
© Xephon plc 2000

August 2000

14

3 A JMS publisher application
12 MQSeries and ‘implicit transaction

processing’
18 MQSeries Integrator V2.0
34 Customizing CSQ4APPL and

CSQ4INP2
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

A JMS publisher application

This article is a companion to the MQSeries’ JMS ‘publish-and-
subscribe’ article published in last month’s issue of MQ Update (Issue
13, July 2000). That article described the use of the Java Message
Service’s (JMS) publish-and-subscribe API, illustrating this with an
example pager application (JMSPager). This article complements the
previous one with an example publisher application that can be used
to send messages to a JMSPager.

The JMSPageSender application, like JMSPager, is an AWT-based
application that extends the Frame class. It maintains a single
TopicConnection and uses an anonymous publisher to publish messages
to topics named at publication time, rather than being associated with
a single topic from creation.

Much of the set-up code for this application is the same as that for the
JMSPager application. However, I’ll briefly summarize it here.

The MQSeries JMS provider classes are supplied in MQSeries
SupportPac MA88, which is available for download for free from the
IBM MQSeries Web site for Windows, AIX, HP-UX, and Solaris (the
list of references at the end of this chapter tells you where to find it).
MQSeries 5.1 and JDK 1.1.6 or later are required (JDK 1.1.7 or later
in the case of HP-UX). The MQSeries 5.1.1 Java classes, which are
also required, are also in the SupportPac, and the MQSeries publish/
subscribe component is in SupportPac MA0C (again, a reference to
the Web site can be found at the end of this chapter).

To configure the environment, you need to set the following:

• The classpath must be set to include the classes in the MQSeries
JMS and JNDI archives.

• A JNDI-accessible repository must be configured and populated
with one or more ConnectionFactory and Destination entries to
enable JNDI to look up JMS-administered objects.

• Any MQSeries objects referred to by the JMS-administered
object definitions must be defined in MQSeries and made available.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The following classes from the MA88 jar archives must be
accessible in the classpath (in addition to the base JDK classes)
to run any MQSeries JMS program:

– com.bim.mq.jar

– com.ibm.mqbind.jar

– com.ibm.mqjms.jar

– jms.jar

– jndi.jar

– fscontext.jar

– ldap.jar

– providerutil.jar.

These archives are located in the java/lib (or java\lib in the case of
Windows NT) sub-directory of the MQSeries/MA88 installation.

JMS-administered object definitions are created using the JMSAdmin
command-line administration tool, which must first be configured by
editing the JMSAdmin.config configuration file. The two entries
required are INITIAL_CONTEXT, the JNDI service provider class
name that determines the mechanism by which the repository is
accessed, and PROVIDER_URL, the url that locates the repository.
Both are configured in the JMSAdmin.config properties file.

JMSPAGESENDER

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
import javax.jms.*;
import javax.naming.*;

/**
 * A simple AWT GUI application demonstrating the basic capabilities
 * of JMS publish/subscribe. A JMSPageSender publishes short text
 * messages to a specified topic.
 */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

public class JMSPageSender extends Frame
{
 static InitialContext context;

 TextComponent topicText;
 TextComponent messageText;
 Button clearButton;
 Button sendButton;
 Label statusLabel;

 TopicConnection connection;
 TopicSession session;
 TopicPublisher publisher;

 int index = 0;

 /**
 * Runs the JMSPageSender application.
 */

 public static void main (String [] args)
 {
 try
 {
 context = new InitialContext (System.getProperties ());

 new JMSPageSender ().show ();
 }

 catch (JMSException jmse)
 {
 System.err.println ("JMS error: " + jmse +
 " (" + jmse.getLinkedException () + ")");
 System.exit (0);
 }

 catch (NamingException ne)
 {
 System.err.println ("JNDI error: " + ne);
 System.exit (0);
 }
 }

 /**
 * Returns a named TopicConnection using the JNDI. The
 * TopicConnectionFactory is a JMS-administered object.
 */

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 static TopicConnection getConnection (String name) throws
 JMSException, NamingException
 {
 TopicConnectionFactory factory =
 (TopicConnectionFactory) context.lookup (name);

 return factory.createTopicConnection ();
 }

 /**
 * Returns a named Topic handle using the JNDI. The Topic
 * is a JMS-administered object.
 */

 static Topic getTopic (String name) throws
 JMSException, NamingException
 {
 return (Topic) context.lookup (name);
 }

 /**
 * Default constructor. Builds a simple AWT layout and then
 * establishes a connection to the JMS service provider.
 */

 public JMSPageSender () throws
 JMSException, NamingException
 {
 super ("JMSPageSender");

 Panel p;

 setLayout (new BorderLayout (6, 6));
 setBackground (Color.lightGray);
 add ("North", p = new Panel (new BorderLayout (6, 4)));
 p.add ("West", new Label ("Pager ID:"));
 p.add ("Center", topicText = new TextField ());
 p.add ("South", new Label ("Enter text message: "));
 add ("Center", messageText = new TextField (30));
 add ("South", p = new Panel (new BorderLayout (6, 4)));
 p.add ("West", clearButton = new Button (" Clear "));
 p.add ("East", sendButton = new Button (" Send "));
 p.add ("South", statusLabel = new Label ());
 pack ();
 setResizable (false);

 addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event)
 {

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

 disconnect ();
 System.exit (0);
 }
 });

 clearButton.addActionListener (new ActionListener ()
 {
 public void actionPerformed (ActionEvent event)
 {
 messageText.setText ("");
 }
 });

 sendButton.addActionListener (new ActionListener ()
 {
 public void actionPerformed (ActionEvent event)
 {
 publish (topicText.getText (), messageText.getText ());
 }
 });

 connection = getConnection
 (System.getProperty ("jmspager.server.name", "jmspager"));
 session = connection.createTopicSession (false,
 Session.AUTO_ACKNOWLEDGE);
 publisher = session.createPublisher (null);
 }

 /**
 * Publishes a text message to the named channel.
 */

 public void publish (String topicName, String messageText)
 {
 try
 {
 Topic topic = getTopic (topicName);
 TextMessage message = session.createTextMessage ();

 message.setText (messageText);
 publisher.publish (topic, message);
 showStatus (++index + ": published to " + topicName);
 }

 catch (JMSException jmse)
 {
 showError (jmse);
 }

 catch (NamingException ne)

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 {
 showError (ne);
 }
 }

 /**
 * Drops the connection to the JMS service provider.
 */

 public void disconnect ()
 {
 try
 {
 publisher.close ();
 session.close ();
 connection.close ();
 }

 catch (JMSException jmse)
 {
 ;
 }
 }

 /**
 * Convenience method for displaying a message in the status area.
 */

 public void showStatus (String message)
 {
 statusLabel.setText (message);
 }

 /**
 * Convenience method for displaying an error.
 */

 public void showError (Exception e)
 {
 if (e instanceof JMSException)
 {
 System.err.println (e +
 " (" + ((JMSException) e).getLinkedException () + ")");
 }
 else
 {
 System.err.println (e);
 }

 showStatus (e.getMessage ());

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 }

 /**
 * Container method establishes a border margin (cosmetic).
 */

 public Insets getInsets ()
 {
 Insets insets = super.getInsets ();

 return new Insets (insets.top + 6, insets.left + 6,
 insets.bottom, insets.right + 6);
 }
}

A publisher with no specified topic name is created after the connection
and session are established. The topic on which messages are published
is taken from an entry field in the GUI. The publish method then
publishes a message to the named topic.

RUNNING THE EXAMPLE

Starting the JMSPager and JMSPageSender

To run the JMSPager and JMSPageSender, use the jms invocation
script or batch file:

$ jms JMSPager &

or, to specify an explicit topic, use the following command:

$ jms JMSPager pager-id &

The queue manager and broker must be available, and all JNDI
objects must be defined to the topic connection factory and topic.
When first invoked, the pager is ‘off’. We also need to start a page
sender:

$ jms JMSPageSender &

Sending messages
To send a message, enter the pager ID in the upper text field of the page
sender (see Figure 1 overleaf), write a short message in the lower text
field, and press ‘Send’.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Receiving messages

The pager application only receives messages when it’s ‘on’. To turn
it on, select the checkbox marked ‘active’ on the GUI (see Figure 2).
When turned on, the pager application displays the number of new and
saved messages.

Figure 1: The page sender’s GUI

Figure 2: The pager’s GUI

To display each message in turn, press the right-hand button (marked
‘>’). While active, the pager application will beep and display ‘New
message!’ as soon as a new message is received.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

MQSERIES-SPECIFIC TOPIC CONNECTIONS AND TOPICS

In the example application, references to JMS-administered objects –
Topic and TopicConnectionFactory – are obtained through the JNDI.
As with point-to-point messaging using MQSeries’s implementation
of JMS, provider-specific instances of these objects can be instantiated
directly using the MQTopic and MQTopicConnectionFactory classes
respectively. These are obtainable from the com.ibm.mq.jms package.

RESOURCES

• JMS information:

http://java.sun.com/products/jms/index.html

• JNDI information:

http://java.sun.com/products/jndi/index.html

• MQSeries JMS implementation (SupportPac MA88):

http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html

• MQSeries publish/subscribe component (SupportPac MA0C):

http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html

• MQSeries home page:

http://www.ibm.com/software/ts/mqseries/

Chris Markes
HCI Architect
IBM UK Laboratories Ltd (UK) © Xephon 2000

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries and ‘implicit transaction processing’

The use of MQSeries for transaction processing (TP) systems is often
discussed in journals like MQ Update. In these discussions, it is
usually pointed out that, while MQSeries is essentially for asynchronous
communication, it is nevertheless suitable for systems that require
synchronous communication, such as those handling TP. However,
while the mechanics of using MQSeries in such systems is often
discussed in detail (see, for instance, MQSeries in an OS/390 client/
server environment, MQ Update Issue 2, August 1999), readers are
often left to figure out for themselves what are the advantages, if any,
of using MQSeries in such systems. Indeed, it’s often unclear that
there are differences between the types of TP carried out by, say, CICS
systems and those based on MQSeries. This is the gap that this article
seeks to bridge – to discuss the fundamental differences between TP
systems that rely on messaging and synchronous communication
technologies.

TODAY’S TP ENVIRONMENT

The existence of distributed processing has changed the way everyone,
including IT, thinks about computing. Connectivity has moved to
centre stage. While the distributed world may not yet be fully
connected (whether by LANs, WANs, or the Internet), the need to
connect applications grows relentlessly, with profound implications
for a company’s software infrastructure.

To complicate matters, specialist IT skills are constantly being diluted
by the sheer volume of EAI and similar projects currently being
implemented, along with the arrival of distributed (but not necessarily
connected) databases and their related applications. The success in the
nineties of products from SAP, BAAN, PeopleSoft, and Oracle on
many different platforms attests to this.

MQSeries has a major role to play here, as it enables different
applications to be reliably coupled together without the need to
change the way the applications work. Furthermore, MQSeries’
transactional capabilities enable what can be described as ‘implicit

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

transaction processing’ (as opposed to ‘pessimistic TP’). In a world
that’s migrating to Web-enabled e-business, this capability will be
critical.

FLAVOURS OF TRANSACTION PROCESSING

Traditional commercial transaction processing is about passing the
transactional ‘ACID’ test (Atomicity, Consistency, Isolation, and
Durability) to ensure that each transaction is processed once and once
only, and that the processing is accurate and appropriate. Most of the
successful, dependable, and robust applications of the past, many of
which still support today’s businesses, were built on these properties
and their associated techniques. This is sometimes known as
‘pessimistic TP’ because of the assumption that all will fail unless the
whole end-to end transaction succeeds.

But requiring the ACID properties of pessimistic TP solves neither the
transaction processing problems of e-business nor the problem of
integrating enterprise applications. What is needed is a different
approach that is more flexible, so that the new breed of distributed
transactions can be supported.

Four assumptions underpin this requirement:

• A distributed transaction system is one where two or more
physical systems, almost certainly acting as peers, are involved.
Each of the systems may have one or more applications running
on it.

• The system could include two or more workstations or mainframes
but may also include other platforms, such as PCs and
minicomputers.

• A client can act as a server and a server can act as a client at
different points during processing – they may even act as both
client and server at the same time.

• The objective is to ensure that any given business transaction that
is initiated either runs to completion or fails in a predictable and
understandable manner that’s commensurate with the needs of
the business.

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries is relevant here. It links multiple platforms with a reliable,
once only, assured delivery protocol and implementation. It enables
different applications to be linked in order to deliver application
integration. The way it achieves this is by ‘implicit transaction
processing’.

IMPLICIT TRANSACTION PROCESSING

Implicit transaction processing (I-TP) is a term that applies to systems
whose design is underpinned by a series of assumptions that are
sufficient, individually and in aggregate, to allow one to depend on
transactions being processed accurately and completely by them.
These systems avoid the formality inherent in ‘pessimistic TP’ – the
type of transaction processing that underlies systems based on CICS
or Tuxedo. Implicit TP can be best understood in terms of the concepts
of queuing and of decoupling of application parts – both of which are
illustrated by the example in Figure 1 (opposite), which is based on an
MQSeries implementation (though it applies equally to any other
reliable queueing system).

Decoupling occurs when you separate the different parts of an
application across one or more systems, regardless of whether the
application is transactional. In Figure 1, system A hosts application A,
which communicates with application B on system B. This is a simple
but representative example of a distributed application.

Traditionally the development of an application (the design, build,
and installation) would have an overall single point of control.
However, if systems A and B are on different platforms (say one is a
Windows NT system and the other a Unix server or CICS/MVS
system), the designer must understand both of the application platform
environments and the method of communication between them.
Usually the result is a monolithic design that is difficult to test,
maintain, and change. In addition, few individuals have the breadth of
skills to deliver it.

A decoupled approach changes this. The example shown has five
components when decoupling is considered:

• The first component is application A.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

• The second is queue 1 and its queue manager on system A, which
communicate with other similar queues via an agreed mechanism
(this could be messaging, RPC, ‘conversational’, or some other
method).

• The third is queue 2 and its queue manager on system B. These
communicate with other queues (including queue 1).

• The fourth is application B.

• The fifth is application C.

It is assumed that:

• The queue managers (queue 1 and queue 2) are able to
communicate reliably with each other.

Figure 1: Units of work in a distributed processing system

Middleware messaging layer

System A System B

Unit of Work 1

Unit of Work 3

Unit of Work 2

App A App C App B

Queue 1 Queue 2

Queue manager Queue manager

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Application A’s development tool (and, consequently, the
completed application) can write to and read from queue 1.

• Application B’s development tool (and, consequently, the
completed application) can pick up information from queue 2, as
well as write any returns/responses back to queue 2.

In this scenario, a developer can write application A as long as he or
she has agreed the form of the dispatch between the application
elements (application A and application B) with the developer of B
(and the developer of B with the developer of C, and so on). The result
is that the development of applications A, B, and C can be completed
independently of each other, with developers using their own individual
skills and without requiring them to know of each other’s environment.

Applications A, B, and C also become components that can be
swapped in or out so long as the dispatch structure (and a supporting
queuing structure) remain in place.

Now, apply this type of development to the creation of applications for
transaction processing and you have the essence of I-TP. As long as the
following requirements are met:

• You can rely on one unit of work (Unit of Work 1 in Figure 1)
completing on the first platform.

• You can rely on a reliable transfer between a first and a second
platform (Unit of Work 3), including rollback/recovery in the
event of a failure in one of the communication links.

• You can rely on a process completing correctly on the second
platform (Unit of Work 2).

Then you can implicitly rely on the business transaction (actually
several transactions on different platforms), which is essentially what
I-TP integrity is.

This is what MQSeries delivers. While implicit TP is ultimately not
as reliable as pessimistic TP, which is what products like CICS, IMS,
or Tuxedo deliver, it nevertheless offers a way to bridge heterogeneous
systems in today’s distributed environments. Furthermore, implicit

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

TP is also simple to understand and it enables originally isolated
systems to be tied together.

The integrity of the transaction is, of course, dependent on the
assumptions being observed. To strengthen these assumptions requires
some additional development work on a coordinating application (see
Using MQSeries as a transaction coordinator in MQ Update Issue 9,
March 2000). This is especially the case if rollback and recovery are
to be implemented across all the ‘sub-transactions’. Furthermore, the
queue managers on each system provide only queue-to-queue integrity
– they do not provide application-to-queue integrity.

CONCLUSION

Transaction processing involving distributed systems that interoperate
via message-oriented middleware technology differs in a number of
subtle yet significant ways from traditional ‘pessimistic’ transaction
processing systems, such as those based on CICS, Tuxedo, or IMS.
For instance, a transaction in an implicit transaction processing
system actually comprises a number of ‘sub-transactions’, each of
which is based on a unit of work – the success of the whole transaction
is based on the success of all sub-transactions. While traditional
systems offer a more formal type of transaction processing, and also
benefit from a greater success rate for transactions (MQSeries provides
assured delivery of messages but is, nevertheless, constrained by the
availability of the underlying network, which may be the Internet; this
means that messages may not be delivered in time for transactions to
succeed), implicit transaction processing systems also have their
benefits. Among them is the ability to build systems from reliable
components, which allows development projects to be rationalized
into manageable parts, each of which requires a more limited skill set
than would be the case if the project were to develop a ‘traditional’
distributed application based on, say, CICS. Another increasingly
important benefit is that implicit transaction processing systems are
especially suited to processing transactions over the Web.

Charles Brett
President
C3B Consulting © Xephon 2000

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries Integrator V2.0

From a business standpoint, MQSI is used to integrate a number of
applications and implement business processes. Users can define
business rules using MQSI and use its built-in formatter to ensure that
applications receive data in formats they support. MQSI also provides
a framework that third-party vendors and resellers can use to provide
connectivity between their products and those of other vendors.
Resellers plug their products into MQSI by creating custom MQSI
nodes (which are discussed later).

From a functional standpoint, MQSI provides a simple yet sophisticated
way of processing messages en-route to their destination. MQSI
functions as a ‘message broker’, also providing a message transport
layer. A message broker acts as a hub, processing messages based on
its own configuration and the contents of the messages themselves.
The advantage of using a hub architecture is that it simplifies the task
of application integration – systems are connected once to the hub
rather than to each other system with which they need to interoperate.
MQSI performs functions associated with processing, transforming,
and distributing messages, while the base MQSeries product, which
is supplied with MQSeries Integrator V2.0, handles message transport
and queueing.

MQSI combines the message brokering function with publish/subscribe
functionality, also adding a message dictionary and message warehouse.
Message warehousing can be used for auditing message flows,
replaying messages, and even “data mining”, while message
dictionaries make the process of transforming and reformatting
messages much simpler by providing templates of message formats
and structures.

Within the message broker, individual functions are assigned to a
collection of interconnected nodes, and it is at the nodes where
transformation and other processing actually takes place.

Nodes are implemented as Dynamically Linked Libraries (DLLs) in
Win32 environments and as shared libraries in Unix environments,
these being called by the message broker’s execution environment.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

‘Message processing nodes’ are – as you’d expect – responsible for
processing messages. A message processing node is a ‘well-defined
processing stage’, meaning that it performs a specific task or set of
tasks on messages that pass through it in a message flow across a
message broker. As well as being able to access data in the message
payload and headers, message processing nodes can also access data
outside the message flow, such as data stored on databases. Message
processing nodes can also put messages on queues.

Nodes are ‘wired together’ to form a message flow. A message flow
is initiated by an ‘input node’ (MQSI comes with a pre-defined input
node – the MQInput node). The input and output of a node are referred
to (and represented diagrammatically) as ‘terminals’, and terminals
are joined by ‘connectors’ to implement a message processing
framework. Note that connectors are there simply to represent message
flows – messages are actually ‘transmitted’ by the passing of a
reference (a pointer) to the message object in a method call. Terminals
come in several varieties, including ‘in’ (for receiving messages),
‘out’ (for forwarding messages), and ‘failure’ (for sending messages
in the event of an error or in response to an exception).

Users and vendors can create additional MQSI nodes that are then
‘plugged in’ to the system. Nodes should be written in C; if they’re
written in another language, they’ll need a C wrapper. Sample code for
plug-in nodes is provided with MQSI. In order to be fully backward-
compatible with Version 1.0, Version 2.0 is also supplied with NEON
Rules and NEON Formatter nodes, which allow access to the
NEONRules and NEONFormatter engines of MQSeries Integrator
Version 1.0. These nodes and other standard nodes that ship with
MQSeries Integrator and are available via the design palette are
described later.

MQSI also includes Control Center, a graphical tool for constructing
and managing message flows. This tool can be used to ‘wire together’
message flows through MQSI nodes. According to IBM, Control
Center “allows the fast creation, deployment, and control of message-
based business solutions”. Message flows can be customized by using
Control Center to alter the properties of individual nodes. Typical
properties that can be customized are the filter statement of message
processing nodes and the input queue of MQInput nodes.

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MULTITHREADING

MQSeries Integrator offers multithreading for message processing,
meaning that more than one message can be processed simultaneously.
However, the way multithreading is handled needs a little explanation.
Think of a message broker that implements a particular flow, comprising
nodes and connectors, as being in some ways analogous to a class in
an object-oriented programming language. When a flow is initiated,
an instance of the message broker that implements it is created and
given a thread from a thread pool. (A message flow is initiated by a
message being placed on an MQSeries application queue, and is
terminated when the last message in the flow is put on another
MQSeries application queue.)

As a message progresses through a broker, it may come to a node that
has more than one output terminal, such as the node marked ‘A’ in
Figure 1, which has one ‘in’ terminal and two ‘out’ terminals. At this
point, the process handling the message flow does not fork – the
processing of each route through the system is handled “independently
and sequentially”, meaning that the message broker executes Branch
1 in Figure 1 and then, when it has completed Branch 1 by putting a
message on output queue Q2, it executes Branch 2. When this branch
terminates by putting a message on Q3, the entire flow terminates, and
the thread returns to the thread pool. The entire flow is thus handled
by one thread, which means that no multithreading is available inside
an MQSeries Integrator flow: multithreading is provided by offering
multiple instances of the same flow, each of which can handle a
separate input message.

Given that the processing of Branch 2 happens only once the processing
of Branch 1 terminates, it is in the interest of those designing flows and
developing nodes to ensure that the processing carried out by individual
nodes is kept to a minimum, to ensure the rapid passage of messages
through nodes. Particular attention should be paid to processing that
requires I/O, which may block the processing of other branches in the
flow.

Each message broker that implements a flow is allocated a pool of up
to 256 threads, and each message that arrives in the input queue is
allocated one thread.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

MQSI’S NODE PALETTE

The following message processing nodes ship with MQSI. Each has
input and failure terminals, and may have a variety of output terminals
depending on their function. The nodes that ship with MQSI are
sometimes referred to as ‘primitive nodes’.

Standard message processing nodes

• MQInput

This node has already been discussed; it offers basic triggering
and initiation functionality for a message flow. The node uses an
MQGET call to receive a message from a designated MQSeries
queue and passes the message on to the next node in the flow. The
node has the regular input, output, and failure terminals, and also
has a ‘catch’ terminal, whose function is to enable the node to
catch an exception that occurs later in the message flow. This is
necessary, for instance, to roll back a flow that is part of a
transaction.

• Check node

The check node is essentially for validating a message format in
a message flow. It has three terminals: ‘in’, ‘match’, and ‘failure’.

Input
node

Output
node

Output
node

Branch 1

Branch 2

A

B

CQ1

Q2

Q3

Figure 1: A message flow through a message broker

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When a message arrives at the ‘in’ terminal, the ‘domain’, ‘set’,
and ‘type’ attributes of the message type specification are compared
with pre-set values. If they match, the message is deposited in the
‘match’ terminal; otherwise, messages are deposited in the ‘failure’
terminal.

• Filter node

The filter node has five terminals: ‘in’, ‘true’, ‘false’, ‘unknown’,
and ‘failure’. When a message arrives at the ‘in’ terminal, an SQL
expression is applied to its content. The result of the SQL
expression is used to decide whether to send the message to the
‘true’ or ‘false’ terminal; if the result is indeterminate, the
message goes to ‘unknown’, and if an error occurs during
processing, it goes to the ‘failure’ node.

• Compute node

The compute node has the ability to receive a message of one type
and output one of a different type. The content and attributes of
the new message may be based on both the content of the message
received and on values retrieved from an external relational
database.

• Extract node

The extract node produces an output message based on the
content of the input message. Selected elements of the input
message may simply be copied to the output message, though the
elements may also be transformed in the process.

• ResetContentDescriptor node

The ResetContentDescriptor node allows a message to be
processed by another parser within the same message flow (the
section on message dictionaries explains the way message parsing
is handled within a message flow).

• NEON Formatter node

The NEON Formatter node is somewhat different from other
nodes mentioned so far in that it uses the NEONFormatter engine
to transform messages. When a message arrives at the node, the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

node uses the NEON Repository to look up the message’s format
and a NEON format definition that’s then used to transform the
message, after which the message is passed on to the next node
in the flow.

External database nodes

There are five basic nodes that are provided for modifying an external
database: DataInsert, DataUpdate, DataDelete, Database, and
Warehouse. Each of these nodes has three terminals: ‘in’, ‘out’, and
‘failure’. While all database nodes alter the state of an external
database in response to the arrival of a message, none of them alters
the message itself (compare this with the Compute node, which is able
to access an external database and use the information returned to
process a message). The message types of the DataInsert, DataUpdate,
and DataDelete nodes must be specified, though the input of the
Database node can be generic XML. If any of the nodes is part of a
transactional flow, then transactional integrity may be maintained
either by an external agent or by the node independently committing
the transaction.

• DataInsert, DataDelete, and DataUpdate nodes

The DataInsert node performs an insert operation on the database
specified. The insert is performed using an SQL statement
generated by the node. While the statement generated may
depend on data in the message itself, the message may simply act
as a trigger for the insert.

The DataUpdate node performs a similar function to that of the
DataInsert node – one or more rows in a database are updated in
response to the arrival of a message at the node. As with the insert
generated by a DataInsert node, the update may be based on data
in the message and is performed by an SQL statement generated
by the node.

The DataDelete node deletes one or more rows from a database
in response to the arrival of a message at a node; again, the choice
of rows may be independent of the content of the message, in
which case the message simply triggers the action, or they may
be chosen in some way that’s based on the message’s content.

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Given that the DataInsert, DataUpdate, and DataDelete nodes
expect messages of a certain type as their input, it’s not unusual
for their input to be the output of a filter node.

• Database node

The Database node is more generic in function than the three
database nodes discussed so far – it simply performs a database
operation in response to the arrival of a message at the node. The
database operation is performed using an SQL statement and the
statement may be dependent or independent of the message
content.

• Warehouse node

The Warehouse node is somewhat different from the other
database nodes discussed so far. While it also alters an external
database in response to the arrival of a message, leaving the
message itself unchanged, the database in this case is a ‘message
warehouse’, which is used to store messages for auditing, batch
processing, or deferred processing by the message broker. As
with the other database nodes, an SQL statement generated by the
node is used to insert messages in the database, and the messages
themselves may be stored either as attachments to an index record
built from the message schema or as a ‘BLOB’ attached to the
index. Note that the Warehouse node may perform a calculation
or transformation on the message before passing it on to the
message warehouse.

Decision and routing nodes

Four of the nodes supplied belong in this category: MQOutput,
MQReply, NEONRules, and Publication.

• MQOutput and MQReply nodes

The MQOutput node is the counterpart of the MQInput node – it
acts as the end-point of a message flow, so that messages leaving
this node are put on an MQSeries queue. The actual queue to
which a message is sent may be determined from the content of
the message itself. An MQReply node is a type of MQOutput

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

node in which the message is put on a queue specified by the
ReplyTo field of the message header.

• NEONRules node

As mentioned earlier, the NEONRules node is provided for
backward compatibility with MQSeries Integrator Version 1.
This node is able to pass messages to the NEONRules engine for
evaluation. It is, therefore, a driver for the rules engine and is
analogous to the daemon supplied with MQSeries Integrator
Version 1. The NEONRules engine evaluates the message based
on its stored rules and fires one or more terminals on the node
depending on the outcome of the evaluation. The NEONRules
node includes a number of terminals: ‘PutQueue’ is intended to
be connected to the ‘in’ terminal of an MQOutput node for output
to a named queue; ‘noHit’ fires when a rule could not be found to
handle the message, which could be handled by further processing
or output to a queue via an MQOutput node; and ‘propagate’ fires
when the message was successfully evaluated with respect to a
rule in NEONRules but no output queue was specified in the
message. Also provided in the node is a failure terminal. Note that
MQSI’s ‘destination list’ feature allows messages leaving the
node to be written to more than one MQSeries queue.

• Publication node

The Publication node is part of MQSI’s publish/subscribe
functionality. A message arriving at this node is evaluated for
topic and content and then sent either to message brokers or
subscribers that have registered an interest in the topic and
content. MQSI’s Control Center is used to manage both published
topics and subscribers.

Error handling and tracing

Three nodes are supplied with MQSI to handle errors and tracing:
Throw, TryCatch, and Trace.

• TryCatch and Throw nodes

The Throw node has only one terminal: ‘in’. Its function within
the message flow is to throw an exception that will either be

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

caught by a TryCatch node earlier in the message flow or, if the
exception is unhandled, cause a message flow to cease and (if
necessary) a transaction to be rolled back. Note that the exception
thrown may depend on the content of the message. The counterpart
of the Throw node is the TryCatch node, which is used to catch
exceptions thrown by a Throw node (if the exception isn’t caught
by the TryCatch node, it propagates back to the MQInput node
and fires the node’s ‘catch’ terminal). The message is received by
TryCatch’s ‘in’ terminal and is propagated to the ‘catch’ terminal
unprocessed. If ‘catch’ is connected, further processing may then
occur.

• Trace node

The Trace node is simply for producing a trace for debugging. It
has one ‘in’ and one ‘out’ terminal, and messages pass from ‘in’
to ‘out’ without being processed, though the arrival of a message
triggers Trace to write a trace message to a specified destination
to allow the tracking of messages.

Custom plug-in nodes

As mentioned earlier, MQSI allows users and third-party developers
to create their own plug-in nodes. Plug-in nodes are either written in
C or have C wrappers. Another requirement is that they conform with
the “Message Flow Framework”. Put simply, this ensures that new
nodes are compatible with the MQSeries Integrator Design Tool,
which is used to create message flows visually. This requirement is
fulfilled by supplying an XML signature template.

PERSISTENCE

One point that needs clarification relates to persistent data. MQSI V2
maintains an external store of persistent data using a standard relational
database (at the moment the choice is limited to DB2 and Microsoft
SQL Server). This is used to hold configuration data for the message
broker, and also stores information on publications, subscriptions,
and the operational state of the broker when it was last running. It’s
tempting to think that this means that the persistent data store also
holds state information on the state of message flows in particular

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

instances of the broker. This is not the case; any persistent data relating
to message flows needs to be stored by using an external relational
database accessed via database nodes (an alternative is to use MQSeries
Workflow to manage state information on message flows).

TRANSACTIONAL INTEGRITY

The ability to deliver transactional integrity is a feature of MQSeries.
As MQSI uses the base MQSeries product as its messaging component,
MQSeries can be used to provide transactional integrity to MQSI-
based message brokers. (The ability to use MQSeries as a transaction
coordinator, including the coordination of external XA-compliant
databases via the XA interface, was discussed in the article Using
MQSeries as a transaction coordinator in MQ Update March 2000).

Every MQSI message flow is initiated by an input node performing an
MQGET to read a message from an MQSeries queue and is terminated
when an output node performs an MQPUT to put a message on a
queue. MQSeries can, therefore, provide transactional integrity at
these two points. If an error occurs within a message flow resulting in
an unhandled exception, the MQInput node will catch the exception
via its ‘catch’ terminal, and the flow can be terminated at this point,
if the MQInput node is suitably configured, and the transaction rolled
back to the MQGET. Transactional integrity within MQSeries
Integrator is thus maintained “within the bounds of the message
flow”, so that transactional integrity is assured at the start and end of
a message flow in a message broker. Regular message processing
nodes are not responsible for maintaining transactional integrity,
which is the responsibility of the MQInput node (which has to be
configured to terminate the flow when an unhandled exception
occurs) and database nodes (which must also be configured to roll-
back uncommitted transactions involving changes to external
databases).

The MQInput node includes a ‘transaction’ attribute that determines
whether messages passing through the node are handled transactionally,
and the MQOutput node includes a ‘persistence’ attribute that specifies
the persistence of outgoing messages. Database nodes have a
‘coordination’ attribute that specifies whether database operations are

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

part of a transaction. The attribute can also specify how and when a
transaction is committed or rolled back.

MESSAGE DICTIONARIES

MQSI is able to process messages and external databases (and
perform other work that’s external to the message flow) based on the
content of messages. A pre-requisite of this functionality is the ability
to ‘parse’ messages – that is, to resolve message fields and other
elements. This, in turn, requires a rapid, efficient, and manageable
way of handling message formats, which is the aim of MQSI Version
2’s message dictionaries.

Messages coming from an MQSeries queue are in ‘wire message
format’. The wire format is described in message’s MQSeries message
descriptor. MQSI processes messages in its own ‘logical format’, in
which message fields are resolved and directly accessible by nodes.
MQSI’s Message Services Component is responsible for (among
other things) parsing and deconstructing messages from ‘wire’ to
‘logical’ format. Thus, when an MQSI input node retrieves a message
from a queue, it uses the message’s wire format descriptor to obtain
a logical message descriptor from the message dictionary. This is then
used to parse and deconstruct the message, ready for processing by
MQSI nodes. At the end of a message flow, which may include
operations that transform the message from its original format, MQSI
needs to reconstruct the message and obtain a wire message format
descriptor that allows MQOutput and Publish nodes to put the
message on MQSeries queues. This is, again, done with the aid of the
message dictionary. Thus the message dictionary’s role is to assist in
the translation between MQSI’s logical message formats and MQSeries
wire message formats during the parsing, deconstruction, and
reconstruction of messages.

Message dictionaries can handle messages comprising XML or byte
structures, such as those created by C or COBOL programs, and they
also handle MQMD message descriptors, RFH and RFH2 format
headers, and NEONFormatter definitions. (RFH headers carry
information used by MQSI, NEONRules, NEONFormatter, and
MQSeries V5’s publish/subscribe component. RFH2 headers extend
this by carrying information about publish/subscribe flows and message

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

sets. RFH2 headers can be further extended to carry proprietary data
required by specific applications.)

In an MQSI message dictionary’s database, message descriptions are
known as ‘message type definitions’, and these can be grouped
together as ‘message sets’ for deployment to relevant message brokers
(each message set actually defines a message dictionary). A message
type definition comprises a message model and a message template,
where the message model identifies fields and other elements in a
message template. All user interaction with message dictionaries is
conducted via the Control Center GUI, which is used to perform such
tasks as defining and maintaining message models.

Internally, the message dictionary comprises three components: the
Message Repository Manager (MRM), the Resource Manager, and
the Message Translation Interface (MTI). When a message dictionary
is deployed on a broker, it is implemented locally by a Runtime
Dictionary (RTD), which provides local message brokers and parsers
with format definitions (this improves performance – the RTD acts as
a locally-cached copy of that part of the message dictionary that’s
required by the local message broker). One limitation of RTDs is that
their message definition store cannot be updated – if the message type
definitions in the message dictionary on which they’re based change,
a new RTD must be defined at the message broker. Note that MQSI
uses XML for storing all its configuration data.

MQSI handles the process of exchanging messages with queues using
the four message attributes below, which are stored in the message
header and also have corresponding definitions in the Control Center.
Note that these attributes are not necessary for well-formed XML
messages, which are ‘self-describing’.

• The ‘message domain’, which identifies whether the message
definition is managed by Control Center or its NEON counterpart.

• The ‘message set’ (also known as the ‘project’), which groups
message types within a specified domain.

• The ‘message type’, which identifies the exact structure of the
message in terms of the number, location, and size of the
message’s fields.

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The ‘message format’, which identifies the wire format of the
message.

These attributes allow MQSI to determine which message dictionary
to use to obtain the message type definition, and the right message
parser to use to disassemble the message, when a message from an
MQSeries queue enters a flow at an MQInput node. The attributes are
also used to reassemble messages and obtain wire message formats
when putting messages on queues at the end of a message flow. For
this reason, message type definitions and Control Center definitions
are needed not only for messages that enter message brokers but also
for those created in brokers as a result of transformations and flowing
out of brokers and on to MQSeries application queues.

As indicated, the actual task of disassembling a message and making
the contents of its fields available for processing in message processing
nodes is the job of message parsers. Parsers are specific to particular
message types, and those available include ones that ship with MQSI,
those created by the user, and those supplied by third-party vendors.
Messages aren’t always processed by parsers before they enter an
MQSI flow – for instance, the message may belong to the NEON
domain, which means that it is processed by NEONFormatter, being
routed to the formatter via a NEONFormatter node.

MESSAGE WAREHOUSES

A message warehouse is a store of messages in a standard relational
database. As outlined earlier, there are many reasons for using a
message warehouse, including logging messages, building an audit
trail, providing a facility for deferred or batch processing, and creating
a message store for data mining or analysis. Messages are stored in a
message warehouse using the Warehouse node discussed earlier.
Messages may be stored in their original state or in a state resulting
from some transformation that is performed on them.

One action that a Warehouse node can perform on a message is to
parse it. Whether this is necessary depends on how the message
warehouse is used. For instance, if the message warehouse is no more
than a temporary store for messages, then it’s sufficient that messages
are stored as BLOBs, even though this means that the database has

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

little access to fields in the message body. In this instance, should the
message require content-based processing, it’s handed back to the
message broker where processing can take place. On the other hand,
if processing is to be carried out while the message is in the message
warehouse, then it is necessary for the message to be parsed, so that
its fields can be identified and stored in a table.

PUBLISH/SUBSCRIBE

MQSI can bring additional benefits over those offered by a standard
publish/subscribe system. For a start, it supports ‘content-based
filtering’, which ensures that subscribers receive only relevant messages
(or the relevant parts of messages) and irrelevant ones are discarded,
even when their topic matches that of current subscriptions (contrast
this with ‘standard’ publish/subscribe systems, which generally filter
messages by topic alone). Another benefit of MQSI is its ability to
output material in a format that’s convenient to the recipient. MQSI’s
content filters, which take the form of SQL statements, are stored in
the Dynamic Subscription Table. Publish/subscribe functionality is
implemented via the Publication node described earlier – when a
Publication node receives a message, it evaluates the message for
topic and content and deposits the message on one or more MQSeries
queues based on the result.

MQSI Version 2 supports two types of subscription: ‘dynamic
subscription’ and ‘static subscription’. For those familiar with
programming, static subscriptions are ‘early bound’, meaning that the
list of recipients is known in advance and message routing can be set
up from the outset. Dynamic subscriptions are ‘late bound’, meaning
that the recipients are not known in advance and routing is set up only
when a publication is ready to be sent to subscribers.

MQSI allows users to publish information at one message broker and
subscribers to receive it at another. This is a key requirement to create
a scalable publish/subscribe system – if messages can be collected by
subscribers only from the brokers at which they are published, then
information must be published at more than one broker. As the number
of brokers increases, so does the burden of publishing at multiple
brokers. By allowing information to be published at one broker and

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

propagated automatically to others, brokers can be added to the
system without impact on the management of subscriptions. However,
a mechanism must be put in place to allow brokers to propagate
messages. Essentially, the mechanism is for a broker to subscribe to
a publication on another broker on behalf of its subscribers (which
may be other brokers). Updates are then sent from the publisher to its
broker, then from the publisher’s broker to the subscriber’s broker
(possibly via other intermediate brokers), and finally from the
subscriber’s broker to the subscriber.

The method of routing subscriptions may organize brokers either in
a hierarchical tree structure or a point-to-point system. In installations
with a large number of brokers, the use of a tree structure may result
in the passing of messages between many intermediate brokers before
they arrive at their destination, which is inefficient and unnecessarily
delays messages. A point-to-point system also has drawbacks at large
installations, where an essentially flat structure may be difficult to
implement, manage, and use.

MQSI V2 offers a third alternative to these two organizational
structures – ‘collectives’. A collective is a group of brokers that form
a point-to-point publish/subscribe network. Within a collective,
messages never require sending to intermediate brokers, as every
broker is connected to every other broker. Collectives may be joined
in a network of collectives, in which a broker in one collective is
joined to a broker in another collective. Individual collectives in a
network of collectives are organized in a tree structure. This, according
to IBM, brings the benefits of a hierarchical structure without the
drawback of tortuously long routes.

As with just about every MQSI administrative task, the management
of collectives is carried out using the Control Center. The process is
very straightforward, simply requiring that a broker is assigned to a
collective in Control Center’s Topology dialogue (this is actually just
a tab on the main GUI). As stated, more than one collective may be
defined, and a network of collectives is also created using Control
Center’s Topology tab.

MQSI’s publish/subscribe component has a security mechanism
controlled by Access Control Lists (ACLs). Topics that are available
for both publication and subscription are organized in hierarchical

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

tree structures. Each ‘node’ or ‘leaf’ in this structure may have an ACL
attached to it; if no ACL is specified, the node inherits an ACL from
its parent node. ACLs determine who may either publish material on
a topic or subscribe to it, also identifying those who are allowed to
receive persistent messages. The whole mechanism works fairly
seamlessly, so that (for instance) if a user attempts to subscribe to a
number of topics, using wildcard characters to select the topics, the
user is subscribed only to those topics to which he or she has
appropriate permission.

There are some subtle (and, perhaps, not-so-subtle) differences in the
way publish/subscribe functionality is implemented in MQSeries
Integrator V2.0 and MQSeries V5.0. Perhaps the two most important
differences (other than the provision of content-based filtering) are in
the naming of topics and the formats that the two can handle. In both
MQSI V2 and MQSeries V5, publish/subscribe topics may be organized
in a hierarchical structure. However, in MQSI V2, topics also use a
hierarchical name space, starting with the top-level topic and separating
topics in the hierarchy with a forward slash (‘/’). In MQSeries V5,
topics use a flat name space comprising arbitrary strings – this
effectively hides the hierarchy, so that it’s not clear to users (and
administrators) how one topic relates to others in the hierarchy.

The main difference in the formats supported by MQSI V2’s and
MQSeries V5’s publish/subscribe systems is that MQSI V2 does not
handle command messages in PCF (Programmable Command Format).
There are other minor differences between the two systems, with
some functions in MQSI V2 being available only for compatibility
with MQSeries V5 and (therefore) ‘deprecated’ (that is, not advised
for new implementations) or supported only for migration purposes.
It’s worth pointing out that it’s IBM’s intention that MQSI V2’s
publish/subscribe mechanism should be used in preference to MQSeries
V5’s. To this end they’ve produced a tool, migmqbrk, to aid the
migration process, though it should be stated that the two systems can
co-exist and interoperate, and that it is not necessary to choose one in
preference to the other (though the overhead of using two systems to
implement the same functionality may make it desirable to do so).

Industry Analyst (UK) © Xephon 2000

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Customizing CSQ4APPL and CSQ4INP2

CSQ4APPL is an example of how the version of CSQ4DISX and
CSQINP2 (the sample for distributed queueing without CICS) supplied
in the MQM.SCSQPROC dataset can be customized to meet the
requirements of a specific application. This sample contains queue
definitions dedicated to an application called APPL, which is set up
to communicate with a Unix environment. Additional members can
be set up and dedicated to new applications – isolation at application
level reduces housekeeping and maintenance for all definitions.

AN EXAMPLE OF CUSTOMIZED CSQ4DISX(CSQ4APPL)

*
* IBM MQSeries for MVS/ESA
* CSQAPPL (copy of CSQINP2)
*

DEFINE QLOCAL('QL.APPL.FROM.UNIX.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR('APPL records from unix') +
 STGCLASS(DATAQ01) +
 MAXMSGL(16384)
*
DEFINE QALIAS('RT.APPL.DATA.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.FROM.UNIX.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.ERROR.HANDLER.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ04) +
 MAXMSGL(9520)
*
DEFINE QALIAS('RT.ERROR.HANDLER.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.ERROR.HANDLER.QUEUE')
*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

**
DEFINE QLOCAL('QL.APPL.DEBLOCK.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ03) +
 MAXMSGL(152)
*
DEFINE QALIAS('RT.DEBLOCK.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.DEBLOCK.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.DUPS.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ03) +
 MAXMSGL(16384)
*
DEFINE QALIAS('RT.APPL.DUPS.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.DUPS.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.EAN.BUILD.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ04) +
 MAXMSGL(152)
*
DEFINE QALIAS('RT.EAN.BUILD.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.EAN.BUILD.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.PROD.CONV.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ05) +
 MAXMSGL(150)
*
DEFINE QALIAS('RT.PROD.CONV.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.PROD.CONV.QUEUE')

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

*
**
DEFINE QLOCAL('QL.APPL.EAN.BUILD.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ02) +
 MAXMSGL(152)
*
DEFINE QALIAS('RT.EAN.BUILD.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.EAN.BUILD.ERROR.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.CONV.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ02) +
 MAXMSGL(152)
*
DEFINE QALIAS('RT.CONV.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.CONV.ERROR.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ03) +
 MAXMSGL(16384)
*
DEFINE QALIAS('RT.APPL.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.ERROR.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.HEARTBEAT.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ03) +
 MAXMSGL(20)
*
DEFINE QALIAS('RT.HEARTBEAT.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

 TARGQ('QL.APPL.HEARTBEAT.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.UNIX.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ02) +
 MAXMSGL(100)
*
DEFINE QALIAS('RT.UNIX.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.UNIX.ERROR.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.UNIX.PROCESSING.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ05) +
 MAXMSGL(600)
*
DEFINE QALIAS('RT.UNIX.PROCESSING.ERROR.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.UNIX.PROCESSING.ERROR.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.DEPTH.REFRESH.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DEFAULT) +
 MAXMSGL(100)
*
DEFINE QALIAS('RT.DEPTH.REFRESH.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.DEPTH.REFRESH.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.HEART.REFRESH.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DEFAULT) +
 MAXMSGL(100)
*
DEFINE QALIAS('RT.HEART.REFRESH.QUEUE') +
 REPLACE +

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 DEFPSIST(YES) +
 TARGQ('QL.APPL.HEART.REFRESH.QUEUE')
*
**
DEFINE QLOCAL('QL.APPL.INTO.DEBLOCK.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 DESCR(' ') +
 STGCLASS(DATAQ02) +
 MAXMSGL(16384)
*
DEFINE QALIAS('RT.INTO.DEBLOCK.QUEUE') +
 REPLACE +
 DEFPSIST(YES) +
 TARGQ('QL.APPL.INTO.DEBLOCK.QUEUE')
*

CSQ4CHNL is an example of how CSQ4INP2 and CSQ4DISX can
be customized. This example contains channel definitions for remote
locations that communicate with the MQxx sub-system on the
mainframe via a CHLTYPE(SVRCONN) connection.

AN EXAMPLE OF CUSTOMIZED CSQ4INP2 (CSQ4CHNL)
**
*
* THIS MEMBER HAS ONLY CHANNEL DEFINITIONS REQUIRED FOR REMOTE LOCATIONS
*
* COPY OF MEMBER CSQ4DISX
*
**
* This definition is for Client Attachment Feature using LU62 and TCP/IP
* SVRCONN connection defined for the OS/2, UNIX MQ system and other
* locations for MQxx subsystem.
* The channel name must be unique hence the suffix of LUC for LU62 connection
**
*
DEFINE CHANNEL('CH.20000.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for OS/2 via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(786)
*
DEFINE CHANNEL('CH.68500.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for UNIX via LU62') +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(34380)
*
DEFINE CHANNEL('CH.62411.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(543210)
*
DEFINE CHANNEL('CH.67140.TO.MQxx') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via TCPIP') +
 TRPTYPE(TCP) +
 MCAUSER(' ') +
 MAXMSGL(7654321)
*
DEFINE CHANNEL('CH.64277.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4536180)
*
DEFINE CHANNEL('CH.68477.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' 100 via LU62')
+
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(6342312)
*
DEFINE CHANNEL('CH.60778.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(7254420)
*
DEFINE CHANNEL('CH.WASV017.TO.MQxx') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'WASV017' via TCPIP') +
 TRPTYPE(TCP) +

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MCAUSER(' ') +
 MAXMSGL(1234567)
*
DEFINE CHANNEL('CH.62371.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(1172606)
*
DEFINE CHANNEL('CH.64810.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4013442)
*
DEFINE CHANNEL('CH.64898.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4194304)
*
DEFINE CHANNEL('CH.69710.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4104943)
*
DEFINE CHANNEL('CH.MQUNIX.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'UNIX box' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4419430)
*
DEFINE CHANNEL('CH.61811.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(1940443)
*

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

DEFINE CHANNEL('CH.67077.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(3044194)
*
DEFINE CHANNEL('CH.68177.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4304419)
*
DEFINE CHANNEL('CH.64210.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4143049)
*
DEFINE CHANNEL('CH.41693.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4194304)
*
DEFINE CHANNEL('CH.06611.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(441943)
*
DEFINE CHANNEL('CH.10646.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4143904)
*
DEFINE CHANNEL('CH.64273.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(43 41904)
*
DEFINE CHANNEL('CH.76747.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(3044194)
*
DEFINE CHANNEL('CH.67746.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4304419)
*
DEFINE CHANNEL('CH.76111.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(1943404)
*
DEFINE CHANNEL('CH.65256.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4194304)
*
DEFINE CHANNEL('CH.76755.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(1944304)
*
DEFINE CHANNEL('CH.87673.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

 MAXMSGL(4341904)
*
DEFINE CHANNEL('CH.MQGAMSTON.TO.MQxx') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for Gamston via TCPIP') +
 TRPTYPE(TCP) +
 MCAUSER(' ') +
 MAXMSGL(3414094)
*
DEFINE CHANNEL('CH.56779.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4419304)
*
DEFINE CHANNEL('CH.16103.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(4341904)
*
DEFINE CHANNEL('CH.MQREADING.TO.MQxx') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for Reading via TCPIP') +
 TRPTYPE(TCP) +
 MCAUSER(' ') +
 MAXMSGL(61921314)
*
DEFINE CHANNEL('CH.10641.TO.MQxx.LUC') +
 REPLACE +
 CHLTYPE(SVRCONN) +
 DESCR('Server connection for 'name of remote location' via LU62') +
 TRPTYPE(LU62) +
 MCAUSER(' ') +
 MAXMSGL(3041944)
*

* End of CSQ4CHNL

Saida Davies
IBM (UK) © Xephon 2000

MQ news

Information Builders has launched Mobile
Computing Server, a hosting and integration
platform for mobile and wireless
applications. It allows sites to make use of
existing systems and provides IT
professionals with the tools they need to
manage, deploy, and connect Palm/
Windows CE PDAs and WAP- and Internet-
enabled mobile devices. The company
provides connectors to integrate mobile
applications with the rest of the enterprise,
including databases, transaction systems,
and other software via MQSeries.

Out now, prices start at US$45,000 per 100
users on NT or Unix.

For further information contact:
Information Builders, 1250 Broadway, 30th
Floor, New York, NY 10001, USA
Tel: +1 212 736 4433
Fax: +1 212 268 7470
Web: http://www.ibi.com/e-mcsrelease/

Information Builders (UK) Ltd, Wembley
Point, Harrow Road, Wembley, Middlesex
HA9 6DE, UK
Tel: +44 20 8982 4700
Fax: +44 20 8903 2191

* * *

MQSoftware has released QPasa! Version
2.2.1, the latest version of its management
tool for MQSeries, including MQSeries
Integrator Versions 1 and 2, MQSeries
Workflow, and MQSeries Everyplace. It
provides configuration, performance,

problem, and operations analysis and
management.

The Message Manager allows users to
browse messages on queues, including local
queues, dead-letter queues, and alias queues.
It also allows users to edit messages and
message headers. Application developers
can use Message Manager to simulate
messages from the real application during
development. It works with AIX, HP-UX,
Linux, Solaris, Windows NT, and Windows
2000. Details on pricing are available on
request from the vendor.

For further information contact:
MQSoftware Inc, 7575 Golden Valley Road,
Suite 140, Minneapolis, MN 55427, USA
Tel: +1 612 546 9080
Fax: +1 612 546 9082
Web: http://www.mqsoftware.com/

products/prodsum/qpasa.html

MQSoftware Europe Ltd, The Surrey
Technology Centre, 40 Occam Road, Surrey
Research Park, Guildford, Surrey GU2 5YH,
UK
Tel: +44 1483 295400
Fax: +44 1483 573704

* * *

IBM has also re-branded WebSphere as an
‘e-business platform’. The WebSphere
brand now includes not only the WebSphere
application server but also a number of other
IBM products, including MQSeries.

x xephon

	A JMS publisher application
	MQSeries and ‘implicit transaction processing’
	MQSeries Integrator V2.0
	Customizing CSQ4APPL and CSQ4INP2
	MQ news

