
© Xephon plc 2000

June 2000

12

3 MQSC commands, throughput, and
Perl scripting

12 MQSeries and high availability
21 More MQSeries standards and

guidelines
27 Modifying and setting up a batch

trigger monitor
32 MQSeries Everyplace
40 July 1999 – June 2000 index
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSC commands, throughput, and Perl scripting

INTRODUCTION

MQSC commands are generally used to manage queue manager
objects, such as channels, queues, and process definitions. With these
commands it is possible to define, delete, and alter the attributes of
these objects. Each OS supplies its own interface to these commands.
On OS/390 they can be issued either as operator commands or by
means of panels. On Unix, VMS, and Windows NT, the commands
can be executed using the runmqsc utility.

In this article, we focus on issuing MQSC commands using the
runmqsc executable. More specifically, we focus on using MQSC
commands to extract active channel status information in order to
generate extended reports on throughput.

MQSeries has several commands that are used to query the current
status of queue manager objects. The DIS CHSTATUS MQSC command
is specific to channels and can be used to query the status of active
channels in the system. It can return, for example, the SHORTRTS
status attribute, which records how many ‘short retry’ attempts are left
on the channel, or the CONNAME attribute, which (in this case) shows
the address of the machine at the other end of the channel – if the
transport protocol used by the channel is TCP/IP, it returns the IP
address of the machine. Channels that serve client connections
(SVRCONN) may have multiple instances active; in such
circumstances, the CONNAME attribute can be used to differentiate
between machines when querying their status.

Nevertheless, all these attributes provide only basic measurements
about channel status, leaving a lot of information. One of the most
fundamental measurements that we, at our installation, felt was
missing from reports is the throughput of active channels. We needed
the answer to questions such as: how many bytes are flowing in each
direction and at what rate? How many messages pass per second?
What is the average size of messages passing through a channel?

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

There are some hefty third-party software packages around that can
be used to command and control queue managers and dig out statistics
such as those mentioned above. However, these packages are expensive,
they require training, and they consume a fair chunk of a machine’s
resources. In this article, we present a lightweight and simple script
that provides the statistics we need and others may also find of great
value.

The script requires no complex and expensive command and control
software. It’s written in Perl (Version 5) and doesn’t even use the MQI
(or any other API, for that matter) – it uses only the MQSeries
runmqsc utility for querying MQSeries. This script was tested on HP-
UX versions 10.20 and 11.0 and Windows NT 4.0. I will also
demonstrate how the script can easily be run indirectly on any other
platform, such as IBM OS/390.

In general, what the script does is capture status information on the
specified channel at fixed intervals. Status information is captured
using replies from the DIS CHSTATUS MQSC command. The
difference (or so-called ‘delta’) between each two measurements is
printed. Take, for example, the field BYTSSENT. Suppose that, at one
invocation of the script, it reads ‘150’ and, at the next invocation, five
seconds later, its value is ‘180’. From this, it is concluded that the
average send rate was six bytes per second during that specific
interval, as:

(180 - 150) / 5 = 6

The same method is used on several other fields.

The script is listed here in its simplest form. Many additions and
enhancements can be made to it, and some are discussed after the
listing.

MQTP.PL
#!/usr/local/bin/perl -w
#---
#
DESCRIPTION:
#
This perl script computes MQSeries channel throughput statistics

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

at fixed time intervals. It prints averages for the send rate,
receive rate, message rate, and message size during the interval.
#
For simplicity, all interaction with MQSeries is made using MQSC
commands and not the MQI or any other API set.
#
This script can be run on any platform that supports Perl and
the runmqsc executable.
#
USAGE:
#
mqTP.pl <chl name> <sampling interval>
#
* "chl name" is the name of the channel to sample. This can
be a channel of any type.
#
* "sampling interval" is the number of seconds between
each measurement.
#
* The runmqsc executable must be in the path environment
variable.
#
Example:
#
perl mqTP.pl MQ.CHANNEL1 5
#
INTERNALS:
#
* Channel status hash variables: the status of a channel is
stored as a hash variable containing the following fields:
#
active Either 1 (channel is active) or 0 (otherwise).
now The time when a sample is taken.
msgs The number of messages sent and received. This
corresponds to the MSGS channel status attribute.
sent The total number of bytes sent through the channel.
rcvd The total number of bytes received through the
channel.
#
AUTHOR:
#
jb, feb 00. jb@lando.net
#
#---

if ($#ARGV+1 < 2)
{
 &print_usage ();
 die("\n");
}

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$chl_name = $ARGV[0];
$sleep_time = $ARGV[1];

%old_chs = &get_chs ($chl_name);
&check_chs (%old_chs);

while (1)
{
 sleep ($sleep_time);

 %new_chs = &get_chs ($chl_name);
 &check_chs (%new_chs);

 print_stats (old_chs, new_chs);

 %old_chs = %new_chs unless $new_chs{"msgs"}-$old_chs{"msgs"} <= 0;
}

Execute given runmqsc command and return response lines.
#
TAKES: one-line string containing the mqsc command.
GIVES: one-line string containing the runmqsc response.

sub runmqsc
{
 my ($line, $lines);

 # This pipes the given mqsc command through runmqsc and
 # grabs the output.
 open (CMDOUT, "echo \"$_[0]\" | runmqsc |") ||
 die("unable to runmqsc given command $_[0]");

 $lines = "";
 while($line=<CMDOUT>)
 {
 $lines .= $line;
 }

 close (CMDOUT);
 return ($lines);
}

Retrieve channel status measurements.
#
TAKES: one string containing the name of the channel.
GIVES: a hash variable containing the channel status measurements.

sub get_chstatus

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

{
 my (%chstatus, $response);

 %chstatus = ("active" => 0,
 "msgs" => 0,
 "rcvd" => 0,
 "sent" => 0,
 "now"=> "");

 $chstatus{"now"} = time ();

 $response = &runmqsc("dis chstatus($_[0]) all");

 # Look up phrase "status(running)" in mqsc response.
 # If found, the channel is active.

 if ($response =~ /status\(running\)/i)
 {
 $chstatus {"active"} = 1;
 }
 else
 {
 return (%chstatus);
 }

 # Look up phrases " msgs(*)", "bytssent(*)", and "bytsrcvd(*)".
 # Note the blank before the phrase "msgs" to differentiate it
 # from the similar expression "curmsgs(*)".

 $response =~ / msgs\((\d*)\)/i;
 $chstatus{"msgs"} = $1;

 $response =~ /bytssent\((\d*)\)/i;
 $chstatus{"sent"} = $1;

 $response =~ /bytsrcvd\((\d*)\)/i;
 $chstatus{"rcvd"} = $1;

 return (%chstatus);
}

Calculate statistics and print them out.
#
TAKES: previous and current channel status measurements.
GIVES: nothing.

sub print_stats
{
 my ($deltat, $deltas,

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 $deltar, $deltam, $BSPS, $BRPS, $BPM, $MPS);

 ##%old_chstatus = $_[0]; %new_chstatus = $_[1];
 $deltat = $new_chstatus{"now"} - $old_chstatus{"now"};
 $deltas = $new_chstatus{"sent"} - $old_chstatus{"sent"};
 $deltar = $new_chstatus{"rcvd"} - $old_chstatus{"rcvd"};
 $deltam = $new_chstatus{"msgs"} - $old_chstatus{"msgs"};

 if ($deltat <= 0)
 {
 die("deltat must be > 0 ! aborting..\n");
 };

 if ($deltam == 0)
 {
 $deltam = 1;
 }

 $BSPS = $deltas / $deltat; # Bytes sent per second
 $BRPS = $deltar / $deltat; # Bytes received per second
 $MPS = $deltam / $deltat; # Messages per second (S/R)
 $BPM = ($deltas + $deltar)/ $deltam; # Bytes per message.

 printf ("snd %7.7s KB/sec | ", $BSPS/1000);
 printf ("rcv %7.7s KB/sec | ", $BRPS/1000);
 printf ("%7.7s msg/sec | ",$MPS);
 printf ("%7.7s KB/msg", $BPM/1000);
 printf ("\n");
}

Print usage summary.
#
TAKES and GIVES nothing.

sub print_usage
{
 print "USAGE: perl mqTP <chl name> <sampling interval>\n";
}

Check the status of a channel.
#
TAKES: the channel status hash variable.
GIVES: true (channel is active) or false (inactive).

sub check_chstatus
{
 my (%chstatus) = @_;
 if ($chstatus{"active"} == 0)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 {
 die("channel inactive or does not exist, so stopped.\n");
 }
}

Below is some sample output of the script run on a sender channel
(type SDR) that connects two queue managers communicating over a
WAN link. Note that the average send rate is 130 KBytes per second
(with a rather large standard deviation). The receive byte rate is very
low compared to the send rate, as would be expected on an SDR
channel.

> perl mqTP.pl CHANNEL1 5
snd 45.388 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 226.94 KB/msg
snd 48.63 KB/sec | rcv 0 KB/sec | 0.1 msg/sec | 486.3 KB/msg
snd 48.63 KB/sec | rcv 0 KB/sec | 0.0625 msg/sec | 778.08 KB/msg
snd 61.4911 KB/sec | rcv 0 KB/sec | 0.14285 msg/sec | 430.438 KB/msg
snd 47.8628 KB/sec | rcv 0 KB/sec | 0.4 msg/sec | 119.657 KB/msg
snd 116.104 KB/sec | rcv 0 KB/sec | 2 msg/sec | 58.052 KB/msg
snd 128.124 KB/sec | rcv 0 KB/sec | 1.2 msg/sec | 106.77 KB/msg
snd 126.558 KB/sec | rcv 0 KB/sec | 2 msg/sec | 63.2790 KB/msg
snd 171.397 KB/sec | rcv 0 KB/sec | 0.8 msg/sec | 214.246 KB/msg
snd 175.175 KB/sec | rcv 0.0056 KB/sec | 3 msg/sec | 58.3936 KB/msg
snd 139.182 KB/sec | rcv 0 KB/sec | 0.4 msg/sec | 347.956 KB/msg
snd 140.790 KB/sec | rcv 0 KB/sec | 2 msg/sec | 70.3950 KB/msg
snd 196.703 KB/sec | rcv 0 KB/sec | 0.4 msg/sec | 491.758 KB/msg
snd 142.387 KB/sec | rcv 0 KB/sec | 2.2 msg/sec | 64.7214 KB/msg
snd 162.711 KB/sec | rcv 0 KB/sec | 0.5 msg/sec | 325.422 KB/msg
snd 202.157 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 1010.78 KB/msg
snd 202.157 KB/sec | rcv 0 KB/sec | 0.1 msg/sec | 2021.57 KB/msg
snd 188.671 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 943.359 KB/msg
snd 81.8728 KB/sec | rcv 0 KB/sec | 0.2 msg/sec | 409.364 KB/msg
snd 142.515 KB/sec | rcv 0.00466 KB/sec | 2.66666 msg/sec | 53.445 KB/msg

POSSIBLE ENHANCEMENTS TO THE SCRIPT

1 The script currently calculates average measurements over fixed
intervals. A useful improvement would be to catch the ‘^C’ break
signal and print overall averages for the entire duration of the run.
A possible way of implementing this would be to modify the
script to generate an output log of the results, and then use the
logged values off-line to calculate the overall averages and plot
them.

2 The script currently quits if it finds the specified channel is

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

inactive. It may be extended to ‘endure’ this in a manner similar
to that of the TCP/IP ping utility.

3 The script may also be modified to display the status of the
corresponding transmission queue. Each channel has a specific
XMITQ that it feeds from. This attribute can be queried and the
current status of that queue (in other words, current queue depth,
IPPROCS, OPPROCS, etc.) can be displayed.

4 The script is meant to run on systems that use the runmqsc
executable, as stated above. It is possible, though, to alter the
script so that it can be run ‘remotely’ on another machine. This is
explained in more detail in the section below.

NOTES

This is a concise ‘walk through’ that describes how to use the
runmqsc executable to manage remote MQSeries objects. Full details
on this can be found in the Administering remote MQSeries objects
chapter in the MQSeries System Administration Guide.

runmqsc can be used to administer objects that belong to both local
and remote queue managers. However, before runmqsc is run,
several MQSeries objects should be defined and configured on both
the local and the target remote queue manager.

Configuration on the local queue
1 A local queue manager must be used and, furthermore, it must be

the default queue manager. The reason for this is that the runmqsc
utility is invoked with only two parameters: the timeout (see
below) and the name of the target queue manager. There is no way
of specifying the name of a local queue manager, so the default
must be used. The local queue manager should have the following
items defined on it:

– A sender channel that will convey the MQSC command
messages from the source queue manager to the remote
queue manager.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

– A receiver channel that will receive the responses coming
from the target queue manager.

– A transmission queue with the name of the target queue
manager.

2 The target queue manager is the queue manager whose objects we
plan to control remotely. It should have definitions for the
following items:

– A receiver channel for receiving MQSC commands.

– A sender channel for sending responses back to the source
queue manager.

– A transmission queue to be used by the target queue manager
for temporarily holding responses until the sender channel
ships them. Again, the name of the XMITQ should be the
same as that of the source queue manager.

The timeout flag -w must be specified when the runmqsc executable
is invoked. This serves two purposes: to indicate that the utility is to
run in ‘indirect mode’ on a remote queue manager and to specify the
timeout used for commands issued. The second parameter is the name
of the target remote queue manager.

Now that I’ve outlined the set-up, I’ll mention a few points that are
pertinent to the mechanism used.

• Remember that the transmission queues should have the same
name as the participating queue managers.

• I recommend that you use channel trigger definitions in the
transmission queue. This ensures that the sender channel is
launched automatically. If trigger definitions don’t exist, you
have to start both sender and receiver channels manually, otherwise
the MQSC command messages and the replies are left unsent in
the queue manager where they originate.

• Remember that the SYSTEM.ADMIN.COMMAND.QUEUE
command queue must be defined on the target queue manager. If
it isn’t, the commands are sent to the dead-letter queue instead of
the command queue.

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Remember that the command server must be running on the
remote queue manager. If isn’t, the MQSC command messages
are not picked up from the command queue, in the target queue
manager.

JB (jb@lando.net)
MQSeries Specialist (Israel) © Xephon 2000

MQSeries and high availability

INTRODUCTION

This article describes the concept of high availability (HA), describing
the fundamental approaches to minimizing the amount of time during
which critical services or applications are not accessible by clients or
business processes.

The article describes how high availability relates to MQSeries,
examining the relationship between MQSeries Queue Manager
Clusters and HA clusters. However, in order to tackle this topic, it is
necessary first to do some groundwork on the subject of high
availability. Those already familiar with HA may consider moving
directly to the section entitled MQSeries and HA.

WHAT IS HIGH AVAILABILITY?

Modern businesses are increasingly operating on a round-the-clock
basis. The rapid growth of the Internet and the need to conduct
business on-line have led to the need to provide access to business
systems on a 24-hour basis, as clients from around the world initiate
e-business transactions around the clock.

It is, therefore, becoming increasingly important that critical
applications are kept running day and night. This includes Web

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

servers, application servers, enterprise databases, and all the
infrastructure that binds these systems together.

There are times when a computer system has to be shut down in order
to perform planned maintenance. There are also times when hardware
or software failures cause unplanned system outages. These periods
are referred to as ‘downtime’. Of key interest to enterprises is how to
minimize periods of downtime, whether planned or accidental.

The availability of a system is commonly expressed as a ‘number of
nines’. People talk about ‘three nines’ or ‘five nines’ availability.
These are references to the percentage of time for which a system is
available. Three nines means that a system is available 99.9% of the
time. Five nines means that it’s available 99.999% of the time. While
these may sound similar – both indicate that the system is available
virtually all the time – they become much more revealing if instead of
looking at the time for which a system is available one looks at the
figures in terms of downtime over a fixed period. For example, a
system with 99.9% availability can be expected to suffer over 8.5
hours of downtime a year, while a system with 99.999% availability
will be down for only a little over 30 seconds a year. Such availability
does not come cheap, and there is a cost involved in minimizing
downtime. To be able to replace a faulty component or move a failed
system’s workload in just 30 seconds is no mean feat. This would
either require hardware that has a mean-time-between-failures of far
more than a year, so that an average of 30 seconds per year could be
sustained, or that can switch either components or workload very
rapidly. Alternatively, you would need to employ the fastest hardware
engineers in the west, and they would have to take up residence in your
machine room.

Apart from all the ‘nines’, there are other less specific terms used to
describe systems that maximize availability. These include ‘continuous
availability’, which strictly speaking means that there should be no
discernible downtime, even in the event of a component failure. A
continuously available system should detect an error that would result
in a loss of availability immediately and be in a position to provide an
alternative component that’s already ‘revved up’ and ready to go. A
continuously available system should also support the scheduling of

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

planned maintenance by allowing workload to be seamlessly
transferred away from the components or subsystems that are the
subject of maintenance activity. Another common term is ‘fault
tolerance’, which means almost the same as continuous availability,
but is used to describe systems that can switch to a replacement
component in a matter of a few milliseconds in the event of a failure,
this being fast enough to be described as ‘near instant’. Further down
the scale is high availability, which generally means that a system can
detect a single failure and react to it automatically in a matter of at
most a few minutes. There are two significant aspects to this definition
of high availability: the system should survive a single failure, though
a second failure may result in a loss of service, and the detection of
faults and the triggering of action to accommodate faults should be
automatic, requiring no manual intervention.

It should be apparent from the above that high availability is much
cheaper than either continuous availability or fault tolerance. High
availability is generally achieved by grouping relatively inexpensive
hardware systems and connecting them together using common
interconnections and storage mechanisms. This replication of whole
computers is considerably cheaper than alternatives that use proprietary
hardware architectures and is sufficient for many organizations.
Systems built this way are often called ‘HA clusters’ or ‘shared disk
clusters’, because they frequently rely on the presence of shared disks,
as described below.

HOW DOES AN HA CLUSTER WORK?

The physical architecture of an HA cluster is that there are two or more
complete computers that are connected together. Each computer runs
a separate operating system image and the computers are referred to
as ‘nodes’. Most vendors of HA cluster technology offer scalability of
between four and 32 nodes participating in a single cluster, although
there are some that are limited to two nodes. If one node fails, then the
(highly available) workload that was running on the node is made to
‘failover’ to another node in the cluster.

In order to achieve a failover, all nodes must be able to access the data,
and this is a pre-requisite to the service. This doesn’t mean that more

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

than one node needs to be able to access the data at the same time, it
just means that critical data should not be stored in the disks or
memory of just one node. Otherwise, if the node were to fail, the data
would be inaccessible until the node is recovered. There are two
principal means of achieving common access to critical data. One is
to replicate the data by mirroring it, and there are a number of
commercially-available systems that provide this sort of support. The
other is to attach the nodes physically to a shared data bus and to attach
the disks containing the critical data to the bus. The shared bus is
normally based on SCSI technology, though there is increasing
support for higher bandwidth interconnects, such as Fibre Channel or
Memory Channel.

Both these approaches have their advantages and disadvantages. A
mirrored system can provide greater separation between nodes, which
is useful if the cause of a node failure is environmental, such as an
earthquake, landslide, or power outage that affects a whole community.
The drawback with mirrored systems is that they are either slower
(sometimes as a result of the greater distance between nodes) or
asynchronous (which may mean that, at the time of a failure, the only
up-to-date copy of the data is at the node that has just been rendered
inaccessible). The advantages of a shared disk system are that it’s
cheap and synchronous, its disadvantages are that it offers less
protection from environmental disasters, as only one copy of the data
exists. Another disadvantage of shared disks is that the SCSI standard
restricts the maximum separation between nodes to 25 metres typically,
though a separation of as much as one kilometre is possible if repeaters
are used.

To address all these issues is outside the scope of this article, which
will focus on shared disk HA clusters, but it is important for those that
require high availability to consider all possible risks and to develop
plans to counter or mitigate each type. A robust back-up procedure and
a disaster recovery plan can both complement a shared disk solution.

As well as requiring access to critical data on shared disk, each node
in the cluster also needs to be monitored by some other node, so that,
if a node unexpectedly fails, the monitoring node can report the failure
and the remaining nodes in the cluster can initiate corrective action.

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In a two-node cluster, both monitoring and initiation are performed by
the surviving node, but more scalable cluster architectures can adopt
various topologies, including ‘rings’ and ‘trees’. For a node to be
monitored by another node, some kind of connection must exist
between the nodes. In general this is implemented as an additional
‘private’ network between the nodes. There are alternatives, such as
using a public network or a SCSI channel, though a private network
generally benefits from being immune to other traffic and more
secure. A private network can be implemented cheaply by adding a
second Ethernet adapter to each node. In the case of a two-node
cluster, the nodes’ Ethernet adapters can be directly connected by a
crossover cable.

There are a number of other features that may be found on HA clusters,
including multiple private and public networks (to avoid the network
being a single point of failure) and RAID storage for data. The more
robust cluster offerings enforce these features and will prevent you
from configuring or starting a cluster that has fewer than two private
networks or has data that is stored on a single drive. Such clusters can
also employ advanced fault detection algorithms that are able to
analyse the response from a network to determine whether a fault lies
in the local network adapter, the cable (or network infrastructure), the
remote network adapter, or the remote node.

It is also necessary to consider the question of client connectivity. If
network clients connect to a service or application running on a node
that subsequently fails, it is necessary somehow to move those
network connections to the node to which the service itself has been
moved. Moving network connections is not easy – in general, it is
necessary to break the connections, which happens to be a natural
consequence of the failure of a node in TCP/IP, and to remake the
connections with the node to which the service or application has been
moved. Clients, therefore, need to be written in such a way that they
tolerate a broken connection and will try, perhaps for a limited time or
number of attempts, to reconnect. For these reconnection attempts to
succeed, the address (or name) to which they are trying to connect
must be transferred to the new node. Some clusters support the
failover of SNA (LU 6.2) LUNAMEs, while others support the
failover of IP addresses. Some clusters support both. The failover of

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

an IP address is known as ‘IP Address Takeover’ or IPAT. During IPAT,
network routing information is updated, so that future packets sent to
the IP address being failed over are routed to the MAC address of the
new node.

From an administrative point of view, it is simplest if a cluster is
treated as a single computing resource. If the nodes are identical in all
respects other than network address and name, and all have identical
versions of software installed on them, then it is far easier to configure
applications and services to run on the cluster in such a way that they
provide the same functionality and performance regardless of which
node they are running on. As part of this symmetry, it is also preferable
if the cluster has a common namespace and security model.

From a capacity planning point of view, it is important to provide
enough spare capacity on each node to enable it to cope with the
additional demands that could be placed on it should other nodes in the
cluster fail. In this regard, it is important to decide whether you want
to run the cluster in ‘Active/Passive mode’, which means that some
nodes merely act as standbys for other nodes, or in ‘fully Active
mode’, which means that all nodes have their own workload and also
act as standbys for one or more other nodes. A popular way of
distributing workload and standby responsibility in a cluster is to run
the production workload (the work that has to be performed to keep
the business going) on some nodes, while others handle workload that
is less critical (for example, development work) and also act as
standby nodes for those that run the production workload.

MQSERIES AND HA

One of the key concepts in an HA cluster is the ‘unit of failover’. This
is the term used to describe the smallest indivisible collection of
resources, data, and processes that have to be present on the same node
for the desired service to be provided. The unit of failover differs from
one type of application or service to another. For a simple name
service, it may comprise one disk file that contains a directory or
database and a daemon that reads the file and responds to queries
arriving over an IP network. In this case it would be inappropriate to
move just the disk file, the daemon, or the IP address to another node

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– failover works only if they are all moved. In the case of MQSeries,
the smallest unit of failover is a Queue Manager. This is because each
Queue Manager has a single recovery log, which is replayed on restart
to recover incomplete units of work. It would not make sense to try to
move just a queue to a new node without moving the whole Queue
Manager to which the queue belongs.

When making an MQSeries Queue Manager highly available, as
many as three different types of data may need to be accessible by the
standby node. Two of them are both obvious and essential – they are
the recovery log and the queue files. These should be stored on shared
disk drives. The third type of data that may be needed, depending on
the platform, is configuration settings, which may, for example, be
stored in a machine’s registry.

To make an MQSeries Queue Manager operate within an HA cluster,
and be able to move from one node to another, the Queue Manager
needs to be configured so that its log and queue files are on shared
disks. The Queue Manager could be created this way or reconfigured
either manually or (preferably) programmatically. An example of the
latter is in the MQSeries SupportPac MC74 for Windows NT, which
provides Microsoft Cluster Server support and includes a utility that
will modify an existing Queue Manager whose files are on a local
drive and move the files to a shared drive (chosen by the user). The
utility also updates the relevant registry entries accordingly. The same
utility is able to move files back to the local drive, should the need
arise.

The steps needed to integrate MQSeries with an HA cluster depend on
the platform that is used and the choice of clustering software. The
most common approach requires the creation of a number of scripts
that know how to start, stop, and monitor the state of a Queue
Manager. The interface to and implementation of these scripts depends
on the specific clustering support that is being used, which in turn
generally varies from one platform to another, even if the basic
principles are fairly consistent.

Some platforms use a style of HA clustering that doesn’t rely on
scripts, instead offering a choice of either very simple stop/start

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

actions, which are not customizable to a particular application or
service, or programming of a custom library of methods that must
conform to an interface specified by the cluster software. Most Unix
platforms support script-style clustering, while Windows NT supports
both the generic and custom approaches. As it’s usually better to stop
most types of service and application under controlled conditions, I
recommend the writing of scripts or a custom resource library to
handle this task. This has already been done for MQSeries on some
platforms – at the time of writing, the MQSeries SupportPac site
contains solutions for AIX, HP-UX, and Windows NT.

On most clustering systems, it’s possible to configure the cluster so
that the cluster software performs an IP Address Takeover and
migrates (in other words, takes control of) shared disks. Consequently,
by the time MQSeries-specific scripts and methods are called, the
only things that need to be handled are starting or stopping the Queue
Manager and starting or stopping any fault monitoring processes that
are used to keep track of the Queue Manager. Before MQSeries
Version 5.1, it was also necessary to restart channels, though channel
states are now bound to the recovery log. When a Queue Manager is
restarted on a new node, channels maintain their previous states. An
exception to this is ‘Requester’ channels, though, in fairness, it’s
unlikely that channels of this type will be used on a server cluster.

RELATIONSHIP TO MQSERIES QUEUE MANAGER CLUSTERS

MQSeries has built-in support for Queue Manager Clusters. These are
different from HA clusters and the two are complementary. A Queue
Manager Cluster can be used to provide much simpler administration
and workload distribution and higher availability than was previously
available with normal distributed queueing.

The simpler administration is a result of the introduction of ‘Cluster
Repositories’. These allow you to define one cluster-receiver channel
and one cluster-sender channel per Queue Manager, and MQSeries
takes care of the rest. This simplifies the addition of Queue Managers
as they ‘learn’ from the repositories and additional channels are
automatically defined on your behalf. Furthermore, it is possible to
connect to any Cluster Queue Manager and put a message on a Cluster

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Queue. Cluster Queue Managers can locate Cluster Queues on your
behalf, again using the repositories.

The ability to distribute workload is derived from the ability to define
multiple instances of the same Cluster Queue on different Cluster
Queue Managers. A message that is put on a Cluster Queue of which
there are multiple instances can be automatically routed to any of the
instances. Furthermore, you can define how the workload distribution
is handled. The improvement in the availability of Queue Manager
Clusters results from the fact that, if a node fails and a Cluster Queue
Manager becomes unavailable, other Cluster Queue Managers still
provide access to the remaining instances of the Cluster Queue. New
messages being put on the Cluster Queue just by-pass the failed
instance. A message that was previously routed to the failed Queue
Manager and is waiting on a transmit queue to make the final ‘hop’ is
automatically re-routed to one of the surviving instances of the
Cluster Queue.

The limitation to how much Queue Manager Clusters can improve
availability centres on what happens to messages that were previously
routed to the failed Cluster Queue Manager and have either been
received (and acknowledged) by that Queue Manager or have not yet
been acknowledged and are consequently ‘In-Doubt’. Unless these
messages were the subject of an MQGET before the failure, the
delivered messages will be stored in the failed instance of the Cluster
Queue. Such messages will not be retrievable until the failed Queue
Manager is brought back on-line. In-Doubt messages cannot be re-
routed without breaking the transactional model provided by MQSeries
and so remain In-Doubt until the failed Queue Manager is brought
back on-line. This is where an HA cluster can help – if each node of
the Queue Manager Cluster has a standby node that, on failure, can
take over and restart any Queue Managers running on the failed node,
then problems associated with messages being held up, either because
they are In-Doubt or irretrievable, can be resolved quickly and
automatically.

Graham Wallis (wallisgd@hursley.ibm.com)
MQSeries Design
IBM Hursley (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

More MQSeries standards and guidelines

In my previous article (MQSeries coding standards and guidelines in
the May 2000 issue of MQSeries Update), I discussed the critical need
for reliable and secure middleware and showed the ability of IBM’s
MQSeries to meet this need relatively seamlessly. I also established
that, to use MQSeries effectively, you must implement standards and
guidelines for application construction before coding begins. This
makes it easier to build applications as much of the MQSeries
groundwork is already laid. In addition, this method of educating
developers is relatively simple as key concepts are concisely
documented. My previous article presented essential background
information on messaging models, followed by eleven standards for
application construction. This article provides ten guidelines that you
can use to establish successful application construction. As with my
previous article, it also explains the justification for each guideline.

TEN CONSTRUCTION GUIDELINES

The following ten guidelines are important as they help ensure that
MQSeries applications function predictably and are easy to maintain.
When drawing them up, consideration was given to MQSeries features
and options that enable effective performance management, portability,
scalability, and reliability. This list of guidelines is by no means
exhaustive. Rather, it addresses some of the typical application
construction issues that arise when installation begins. Bear in mind
that a guideline is a recommendation that you should follow in most
cases, but that exceptions are bound to arise. If you don’t follow a
guideline, the effect on your organization is unlikely to be disastrous.
However, the fact remains that your organization would also benefit
if you followed the guidelines in most cases.

1 Applications should use the queue attributes BOTHRESH and
BOQNAME when checking the back-out count.

Overview

When a message is retrieved under syncpoint and is subsequently

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

backed out (either explicitly or implicitly), the BackoutCount
field in the Message Descriptor is incremented. If BackoutCount
is above a predefined threshold, alternative processing should be
used to handle the message. Applications may hard-code a
threshold to which BackoutCount is then compared, but a more
dynamic method uses the queue attributes BOTHRESH and
BOQNAME. These may be obtained using the MQInq API call.
The back-out count is then compared to the BOTHRESH attribute’s
value. If it exceeds this value, the message is moved to the queue
named in the BOQNAME attribute for subsequent processing.

Justification

Externalizing both the back-out count threshold and the pointer
to the queue where the problematic message is moved makes the
application more flexible and less likely to require changes if
processing conditions change.

2 Applications should check the FeedBack code after MQGETs.

Overview

MQSeries enables applications to communicate through the
FeedBack code in the Message Descriptor. While this code can be
used to control applications, if the applications themselves don’t
check it, then this feature can’t be relied upon and is, therefore,
unavailable. After receiving a message successfully, applications
should execute a block of code that checks the Message
Descriptor’s FeedBack field. Additional processing may then be
carried out, based on the value of this field. An example of this is
a product that uses MQFB_QUIT to send a signal to an application
that it should end gracefully. Another example would be an
application that defines codes that are used to enable or disable
additional processing, such as logging.

Justification

Checking the FeedBack code will result in more flexible and
dynamic applications.

3 Do not use queue-defined message persistence – applications
should, instead, explicitly set a message’s persistence.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

Overview

Message persistence is an attribute that is message-specific. In
most cases, only the originator of the message knows the impact
of losing it. Therefore, the originator should explicitly set message
persistence and avoid using the queue-defined value. Consider
the following example: an application that generates update
messages happens to use the queue-defined value of message
persistence. This application is now vulnerable to the value of the
queue attribute DEFPSIST – if this is unintentionally set to ‘no’,
update messages may be lost.

Justification

Using the queue-defined value of message persistence will not
ensure that a message’s persistence is set to an appropriate value.
Setting this value explicitly ensures that it is appropriate to the
needs of the originating application.

4 Applications should set the persistence of inquiry messages to
‘no’.

Overview

In most cases, there are no adverse consequences if an inquiry
message is lost, as it’s usually acceptable to expect the requesting
application to re-send it. Therefore, there is no need to set the
persistence attribute of an inquiry messages to ‘yes’ as the Queue
Manager doesn’t need to restore it. Making inquiry messages
non-persistent prevents them from being logged and decreases
the impact on the network.

Justification

This reduces MQSeries resource consumption and increases
throughput.

5 When sending messages between applications on heterogeneous
systems, use string format.

Overview

A benefit of MQSeries is that it has built-in support for data

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

conversion between different character sets and types of encoding.
For MQSeries to convert a message successfully, it must know
the CCSID and encoding of both the sending and receiving
systems, as well as the message’s format. In most cases, the
CCSID and encoding are handled automatically and there is no
need for the application to process them. However, the message
format must be explicitly set for MQSeries to carry out a conversion
request. A number of formats ship with product and will allow for
conversion. These are indicated by the eight-character constants
MQFMT_*.

Justification

MQFMT_STRING is the only format that both allows the
application data portion of an MQSeries message to be anything
you want and permits conversion. The data, however, must be in
string format and is further restricted to the subset of characters
that is ‘displayable’.

6 Inquiry and reply messages should have their expiry attribute set
to avoid stale messages.

Overview

In most cases, requesting applications expect replies to arrive
within a reasonable time period. If replies do not arrive in a timely
manner, then the request is either aborted or re-sent by the
requesting application. If request messages and their replies are
not processed in a specified timeframe, they should be discarded
as they are stale.

Justification

Setting messages to expire if they are not processed within a
specified timeframe saves resources. This setting prevents
messages from accumulating when the applications or systems
that are responsible for replying to them are not available.

7 Set the message type to reflect the message content.

Overview

MQSeries does not enforce the use of the message type attribute.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

Setting it in the Message Descriptor field – whether the message
is a datagram, request, reply, or report, for example – can help
determine how the message should be processed.

Justification

Setting the message type attribute improves message management.
This attribute can also be used when the messages expected on a
reply queue may vary depending on the options in place (for
example, reports and replies going to the same queue).

8 By default, use the convert option when getting messages from a
queue unless message conversion is never required. Note that the
format MQFMT_NONE may be used for individual messages
that should not be converted.

Overview

MQSeries provides built-in facilities to perform data conversion
between heterogeneous environments. These facilities may be
invoked either by coding the convert parameter on the sender-
side channel to ‘yes’ or by using the convert option on the
MQGET call (MQGMO_CONVERT). The receiving application
should perform this conversion, not the channel. If no conversion
is required, the Message Descriptor’s format field should be set
to ‘none’ (MQFMT_NONE). This option suppresses conversion.

Justification

By explicitly specifying data conversion on the MQGET call and
avoiding the channel convert parameter, you prevent messages
from being sent to the system’s undeliverable message queue.
Also, if the message channel agent is used to convert messages,
channel performance decreases and effective throughput is
reduced.

9 Applications should not over-allocate buffer space for MQGET
and MQPUT requests.

Overview

The MQSeries Server allocates memory based on the buffer size
specified on the MQGET or MQPUT call. If applications over-

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

allocate the buffer space on a get or put operation, then the queue
manager will allocate memory to handle these requests, wasting
memory.

Justification

This reduces memory requirements of the queue manager
subsystem.

10 Applications that handle request queues should open the queues
for inquiry.

Overview

An application handling request queues should check the back-
out count after successfully getting a message. The application
may also need to inquire about the back-out threshold and/or
back-out queue attributes in order to determine whether the
message has exceeded a pre-determined back-out value. To allow
this, the application should open the input queue for inquiry as
well as input.

Justification

This allows for both MQGET and MQINQ (inquiry) calls on a
queue.

CONCLUSION

The guidelines set out in this article are not universal – some may
make sense for your organization while others may not. It’s also worth
remembering that this list is by no means comprehensive. You should
research the options that are available and carefully choose those that
reflect the goals of your organization.

Marc Verhiel Marc_(Verhiel@candle.com)
Candle Corporation (USA) © Candle 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

Modifying and setting up a batch trigger monitor

As a result of the increased use of MQSeries in our company –
especially in the handling of EDI messages – the requirement arose for
a method of executing a batch job when one or more messages arrive
in a queue. While we did not have a mechanism in place at the time to
implement this functionality, we were aware of the existence of
something called a ‘batch trigger monitor’, and that sounded like it
would do the job.

So we investigated the subject and found that a batch trigger monitor
is an MQSeries trigger monitor that will indeed start batch jobs or
schedules when messages arrive in a triggered queue.

The process is like that of a CICS or IMS trigger monitor, except that,
instead of starting a CICS or IMS transaction when a message is
placed in an initiation queue, a batch trigger monitor will start a batch
job (or interface with some other function to start a batch job).

THE PROCESS

When a message is MQPUT in a queue that has both triggering set to
‘Y’ and a batch trigger monitor’s InitQ defined, MQSeries places a
trigger message in the defined InitQ. The batch trigger monitor waits
for a message to be placed on its InitQ (with an MQGET Wait
Interval), retrieving the trigger message when it arrives. The batch
trigger monitor then starts the required job.

In our case, there is really no need for an additional process (an
MQSeries definition). While a process definition could be used to
provide a value for that particular queue (something that could also be
achieved using trigger data, for that matter), our implementation does
not require this.

OUR REQUIREMENTS

We had certain requirements that needed to be met to implement this
process successfully at our company. They were:

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• To make the process as simple as possible – in other words, stick
to the ‘KISS’ principle (Keep It Simple, Stupid).

• To use our existing job scheduling product to handle all job
starting and scheduling. This ensures a centrally controlled and
(better still) automatically tracked and monitored process. This
requirement means we cannot submit any jobs or start any started
tasks and must instead find a way to interface with our job
scheduler.

• To find source code in a language with which we were comfortable,
as we had to modify the code based on our other requirements.

OUR IMPLEMENTATION

The IBM-provided Batch Trigger Monitor in Support Pac MA12 is a
COBOL implementation that writes JCL from a DD statement to the
INTRDR to kick off a batch job. While this is fine, we wanted a process
that would interface with our MVS scheduler instead, as this would
then be responsible for kicking off the required schedule. We used a
schedule instead of just one batch job in case we need more than one
job to process the incoming message or messages.

We found the source for an Assembler Batch Trigger Monitor in one
of the MQSeries Red Books that worked a similar way to the COBOL
offering. One major difference was that this process issued an MVS
START command to kick off the job. As we were more comfortable
with Assembler, and the method used to start the batch job was closer
to our preferred method, we contacted the author (Dave Shogren of
IBM) and asked him if he could send us the source code for the
program. He agreed and sent it along with an accompanying source
module that was also required to get the process working (this
additional program was a subtask that was attached to send a WTOR
and process the responses).

We looked at the code and found that we would have to make three
major changes to it to satisfy our requirements and fix a problem:

1 We changed the Start process (which directly started a job) to a
WTO that would just indicate that a message was found in a batch-
triggered queue. We then arranged for our MVS automation

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

package to catch this message and contact the MVS scheduler to
kick off the schedule (see the sample below).

2 When attaching the subtask that issues the WTOR, we passed the
queue manager name so that the WTOR message would contain
that value in its body. This was required to allow us to distinguish
between the various batch trigger monitors we have running (we
use one per queue manager), since we automate the start-up of our
batch trigger monitors.

3 We also had to change the MQGET Wait Interval process to a
SIGNAL process, as the original Wait process wasn’t working. So
now, we issue an MQGET with the SIGNAL option, wait on the
ECB, and re-issue the MQGET to retrieve the trigger message,
when it’s posted.

IMPLEMENTATION STEPS

The changes required to implement the batch trigger monitor are as
follows:

• Code and test the changes to the assembler code and link the
modules into a load library that is accessible by the batch trigger
monitor Proc.

• Implement the changes needed by the automation software
(rules, scripts, etc).

• Implement the changes needed by the scheduler software. This
includes a table that the scheduler uses to kick off the required
schedule based on the queue name in the message from the batch
trigger monitor.

• Set up the required MQSeries definitions (IniItQ and Process)
and add trigger parameters to the queues that require the ‘kick off’
process.

• Ensure MQSeries security rules are in place to allow the batch
trigger monitor to access its InitQ.

• Create the Proc for the batch trigger monitor.

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Arrange for a user-id, ‘Down’ and ‘Up’ instructions, and
performance parameters for the batch trigger monitor STC (Started
Task).

• Ensure that the batch trigger monitor is started when required and
stopped during an outage.

Note that a batch trigger monitor should be used only in certain
situations – namely when messages are arriving in a queue that require
immediate processing. If messages arrive in a queue and require rapid
processing, but not to such an extent as to warrant the use of a trigger,
then my advice is to leave them queued and schedule a batch job to run
on a regular basis to process them.

Below are samples of the MQSeries set-up items.

Trigger monitor (STC) messages at start-up and kick off the scheduler
messages:

+MQM04: PARAMETERS ACCEPTED. MONITOR WILL CONNECT TO : MCE1
921 MCE1: Batch Trigger Monitor Running. To Terminate reply "STOP"
+MQM50 MCE1: TRIGGER SCHEDULE FOR CISR.MKTT404I

The MQM50 message is the one that’s trapped by our automation
package; the other two messages are the batch trigger monitor start-
up messages.

BATCH TRIGGER MONITOR PROC
// PROC
//*
//**
//* REVISION:TSSPEEG # 0001 04 JUNE 1998 (NEW PROC) *
//**
//* IBM MQSeries for MVS/ESA *
//* STARTED TASK PROCEDURE FOR THE BATCH TRIGGER MONITOR *
//**
//*
//PROCSTEP EXEC PGM=MQMMON,
// PARM='MCP1,BATCH.MONITOR.INITQ'
//STEPLIB DD DISP=SHR,DSN=SYSMQS.SUPA.LOAD
// DD DISP=SHR,DSN=SYSMQS.MCP1.AUTH
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

- MQSeries definitions

DEFINE NOREPLACE
QLOCAL('BATCH.MONITOR.INITQ')
 STGCLASS('SYSTEM')
 DESCR('Batch Trigger Monitor Initiation Queue')
 PUT(ENABLED)
 DEFPRTY(5)
 DEFPSIST(NO)
 MAXDEPTH(100)
 PROCESS(' ')
 NOTRIGGER
 MAXMSGL(1000)
 BOTHRESH(0)
 BOQNAME(' ')
 INITQ(' ')
 USAGE(NORMAL)
 SHARE
 DEFSOPT(EXCL)
 MSGDLVSQ(FIFO)
 RETINTVL(999999999)
 TRIGTYPE(NONE)
 TRIGDPTH(1)
 TRIGMPRI(0)
 TRIGDATA(' ')
 NOHARDENBO
 GET(ENABLED)
 QDEPTHHI(80)
 QDEPTHLO(40)
 QDPMAXEV(ENABLED)
 QDPHIEV(DISABLED)
 QDPLOEV(DISABLED)
 QSVCINT(999999999)
 QSVCIEV(NONE)

DEFINE NOREPLACE
PROCESS('BATCH.MONITOR.PROC')
 DESCR('Process for starting Scheduled Batch Production Jobs')
 APPLTYPE('MVS')
 APPLICID(' ')
 USERDATA(' ')
 ENVRDATA(' ')

Scott Morningstar
Computer Systems Officer
CN (Canada) © Xephon 2000

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries Everyplace

INTRODUCTION

MQSeries Everyplace (MQSE – it was originally launched as
‘MQSeries Everywhere’) is the newest member of the MQSeries
family. It’s a lightweight derivative of MQSeries targeted at handheld
computers, telephones, personal information managers, PDAs, and
the like. Its main objective is to provide reliable messaging and
queuing between the above types of device and MQSE servers, plus
connectivity to MQSeries, MQSeries Integrator, and MQSeries
Workflow.

This article, along with a follow-up article on MQSE configuration in
next month’s issue, examines the origins of MQSE and its place in the
MQSeries family. This includes consideration of:

• What are the differences between MQSeries and MQSE

• How they’ll work together

• The broad shape and availability of MQSE

• Possible applications.

THE UNDERLYING CONCEPT

The development of MQSeries Everyplace started around 1998 as
part of IBM’s ‘Pervasive Computing’ initiative. Today, the MQSE
project is well advanced and Version 1.0 for Windows is now out.

As a member of the MQSeries family, MQSE provides entry-level
messaging and message queuing. In practice this means that, with
MQSE, IBM will offer reliable messaging software that is compact
enough for the smallest devices – MQSE has a target base memory
requirement of just 70 kilobytes (about two orders of magnitude
smaller than standard MQSeries). That being said, if you add some of
the additional functions, such as queue managers and security, the
base memory requirement grows, so that a reasonably-featured
implementation of MQSE will probably need between 100 and 250

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

kilobytes of memory, though this is still acceptable for both today’s
and tomorrow’s handheld devices.

MQSE has not forgotten MQSeries. What MQSE has in common with
MQSeries is that it:

• Is equally general purpose (perhaps more so)

• Offers the same reliable, once-only messaging model

• Works with MQSeries itself.

MQSE is, however, built on a brand new code base. Opting to deliver
the product this way has enabled IBM to take advantage of many of
the lessons learned from MQSeries over the past decade.

In addition, MQSE provides small-footprint messaging capabilities
to other IBM offerings. For example, DB2 Everywhere (DB2E)
makes use of MQSE’s communications technology. Other IBM
Pervasive Computing solutions are also likely to exploit MQSE, as
part of IBM’s efforts to capture what Lou Gerstner has described as the
opportunity to connect “a billion people interacting with a million e-
businesses with a trillion intelligent devices”.

THE MARKET FOR MQSE

There are four basic reasons to explain why IBM’s customers and
partners need MQSE. The first is simply the ability to exploit reliable
messaging and queuing using small devices.

This is important because it allows organizations to build their
businesses and applications around such capabilities. While many
organizations already use MQSeries, they are now looking to extend
messaging and queuing out to the new ranges of device – mobile
phones, PDAs etc – that will support future geographically dispersed
business.

The second reason concerns the use of mobile computing devices in
‘hostile communications environments’, where people have to go into
tunnels, down manholes, or to locations supported by poor
communications infrastructures. The common factors here are that:

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Communications have to work in a hostile environment.

• Interruptions are frequent (both in terms of transmissions and
work patterns).

• Data volumes are small.

• Locations are dispersed and diverse.

‘Big’ MQSeries was not designed to work in a world like this. It
presumes that a ‘fat’ network is mostly present and available and
much of the work involved with MQSeries focuses on how to recover
from those few occasions during which the network is not working.

By contrast, the hostile communications environments for which
MQSE is intended comprise networks that are assumed to be inherently
unreliable and lacking in capacity. MQSE’s design addresses these
needs without losing key MQSeries capabilities.

The third reason for interest in MQSE is simply the need for physical
mobility. This is required by those who need to connect to a network
from different places at different times: today it may be London,
tomorrow San Francisco, and the day after Tokyo. Supporting reliable
roaming communication links in a flexible way is a significant
development goal, and the result is that MQSE’s solution is
fundamentally different from MQSeries’ approach.

Finally, the fourth reason for interest in MQSE is that many users and
IT managers want to reduce the administrative overhead associated
with a messaging infrastructure. These people don’t want to know
about channels, trigger monitors, and all the other paraphernalia that
accompanies the standard MQSeries product. They want to minimize
the number of things that may go wrong and need administrators to
fix. Instead, they want a communications environment that’s simple,
reliable, and transparent.

APPLICATION SCENARIOS

There appear to be four broad categories of application for which
MQSE may be relevant:

• Personal productivity applications

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

• Consumer applications

• Mobile workforce applications

• Control applications.

The first of these is reasonably familiar – for instance, replicating
mail, updating calendars, updating databases (for example, on sales,
prices and inventory), taking orders, etc. People who today lug a
laptop around typically want something smaller. But that smaller
device, be it a PDA or an enhanced phone or whatever comes next, will
only aid the task in hand if it benefits from dependable and reliable
communication.

The second and third categories embrace consumer applications and
the mobile workforce. For example, supermarkets might want to give
away MQSE-equipped devices to customers in return for customer
loyalty (essentially the customer receives a small, cheap device with
an attractive user interface that’s proprietary to one store chain).
Similarly, you can imagine the application of custom devices needing
consistent communications in a mobile workforce environment.
Examples of industries where such devices would provide benefits
include travel, ticketing, restaurants (waiters ordering from the kitchen),
package delivery, etc. In the case of package delivery, a recipient
might sign for a delivery and that signature is then (within seconds)
transmitted directly to the originator.

Finally, control applications are likely to be a source of major interest
in MQSE. Oil, gas, water, electricity and similar utility-type
organizations have a need to be able to send and receive sensor
information from difficult locations.

USER REQUIREMENTS

As might be imagined from the range and diversity of the above, there
is a long list of requirements that must be satisfied. For MQSE to be
successful, it needs to deliver on as many of them as is practical (as
well as on some of the requirements ‘inherited’ from ‘big’ MQSeries
– functions that customers requested but have not yet been delivered,
as the logical place for them is in a new product like MQSE).

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The first requirement is a small footprint. While IBM’s initial objective
was to fit the base product to 50 KB, the revised requirement of 70 KB
doesn’t seem that much of an increase given that some of the more
interesting functions will take a typical implementation up to the 100
KB to 250 KB range mentioned already (there is even a possibility that
the core product will shrink below 70 KB threshold when MQSE
ships).

The second requirement is for dependable messaging in both reliable
and unreliable communications environments, together with automatic
recovery and support for TCP/IP, HTTP, and WAP (Wireless
Application Protocol). Of these, perhaps the most interesting is the
HTTP support. The rationale behind requiring this protocol is simple:
many organizations already possess firewalls configured for HTTP. If
MQSE can provide reliable communication via HTTP, a minimum of
reconfiguration and testing is needed. This is, therefore, a major
benefit that may even make up for some of HTTP’s inadequacies.

A third requirement is for a tight, efficient protocol that results in as
small a message as possible being sent. This was (and still is) not a
strength of‘big’ MQSeries, which shows a clear preference for fat
communication pipes, though this is not, in fairness, a problem in a
data centre environment. By contrast, bandwidth may be narrow and/
or expensive in hostile environments, and fat pipes may be uneconomic,
impractical, or both.

This explains why IBM devised a new, efficient protocol for MQSE.
Indeed, the justification is demonstrated in a control application
example. If data from remote pumping stations has to be transmitted
by satellite, reducing each message’s length by just a few bytes can
deliver major cost savings as well as reducing the bandwidth needed.

In MQSE, IBM appears to have achieved this without losing the
reliable messaging and queuing for which the MQSeries family is
known.

CODE BASES AND PLATFORMS

IBM initially thought that one code base would be sufficient for the
entire MQSE family. By building the product to run on a Java Virtual

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

Machine (JVM), IBM hoped it would work on multiple operating
systems. This, however, turned out to be less than straightforward.

The principal problem was size: any JVM takes up valuable memory
in its own right. In addition, MQSE would sit on top of the JVM. To
add to this, the application that is the raison d’être of the customer’s
investment would sit on top of the combined MQSE and JVM.

The risk was that, by requiring a JVM beneath MQSE, there would be
too little space left on some key platforms for applications. Furthermore,
several target devices (like the Palm Pilot or specific controllers) don’t
support multi-threading or have peculiar memory models that don’t fit
the JVM model.

In the end, IBM decided to accept the burden of delivering MQSE on
several small operating systems, including the following:

• Windows (CE, 95/98, Windows NT, Windows 2000)

• Java

• Palm OS

• EPOC (Psion, etc.)

• Zaurus (Sharp).

The downside is that, in order to support such a wide variety of
environments without an intermediate JVM, IBM has to maintain
more than one code base. That being said, none of the code bases will
be that large (remember that MQSE is only 70 KB to 250 KB in total),
so the maintenance of the various code bases shouldn’t present IBM
with too onerous a task.

OPERATIONAL CONSIDERATIONS

MQSE provides assured delivery for both synchronous and
asynchronous messaging and message queuing. In MQSE,
synchronous messaging is additional to what the standard MQSeries
product offers. Providing this functionality enables a sending
application to know in real-time that a message has arrived (delivery
occurs when the message is queued at the destination – not at the

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

sender, as would be the case in the asynchronous model). Banking
applications, in particular, have for some time needed this capability.

To facilitate a broader range of operational possibilities, MQSE also
includes:

• Roaming support via device-to-device connectivity, as well as
device-to-server connectivity.

• Remote and local queue access, including support for mailbox-
type delivery.

• Minimal administration needs alongside high availability.

• Policy-based operation/administration for customizing the user’s
environment.

In the case of the last of the above points, MQSE even addresses
circumstances like fading batteries. You can set policies to tell MQSE
what priorities to observe – and which messages to send – if, say, only
five minutes of battery power remain.

An equally important operational requirement is compatibility with
existing MQSeries installations, though this requirement brings with
it a number of complications. For example, the nature of the
environment in which MQSE has to work (MQSE must operate in
diverse and exposed environments, including the Internet) demands
a very strong security implementation. By contrast, standard MQSeries
is generally protected by a corporate IS security structure.

The result is that IBM has built security directly into MQSE. Out of
the box, it will include support for:

• Authentication

• Encryption

• Non-repudiation

• Compression.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

ELABORATING ON SECURITY

To achieve its security objectives, MQSE delivers security at three
distinct levels, providing security in ways that enable potential users
and developers to select and shape how the levels are applied.

The three levels are:

• Determination of identity (there are a number of options available
to achieve this, such as the use of certificates or authentication via
operating system services).

• Queue-based security, where you have some target queue that is
going to receive messages. To make everything secure, all you
need to do is to set the attributes for encryption, compression,
and/or authentication at the target queue (and everything else
that’s needed is handled automatically and transparently – even
to the point of creating new channels to assure end-to-end
security).

• Message-based security, which is independent of both where
messages are going to be sent and the channels and links through
which they may pass. This requires application-level encryption
and authentication, and MQSE supplies the necessary services
for this.

For message-based security MQSE uses public keys and asymmetric
encryption. While this is slower than queue-based security, you end up
with both proof of the sender’s identity and protection for the
message’s contents.

Charles Brett
President
C3B Consulting (UK) © Xephon 2000

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

July 1999 – June 2000 index

Below is an index of all topics covered in MQ Update since Issue 1,
July 1999. The numbers in bold are issue numbers and the ones in
brackets are page numbers. Back issues of MQ Update are available
from Xephon – see page 2 for details.

Administration 8 (36-47), 9 (26-35)

Alias Queue 7 (45)

AMI 7 (3-22)

API 7 (8)
Message 7 (5-6)

Policy 7 (7)

Service 7 (6-7)

XML 7 (9)

Application Messaging Interface
See AMI

ARM 1 (4)

Automatic Restart Manage

See ARM

Batch
Trigger Monitor 4 (25-40),

12 (27-31)

Bootstrap datasets

See BSDS

BSDS

Recovery 1 (34-43), 2 (18-31),
5 (29-47), 6 (8-20),

11 (50-51)

Channels

Naming standards 5 (12-16)

CICS 7 (43)
Client/server 4 (16-19)

Monitoring 10 (31-43), 11 (30-42)

PLTPI 10 (3-9)

Trigger Monitor 4 (3-16), 8 (6)

Circular logs
Recovery 3 (42-43)

Client Attachment Feature

9 (39), 10 (30)

Client for Java 6 (23)

Client/server

CICS/ESA 4 (16-19)

MQSeries for OS/390 2 (3-10)

REXX 4 (41-47)
Coding standards

11 (42-50), 12 (21-26)

CorrellId 6 (4), 7 (12)

CSQOREXX

Object definitions 5 (29)
DB2 Everywhere

See DB2E

DB2E

MQSE 12 (33)

Dead Letter Queue 7 (44)
Development

Standards 11 (42-50), 12 (21-26)

Distributed Queue Management

See DQM

DQM 7 (43), 8 (6), 9 (39)

DWD 1 (7-10)
Dynamic Queue 7 (45)

Dynamic Workload Distribution

See DWD

e-mail

Lotus Notes 8 (14-35)
Utility 11 (3-29)

EJB 10 (13)

Enterprise Java Beans

See EJB

Event Queue 7 (44)
FFST 1 (19-20)

File transfer 6 (3-8)

First Failure Support Technology

See FFST

Topic Issue (page) Topic Issue (page)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

HA 12 (12-20)

IPAT 12 (17)

QM Clusters 12 (19-20), 12 (12)

High Availability
See HA

HTTP

MQSE 12 (36)

Initiation Queue 7 (44)

Intern’l Program Licence Agreement
See IPLA

IP Address Takeover

See IPAT

IPAT 12 (17)

IPLA 8 (3)
ISPF 9 (41-42)

MQSeries tools 9 (19-25), 10 (14-23)

Object definitions 3 (25)

System generator 5 (16-28),

6 (39-51), 7 (23-42)
Java 1 (5), 11 (3-29)

EJB 10 (13)

MQSE 12 (36-37)

PCF programming 3 (3-25),

6 (20-39)

Java Messaging Service
See JMS

Java Naming and Directory Service

See JNDI

Java Native Interface

See JNI
Java Transaction API

See JTA

JMS 11 (3-29)

JMSAdmin 11 (5), 11 (10-11)

JNDI 11 (3-29)
JNI 11 (3)

JTA 11 (6)

LANGNAU Consulting 8 (14)

LDAP

JNDI 11 (5)
LDS

Recovery 1 (33-34)

Local Queue 7 (44)

Lotus Notes 8 (14-35)

MQEI 8 (15)

MQLSX 8 (15)

Trigger Monitor 8 (16), 8 (20)
Lotus Notes MQSeries Enterprise

See MQEI

LotusScript Extensions for MQSeries

See MQLSX

MCAUSER 1 (14), 2 (11-12)
Message Manager Objects 1 (26-32)

Message segmentation 6 (3)

MessageId 6 (4), 7 (12)

Messaging models 11 (43-44),

12 (21-26)
Microsoft Cluster Server

See MSCS

Microsoft Management Console

See MMC

Microsoft SNA Server
See SNA Server

Microsoft Word

See MS Word

MMC 1 (6)

Model Queue 7 (45)

Monitoring 4 (20-25)
Utility 10 (31-43), 11 (30-42)

MQCONN

Thread affinity 1 (23-32)

MQControl 2 (4)

MQEI
Lotus Notes 8 (15)

MQI

Client/server options 2 (9)

mqic.dll

Visual Basic 5 (3)
mqicstd.dll

Visual Basic 8 (7)

MQLSX 8 (20)

Lotus Notes 8 (15)

mqmcstd.dll
Visual Basic 8 (7)

MQOPEN

Reason code 2018 1 (24-25)

Topic Issue (page) Topic Issue (page)

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSC 12 (3-12)

MQSE 12 (32-39)

DB2E 12 (33)

HTTP 12 (36)
WAP 12 (36)

MQSeries

Announcements 1 (3-10)

Version 2.0 1 (20), 1 (23)

Version 5.1 1 (4-7), 2 (5), 6 (3),
7 (47), 8 (36-47), 8 (47),

9 (26-35), 10 (3-9)

MQSeries DLL

Visual Basic 5 (3-4)

MQSeries Everyplace
See MQSE

MQSeries for MVS/ESA 7 (42-47),

8 (36-47), 9 (26-35)

Version 1.1 5 (16)

Version 1.2 8 (44)
Recovery 11 (50-51)

MQSeries for OS/390 10 (23-30),

10 (31-43), 11 (30-42)

ARM 1 (4)

Client/server 2 (3-10), 4 (16-19)

MS Word 8 (3-14)
Object definitions 3 (25-32)

Recovery 1 (32-43), 2 (18-31)

RRS 1 (3-4)

TCP/IP 2 (17)

Version 1.2 2 (5)
Version 1.4 9 (36-43)

Version 2.1 1 (3-4)

MQSeries Integrator 4 (17)

MS Word 8 (3-14)

MSCS 12 (18)
Namelists

Naming standards 5 (12-16)

Naming convention 5 (11-16)

OS/390 9 (36-39)

Nastel
MVS-PCF bridge 3 (3)

NetView/AOC 4 (20), 4 (22)

NT

Screen resolution 8 (47)

Security 1 (19-23)

OAM 1 (10-18), 2 (13-16)
Object Authority Manager

See OAM

Object definitions

BSDS 5 (29-47), 6 (8-20),

11 (50-51)
Copying 3 (25-32)

Object REXX 4 (41)

Open Applications Group 7 (3)

Oracle

Transaction processing 9 (3-7)
PCF 8 (36-37)

PCF programming 3 (3-25), 6 (20-39)

Perl 12 (3-12)

Perl API 1.06 7 (48)

Processes
Naming standards 5 (12-16)

Program Temporary Fix

See PTF

Programmable Command Format

See PCF

PTF
PQ06157 2 (6)

Publish-and-subscribe 1 (6)

QM Clusters 12 (12), 12 (19-20)

Queues

Naming standards 5 (12-16)
Queue Manager Clusters

See QM Clusters

RACF 1 (10-18), 4 (17), 9 (40-41)

RBA 1 (34), 1 (37), 2 (19)

Receiver Channel 7 (46)
Recovery

BSDS 1 (34-43), 2 (18-31),

5 (29-47), 6 (8-20), 11 (50-51)

MQSeries for OS/390 1 (32-43),

2 (18-31)
Unix 3 (42-43)

Reference messages 6 (3)

Topic Issue (page) Topic Issue (page)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

Topic Issue (page) Topic Issue (page)
Relative Byte Address

See RBA

Remote Queue 7 (45)

Resource Recovery Service
See RRS

REXX

Client/server 4 (41-47)

REXX/MQ 4 (20)

RRS 1 (3-4)
runmqsc 8 (36),

8 (42-44), 12 (3-12)

SCIC Consulting 4 (28)

Security 1 (10-23), 2 (10-17)

MCAUSER 1 (14), 2 (11-12)
NT 1 (19-23)

OAM 1 (10-18), 2 (13-16)

RACF 1 (10-18)

setmqaut 2 (13-14)

strmqm 2 (13)
Tandem 1 (16)

Sender Channel 7 (46)

setmqaut 2 (13-14)

SMS 9 (42)

SNA Server 10 (3)

SNMP 6 (22)
Stress testing

Utility 2 (31-43), 3 (33-42)

strmqcsv 8 (37)

strmqm 2 (13)

SupportPac 6 (23), 8 (3)
MA04 8 (7)

MA0F 7 (3), 7 (5), 7 (9)

MA0G 7 (3), 7 (9)

MA12 4 (25), 12 (28)

MA7D 8 (20)
MA7E 8 (20)

MA88 11 (9-11)

MAC4 8 (20)

MAC6 7 (47)

MAC7 7 (47)
MAC8 7 (47)

MAC9 7 (47)

SupportPac (continued)

MC74 12 (18)
Sysplex 10 (26-27)

System Default Queue 7 (44)

System generator

Utility 5 (16-28),

6 (39-51), 7 (23-42)
System management

Utility 3 (3-25)

Tandem

Security 1 (16)

TCP/IP 2 (17)
Threads

Connection handles 1 (23-32)

Transaction processing 9 (3-18)

Transmission Queue 7 (44)

Trigger Monitor
Batch 4 (25-40), 12 (27-31)

CICS 4 (3-16), 8 (6)

Lotus Notes 8 (16), 8 (20)

MVS/ESA 4 (25-40)

Unit of failover 12 (17-18)
Unix

Recovery 3 (42-43)

Trigger Monitor 4 (3-16)

Visual Basic 5 (3-11), 8 (7-14)

mqic.dll 5 (3)

mqicstd.dll 8 (7)
mqmcstd.dll 8 (7)

MQSeries DLL 5 (3-4)

VSAM linear datasets

See LDS

VTAM 9 (41), 10 (28-29)
WAP

MQSE 12 (36)

Web

Enabling 10 (9-14)

XA specification
Transaction processing 9 (3-18)

XML

AMI 7 (9)

JMS 11 (5)

MQ news

IBM has made a number of substantial
MQSeries announcements, including the
first release of MQSE, a version of
MQSeries V5.1 for Compaq True64 Unix,
MQSeries for Linux V5.1 Technology
Release, a preview version of MQSeries for
OS/390 V2.2, and MQSeries Workflow
V3.2.2 (more details on these products will
be published in next month’s issue).

IBM also announced Microsoft Cluster
Server (MSCS) support for MQSeries for
Windows NT V5.1, which is in addition to
the clustering support already available for
MQSeries for OS/390 V2.1 and AIX V5.1.
Also new is support for the Microsoft
Transaction Server (MTS), which allows
COM objects registered under MTS to call
MQSeries. All COM/MTS threading models
are supported.

Finally, IBM announced support for Java
Message Service (JMS), a set of Java classes
that allow applications to send MQSeries
messages to either existing MQSeries or new
JMS applications.

For further information contact your local
IBM representative.

* * *

Computer Network Technology’s
Enterprise/Access software now supports
MQSeries, allowing it to speed up the
deployment of MQSeries and, it’s claimed,
reduce the cost associated with providing
MQSeries access to mainframe and
midrange systems.

Enterprise/Access software provides
enterprise information real-time on-line,
enabling faster integration with core
systems.

No other details were forthcoming.

For further information contact:
Computer Network Technology Corp, 605 N
Highway 169, Suite 800, Minneapolis, MN
55441, USA
Tel: +1 612 797 6000
Fax: +1 612 797 6800
Web: http://www.cnt.com

* * *

Financial Fusion has announced Project
Indigo, a joint initiative to build connectivity
between its Web, wireless, and server
applications and IBM’s Application
Framework for e-Business, including
MQSeries, AIX, DB2 Universal Database,
and WebSphere application server family as
well as the S/390 enterprise server platform.

The two will target Global 1000 financial
institutions with a single integrated platform.
The suite will be promoted and marketed
globally by the two firms, with integration
services and support to be provided
primarily by IBM Global Services.

For further information contact:
Financial Fusion Inc, 55 Greens Farms Rd,
Westport, CT 06880, USA
Tel: +1 203 341 7400
Fax: +1 203 341 7442
Web: http://www.financialfusion.com

x xephon

	MQSC commands, throughput, and Perl scripting
	MQSeries and high availability
	More MQSeries standards and guidelines
	Modifying and setting up a batch trigger monitor
	MQSeries Everyplace
	July 1999 – June 2000 index
	MQ news

