13

July 2000

]
In this issue

3 MQSeries JMS ‘publish-and-
subscribe’
21 MQSeries programming with
ActiveX
31 MQSeries Everyplace configuration

41 Configuring distributed queuing
without CICS

44 MQ news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road
Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955
e-mail: harryl @xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344

Fax: +1 303 438 0290

Contributions

Articlespublishedin MQ Updateare paid for
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessiit). If
you'’ ve a problem with your user-id or pass-
word call Xephon's subscription department
on +44 1635 33886.

Editor

Harry Lewis
Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

MQSeries’ JMS ‘publish-and-subscribe’

INTRODUCTION

This article describes the use of the Java Message Service's (IMS)
publish-and-subscribe API in conjunction with the MQSeries IMS
implementation supplied in SupportPac MA88. Alsointhisarticleis
an example application that demonstrates the essential features of
JMS s publish-and-subscribe.

THE PUBLISH-AND-SUBSCRIBE MODEL

Publishers, subscribers, and topics

The publish-and-subscribe model provides an alternative to the
conventional point-to-point messaging model. Instead of
communicating through named queues, publishers (originators of
messages) and subscribers (recipients of messages) rendezvous on
named topics. Topics can be thought of as active destinations:
propagation and retention of messagesis affected by the presence or
absence of client subscriptions. In particular:

* A message published to a single topic may be consumed by any
number of subscribers

* A message published to atopic may never actually be delivered
if there are no subscriptions to the topic.

The two models do not necessarily represent different levels of
abstraction; in IMS, Topic and Queue are simply different types of
Destination, and each can beusedto represent applicationinteractions
in the same way.

Non-durable and durable subscriptions

JMS defines two types of subscription. A client with a non-durable
subscription to a particular topic can receive messages from the
published topic only whentheclient isactive. A client with adurable
subscription is ableto receive published messageswhen theclient is

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Inactive, asthe messagesareretained by the service provider between
invocations of the subscriber.

Publish-and-subscribe client operation

A IMS publish-and-subscribe client typically takes the following
steps to prepare itself to send or receive messages. These steps are
similar to those used for point-to-point messaging.

1 Use JINDI to locate a ConnectionFactory object
(TopicConnectionFactory).

Use JNDI to find one or more Destination (Topic) objects.

Use the ConnectionFactory to create a IMS Connection object
(TopicConnection).

4 Usethe Connection object to create one or more Session objects
(TopicSession).

5 Use a Session object and Destination objects to create the
MessageProducer and MessageConsumer (publisher and
subscriber, respectively) objects needed.

As with JMS's point-to-point messaging, provider-specific
ConnectionFactory and Destination objects can be obtained by direct
instantiation without using JNDI.

PUBLISH-AND-SUBSCRIBE WITH MQSERIES IMS

Brokers, streamsand queues
Publish-and-subscribeservicesareprovidedin M QSeriesby message
brokers. A messagebrokerisan M QSeriesapplication associated with
a single MQSeries queue manager. The queue manager maintains
gueuesfor the storage of topic messages and usesthe communication
links between queue managers to exchange messages with other
message brokers.

When topic messages are published to an MQSeries broker, they are
addressed to astream queue, which actsasthe message broker’sinput
for one or more topics. A stream queue is associated in MQSeries

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

implementation of IM Swith a TopicConnection, and it appearsasan
attribute of the TopicConnectionFactory-administered object. A
corresponding M QSeriesqueue must bedefined at the queue manager
separately from the definition of the IM S-administered object before
the Topi cConnectionFactory can be used. Thedefault stream queueis
SYSTEM.BROKER.STREAM.QUEUE, which is typicaly created
during theinitial configuration of MQSeries publish-and-subscribe
environment.

The MQSeries queues in which topic messages ultimately reside are
created automatically when subscriptionsareestablished; they arenot
accessed explicitly either by clients or during administration tasks,
Topic queuesareremoved automatically whentheir subscriptionsare
terminated.

Organization of topics

JM S does not define ascheme for naming or organizing topics—this
isleft uptotheserviceprovider. MQSeriesusesahierarchical scheme
where levels in a hierarchy are delimited by the forward dlash
character (*/') intopicnames, and wildcardscan beused by subscribers
to identify a collection of topicsin a single subscription request.

Administration

Two types of IMS-administered object — TopicConnectionFactory
and Topic—are used in IM S publish-and-subscribe. They are defined
inaJNDI repository using aprovider-specific administration tool (for
M QSeries, thetool isthe IM SAdmin program suppliedwithM QSeries
SupportPac MAS8S).

JMS SUBSCRIBER EXAMPLE: A SSMPLE PAGER APPLICATION

About the example

This example is a IMS subscriber application. It provides a simple
GUI interface(seeFigurel) representing apager deviceand subscribes
to asingle topic that represents a pager 1D (a user). The application
subscribeswhenitisinvoked. When running, acheck box determines
whether the pager is‘on’ (receiving messages) or ‘off’, inwhich case

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

messages remain on the subscriber queue. When turned on, the pager
applicationfirst checkssynchronously for any messages published to
it that may have accumulated, and then switches to waiting for
notification of new messages. The pager application stores all the
messages it receives internally until the user erases them (or quits).

Eﬁ.] M5Pager: chns - 4

v active

- | |1: Hello, Worldl

Figure 1. The pager’s main interface

The pager has two buttons:

e The left-hand button steps through a menu allowing either a

recelved message to be selected for display or all messagesto be
erased.

e Theright-hand buttoneither showsthesel ected message, scrolling
it across the display, or confirms that messages were erased.

E%%JHSFageSender -
Faoer ID: ||:hris

Enter text message:

| Hello, Warld!

Clear |

1: published to chris

Figure 2. Pager showing Pager ID text field

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When anew pager message isreceived, the pager beeps and the text
‘New message!’ appears on the display.

To publish messages to one or more JMSPager instances, the
JM SPageSender application is provided.

The Pager ID text field (Figure 2) is used to enter atopic to whichto
send amessage, and the messagetext isenteredinthelower text field.

Requisites/environment

The MQSeries JMS provider classes are supplied in MQSeries
SupportPac MAS88, which is available for download free from the
IBM MQSeries Web site for Windows, Al X, HP-UX, and Solaris.
MQSeries5.1and JDK 1.1.6 or later arerequired (JDK 1.1.7 or later
in the case of HP-UX). The MQSeries 5.1.1 Java classes, which are
also required, are supplied in the SupportPac, and the MQSeries
publish-and-subscribe component is supplied in SupportPac MAOC.

The description of the example application that follows assumes that
the above components are installed.

The example code has been tested and used successfully on two
platforms:

e AIX 4.2.1running MQSeries5.1 and JDK 1.1.8
e Microsoft WindowsNT 4.0 runningMQSeries5.1and JDK 1.2.2

CONFIGURING THE MQSERIES IMS ENVIRONMENT FOR USE

There are three basic steps required to set up the environment to run
MQSeries IM S applications:

» Theclasspath must be set toincludethe classesinthe M QSeries,
JMS, and INDI archives.

A JINDI-accessiblerepository must be configured and popul ated
with one or more ConnectionFactory and Destination entriesto
enable JNDI to look up JM S-administered objects.

« Any MQSeries objects referred to by the IMS-administered
object definitionsmust bedefinedin M QSeriesand madeavail abl e.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

Setting the classpath

Thefollowing classesfromthe MA88jar archivesmust beaccessible
in the classpath (in addition to the base JDK classes) to run any
MQSeries IM S program:

e com.ibm.mq.jar

e com.ibm.mgbind.jar
e com.ibm.magjms.jar
e Jmsjar

 Jndijar

o fscontext.jar

e ldap.jar

e providerutil.jar.

These archives are located in the java/lib (or javallib) sub-directory
of the MQSeriessMA88 installation.

Defining JIM S-administered objects

JM S-admini stered obj ect definitionsarecreated usingthe JM SAdmin
command-lineadministration tool, which must first be configured by
editing the IMSAdmin.config configuration file. The two entries
required are INTIAL_CONTEXT, the JNDI service provider class
name that determines the mechanism by which the repository is
accessed, and PROVIDER _URL, the URL that locatestherepository.
Both are configured in the IMSAdmin.config properties file. For
example, the following entries can be used for a filesystem-based
repository:

INITIAL_CONTEXT=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/usr/mgm/java/directory

The IMSAdmintool and the propertiesfile are found in the java/bin
(or java\bin) sub-directory of the MQSeriessMAS8S8 installation.

To run the IM SPager application, we need definitions for:
e A topic connection factory

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

* One or more topics corresponding to pager users.

To create a queue connection factory jmspager corresponding to the
local queue manager LYCHEE.QM and topics chris and bob, the
JM SAdmin commands would be (following the prompt ‘ InitCtx>"):

InitCtx> define tcf(jmspager) gmanager(LYCHEE.QM)
InitCtx> define t(chris)
InitCtx> define t(bob)

Here, the topic connection factory definition refers to alocal queue
manager by name, and this results in the use of the MQSeries Java
bindings. Alternatively, atopic connection factory can be defined as
an MQSeries client connection (note the use of the continuation
character, ‘0’, below to indicate a formatting line break):

InitCtx> define tcf(jmspager) gmanager(LYCHEE.QM)
O hostname(lychee) port(1414) channel(CLIENT)
O transport(client)

Thetransport of typeclient isrequired inthiscasetoindicatethat this
should be a client connection. For client connections, an MQSeries
channel of type SYRCONN must be defined on the target queue
manager and an inetd entry (on Unix) or activelistener must exist on
the specified port of the target host.

INVOCATION SCRIPTS

Because of the environmental pre-requisitesfor runningaJNDI/IMS
application, it's often convenient to create a shell script or batch file
toinvokethe application withthe correct configuration parameters. A
simple Korn shell script, jms (for Unix environments), to invoke an
arbitrary JIMS application is shown below:

SAMPLE UNIX SCRIPT IMS
#!/bin/ksh

JMS_HOME=/usr/mgm/java

JMS_LIB=$JMS_HOME/T1ib
JMS_CLASSPATH=/usr/jdk_base/lib/classes.zip:\
$JIMS_LIB:\

$JIMS_LIB/com.ibm.mgjms.jar:\
$JIMS_LIB/jms.jar:\

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

$JIMS_LIB/jndi.jar:\

$IMS_LIB/fscontext.jar:\

$JIMS_LIB/Tdap.jar:\

$JIMS_LIB/providerutil.jar:\
$JIJMS_LIB/com.ibm.mqg.jar:\
$JIMS_LIB/com.ibm.mgbind. jar:.
FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
REPOSITORY=file:$JMS_HOME/directory

echo Starting...

java -classpath $JMS_CLASSPATH \
-Djava.naming.factory.initial=$FACTORY \
-Djava.naming.provider.ur1=$REPOSITORY \
@

For Windows, the equivalent batch file, jms.bat, is:

SAMPLE WINDOWS BATCH FILE
@echo off

SET JMS_HOME=\MQSeries\java

SET JMS_LIB=%JMS_HOME%\1ib

SET JMS_CLASSPATH=%JMS_LIB%;%JMS_LIB%\com.ibm.mqjms.jar;%JMS_LIB%
O \jms.jar;%»JM S_LIB%\jndi.jar;%JMS_LIB%\fscontext.jar;%JMS_LIB%\
O 1ldap.jar;%JMS_LIB%\prov iderutil.jar;%JMS_LIB%\com.ibm.mq.jar;
O %JMS_LIB%\com.ibm.mgbind.jar;.

SET FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

SET REPOSITORY=file:/MQSeries/mgm/java/directory

echo Starting...

java -classpath %JMS_CLASSPATH% -Djava.naming.factory.initial=%FACTORY%
O -Djava.naming.provider.url1=%REPOSITORY% %1 %2 %3 %4 %5

Note that the SET IMS CLASSPATH statement isall on oneline, as
Isjava -classpath....

THE IMSPAGER CODE

The IMSPager application extends the Frame top-level window
class. It establishesasubscription to asingletopic that’snamed either
on the command line or through the jmspager.user.name system
property. A Vector is used to store messages as they are received; the
two buttons allow the user to select and display individual messages

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and erase them after reading. Theindex instance variable keepstrack
of which message is selected.

Themain methodinitializesthe INDI naming context andinstantiates
a pager subscribed to the specified topic name (if specified as a
command-line argument) or the topic name obtained from either the
jmspager.user.name or user.name property of the System object.

Thenext two methods(getConnection and getTopic) returnreferences
to JM S-admi nistered objectsfrom the INDI, using the context set-up
in the main method.

The constructor (JMSPager) configures the AWT layout of the
JM SPager’s child components and connects listeners to the buttons
and checkbox (the checkbox isthe on/off switch for the pager). Next,
aconnectiontothe IM Sservice provider isopened, asession created,
and subscription to the named topic established. The application
registers itself as a JMS ExceptionListener for asynchronous
notification of IMS errors. Finally, the IMS connection is started to
enable messages to be received over it.

The activate method is invoked by the ItemListener attached to the
checkbox when the pager is ‘turned on’. It uses the synchronous
receive method to retrieve any waiting messages from the topic and
adds them to the Vector store. By registering the application as a
MessageL.istener to the subscription, it then requests notification of
any further messages as they appear using the onMessage method.

Thedeactivatemethodisinvoked by thecheckbox ItemListener when
the pager application is ‘turned off’. By setting the subscriber’s
message listener to ‘null’, it cancels the application’s registration as
amessage listener, so it is no longer notified of new messages.

The select method isinvoked by the ActionListener on the left-hand
button. It mani pul atestheindex variabl e, determining which message
is displayed when the right-hand button is pressed. If theindex is set
to ‘*-1’, stored messages are erased when the right-hand button is
pressed.

The display method is invoked by the ActionListener on the right-
hand button. It steps through the stored messages by invoking the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

scroll method for each one and incrementing index. If index is
negative, it empties the Vector of stored messages.

The scroll method displays a stored message by loading its contents
Into thetext areaand incrementing the caret position acrossthestring.

The onMessage method — defined by the IMS Messagel.istener
interface—isinvoked by theSessiontowhichthelistener isregistered.
Incoming messages are passed directly to this method while the
applicationis ‘turned on’. The method stores each message and sets
index to refer to it so it can be displayed with asingle click.

TheonException methodisinvoked by the JIM Sconnectionif anerror
occurs in the environment rather than as a direct result of a IMS
method invocation by the client.

Finally, the disconnect method closes the JM S resources used by the
application. showText, showSatus, and showError are‘ convenience’
methods for displaying text in the application.

For neatness, the getl nsets method — inherited from Container viathe
application’s parent class Frame — establishes a border between the
edge of the frame and the components within.

JMSPAGER.JAVA

import javax.naming.*;
import javax.Jjms.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

import java.util.*;

/**
* A simple AWT GUI application demonstrating the basic capabilities of
* JMS publish-subscribe. A JMSPager subscribes to a topic that
* represents a user and receives messages both synchronously and
* asynchronously.
*/
public class JMSPager extends Frame implements
MessagelListener, ExceptionlListener
{
static InitialContext context;

final static int COLUMNS = 20;

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Vector vector = new Vector ();

Checkbox onOffButton;
TextField messageText;
Button leftButton;
Button rightButton;
Label statuslLabel;

TopicConnection connection;
TopicSession session;

Topic topic;
TopicSubscriber subscriber;

int index = 0;

/**
* Runs the JMSPager application.
*/
public static void main (String [] args)
{
try
{
context = new InitialContext (System.getProperties ());
try
{
new JMSPager (args [0]).show ();
}
catch (ArrayIndexOutOfBoundsException abe)
{
new JMSPager (System.getProperty ("jmspager.user.name",
System.getProperty ("user.name"))).show ();
}
}

catch (JMSException jmse)
{
System.err.printin ("JMS error: " + jmse +
" (" + jmse.getlLinkedException () + ')");
System.exit (0);

}

catch (NamingException ne)

{
System.err.printin ("JNDI error: " + ne);
System.exit (0);

}

catch (ArrayIndexOutOfBoundsException abe)
{

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

13

}

/**

14

*
*

*/

System.err.printin ("Usage: java JMSPager user-name");

Returns a named TopicConnection using the JNDI. The
TopicConnectionFactory is a JMS-administered object.

static TopicConnection getConnection (String name) throws

{

}

/

**
*
*

*/

JMSException, NamingException

TopicConnectionFactory factory = (TopicConnectionFactory)
context.lookup (name);

return factory.createTopicConnection ();

Returns a named Topic handle using the JNDI. The Topic is a
JMS-administered object.

static Topic getTopic (String name) throws

{

}

/

**
*
*
*
*

*/

JMSException, NamingException

return (Topic) context.lookup (name);

Default constructor. Builds a simple AWT Tayout and then

establishes a connection to the JMS service provider. The
connection must be explicitly started before messages can
be received.

public JMSPager (String id) throws

{

JMSException, NamingException
super ("JMSPager: " + id);

setlLayout (new BorderlLayout (6, 2));

setBackground (Color.lightGray);

add ("North", onOffButton = new Checkbox ("active", false));
add ("Center", messageText = new TextField (COLUMNS));

add ("West", leftButton = new Button (" < "));

add ("East™, rightButton = new Button (" > "));

add ("South"™, statuslLabel = new Label ());

pack ();

setResizable (false);

messageText.setEditable (false);

// WindowListener to deal with quitting the app.

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

addWindowListener (new WindowAdapter ()

{
public void windowClosing (WindowEvent event)
{
disconnect ();
System.exit (0);
}
1)

// ActionListener attached to left ('select') button.

leftButton.addActionListener (new ActionListener ()

{
public void actionPerformed (ActionEvent event)
{
select ();
}
1)

// ActionlListener attached to right ('ok') button.

rightButton.addActionListener (new ActionListener ()

{
public void actionPerformed (ActionEvent event)
{
display ();
}
IO

// Item Tistener attached to Checkbox ('on/off button').

on0ffButton.addItemListener (new ItemListener ()

{
public void itemStateChanged (ItemEvent event)
{
if (event.getStateChange () == ItemEvent.SELECTED)
{
activate ();
}
else
{
deactivate ();
}
}
1)

// Establish a connection to the JMS service provider.
connection = getConnection

(System.getProperty ("jmspager.server.name™, "jmspager™));
connection.setExceptionListener (this);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

16

}

/**

*

*
*
*
*

*/

session = connection.createTopicSession
(false, Session.AUTO_ACKNOWLEDGE);
topic = getTopic (id);
subscriber = session.createSubscriber (topic); // non-durable

// Enable the connection to receive messages.

connection.start ();

Turns the pager on. First checks synchronously for available
messages (delivered while turned off), then switches to
asynchronous receipt mode by establishing the JMSPager as a
Messagelistener. In asynchronous mode, JMS calls the onMessage
method when new messages arrive.

public synchronized void activate ()

{

try

{
Message message = subscriber.receive (0);
int old = vector.size ();
int arrived = 0;

// Add any received messages to our local store (the Vector).

while (message != null)
{
vector.addElement (message);
arrived++;
message = subscriber.receive (0);
}

showText (arrived + " new " +
(arrived == 1 ? "message" : "messages") +
" (H + 0'|d + " 0'|d)|l);

// Switch to asynchronous mode.

//

// Note: after attaching a message Tistener, attempts to
// receive synchronously on the same session would fail.

subscriber.setMessagelistener (this);

}
catch (JMSException jmse)
{
showError (jmse);
}

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/**

* Turns the pager off by disconnecting the message listener on the
* session. The subscription and connection to the JMS service

* provider is retained.

*/
public synchronized void deactivate ()
{
try
{
// Remove the message listener.
subscriber.setMessagelListener (null);
showText ("");
index = -1;
}
catch (JMSException jmse)
{
showError (jmse);
}
}
/**

* Steps through the message selection menu.
*/

public synchronized void select ()

{
if (vector.size () == 0)
{
showText ("No messages.");
}
else if (index < vector.size () - 1)
{
showText ("Message " + (++index + 1) + "?');
}
else
{
showText ("Erase all?");
index = -1;
}
}
/**

* Displays the message from the Tocal store (the Vector), as
* identified by the current index (a negative index means
* 'erase all messages').
*/
public synchronized void display ()
{

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

18

if (vector.size () == 0)

{
showText ("No messages.");
}
else if (index < 0)
{
showText (vector.size () + " messages erased.");
vector.removeAl1Elements ();
}
else
{
try
{
scroll ((TextMessage) vector.elementAt (index++));
}
catch (ArrayIndexOutOfBoundsException abe)
{
showText ("No more messages.");
}
catch (JIMSException jmse)
{
showError (jmse);
}
}
}
/**

* Displays the specified message content by scrolling across the
* text field.
*/

public synchronized void scroll (TextMessage message) throws
JMSException

{
String text = index + ": " + message.getText ().trim ();
showText (text);
for (int i = COLUMNS; i < text.length (); i++)
{
messageText.setCaretPosition (i);
try
{
Thread.sleep (200);
}
catch (InterruptedException ie)
{
© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}

/**

* Messagelistener interface method for asynchronous message
* delivery. The pager application is passed newly arrived

* messages by the invocation of this method.

*/

public synchronized void onMessage (Message message)
{
System.out.print ((char) 0x07); // beep
vector.addElement (message);
showText ("New message!");
index = vector.size () - 1;
}
/**
* ExceptionlListener interface method for asynchronous exception
* notification.
*/

public void onException (JMSException e)
{
showError (e);
}
/**
* Drops the JMS service provider connection.
*/

public synchronized void disconnect ()
{
try
{
subscriber.setMessagelistener (null);
subscriber.close ();
session.close ();
connection.close ();
}

catch (JMSException jmse)
{

}
}

/**

* Convenience method for displaying text in the central text field.

*/

synchronized void showText (String text)
{
messageText.setText (text);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

19

}

/**
* Convenience method for displaying a message in the status area.
*/

void showStatus (String message)

{
statusLabel.setText (message);
}
/**
* Convenience method for displaying an error.
*/

void showError (Exception e)
{
if (e instanceof JMSException)
{
System.err.printin (e +
" (" + ((IMSException) e).getlLinkedException () + ')');
}
else
{
System.err.printin (e);
}

showStatus (e.getMessage ());
}

/**

* Container method establishes a border margin (cosmetic).
*/

pubTic Insets getlInsets ()

{
Insets insets = super.getlnsets ();
return new Insets (insets.top + 6, insets.left + 6,
insets.bottom, insets.right + 6);
}

}

In next month’s MQ Update we publish afollow-up articleonaJM S
publisher applicationthat complementsthismonth’spager application.

Chris Markes
HCI Architect
IBM UK Laboratories © C Markes 2000

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries programming with ActiveX

If you read my previous article (published in MQ Update November
1999), then you should have agood idea of how to usethe procedural
method of accessing MQ-related functions via Visual Basic. In this
follow-up article, I'm going to discuss how to use the MQSeries
ActiveX Automation Classes (MQAX) to allow applicationsthat are
based on Microsoft’s Component Object Model (COM) to access all
the functions and features of the MQSeries API, alowing full
interconnectivity to other MQSeries platforms and environments.

COM isanobject-based programming model that providesaframework
for integrating components. Using COM -capabl e devel opment tools
and environments, such as Visual Basic, PowerBuilder, Delphi,
Internet Explorer, and Active Server Pages (ASP), applications can
access MQSeries services.

PROPERTIES, METHODS, AND EVENTS

ActiveX is a component development architecture based on COM
that provides interfaces that can be accessed dynamically by
applications. It supports properties, methods, and events that define
its behaviour. A class's data (its settings or attributes) are called
properties, while the procedures that can operate on a class and
actions it can perform are called methods. An event is an action or
response recognized by aclass, such asamouse click or akey press,
and you can write codethat respondsto the event. Exceptionsarealso
part of an ActiveX class. When unexpected events interrupt the
normal processing of an application, an exceptionisusually raised to
inform the class that an error has occurred.

MQSERIES CLASSES

MQAX provides sets of classesto enable applicationsto access other
applicationsrunninginnon-ActiveX environments. Theseclassesare
thefamiliar objectsthat you usually encounter and use in devel oping
M QSeries applications. The following describes each class and how
to useit.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

M QSession class

Thisistheroot class, which provides an object that contains the |ast
action performed on any MQAX object, including the status of the
operation (whether it was successful). Properties such as
CompletionCode, ReasonCode, and ReasonName can be derived
throughthisclass. Another property, ExceptionThreshold, definesthe
circumstances under whichthe MQA X classesthrow exceptions, the
default beingMQCC_FAILED. A vauegreater than MQCC_FAILED
effectively prevents exception processing, leaving it up to the
programmer to implement code that checksthe CompletionCode and
ReasonCode.

The code below shows how to create an MQSession object in your
Active Server Page using VB Script. The code attemptsto connect to
a queue manager — as the class doesn’'t throw exceptions, code to
handle errors should be implemented.

CREATING AN MQSESSION

<%@ Language="VBScript"%>
<HTML>
<BODY>
<%
Set mgsess = Server.CreateObject ("MQAX200.MQSession™)
'Set a high exception so we could handle errors
mgsess.ExceptionThreshold = 3
'Connect to default queue manager
Set QMgr = mgsess.AccessQueueManager("")
If mgsess.CompletionCode <> 0 Then
Response.Write "Unable to connect to Queue Manager. "
Else
Response.Write "Connected to Queue Manager"”
End If
%>
</BODY>
</HTML>

| thecreation of an MQSessi onobjectissuccessful, andtheconnection
to the queue manager also succeeds, a reference to the
MQQueueManager is returned along with the corresponding
CompletionCode and ReasonCode.

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You should be aware that there is only one MQSession object per
client process. However, MQA X supportsafree-threading model that
allowsobjectsto be shared betweenthreads. Generally, COM follows
an apartment threading model in which a processis either asingle-
threaded apartment (STA) or a multi-threaded apartment (MTA).
STAscontain only one main application thread, which belongsto the
apartment itself, and calls can be received only from that thread.
MTAs can have more than one application thread and the application
can receive cals from any of the apartment’s threads. COM is
responsible for managing threads, apartments, and the creation of
objects. It a'so marshalsinterface pointers across thread boundaries.

MQQueueM anager class

This class represents a connection to a queue manager. Applications
must create an object of this class and connect it to a gueue manager
that’s running either locally on an MQSeries server or remotely, with
access provided by an MQSeries client. The connection to the queue
manager is automatically terminated when the MQQueueManager
object is destroyed. This class, like other MQAX classes such as
MQMessage, also has its own CompletionCode, ReasonCode, and
ReasonName propertiesthat you can check after making amethod call
on the object.

Using Visual Basic, we'll establish connection to a queue manager
and then try to check the status of our operation using the properties
of the MQQueueManager object.

CONNECTING TO A QUEUE MANAGER AND CHECKING RESULTS

Dim QMgr as MQQueueManager ' queue manager object

Set QMgr = New MQQueueManager 'Create an instance of a queue manager
QMgr.Connect 'Connect to the default queue manager
MsgBox Str$(QMgr.CompletionCode) & "™ ™ & QMgr.ReasonName, vbOKOnly, _

"Connect Result"

There can beonly one MQQueuManager object connected to aqueue
manager per ActiveX instance. Once we are connected to a queue
manager, the next class in the process enables us to access a queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

MQQueue class

Access to an MQSeries queue is encapsulated in this class. An
associated MQQueueManager object provides the connection to the
gueue manager. When an object of this classis destroyed, the queue
that was opened is closed automatically. In order to accessthe queue,
you must use the AccessQueue method of the MQQueueManager
class.

WE'll try to open aqueue using PowerBuilder. In the code bel ow, the
queue ProdLocQ isopened with some appropriate optionsand isthen
associatedwiththegqueuemanager ProdQueueMgr. Thecorresponding
result is checked. A queue object must always associate itself with a
gueue manager object. Notetheuse of the continuation character, ‘0,
in the code below to indicate a formatting line break.

ACCESSING A QUEUE

olenvQMgr
11_result

Create OLEObject
olenvQMgr.ConnectToNewObject ("MQAX200.MQQueueManager")

olenvQueue=olenvQMgr.AccessQueue("ProdLocQ",MQO00_QUTPUT+ &
MQOO_INPUT_AS_Q_DEF,"ProdQueueMgr")

MessageBox ("Open results™, "Completion Code: "™ + string
O (olenvQueue.CompletionCode) + ", &
Reason Code: ™ + string (olenvQueue.ReasonCode))

Normally, after opening aqueue, wewould PUT messagesonor GET
messages from the queue — the next class allows us to do just that.

M QM essage class

In order to send and receive messages to and from a queue, an object
of thisclassmust beused. Thisclassrepresentsan M QSeriesmessage.
The properties of an MQSeries message descriptor (MQMD) are
contained in this class, which also provides a buffer to hold the
messagedata. Thecodebelow illustrateshow to createan M QM essage
object and assign it data using Visual Basic.

CREATING A MQMESSAGE OBJECT
Set msgPut = New MQMessage

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

msgPutStr = "This is a sample message"
msgPut.MessageData = msgPutStr

Methods, such as those to copy datafrom an ActiveX application to
an MQM essage object (the Write method) and from an MQM essage
object to an ActiveX application (the Read method), are included in
this class. Unlike procedura MQ API calls, which require you
explicitly to declare the size of the data buffer (otherwise the buffer
will contain no data), this class automatically managesthe all ocation
and de-all ocation of memory for the buffer. Thismakesprogramming
much easier. The buffer size need not be declared as it grows to
accommodatedatawrittentoit. However if thebuffer sizeexceedsthe
MaximumMessagelLength of a queue, then the message cannot be
placed on the queue.

Whentryingto put or get different datatypesto and from aqueue, you
canusetheavailablemethodsof the MQMessageobject. For example,
if you want to write a string message to a queue, you use the
WriteString method:

msgPut.WriteString(msgPutStr)

If youwant to read anumericvalue, such asalLong datatype, fromthe
message’' s data buffer, you can use the ReadlLong method:

LongMsg = msgGet.ReadlLong

Some of MQMessage methods maintain a cursor position in the
message buffer, which makes it easier to read or write incremental
data. Thisis done using the DataOffset property of the MQMessage
object.

Data conversion is performed by the Read and Write methods of the
MQMessageclass. ConversionisbetweenActiveX’sinternal formats
and the M QSeries message format defined by the Character Set and
Encoding properties of the message descriptor. BeforeissuingaWrite
method, you should set the values of the propertiesabove, if possible,
to match the characteristics of the receiver of the message. You don’t
normally haveto do thiswhen you are reading a message becausethe
characteristics are set by the incoming MQMD.

After constructing a message, you can put an MQMessage object on
an M QSeriesqueue using the Put method of theMQQueueclass. This

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

method takes a copy of the message's message descriptor (MQMD)
and the data portion of the object being PUT and places the copy on
the queue. Applications can delete or modify an MQMessage object
after the Put method without affecting the message on the queue. The
gueue manager may adjust somefieldsin the MQMD when copying
messages bound for an MQSeries queue.

The next example illustrates how to put a message on a queue using
VBScriptinanActive Server Page. The message string isassigned to
the MessageData property of the MQMessage object and put on the
gueue ProdLocQ.

PUTTING A MESSAGE ON A QUEUE

<%@Language="VBScript"%>

<HTML>

<BODY>

<%

Set QMgr = Server.CreateObject("MQAX200.MQQueueManager")
Set Queue = QMgr.AccessQueue("ProdLocQ", MQOO_OUTPUT, "ProdQueueMgr")
Set msgPut = Server.CreateObject("MQAX200.MQMessage")
msgPutStr = "This is a sample text sent at:" & Time
msgPut .MessageData = msgPutStr

Queue.Put msgPut

%>

</BODY>

</HTML>

Using the Get method of the MQQueue class, messages can be read
into an MQMessage object. Incoming messages completely replace
any message descriptor (MQMD) or message data that may already
exist in the MQMessage object with their own values, aslong as the
method call is successful. As mentioned earlier, the MQMessage's
databuffer automatically adjustsitssizeto match that of theincoming
message data.

WEe' Il try to get the message data that was sent in our previous code
example from the queue using JavaScript in an Active Server Page.

GETTING A MESSAGE FROM A QUEUE

<%@ Language="Jdavascript"%>
<HTML>
<BODY>

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<%

QMgr = Server.CreateObject("MQAX200.MQQueueManager")
Queue = QMgr.AccessQueue("ProdLocQ", MQOO_INPUT_AS_Q_DEF,
"ProdQueueMgr™)

msgGet = Server.CreateObject("MQAX200.MQMessage")
msgGet.MessagelId = msgPut.Messageld

Queue.Get msgGet

msgGetStr = msgGet.ReadString(msgGet.Messagelength)
%>

</BODY>

</HTML>

After recelving our message, we can check the various MQMD
properties of the associated MQMessage object and examine such
attributes asthe Messagel d, Groupld, Userld, and Correlationld that
we use to identify the messages received.

M QPutM essageOptions class

We could add PUT message options to our code by using the
MQPutMessageOptions class. Options that control the action of
putting a message on a queue are all included in this class, which
contains the MQPM O data structure. When you create an object of
this class, al its properties are initialized.

S0, before putting our message on the queue using the section of code
headed ‘ Putting amessage on aqueue’, we could insert thefollowing
code;

Set msgPutOpt = Server.CreateObject("MQAX200. _
MQPutMessageOptions™)
msgPutOpt.Options = MQPMO_FAIL_IF_QUIESCING

M QGetM essageOptions class

Likewise, if wewant to include optionswhen getting amessage from
a gqueue, we can use the MQGetMessageOptions class. Thisclassis
used to set various GET options for a message. The MQGMO data
structure is encapsulated in this class. As with the PUT option class,
al propertiesareinitialized when you create an instance of thisclass,

To set message options within our Visual Basic application, we just
need to create an MQGeMessagetOptions object and set the property
Options to any acceptable set of valuesto control message retrieval

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

In this example, we set the Options property to wait ten seconds for
amessage to arrive.

SETTING GET OPTIONS

Dim Queue As New MQQueue
Dim msgGet As New MQMessage
Dim msgGetOpt As New MQGetMessageOptions

'code for opening the queue is omitted

msgGetOpt.Options = MQGMO_WAIT
msgGetOpt.WaitInterval = 1000

Queue.Get msgGet, msgGetOpt

The following classes are available only in MQSeries Version 5.1
(both Client and Server) and not intheActiveX SupportPac (MA7B).
There are differences between the classes in Version 5.1 and those
includedinthe SupportPac, includingtheadditional featuresmentioned
intheformer. You should be aware of thisand not install one over the
other, as this may cause problems with your application.

MQDistributionList class

Thisisthe classthat containsacollection of different queuessuch as
local, remote, and alias. You can use this class to send messages to
several destinations with asingle PUT.

MQDistributionListltem class

This class is used to manipulate elements of an ‘object record’
(MQOR), ‘put message record’ (MQPMR), and ‘response record’
(MQRR). Thesestructuresareincluded inthisclass, which associates
them with an owning distribution list. This class is represented as
instances of MQDistributionList objects.

Another featurethatisfoundonly inVersion5.1isthat thecoordinating
of units of work by gqueue managers may involve external resource
managers. For instance, we may want messages received to be
coordinated with database updates in a unit of work. Thus, if the
operation succeeds, the work is committed, the database is updated,
and the message is removed from the queue. However, if an error

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

occurs, the work is rolled back, the database is not updated, and the
message remains in the queue.

COORDINATING UNIT OF WORK

Qmgr.Begin

Queue.Get msgGet, msgGetOpt

'Database Transaction

EXEC SQL UPDATE TABLE EMPLOYEE SET EMP_NO= :hEmpNo
'Check for errors, if none commit transaction
Qmgr.Commit

The following exampleillustrates the MQAX classesin action. It is
written for an Active Server Page using VBScript. You need an
MQSeriesclientif Internet Information Server (11S) isnot onthesame
system asthe MQSeries server or the server install if the two areon
thesamemachine. Theinstallation comprisestwofiles: MQForm.html,
where you enter the queue name and the message to send, and
MQPut.asp, which processesthedatafromtheHTML form. (Notethe
use of the continuation character, ‘0’, in the code below toindicate a
formatting line break that's not present in the original source.)

MQFORM.HTML

<HTML>
<BODY>
<l --
'create the HTML form

-->
<FORM ACTION="mgput.asp" METHOD="POST">
Queue Name: <INPUT TYPE="TEXT"™ NAME="QueueNm"></INPUT>

Message: <INPUT TYPE="TEXT"™ NAME="PutMsg"></INPUT>
<INPUT TYPE="SUBMIT" VALUE="Put Message"></INPUT>
<INPUT TYPE="RESET" VALUE="Reset"></INPUT>
</FORM>
</BODY>
</HTML>

MQPUT.ASP

<%@ Language="VBScript"%>

<HTML>

KTITLE>Simple Put Message</TITLE>
<BODY>

<%

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

'retrieve values from the HTML Form

QueueNm = Request.Form("QueueNm")
PutMsg = Request.Form("PutMsg")

'create an MQSession object

Set mgsess = Server.CreateObject ("MQAX200.MQSession™)
On Error Resume Next

'Set a high exception so we can handle errors

mgsess.ExceptionThreshold = 3

'Connect to default queue manager

Set QMgr = mgsess.AccessQueueManager("")

' check for failures, then write appropriate message to the page

If mgsess.CompletionCode <> 0 Then
Response.Write "Unable to connect to Queue Manager. "
End If

' declare constant, you can put this in an include file
MQOO_OUTPUT = 16

MQOO_INPUT_AS_Q_DEF =1

MQPMO_FAIL_IF_QUIESCING = 8192

access the queue that was specified

Set Queue = QMgr.AccessQueue(cstr(QueueNm), MQOO_OUTPUT +
O MQOO_INPUT_AS_Q DEF)

If mgsess.CompletionCode <> 0 Then

Response.Write "Unable To Open Queue.™

End If

' create a new message and put option object using the MQSession method

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Set MsgPut = mgsess.AccessMessage()
Set msgPutOpt = mgsess.AccessPutMessageOptions()
msgPutOpt.Options = MQPMO_FAIL_IF_QUIESCING

' write the message , then put to the queue

MsgPut.WriteString cstr(PutMsg)
Queue.Put MsgPut, msgPutOpt

If mgsess.CompletionCode = 0 then
Response.Write "The message has been successfully sent!™
End If

%>
</BODY>
</HTML>

Rommel K Abdon
Senior Systems Engineer
Client Server Technologies Inc (The Philippines) © Xephon 2000

MQSeries Everyplace configuration

Oneof thechallengesof discussing M QSE isthat it usestermsthat are
similar to those used with *big’ MQSeries, but with dightly different
meaningsand implications. To understand some of the differences, as
well as highlighting how MQSE works, consider the following
example configurations (Figures 1 to 3 on pages 32 to 34).

‘Big’ MQSeries has the concept of:
« AnMQSeries server (the squarein Figure 1)
« AnMQSeriesclient (thetrianglein Figure 1).

AnMQSeriesserver possessesat | east one queue manager and queue.
|n contrast, an M QSeriesclient possessesno queue or queue manager;
instead it can ‘put to’ and ‘get from’ a queue managed by a queue
manager on an MQSeries server.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

Server !

a. Stand-alone server b. Client/server

o o

Server) Seoryer

A c. Distributed client/server A

Figure 1. Stand-alone versus distributed client/server

Server

Whilean MQSeries server can stand alone and/or talk to one or more
other MQSeries servers (or clients), an MQSeries client cannot talk
directly to another MQSeries client. In Figure 1 the regular lines
represent synchronous links (client channels) between an MQSeries
client and an MQSeries server, while the heavier lines represent full
MQSeries asynchronous links (messaging channels).

Figure 2 depicts MQWin — the lightweight form of ‘big’ MQSeries
originally available on Windows 3.1 and Windows 95/98. Thishas a
gqueue manager that can stand alone or use radio or messaging
channelstotalk toanM QSeriesserver (which, inturn, cancommunicate
with other MQSeries servers and/or MQSeries clients). MQSE will
replace MQWin.

In the MQSE environment (Figure 3), the picture changes from that
described for ‘big’ MQSeries. The PDA or other end point systemis
now called a‘device . In addition, MQSE introduceswhat IBM calls

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

@ a. Distributed client/server

Server [Server

(=) o

b. Distributed client/workstation/server

WS = Workstation
Figure 2: Distributed client/workstation/server model

‘gateways . (Whilethisisnotanoriginal term, it’ sthemost ‘ descriptive
onethat IBMers have yet been able to agree on.)

An MQSE device can stand alone, with its own gueue managers,
gueues, and messages, or one device cantalk directly to another, with
no MQSeries server in between.

Thisisamajor difference between MQSE and ‘big' MQSeries—it's
this that enables a Palm Pilot to send messages to an EPOC phone,
assuming that both have MQSE-enabled applications. The dashed
linethat joinsdevicesin Figure3isanew M QSE-specific channel that
IBM calls a‘dynamic channel’.

A devicecan alsotalk to agateway, whichwill initially beaWindows
NT or Windows 2000 system. In most instances, agateway hasall the
facilities of adevice, but with the additional abilities to:

» Offer device-to-device connection viaahub (the gateway itself),

* Provideserver capabilitiesfor M QSE (for examplehomegateway
capabilities,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

@ Server

010 69
b

Figure 3. Device/gateway interaction

e Connect MQSEtoconventiond ‘big’ M QSeriesmessagechannels.

The home gateway queue manager is where the device looks for
messagesthat may beawaiting delivery toit. After being disconnected
for aperiod, the device contactsthe home gateway queue manager to
collect outstanding messages.

A device in an MQSE deployment can be:

e Stand-alone

e Connected to other MQSE-equipped devices
e Connected to agateway.

An MQSE gateway provides.

* Device-to-device connections

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

* Device-to-gateway-to-device support (the MQSE gateway is a
server for multiple devices)

e MQSE-to-MQSeries connections.

In the third instance, the gateway system hosts both the MQSE
gateway itself and the M QSeries server. MQSE sends messagesfrom
its own queue managers/queues to/from the ‘big’ MQSeries queue
managers/queues. Using this mechanism, messages can then be sent
to or received from other MQSeries systems.

ASYNCHRONOUSAND SYNCHRONOUS POSSIBILITIES

Oneof thekey differencesbetween ‘big MQSeriesand MQSE isthat
the latter offers the ability to know when a message arrives. In
asynchronous messaging (at least with the ‘big’ MQSeries family),
the sending application knows that the receiving application will
receive the message — but not when. By contrast, MQSE enablesyou
to store the message either asynchronously or synchronously on
MQSE queues(and/or ‘big’ MQSeriesqueuesviaagateway) anywhere
inthe‘MQ'’ network.

With MQSE asynchronous messaging:
o Control returns after the local ‘put’.
» Delivery isassured.

 Messages are queued until delivery (the sending application
doesn’ t know whenthereceiving applicationtakesdelivery of the

message).
e Sending and receiving applications are decoupled.
* Network independence is introduced.
« MQSE and ‘big’ MQSeries work together.
By contrast, MQSE synchronous messaging is dlightly different:

o Control returnsto the application asyou ‘ put’ the message on a
destination queue (after the remote ‘put’).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

e The source application, which isresponsible for error handling,
knows that the message has arrived on the target system/queue.

» Thereisstill adecoupling of thesending and receiving applications
viathe receiving queue.

* The network must be working (from source to destination).

Theonly real disadvantageisthat all thecommunicationlinkshaveto
be available. On the other hand, the originating application on an
MQSE-equipped device knows for certain that the message has
arrived.

Synchronousmessaging workshetween M QSeriesEveryplacequeues
and also ‘big’ MQSeries queue managersthat aredirectly attached to
the MQSE gateway.

Another difference between MQSE and ‘big’ MQSeries is that the
former wasdes gned using object-orientated programming principles.
Everything is an object — even messages are objects, so that you're
moving objectsaround the network. I n thiscontext, MQSE messages
are objects that inherit properties from field objects. Understanding
field objectsis, therefore, important to the successful use of MQSE.
A field object is acollection of fields where each field has a name,
type, and value. ThetypesincludeASCII, Boolean, byte, integer, and
many others. Strings, fixed arrays, dynamicarrays, etcareall supported.

What you ship across the network is not, therefore, just a string of
bytes—it isacollection of fields whose namestell you what they’re
shipping. Furthermore, these properties can be nested, so that you can
build composite and complex messages. Just as importantly, when
you recelve amessage, you know what it contains, what to do withiit,
and how to convert it — all because the message is an object.

Besides simplifying the use of MQSE, the field object approach can
reducewhat hasto be sent over the network. If the message object can
describe where some datais to be found at the destination, then this
data does not itself need to be sent, thus reducing the payload and
network requirements. Furthermore, a message object can, when it
arrives, initiateother actions, suchasstartingan FTPsession, invoking
a process, making a database query, or even configuring a machine.

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The only attribute that an MQSE message has to possessis a unique
identifier. TomakeM QSE easy to use, thisiscreated automatically (as
afunction of thetimethe object was created and the originating queue
manager). All other fields in the object are determined by the
application.

Unlike'big’ MQSeries, thereareno manager’ fields. MQSE doesnot
possess the concept of a header and message data: there are only the
fields and the message ID. If you want a message to have a priority,
Correlld, or target queue manager name, then you or the application
must give it these attributes, which are optional.

The net result is ahighly compact message, which can be made still
more compact and secure via compression and encryption. Indeed,
MQSE isso flexiblethat you can even choosewhich fieldsneed to be
encrypted or compressed — if that’s what you need. Everything,
including compression and security, is field object based.

QUEUE MANAGER AND QUEUE OPERATIONS

Now that the concepts of field objects, messages, queues, and queue
managers have been outlined, the operations that can be applied
should be fairly self-evident. An application talking to a queue
manager can ‘browse’, ‘get’, ‘put’, ‘delete’, ‘listen’, and ‘wait’.
Becausefeatureslikethe Correlld arenot built into MQSE (you have
to implement them yourself, as described above), al the fieldsin a
message can be used in retrieval operations. You can browse or add a
filter, whichever you prefer. And you can browse either local queues
or remote synchronous queues, assuming that you have the right
permissions. You can even browse with alock, only reaching those
messages to which you have the correct key. Similarly you can ‘ get’,
‘put’, or ‘delete’ in the same fashion.

If you choosetolisten’, you canwait until youreceivean event that’s
triggered by a message appearing on an appropriate queue. You can
then browse the queue or take whatever other action is appropriate.

Where MQSE isto work with *big’ MQSeries, certain types of field
are expected, Correlld being the obvious one. If these are present in
a message from ‘big MQSeries, MQSE will generate indices as

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

messages are stored. You can then retrieve messages based on their
Correlld, using indices to speed up access.

Whenaccess ngremotequeues, therel evant authentication, encryption,
and compression information is needed. To obtain this you need
access to the remote queue definition that keeps this information —
which explains why IBM incorporated remote queue definitions,
MQSE also uses remote queue definitions to control whether access
IS synchronous or asynchronous, for routing, roaming, and dial-out
support.

The new ‘dynamic channel’ — used for queue-manager-to-queue-
manager connection — also possesses authentication, compression,
and encryption. This is based on what you are trying to do. For
example, if you are putting an encrypted message on an encrypted
gqueue, MQSE automatically sends the message over an encrypted
channel.

All configurationdataisheldinaregistry alongwithqueuedefinitions,
gueuemanager definitions, remotedefinitions, etc. Inaddition, security
certificates are held in the registry. This is stored locally, accessed
through the gateway, or shared across several gateways.

MQSERIESAND MQSE MESSAGE INTERCHANGE

Three basic scenarios serve to illustrate how ‘big’ MQSeries works
with MQSeries Everyplace.

Inthefirst, an MQSE network is connected to an M QSeries network,
which is then connected to another MQSE network. If you send a
message all the way across this infrastructure, your M QSE-sourced
message will arrive unchanged at the destination MQSE network,
eventhoughit waspassed, viaM QSE gateways, throughtheM QSeries
network. In other words, MQSE can be used both around and across
an existing MQSeries installation.

Thesameistrueif you have two MQSeries networks with an MQSE
network in between — MQSeries messages can flow across MQSE
networks unchanged. This could be used, for example, as away to
pass through Internet firewalls.

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In the second scenario, an MQSE queue manager wants to send a
message to an existing M QSeries application that expects a specific
string of bytesto arriveon an M QSeriesqueue. MQSE enablesyou to
construct any message you desire and then send the message to an
MQSeries queue manager. The key here is the ability to build the
correct messagein MQSE, andtherearetoolsthat allow youtodojust
this.

As with the previous example, the reverse is also true, so that an
M QSeries message can flow to an MQSE device.

The third scenario involves conversion between MQSE and ‘big’
M QSeries. MQSE providesfacilitiesfor converting messagesbetween
‘big’ MQSeriesand MQSE. For example, MQSE can construct ‘big’
MQSeries headers, etc, as needed. Similarly you can construct a
message body as required.

The net result of al thisisthat there are comprehensive facilities to
exchange messages between every version of ‘big’ MQSeries and
MQSE. In due course, there will also be acommon set of tools and
utilities for the two MQSeries ‘families’, and also a common set of
addressing schemes.

OntheAPI front, MQSE usesthe‘ SPI’, which isasubset of the AMI
(with some extensions). MQI and CMI support (for those who want
it) will come later. One reason for the MQI coming later isthat it at
|east doublesthe memory requirement! Similarly, clustering support,
aready in ‘big’ MQSeries, will follow in alater version of MQSE.

AVAILABILITY AND ROLLOUT

Recent statements suggest that the NT version of MQSE will be out
in June 2000, with support for Al X and Solarisgatewayscoming later
intheyear. In any case, thefirst batch of MQSE systemswill mostly
be packaged within larger solutions, which could be sold by system
vendors or by system integrators creating specific solutions.

Inthefirst release, dynamic channelswill have support for both TCP/
|Paloneand HTTPover TCP/IP(thoughthelatter will be measurably
slower than the former). The Wireless Application Protocol will be
added at some later time.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

Theinitial devicesto be supported include EPOC, WinCE, Windows
95/98, Windows NT, Windows 2000, OTI’s Neutrino, the Palm OS,
and Synergy (for Sharp’sZaurusmachines). TheM QSE Gateway will
initially be Windows NT/Windows 2000-based (with AlX, Solaris,
HP-UX, and Linux to follow).

Fromthestart XOR/RLE compressionisavailable. Operating system,
private file, and digital certificate authentication will also be there.
Encryption will include XOR, table substitution, 55-bit DES, 1024-
bit RSA, triple DES, RC4, and RC6.

BUILDING BLOCKS

Finaly, to summarize, a different way to understand MQSeries
Everyplace is to think of it as Lego building blocks with different
kinds of connector:

e A device can spawn multiple connectors (though there will be a
limit on their number). These are ‘dynamic channels'.

e A gateway can spawn connectors to ‘big’ MQSeries message
channels, as well as dynamic channels.

Using the building block approach, you can build whatever
configurationsyou like and connect themwhichever way you choose.
Devices can:

» Taktoeachother without agateway or talk to‘big’ MQSeriesvia
agateway.

e Support morethan onequeue manager, andalsocommunicatevia
both synchronous and asynchronous messaging.

» Exchange messages in real-time without queuing (the default).

e Optionally be configured to support asynchronous messaging
with local queues, though thiswill increase the size of MQSE's
footprint on the device.

By using these building blocks, MQSeries Everyplace enables the
power and flexibility of generationsof mobile devices (and dispersed
controllers) to be brought into the wider IT environment.

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION

MQSE is not the same as ‘big’ MQSeries. It isdesigned for smaller
devices—PDAs, mobilephones, andthelike—operatinginmobileand
even hostile conditions with appropriate security, but without losing
the primary attraction of the MQSeries family — namely reliable

messaging and queuing.

While MQSE is not an ‘end-user application’, it is the underpinning
that can make such applications usable by providing the dependable
infrastructure on which businesses can rely. With the relentless
increase in the number of mobile devices deployed, applications to
exploit this hardware are needed. Before MQSE, thiswasdifficultin
dataprocessing termsbecause the communi cationswere exposed and
insecure. With thearrival of MQSE this changes, and applicationson
the device — and their users — can be knitted into the broader
i nformation processi ng and communi cationsinfrastructure, including
existing ‘big’ MQSeries.

At basethered attraction of MQSE isitsability to broaden therange
of devicesthat can reliably be part of the business, in spite of hostile
communication environments.

Charles Brett
President
C3B Consulting (UK) © Xephon 2000

Configuring distributed queuing without CICS

Theversion of CSQ4INPX suppliedinthe MQM.SCSQPROC dataset
can be customized to meet the requirements of a specific application.
The sample version below contains a set of commands that could be
issued whenever distributed queuing without CICS is started. It is
used to start alistener for each communication protocol that you use.
Definethe correct LU namefor thelistener, which must be uniqueto

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

each MQ subsystem. TCP/IPport 1414 isreserved for MQSeries, but
additional ports can also be defined. This is very useful for
distinguishing individual subsystems. You can also display the status
of all the channelsthat are current.

AN EXAMPLE OF CUSTOMIZED CSQINPX

khkhkhkhkkkkkhkhkhhkhkhkhkhkhkkkhkhkhhhhhhhkhkkhkhkhkhhhhhhhkhkkhkhkhkhhhhhhkhkhkkhkhkihhhhhhkkkkkxk

@START_COPYRIGHT®@
Statement: Licensed Materials - Property of IBM

5695-137
(C) Copyright IBM Corporation. 1993, 1996

Status: Version 1 Release 1
@END_COPYRIGHT@

X% o o X % % ok 3k %

khkhkhkhkkkkkhkhkhhhkhkhkhkhkkhkhkhkhhhhhhkhkhkkhkhkdkhhhhhhkhkhkhkhkdkhhhhhhkhkkhkhkhkdkhhhhhhhkkkkkxk
*

* IBM MQSeries for MVS/ESA
* CSQINPX sample

*
khkhkhkhkhkkkkhkhhhkhkhkhkhkhkkhkhkdhhhhhhkhkkhkhkhkdhhhhhhkhkhkhkhkdhhhhhhkhkkhkhkhkdkhhhhhhhkkkxkkxk

This sample data set contains an example of a set of commands
that could be issued whenever distributed queuing without CICS
is started.

* % X X %

khkhkhkhkkkkkhkhkhhkhhkhkhkhkkhkhkhkhhhhhhkhkhkkhkhkdhhhhhhkhkkhkhkhkdhhhhhhkhkhkkhkhkdkhhhhhhkhkkkkkk

* You must supply your own values for items shown thus:
*

* ++value++

*
dkhkkhkkkhkhkkhhhkhhkhkhhkhhhkhkhhhhkhkhhhhhkhkhhhhhkhkhhhhhkhhhhhkhkhhhhhkhkhhhhhkhkhhkrhkik
*

*
dhkkhkkkkhkhkkhkhkhkkhkhkhhkhkhkkhkhkhhkhkkhkhkhhhkhkhkhkhhhhkhkhkhhkhhkhkhkhhkhhkdkhhkhhhkkdkhhkhhhkhkhkhkktk
* Start Listeners
hkhkkhkkkhkhkkhhhkhhkhkhhkhhkhkhkhhhhkhkhhhhhkhkhhhhhkhkhhhhhkhdhhhhkhkhhhhhkhkhhhhkkhkhhkrhik
*

* You must start a listener for each communications protocol that

* you use.
*

*kkkk*k

* The Tu name below will need to change for each QMGR on each LPAR
START LISTENER TRPTYPE(LU62) LUNAME(MVSMQLU1)

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

START LISTENER TRPTYPE(TCP) PORT(1414)

*
*hkkkkkhkkhkhhkhkhkhkhkhkkkkhkhkhhhkhkhkhkhkkkhkhkhkhhhhkhkhkhkkkhkhkhkhhhkhkhkhkkkkkhkdkhhhhkhkhkkkkk,k*kxx

* Start and Stop Channels

KAAKAA A I IR A KRR KA A A A I I I A I AR A A dddh A A Ak hkkhdhhhhhkhhdhkkkddhhhhhhdkkkk*k,kxx

Sender channels normally start automatically when a trigger
message is put on the channel initiation queue. Similarly,
receiver and server channels start automatically when a message
is received from a remote queue manager. They stop
automatically when there is no further work for them.

Starting such channels manually is necessary only when they have
stopped because of an error, or they have been stopped manually.
Both these conditions are cleared when the channel initiator is
started, so there is no need to issue any START CHANNEL
commands.

However, if there are certain channels that you do NOT want to
start automatically, then you should issue STOP commands for

them when the channel initiator starts. Later, when you want
them to start, you will have to issue START commands for them.

kb ok b ok ok k% ok ok ok ok k ok ok oF

*kkkk*k

*STOP CHANNEL('++channel-name++')

*

*
dhkkhkkhkhkkkhkhkhhkhhkhkhkhhkhkhkhkhhhhkhkhkhhhhkhkhhhhhkhkhhhhhkhkhhhhhkhdhhhhkhkhhhrrhkhkkxxk
* Display channel status
dhkkhkkhkhkkkhkkhkhhkhkhkhkhkhhkhkhkhkhhhhkhkhkhhhhkhkhkhhhhkhkhhhhkhkhkhhhhhkhkhhhhkhkhkhhhhkhkkxxkx
*

* Show the status of all the channels that are current.

*

*kkkkk

DISPLAY CHSTATUS(*) CURRENT ALL

*
*
*khkkkhkhkhkkkhkkhkkhkhkhkkkhkhhkhkhkkhkkhkhhkhkhkkhkhkhkhhkhkhkhhhhkkhkhkhhhhkkhkhkhhhhkhkhkhhhkkhkhkhkhkkkkkkxx%

* End of CSQ4INPX

*hkhkkkkkhhkhkhkhkhkhkhkkkkdhhhhhkhkhkhkkhkkkddhhhhhhhkhkkkddhhhhhhhkhkkdkhkhhhhhhhkkkkkkxx

Saida Davies
IBM (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

MQ news

IBM has released MQSeries Everyplace for
Windows V1.0 and MQSeries Adapter
Offering V1.0, plus MQSeries V5.1 for
Compaq Tru64 Unix and a link to R/3 for
Compaq Trué4 Unix V1.2.

MQSeries Everyplace for Windows V1.0
(formerly ‘MQSeries Lite') extends the
software to PDAs and other mobile devices
used by remote workers. It allows access to
and exchange of dataacross public networks
and supports Java applications.

The MQSeries Adapter Offering uses Open
Applications Group standards for business
object documents. It provides applications
withacommon languagethey can usetotalk
to each other through standard MQSeries
messages, without a transformation engine.
Adapter Kernel provides the run-time
environment for adapters built using an
adapter builder toolkit.

MQSeriesfor Compaq Tru64 Unix V5.1ties
into Trué4 Unix and claims to offer
functiona parity with the other MQSeries
V5.1 products. The link for R/3 for Tru64
Unix V1.2 is functionally equivalent to the
SAP R/3 links already available, which
allow the exchange of data between ERP
systems and all the platforms on which
MQSeries runs.

For further information, contact your local
IBM representative.

* % %

Prolifics has announced a RAD tool for
IBM’s WebSphere. Panther for I1BM
WebSphere, the new product, is the latest
member of the company’s existing line of
Panther products. It's a framework for
building WebSphere-ready transactional
applications; it includes visual tools, an
object repository, and application building
blocks.

Panther also provides facilities for building
server-side EJBs, and includes a library of
pre-built classes, methods, and components
for application development. The product
also supports Rational Rose for database
design and modelling.

Out now, details on pricing are available on
request from the vendor.

For further information contact:

Prolifics, 116 John Street, New York, NY
10038, USA

Tel: +1 212 267 7722

Fax: +1 212 608 6753

Web: http://www.prolifics.com

Prolifics, 4 Chiswell Street, London EC1Y
4UP, UK

Tel: + 44 20 7786 9555

Fax: + 44 20 7786 9556

* k% %

xephon

	MQSeriesê JMS èpublish-and-subscribeê
	MQSeries programming with ActiveX
	MQSeries Everyplace configuration
	Configuring distributed queuing without CICS
	MQ news
	MQSeries’ JMS ‘publish-and-subscribe’
	MQSeries programming with ActiveX
	MQSeries Everyplace configuration
	Configuring distributed queuing without CICS
	MQ news

