
© Xephon plc 2000

September 2000

15

3 Backing up MQSeries messages
24 MQSeries and Microsoft

Transaction Server
35 MQSeries clusters: a hands-on

view (part 1)
42 Production Workflow Concepts

and Techniques
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

Backing up MQSeries messages

The need for a program to back up all messages on a queue manager
arose when we migrated from MQSeries for Windows NT version 5.0
to 5.1. We decided to uninstall version 5.0 and then carry out a new
installation of version 5.1, rather than perform a normal upgrade by
simply running Setup.exe. There were several reasons for this:

• Our initial attempts at upgrading resulted in problems when we
tried to start channels. We found similar problems documented in
the PTFs for the product. However, a new installation also solved
the problem.

• An upgrade did not give us a chance to look at some of the new
features of version 5.1 such as ‘Default Configuration’ and ‘API
Exerciser’.

• The new installation directory (Program Files\MQSeries) was
preferred to the old one (Mqm).

Because we were doing a new installation, we needed to redefine all
our MQSeries objects and restore all persistent messages. Redefining
queue definitions and other objects was simple. SupportPac MS03
provides a program (Saveqmgr.exe) that creates a file with all object
definitions for a queue manager. This file can then be used as the input
of RUNMQSC. Restoring messages was, however, not so simple.
Candle’s free PQEdit utility is useful for backing up and restoring a
few different queues. However, each queue has to be selected and
backed up manually. Another drawback of PQEdit is that it replaces
the context information in the message descriptor with its own values.

So I wrote a program to find all messages on a queue manager and
back them up to a single queue. The program does not check for non-
persistent messages, though in our case this was not a problem, as all
non-persistent messages are deleted by stopping and restarting the
queue manager prior to running the program. The program saves each
message descriptor and the queue name from which the message
originated in a transmission queue header (XQH) that precedes the
actual message. Adopting this procedure means there is no need to

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

write a corresponding restore program. If the messages are backed up
to a queue on another queue manager, then restoring them is simply
a matter of moving them to the transmission queue of the original
queue manager. MQSeries then puts them back on their original
queues with their original message descriptors intact. Moving the
messages can be done with the Forward function of PQEdit or with
the utility MQNQMTOQ that comes with SupportPac MA7A.

The program works fine if the queue manager from which the
messages are copied and the one to which they are copied are on the
same platform. However, if conversion is required between platforms,
then the transmission queue header is problematic. My plan was to
back up messages to a queue manager on OS/390. I thought that, if the
channel definition specified CONVERT(YES), then the transmission
queue header would arrive on the OS/390 queue nicely converted,
given that MQFMT_XMIT_Q_HEADER is a built-in format. Not so.
The built-in conversion routines cater for the needs of message
channel agents, which don’t want the transmission queue header
converted when they perform an MQGET with the
MQGMO_CONVERT option set. This is explained in Appendix D –
Data-conversion of the MQSeries Application Programming
Reference. So my messages ended up on the dead letter queue with a
reason code of either MQRC_FORMAT_ERROR or
MQFB_XMIT_Q_MSG_ERROR.

The solution was to write a conversion exit called MQXMIT. This is
called by the queue manager whenever the built-in conversion routine
fails to convert the data. Instructions for writing data conversion exits
can be found in the MQSeries Application Programming Guide. Once
this exit is written and copied to the MQSeries EXITS directory, the
MsgBack program could be used with an output queue on OS/390. I
opted not to convert the remainder of the message following the
transmission queue header as this part of the message would just need
to be converted back when messages are restored. Also, the utility
programs we have on MQSeries for OS/390 can convert messages
when they retrieve them by using the MQGMO_CONVERT option,
should we want to view the contents of these messages while they’re
in an OS/390 queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

Below is the program that backs up all messages to a single queue.
Note the use of the continuation character, ‘➤ ’, in the code below to
indicate a formatting line break that’s not present in either the original
source code or the code that can be downloaded from Xephon’s Web
site (http://www.xephon.com/mqupdate.html).

MSGBACK
// Msgback: This program finds all messages on a queue manager
// and backs them up to a single queue. Dynamic queues
// and queue names starting with "SYSTEM." are ignored.
//
// Each backed-up message is preceded by an MQSeries
// transmission queue header that contains enough
// information to restore the message and its message
// descriptor to its original state.
//
// If the messages are backed up to a queue on a different
// queue manager, they may be restored by simply moving
// them to the transmission queue of the original queue
// manager.
//
// This program is run from the command line with three
// positional parameters:
// - The queue manager that owns the queue for the messages.
// This can be the local queue manager, but is usually a
// remote queue manager.
// - The queue to which the messages are copied.
// - The queue manager to which to connect (optional).
//
/* Include standard libraries */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Include MQSeries headers */
#include <cmqc.h>
#include <cmqcfc.h>
#include <cmqxc.h>

void ProcessReplyMsgs (MQHCONN hConn,
 MQHOBJ hReplyQ,
 PMQCHAR48 pReplyToQ,
 PMQCHAR48 pLocalQMgr,
 PMQCHAR48 pRemoteQMgr,
 PMQCHAR48 pRemoteQName);

void ProcessApplMsgs (MQHCONN hConn,

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MQHOBJ hBackupQ,
 PMQOD pObjDescBack,
 MQHOBJ hApplQ,
 PMQOD pObjDescAppl);

void MQError (MQCHAR8 Function,
 PMQCHAR48 pObject,
 MQLONG CompCode,
 MQLONG Reason);

PMQCHAR48 Trim (PMQCHAR48 pObject);

int main(int argc, char *argv[])
{
 MQCHAR48 LocalQMgr;
 MQCHAR48 ReplyToQ;

 MQHCONN hConn;
 MQLONG CompCode;
 MQLONG Reason;

 MQHOBJ hAdminQ;
 MQHOBJ hReplyQ;
 MQOD ObjDescAdmin = {MQOD_DEFAULT};
 MQOD ObjDescReply = {MQOD_DEFAULT};
 MQLONG OpenOpts;
 MQMD MsgDesc = {MQMD_DEFAULT};
 MQPMO PutMsgOpts = {MQPMO_DEFAULT};

 MQLONG AdminBufLen;
 PMQBYTE pAdminMsg;
 PMQCFH pPCFHeader;
 PMQCFST pPCFString;
 PMQCFIN pPCFInteger;
 PMQCFIL pPCFIntegerList;
 PMQLONG pValue;

 MQCHAR48 RemoteQMgr;
 MQCHAR48 RemoteQName;

 if (argc < 3)
 {
 printf ("Required parameter(s) missing - remote qmgr and queue
 ➤ name\n");
 printf ("USAGE: MsgBack RemoteQMgr RemoteQName
 ➤ [LocalQMgrName]\n");
 exit (-1);
 }

 strncpy(RemoteQMgr, argv[1], MQ_Q_MGR_NAME_LENGTH);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

 strncpy(RemoteQName, argv[2], MQ_Q_NAME_LENGTH);

 memset(LocalQMgr, '\0', MQ_Q_MGR_NAME_LENGTH);

 if (argc > 3)
 {
 memcpy(LocalQMgr, argv[3], MQ_Q_MGR_NAME_LENGTH);
 }

 MQCONN(LocalQMgr,
 &hConn,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQCONN",
 &LocalQMgr,
 CompCode,
 Reason);
 }

 memcpy(ObjDescAdmin.ObjectName, "SYSTEM.ADMIN.COMMAND.QUEUE\0",
 ➤ MQ_Q_NAME_LENGTH);
 memcpy(ObjDescAdmin.ObjectQMgrName, LocalQMgr,
 ➤ MQ_Q_MGR_NAME_LENGTH);
 OpenOpts = MQOO_OUTPUT;

 MQOPEN(hConn,
 &ObjDescAdmin,
 OpenOpts,
 &hAdminQ,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQOPEN",
 &ObjDescAdmin.ObjectName,
 CompCode,
 Reason);
 }

 memcpy(ObjDescReply.ObjectName, "SYSTEM.DEFAULT.MODEL.QUEUE\0",
 ➤ MQ_Q_NAME_LENGTH);
 memcpy(ObjDescReply.ObjectQMgrName, LocalQMgr,
 ➤ MQ_Q_MGR_NAME_LENGTH);
 memcpy(ObjDescReply.DynamicQName, "MSGBACKUP.*\0",
 ➤ MQ_Q_NAME_LENGTH);
 OpenOpts = MQOO_INPUT_EXCLUSIVE;

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MQOPEN(hConn,
 &ObjDescReply,
 OpenOpts,
 &hReplyQ,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQOPEN",
 &ObjDescReply.ObjectName,
 CompCode,
 Reason);
 }

 memcpy (ReplyToQ, ObjDescReply.ObjectName, MQ_Q_NAME_LENGTH);
 memcpy (LocalQMgr, ObjDescReply.ObjectQMgrName,
 ➤ MQ_Q_MGR_NAME_LENGTH);

 printf ("MsgBack: Obtaining local queue names on qmgr %s\n",
 ➤ Trim (&LocalQMgr));

 /* Set the length for the message buffer */
 AdminBufLen = MQCFH_STRUC_LENGTH
 + MQCFST_STRUC_LENGTH_FIXED
 + MQCFIN_STRUC_LENGTH
 + MQCFIL_STRUC_LENGTH_FIXED
 + 16;

 /* Allocate storage for the message buffer and set a pointer to */
 /* its start address. */
 pAdminMsg = (MQBYTE *)malloc(AdminBufLen);
 memset(pAdminMsg, '\0', AdminBufLen);

 /* pPCFHeader is set equal to pAdminMsg in order to provide a */
 /* structure to the newly allocated block of storage. We can */
 /* then create a request header of the correct format in the */
 /* message buffer. */
 pPCFHeader = (MQCFH *)pAdminMsg;

 /* pPCFString is set to point into the message buffer immediately */
 /* after the request header. This allows us to specify a context */
 /* for the request in the required format. */
 pPCFString = (MQCFST *)((MQBYTE *)pPCFHeader
 + MQCFH_STRUC_LENGTH);

 pPCFInteger = (MQCFIN *)((MQBYTE *)pPCFString
 + MQCFST_STRUC_LENGTH_FIXED
 + 4);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

 pPCFIntegerList = (MQCFIL *)((MQBYTE *)pPCFInteger
 + MQCFIN_STRUC_LENGTH);

 /* Set up request header */
 pPCFHeader->Type = MQCFT_COMMAND;
 pPCFHeader->StrucLength = MQCFH_STRUC_LENGTH;
 pPCFHeader->Version = MQCFH_VERSION_1;
 pPCFHeader->Command = MQCMD_INQUIRE_Q;
 pPCFHeader->MsgSeqNumber = MQCFC_LAST;
 pPCFHeader->Control = MQCFC_LAST;
 pPCFHeader->ParameterCount = 3;

 /* Set up parameter block */
 pPCFString->Type = MQCFT_STRING;
 pPCFString->StrucLength = MQCFST_STRUC_LENGTH_FIXED + 4;
 pPCFString->Parameter = MQCA_Q_NAME;
 pPCFString->CodedCharSetId = MQCCSI_DEFAULT;
 pPCFString->StringLength = 1;
 memcpy(pPCFString->String, "* ", 4);

 /* Set up parameter block */
 pPCFInteger->Type = MQCFT_INTEGER;
 pPCFInteger->StrucLength = MQCFIN_STRUC_LENGTH;
 pPCFInteger->Parameter = MQIA_Q_TYPE;
 pPCFInteger->Value = MQQT_LOCAL;

 /* Set up parameter block */
 pPCFIntegerList->Type = MQCFT_INTEGER_LIST;
 pPCFIntegerList->StrucLength = MQCFIL_STRUC_LENGTH_FIXED + 12;
 pPCFIntegerList->Parameter = MQIACF_Q_ATTRS;
 pPCFIntegerList->Count = 3;
 pValue = (MQLONG *)((MQBYTE *)pPCFIntegerList +
 ➤ MQCFIL_STRUC_LENGTH_FIXED);
 *pValue = MQCA_Q_NAME;
 pValue = pValue + 1;
 *pValue = MQIA_CURRENT_Q_DEPTH;
 pValue = pValue + 1;
 *pValue = MQIA_DEFINITION_TYPE;

 MsgDesc.Persistence = MQPER_NOT_PERSISTENT;
 MsgDesc.MsgType = MQMT_REQUEST;
 memcpy(MsgDesc.ReplyToQ, ReplyToQ, MQ_Q_NAME_LENGTH);
 memcpy(MsgDesc.Format, MQFMT_ADMIN, MQ_FORMAT_LENGTH);

 MsgDesc.Expiry = 1800; /* 3 minutes */

 PutMsgOpts.Options = MQPMO_NO_SYNCPOINT;

 MQPUT(hConn,
 hAdminQ,

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 &MsgDesc,
 &PutMsgOpts,
 AdminBufLen,
 pAdminMsg,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQPUT",
 &ObjDescAdmin.ObjectName,
 CompCode,
 Reason);
 }

 /* Free the storage allocated to the message buffer */
 free(pAdminMsg);

 MQCLOSE(hConn,
 &hAdminQ,
 MQCO_NONE,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQCLOSE",
 &ObjDescAdmin.ObjectName,
 CompCode,
 Reason);
 }

 ProcessReplyMsgs(hConn,
 hReplyQ,
 &ReplyToQ,
 &LocalQMgr,
 &RemoteQMgr,
 &RemoteQName);

 MQCLOSE(hConn,
 &hReplyQ,
 MQCO_NONE,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQCLOSE",
 &ReplyToQ,
 CompCode,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

 Reason);
 }

 MQDISC (&hConn,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQDISC",
 &LocalQMgr,
 CompCode,
 Reason);
 }

 printf ("MsgBack: successful completion\n");

 return(0);

} /* end main */

void ProcessReplyMsgs(MQHCONN hConn,
 MQHOBJ hReplyQ,
 PMQCHAR48 pReplyToQ,
 PMQCHAR48 pLocalQMgr,
 PMQCHAR48 pRemoteQMgr,
 PMQCHAR48 pRemoteQName)
{
 MQOD ObjDescBack = {MQOD_DEFAULT};
 MQOD ObjDescAppl = {MQOD_DEFAULT};
 MQMD MsgDesc = {MQMD_DEFAULT};
 MQGMO GetMsgOpts = {MQGMO_DEFAULT};
 MQLONG CompCode;
 MQLONG Reason;
 MQHOBJ hBackupQ;
 MQHOBJ hApplQ;
 MQLONG OpenOpts;
 MQLONG QueueDepth;
 MQLONG DefinitionType;
 char QueueName[MQ_Q_NAME_LENGTH];

 MQLONG AdminMsgLen;
 MQLONG AdminBufLen;
 PMQBYTE pAdminMsg;
 PMQCFH pPCFHeader;
 PMQCFST pPCFString;
 PMQCFIN pPCFInteger;
 PMQLONG pPCFType;
 long Index;

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 memcpy(ObjDescBack.ObjectName, pRemoteQName, MQ_Q_NAME_LENGTH);
 memcpy(ObjDescBack.ObjectQMgrName, pRemoteQMgr,
 ➤ MQ_Q_MGR_NAME_LENGTH);
 OpenOpts = MQOO_OUTPUT;

 MQOPEN(hConn,
 &ObjDescBack,
 OpenOpts,
 &hBackupQ,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQOPEN",
 &ObjDescBack.ObjectName,
 CompCode,
 Reason);
 }
 else
 {
 printf (" Opened backup queue %s on qmgr %s\n",
 Trim (&ObjDescBack.ObjectName),
 Trim (&ObjDescBack.ObjectQMgrName));
 } /* endif */

 /* AdminBufLen is to be set to the length of the expected reply */
 /* message. */
 AdminBufLen = MQCFH_STRUC_LENGTH
 + MQCFST_STRUC_LENGTH_FIXED
 + (MQCFIN_STRUC_LENGTH * 2)
 + MQ_Q_NAME_LENGTH;

 /* Set pointers to message data buffers */
 pAdminMsg = (MQBYTE *)malloc(AdminBufLen);

 do
 {
 GetMsgOpts.Options = MQGMO_WAIT;
 GetMsgOpts.WaitInterval = 10000; /* 10 seconds */
 memcpy (MsgDesc.MsgId, MQMI_NONE, MQ_MSG_ID_LENGTH);
 memcpy (MsgDesc.CorrelId, MQCI_NONE, MQ_CORREL_ID_LENGTH);

 MQGET(hConn,
 hReplyQ,
 &MsgDesc,
 &GetMsgOpts,
 AdminBufLen,
 pAdminMsg,
 &AdminMsgLen,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQGET",
 pReplyToQ,
 CompCode,
 Reason);
 }

 QueueDepth = 0;
 DefinitionType = 0;
 memset(QueueName, '\0', MQ_Q_NAME_LENGTH);

 /* Examine Header */
 pPCFHeader = (MQCFH *)pAdminMsg;

 if (pPCFHeader->CompCode != MQCC_OK)
 {
 printf("Error returned from command server. CC=%d RC=%d\n",
 pPCFHeader->CompCode, pPCFHeader->Reason
);
 exit(-1);
 } /* endif */

 /* Examine first parameter */
 pPCFType = (MQLONG *)(pAdminMsg + MQCFH_STRUC_LENGTH);

 Index = 1;

 while (Index <= pPCFHeader->ParameterCount)
 {
 /* Establish the type of each parameter and allocate */
 /* a pointer of the correct type to reference it. */
 switch (*pPCFType)
 {
 case MQCFT_INTEGER:
 pPCFInteger = (MQCFIN *)pPCFType;
 switch (pPCFInteger->Parameter)
 {
 case MQIA_CURRENT_Q_DEPTH:
 QueueDepth = pPCFInteger->Value;
 break;
 case MQIA_DEFINITION_TYPE:
 DefinitionType = pPCFInteger->Value;
 break;
 default:
 break;
 }

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 Index++;
 /* Increment the pointer to the next parm */
 /* by the length of the current parm. */
 pPCFType = (MQLONG *)((MQBYTE *)pPCFType
 + pPCFInteger -> StrucLength);
 break;
 case MQCFT_STRING:
 pPCFString = (MQCFST *)pPCFType;
 switch (pPCFString->Parameter)
 {
 case MQCA_Q_NAME:
 memcpy(QueueName, pPCFString->String, pPCFString->
 ➤ StringLength);
 break;
 default:
 break;
 }
 Index++;
 /* Increment the pointer to the next parm */
 /* by the length of the current parm. */
 pPCFType = (MQLONG *)((MQBYTE *)pPCFType
 + pPCFString -> StrucLength);
 break;
 default:
 printf("Error: Received parameter block is of an
 ➤ unrecognized type.\n");
 printf(" Program ending.\n");
 exit(-1);
 break;
 } /* endswitch */
 } /* endwhile */

 if (QueueDepth > 0)
 {
 if (!strncmp(QueueName, "SYSTEM.", 7))
 {
 printf (" Skipping system queue %s.\n", Trim (
 ➤ &QueueName));
 }
 else if (DefinitionType != MQQDT_PREDEFINED)
 {
 printf (" Skipping dynamic queue %s.\n",
 ➤ Trim (&QueueName));
 }
 else
 {
 /* browse queue, write MQXQH and message to the */
 /* back-up queue */

 memcpy (ObjDescAppl.ObjectName, QueueName,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

 ➤ MQ_Q_NAME_LENGTH);
 memcpy (ObjDescAppl.ObjectQMgrName, pLocalQMgr,
 ➤ MQ_Q_MGR_NAME_LENGTH);
 OpenOpts = MQOO_INPUT_AS_Q_DEF + MQOO_BROWSE;

 MQOPEN(hConn,
 &ObjDescAppl,
 OpenOpts,
 &hApplQ,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQOPEN",
 &ObjDescAppl.ObjectName,
 CompCode,
 Reason);
 }

 printf (" Browsing %d message(s) from queue %s\n",
 QueueDepth,
 Trim (&QueueName));

 ProcessApplMsgs (hConn,
 hBackupQ,
 &ObjDescBack,
 hApplQ,
 &ObjDescAppl);

 MQCLOSE(hConn,
 &hApplQ,
 MQCO_NONE,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQCLOSE",
 &ObjDescAppl.ObjectName,
 CompCode,
 Reason);
 }
 }
 } /* endif QueueDepth > 0 */

 /**/
 /* Finished the current message, so process the next one. */
 /**/

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 } while (pPCFHeader->Control == MQCFC_NOT_LAST); /* end do */

 free(pAdminMsg);

 MQCLOSE(hConn,
 &hBackupQ,
 MQCO_NONE,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)
 {
 MQError ("MQCLOSE",
 &ObjDescBack.ObjectName,
 CompCode,
 Reason);
 }
 return;
}

void ProcessApplMsgs (MQHCONN hConn,
 MQHOBJ hBackupQ,
 PMQOD pObjDescBack,
 MQHOBJ hApplQ,
 PMQOD pObjDescAppl)
{
 MQMD MsgDescBack = {MQMD_DEFAULT};
 MQMD MsgDescAppl = {MQMD_DEFAULT};
 MQGMO GetMsgOpts = {MQGMO_DEFAULT};
 MQPMO PutMsgOpts = {MQPMO_DEFAULT};
 MQXQH XmitQHdr = {MQXQH_DEFAULT};
 MQLONG CompCode;
 MQLONG Reason;
 MQLONG UserMsgLen;
 MQLONG UserBufLen;
 PMQBYTE pUserMsg;
 MQLONG UserBufLen2;
 PMQBYTE pUserMsg2;
 PMQXQH pXmitQHdr;
 long RecordLen;
 long PutCount = 0;

 UserBufLen = 8192;
 /* Set pointer to message data buffer */
 pUserMsg = (MQBYTE *)malloc(UserBufLen);

 UserBufLen2 = UserBufLen + sizeof (XmitQHdr);
 /* Set pointer to message data buffer */
 pXmitQHdr = (PMQXQH)malloc(UserBufLen2);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

 do
 {
 GetMsgOpts.Options = MQGMO_NO_WAIT
 + MQGMO_BROWSE_NEXT
 + MQGMO_ACCEPT_TRUNCATED_MSG;
 memcpy (MsgDescAppl.MsgId, MQMI_NONE, MQ_MSG_ID_LENGTH);
 memcpy (MsgDescAppl.CorrelId, MQCI_NONE, MQ_CORREL_ID_LENGTH);

 MQGET(hConn,
 hApplQ,
 &MsgDescAppl,
 &GetMsgOpts,
 UserBufLen,
 pUserMsg,
 &UserMsgLen,
 &CompCode,
 &Reason);

 switch (CompCode)
 {
 case MQCC_OK :
 RecordLen = UserMsgLen + sizeof (XmitQHdr);
 memcpy (pXmitQHdr, &XmitQHdr, sizeof (XmitQHdr));
 memcpy (pXmitQHdr -> RemoteQName, pObjDescAppl ->
 ➤ ObjectName, MQ_Q_NAME_LENGTH);
 memcpy (pXmitQHdr -> RemoteQMgrName, pObjDescAppl ->
 ➤ ObjectQMgrName, MQ_Q_MGR_NAME_LENGTH);
 memcpy (& (pXmitQHdr -> MsgDesc), &MsgDescAppl,
 ➤ sizeof (MsgDescAppl));
 pUserMsg2 = (MQBYTE*) (pXmitQHdr + 1);
 memcpy (pUserMsg2, pUserMsg, UserMsgLen);

 MsgDescBack.MsgType = MQMT_DATAGRAM;
 MsgDescBack.Expiry = pXmitQHdr -> MsgDesc.Expiry;
 MsgDescBack.Persistence = MQPER_PERSISTENT;
 memcpy (MsgDescBack.Format, MQFMT_XMIT_Q_HEADER,
 ➤ MQ_FORMAT_LENGTH);

 PutMsgOpts.Options = MQPMO_SYNCPOINT;

 MQPUT(hConn,
 hBackupQ,
 &MsgDescBack,
 &PutMsgOpts,
 RecordLen,
 pXmitQHdr,
 &CompCode,
 &Reason);

 if (CompCode != MQCC_OK)

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 {
 MQError ("MQPUT",
 &pObjDescBack -> ObjectName,
 CompCode,
 Reason);
 }

 PutCount ++;

 break;
 case MQCC_WARNING :
 if (Reason == MQRC_TRUNCATED_MSG_ACCEPTED)
 {
 free(pUserMsg);
 free(pXmitQHdr);
 UserBufLen = UserMsgLen;
 /* Set pointer to message data buffer */
 pUserMsg = (MQBYTE *)malloc(UserBufLen);
 UserBufLen2 = UserBufLen + sizeof(XmitQHdr);
 /* Set pointer to message data buffer */
 pXmitQHdr = (PMQXQH)malloc(UserBufLen2);
 }
 else
 {
 MQError ("MQGET",
 &pObjDescAppl -> ObjectName,
 CompCode,
 Reason);
 }

 break;
 case MQCC_FAILED :
 if (Reason != MQRC_NO_MSG_AVAILABLE)
 {
 MQError ("MQGET",
 &pObjDescAppl -> ObjectName,
 CompCode,
 Reason);
 }

 break;
 } /* end switch */
 } while (CompCode != MQCC_FAILED) ; /* enddo */

 free(pUserMsg);
 free(pXmitQHdr);

 printf (" Saved %d message(s) for queue %s\n",
 PutCount,
 Trim (&pObjDescAppl -> ObjectName));

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

 return;
}

void MQError (MQCHAR8 Function,
 PMQCHAR48 pObject,
 MQLONG CompCode,
 MQLONG Reason)
{
 MQCHAR48 Object;

 memcpy (Object, pObject, MQ_Q_NAME_LENGTH);

 printf("%s failed for object %s. CC=%d RC=%d\n",
 Function,
 Trim (pObject),
 CompCode,
 Reason);
 exit(-1);
}

PMQCHAR48 Trim (PMQCHAR48 pObject)
{
 char *pBlank;

 pBlank = memchr (pObject, ' ', MQ_Q_NAME_LENGTH);
 if (pBlank != NULL)
 *pBlank = 0;

 return (pObject);
}

Below is the source code for the MQXMIT conversion exit program.

MQXMIT

// MQXMIT: This is a data conversion exit for converting messages
// with MQMD.Format MQFMT_XMIT_Q_HEADER. The built-in
// conversion routines fail to convert messages with this
// format as the routines are really written for message
// channel agents. MCAs do not require the transmission
// queue header to be converted, only the data after the
// header. According to Appendix D - Data Conversion of the
// MQSeries Application Programming Reference, a user-supplied
// exit with the same name as a built-in format will be
// invoked if the built-in conversion routine fails to
// convert the data.
//
// This exit program caters for the needs of program MsgBack
// when messages are backed up from an MQSeries for Windows

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// NT queue manager to an OS/390 queue manager. MsgBack
// puts its own transmission queue header at the beginning
// of each message. This needs to be converted to simplify
// restoring the messages to their original location. The
// message data following the transmission queue header is
// left unconverted.
//
// This program is based on the sample data conversion exit
// AMQSVFC0. The function ConvertMQXMIT is generated by the
// utility crtmqcvx.

 #include <cmqc.h> /* For MQI datatypes */
 #include <cmqxc.h> /* For MQI exit-related definitions */
 #include <amqsvmha.h> /* For sample macro definitions */

 /**/
 /* Insert the function prototypes for the functions produced by */
 /* the data conversion utility program. */
 /**/
MQLONG ConvertMQXMIT(PMQBYTE *in_cursor,
 PMQBYTE *out_cursor,
 PMQBYTE in_lastbyte,
 PMQBYTE out_lastbyte,
 MQHCONN hConn,
 MQLONG opts,
 MQLONG MsgEncoding,
 MQLONG ReqEncoding,
 MQLONG MsgCCSID,
 MQLONG ReqCCSID,
 MQLONG CompCode,
 MQLONG Reason);

 MQDATACONVEXIT MQStart;

 void MQENTRY MQStart(
 PMQDXP pDataConvExitParms, /* Data-conversion exit parameter */
 /* block */
 PMQMD pMsgDesc, /* Message descriptor */
 MQLONG InBufferLength, /* Length in bytes of InBuffer */
 PMQVOID pInBuffer, /* Buffer containing the unconverted */
 /* message */
 MQLONG OutBufferLength, /* Length in bytes of OutBuffer */
 PMQVOID pOutBuffer) /* Buffer containing the converted */
 /* message */
 {
 MQLONG ReturnCode = MQRC_NONE;
 MQHCONN hConn = pDataConvExitParms->Hconn;
 MQLONG opts = pDataConvExitParms->AppOptions;
 PMQBYTE in_cursor = (PMQBYTE)pInBuffer;
 PMQBYTE out_cursor = (PMQBYTE)pOutBuffer;

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

 PMQBYTE in_lastbyte = (PMQBYTE)pInBuffer + InBufferLength - 1;
 PMQBYTE out_lastbyte = (PMQBYTE)pOutBuffer + OutBufferLength - 1;
 MQLONG MsgEncoding = pMsgDesc->Encoding;
 MQLONG ReqEncoding = pDataConvExitParms->Encoding;
 MQLONG MsgCCSID = pMsgDesc->CodedCharSetId;
 MQLONG ReqCCSID = pDataConvExitParms->CodedCharSetId;
 MQLONG CompCode = pDataConvExitParms->CompCode;
 MQLONG Reason = pDataConvExitParms->Reason;
 int count;

 /**/
 /* Insert calls to the code fragments to convert the format's */
 /* structure(s) here. */
 /**/
 ReturnCode = ConvertMQXMIT(&in_cursor,
 &out_cursor,
 in_lastbyte,
 out_lastbyte,
 hConn,
 opts,
 MsgEncoding,
 ReqEncoding,
 MsgCCSID,
 ReqCCSID,
 CompCode,
 Reason);

 /**/
 /* Check whether the conversion succeeded */
 /**/
 if ((ReturnCode == MQRC_NONE) ||
 (ReturnCode == MQRC_TRUNCATED_MSG_ACCEPTED))
 {
 count = out_lastbyte - out_cursor + 1;
 if (count > 0)
 {
 /* Copy the rest of the message without conversion */
 memcpy(out_cursor, in_cursor, count);
 }
 pDataConvExitParms->ExitResponse = MQXDR_OK;
 /**/
 /* The sample exit suggests the statement below to set the */
 /* length to be returned on exit of this program. However, if */
 /* the output buffer is longer than the message, then an */
 /* incorrect length is returned. Because this conversion */
 /* routine does not change the length of the data, DataLength */
 /* may be left as is. */
 /**/
 /* pDataConvExitParms->DataLength = out_cursor */
 /* - (PMQBYTE)pOutBuffer; */

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /**/
 }
 /**/
 /* Otherwise indicate that conversion of the message data failed. */
 /**/
 else
 {
 pDataConvExitParms->ExitResponse = MQXDR_CONVERSION_FAILED;
 }
 /**/
 /* It the message is not already truncated update comp code, and */
 /* reason. */
 /**/
 if (Reason != MQRC_TRUNCATED_MSG_ACCEPTED)
 {
 pDataConvExitParms->Reason = ReturnCode;

 if (ReturnCode == MQRC_NONE)
 {
 pDataConvExitParms->CompCode = MQCC_OK;
 }
 else
 {
 pDataConvExitParms->CompCode = MQCC_WARNING;
 }
 }
 return;
 }

 /**/
 /* Insert the functions produced by the data conversion exit */
 /* utility program. */
 /**/

MQLONG ConvertMQXMIT(PMQBYTE *in_cursor,
 PMQBYTE *out_cursor,
 PMQBYTE in_lastbyte,
 PMQBYTE out_lastbyte,
 MQHCONN hConn,
 MQLONG opts,
 MQLONG MsgEncoding,
 MQLONG ReqEncoding,
 MQLONG MsgCCSID,
 MQLONG ReqCCSID,
 MQLONG CompCode,
 MQLONG Reason)
{
 MQLONG ReturnCode = MQRC_NONE;

 ConvertChar(4); /* StrucId */

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

 AlignLong();
 ConvertLong(1); /* Version */

 ConvertChar(48); /* RemoteQName */

 ConvertChar(48); /* RemoteQMgrName */

 ConvertChar(4); /* StrucId */

 AlignLong();
 ConvertLong(1); /* Version */

 AlignLong();
 ConvertLong(1); /* Report */

 AlignLong();
 ConvertLong(1); /* MsgType */

 AlignLong();
 ConvertLong(1); /* Expiry */

 AlignLong();
 ConvertLong(1); /* Feedback */

 AlignLong();
 ConvertLong(1); /* Encoding */

 AlignLong();
 ConvertLong(1); /* CodedCharSetId */

 ConvertChar(8); /* Format */

 AlignLong();
 ConvertLong(1); /* Priority */

 AlignLong();
 ConvertLong(1); /* Persistence */

 ConvertByte(24); /* MsgId */

 ConvertByte(24); /* CorrelId */

 AlignLong();
 ConvertLong(1); /* BackoutCount */

 ConvertChar(48); /* ReplyToQ */

 ConvertChar(48); /* ReplyToQMgr */

 ConvertChar(12); /* UserIdentifier */

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ConvertByte(32); /* AccountingToken */

 ConvertChar(32); /* ApplIdentityData */

 AlignLong();
 ConvertLong(1); /* PutApplType */

 ConvertChar(28); /* PutApplName */

 ConvertChar(8); /* PutDate */

 ConvertChar(8); /* PutTime */

 ConvertChar(4); /* ApplOriginData */

Fail:
 return(ReturnCode);
}

Eric Judd
Technical Consultant
Metropolitan Life (RSA) © Xephon 2000

MQSeries and Microsoft Transaction Server

Component-based development is becoming a widely used method of
building new applications. Developers are able to use this approach to
separate application logic from the implementation of the user interface,
thus making development much easier. This approach allows different
systems to share the same components, also allowing the same
components to be accessed by different clients. As business logic
shifts from traditional fat clients to servers, scalable applications
servers that manage server components are needed. Microsoft
Transaction Server (MTS) is a good example of an application server
and more. It acts as a middle tier for running components. So, how
does MQSeries fit into this picture? IBM recently released an MQSeries
SupportPac that enables business objects running in Microsoft
Transaction Server to access MQSeries functions and services. This
can be used to exploit many of MTS’s capabilities, such as thread

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

pooling, process isolation, and transaction monitoring. In this article,
I discuss what capabilities MTS brings to the development and
deployment of applications, and also describe how these capabilities
can be integrated with MQSeries. Though I deal only with the basic
aspects of MTS in this article, this coverage should be sufficient to
allow those unfamiliar with this software to understand its basic terms
and concepts.

MTS BASICS

So what exactly is MTS? Microsoft Transaction Server is a component-
based transaction processing system for developing, deploying, and
managing server applications. It defines an application model that
determines how distributed, component-based applications are
developed.

MTS provides three major services – it acts as an:

• Object Request Broker (ORB)

• Resource manager

Figure 1: MQSeries integration with MTS

Client
application

(user interface)
on Web browser

Internet
Information

Server (IIS) ASP

Client application
(the user

interface) on thin
client

Microsoft
Transaction

Server
(business logic)

MQSeries Back-end
database

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Transaction monitor.

MTS has capabilities that are essential for scaling server-based
components to support a large number of simultaneous client requests.
It performs thread pooling, process isolation, transaction coordination,
and object instance management and provides role-based security,
performing all these functions automatically with no need for special
code or scripts. Typically, MTS sits between client applications,
which are normally no more than a user interface (in other words, a
thin client) and database servers or other back-end servers. COM
objects are simply installed on an MTS server and an instance of the
object is created when a client application requests it.

Let’s now discuss how to integrate this architecture with MQSeries
and how MQSeries can take advantage of many of MTS’s features.

THREADING

One aspect of MTS that the MQSeries MTS SupportPac uses
intensively is its threading capability. Threading is very important if
you want your application to support a large number of user requests.
Different types of threading model are available, and you should be
familiar with each of them. The list below briefly explains each
threading model, and you may consider checking other sources for a
more detailed discussion.

• Single threading

In this threading model, all objects are executed on the main
thread and methods calls are serialized across all objects in the
component.

 • Apartment threading

In this threading model, each object runs in its own apartment.
The model allows multiple single-threaded apartments, but not
multi-threaded apartments.

• Free threading

This threading model allows objects to share threads. It allows
multi-threaded apartments, but not single-threaded apartments.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

• Mixed threading

This threading model comprises a multi-threaded apartment plus
one or more single-threaded apartments.

We should all be aware of the fact that MQSeries can use an object
only if it was created using the same thread that called it. For example,
if we get a connection handle to a queue manager, the handle can be
used only by objects within the thread that initiated the connection.
However, when using MQSeries MTS Support, the MQSeries COM
object uses a free threading model to allow method calls to be serviced
by any thread. MTS Support creates a connection handle with a
corresponding context that is managed by MTS and it can create new
threads for routing calls to MQSeries, depending on its needs. MTS
will automatically switch threads to provide a more efficient way of
servicing requests. MTS manages these threads, which is why
components running under MTS neither need nor should create their
own threads.

CONNECTION POOLING

If a client frequently connects to and disconnects from a queue
manager, this often creates a considerable overhead on the server as
a result of the associated processes. Resources are continually acquired
and released, though some may not be freed if an erroneous application
terminates abnormally, which can severely affect performance. MTS
provides ‘resource dispensers’ that manage a pool of resources. This
pool can provide simple and efficient sharing of its resources among
various objects. The resources, such as database, network, and socket
connections, are dynamically created and do not persist.

MQSeries MTS Support provides pooling of connection handles to
the queue manager. Instead of passing the request to disconnect from
a queue manager (MQDISC) to MQSeries, the SupportPac uses
Microsoft Dispenser Manager to pool the connection and issue a
commit, so it doesn’t interfere with other MQSeries transactions.
Queues that are left opened by applications to which the connection
belongs are closed before the connection is put back into the pool.
When another client application tries to connect to the queue manager,
the resource dispenser forwards the request to a ‘holder’ (an object

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

that maintains the actual resource inventory for each dispenser),
which, in turn, tries to examine the pool and decide whether to create
a new resource or get one from the pool.

The SupportPac has no control over the number of connections to be
pooled – this is regulated by the holder. If the holder decides that there
are not enough resources in the inventory, it calls the resource
dispenser to create new ones, so as to increase the number of
simultaneous requests that it can service. The dispenser manager
periodically checks the holder’s inventory to clean up the resource
pool. If the connection resource is not in use by business objects and
is not taking part in a transaction, it is put in the holder’s ‘unenlisted
inventory’. The holder checks for expired resources that are inactive
for more than a pre-defined timeout value in this inventory. The
connections are then removed from the inventory and destroyed.

When applications terminate without first disconnecting all their
active connections, all transactions associated with those connections
are automatically backed out. This prevents unfinished transactions
from completing.

In MTS, there is no cross-process pooling of resources – each process
has its own separate inventory. Dispensers manage only transient
data, such as connections that are relevant only to the process that
created them. So, when connection handles from the pool are to be
reused, their queue manager names must be identical. For example,
suppose that our default queue manager is named
DEFT.QUEUE.MANAGER and that an application tries to connect to
it using the default MQCONN("", …). If this resource is placed in the
pool after it’s used, then the previous connection handle will not be
used by another application if tries to connect to a default queue
manager by name: MQCONN("DEFT.QUEUE.MANAGER", …);
instead it will create its own resource pool.

Note that the ‘fastpath’ binding option for connections
(MQCNO_FASTPATH_BINDING) is not available in this SupportPac.
The reason for this is that this option allows no more than one
Windows NT thread to be connected to a queue manager at any time,
and this is not consistent with the multi-threading capability of the
SupportPac.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

SECURITY IN A POOLED CONNECTION

You may ask whether any security issues are associated with the use
of a resource pool. We are used to MQSeries applications that are
validated every time they try to connect to a queue manager, but this
may not be the case in a pooled connection. MQSeries MTS Support
does not re-check the security credentials of objects that are reused
from the pool. If an application uses a security method called
‘impersonation’, which allows a thread to be executed in a security
context that is different from that of the process that owns the thread,
MQSeries will only validate the impersonator the first time the
connection is created, which is referred to as the ‘real connection’.
The connection that was created can then be used by another application
using impersonation. MTS does not promote the use of impersonation,
for obvious reasons, which is why MQSeries for MTS is not supported
by this product. MTS’s role-based security is recommended instead.

TRANSACTIONS

MQSeries is able to act both as a resource manager and a transaction
coordinator, which means that it can participate in a coordinated
transaction with other resources. However, when using MQSeries
with MTS, it’s the Microsoft Distributed Transaction Coordinator
(MS DTC) that coordinates MQSeries queue manager resources
along with other resource managers, such as database servers (DB2
UDB, Oracle, etc), that participate in a transaction.

Here are some pointers to bear in mind when you want MQSeries to
be part of a transaction that is coordinated by DTC:

1 Always use the syncpoint option when issuing an MQGET or
MQPUT, so that your request is included in a unit of work. You
have to use the MQPMO_SYNCPOINT put message option when
putting message to a queue and either the option
MQGMO_SYNCPOINT or MQGMO_SYNCPOINT_IF_
PERSISTENT when you’re getting a message from a queue.

2 MTS/DTC will be the coordinator for transactions under MTS, so
don’t use an MQBEGIN in your application.

3 The MTS/DTC will determine whether transactions are successful,
so don’t use either MQCMIT or MQBACK.

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

As some of MQSeries’ transaction management features are off-
loaded to MTS, MTS has a substantial impact on the behaviour of
MQSeries objects. An example of this is in the use of connection
handles. Although MQSeries for MTS supports free threading, a
connection handle can be used only by one transaction at a time,
though it can be re-used later, once the transaction is complete.
MQSeries MTS Support determines the transactional context of a
connection handle, so when you issue the first syncpoint call (for
instance, an MQPUT with MQPMO_SYNCPOINT), the handle can be
used only in that transaction from that point onwards. A this point, you
might wonder what’s the use of free threading in this scenario, if other
objects can’t use the same handle. The answer is that you may pass the
handle to other objects in the same process, provided that the handle
is used within the scope of the same transaction, so it executes in the
same transactional context.

Another characteristic of MTS is DTC time-outs. You have to be
aware of this as it can result in unexpected errors. For instance,
suppose an application creates an object that does an MQGET with
‘wait’ time of, say, three minutes. If DTC is configured to time out in
two minutes, after two minutes DTC will communicate with MQSeries
for MTS, which will then close MQSeries objects and terminate the
transaction. When the application’s wait time ends, the original object
is still there, and the application may try another operation on the
object. This will fail with an error stating that it’s not part of a
transaction and an MQRC_UOW_ENLISTMENT_ERROR reason
code will be sent to the application.

It is also advisable not to use resources that are created by objects that
are already destroyed, as the Dispenser Manager may destroy resources
that belong to defunct objects.

COORDINATION

With the use of free threading, which comes with MQSeries MTS
Support, different types of transaction can be realized. One example
is to use a single object to open two connections to two different queue
managers, where one is used for putting messages on a queue and the
other for getting messages from a queue. Another possibility is to have

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

two objects opening a single queue manager, which means that you
have to coordinate only one object. Queue managers can be spread
across the network but still participate in the transaction using
DCOM. However, as MQSeries transactions have to use the server’s
MQI, objects must reside on the same system as the queue manager
being used.

NEW REASON CODES AND TRANSACTIONAL IMPLICATIONS

As a result of changes in the way MQSeries handles transactions,
there are some new errors that we may encounter during the course of
developing applications under MTS. Below are the usual error codes
we encounter, which may have new meanings when running under
MTS, plus some new reason codes that will enable you to correctly
debug your application.

• MQRC_HCONN_ERROR

Under MTS, this error may be caused by an attempt to use a
connection handle in a context where it is not valid. This could
arise if a connection handle is passed between processes or
packages. Remember that you can use connection handles only
within the same process.

• MQRC_ENVIRONMENT_ERROR

If you try to use the MQSeries transaction coordination features
by issuing an MQBEGIN, MQCMIT, or MQBACK while in a
DTC transaction, you are likely to encounter this error. Remember
that DTC is the component that coordinates transactions in this
environment.

• MQRC_ALREADY_CONNECTED and MQRC_ANOTHER_Q_
MGR_CONNECTED

These errors are normally encountered when you try to connect
to a queue manager that is already connected or is in the process
of connecting to another queue manager. However, these errors
may not be relevant if your application uses the MQSeries MTS
Support, as additional connections are allowed. Remember that
you can connect other objects provided they are part of the same
transaction.

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• MQRC_GLOBAL_UOW_CONFLICT

This means that a conflict was detected in a global unit of work
resulting from the use of connection handles. This may happen
when an application tries to pass a connection handle between
objects that are performing different DTC transactions. Remember
that we can use a connection handle in only one transaction at a
time (you are, however, free to pass connection handles in non-
transactional operations). There are two ways to handle this
problem: either check that the MQSeries MTS attribute value of
the object is the right one for the application or correct the
application itself.

• MQRC_LOCAL_UOW_CONFLICT

This reason code tells you that an application is trying to pass a
connection handle between objects, where one object is
participating in a DTC transaction (usually referred to as a global
unit of work), while the other is under a queue manager-coordinated
transaction (usually referred to as a local unit of work). You could
still use a connection handle in this scenario, as long as the handle
is not participating in a transaction in both the GUW and the
LUW. To correct this error, try to check the MQSeries MTS
attribute value to ensure it’s correct. Alternatively, correct the
application by preventing it from sharing a connection handle
between different types of unit of work.

• MQRC_HANDLE_IN_USE_FOR_UOW

This error may arise if an application tries to pass a connection
handle between objects, where one object is still participating in
a DTC transaction while the other isn’t. Note that, under DTC,
transactions are completed asynchronously, which happens when
applications complete transactions or objects are finalized. This
error is also encountered when DTC has already timed out or shut
down. In this case, the object that was created inside the transaction
loses the association with the transaction, causing the error.
Again, check your application so objects don’t use connection
handles when running in different units of work.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

• MQRC_UOW_ENLISTMENT_ERROR

As discussed under the heading Transactions (see above), this
error may be caused by DTC time-outs. When the time-out for
DTC is reached, MQSeries objects are closed along with the
transaction. The application may not realize this and try to use the
object again, thus causing the error. Another possible reason for
this error is that you failed to reinstall NT Service Pack SP6a after
installing MTS from the NT Option Pack.

• MQRC_UOW_MIX_NOT_SUPPORTED

Performing a mix of transactional and non-transactional calls
may cause this error. Currently, it is not possible to combine
DTC-coordinated transactions with MQSeries-coordinated
transactions in the same process. There are no restrictions if either
an MQSeries transactional call comes from a transactional object
or a non-transactional call to MQSeries comes from a non-
transactional object. If a mixed call is attempted, only the first
transactional or non-transactional call will succeed and subsequent
calls of the other type will fail, causing the error.

Below are new constant definitions you can use in your application.
Use the definitions by placing them in header or module files.

MQRC_GLOBAL_UOW_CONFLICT= 2351
MQRC_LOCAL_UOW_CONFLICT = 2352
MQRC_HANDLE_IN_USE_FOR_UOW = 2353
MQRC_UOW_ENLISTMENT_ERROR = 2354
MQRC_UOW_MIX_NOT_SUPPORTED = 2355

You may encounter some of the problems detailed above if you are
new to programming MQSeries with MTS. It’s a good idea to check
your environment every time you try to run your component. Check
whether the NT Service Pack has been installed and whether the
resource managers are running. You can also use the installation
verification test application that comes with MQSeries MTS Support
to test your environment.

There are some threading issues you have to be familiar with that can
substantially affect performance. Every request for an MQCONN
results in the creation of a new thread. MTS sets a limit of 100 MTS

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

threads, and only one object can run on any thread at any time. Thus,
successive requests for connections from an object result in the
creation of more threads, and, as IBM states, if the thread count climbs
to 600, performance degradation can be observed. Try to code your
components wisely to avoid this situation.

OTHER CONSIDERATIONS

There are programming changes you have to deal with in order to
exploit the capabilities of MTS. One of them regards the creation of
objects. If your component uses other components, use the
CreateInstance method of an object’s context object to create an
instance of an object rather than CoCreateInstance. The former
creates an object that inherits from the creating object’s context,
including transactions, if any are present, and all security identities.
This is important if you want all components to run in a coordinated
state and help MTS to determine the outcome of a transaction. Below
is an example of creating an object using CreateInstance.

Dim ObjCtx As ObjectContext
Dim AccountObj As BankAcct.Request

' Try to get the objects context.
Set ObjCtx = GetObjectContext()

' Use the object’s context to instantiate another object.
Set AccountObj = ObjCtx.CreateInstance("BankAcct.Request ")

Another consideration concerns the use of the SetComplete and
SetAbort methods, which are used to indicate whether components
have completed their work. SetComplete can be used to indicate that
an object has successfully completed its work and is ready to be
deactivated. Similarly, SetAbort indicates an unsuccessful task that
also results in the state of the object being released.

If your component doesn't use these methods, automatic transactions
will complete only when the client releases the object. While MTS
will attempt to commit the transaction, the client won’t be able to
determine whether the transaction was committed or aborted. This is
a very difficult situation for both your application and MTS. Your
component should inform the client application that a particular task

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

either completed or failed. This method also helps MTS to scale server
components by allowing server resources to be used more efficiently.
Below is an example of SetComplete and SetAbort.

Dim ObjCtx As ObjectContext
Set ObjCtx = GetObjectContext()
On Error GoTo AbortWork

' Perform MQSeries work and database transaction here. Call
' SetComplete if the work was successful.
ObjCtx.SetComplete
Set ObjCtx = Nothing
SendAccount = TRUE
Exit Function

' Call SetAbort in the error handler if errors occurred.

AbortWork:
 ObjCtx.SetAbort
 Set ObjCtx = Nothing
 SendAccount = FALSE
 Exit Function

Rommel K Abdon
Senior System Engineer
Client Server Technologies Inc (The Philippines) © Xephon 2000

MQSeries clusters: a hands-on view (part 1)

If you think you’re ready for MQSeries clustering, be careful! Before
implementing clustering in your production environment, make sure
you understand its set-up and operations, as there are some surprises
in store for you.

This article is based on my experience of using MQSeries clusters,
and it attempts to inform you of the advantages and pitfalls of
clustering. Although most of my experience was gained on OS/390
and Windows NT, the concepts hold true for all environments. I firmly
believe that there is no substitute for trying things out when it comes

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

to understanding what clusters are about. Furthermore, in spite of all
the work I’ve done with clusters, I think there is still more for me to
learn!

DEFINITION

A cluster is a set or network of queue managers that are logically
associated in some way. They may, and in most cases will, reside
either on different platforms or across an OS/390 Sysplex. For Version
5.1 platforms, clustering is already available, though only OS/390
users with Version 2.1 installed can benefit from it.

MQSeries clustering aims to address three important issues:

• Reducing the number of definitions needed for a network of
connected queue managers.

• Enabling applications to continue to send messages even if the
target queue manager becomes unavailable.

• Enabling workload to be evenly distributed across a number of
available queue managers in the cluster.

Don’t confuse MQSeries clustering with hardware clustering, such as
HACMP using shared disks. An important point to remember is that
clustering is about extending the ability to add messages to queues
(via MQPUT) – it does not enable remote MQGETs.

A very good source of information on clustering can be found in the
IBM manual MQSeries Queue Manager Clusters (SC34-5349-00),
which can also be found on the Web (the continuation character, ‘➤ ’,
below indicates a formatting line break – the two lines comprise one
URL):

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
➤ csqzah/csqzah.htm

COMPONENTS

In order to satisfy the above aims, several new components have been
introduced:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

• The repository

This is an inventory of ‘clustered’ items that resides in a new
system queue (SYSTEM.CLUSTER.REPOSITORY.QUEUE). A
new repository manager is used to manage it. The repository
manager is started when the channel initiator (CHIN on OS/390)
address space starts. Note that this necessarily means that the
queue depth of the repository increases when clustered items are
added. Thus, after a queue manager restart, the queue depth may
decrease – this is perfectly normal, and is just the result of
messages being combined into one or more larger records.

• SYSTEM.CLUSTER.COMMAND.QUEUE

The cluster command queue is used to send commands between
cluster queue managers.

• SYSTEM.CLUSTER.TRANSMIT.QUEUE

The cluster transmission queue acts as the single transmission
queue for sending messages between cluster queue managers.

• Cluster receiver and cluster sender channels

These are two new types of channel. Models of them are provided
with the product as SYSTEM.DEF.CLUSRCVR and
SYSTEM.DEF.CLUSSDR respectively.

• Cluster workload exit

This determines how messages are distributed across queue
managers in the cluster. The default is a ‘round-robin’ approach,
where messages are equally distributed.

• Several new attributes are available for queue managers, queues,
and channels:

– Cluster Name, which is just the name of the cluster.

– Cluster NameList, which is a list of available clusters – this
allows an MQSeries resource to be part of more than one
cluster.

– Bind Option. Once MQSeries has selected an ‘available’

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

queue manager, the bind option determines whether all
messages are sent to that queue manager alone or distributed
evenly among other queue managers.

The available values of Bind Option are:

O (Open), meaning ‘stay’ with this queue manager.

N (Not fixed), meaning that MQSeries will distribute the
messages evenly across available queue managers. (I think
option O should have been F for ‘Fixed’.)

– Cluster workload exit.

The platforms on which clustering is supported are:

• MQSeries for AIX Version 5.1

• MQSeries for HP-UX Version 5.1

• MQSeries for OS/2 Warp Version 5.1

• MQSeries for OS/390 Version 2.1

• MQSeries for Sun Solaris Version 5.1

• MQSeries for Windows NT Version 5.1

• MQSeries for AS400 Version 5.1.

SUPPORTED PROTOCOLS

TCP/IP or LU 6.2 on any platform, NetBIOS or SPX on OS/2 or
Windows NT, and UDP/IP on AIX

HOW TO SET UP A CLUSTERING ENVIRONMENT

We are now in a position to set up a cluster of queue managers (see
Figure 1). Choose a stable platform for the queue manager that is to
host a full inventory of clustered resources (the so-called full repository).
It is a good idea to choose another queue manager to host a full
repository that will act as a back-up to the first one.

Simply follow the steps below to build the first cluster (called
TEST_REPOS in this example). This contains two OS/390 queue

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

managers called QM1 and QM2. Commands can submitted on OS/
390 via the MQSeries TSO ISPF admin SupportPac, either from MVS
via the console or from other platforms using the RUNMQSC utility.

• Ensure that the cluster components are available. On OS/390, this
requires the MSTR address space to be started with the sample
cluster definitions in CSQ4INSX. On Version 5.1 on other
platforms, the cluster components are automatically included.
Note that, on OS/390, the INDXTYPE of the cluster’s transmission
queue is set to CORRELID, while that of the repository is set to
MSGID.

• Alter both queue managers by adding the cluster attribute:

ALTER QMGR REPOS(TEST_REPOS)

• On QM1, define a cluster receiver channel that points to itself:

DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(xx.xx.xx.xx(1415)) CLUSTER(TEST_REPOS)

Figure 1: Cluster TEST_REPOS

TO.QM1(R) TO.QM2(R)

QM1

TO.QM2(S)(Full repository)

QM2

TEST.CLUSQ1

TO.QM1(S)

TEST.CLUSQ2

TO.QM1(S)

QM3WinNT

(Parital repository)

(Full repository)

(Parital repository)

TO.QM1(S)

QM4Sun

TEST.CLUSQ4TEST.CLUSQ3

TO.QM3WinNT(R) TO.QM4Sun(R)

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

xx.xx.xx.xx is the IP address and 1415 is the TCP/IP port number
on which MQSeries listens. If you choose to use the default port
number (1414), then it doesn’t need to be specified, though I
choose to do so to make documentation easier. You can also use
DNS, though make sure it’s active on all platforms where
clustering is used.

• On QM2 define a cluster receiver channel that points to itself:

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(yy.yy.yy.yy(1416)) CLUSTER(TEST_REPOS)

• On QM1 define a cluster sender channel that points to queue
manager QM2:

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(yy.yy.yy.yy(1416)) CLUSTER(TEST_REPOS)

• On QM2 define a cluster sender channel that points to queue
manager QM1:

DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(xx.xx.xx.xx(1415)) CLUSTER(TEST_REPOS)

Note that it is very important that the above definitions are made as
this will ensure that both ‘full repositories’ remain in step. You can, of
course use LU6.2/APPC instead of TCP/IP.

To test this initial set-up, define a cluster queue on QM1:

DEFINE QLOCAL(TEST.CLUSQ1) CLUSTER(TEST_REPOS)

and a cluster queue on QM2:

DEFINE QLOCAL(TEST.CLUSQ2) CLUSTER(TEST_REPOS)

Check that the queues are properly defined by issuing the following
command to both queue managers:

DISPLAY QCLUSTER(*) ALL

Both queues should be visible.

From QM2 write a message to cluster queue TEST.CLUSQ1 and
browse it from QM1. Again, notice that you cannot browse the cluster
queue from QM2, even though you can both write to it and display it
as a cluster queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

To make the cluster more realistic, a third queue manager called
QM3WinNT that resides on another platform (I’m sure you won’t be
surprised to hear the platform is Windows NT) should now be added
using the following steps:

• Define a cluster receiver channel on QM3WinNT pointing to
itself:

DEFINE CHANNEL(TO.QM3WinNT) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(zz.zz.zz.zz(1414)) CLUSTER(TEST_REPOS)

• Define a cluster sender channel on QM3WinNT that points to
queue manager QM1:

DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(xx.xx.xx.xx(1415)) CLUSTER(TEST_REPOS)

(You could have chosen to connect to QM2 instead.)

These are all the definitions you require. At this point the
repository on QM3WinNT is ‘partial’ – it contains enough
information to find a full repository and, thereby, the route to any
cluster queue. Note that you have to issue the DIS QMGR
command and check the REPOS and REPOSNL fields to establish
whether your queue manager has a full or partial repository; if the
fields are blank, the repository is partial, otherwise it’s full.

• Check the set-up by issuing the following commands from
QM3WinNT:

DIS QCLUSTER(*) ALL

The output of the above command should show TEST.CLUSQ1
and TEST.CLUSQ 2.

DIS CLUSQMGR(*) ALL

The output should show QM1 and QM3WinNT (it displays all
cluster queue managers when issued from a full repository
manager).

Write a message using one of the sample programs:

AMQSPUT TEST.CLUSQ2

(if you want to be really adventurous, use the ‘client’ version
AMQSPUTC) and browse it from QM2.

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Note that, while the only connection we’ve built is between
QM3WinNT and QM1, the cluster queue resides on QM2.
MQSeries dynamically defines the cluster channels between
QM3WinNT and QM2 ‘under the covers’. Definitions for these
dynamic channels were obtained from the cluster receiver channel,
whose CONNAME and CONVERT were used as a model. If the
cluster receiver uses a DNS name, then the cluster sender that’s
defined automatically uses the same DNS name. This means that
you need to ensure that DNS is active on that platform. To check
whether your channel was manually or automatically defined,
check the type of the channel: CLUSSDRA means it was defined
automatically and CLUSSDRB means it was defined manually.

To test the ‘return’ route, define a cluster queue on QM3WinNT
called TEST.CLUSQ3, and write a message to it from, say, QM1.

Finally, we add a queue manager called QM4Sun (on Sun Solaris) ,
with its cluster queue TEST.CLUSQ4, using the same method as for
QM3WinNT.

This article concludes in next month’s issue of MQ Update.

Ruud van Zundert
Independent Consultant (UK) © Xephon 2000

Production Workflow Concepts and Techniques

During a recent visit to IBM Hursley, UK, a copy of Production
Workflow Concepts and Techniques by Frank Leymann and Dieter
Roller (Prentice Hall PTR, 2000, ISBN 0-13-021753-0) happened to
fall into my briefcase. Leymann and Roller are two IBMers who were
instrumental in the design and architecture of MQSeries Workflow
(Leymann is the product’s chief architect); both are based in Germany,
and Leymann is also a professor at Stuttgart University, while Roller
is a senior staff member at IBM Böblingen.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

Despite being written by two IBMers, Production Workflow isn’t
about MQSeries Workflow (this is stated categorically in the Preface,
and the first two screenshots in the book are, indeed, of products from
rival companies); instead it’s a hefty-ish tome (about 450 pages) on
the topic of workflow – a kind of ‘Everything you wanted to know
about workflow but were afraid to ask in case you got an over-long and
excessively technical answer’. The book is aimed at just about anyone
who has a technical interest in workflow, from managers to
programmers and system architects, and covers the subject pretty
thoroughly and in substantial technical detail.

To some companies, the exercise of mapping business processes in
preparation for the introduction of workflow software is a revelation.
It’s a surprise to many managers to discover that no record exists
anywhere in the company of many of their key business processes,
which are simply an ‘oral tradition’ in the department concerned.
However, as Production Workflow demonstrates, workflow is more
than just mapping computer systems to business processes. As with
any other business activity, competitive advantage lies with those who
best understand the methods involved and can apply them most
appropriately to their own enterprise. Production Workflow can
certainly help those implementing workflow software – or even just
mapping the company’s business processes – to understand what’s
involved and how workflow software could best benefit the company.
The book discusses such topics as business process discovery, analysis,
modelling, and re-engineering, as well as aspects of such topics as
transactions and software engineering that are specifically relevant to
building workflow systems.

Just occasionally the book gets a bit ‘mathematically intense’. It’s all
very well saying that “the map κ : Ν ∪ (℘(Ν) − ∅) → ε ∪ { NOP} is
called a compensation map”, but was it really necessary to raid so
many alphabets just to construct that sentence? However, if you can
wade through (or skip) the fifty or so pages that contain a scattering
of ∃ s, ∀ s, and iffs, this is a very worthwhile read and an excellent text
for all those seeking a deeper understanding of workflow.

System Engineer (UK) © Xephon 2000

MQ news

CNT has added MQSeries support to its
Enterprise/Access EAI product set. This is
designed to speed up the integration of non-
MQ-enabled mainframe and mid-range
systems into the Enterprise/Access
framework, freeing organizations from
having to recreate business logic or adding
code to legacy systems.

For further information contact:
Computer Network Technology Corp, 605 N
Highway 169, Suite 800, Minneapolis, MN
55441, USA
Tel: +1 612 797 6000
Fax: +1 612 797 6800
Web: http://www.cnt.com

CNT International, c/o Network Solutions, 2
Langley Quay, Waterside Drive, Langley
Slough, SL3 6EX, UK
Tel: +44 1753 792400
Fax: +44 1753 792499

* * *

New Era of Networks and IBM are working
on ways to improve migration from
MQSeries Integrator Version 1 to Version 2.
Version 2 includes additional features, such
as content-based publish/subscribe,
transactions, and GUI-based management.

Separately, NEON announced its e-Business
Adapter Development Kit (e-ADK) and
Adapters are shipping for MQSeries
Integrator V2. The set of tools and libraries
are designed to accelerate and simplify the
development of adapters. Pre-built Adapters
and Accelerators include ones for XML,
Oracle, and JD Edwards.

For further information contact:
NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA
Tel: +1 303 694 3933
Fax: +1 303 694 3885
Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK
Tel: + 44 171 329 4669
Fax:+ 44 171 329 4567

* * *

Willow Technology has announced versions
of its MQSeries products for SCO
OpenServer and UnixWare and for SGI’s
IRIX. Each product is an MQSeries V2-
compatible server and interoperates with all
MQSeries V1, V2, and V5 client and server
products available from IBM and Willow.

Out now, MQSeries for SCO OpenServer
and UnixWare starts at US$4,820 and
US$9,440 for the SGI IRIX version.

For further information contact:
Willow Technologies Inc, PO Box 320005,
Los Gatos, CA 95032, USA
Tel: +1 408 377 7292
Fax: +1 408 377 7293
Web: http://www.willowtech.com

* * *

IBM is to include Landmark Systems’
monitoring products in its SystemPac for
OS/390, including The Monitor for
MQSeries.

x xephon

	Backing up MQSeries messages
	MQSeries and Microsoft Transaction Server
	MQSeries clusters: a hands-on view (part 1)
	Production Workflow Concepts and Techniques
	MQ news

