB2E 12 (33)
HTTP 12 (36)
WAP 12 (36)
MQSeries
Announcements 1(3-10)
Version 2.0 1 (20), 1(23)
Version 5.1 1(4-7),2(5),6 (3),
7 (47), 8 (36-47), 8 (47),
9 (26-35), 10 (3-9)
MQSeries DLL
Visual Basic 5(3-4)
MQSeries Everyplace
See MQSE
MQSeries for MVS/ESA 7 (42-47),
8 (36-47), 9 (26-35)
Version 1.1 5(16)
Version 1.2 8(44)
Recovery 11 (50-51)
MQSeries for OS/390 10 (23-30),
10 (31-43), 11 (30-42)
ARM 1(4)
Client/server 2 (3-10), 4 (16-19)
MS Word 8 (3-14)
Object definitions 3 (25-32)
Recovery 1 (32-43), 2 (18-31)
RRS 1(3-4)
TCP/IP 2(17)
Version 1.2 2 (5)
Version 1.4 9 (36-43)
Version 2.1 1(3-4)
MQSeries Integrator 4(17)
MS Word 8 (3-14)
MSCS 12 (18)
Namelists
Naming standards 5 (12-16)
Naming convention 5(11-16)
0S/390 9 (36-39)
Nastel
MVS-PCF bridge 3(3)
NetView/AOC 4 (20), 4 (22)

Topic Issue (page)
NT

Screen resolution 8(47)

Security 1(19-23)
OAM 1(10-18), 2 (13-16)
Object Authority Manager

See OAM
Object definitions

BSDS 5 (29-47), 6 (8-20),

11 (50-51)

Copying 3 (25-32)
Object REXX 4(41)
Open Applications Group 7 (3)
Oracle

Transaction processing 9 (3-7)
PCF 8 (36-37)
PCF programming 3 (3-25), 6 (20-39)
Perl 12 (3-12)

Perl API 1.06 7 (48)
Processes

Naming standards 5 (12-16)

Program Temporary Fix
See PTF

Programmable Command Format
See PCF

PTF

PQO6157 2 (6)
Publish-and-subscribe 1(6)
QM Clusters 12 (12), 12 (19-20)
Queues

Naming standards 5 (12-16)
Queue Manager Clusters

See QM Clusters

RACF 1(10-18),4 (17),9 (40-41)
RBA 1(34),1(37),2(19)
Receiver Channel 7 (46)
Recovery
BSDS 1 (34-43), 2 (18-31),
5 (29-47), 6 (8-20), 11 (50-51)
M@Series for OS /390 1 (32-43),
2 (18-31)
Unix 3 (42-43)
Reference messages 6 (3)

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Topic Issue (page)
Relative Byte Address

See RBA

Remote Queue 7 (45)
Resource Recovery Service

See RRS
REXX

Client/server 4(41-47)
REXX/MQ 4 (20)
RRS 1(3-4)
runmgasc 8 (36),

8 (42-44), 12 (3-12)

SCIC Consulting 4 (28)

Security 1(10-23), 2 (10-17)
MCAUSER 1(14),2(11-12)
NT 1(19-23)
OAM 1 (10-18), 2 (13-16)
RACF 1(10-18)
setmqaut 2 (13-14)
strmqgm 2(13)
Tandem 1(16)

Sender Channel 7 (46)

setmqaut 2(13-14)

SMS 9 (42)

SNA Server 10 (3)

SNMP 6 (22)

Stress testing
Utility 2 (31-43), 3(33-42)

strmqcsv 8 (37)

strmqm 2(13)

SupportPac 6 (23), 8(3)
MA04 8(7)
MAOF 7(3),7(5),7(9)
MAOG 7(3),7(9)
MA12 4 (25), 12 (28)
MA7D 8 (20)
MAT7E 8 (20)
MAS8S8 11 (9-11)
MAC4 8 (20)
MAC6 7 (47)
MAC7 7 (47)
MACS8 7 (47)
MAC9 7 (47)

Topic Issue (page)
SupportPac (continued)

MC74 12 (18)
Sysplex 10 (26-27)
System Default Queue 7 (44)
System generator

Utility 5 (16-28),

6 (39-51), 7(23-42)
System management

Utility 3 (3-25)
Tandem

Security 1(16)
TCP/IP 2 (17)
Threads

Connection handles 1(23-32)
Transaction processing 9 (3-18)
Transmission Queue 7 (44)
Trigger Monitor

Batch 4 (25-40), 12 (27-31)

CICS 4 (3-16), 8 (6)

Lotus Notes 8 (16), 8 (20)

MVS/ESA 4 (25-40)
Unit of failover 12 (17-18)
Unix

Recovery 3 (42-43)

Trigger Monitor 4 (3-16)
Visual Basic 5(3-11), 8 (7-14)

mqic.dll 5(@3)

mgqicstd.dll 8(7)

mqgmecstd.dll 8(7)

M@Series DLL 5(3-4)
VSAM linear datasets

See LDS
VTAM 9 (41), 10 (28-29)
WAP

MQSE 12 (36)
Web

Enabling 10 (9-14)
XA specification

Transaction processing 9 (3-18)
XML

AMI 7(9)

JMS 11 (5)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

MQ news

IBM has made a number of substantial
MQSeries announcements, including the
first release of MQSE, a version of
MQSeries V5.1 for Compaq Trueb4 Unix,
MQSeries for Linux V5.1 Technology
Release, apreview version of MQSeriesfor
0S/390 V2.2, and MQSeries Workflow
V3.2.2 (more details on these products will
be published in next month’ s issue).

IBM also announced Microsoft Cluster
Server (MSCS) support for MQSeries for
Windows NT V5.1, which isin addition to
the clustering support already available for
MQSeries for 0S/390 V2.1 and AIX V5.1.
Also new is support for the Microsoft
Transaction Server (MTS), which alows
COM objects registered under MTS to call
MQSeries. All COM/MT Sthreadingmodels
are supported.

Finally, IBM announced support for Java
Message Service (IMS), aset of Javaclasses
that allow applications to send MQSeries
messagesto either existing M QSeriesor new
JMS applications.

For further information contact your local
IBM representative.

* % %

Computer Network Technology’s
Enterprise/Access software now supports
MQSeries, allowing it to speed up the
deployment of MQSeries and, it’s claimed,
reduce the cost associated with providing
MQSeries access to mainframe and
midrange systems.

Enterprise/Access software provides
enterprise information real-time on-line,
enabling faster integration with core
systems.

No other details were forthcoming.

For further information contact:

Computer Network Technology Corp, 605N
Highway 169, Suite 800, Minneapolis, MN
55441, USA

Tel: +1 612 797 6000

Fax: +1 612 797 6800

Web: http://www.cnt.com

* k% %

Financial Fusion has announced Project
Indigo, ajointinitiativeto build connectivity
between its Web, wireless, and server
applications and IBM’s Application
Framework for e-Business, including
MQSeries, AlX, DB2 Universal Database,
and WebSphere application server family as
well asthe /390 enterprise server platform.

The two will target Global 1000 financial
ingtitutionswithasingleintegrated platform.
The suite will be promoted and marketed
globally by the two firms, with integration
services and support to be provided
primarily by IBM Global Services.

For further information contact:

Financial Fusion Inc, 55 Greens Farms Rd,
Westport, CT 06880, USA

Tel: +1 203 341 7400

Fax: +1 203 341 7442

Web: http://www.financialfusion.com

xephon

	MQSC commands, throughput, and Perl scripting
	MQSeries and high availability
	More MQSeries standards and guidelines
	Modifying and setting up a batch trigger monitor
	MQSeries Everyplace
	July 1999 – June 2000 index
	MQ news

