
© Xephon plc 2000

July 2000

13

3 MQSeries’ JMS ‘publish-and-
subscribe’

21 MQSeries programming with
ActiveX

31 MQSeries Everyplace configuration
41 Configuring distributed queuing

without CICS
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSeries’ JMS ‘publish-and-subscribe’

INTRODUCTION

This article describes the use of the Java Message Service’s (JMS)
publish-and-subscribe API in conjunction with the MQSeries JMS
implementation supplied in SupportPac MA88. Also in this article is
an example application that demonstrates the essential features of
JMS’s publish-and-subscribe.

THE PUBLISH-AND-SUBSCRIBE MODEL

Publishers, subscribers, and topics

The publish-and-subscribe model provides an alternative to the
conventional point-to-point messaging model. Instead of
communicating through named queues, publishers (originators of
messages) and subscribers (recipients of messages) rendezvous on
named topics. Topics can be thought of as active destinations:
propagation and retention of messages is affected by the presence or
absence of client subscriptions. In particular:

• A message published to a single topic may be consumed by any
number of subscribers

• A message published to a topic may never actually be delivered
if there are no subscriptions to the topic.

The two models do not necessarily represent different levels of
abstraction; in JMS, Topic and Queue are simply different types of
Destination, and each can be used to represent application interactions
in the same way.

Non-durable and durable subscriptions
JMS defines two types of subscription. A client with a non-durable
subscription to a particular topic can receive messages from the
published topic only when the client is active. A client with a durable
subscription is able to receive published messages when the client is

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

inactive, as the messages are retained by the service provider between
invocations of the subscriber.

Publish-and-subscribe client operation

A JMS publish-and-subscribe client typically takes the following
steps to prepare itself to send or receive messages. These steps are
similar to those used for point-to-point messaging.

1 Use JNDI to locate a ConnectionFactory object
(TopicConnectionFactory).

2 Use JNDI to find one or more Destination (Topic) objects.

3 Use the ConnectionFactory to create a JMS Connection object
(TopicConnection).

4 Use the Connection object to create one or more Session objects
(TopicSession).

5 Use a Session object and Destination objects to create the
MessageProducer and MessageConsumer (publisher and
subscriber, respectively) objects needed.

As with JMS’s point-to-point messaging, provider-specific
ConnectionFactory and Destination objects can be obtained by direct
instantiation without using JNDI.

PUBLISH-AND-SUBSCRIBE WITH MQSERIES JMS

Brokers, streams and queues
Publish-and-subscribe services are provided in MQSeries by message
brokers. A message broker is an MQSeries application associated with
a single MQSeries queue manager. The queue manager maintains
queues for the storage of topic messages and uses the communication
links between queue managers to exchange messages with other
message brokers.

When topic messages are published to an MQSeries broker, they are
addressed to a stream queue, which acts as the message broker’s input
for one or more topics. A stream queue is associated in MQSeries’

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

implementation of JMS with a TopicConnection, and it appears as an
attribute of the TopicConnectionFactory-administered object. A
corresponding MQSeries queue must be defined at the queue manager
separately from the definition of the JMS-administered object before
the TopicConnectionFactory can be used. The default stream queue is
SYSTEM.BROKER.STREAM.QUEUE, which is typically created
during the initial configuration of MQSeries’ publish-and-subscribe
environment.

The MQSeries queues in which topic messages ultimately reside are
created automatically when subscriptions are established; they are not
accessed explicitly either by clients or during administration tasks.
Topic queues are removed automatically when their subscriptions are
terminated.

Organization of topics

JMS does not define a scheme for naming or organizing topics – this
is left up to the service provider. MQSeries uses a hierarchical scheme
where levels in a hierarchy are delimited by the forward slash
character (‘/’) in topic names, and wildcards can be used by subscribers
to identify a collection of topics in a single subscription request.

Administration

Two types of JMS-administered object – TopicConnectionFactory
and Topic – are used in JMS publish-and-subscribe. They are defined
in a JNDI repository using a provider-specific administration tool (for
MQSeries, the tool is the JMSAdmin program supplied with MQSeries
SupportPac MA88).

JMS SUBSCRIBER EXAMPLE: A SIMPLE PAGER APPLICATION

About the example

This example is a JMS subscriber application. It provides a simple
GUI interface (see Figure 1) representing a pager device and subscribes
to a single topic that represents a pager ID (a user). The application
subscribes when it is invoked. When running, a check box determines
whether the pager is ‘on’ (receiving messages) or ‘off’, in which case

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

messages remain on the subscriber queue. When turned on, the pager
application first checks synchronously for any messages published to
it that may have accumulated, and then switches to waiting for
notification of new messages. The pager application stores all the
messages it receives internally until the user erases them (or quits).

The pager has two buttons:

• The left-hand button steps through a menu allowing either a
received message to be selected for display or all messages to be
erased.

• The right-hand button either shows the selected message, scrolling
it across the display, or confirms that messages were erased.

Figure 1: The pager’s main interface

Figure 2: Pager showing Pager ID text field

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

When a new pager message is received, the pager beeps and the text
‘New message!’ appears on the display.

To publish messages to one or more JMSPager instances, the
JMSPageSender application is provided.

The Pager ID text field (Figure 2) is used to enter a topic to which to
send a message, and the message text is entered in the lower text field.

Requisites/environment

The MQSeries JMS provider classes are supplied in MQSeries
SupportPac MA88, which is available for download free from the
IBM MQSeries Web site for Windows, AIX, HP-UX, and Solaris.
MQSeries 5.1 and JDK 1.1.6 or later are required (JDK 1.1.7 or later
in the case of HP-UX). The MQSeries 5.1.1 Java classes, which are
also required, are supplied in the SupportPac, and the MQSeries
publish-and-subscribe component is supplied in SupportPac MA0C.

The description of the example application that follows assumes that
the above components are installed.

The example code has been tested and used successfully on two
platforms:

• AIX 4.2.1 running MQSeries 5.1 and JDK 1.1.8

• Microsoft Windows NT 4.0 running MQSeries 5.1 and JDK 1.2.2

CONFIGURING THE MQSERIES JMS ENVIRONMENT FOR USE

There are three basic steps required to set up the environment to run
MQSeries JMS applications:

• The classpath must be set to include the classes in the MQSeries,
JMS, and JNDI archives.

• A JNDI-accessible repository must be configured and populated
with one or more ConnectionFactory and Destination entries to
enable JNDI to look up JMS-administered objects.

• Any MQSeries objects referred to by the JMS-administered
object definitions must be defined in MQSeries and made available.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Setting the classpath

The following classes from the MA88 jar archives must be accessible
in the classpath (in addition to the base JDK classes) to run any
MQSeries JMS program:

• com.ibm.mq.jar

• com.ibm.mqbind.jar

• com.ibm.mqjms.jar

• jms.jar

• jndi.jar

• fscontext.jar

• ldap.jar

• providerutil.jar.

These archives are located in the java/lib (or java\lib) sub-directory
of the MQSeries/MA88 installation.

Defining JMS-administered objects

JMS-administered object definitions are created using the JMSAdmin
command-line administration tool, which must first be configured by
editing the JMSAdmin.config configuration file. The two entries
required are INTIAL_CONTEXT, the JNDI service provider class
name that determines the mechanism by which the repository is
accessed, and PROVIDER_URL, the URL that locates the repository.
Both are configured in the JMSAdmin.config properties file. For
example, the following entries can be used for a filesystem-based
repository:

INITIAL_CONTEXT=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/usr/mqm/java/directory

The JMSAdmin tool and the properties file are found in the java/bin
(or java\bin) sub-directory of the MQSeries/MA88 installation.

To run the JMSPager application, we need definitions for:

• A topic connection factory

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

• One or more topics corresponding to pager users.

To create a queue connection factory jmspager corresponding to the
local queue manager LYCHEE.QM and topics chris and bob, the
JMSAdmin commands would be (following the prompt ‘InitCtx>’):

InitCtx> define tcf(jmspager) qmanager(LYCHEE.QM)
InitCtx> define t(chris)
InitCtx> define t(bob)

Here, the topic connection factory definition refers to a local queue
manager by name, and this results in the use of the MQSeries Java
bindings. Alternatively, a topic connection factory can be defined as
an MQSeries client connection (note the use of the continuation
character, ‘➤ ’, below to indicate a formatting line break):

InitCtx> define tcf(jmspager) qmanager(LYCHEE.QM)
➤ hostname(lychee) port(1414) channel(CLIENT)
➤ transport(client)

The transport of type client is required in this case to indicate that this
should be a client connection. For client connections, an MQSeries
channel of type SVRCONN must be defined on the target queue
manager and an inetd entry (on Unix) or active listener must exist on
the specified port of the target host.

INVOCATION SCRIPTS

Because of the environmental pre-requisites for running a JNDI/JMS
application, it’s often convenient to create a shell script or batch file
to invoke the application with the correct configuration parameters. A
simple Korn shell script, jms (for Unix environments), to invoke an
arbitrary JMS application is shown below:

SAMPLE UNIX SCRIPT JMS
#!/bin/ksh

JMS_HOME=/usr/mqm/java
JMS_LIB=$JMS_HOME/lib
JMS_CLASSPATH=/usr/jdk_base/lib/classes.zip:\
$JMS_LIB:\
$JMS_LIB/com.ibm.mqjms.jar:\
$JMS_LIB/jms.jar:\

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$JMS_LIB/jndi.jar:\
$JMS_LIB/fscontext.jar:\
$JMS_LIB/ldap.jar:\
$JMS_LIB/providerutil.jar:\
$JMS_LIB/com.ibm.mq.jar:\
$JMS_LIB/com.ibm.mqbind.jar:.
FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
REPOSITORY=file:$JMS_HOME/directory

echo Starting...

java -classpath $JMS_CLASSPATH \
-Djava.naming.factory.initial=$FACTORY \
-Djava.naming.provider.url=$REPOSITORY \
$@

For Windows, the equivalent batch file, jms.bat, is:

SAMPLE WINDOWS BATCH FILE

@echo off

SET JMS_HOME=\MQSeries\java
SET JMS_LIB=%JMS_HOME%\lib
SET JMS_CLASSPATH=%JMS_LIB%;%JMS_LIB%\com.ibm.mqjms.jar;%JMS_LIB%
 ➤ \jms.jar;%JM S_LIB%\jndi.jar;%JMS_LIB%\fscontext.jar;%JMS_LIB%\
 ➤ ldap.jar;%JMS_LIB%\prov iderutil.jar;%JMS_LIB%\com.ibm.mq.jar;
 ➤ %JMS_LIB%\com.ibm.mqbind.jar;.
SET FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
SET REPOSITORY=file:/MQSeries/mqm/java/directory

echo Starting...

java -classpath %JMS_CLASSPATH% -Djava.naming.factory.initial=%FACTORY%
 ➤ -Djava.naming.provider.url=%REPOSITORY% %1 %2 %3 %4 %5

Note that the SET JMS_CLASSPATH statement is all on one line, as
is java -classpath....

THE JMSPAGER CODE

The JMSPager application extends the Frame top-level window
class. It establishes a subscription to a single topic that’s named either
on the command line or through the jmspager.user.name system
property. A Vector is used to store messages as they are received; the
two buttons allow the user to select and display individual messages

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

and erase them after reading. The index instance variable keeps track
of which message is selected.

The main method initializes the JNDI naming context and instantiates
a pager subscribed to the specified topic name (if specified as a
command-line argument) or the topic name obtained from either the
jmspager.user.name or user.name property of the System object.

The next two methods (getConnection and getTopic) return references
to JMS-administered objects from the JNDI, using the context set-up
in the main method.

The constructor (JMSPager) configures the AWT layout of the
JMSPager’s child components and connects listeners to the buttons
and checkbox (the checkbox is the on/off switch for the pager). Next,
a connection to the JMS service provider is opened, a session created,
and subscription to the named topic established. The application
registers itself as a JMS ExceptionListener for asynchronous
notification of JMS errors. Finally, the JMS connection is started to
enable messages to be received over it.

The activate method is invoked by the ItemListener attached to the
checkbox when the pager is ‘turned on’. It uses the synchronous
receive method to retrieve any waiting messages from the topic and
adds them to the Vector store. By registering the application as a
MessageListener to the subscription, it then requests notification of
any further messages as they appear using the onMessage method.

The deactivate method is invoked by the checkbox ItemListener when
the pager application is ‘turned off’. By setting the subscriber’s
message listener to ‘null’, it cancels the application’s registration as
a message listener, so it is no longer notified of new messages.

The select method is invoked by the ActionListener on the left-hand
button. It manipulates the index variable, determining which message
is displayed when the right-hand button is pressed. If the index is set
to ‘-1’, stored messages are erased when the right-hand button is
pressed.

The display method is invoked by the ActionListener on the right-
hand button. It steps through the stored messages by invoking the

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

scroll method for each one and incrementing index. If index is
negative, it empties the Vector of stored messages.

The scroll method displays a stored message by loading its contents
into the text area and incrementing the caret position across the string.

The onMessage method – defined by the JMS MessageListener
interface – is invoked by the Session to which the listener is registered.
Incoming messages are passed directly to this method while the
application is ‘turned on’. The method stores each message and sets
index to refer to it so it can be displayed with a single click.

The onException method is invoked by the JMS connection if an error
occurs in the environment rather than as a direct result of a JMS
method invocation by the client.

Finally, the disconnect method closes the JMS resources used by the
application. showText, showStatus, and showError are ‘convenience’
methods for displaying text in the application.

For neatness, the getInsets method – inherited from Container via the
application’s parent class Frame – establishes a border between the
edge of the frame and the components within.

JMSPAGER.JAVA
import javax.naming.*;
import javax.jms.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;

/**
 * A simple AWT GUI application demonstrating the basic capabilities of
 * JMS publish-subscribe. A JMSPager subscribes to a topic that
 * represents a user and receives messages both synchronously and
 * asynchronously.
 */

public class JMSPager extends Frame implements
 MessageListener, ExceptionListener
{
 static InitialContext context;

 final static int COLUMNS = 20;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

 Vector vector = new Vector ();

 Checkbox onOffButton;
 TextField messageText;
 Button leftButton;
 Button rightButton;
 Label statusLabel;

 TopicConnection connection;
 TopicSession session;
 Topic topic;
 TopicSubscriber subscriber;

 int index = 0;
 /**
 * Runs the JMSPager application.
 */

 public static void main (String [] args)
 {
 try
 {
 context = new InitialContext (System.getProperties ());

 try
 {
 new JMSPager (args [0]).show ();
 }

 catch (ArrayIndexOutOfBoundsException abe)
 {
 new JMSPager (System.getProperty ("jmspager.user.name",
 System.getProperty ("user.name"))).show ();
 }
 }

 catch (JMSException jmse)
 {
 System.err.println ("JMS error: " + jmse +
 " (" + jmse.getLinkedException () + ')');
 System.exit (0);
 }

 catch (NamingException ne)
 {
 System.err.println ("JNDI error: " + ne);
 System.exit (0);
 }

 catch (ArrayIndexOutOfBoundsException abe)
 {

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 System.err.println ("Usage: java JMSPager user-name");
 }
 }
 /**
 * Returns a named TopicConnection using the JNDI. The
 * TopicConnectionFactory is a JMS-administered object.
 */

 static TopicConnection getConnection (String name) throws
 JMSException, NamingException
 {
 TopicConnectionFactory factory = (TopicConnectionFactory)
 context.lookup (name);

 return factory.createTopicConnection ();
 }

 /**
 * Returns a named Topic handle using the JNDI. The Topic is a
 * JMS-administered object.
 */

 static Topic getTopic (String name) throws
 JMSException, NamingException
 {
 return (Topic) context.lookup (name);
 }

 /**
 * Default constructor. Builds a simple AWT layout and then
 * establishes a connection to the JMS service provider. The
 * connection must be explicitly started before messages can
 * be received.
 */
 public JMSPager (String id) throws
 JMSException, NamingException
 {
 super ("JMSPager: " + id);

 setLayout (new BorderLayout (6, 2));
 setBackground (Color.lightGray);
 add ("North", onOffButton = new Checkbox ("active", false));
 add ("Center", messageText = new TextField (COLUMNS));
 add ("West", leftButton = new Button (" < "));
 add ("East", rightButton = new Button (" > "));
 add ("South", statusLabel = new Label ());
 pack ();
 setResizable (false);
 messageText.setEditable (false);

 // WindowListener to deal with quitting the app.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

 addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event)
 {
 disconnect ();
 System.exit (0);
 }
 });

 // ActionListener attached to left ('select') button.

 leftButton.addActionListener (new ActionListener ()
 {
 public void actionPerformed (ActionEvent event)
 {
 select ();
 }
 });

 // ActionListener attached to right ('ok') button.

 rightButton.addActionListener (new ActionListener ()
 {
 public void actionPerformed (ActionEvent event)
 {
 display ();
 }
 });

 // Item listener attached to Checkbox ('on/off button').

 onOffButton.addItemListener (new ItemListener ()
 {
 public void itemStateChanged (ItemEvent event)
 {
 if (event.getStateChange () == ItemEvent.SELECTED)
 {
 activate ();
 }
 else
 {
 deactivate ();
 }
 }
 });

 // Establish a connection to the JMS service provider.

 connection = getConnection
 (System.getProperty ("jmspager.server.name", "jmspager"));
 connection.setExceptionListener (this);

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 session = connection.createTopicSession
 (false, Session.AUTO_ACKNOWLEDGE);
 topic = getTopic (id);
 subscriber = session.createSubscriber (topic); // non-durable

 // Enable the connection to receive messages.

 connection.start ();
 }
 /**
 * Turns the pager on. First checks synchronously for available
 * messages (delivered while turned off), then switches to
 * asynchronous receipt mode by establishing the JMSPager as a
 * MessageListener. In asynchronous mode, JMS calls the onMessage
 * method when new messages arrive.
 */

 public synchronized void activate ()
 {
 try
 {
 Message message = subscriber.receive (0);
 int old = vector.size ();
 int arrived = 0;

 // Add any received messages to our local store (the Vector).

 while (message != null)
 {
 vector.addElement (message);
 arrived++;
 message = subscriber.receive (0);
 }

 showText (arrived + " new " +
 (arrived == 1 ? "message" : "messages") +
 " (" + old + " old)");

 // Switch to asynchronous mode.
 //
 // Note: after attaching a message listener, attempts to
 // receive synchronously on the same session would fail.

 subscriber.setMessageListener (this);
 }

 catch (JMSException jmse)
 {
 showError (jmse);
 }
 }

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

 /**
 * Turns the pager off by disconnecting the message listener on the
 * session. The subscription and connection to the JMS service
 * provider is retained.
 */

 public synchronized void deactivate ()
 {
 try
 {
 // Remove the message listener.

 subscriber.setMessageListener (null);

 showText ("");
 index = -1;
 }

 catch (JMSException jmse)
 {
 showError (jmse);
 }
 }
 /**
 * Steps through the message selection menu.
 */

 public synchronized void select ()
 {
 if (vector.size () == 0)
 {
 showText ("No messages.");
 }
 else if (index < vector.size () - 1)
 {
 showText ("Message " + (++index + 1) + '?');
 }
 else
 {
 showText ("Erase all?");
 index = -1;
 }
 }

 /**
 * Displays the message from the local store (the Vector), as
 * identified by the current index (a negative index means
 * 'erase all messages').
 */
 public synchronized void display ()
 {

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (vector.size () == 0)
 {
 showText ("No messages.");
 }
 else if (index < 0)
 {
 showText (vector.size () + " messages erased.");
 vector.removeAllElements ();
 }
 else
 {
 try
 {
 scroll ((TextMessage) vector.elementAt (index++));
 }

 catch (ArrayIndexOutOfBoundsException abe)
 {
 showText ("No more messages.");
 }

 catch (JMSException jmse)
 {
 showError (jmse);
 }
 }
 }
 /**
 * Displays the specified message content by scrolling across the
 * text field.
 */

 public synchronized void scroll (TextMessage message) throws
 JMSException
 {
 String text = index + ": " + message.getText ().trim ();

 showText (text);

 for (int i = COLUMNS; i < text.length (); i++)
 {
 messageText.setCaretPosition (i);

 try
 {
 Thread.sleep (200);
 }

 catch (InterruptedException ie)
 {
 ;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

 }
 }
 }
 /**
 * MessageListener interface method for asynchronous message
 * delivery. The pager application is passed newly arrived
 * messages by the invocation of this method.
 */

 public synchronized void onMessage (Message message)
 {
 System.out.print ((char) 0x07); // beep
 vector.addElement (message);
 showText ("New message!");
 index = vector.size () - 1;
 }
 /**
 * ExceptionListener interface method for asynchronous exception
 * notification.
 */

 public void onException (JMSException e)
 {
 showError (e);
 }
 /**
 * Drops the JMS service provider connection.
 */

 public synchronized void disconnect ()
 {
 try
 {
 subscriber.setMessageListener (null);
 subscriber.close ();
 session.close ();
 connection.close ();
 }

 catch (JMSException jmse)
 {
 ;
 }
 }
 /**
 * Convenience method for displaying text in the central text field.
 */

 synchronized void showText (String text)
 {
 messageText.setText (text);

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 }

 /**
 * Convenience method for displaying a message in the status area.
 */

 void showStatus (String message)
 {
 statusLabel.setText (message);
 }

 /**
 * Convenience method for displaying an error.
 */

 void showError (Exception e)
 {
 if (e instanceof JMSException)
 {
 System.err.println (e +
 " (" + ((JMSException) e).getLinkedException () + ')');
 }
 else
 {
 System.err.println (e);
 }

 showStatus (e.getMessage ());
 }
 /**
 * Container method establishes a border margin (cosmetic).
 */

 public Insets getInsets ()
 {
 Insets insets = super.getInsets ();

 return new Insets (insets.top + 6, insets.left + 6,
 insets.bottom, insets.right + 6);
 }
}

In next month’s MQ Update we publish a follow-up article on a JMS
publisher application that complements this month’s pager application.

Chris Markes
HCI Architect
IBM UK Laboratories © C Markes 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

MQSeries programming with ActiveX

If you read my previous article (published in MQ Update November
1999), then you should have a good idea of how to use the procedural
method of accessing MQ-related functions via Visual Basic. In this
follow-up article, I’m going to discuss how to use the MQSeries
ActiveX Automation Classes (MQAX) to allow applications that are
based on Microsoft’s Component Object Model (COM) to access all
the functions and features of the MQSeries API, allowing full
interconnectivity to other MQSeries platforms and environments.

COM is an object-based programming model that provides a framework
for integrating components. Using COM-capable development tools
and environments, such as Visual Basic, PowerBuilder, Delphi,
Internet Explorer, and Active Server Pages (ASP), applications can
access MQSeries services.

PROPERTIES, METHODS, AND EVENTS

ActiveX is a component development architecture based on COM
that provides interfaces that can be accessed dynamically by
applications. It supports properties, methods, and events that define
its behaviour. A class’s data (its settings or attributes) are called
properties, while the procedures that can operate on a class and
actions it can perform are called methods. An event is an action or
response recognized by a class, such as a mouse click or a key press,
and you can write code that responds to the event. Exceptions are also
part of an ActiveX class. When unexpected events interrupt the
normal processing of an application, an exception is usually raised to
inform the class that an error has occurred.

MQSERIES CLASSES

MQAX provides sets of classes to enable applications to access other
applications running in non-ActiveX environments. These classes are
the familiar objects that you usually encounter and use in developing
MQSeries applications. The following describes each class and how
to use it.

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSession class

This is the root class, which provides an object that contains the last
action performed on any MQAX object, including the status of the
operation (whether it was successful). Properties such as
CompletionCode, ReasonCode, and ReasonName can be derived
through this class. Another property, ExceptionThreshold, defines the
circumstances under which the MQAX classes throw exceptions, the
default being MQCC_FAILED. A value greater than MQCC_FAILED
effectively prevents exception processing, leaving it up to the
programmer to implement code that checks the CompletionCode and
ReasonCode.

The code below shows how to create an MQSession object in your
Active Server Page using VBScript. The code attempts to connect to
a queue manager – as the class doesn’t throw exceptions, code to
handle errors should be implemented.

CREATING AN MQSESSION

<%@ Language="VBScript"%>
<HTML>
<BODY>
<%
Set mqsess = Server.CreateObject ("MQAX200.MQSession")
'Set a high exception so we could handle errors
mqsess.ExceptionThreshold = 3
'Connect to default queue manager
Set QMgr = mqsess.AccessQueueManager("")
 If mqsess.CompletionCode <> 0 Then
 Response.Write "Unable to connect to Queue Manager. "
 Else
 Response.Write "Connected to Queue Manager"
 End If
%>
</BODY>
</HTML>

If the creation of an MQSession object is successful, and the connection
to the queue manager also succeeds, a reference to the
MQQueueManager is returned along with the corresponding
CompletionCode and ReasonCode.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

You should be aware that there is only one MQSession object per
client process. However, MQAX supports a free-threading model that
allows objects to be shared between threads. Generally, COM follows
an apartment threading model in which a process is either a single-
threaded apartment (STA) or a multi-threaded apartment (MTA).
STAs contain only one main application thread, which belongs to the
apartment itself, and calls can be received only from that thread.
MTAs can have more than one application thread and the application
can receive calls from any of the apartment’s threads. COM is
responsible for managing threads, apartments, and the creation of
objects. It also marshals interface pointers across thread boundaries.

MQQueueManager class

This class represents a connection to a queue manager. Applications
must create an object of this class and connect it to a queue manager
that’s running either locally on an MQSeries server or remotely, with
access provided by an MQSeries client. The connection to the queue
manager is automatically terminated when the MQQueueManager
object is destroyed. This class, like other MQAX classes such as
MQMessage, also has its own CompletionCode, ReasonCode, and
ReasonName properties that you can check after making a method call
on the object.

Using Visual Basic, we’ll establish connection to a queue manager
and then try to check the status of our operation using the properties
of the MQQueueManager object.

CONNECTING TO A QUEUE MANAGER AND CHECKING RESULTS

Dim QMgr as MQQueueManager ' queue manager object

Set QMgr = New MQQueueManager 'Create an instance of a queue manager
QMgr.Connect 'Connect to the default queue manager
MsgBox Str$(QMgr.CompletionCode) & " " & QMgr.ReasonName, vbOKOnly, _
 "Connect Result"

There can be only one MQQueuManager object connected to a queue
manager per ActiveX instance. Once we are connected to a queue
manager, the next class in the process enables us to access a queue.

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQQueue class

Access to an MQSeries queue is encapsulated in this class. An
associated MQQueueManager object provides the connection to the
queue manager. When an object of this class is destroyed, the queue
that was opened is closed automatically. In order to access the queue,
you must use the AccessQueue method of the MQQueueManager
class.

We’ll try to open a queue using PowerBuilder. In the code below, the
queue ProdLocQ is opened with some appropriate options and is then
associated with the queue manager ProdQueueMgr. The corresponding
result is checked. A queue object must always associate itself with a
queue manager object. Note the use of the continuation character, ‘➤ ’,
in the code below to indicate a formatting line break.

ACCESSING A QUEUE

olenvQMgr = Create OLEObject
ll_result = olenvQMgr.ConnectToNewObject("MQAX200.MQQueueManager")

olenvQueue=olenvQMgr.AccessQueue("ProdLocQ",MQOO_OUTPUT+ &
MQOO_INPUT_AS_Q_DEF,"ProdQueueMgr")

MessageBox ("Open results", "Completion Code: " + string
➤ (olenvQueue.CompletionCode) + ", &
Reason Code: " + string (olenvQueue.ReasonCode))

Normally, after opening a queue, we would PUT messages on or GET
messages from the queue – the next class allows us to do just that.

MQMessage class

In order to send and receive messages to and from a queue, an object
of this class must be used. This class represents an MQSeries message.
The properties of an MQSeries message descriptor (MQMD) are
contained in this class, which also provides a buffer to hold the
message data. The code below illustrates how to create an MQMessage
object and assign it data using Visual Basic.

CREATING A MQMESSAGE OBJECT
Set msgPut = New MQMessage

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

msgPutStr = "This is a sample message"
msgPut.MessageData = msgPutStr

Methods, such as those to copy data from an ActiveX application to
an MQMessage object (the Write method) and from an MQMessage
object to an ActiveX application (the Read method), are included in
this class. Unlike procedural MQ API calls, which require you
explicitly to declare the size of the data buffer (otherwise the buffer
will contain no data), this class automatically manages the allocation
and de-allocation of memory for the buffer. This makes programming
much easier. The buffer size need not be declared as it grows to
accommodate data written to it. However if the buffer size exceeds the
MaximumMessageLength of a queue, then the message cannot be
placed on the queue.

When trying to put or get different data types to and from a queue, you
can use the available methods of the MQMessage object. For example,
if you want to write a string message to a queue, you use the
WriteString method:

msgPut.WriteString(msgPutStr)

If you want to read a numeric value, such as a Long data type, from the
message’s data buffer, you can use the ReadLong method:

LongMsg = msgGet.ReadLong

Some of MQMessage methods maintain a cursor position in the
message buffer, which makes it easier to read or write incremental
data. This is done using the DataOffset property of the MQMessage
object.

Data conversion is performed by the Read and Write methods of the
MQMessage class. Conversion is between ActiveX’s internal formats
and the MQSeries message format defined by the CharacterSet and
Encoding properties of the message descriptor. Before issuing a Write
method, you should set the values of the properties above, if possible,
to match the characteristics of the receiver of the message. You don’t
normally have to do this when you are reading a message because the
characteristics are set by the incoming MQMD.

After constructing a message, you can put an MQMessage object on
an MQSeries queue using the Put method of the MQQueue class. This

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

method takes a copy of the message’s message descriptor (MQMD)
and the data portion of the object being PUT and places the copy on
the queue. Applications can delete or modify an MQMessage object
after the Put method without affecting the message on the queue. The
queue manager may adjust some fields in the MQMD when copying
messages bound for an MQSeries queue.

The next example illustrates how to put a message on a queue using
VBScript in an Active Server Page. The message string is assigned to
the MessageData property of the MQMessage object and put on the
queue ProdLocQ.

PUTTING A MESSAGE ON A QUEUE

<%@Language="VBScript"%>
<HTML>
<BODY>
<%
Set QMgr = Server.CreateObject("MQAX200.MQQueueManager")
Set Queue = QMgr.AccessQueue("ProdLocQ", MQOO_OUTPUT, "ProdQueueMgr")
Set msgPut = Server.CreateObject("MQAX200.MQMessage")
msgPutStr = "This is a sample text sent at:" & Time
msgPut.MessageData = msgPutStr
Queue.Put msgPut
%>
</BODY>
</HTML>

Using the Get method of the MQQueue class, messages can be read
into an MQMessage object. Incoming messages completely replace
any message descriptor (MQMD) or message data that may already
exist in the MQMessage object with their own values, as long as the
method call is successful. As mentioned earlier, the MQMessage’s
data buffer automatically adjusts its size to match that of the incoming
message data.

We’ll try to get the message data that was sent in our previous code
example from the queue using JavaScript in an Active Server Page.

GETTING A MESSAGE FROM A QUEUE
<%@ Language="Javascript"%>
<HTML>
<BODY>

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

<%
QMgr = Server.CreateObject("MQAX200.MQQueueManager")
Queue = QMgr.AccessQueue("ProdLocQ", MQOO_INPUT_AS_Q_DEF,
"ProdQueueMgr")
msgGet = Server.CreateObject("MQAX200.MQMessage")
msgGet.MessageId = msgPut.MessageId
Queue.Get msgGet
msgGetStr = msgGet.ReadString(msgGet.MessageLength)
%>
</BODY>
</HTML>

After receiving our message, we can check the various MQMD
properties of the associated MQMessage object and examine such
attributes as the MessageId, GroupId, UserId, and CorrelationId that
we use to identify the messages received.

MQPutMessageOptions class

We could add PUT message options to our code by using the
MQPutMessageOptions class. Options that control the action of
putting a message on a queue are all included in this class, which
contains the MQPMO data structure. When you create an object of
this class, all its properties are initialized.

So, before putting our message on the queue using the section of code
headed ‘Putting a message on a queue’, we could insert the following
code:

Set msgPutOpt = Server.CreateObject("MQAX200. _
 MQPutMessageOptions")
msgPutOpt.Options = MQPMO_FAIL_IF_QUIESCING

MQGetMessageOptions class

Likewise, if we want to include options when getting a message from
a queue, we can use the MQGetMessageOptions class. This class is
used to set various GET options for a message. The MQGMO data
structure is encapsulated in this class. As with the PUT option class,
all properties are initialized when you create an instance of this class.

To set message options within our Visual Basic application, we just
need to create an MQGeMessagetOptions object and set the property
Options to any acceptable set of values to control message retrieval.

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In this example, we set the Options property to wait ten seconds for
a message to arrive.

SETTING GET OPTIONS
Dim Queue As New MQQueue
Dim msgGet As New MQMessage
Dim msgGetOpt As New MQGetMessageOptions

'code for opening the queue is omitted

msgGetOpt.Options = MQGMO_WAIT
msgGetOpt.WaitInterval = 1000

Queue.Get msgGet, msgGetOpt

The following classes are available only in MQSeries Version 5.1
(both Client and Server) and not in the ActiveX SupportPac (MA7B).
There are differences between the classes in Version 5.1 and those
included in the SupportPac, including the additional features mentioned
in the former. You should be aware of this and not install one over the
other, as this may cause problems with your application.

MQDistributionList class

This is the class that contains a collection of different queues such as
local, remote, and alias. You can use this class to send messages to
several destinations with a single PUT.

MQDistributionListItem class

This class is used to manipulate elements of an ‘object record’
(MQOR), ‘put message record’ (MQPMR), and ‘response record’
(MQRR). These structures are included in this class, which associates
them with an owning distribution list. This class is represented as
instances of MQDistributionList objects.

Another feature that is found only in Version 5.1 is that the coordinating
of units of work by queue managers may involve external resource
managers. For instance, we may want messages received to be
coordinated with database updates in a unit of work. Thus, if the
operation succeeds, the work is committed, the database is updated,
and the message is removed from the queue. However, if an error

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

occurs, the work is rolled back, the database is not updated, and the
message remains in the queue.

COORDINATING UNIT OF WORK
Qmgr.Begin
Queue.Get msgGet, msgGetOpt
'Database Transaction
EXEC SQL UPDATE TABLE EMPLOYEE SET EMP_NO= :hEmpNo
'Check for errors, if none commit transaction
Qmgr.Commit

The following example illustrates the MQAX classes in action. It is
written for an Active Server Page using VBScript. You need an
MQSeries client if Internet Information Server (IIS) is not on the same
system as the MQSeries server or the server install if the two are on
the same machine. The installation comprises two files: MQForm.html,
where you enter the queue name and the message to send, and
MQPut.asp, which processes the data from the HTML form. (Note the
use of the continuation character, ‘➤ ’, in the code below to indicate a
formatting line break that’s not present in the original source.)

MQFORM.HTML
<HTML>
 <BODY>
 <!--'====================
 'create the HTML form
 '====================-->
 <FORM ACTION="mqput.asp" METHOD="POST">
 Queue Name: <INPUT TYPE="TEXT" NAME="QueueNm"></INPUT>

 Message: <INPUT TYPE="TEXT" NAME="PutMsg"></INPUT>
 <INPUT TYPE="SUBMIT" VALUE="Put Message"></INPUT>
 <INPUT TYPE="RESET" VALUE="Reset"></INPUT>
 </FORM>
 </BODY>
</HTML>

MQPUT.ASP
<%@ Language="VBScript"%>
<HTML>
<TITLE>Simple Put Message</TITLE>
<BODY>
<%

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

'===========================
'retrieve values from the HTML Form
'===========================
QueueNm = Request.Form("QueueNm")
PutMsg = Request.Form("PutMsg")

'=====================
'create an MQSession object
'=====================

Set mqsess = Server.CreateObject ("MQAX200.MQSession")
On Error Resume Next
'=================================
'Set a high exception so we can handle errors
'=================================

mqsess.ExceptionThreshold = 3

'=========================
'Connect to default queue manager
'=========================
Set QMgr = mqsess.AccessQueueManager("")

'==
' check for failures, then write appropriate message to the page
'==

 If mqsess.CompletionCode <> 0 Then
 Response.Write "Unable to connect to Queue Manager. "
 End If

'====================================
' declare constant, you can put this in an include file
'====================================
MQOO_OUTPUT = 16
MQOO_INPUT_AS_Q_DEF = 1
MQPMO_FAIL_IF_QUIESCING = 8192

'==========================
' access the queue that was specified
'==========================
Set Queue = QMgr.AccessQueue(cstr(QueueNm), MQOO_OUTPUT +
 ➤ MQOO_INPUT_AS_Q_DEF)
If mqsess.CompletionCode <> 0 Then
 Response.Write "Unable To Open Queue."
End If

'==
' create a new message and put option object using the MQSession method
'===

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

Set MsgPut = mqsess.AccessMessage()
Set msgPutOpt = mqsess.AccessPutMessageOptions()
msgPutOpt.Options = MQPMO_FAIL_IF_QUIESCING

'=============================
' write the message , then put to the queue
'=============================

MsgPut.WriteString cstr(PutMsg)
Queue.Put MsgPut, msgPutOpt

If mqsess.CompletionCode = 0 then
 Response.Write "The message has been successfully sent!"
End If

%>
</BODY>
</HTML>

Rommel K Abdon
Senior Systems Engineer
Client Server Technologies Inc (The Philippines) © Xephon 2000

MQSeries Everyplace configuration

One of the challenges of discussing MQSE is that it uses terms that are
similar to those used with ‘big’ MQSeries, but with slightly different
meanings and implications. To understand some of the differences, as
well as highlighting how MQSE works, consider the following
example configurations (Figures 1 to 3 on pages 32 to 34).

‘Big’ MQSeries has the concept of:

• An MQSeries server (the square in Figure 1)

• An MQSeries client (the triangle in Figure 1).

An MQSeries server possesses at least one queue manager and queue.
In contrast, an MQSeries client possesses no queue or queue manager;
instead it can ‘put to’ and ‘get from’ a queue managed by a queue
manager on an MQSeries server.

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

While an MQSeries server can stand alone and/or talk to one or more
other MQSeries servers (or clients), an MQSeries client cannot talk
directly to another MQSeries client. In Figure 1 the regular lines
represent synchronous links (client channels) between an MQSeries
client and an MQSeries server, while the heavier lines represent full
MQSeries asynchronous links (messaging channels).

Figure 2 depicts MQWin – the lightweight form of ‘big’ MQSeries
originally available on Windows 3.1 and Windows 95/98. This has a
queue manager that can stand alone or use radio or messaging
channels to talk to an MQSeries server (which, in turn, can communicate
with other MQSeries servers and/or MQSeries clients). MQSE will
replace MQWin.

In the MQSE environment (Figure 3), the picture changes from that
described for ‘big’ MQSeries. The PDA or other end point system is
now called a ‘device’. In addition, MQSE introduces what IBM calls

Figure 1: Stand-alone versus distributed client/server

Server Server

Client

Client

Client

Client

Server

Client

Client

Server

a. Stand-alone server

c. Distributed client/server

b. Client/server

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

‘gateways’. (While this is not an original term, it’s the most ‘descriptive’
one that IBMers have yet been able to agree on.)

An MQSE device can stand alone, with its own queue managers,
queues, and messages, or one device can talk directly to another, with
no MQSeries server in between.

This is a major difference between MQSE and ‘big’ MQSeries – it’s
this that enables a Palm Pilot to send messages to an EPOC phone,
assuming that both have MQSE-enabled applications. The dashed
line that joins devices in Figure 3 is a new MQSE-specific channel that
IBM calls a ‘dynamic channel’.

A device can also talk to a gateway, which will initially be a Windows
NT or Windows 2000 system. In most instances, a gateway has all the
facilities of a device, but with the additional abilities to:

• Offer device-to-device connection via a hub (the gateway itself),

• Provide server capabilities for MQSE (for example home gateway
capabilities,

Figure 2: Distributed client/workstation/server model

b. Distributed client/workstation/server

a. Distributed client/server WS

WS

WS

Server Server

Client

Client

WS = Workstation

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Connect MQSE to conventional ‘big’ MQSeries message channels.

The home gateway queue manager is where the device looks for
messages that may be awaiting delivery to it. After being disconnected
for a period, the device contacts the home gateway queue manager to
collect outstanding messages.

A device in an MQSE deployment can be:

• Stand-alone

• Connected to other MQSE-equipped devices

• Connected to a gateway.

An MQSE gateway provides:

• Device-to-device connections

Device

Device

Device

Device

Device

Device

Device

Client

Client

Server

Gateway

Gateway

Figure 3: Device/gateway interaction

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

• Device-to-gateway-to-device support (the MQSE gateway is a
server for multiple devices)

• MQSE-to-MQSeries connections.

In the third instance, the gateway system hosts both the MQSE
gateway itself and the MQSeries server. MQSE sends messages from
its own queue managers/queues to/from the ‘big’ MQSeries queue
managers/queues. Using this mechanism, messages can then be sent
to or received from other MQSeries systems.

ASYNCHRONOUS AND SYNCHRONOUS POSSIBILITIES

One of the key differences between ‘big’ MQSeries and MQSE is that
the latter offers the ability to know when a message arrives. In
asynchronous messaging (at least with the ‘big’ MQSeries family),
the sending application knows that the receiving application will
receive the message – but not when. By contrast, MQSE enables you
to store the message either asynchronously or synchronously on
MQSE queues (and/or ‘big’ MQSeries queues via a gateway) anywhere
in the ‘MQ’ network.

With MQSE asynchronous messaging:

• Control returns after the local ‘put’.

• Delivery is assured.

• Messages are queued until delivery (the sending application
doesn’t know when the receiving application takes delivery of the
message).

• Sending and receiving applications are decoupled.

• Network independence is introduced.

• MQSE and ‘big’ MQSeries work together.

By contrast, MQSE synchronous messaging is slightly different:

• Control returns to the application as you ‘put’ the message on a
destination queue (after the remote ‘put’).

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The source application, which is responsible for error handling,
knows that the message has arrived on the target system/queue.

• There is still a decoupling of the sending and receiving applications
via the receiving queue.

• The network must be working (from source to destination).

The only real disadvantage is that all the communication links have to
be available. On the other hand, the originating application on an
MQSE-equipped device knows for certain that the message has
arrived.

Synchronous messaging works between MQSeries Everyplace queues
and also ‘big’ MQSeries queue managers that are directly attached to
the MQSE gateway.

Another difference between MQSE and ‘big’ MQSeries is that the
former was designed using object-orientated programming principles.
Everything is an object – even messages are objects, so that you’re
moving objects around the network. In this context, MQSE messages
are objects that inherit properties from field objects. Understanding
field objects is, therefore, important to the successful use of MQSE.
A field object is a collection of fields where each field has a name,
type, and value. The types include ASCII, Boolean, byte, integer, and
many others. Strings, fixed arrays, dynamic arrays, etc are all supported.

What you ship across the network is not, therefore, just a string of
bytes – it is a collection of fields whose names tell you what they’re
shipping. Furthermore, these properties can be nested, so that you can
build composite and complex messages. Just as importantly, when
you receive a message, you know what it contains, what to do with it,
and how to convert it – all because the message is an object.

Besides simplifying the use of MQSE, the field object approach can
reduce what has to be sent over the network. If the message object can
describe where some data is to be found at the destination, then this
data does not itself need to be sent, thus reducing the payload and
network requirements. Furthermore, a message object can, when it
arrives, initiate other actions, such as starting an FTP session, invoking
a process, making a database query, or even configuring a machine.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

The only attribute that an MQSE message has to possess is a unique
identifier. To make MQSE easy to use, this is created automatically (as
a function of the time the object was created and the originating queue
manager). All other fields in the object are determined by the
application.

Unlike ‘big’ MQSeries, there are no ‘manager’ fields. MQSE does not
possess the concept of a header and message data: there are only the
fields and the message ID. If you want a message to have a priority,
CorrelId, or target queue manager name, then you or the application
must give it these attributes, which are optional.

The net result is a highly compact message, which can be made still
more compact and secure via compression and encryption. Indeed,
MQSE is so flexible that you can even choose which fields need to be
encrypted or compressed – if that’s what you need. Everything,
including compression and security, is field object based.

QUEUE MANAGER AND QUEUE OPERATIONS

Now that the concepts of field objects, messages, queues, and queue
managers have been outlined, the operations that can be applied
should be fairly self-evident. An application talking to a queue
manager can ‘browse’, ‘get’, ‘put’, ‘delete’, ‘listen’, and ‘wait’.

Because features like the CorrelId are not built into MQSE (you have
to implement them yourself, as described above), all the fields in a
message can be used in retrieval operations. You can browse or add a
filter, whichever you prefer. And you can browse either local queues
or remote synchronous queues, assuming that you have the right
permissions. You can even browse with a lock, only reaching those
messages to which you have the correct key. Similarly you can ‘get’,
‘put’, or ‘delete’ in the same fashion.

If you choose to ‘listen’, you can wait until you receive an event that’s
triggered by a message appearing on an appropriate queue. You can
then browse the queue or take whatever other action is appropriate.

Where MQSE is to work with ‘big’ MQSeries, certain types of field
are expected, CorrelId being the obvious one. If these are present in
a message from ‘big’ MQSeries, MQSE will generate indices as

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

messages are stored. You can then retrieve messages based on their
CorrelId, using indices to speed up access.

When accessing remote queues, the relevant authentication, encryption,
and compression information is needed. To obtain this you need
access to the remote queue definition that keeps this information –
which explains why IBM incorporated remote queue definitions.
MQSE also uses remote queue definitions to control whether access
is synchronous or asynchronous, for routing, roaming, and dial-out
support.

The new ‘dynamic channel’ – used for queue-manager-to-queue-
manager connection – also possesses authentication, compression,
and encryption. This is based on what you are trying to do. For
example, if you are putting an encrypted message on an encrypted
queue, MQSE automatically sends the message over an encrypted
channel.

All configuration data is held in a registry along with queue definitions,
queue manager definitions, remote definitions, etc. In addition, security
certificates are held in the registry. This is stored locally, accessed
through the gateway, or shared across several gateways.

MQSERIES AND MQSE MESSAGE INTERCHANGE

Three basic scenarios serve to illustrate how ‘big’ MQSeries works
with MQSeries Everyplace.

In the first, an MQSE network is connected to an MQSeries network,
which is then connected to another MQSE network. If you send a
message all the way across this infrastructure, your MQSE-sourced
message will arrive unchanged at the destination MQSE network,
even though it was passed, via MQSE gateways, through the MQSeries
network. In other words, MQSE can be used both around and across
an existing MQSeries installation.

The same is true if you have two MQSeries networks with an MQSE
network in between – MQSeries messages can flow across MQSE
networks unchanged. This could be used, for example, as a way to
pass through Internet firewalls.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

In the second scenario, an MQSE queue manager wants to send a
message to an existing MQSeries application that expects a specific
string of bytes to arrive on an MQSeries queue. MQSE enables you to
construct any message you desire and then send the message to an
MQSeries queue manager. The key here is the ability to build the
correct message in MQSE, and there are tools that allow you to do just
this.

As with the previous example, the reverse is also true, so that an
MQSeries message can flow to an MQSE device.

The third scenario involves conversion between MQSE and ‘big’
MQSeries. MQSE provides facilities for converting messages between
‘big’ MQSeries and MQSE. For example, MQSE can construct ‘big’
MQSeries headers, etc, as needed. Similarly you can construct a
message body as required.

The net result of all this is that there are comprehensive facilities to
exchange messages between every version of ‘big’ MQSeries and
MQSE. In due course, there will also be a common set of tools and
utilities for the two MQSeries ‘families’, and also a common set of
addressing schemes.

On the API front, MQSE uses the ‘SPI’, which is a subset of the AMI
(with some extensions). MQI and CMI support (for those who want
it) will come later. One reason for the MQI coming later is that it at
least doubles the memory requirement! Similarly, clustering support,
already in ‘big’ MQSeries, will follow in a later version of MQSE.

AVAILABILITY AND ROLLOUT

Recent statements suggest that the NT version of MQSE will be out
in June 2000, with support for AIX and Solaris gateways coming later
in the year. In any case, the first batch of MQSE systems will mostly
be packaged within larger solutions, which could be sold by system
vendors or by system integrators creating specific solutions.

In the first release, dynamic channels will have support for both TCP/
IP alone and HTTP over TCP/IP (though the latter will be measurably
slower than the former). The Wireless Application Protocol will be
added at some later time.

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The initial devices to be supported include EPOC, WinCE, Windows
95/98, Windows NT, Windows 2000, OTI’s Neutrino, the Palm OS,
and Synergy (for Sharp’s Zaurus machines). The MQSE Gateway will
initially be Windows NT/Windows 2000-based (with AIX, Solaris,
HP-UX, and Linux to follow).

From the start XOR/RLE compression is available. Operating system,
private file, and digital certificate authentication will also be there.
Encryption will include XOR, table substitution, 55-bit DES, 1024-
bit RSA, triple DES, RC4, and RC6.

BUILDING BLOCKS

Finally, to summarize, a different way to understand MQSeries
Everyplace is to think of it as Lego building blocks with different
kinds of connector:

• A device can spawn multiple connectors (though there will be a
limit on their number). These are ‘dynamic channels’.

• A gateway can spawn connectors to ‘big’ MQSeries message
channels, as well as dynamic channels.

Using the building block approach, you can build whatever
configurations you like and connect them whichever way you choose.
Devices can:

• Talk to each other without a gateway or talk to ‘big’ MQSeries via
a gateway.

• Support more than one queue manager, and also communicate via
both synchronous and asynchronous messaging.

• Exchange messages in real-time without queuing (the default).

• Optionally be configured to support asynchronous messaging
with local queues, though this will increase the size of MQSE’s
footprint on the device.

By using these building blocks, MQSeries Everyplace enables the
power and flexibility of generations of mobile devices (and dispersed
controllers) to be brought into the wider IT environment.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

CONCLUSION

MQSE is not the same as ‘big’ MQSeries. It is designed for smaller
devices – PDAs, mobile phones, and the like – operating in mobile and
even hostile conditions with appropriate security, but without losing
the primary attraction of the MQSeries family – namely reliable
messaging and queuing.

While MQSE is not an ‘end-user application’, it is the underpinning
that can make such applications usable by providing the dependable
infrastructure on which businesses can rely. With the relentless
increase in the number of mobile devices deployed, applications to
exploit this hardware are needed. Before MQSE, this was difficult in
data processing terms because the communications were exposed and
insecure. With the arrival of MQSE this changes, and applications on
the device – and their users – can be knitted into the broader
information processing and communications infrastructure, including
existing ‘big’ MQSeries.

At base the real attraction of MQSE is its ability to broaden the range
of devices that can reliably be part of the business, in spite of hostile
communication environments.

Charles Brett
President
C3B Consulting (UK) © Xephon 2000

Configuring distributed queuing without CICS

The version of CSQ4INPX supplied in the MQM.SCSQPROC dataset
can be customized to meet the requirements of a specific application.
The sample version below contains a set of commands that could be
issued whenever distributed queuing without CICS is started. It is
used to start a listener for each communication protocol that you use.
Define the correct LU name for the listener, which must be unique to

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

each MQ subsystem. TCP/IP port 1414 is reserved for MQSeries, but
additional ports can also be defined. This is very useful for
distinguishing individual subsystems. You can also display the status
of all the channels that are current.

AN EXAMPLE OF CUSTOMIZED CSQINPX

*
* @START_COPYRIGHT@
* Statement: Licensed Materials - Property of IBM
*
* 5695-137
* (C) Copyright IBM Corporation. 1993, 1996
*
* Status: Version 1 Release 1
* @END_COPYRIGHT@
*

*
* IBM MQSeries for MVS/ESA
* CSQINPX sample
*

*
* This sample data set contains an example of a set of commands
* that could be issued whenever distributed queuing without CICS
* is started.
*

* You must supply your own values for items shown thus:
*
* ++value++
*

*
*

* Start Listeners

*
* You must start a listener for each communications protocol that
* you use.
*

* The lu name below will need to change for each QMGR on each LPAR
START LISTENER TRPTYPE(LU62) LUNAME(MVSMQLU1)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

START LISTENER TRPTYPE(TCP) PORT(1414)

*

* Start and Stop Channels

*
* Sender channels normally start automatically when a trigger
* message is put on the channel initiation queue. Similarly,
* receiver and server channels start automatically when a message
* is received from a remote queue manager. They stop
* automatically when there is no further work for them.
*
* Starting such channels manually is necessary only when they have
* stopped because of an error, or they have been stopped manually.
* Both these conditions are cleared when the channel initiator is
* started, so there is no need to issue any START CHANNEL
* commands.
*
* However, if there are certain channels that you do NOT want to
* start automatically, then you should issue STOP commands for
* them when the channel initiator starts. Later, when you want
* them to start, you will have to issue START commands for them.
*

*STOP CHANNEL('++channel-name++')

*
*

* Display channel status

*
* Show the status of all the channels that are current.
*

DISPLAY CHSTATUS(*) CURRENT ALL

*
*

* End of CSQ4INPX

_

Saida Davies
IBM (UK) © Xephon 2000

MQ news

IBM has released MQSeries Everyplace for
Windows V1.0 and MQSeries Adapter
Offering V1.0, plus MQSeries V5.1 for
Compaq Tru64 Unix and a link to R/3 for
Compaq Tru64 Unix V1.2.

MQSeries Everyplace for Windows V1.0
(formerly ‘MQSeries Lite’) extends the
software to PDAs and other mobile devices
used by remote workers. It allows access to
and exchange of data across public networks
and supports Java applications.

The MQSeries Adapter Offering uses Open
Applications Group standards for business
object documents. It provides applications
with a common language they can use to talk
to each other through standard MQSeries
messages, without a transformation engine.
Adapter Kernel provides the run-time
environment for adapters built using an
adapter builder toolkit.

MQSeries for Compaq Tru64 Unix V5.1 ties
into Tru64 Unix and claims to offer
functional parity with the other MQSeries
V5.1 products. The link for R/3 for Tru64
Unix V1.2 is functionally equivalent to the
SAP R/3 links already available, which
allow the exchange of data between ERP
systems and all the platforms on which
MQSeries runs.

For further information, contact your local
IBM representative.

* * *

Prolifics has announced a RAD tool for
IBM’s WebSphere. Panther for IBM
WebSphere, the new product, is the latest
member of the company’s existing line of
Panther products. It’s a framework for
building WebSphere-ready transactional
applications; it includes visual tools, an
object repository, and application building
blocks.

Panther also provides facilities for building
server-side EJBs, and includes a library of
pre-built classes, methods, and components
for application development. The product
also supports Rational Rose for database
design and modelling.

Out now, details on pricing are available on
request from the vendor.

For further information contact:
Prolifics, 116 John Street, New York, NY
10038, USA
Tel: +1 212 267 7722
Fax: +1 212 608 6753
Web: http://www.prolifics.com

Prolifics, 4 Chiswell Street, London EC1Y
4UP, UK
Tel: + 44 20 7786 9555
Fax: + 44 20 7786 9556

* * *

x xephon

	MQSeriesê JMS èpublish-and-subscribeê
	MQSeries programming with ActiveX
	MQSeries Everyplace configuration
	Configuring distributed queuing without CICS
	MQ news
	MQSeries’ JMS ‘publish-and-subscribe’
	MQSeries programming with ActiveX
	MQSeries Everyplace configuration
	Configuring distributed queuing without CICS
	MQ news

