14

August 2000

]
In this issue

3 A IMS publisher application

12 MQSeries and ‘implicit transaction
processing’

18 MQSeries Integrator V2.0

34 Customizing CSQ4APPL and
CSQ4INP2

44 MQ news

© Xephon plc 2000

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road
Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955
e-mail: harryl @xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344

Fax: +1 303 438 0290

Contributions

Articlespublishedin MQ Updateare paid for
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessiit). If
you'’ ve a problem with your user-id or pass-
word call Xephon's subscription department
on +44 1635 33886.

Editor

Harry Lewis
Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

A JMS publisher application

This article is a companion to the MQSeries JMS ‘ publish-and-
subscribe’ article publishedinlast month’sissue of MQ Update(Issue
13, July 2000). That article described the use of the Java Message
Service's (IMS) publish-and-subscribe API, illustrating this with an
exampl e pager application (JM SPager). Thisarticlecomplementsthe
previous one with an example publisher application that can be used
to send messages to a JM SPager.

The IM SPageSender application, like IM SPager, is an AWT-based
application that extends the Frame class. It maintains a single
Topi cConnectionand usesan anonymouspublisher to publishmessages
to topics named at publication time, rather than being associated with
asingle topic from creation.

Much of the set-up codefor thisapplicationisthe sameasthat for the
JM SPager application. However, I'll briefly summarize it here.

The MQSeries JMS provider classes are supplied in MQSeries
SupportPac MA88, whichisavailablefor download for freefromthe
IBM MQSeriesWeb sitefor Windows, Al X, HP-UX, and Solaris(the
list of references at the end of this chapter tellsyou whereto find it).
MQSeries5.1 and JDK 1.1.6 or later arerequired (JDK 1.1.7 or later
in the case of HP-UX). The MQSeries 5.1.1 Java classes, which are
also required, are also in the SupportPac, and the M QSeries publish/
subscribe component isin SupportPac MAOC (again, areference to
the Web site can be found at the end of this chapter).

To configure the environment, you need to set the following:

* Theclasspath must be set to include the classesin the M QSeries
JMS and JNDI archives.

A INDI-accessiblerepository must be configured and popul ated
with one or more ConnectionFactory and Destination entriesto
enable JNDI to look up JM S-administered objects.

* Any MQSeries objects referred to by the IMS-administered
object definitionsmust bedefinedinM QSeriesand madeavail able.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

 The following classes from the MA88 jar archives must be
accessible in the classpath (in addition to the base JDK classes)
to run any MQSeries JIM S program:

— com.bim.mg.jar

— com.ibm.mgbind.jar
— com.ibm.mgjms.jar
— jmsjar

— jndi.jar

— fscontext.jar

— ldap.jar

— providerutil.jar.

These archives are located in the java/lib (or javallib in the case of
Windows NT) sub-directory of the MQSeriessMAS88 installation.

JM S-admini stered obj ect definitionsarecreated usingthe JM SAdmin
command-lineadministration tool, which must first be configured by
editing the IMSAdmin.config configuration file. The two entries
required are INITIAL_CONTEXT, the JNDI service provider class
name that determines the mechanism by which the repository is
accessed, and PROVIDER _URL, the url that locates the repository.
Both are configured in the IMSAdmin.config propertiesfile.

JMSPAGESENDER

import java.awt.*;
import java.awt.event.*;
import java.io.*;

import java.util.*;
import javax.jms.*;
import javax.naming.*;

/**

* A simple AWT GUI application demonstrating the basic capabilities
* of JMS publish/subscribe. A JMSPageSender publishes short text

* messages to a specified topic.

*/

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

public class JMSPageSender extends Frame

{
static InitialContext context;

TextComponent topicText;
TextComponent messageText;
Button clearButton;

Button sendButton;

Label statuslLabel;

TopicConnection connection;
TopicSession session;
TopicPublisher publisher;

int index = 0;

/**

* Runs the JMSPageSender application.
*/

public static void main (String [] args)

{
try
{
context = new InitialContext (System.getProperties
new JMSPageSender ().show ();
}
catch (JMSException jmse)
{
System.err.printin ("JMS error: " + jmse +
" (" + jmse.getlLinkedException () + ")");
System.exit (0);
}
catch (NamingException ne)
{
System.err.printin ("JNDI error: " + ne);
System.exit (0);
}
}
/**

* Returns a named TopicConnection using the JNDI. The
* TopicConnectionFactory is a JMS-administered object.
*/

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

static TopicConnection getConnection (String name) throws
JMSException, NamingException

{
TopicConnectionFactory factory =
(TopicConnectionFactory) context.lookup (name);
return factory.createTopicConnection ();
}
/**

* Returns a named Topic handle using the JNDI. The Topic
* is a JMS-administered object.
*/

static Topic getTopic (String name) throws
JMSException, NamingException

{
return (Topic) context.lookup (name);

}

/**
* Default constructor. Builds a simple AWT Tayout and then

* establishes a connection to the JMS service provider.
*/

public JMSPageSender () throws
JMSException, NamingException
{
super ("JMSPageSender");

Panel p;

setlLayout (new BorderLayout (6, 6));

setBackground (Color.lightGray);

add ("North™, p = new Panel (new BorderlLayout (6, 4)));
p.add ("West™, new Label ("Pager ID:"));

p.add ("Center™, topicText = new TextField ());

p.add ("South", new Label ("Enter text message: "));
add ("Center", messageText = new TextField (30));

add ("South™, p = new Panel (new BorderlLayout (6, 4)));
p.add ("West™, clearButton = new Button (" Clear "));
p.add ("East", sendButton = new Button (" Send "));
p.add ("South™, statusLabel = new Label ());

pack ();

setResizable (false);

addWindowListener (new WindowAdapter ()

{
pubTic void windowClosing (WindowEvent event)

{

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

disconnect ();
System.exit (0);

}
1)
clearButton.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent event)
{
messageText.setText ("");
}
1)
sendButton.addActionListener (new ActionListener ()
{
public void actionPerformed (ActionEvent event)
{
publish (topicText.getText (), messageText.getText ());
}
1)

connection = getConnection
(System.getProperty ("jmspager.server.name", "jmspager"));
session = connection.createTopicSession (false,
Session.AUTO_ACKNOWLEDGE) ;
publisher = session.createPublisher (null);
}

/**

* Publishes a text message to the named channel.
*/

public void publish (String topicName, String messageText)
{
try
{
Topic topic = getTopic (topicName);
TextMessage message = session.createTextMessage ();

message.setText (messageText);
publisher.publish (topic, message);

showStatus (++index + ": published to " + topicName);
}
catch (JMSException jmse)
{
showError (jmse);
}

catch (NamingException ne)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

showError (ne);

}

/**

* Drops the connection to the JMS service provider.
*/

public void disconnect ()

{
try
{
publisher.close ();
session.close ();
connection.close ();
}
catch (JMSException jmse)
{
}
}
/**

* Convenience method for displaying a message in the status area.
*/

public void showStatus (String message)

{
statusLabel.setText (message);

}

/**

* Convenience method for displaying an error.
*/

public void showError (Exception e)

{

if (e instanceof JMSException)
{

System.err.printin (e +

" ("™ + ((IMSException) e).getLinkedException () + ™)");

}
else
{

System.err.printin (e);
}
showStatus (e.getMessage ());

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}

/**
* Container method establishes a border margin (cosmetic).
*/

public Insets getlnsets ()

{
Insets insets = super.getlnsets ();

return new Insets (insets.top + 6, insets.left + 6,
insets.bottom, insets.right + 6);
}
}

A publisher withno specifiedtopic nameiscreated after theconnection
and sessionareestablished. Thetopiconwhichmessagesarepublished
IS taken from an entry field in the GUI. The publish method then
publishes a message to the named topic.

RUNNING THE EXAMPLE

Starting the JIM SPager and JM SPageSender

To run the IMSPager and JM SPageSender, use the jms invocation
script or batch file:

$ jms JIMSPager &
or, to specify an explicit topic, use the following command:
$ jms JMSPager pager-id &

The queue manager and broker must be available, and all JNDI
objects must be defined to the topic connection factory and topic.
When first invoked, the pager is ‘off’. We aso need to start a page
sender:

$ jms JIMSPageSender &

Sending messages

Tosendamessage, enter thepager | D intheupper text field of the page
sender (seeFigure 1 overleaf), write ashort messageinthelower text
field, and press‘Send'’.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

EE,%JHSPEQES ender

Pager 1D |

1: puhblished to chris

Figure 1. The page sender’s GUI

Receiving messages

The pager application only receives messageswhenit’s‘on’. To turn
it on, select the checkbox marked * active’ on the GUI (see Figure 2).
Whenturned on, thepager application displaysthe number of new and

saved messages.

E%%JHEFEQEII chriz

Figure 2. The pager’s GUI

To display each messagein turn, pressthe right-hand button (marked
*>"). While active, the pager application will beep and display ‘New
message!’ as soon as a new message is received.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSERIES-SPECIFIC TOPIC CONNECTIONSAND TOPICS

|n the exampl e application, referencesto JM S-administered objects—
Topic and TopicConnectionFactory —are obtai ned through the INDI.
Aswith point-to-point messaging using M QSeries' simplementation
of IM S, provider-specificinstancesof theseobjectscan beinstantiated
directly using the MQTopic and MQTopicConnectionFactory classes
respectively. Theseareobtai nablefromthecom.ibm.mqg.jms package.

RESOURCES
e IMSinformation:

http: //java.sun.conVproducts/jms/index.html

* JNDI information:
http://java.sun.convproducts/jndi/index.html

« MQSeries IMS implementation (SupportPac MAS8S):
http: //www.ibm.convsoftware/ts'mgseries/txppacs/ma88.html

MQSeries publish/subscribe component (SupportPac MAQOC):
http: //mwww.i bm.convsoftware/ts'mgseries/txppacs/ma0c.html

« MQSeries home page:
http://mwww.ibm.convsoftware/ts'mgseries/

Chris Markes
HCI Architect
IBM UK Laboratories Ltd (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

MQSeries and ‘implicit transaction processing’

Theuseof MQSeriesfor transaction processing (TP) systemsisoften
discussed in journals like MQ Update. In these discussions, it is
usually pointed out that, whileM QSeriesisessentially for asynchronous
communication, it is nevertheless suitable for systems that require
synchronous communication, such as those handling TP. However,
while the mechanics of using MQSeries in such systems is often
discussed in detail (see, for instance, MQSeriesin an OS/390 client/
server environment, MQ Update Issue 2, August 1999), readers are
oftenleft to figure out for themselveswhat are the advantages, if any,
of using MQSeries in such systems. Indeed, it's often unclear that
therearedifferencesbetweenthetypesof TPcarried out by, say, CICS
systems and those based on MQSeries. Thisisthegap that thisarticle
seeks to bridge —to discuss the fundamental differences between TP
systems that rely on messaging and synchronous communication
technologies.

TODAY’'STPENVIRONMENT

Theexistenceof distributed processing haschangedtheway everyone,
including IT, thinks about computing. Connectivity has moved to
centre stage. While the distributed world may not yet be fully
connected (whether by LANs, WANS, or the Internet), the need to
connect applications grows relentlessly, with profound implications
for acompany’s software infrastructure.

Tocomplicatematters, specialist I T skillsareconstantly being diluted
by the sheer volume of EAI and similar projects currently being
implemented, alongwiththearrival of distributed (but not necessarily
connected) databasesandtheir rel ated applications. Thesuccessinthe
nineties of products from SAP, BAAN, PeopleSoft, and Oracle on
many different platforms atteststo this.

MQSeries has a mgjor role to play here, as it enables different
applications to be reliably coupled together without the need to
change the way the applications work. Furthermore, MQSeries
transactional capabilities enable what can be described as ‘implicit

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

transaction processing’ (as opposed to ‘pessimistic TP'). Inaworld
that’s migrating to Web-enabled e-business, this capability will be
critical.

FLAVOURS OF TRANSACTION PROCESSING

Traditional commercial transaction processing is about passing the
transactional ‘ACID’ test (Atomicity, Consistency, Isolation, and
Durability) to ensurethat each transaction isprocessed once and once
only, and that the processing is accurate and appropriate. Most of the
successful, dependable, and robust applications of the past, many of
which still support today’s businesses, were built on these properties
and their associated techniques. This is sometimes known as
‘pessimistic TP because of theassumption that all will fail unlessthe
whole end-to end transaction succeeds.

But requiringthe A CID propertiesof pessimistic TPsolvesneither the
transaction processing problems of e-business nor the problem of
integrating enterprise applications. What is needed is a different
approach that is more flexible, so that the new breed of distributed
transactions can be supported.

Four assumptions underpin this requirement:

A distributed transaction system is one where two or more
physical systems, almost certainly acting as peers, areinvolved.
Each of the systems may have one or more applications running
onit.

* Thesystemcouldincludetwoor moreworkstationsor mainframes
but may also include other platforms, such as PCs and
minicomputers.

e A client can act as a server and a server can act as a client at
different points during processing — they may even act as both
client and server at the same time.

* Theobjectiveistoensurethat any given businesstransaction that
isinitiated either runsto completion or failsin apredictable and
understandable manner that’s commensurate with the needs of
the business.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

MQSeriesisrelevant here. It l[inks multiple platformswith areliable,
once only, assured delivery protocol and implementation. It enables
different applications to be linked in order to deliver application
integration. The way it achieves this is by ‘implicit transaction
processing’.

IMPLICIT TRANSACTION PROCESSING

Implicit transaction processing (I-TP) isatermthat appliesto systems
whose design is underpinned by a series of assumptions that are
sufficient, individually and in aggregate, to allow one to depend on
transactions being processed accurately and completely by them.
These systems avoid the formality inherent in ‘ pessimistic TP —the
type of transaction processing that underlies systems based on CICS
or Tuxedo. Implicit TPcan bebest understood intermsof the concepts
of queuing and of decoupling of application parts—both of which are
illustrated by theexamplein Figure 1 (opposite), whichisbased onan
MQSeries implementation (though it applies equally to any other
reliable queueing system).

Decoupling occurs when you separate the different parts of an
application across one or more systems, regardless of whether the
applicationistransactional. InFigure 1, system A hostsapplication A,
which communicateswith application B onsystemB. Thisisasimple
but representative example of a distributed application.

Traditionally the development of an application (the design, build,
and installation) would have an overall single point of control.
However, if systems A and B are on different platforms (say oneisa
Windows NT system and the other a Unix server or CICSMVS
system), thedesi gner must understand both of theapplication platform
environments and the method of communication between them.
Usually the result is a monolithic design that is difficult to test,
maintain, and change. Inaddition, few individual shavethe breadth of
skillsto deliver it.

A decoupled approach changes this. The example shown has five
components when decoupling is considered:

e Thefirst component is application A.

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Unit of Work 1 Unit of Work 2

System A System B |

Queue manager Queue manager

: A |

Middleware messaging layer

|..T_ .. -

Unit of Work 3

Figure 1. Units of work in a distributed processing system

* Thesecondisqueue 1l anditsqueue manager on system A, which
communicatewith other similar queuesviaan agreed mechanism
(this could be messaging, RPC, ‘ conversational’, or some other
method).

e Thethird isqueue 2 and its queue manager on system B. These
communicate with other queues (including queue 1).

 Thefourthisapplication B.
o Thefifthisapplication C.
It is assumed that:

« The queue managers (queue 1 and queue 2) are able to
communicate reliably with each other.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

 Application A’'s development tool (and, consequently, the
completed application) can write to and read from queue 1.

e Application B’'s development tool (and, consequently, the
compl eted application) can pick up information from queue 2, as
well as write any returns/responses back to queue 2.

In this scenario, adeveloper can write application A aslong as he or
she has agreed the form of the dispatch between the application
elements (application A and application B) with the developer of B
(and the devel oper of B withthedevel oper of C, and so on). Theresult
Isthat the development of applications A, B, and C can be completed
independently of each other, withdevel opersusingtheir ownindividua
skillsand without requiring themto know of each other’ senvironment.

Applications A, B, and C also become components that can be
swapped in or out so long as the dispatch structure (and a supporting
gueuing structure) remain in place.

Now, apply thistypeof devel opment tothecreation of applicationsfor
transacti on processing and you havetheessenceof |-TP. Aslongasthe
following requirements are met:

* You can rely on one unit of work (Unit of Work 1 in Figure 1)
completing on the first platform.

* You canrely on areliable transfer between afirst and a second
platform (Unit of Work 3), including rollback/recovery in the
event of afailurein one of the communication links.

* You can rely on a process completing correctly on the second
platform (Unit of Work 2).

Then you can implicitly rely on the business transaction (actually
several transactionson different platforms), whichisessentially what
|-TPintegrity is.

Thisiswhat MQSeries delivers. While implicit TPis ultimately not
asreliable aspessimistic TP, whichiswhat productslike CICS, IMS,
or Tuxedodeliver, it neverthel essoffersaway to bridgeheterogeneous
systems in today’s distributed environments. Furthermore, implicit

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TP is adso smple to understand and it enables originally isolated
systems to be tied together.

The integrity of the transaction is, of course, dependent on the
assumptionsbeing observed. To strengthentheseassumptionsrequires
someadditional devel opment work onacoordinating application (see
Using MQSeriesasa transaction coordinator in MQ Update Issue9,
March 2000). Thisisespecially the caseif rollback and recovery are
to beimplemented acrossall the ‘ sub-transactions'. Furthermore, the
gueue managerson each system provideonly queue-to-queueintegrity
— they do not provide application-to-queue integrity.

CONCLUSION

Transaction processinginvolvingdistributed systemsthat interoperate
via message-oriented middleware technology differsin a number of
subtle yet significant ways from traditional ‘ pessimistic’ transaction
processing systems, such as those based on CICS, Tuxedo, or IMS.
For instance, a transaction in an implicit transaction processing
system actually comprises a number of ‘sub-transactions’, each of
whichisbased onaunit of work —the successof thewholetransaction
IS based on the success of all sub-transactions. While traditional
systems offer amore formal type of transaction processing, and also
benefitfromagreater successratefor transactions(M QSeriesprovides
assured delivery of messages but is, neverthel ess, constrained by the
availability of theunderlying network, which may bethelnternet; this
means that messages may not be delivered in timefor transactionsto
succeed), implicit transaction processing systems also have their
benefits. Among them is the ability to build systems from reliable
components, which allows development projects to be rationalized
into manageabl e parts, each of which requiresamorelimited skill set
than would be the case if the project were to develop a ‘traditional’
distributed application based on, say, CICS. Another increasingly
important benefit is that implicit transaction processing systems are
especially suited to processing transactions over the Web.

Charles Brett
President
C3B Consulting © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

MQSeries Integrator V2.0

From a business standpoint, MQSI is used to integrate a number of
applications and implement business processes. Users can define
businessrulesusing M QSI and useitsbuilt-informatter to ensurethat
applicationsreceivedatainformatsthey support. MQSI aso provides
aframework that third-party vendors and resellers can useto provide
connectivity between their products and those of other vendors.
Resellers plug their products into MQSI by creating custom MQSI
nodes (which are discussed later).

Fromafunctional standpoint, MQSI providesasimpleyet sophisticated
way of processing messages en-route to their destination. MQS
functions as a‘ message broker’, also providing a message transport
layer. A message broker acts as ahub, processing messages based on
its own configuration and the contents of the messages themselves.
The advantage of using ahub architectureisthat it ssimplifiesthetask
of application integration — systems are connected once to the hub
rather than to each other system with which they need to interoperate.
MQSI performs functions associated with processing, transforming,
and distributing messages, while the base M QSeries product, which
issuppliedwithM QSeriesiIntegrator V 2.0, handlesmessagetransport
and queueing.

M QSI combinesthemessagebrokering functionwith publish/subscribe
functionality, al soaddingamessagedictionary and messagewarehouse.
Message warehousing can be used for auditing message flows,
replaying messages, and even “data mining”, while message
dictionaries make the process of transforming and reformatting
messages much simpler by providing templates of message formats
and structures.

Within the message broker, individual functions are assigned to a
collection of interconnected nodes, and it is at the nodes where
transformation and other processing actually takes place.

Nodes are implemented as Dynamically Linked Libraries (DLLS) in
Win32 environments and as shared libraries in Unix environments,
these being called by the message broker’s execution environment.

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

‘Message processing nodes’ are — as you' d expect — responsible for
processing messages. A message processing node is a ‘well-defined
processing stage’, meaning that it performs a specific task or set of
tasks on messages that pass through it in a message flow across a
message broker. As well as being able to access datain the message
payload and headers, message processing nodes can also access data
outside the message flow, such as data stored on databases. M essage
processing nodes can also put messages on queues.

Nodes are ‘wired together’ to form a message flow. A message flow
isinitiated by an ‘input node’ (MQSI comeswith apre-defined input
node—the M QInput node). Theinput and output of anodearereferred
to (and represented diagrammatically) as ‘terminals’, and terminals
are joined by ‘connectors to implement a message processing
framework. Notethat connectorsaretheresimply torepresent message
flows — messages are actually ‘transmitted’ by the passing of a
reference (apointer) tothe messageobjectinamethod call. Terminals
come in several varieties, including ‘in” (for receiving messages),
‘out’ (for forwarding messages), and ‘failure’ (for sending messages
in the event of an error or in response to an exception).

Users and vendors can create additional MQSI nodes that are then
‘plugged in’ to the system. Nodes should be written in C,; if they’re
writteninanother language, they’ || need aC wrapper. Samplecodefor
plug-in nodesis provided with MQSI. In order to be fully backward-
compatiblewith Version 1.0, Version 2.0isal so supplied with NEON
Rules and NEON Formatter nodes, which alow access to the
NEONRules and NEONFormatter engines of MQSeries Integrator
Version 1.0. These nodes and other standard nodes that ship with
MQSeries Integrator and are available via the design palette are
described | ater.

MQSI also includes Control Center, agraphical tool for constructing
and managing messageflows. Thistool can beused to‘wiretogether’
message flows through MQSI nodes. According to IBM, Control
Center “alowsthefast creation, depl oyment, and control of message-
based businesssolutions’. M essageflowscan be customized by using
Control Center to ater the properties of individual nodes. Typical
propertiesthat can be customized are thefilter statement of message
processing nodes and the input queue of MQInput nodes.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

MULTITHREADING

MQSeries Integrator offers multithreading for message processing,
meaning that morethan onemessage can beprocessed simultaneously.
However, theway multithreadingishandled needsalittleexplanation.
Think of amessagebroker that implementsaparticul ar flow, comprising
nodes and connectors, as being in some ways analogousto aclassin
an object-oriented programming language. When aflow isinitiated,
an instance of the message broker that implements it is created and
given athread from athread pool. (A message flow isinitiated by a
message being placed on an MQSeries application queue, and is
terminated when the last message in the flow is put on another
MQSeries application queue.)

Asamessage progressesthrough abroker, it may cometo anodethat
has more than one output terminal, such as the node marked ‘A’ in
Figure 1, which hasone‘in’ terminal and two ‘out’ terminals. At this
point, the process handling the message flow does not fork — the
processing of eachroutethroughthesystemishandled*independently
and sequentially”, meaning that the message broker executes Branch
1 in Figure 1 and then, when it has completed Branch 1 by putting a
message on output queue Q2, it executes Branch 2. When thisbranch
terminatesby putting amessage on Q3, theentireflow terminates, and
the thread returns to the thread pool. The entire flow is thus handled
by onethread, which meansthat no multithreading isavailableinside
an MQSeries Integrator flow: multithreading is provided by offering
multiple instances of the same flow, each of which can handle a

separate input message.

Giventhat theprocessing of Branch 2 happensonly oncetheprocessing
of Branch 1terminates, itisintheinterest of thosedesigningflowsand
devel oping nodesto ensurethat theprocessing carried out by individual
nodesis kept to aminimum, to ensure the rapid passage of messages
through nodes. Particular attention should be paid to processing that
requires1/O, which may block the processing of other branchesinthe
flow.

Each message broker that implementsaflow isallocated apool of up
to 256 threads, and each message that arrives in the input queue is
allocated one thread.

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Input :'/'E
-E-_-’E node P A J\AE

Q1

Figure 1. A message flow through a message broker

Branch 1 Q2

0 Output
B node J__’E-

Output
—Ppl] —
c node

3
Branch 2 Q

MQSI’SNODE PALETTE

The following message processing nodes ship with MQSI. Each has
input and fallureterminals, and may haveavariety of output terminals
depending on their function. The nodes that ship with MQSI are
sometimes referred to as ‘ primitive nodes'.

Standar d message processing nodes

MQI nput

This node has already been discussed,; it offers basic triggering
and initiation functionality for amessage flow. The node usesan
MQGET call to receive a message from adesignated MQSeries
gueueand passesthemessage onto thenext nodeintheflow. The
node hastheregular input, output, and failureterminals, and also
has a ‘ catch’ terminal, whose function is to enable the node to
catch an exception that occurs later in the message flow. Thisis
necessary, for instance, to roll back a flow that is part of a
transaction.

Check node

The check nodeisessentially for validating amessage format in
amessageflow. Ithasthreeterminals: ‘in’, ‘match’, and‘failure'.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

22

When amessage arrives at the‘in’ terminal, the ‘domain’, ‘ set’,
and‘type’ attributesof themessagetypespecificationarecompared
with pre-set values. If they match, themessageisdepositedinthe
‘match’ terminal ; otherwise, messagesaredepositedinthe*failure
terminal.

Filter node

Thefilter nodehasfiveterminals: ‘in’, ‘true’, ‘fase’, ‘unknown’,
and‘failure’. Whenamessagearrivesat the‘in’ terminal, an SQL
expression is applied to its content. The result of the SQL
expression is used to decide whether to send the message to the
‘true’ or ‘false’ terminal; if the result is indeterminate, the
message goes to ‘unknown’, and if an error occurs during
processing, it goesto the ‘failure’ node.

Compute node

Thecomputenode hastheability to receiveamessage of onetype
and output one of adifferent type. The content and attributes of
the new message may bebased on both the content of themessage
received and on values retrieved from an externa relational
database.

Extract node

The extract node produces an output message based on the
content of the input message. Selected elements of the input
message may simply be copied to the output message, though the
elements may also be transformed in the process.

ResetContentDescriptor node

The ResetContentDescriptor node allows a message to be
processed by another parser within the same message flow (the
section onmessagedictionariesexpl ainstheway messageparsing
is handled within a message flow).

NEON Formatter node

The NEON Formatter node is somewhat different from other
nodesmentioned sofar inthat it usesthe NEONFormatter engine
to transform messages. When a message arrives at the node, the

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

node usesthe NEON Repository to look up the message’ sformat
and aNEON format definition that’s then used to transform the
message, after which the message is passed on to the next node
in the flow.

External database nodes

Therearefivebasic nodesthat are provided for modifying an external
database: Datalnsert, DataUpdate, DataDelete, Database, and
Warehouse. Each of these nodes has three terminals: “in’, ‘out’, and
‘failure’. While all database nodes alter the state of an external
database in response to the arrival of a message, none of them alters
themessageitself (comparethiswiththe Computenode, whichisable
to access an external database and use the information returned to
processamessage). Themessagetypesof the Datal nsert, DatalUpdate,
and DataDelete nodes must be specified, though the input of the
Database node can be generic XML. If any of the nodes is part of a
transactional flow, then transactional integrity may be maintained
either by an external agent or by the node independently committing
the transaction.

« Datalnsert, DataDelete, and DataUpdate nodes

The Datal nsert node performsan insert operation on the database
specified. The insert is performed using an SQL statement
generated by the node. While the statement generated may
depend on datain the messageitself, the message may simply act
as atrigger for the insert.

The DataUpdate node performs a similar function to that of the
Datal nsert node — one or more rowsin adatabase are updated in
responsetothearrival of amessageat thenode. Aswiththeinsert
generated by a Datal nsert node, the update may be based on data
in the message and is performed by an SQL statement generated
by the node.

The DataDel ete node deletes one or more rows from a database
inresponsetothearrival of amessageat anode; again, thechoice
of rows may be independent of the content of the message, in
which case the message simply triggers the action, or they may
be chosen in some way that’s based on the message’s content.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

Given that the Datalnsert, DataUpdate, and DataDelete nodes
expect messages of a certain type as their input, it’s not unusual
for their input to be the output of afilter node.

Database node

The Database node is more generic in function than the three
database nodes discussed so far — it simply performs a database
operationinresponseto thearrival of amessage at the node. The
database operation isperformed using an SQL statement and the
statement may be dependent or independent of the message
content.

Warehouse node

The Warehouse node is somewhat different from the other
database nodes discussed so far. While it also alters an external
database in response to the arrival of a message, leaving the
message itself unchanged, the databaseinthiscaseisa‘ message
warehouse’, which is used to store messages for auditing, batch
processing, or deferred processing by the message broker. As
withtheother databasenodes, an SQL statement generated by the
nodeisused toinsert messagesin the database, and the messages
themselvesmay bestored either asattachmentsto anindex record
built from the message schema or asa‘BLOB’ attached to the
index. Note that the Warehouse node may perform acalculation
or transformation on the message before passing it on to the
message warehouse.

Decision and routing nodes

Four of the nodes supplied belong in this category: MQOutput,
MQReply, NEONRules, and Publication.

24

MQOutput and MQReply nodes

The MQOutput node isthe counterpart of the MQInput node—it
acts asthe end-point of amessage flow, so that messages|eaving
this node are put on an MQSeries queue. The actual gqueue to
which amessage is sent may be determined from the content of
the message itself. An MQReply node is a type of MQOutput

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

node in which the message is put on a queue specified by the
ReplyTo field of the message header.

e NEONRules node

As mentioned earlier, the NEONRules node is provided for
backward compatibility with MQSeries Integrator Version 1.
Thisnodeisableto pass messagesto the NEONRulesenginefor
evaluation. It is, therefore, a driver for the rules engine and is
analogous to the daemon supplied with MQSeries Integrator
Version 1. The NEONRules engine eval uates the message based
on its stored rules and fires one or more terminals on the node
depending on the outcome of the evaluation. The NEONRules
node includes anumber of terminals; ‘ PutQueue’ isintended to
beconnectedtothe‘in’ terminal of an M QOutput nodefor output
to anamed queue; ‘ noHit’ fireswhen arule could not befoundto
handlethemessage, which could behandled by further processing
or output to aqueueviaan MQOutput node; and ‘ propagate’ fires
when the message was successfully evaluated with respect to a
rule in NEONRules but no output queue was specified in the
message. Also providedinthenodeisafailureterminal. Notethat
MQSI’s ‘destination list’ feature allows messages leaving the
node to be written to more than one M QSeries queue.

Publication node

The Publication node is part of MQSI’s publish/subscribe
functionality. A message arriving at this node is evaluated for
topic and content and then sent either to message brokers or
subscribers that have registered an interest in the topic and
content. MQSI’ sControl Center isused to manage both published
topics and subscribers.

Error handling and tracing

Three nodes are supplied with MQSI to handle errors and tracing:
Throw, TryCatch, and Trace.

e TryCatch and Throw nodes

The Throw node has only oneterminal: ‘in’. Its function within
the message flow is to throw an exception that will either be

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

caught by a TryCatch node earlier in the message flow or, if the
exception is unhandled, cause a message flow to cease and (if
necessary) atransactionto berolled back. Notethat theexception
thrownmay depend onthecontent of themessage. Thecounterpart
of the Throw node is the TryCatch node, which is used to catch
exceptionsthrown by aThrow node (if theexceptionisn’t caught
by the TryCatch node, it propagates back to the MQInput node
andfiresthenode' s’ catch’ terminal). Themessageisreceived by
TryCatch’'s‘in’ terminal andispropagated to the‘ catch’ terminal
unprocessed. If ‘ catch’ isconnected, further processing may then
occur.

e Tracenode

The Trace nodeissimply for producing atrace for debugging. It
hasone‘in’ and one ‘out’ terminal, and messages passfrom ‘in’

to ‘out’ without being processed, though thearrival of amessage
triggers Trace to write atrace message to aspecified destination
to allow the tracking of messages.

Custom plug-in nodes

Asmentioned earlier, MQSI allows users and third-party developers
to create their own plug-in nodes. Plug-in nodes are either writtenin
C or have C wrappers. Another requirement isthat they conformwith
the “Message Flow Framework”. Put simply, this ensures that new
nodes are compatible with the MQSeries Integrator Design Tool,
which is used to create message flows visually. This requirement is
fulfilled by supplying an XML signature template.

PERSISTENCE

One point that needs clarification relatesto persistent data. MQSI V2
maintainsan external storeof persistent datausing astandardrel ational
database (at the moment the choiceislimited to DB2 and Microsoft
SQL Server). Thisisused to hold configuration datafor the message
broker, and also stores information on publications, subscriptions,
and the operational state of the broker when it was last running. It's
tempting to think that this means that the persistent data store also
holds state information on the state of message flows in particular

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

instancesof thebroker. Thisisnot thecase; any persistent datarelating
to message flows needs to be stored by using an external relational
database accessed viadatabasenodes(analternativeistouseM QSeries
Workflow to manage state information on message flows).

TRANSACTIONAL INTEGRITY

Theability to deliver transactional integrity isafeature of MQSeries.
AsMQSI usesthebase M QSeriesproduct asitsmessagi ng component,
MQSeries can be used to provide transactional integrity to MQSI-
based message brokers. (Theability to use M QSeriesasatransaction
coordinator, including the coordination of external XA-compliant
databases via the XA interface, was discussed in the article Using
MQSeries as a transaction coordinator in MQ Update March 2000).

Every MQSI messageflow isinitiated by aninput node performing an
MQGET toread amessagefroman M QSeriesqueueandisterminated
when an output node performs an MQPUT to put a message on a
gueue. MQSeries can, therefore, provide transactional integrity at
thesetwo points. If an error occurswithin amessageflow resultingin
an unhandled exception, the MQInput node will catch the exception
viaits‘catch’ terminal, and the flow can be terminated at this point,
if the M QI nput nodeissuitably configured, and thetransaction rolled
back to the MQGET. Transactional integrity within MQSeries
Integrator is thus maintained “within the bounds of the message
flow”, so that transactional integrity is assured at the start and end of
a message flow in a message broker. Regular message processing
nodes are not responsible for maintaining transactional integrity,
which is the responsibility of the MQInput node (which has to be
configured to terminate the flow when an unhandled exception
occurs) and database nodes (which must also be configured to roll-
back uncommitted transactions involving changes to external
databases).

The MQInput nodeincludesa‘transaction’ attribute that determines
whether messagespassi ngthroughthenodearehandl edtransactionally,
andtheM QOutput nodeincludesa’ persistence’ attributethat specifies
the persistence of outgoing messages. Database nodes have a
‘coordination’ attributethat specifieswhether database operationsare

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

part of atransaction. The attribute can also specify how and when a
transaction is committed or rolled back.

MESSAGE DICTIONARIES

MQSI is able to process messages and external databases (and
perform other work that’s external to the message flow) based on the
content of messages. A pre-requisite of thisfunctionality istheability
to ‘parse’ messages — that is, to resolve message fields and other
elements. This, in turn, requires a rapid, efficient, and manageable
way of handling message formats, which istheaim of MQSI Version
2's message dictionaries.

Messages coming from an MQSeries queue are in ‘wire message
format’. Thewireformat isdescribedinmessage sMQSeriesmessage
descriptor. MQSI processes messagesin itsown ‘logical format’, in
which message fields are resolved and directly accessible by nodes.
MQSI’'s Message Services Component is responsible for (among
other things) parsing and deconstructing messages from ‘wire’ to
‘logical’ format. Thus, when an MQSI input noderetrievesamessage
from a queue, it uses the message's wire format descriptor to obtain
alogical message descriptor fromthemessagedictionary. Thisisthen
used to parse and deconstruct the message, ready for processing by
MQSI nodes. At the end of a message flow, which may include
operationsthat transform the messagefromitsoriginal format, MQSI
needs to reconstruct the message and obtain a wire message format
descriptor that allows MQOutput and Publish nodes to put the
message on MQSeriesqueues. Thisis, again, donewith theaid of the
message dictionary. Thusthe message dictionary’sroleisto assist in
thetrand ationbetween M QSI’ sl ogical messageformatsand M QSeries
wire message formats during the parsing, deconstruction, and
reconstruction of messages.

M essage dictionaries can handle messages comprising XML or byte
structures, such asthose created by C or COBOL programs, and they
also handle MQMD message descriptors, RFH and RFH2 format
headers, and NEONFormatter definitions. (RFH headers carry
information used by MQSI, NEONRules, NEONFormatter, and
MQSeriesV5's publish/subscribe component. RFH2 headers extend
thisby carryinginformationabout publish/subscribeflowsand message

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

sets. RFH2 headers can be further extended to carry proprietary data
required by specific applications.)

In an MQSI messagedictionary’ s database, message descriptionsare
known as ‘message type definitions', and these can be grouped
together as‘ messagesets’ for deployment torelevant messagebrokers
(each message set actually defines amessage dictionary). A message
type definition comprises a message model and a message template,
where the message model identifies fields and other elementsin a
message template. All user interaction with message dictionariesis
conducted viathe Control Center GUI, whichisused to perform such
tasks as defining and maintaining message models.

Internally, the message dictionary comprises three components. the
Message Repository Manager (MRM), the Resource Manager, and
theMessage Trand ation Interface (M T1). When amessagedictionary
Is deployed on a broker, it is implemented locally by a Runtime
Dictionary (RTD), which provides|ocal message brokersand parsers
with format definitions (thisimprovesperformance—the RTD actsas
a locally-cached copy of that part of the message dictionary that’s
required by thelocal message broker). Onelimitation of RTDsisthat
their message definition store cannot be updated —if the messagetype
definitionsin the message dictionary on which they’ re based change,
anew RTD must be defined at the message broker. Note that MQSI
uses XML for storing al its configuration data.

MQSI handlesthe processof exchanging messageswith queuesusing
the four message attributes below, which are stored in the message
header and al so have corresponding definitionsin the Control Center.
Note that these attributes are not necessary for well-formed XML
messages, which are ‘ self-describing’.

 The ‘message domain’, which identifies whether the message
definitionismanaged by Control Center oritsNEON counterpart.

 The‘message set’ (also known as the ‘project’), which groups
message types within a specified domain.

* The ‘message type', which identifies the exact structure of the
message in terms of the number, location, and size of the
message’s fields.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

* The ‘message format’, which identifies the wire format of the
message.

These attributes allow MQSI to determine which message dictionary
to use to obtain the message type definition, and the right message
parser to use to disassemble the message, when a message from an
MQSeriesqueueentersaflow at an M QI nput node. Theattributesare
also used to reassemble messages and obtain wire message formats
when putting messages on queues at the end of a message flow. For
this reason, message type definitions and Control Center definitions
are needed not only for messages that enter message brokers but also
for those created in brokersasaresult of transformationsand flowing
out of brokers and on to MQSeries application queues.

Asindicated, the actual task of disassembling amessage and making
thecontentsof itsfieldsavailablefor processinginmessageprocessing
nodesisthejob of message parsers. Parsers are specific to particular
messagetypes, and those avail ableinclude onesthat shipwithMQSl,
those created by the user, and those supplied by third-party vendors.
Messages aren't always processed by parsers before they enter an
MQSI flow — for instance, the message may belong to the NEON
domain, which meansthat it is processed by NEONFormatter, being
routed to the formatter viaa NEONFormatter node.

MESSAGE WAREHOUSES

A message warehouse is a store of messages in a standard relational
database. As outlined earlier, there are many reasons for using a
message warehouse, including logging messages, building an audit
trail, providingafacility for deferred or batch processing, and creating
amessage store for datamining or analysis. Messages are storedin a
message warehouse using the Warehouse node discussed earlier.
Messages may be stored in their original state or in a state resulting
from some transformation that is performed on them.

One action that a Warehouse node can perform on a message is to
parse it. Whether this is necessary depends on how the message
warehouseisused. For instance, if the message warehouseisno more
than atemporary storefor messages, thenit’ssufficient that messages
are stored as BLOBSs, even though this means that the database has

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

little accessto fieldsin the message body. In thisinstance, should the
message require content-based processing, it’s handed back to the
message broker where processing can take place. On the other hand,
iIf processing isto be carried out while the messageisin the message
warehouse, then it is necessary for the message to be parsed, so that
its fields can be identified and stored in atable.

PUBLISH/SUBSCRIBE

MQSI can bring additional benefits over those offered by a standard
publish/subscribe system. For a start, it supports ‘ content-based
filtering’, whichensuresthat subscribersreceiveonly rel evant messages
(or the relevant parts of messages) and irrelevant ones are discarded,
even when their topic matchesthat of current subscriptions (contrast
thiswith ‘standard’ publish/subscribe systems, which generally filter
messages by topic alone). Another benefit of MQSI isits ability to
output material inaformat that’s convenient to therecipient. MQSI’s
content filters, which take the form of SQL statements, are stored in
the Dynamic Subscription Table. Publish/subscribe functionality is
implemented via the Publication node described earlier — when a
Publication node receives a message, it evaluates the message for
topic and content and depositsthe message on one or more MQSeries
gueues based on the result.

MQSI Version 2 supports two types of subscription: ‘dynamic
subscription’ and ‘static subscription’. For those familiar with
programming, static subscriptionsare* early bound’, meaningthat the
list of recipientsisknown in advance and message routing can be set
up from the outset. Dynamic subscriptionsare ‘ late bound’ , meaning
that therecipientsare not known in advance and routing isset up only
when a publication is ready to be sent to subscribers.

MQSI allowsusersto publishinformation at one message broker and
subscriberstoreceiveit at another. Thisisakey requirement to create
ascalable publish/subscribe system —if messages can be collected by
subscribers only from the brokers at which they are published, then
information must be published at morethan onebroker. Asthenumber
of brokers increases, so does the burden of publishing at multiple
brokers. By allowing information to be published at one broker and

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

propagated automatically to others, brokers can be added to the
systemwithout impact onthemanagement of subscriptions. However,
a mechanism must be put in place to allow brokers to propagate
messages. Essentially, the mechanism isfor a broker to subscribe to
a publication on another broker on behalf of its subscribers (which
may be other brokers). Updates are then sent from the publisher to its
broker, then from the publisher’s broker to the subscriber’s broker
(possibly via other intermediate brokers), and finally from the
subscriber’s broker to the subscriber.

The method of routing subscriptions may organize brokers either in
ahierarchical treestructureor apoint-to-point system. Ininstall ations
with alarge number of brokers, the use of atree structure may result
Inthe passing of messagesbetween many intermediate brokersbefore
they arrive at their destination, which isinefficient and unnecessarily
delays messages. A point-to-point system also hasdrawbacks at large
installations, where an essentialy flat structure may be difficult to
implement, manage, and use.

MQSI V2 offers a third alternative to these two organizational
structures—‘ collectives'. A collectiveisagroup of brokersthat form
a point-to-point publish/subscribe network. Within a collective,
messages never require sending to intermediate brokers, as every
broker is connected to every other broker. Collectives may bejoined
in a network of collectives, in which a broker in one collective is
joined to a broker in another collective. Individual collectivesin a
network of collectivesareorganizedinatreestructure. This, according
to IBM, brings the benefits of a hierarchical structure without the
drawback of tortuoudly long routes.

Aswith just about every MQSI administrative task, the management
of collectivesis carried out using the Control Center. The processis
very straightforward, ssmply requiring that a broker is assigned to a
collectivein Control Center’s Topology dialogue (thisisactually just
atab on the main GUI). As stated, more than one collective may be
defined, and a network of collectivesis also created using Control
Center’s Topology tab.

MQSI’s publish/subscribe component has a security mechanism
controlled by Access Control Lists (ACLS). Topicsthat are available
for both publication and subscription are organized in hierarchical

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

treestructures. Each‘node’ or ‘leaf’ inthisstructuremay haveanACL
attached to it; if no ACL is specified, the node inheritsan ACL from
its parent node. ACL s determine who may either publish material on
atopic or subscribe to it, also identifying those who are allowed to
receive persistent messages. The whole mechanism works fairly
seamlessly, so that (for instance) if a user attempts to subscribeto a
number of topics, using wildcard characters to select the topics, the
user is subscribed only to those topics to which he or she has
appropriate permission.

There are some subtle (and, perhaps, not-so-subtle) differencesinthe
way publish/subscribe functionality is implemented in MQSeries
Integrator V2.0 and MQSeriesV5.0. Perhaps the two most important
differences (other than the provision of content-based filtering) arein
the naming of topics and the formats that the two can handle. In both
MQSI V2and M QSeriesV 5, publish/subscribetopi csmay beorgani zed
in ahierarchical structure. However, in MQSI V2, topics also use a
hierarchical namespace, startingwiththetop-level topicand separating
topics in the hierarchy with aforward dash (‘/’). In MQSeries V5,
topics use a flat name space comprising arbitrary strings — this
effectively hides the hierarchy, so that it's not clear to users (and
administrators) how one topic relates to othersin the hierarchy.

The main difference in the formats supported by MQSI V2's and
MQSeriesV5's publish/subscribe systemsisthat MQSI V2 does not
handlecommand messagesin PCF (Programmable Command Format).
There are other minor differences between the two systems, with
some functions in MQSI V2 being available only for compatibility
with MQSeries V5 and (therefore) ‘ deprecated’ (that is, not advised
for new implementations) or supported only for migration purposes.
It's worth pointing out that it's IBM’s intention that MQSI V2's
publish/subscribemechanismshouldbeusedinpreferencetoM QSeries
V5's. To this end they’ve produced a tool, migmgbrk, to aid the
migration process, though it should be stated that thetwo systemscan
co-exist and interoperate, and that it isnot necessary to chooseonein
preference to the other (though the overhead of using two systemsto
implement the same functionality may make it desirable to do so).

Industry Analyst (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

Customizing CSQ4APPL and CSQ4INP2

CSQ4APPL is an example of how the version of CSQ4DISX and
CSQINP2 (thesampl efor distributed queueingwithout CICS) supplied
in the MQM.SCSQPROC dataset can be customized to meet the
requirements of a specific application. This sample contains queue
definitions dedicated to an application called APPL, which is set up
to communicate with a Unix environment. Additional members can
be set up and dedicated to new applications—isolation at application
level reduces housekeeping and maintenance for all definitions.

AN EXAMPLE OF CUSTOMIZED CSQ4DISX(CSQ4APPL)

*hkkhkhkkkhkhkhkkhkkhkhkkkhkhkhkkhhkhkhkhkhkhkkhhkhkkhkhkhkhkkhkhkhkhhkhhkhhhkkhhkhkhkhkhhkkhhhkkrkhkhkhkkhhhkkhhkhrkhhkxkxk

*

* IBM MQSeries for MVS/ESA
* CSQAPPL (copy of CSQINP2)

*

KRR AR AR AR A AR AR AR AR AR AR AR AR A A A A A A A Ak Ak hkk

DEFINE QLOCAL('QL.APPL.FROM.UNIX.QUEUE®') +
REPLACE +
DEFPSIST(YES) +
DESCR('APPL records from unix') +
STGCLASS(DATAQO1) +
MAXMSGL(16384)

*

DEFINE QALIAS(C 'RT.APPL.DATA.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ('QL.APPL.FROM.UNIX.QUEUE')

*

KhAkAkAAAAAAAAAAAAA A A A A A Ahhkhkhhkkhhhkhhkhkhkdhkkhkkhhhkkkkx*x

DEFINE QLOCAL(C 'QL.APPL.ERROR.HANDLER.QUEUE') +

REPLACE +
DEFPSIST(YES) +
DESCRC ' ") +

STGCLASS(DATAQO4) +
MAXMSGL(9520)
*
DEFINE QALIAS('RT.ERROR.HANDLER.QUEUE"') +
REPLACE +
DEFPSIST(YES) +
TARGQ('QL.APPL.ERROR.HANDLER.QUEUE")

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

*hkkhkhkhkkhkkhkkkkx

DEFINE QLOCAL(C 'QL.APPL.DEBLOCK.QUEUE') +

REPLACE +
DEFPSIST(YES) +
DESCRC " ") +

STGCLASS(DATAQO3) +
MAXMSGL(152)
*
DEFINE QALIAS('RT.DEBLOCK.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ('QL.APPL.DEBLOCK.QUEUE")

*

KRR KKKAKRKAKARKAARKAAA AR AR AR AR A A A A Ak Ak hkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkk*x

DEFINE QLOCAL(C 'QL.APPL.DUPS.QUEUE") +

REPLACE +
DEFPSIST(YES) +
DESCRC " ") +

STGCLASS(DATAQO03) +
MAXMSGL(16384)
*
DEFINE QALIAS(C 'RT.APPL.DUPS.QUEUE") +
REPLACE +
DEFPSIST(YES) +
TARGQ("QL.APPL.DUPS.QUEUE")

*

KA KRR AR AR AR AR AR AR AR AR AR AR AR AR AR AR A A A A A A A Ak Ak kA kkkk*k

DEFINE QLOCAL(C 'QL.APPL.EAN.BUILD.QUEUE") +

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO4) +
MAXMSGL(152)
*
DEFINE QALIAS('RT.EAN.BUILD.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ("QL.APPL.EAN.BUILD.QUEUE")

*

kkhkhkhkkkhkhkhkkhkhkhkkkhkhkhkkhkhkhkkhkkhkhkhkkhhkhkhkhkhhkkhkhkhkkhkhkhkkhkhhkhkhkhkkhkhkhkkkxkx

DEFINE QLOCAL(C 'QL.APPL.PROD.CONV.QUEUE"') +

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO5) +
MAXMSGL(150)
*
DEFINE QALIAS('RT.PROD.CONV.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ("QL.APPL.PROD.CONV.QUEUE")

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

*

*khkkkhkkkkkhkkhkhkhkkhkkkkk

DEFINE QLOCAL(C 'QL.APPL.EAN.BUILD.ERROR.QUEUE") +

REPLACE +
DEFPSIST(YES) +
DESCRC " ") +

STGCLASS(DATAQO2) +
MAXMSGL(152)
*
DEFINE QALIAS(C 'RT.EAN.BUILD.ERROR.QUEUE") +
REPLACE +
DEFPSIST(YES) +
TARGQ('"QL.APPL.EAN.BUILD.ERROR.QUEUE")

*

KAKKAKAKAKAKAKAAKAAAAAAA A AR A A A A A A A A A A A A Ak hkkhkkhkkkkhkkkkk*k

DEFINE QLOCALC 'QL.APPL.CONV.ERROR.QUEUE") +

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO2) +
MAXMSGL(152)
*
DEFINE QALIAS('RT.CONV.ERROR.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ('QL.APPL.CONV.ERROR.QUEUE")

*

*hkkhkhkkkhkhkhkkkhkhkhkkhkhkhkkhkkhkhkhkkhkhkhkkhhkhhkkhhkhkkhhkhhkkhkhhkkhhhkkhkhkhkhkkhkhkhxkkxkx

DEFINE QLOCAL(C 'QL.APPL.ERROR.QUEUE"') +

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO3) +
MAXMSGL(16384)
*
DEFINE QALIAS('RT.APPL.ERROR.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ('QL.APPL.ERROR.QUEUE")

*

Khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhhkhhhhkhkkkxx

DEFINE QLOCAL(C 'QL.APPL.HEARTBEAT.QUEUE') +

REPLACE +
DEFPSIST(YES) +
DESCRC " ") +

STGCLASS(DATAQO3) +
MAXMSGL(20)
*
DEFINE QALIAS('RT.HEARTBEAT.QUEUE') +
REPLACE +
DEFPSIST(YES) +

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TARGQ("QL.APPL.HEARTBEAT.QUEUE")

*

KRR A KA AR AR AR AR AR AR AR AR AR AR AR AR AR AR A A A A Ak Ak hkhkkkkhkk*k

DEFINE QLOCAL(C 'QL.APPL.UNIX.ERROR.QUEUE") +

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO2) +
MAXMSGL(100)
*
DEFINE QALIAS('RT.UNIX.ERROR.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ("QL.APPL.UNIX.ERROR.QUEUE")

*

khkhkhkkkhkhkhkkhkhkhkkhkkhkhkhkkhkhkhkkhkkhkhkhkkhhkhkkhkhkhhkkhhkhkhhkhhkkhkhhkkhkhkhkhihkkkxk

DEFINE QLOCAL(C 'QL.APPL.UNIX.PROCESSING.ERROR.QUEUE'

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO5) +
MAXMSGL(600)
*
DEFINE QALIAS('RT.UNIX.PROCESSING.ERROR.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ("QL.APPL.UNIX.PROCESSING.ERROR.QUEUE"’

*

KA K KKK KA A A AR AR AR AR AR AR AR AR AR AR A A A A Ak Ak kkhkkhkkkkhkh*x

DEFINE QLOCAL(C 'QL.APPL.DEPTH.REFRESH.QUEUE') +

REPLACE +
DEFPSIST(YES) +
DESCRC " ") +

STGCLASS(DEFAULT) +
MAXMSGL(100)
*
DEFINE QALIAS('RT.DEPTH.REFRESH.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ("QL.APPL.DEPTH.REFRESH.QUEUE")

*

*khkkkhkkhkkxkx

DEFINE QLOCAL(C 'QL.APPL.HEART.REFRESH.QUEUE') +

REPLACE +
DEFPSIST(YES) +
DESCRC " ") +

STGCLASS(DEFAULT) +
MAXMSGL(100)

*

DEFINE QALIAS(C 'RT.HEART.REFRESH.QUEUE"') +
REPLACE +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

) +

)

37

DEFPSIST(YES) +
TARGQ('QL.APPL.HEART.REFRESH.QUEUE")

*

*hkkhkhkkkhkhkhkkkhkhkhkkhhkhkkhkkhkhkhkkhkhkhkkhhkhkhkkhhkhkkhhkhhkkhkhhkkhhhkhkkhhkhkkhkhkxkhkxkx

DEFINE QLOCAL(C 'QL.APPL.INTO.DEBLOCK.QUEUE") +

REPLACE +
DEFPSIST(YES) +
DESCR(C " ") +

STGCLASS(DATAQO2) +
MAXMSGL(16384)

*

DEFINE QALIAS('RT.INTO.DEBLOCK.QUEUE') +
REPLACE +
DEFPSIST(YES) +
TARGQ('QL.APPL.INTO.DEBLOCK.QUEUE")

CSQ4CHNL isan example of how CSQ4INP2 and CSQ4DISX can
be customized. Thisexample contains channel definitionsfor remote
locations that communicate with the MQxx sub-system on the
mainframe viaa CHLTYPE(SVRCONN) connection.

AN EXAMPLE OF CUSTOMIZED CSQ4INP2 (CSQ4CHNL)

Kkhhkhhkhkhkhkhkkkkk

THIS MEMBER HAS ONLY CHANNEL DEFINITIONS REQUIRED FOR REMOTE LOCATIONS

COPY OF MEMBER CSQ4DISX

* % o ok X

kkhkkkhkkhkkhkkhkkhkkhkhkkhkkkkk*%

* This definition is for Client Attachment Feature using LU62 and TCP/IP
* SVRCONN connection defined for the 0S/2, UNIX MQ system and other
* locations for MQxx subsystem.

* The channel name must be unique hence the suffix of LUC for LU62 connection
*hkkhkkhkkhkkhkkhkhkkhkkhhkhkkhhkhkkhhhkkhhhkkhhhkkhhhkhkkhhkhkkhhhkkhhhkhkhhkkhkhhhkkhhhkkhhhkkhhhkhkkhhkkkhhhkkhhik

*

DEFINE CHANNEL('CH.20000.TO.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 0S/2 via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(786)
*
DEFINE CHANNEL('CH.68500.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for UNIX via LU62') +

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TRPTYPE(LU62) +
MCAUSER(" ") +
MAXMSGL(34380)
*
DEFINE CHANNEL('CH.62411.T0.MQxx.LUC'
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(543210)
*
DEFINE CHANNEL('CH.67140.T0.MQxx"') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for
TRPTYPE(TCP) +
MCAUSER(' ') +
MAXMSGL(7654321)
*
DEFINE CHANNEL('CH.64277.T0.MQxx.LUC’
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for
TRPTYPE(LU62) +
MCAUSER(C " ") +
MAXMSGL(4536180)
*
DEFINE CHANNEL('CH.68477.T0.MQxx.LUC'
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for

TRPTYPE(LU62) +
MCAUSER(C ' ') +
MAXMSGL(6342312)

*

DEFINE CHANNEL('CH.60778.T0.MQxx.LUC’
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for
TRPTYPE(LU62) +
MCAUSER(" ") +
MAXMSGL(7254420)

*

DEFINE CHANNEL('CH.WASV017.TO.MQxx"')
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for
TRPTYPE(TCP) +

) +

'name of remote location'

'name of remote Tocation'

'name of remote location'

'name of remote location'

'name of remote location'

"WASVO017"'

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

via TCPIP’

) +

LU62") +

via TCPIP'

via LU62'

) +

) +

100 via LU62')

via LU62'

) +

39

MCAUSER(' ') +
MAXMSGL(1234567)
*
DEFINE CHANNEL('CH.62371.T0.MQxx.LUC") +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(1172606)
*
DEFINE CHANNEL('CH.64810.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' LU62') +
TRPTYPE(LU62) +
MCAUSER(C ' ') +
MAXMSGL(4013442)
*
DEFINE CHANNEL('CH.64898.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(' ') +
MAXMSGL(4194304)
*
DEFINE CHANNEL('CH.69710.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote Tocation' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ") +
MAXMSGL(4104943)
*
DEFINE CHANNEL('CH.MQUNIX.TO.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'UNIX box' wvia LU62') +
TRPTYPE(LU62) +
MCAUSER(C ' ') +
MAXMSGL(4419430)
*
DEFINE CHANNEL('CH.61811.T0.MQxx.LUC") +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(1940443)

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DEFINE

*

DEFINE

*

DEFINE

*

DEFINE

*

DEFINE

*

DEFINE

*

DEFINE

CHANNEL(

CHANNEL(

CHANNEL(

CHANNEL(

CHANNEL(

CHANNEL(

CHANNEL(

'CH.67077.T0.MQxx.LUC"
REPLACE +

CHLTYPE(SVRCONN) +

DESCR('Server connection for
TRPTYPE(LU62) +

MCAUSER(' ') +

MAXMSGL(3044194)

'CH.68177.T0.MQxx.LUC’
REPLACE +

CHLTYPE(SVRCONN) +

DESCR('Server connection for
TRPTYPE(LU62) +

MCAUSER(C " ") +

MAXMSGL(4304419)

'CH.64210.T0.MQxx.LUC'
REPLACE +

CHLTYPE(SVRCONN) +

DESCR('Server connection for
TRPTYPE(LU62) +

MCAUSER(C " ') +

MAXMSGL(4143049)

'CH.41693.T0.MQxx.LUC"
REPLACE +

CHLTYPE(SVRCONN) +

DESCR('Server connection for
TRPTYPE(LU62) +

MCAUSER(C ' ') +

MAXMSGL(4194304)

'CH.06611.T0.MQxx.LUC'
REPLACE +

CHLTYPE(SVRCONN) +

DESCR('Server connection for
TRPTYPE(LU62) +

MCAUSER(" ") +

MAXMSGL(441943)

'CH.10646.T0.MQxx.LUC'
REPLACE +

CHLTYPE(SVRCONN) +

DESCR('Server connection for
TRPTYPE(LU62) +

MCAUSER(C ' ') +

MAXMSGL(4143904)

"CH.64273.70.MQxx.LUC'
REPLACE +
CHLTYPE(SVRCONN) +

) +

'name of remote location'

'name of remote location'

'name of remote location'

'name of remote Tocation'

'name of remote location'

'name of remote location'

) +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

via

via

via

via

via

via

Lue2'

Lu62’

Lue2'

LuUe2'

Lu62'

LUe2’

41

DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ") +
MAXMSGL (43 41904)
*
DEFINE CHANNEL('CH.76747.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(' ') +
MAXMSGL(3044194)
*
DEFINE CHANNEL('CH.67746.T0.MQxx.LUC") +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(' ') +
MAXMSGL(4304419)
*
DEFINE CHANNEL('CH.76111.T0.MQxx.LUC") +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(1943404)
*
DEFINE CHANNEL('CH.65256.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(' ') +
MAXMSGL(4194304)
*
DEFINE CHANNEL('CH.76755.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(1944304)
*
DEFINE CHANNEL('CH.87673.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MAXMSGL(4341904)
*
DEFINE CHANNEL('CH.MQGAMSTON.TO.MQxx"') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for Gamston via TCPIP') +
TRPTYPE(TCP) +
MCAUSER(" ") +
MAXMSGL(3414094)
*
DEFINE CHANNEL('CH.56779.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(" ') +
MAXMSGL(4419304)
*
DEFINE CHANNEL('CH.16103.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62") +
TRPTYPE(LU62) +
MCAUSER(' ') +
MAXMSGL(4341904)
*
DEFINE CHANNEL('CH.MQREADING.TO.MQxx"') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for Reading via TCPIP') +
TRPTYPE(TCP) +
MCAUSER(C " ") +
MAXMSGL(61921314)
*
DEFINE CHANNEL('CH.10641.T0.MQxx.LUC') +
REPLACE +
CHLTYPE(SVRCONN) +
DESCR('Server connection for 'name of remote location' via LU62') +
TRPTYPE(LU62) +
MCAUSER(C ' ') +
MAXMSGL(3041944)

*
*hkhkhkkhkkhkkkkx

* End of CSQ4CHNL

kkhkhkkkkhkhkkkhkhkhkkkhkhkhkkhhkhkkhhkhkhkhkhhkkdhkhhkhhkhkhhhkhhkhhkhhhkkhhkhhkhkhhkkhhkhkhkhhhkkhhhrkhhxk*x

Saida Davies
IBM (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

MQ news

Information Builders has launched Mobile
Computing Server, ahosting and integration
platform for mobile and wireless
applications. It allows sites to make use of
existing systems and provides IT
professionals with the tools they need to
manage, deploy, and connect Palm/
Windows CE PDAsand WAP- and Internet-
enabled mobile devices. The company
provides connectors to integrate mobile
applications with the rest of the enterprise,
including databases, transaction systems,
and other software via M QSeries.

Out now, prices start at US$45,000 per 100
userson NT or Unix.

For further information contact:
Information Builders, 1250 Broadway, 30th
Floor, New York, NY 10001, USA

Tel: +1 212 736 4433

Fax: +1 212 268 7470

Web: http://www.ibi.com/e-mcsrel ease/

Information Builders (UK) Ltd, Wembley
Point, Harrow Road, Wembley, Middlesex
HA9 6DE, UK

Tel: +44 20 8982 4700

Fax: +44 20 8903 2191

* % %

MQSoftware has released QPasal Version
2.2.1, the latest version of its management
tool for MQSeries, including MQSeries
Integrator Versions 1 and 2, MQSeries
Workflow, and MQSeries Everyplace. It
provides configuration, performance,

problem, and operations analysis and
management.

The Message Manager allows users to
browse messages on queues, including local
gueues, dead-|etter queues, and aliasqueues.
It also allows users to edit messages and
message headers. Application developers
can use Message Manager to simulate
messages from the real application during
development. It works with AIX, HP-UX,
Linux, Solaris, Windows NT, and Windows
2000. Details on pricing are available on
request from the vendor.

For further information contact:

MQSoftwarelnc, 7575 Golden Valley Road,

Suite 140, Minneapolis, MN 55427, USA

Tel: +1 612 546 9080

Fax: +1 612 546 9082

Web: http://www.maqsoftware.com/
products/prodsum/gpasa.html

MQSoftware Europe Ltd, The Surrey
Technology Centre, 40 Occam Road, Surrey
Research Park, Guildford, Surrey GU25YH,
UK

Tel: +44 1483 295400

Fax: +44 1483 573704

* % %

IBM has also re-branded WebSphere as an
‘e-business platform’. The WebSphere
brand now includes not only the WebSphere
application server but also anumber of other
IBM products, including MQSeries.

xephon

	A JMS publisher application
	MQSeries and ‘implicit transaction processing’
	MQSeries Integrator V2.0
	Customizing CSQ4APPL and CSQ4INP2
	MQ news

