16

October 2000

]
In this issue

3 Anintroduction to MQSeries
Installable services

26 MQSeries clusters. ahands-on
view (part 2)
39 Customizing CSQ4ZPRM

43 Starting the channel initiator
and command server

44 MQ news

© Xephon plc 2000


Current Support
 
Xephon magazine issues are now supported at www.cbttape.org.



Please go to www.cbttape.org if you have any support questions.


MQ Update

Published by

Xephon

27-35 London Road
Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955
e-mail: harryl @xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344

Fax: +1 303 438 0290

Contributions

Articlespublishedin MQ Updateare paid for
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessit). If
you'’ ve a problem with your user-id or pass-
word call Xephon's subscription department
on +44 1635 33886.

Editor

Harry Lewis
Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 labels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.



An introduction to MQSeries installable services

INSTALLABLE SERVICE TYPES

Most MQSeries administrators should be familiar with the Object
Authority Manager (OAM), the MQSeries component that controls
access by applications to queue manager resources. The OAM isan
exampleof aninstallableservice—it' seffectively aplug-incomponent
of the queue manager and its plug-in interface is the installable
services API described in the Programmable Systems Management
Guide.

Therearethreetypesof installableservicedescribed by theinstallable
services API:

* Anauthorization service, which mediates application access to
MQSeries Objects (queues, processes, and the queue manager
itself).

e A nameservice, whichprovidesal ook-upmechanismfor obtaining
the queue manager name on which a particular remote queueis
defined, and is used to identity the name of alocal transmission
gueue for routing messages.

e Auseridservice, which providesauser-id and password that are
associated with an application (this service appliesto MQSeries
for OS/2 Warp only).

Of these, the authorization service is probably the one of greatest
general interest. To implement a user-written authorization service
implies replacing the OAM, and this offers many possibilities, from
building a bridge that connects to an existing non-MQSeries
authorizationservicetoemployingadistributed authorization service,
perhaps based on a repository that’s accessed via the network.

THE AUTHORIZATION SERVICE INTERFACE

The installable services interface consists of three sets of function
definitions, one for each type of installable service (authorization,
name, and userid). An instalable service implements the set of

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3



functions corresponding to its service type, and registers pointersto
these functions during initialization in order to make them known to
the queue manager. Theregistration is performed using an additional
Installable services function, MQZEP, which associates a function
pointer withtheappropriatefunctionidentifier definedintheM QSeries
include filecmgz.h.

I nitialization and ter mination

The identification of a particular module that is to serve as an
installable services component is controlled by Service and
ServiceComponent entries in the queue manager configuration file,
Thequeuemanager knowsthelocation of install ableservicefunctions
only after the installable service invokes the function MQZEP to
register them. MQZEP calls are initiated using the function that is
declared asthe external entry point of the modul ethat implementsthe
service, which must (for an authorization service) conform with the
MQZ INIT_AUTHORITY signature. For other service types,
MQZ_INIT_NAMEandMQZ_INIT_USERID actually haveequivalent
signatures.

Theserviceinitialization and termination functionsareeach calledin
two different modes, where the mode — primary or secondary — is
indicated by the Options parameter that’s passed to the function.
Primary initialization and termination each occur only once during
thelifetime of aninstallable service component —they correspond to
the initialization and termination of the queue manager itself.

Secondary initialization and termination may occur many times
during the lifetime of the queue manager, and correspond to the
Initialization and termination of individual processes or threads. The
Hconfig parameter that’s passed during initialization and termination
canbeusedby theservicecomponenttocorrelateapair of initialization
and termination calls.

By including more than one Service and ServiceComponent entry in
the queue manager configuration file, a number of instances of an
installable service can be ‘chained’. Each function invoked on a
particular instance is then able to indicate to the queue manager
whether another servicein the chain should be invoked by setting the

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



pContinuation parameter, if present, intheinstallableservicefunction
call. Atrap for theunwary isthat the default setting of this parameter,
which may be either MQZCI_CONTINUE or MQZCI_STOP, varies
between different functions.

Authorization service operation

For an authorization service, the minimum set of functionsthat must
be implemented is:

MQZ_INIT_AUTHORITY
MQZ_TERM_AUTHORITY
MQZ_CHECK_AUTHORITY or MQZ_CHECK_AUTHORITY_2

These three functions (counting the two variants of
CHECK_AUTHORITY asone) areinvoked onanauthorizationservice
by the queue manager during normal application activity.

The main task of an authorization service is to implement either
MQZ CHECK_AUTHORITY or MQZ CHECK _AUTHORITY 2,
whichdetermineswhether accessfromaspecified entity toaspecified
MQSeries object is permitted. The definition of the authorization
service interface assumes that the entity is a user-id (principal) or
group, with an entityType value of MQZAET PRINCIPAL or
MQZAET_GROUP respectively. The implementor of the serviceis,
however, ultimately responsible for determining which of the
underlying authorization mechanismsto apply and how to treat user-
ids and groups.

A further set of functions defines the interface that's used for
administering the permissions managed by the authorization service.
These are invoked as a result of administrative activity, such as
creating and del eting queues and using the admi nistration commands
dspmgaut and setmgaut. The functions are:

MQZ_GET_AUTHORITY or MQZ_GET_AUTHORITY_2
MQZ_GET_EXPLICIT_AUTHORITY or MQZ_GET_EXPLICIT_AUTHORITY_2?
MQZ_SET_AUTHORITY or MQZ_SET_AUTHORITY_2
MQZ_COPY_ALL_AUTHORITY

MQZ_DELETE_AUTHORITY

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5



If an authorization service is designed to be administered through
some mechanism other than calling the MQSeries dspmqgaut and
setmgaut commands, then it need not implement this second set of
functions.

Authorization service functions

MQZ_INIT_AUTHORITY

Thisfunction is called once when the queue manager is started, and
thereafter eachtimean MQCONN isperformed onthequeue manager.
The function prototype is shown below.

void MQENTRY MQZ_INIT_AUTHORITY (MQHCONFIG Hconfig,
MQLONG Options, MQCHAR48 pQMgrName,
MQLONG ComponentDatalength, PMQBYTE pComponentData,
PMQLONG pVersion, PMQLONG pCompCode, PMQLONG pReason);

The first time this function is called, Options is set to
MQZIO_PRIMARY. Thereafterit’ssettoMQZIO_SECONDARY. The
Hconfig parameter is associated with the connection —it can be used
to correlate a later call to MQZ TERM_AUTHORITY with acall to
MQZ _INIT_AUTHORITY. Thiswould free the resources associated
with a particular connection.

Thesizeof thecomponent dataareai sdefinedinthe ServiceComponent
entry of the queue manager configuration file. This data area is
allocated by the queue manager and made available on every call to
the installable service. It provides a mechanism for storing arbitrary
data that persists from call to call. If the service does not use the
component data area, the area can be configured with a size of zero
bytes.

By setting the value of the pointer pReason to either
MQRC_SERVICE_NOT_AVAILABLE or MQRC _INITIALIZATION
FAILED, the code that implements the service can indicate to the
gueue manager that it is unable to execute.

MQZ_TERM_AUTHORITY

This function is called with the Options parameter set to
MQZIO_SECONDARY by each application when the application’s

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



connectiontothegqueuemanager terminates(asecondary termination),

andiscalledoncewiththeOptionsparameter settoMQZIO_PRIMARY

when the queue manager itself terminates (a primary termination).
void MQENTRY MQZ_TERM_AUTHORITY (MQHCONFIG Hconfig,

MQLONG Options, PMQCHAR pQMgrName, PMQBYTE pComponentData,
PMQLONG pCompCode, PMQLONG pReason);

MQZ_CHECK_AUTHORITY and MQZ_CHECK_AUTHORITY 2

Either variant of this function is invoked by the queue manager to
providethefunctionality of anauthorization service. Thetwovariants
differ only in the way the name of the entity is passed, and only one
variant is used in the lifetime of the service. MQZ CHECK _
AUTHORITY ispassedthenameof theentity asastring (pEntityName),
as shown below.

void MQENTRY MQZ_CHECK_AUTHORITY (PMQCHAR pQMgrName,
PMQCHAR pEntityName, MQLONG EntityType,
PMQCHAR pObjectName, MQLONG ObjectType, MQLONG Authority,
PMQBYTE pComponentData, PMQLONG pContinuation,
PMQLONG pCompCode, PMQLONG pReason);

MQZ CHECK AUTHORITY 2 takes an MQZED structure instead
of astring:
void MQENTRY MQZ_CHECK_AUTHORITY_2 (PMQCHAR pQMgrName,
PMQCHAR pEntityName, PMQZED pEntityData,
PMQCHAR pObjectName, MQLONG ObjectType, MQLONG Authority,

PMQBYTE pComponentData, PMQLONG pContinuation,
PMQLONG pCompCode, PMQLONG pReason);

The MQZED structure contains fields for a domain and security
identifier, in addition to the field that stores the entity name. These
fields areintended for usein MQSeriesfor Windows NT, though the
MQZ CHECK AUTHORITY_2 function and MQZED structure are
also found on Unix systems, wherethe domain and security identifier
fields are not applicable.

Bothvariantsof thisfunctionusetheMQZID_CHECK_AUTHORITY
identifier, which meansthat only one can beregistered with MQZEP.
MQZ _INIT_AUTHORITY's p\Version parameter identifies which
variant is used — MQZAS VERSON_1 specifies MQZ CHECK _
AUTHORITY and MQZAS VERSON 2 specifies MQZ_CHECK _
AUTHORITY 2.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7



The check authority function’s task is to check whether an entity
identified in pEntityName (or pEntityData->pEntityNamePtr) is
permitted the type of access described by the authority parameter of
theM QSeriesobject pObjectName. Theresult of thecheck isassigned
to both the completion code and reason code variables (pointers to
these variablesare passed aspCompCode and pReason respectively).
Only three reason codes — MQRC_NOT_AUTHORIZED, MQRC _
SERVICE _NOT_AVAILABLE, and MQRC_SERVICE _ERROR-are
applicable. In addition, the reason code MQRC_NONE indicatesthat
the check was successful.

MQZ_GET_AUTHORITY and MQZ_GET_EXPLICIT_AUTHORITY

These two functions and their variants, MQZ GET_AUTHORITY 2
andMQZ_GET_EXPLICIT_AUTHORITY_2respectively, whichtake
aninput of type MQZED instead of astring and are not shown below,

are used in administrative operationsto discover the authority over a
particular object that’s assigned to the entity specified.

void MQENTRY MQZ_GET_AUTHORITY (PMQCHAR pQMgrName,
PMQCHAR pEntityName, MQLONG EntityType,
PMQCHAR pObjectName, MQLONG ObjectType,
PMQLONG pAuthority,
PMQBYTE pComponentData, PMQLONG pContinuation,
PMQLONG pCompCode, PMQLONG pReason);

void MQENTRY MQZ_GET_EXPLICIT_AUTHORITY (PMQCHAR pQMgrName,
PMQCHAR pEntityName, MQLONG EntityType,
PMQCHAR pObjectName, MQLONG ObjectType,
PMQLONG pAuthority, MQLONG AuthorityMask,
PMQBYTE pComponentData, PMQLONG pContinuation,
PMQLONG pCompCode, PMQLONG pReason);

Both functions return a collection of MQZAO constants (described
later) that apply to the entity and the specified MQSeries object. The
constants are returned in the location to which the pointer pAuthority
points. However, the documented behaviour differs subtly between
the two functions:

 MQZ GET_EXPLICIT _AUTHORITY masks the returned
authority value us ng the mask in the AuthorityMask parameter,
which isnot present in MQZ_GET_AUTHORITY.

« MQZ GET _EXPLICIT AUTHORITY returns the authority of
the principal “without the additional authority of the nobody

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



group”. (In the OAM authorization service implementation,
permissions associated with the nobody group are used for
checkingtheauthority of entitiesthat haveno specifically assigned
permissions. This may not be appropriate for other
implementations.)

MQZ_COPY_ALL_AUTHORITY

This administrative function assigns the authority associated with
another object to an MQSeries object.

MQZ_DELETE_AUTHORITY

This function deletes all permissions associated with a specified
M QSeries object.

Authority flags

The authority parameter is a combination of MQZAQO* flags, which
precisely describe the type of access being requested. There are two

MQZAO MQI group constant MQOO constant
MQZAO_CONNECT -

MQZAO_BROWSE MQOO_BROWSE

MQZAO_INPUT MQOO_INPUT_AS_Q_DEF
MQOO_INPUT_SHARED
MQOO_INPUT_EXCLUSIVE

MQZAO_OUTPUT MQOO_OUTPUT
MQZAO_INQUIRE MQOO_INQUIRE

MQZAO_SET MQOO_SET
MQZAO_PASS_IDENTITY_CONTEXT MQOO_PASS_IDENTITY_CONTEXT
MQZAO_PASS_ALL_CONTEXT MQOO_PASS_ALL_CONTEXT
MQZAO_SET _IDENTITY_CONTEXT MQOO_SET_IDENTITY_CONTEXT
MQZAO_SET_ALL_CONTEXT MQOO_SET_ALL_CONTEXT

MQZAO_ALTERNATE_USER_AUTHORITY MQOO_ALTERNATE_USER_AUTHORITY

Figure 1. MQZAO constants and their MQOO equivalents

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9



groupsof MQZAOflags, of whichtheM QI flags(covered by themask
MQZAO_ALL_MQI) correspond closely to the MQOO options
supplied to the MQOPEN call. Thisis no coincidence — the MQZ _
CHECK_AUTHORITY function is invoked by the queue manager
with aset of MQZAO flags each time an MQOPEN is attempted. The
other MQZAO constant in the MQI flags is MQZAO_ CONNECT,
which is specified during an MQCONN attempit.

The other group of MQZAO flags — the administration flags covered
by the MQZAO ALL_ADMIN mask — appear in calls to MQZ _
GET_AUTHORITY, MQZ_GET_EXPLICIT_AUTHORITY, and
MQZ_SET_AUTHORITY asthe result of running the dspmgaut and
setmgaut commands and other administration operations.

A SIMPLE FILE-BASED AUTHORIZATION SERVICE

This section provides an example using a simple file-based
authorization serviceimplemented on Al X. Theexampleserviceuses
rules defined in atext file when assigning permissions to MQSeries
objects. Aruleoccupiesasinglelineinthetext fileand conformswith
the following format:

object-name [entity:[r][wllx]1] [...]

Themeaning of r, w, and x in the context of the example serviceisas
follows:

1 gpecifies read permission and applies to the constants
MQZAO BROWSE, MQZAO INPUT, MQZAO INQUIRE,
MQZAQO DISPLAY, and MQZAO DISPLAY _STATUS.

* W specifies write permission and applies to the constants
MQZAO _OUTPUT, MQZAO_SET, MQZAO_CREATE,
MQZAO _DELETE, MQZAO_CHANGE, and MQZAO_CLEAR.

X gpecifies execute permission and applies to the constants
MQZAO_START_STOP, MQZAO RESOLVE _RESET, and
MQZAO_ PING.

MQZAQO_ CONNECT authority is provided if any of the three
permissions (r, w, or X) are present.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



Anasterisk (**’) can beused asawildcard torefer to all objectsor all
entities. Specific permissions take precedence over wildcard
permissions, and no distinction is made between users and groups.

Here are three example rules (one on each line):

REQUEST.Q mgm:rwx service:rw bob:rw
SYSTEM.DEAD.LETTER.Q mgm:rwx *:rw
* mgm: rwx

The first rule sets the permissions for the queue REQUEST.Q and
assigns permissions rwx to the user (or group) mgm, permissions rw
to service, and permissions rw to bob. The second rule assigns rwx
permission to mgm and rw to all others for queue
SYSTEM.DEAD.LETTER.QUEUE. The third rule assigns rwx
permissions to mgm for all objects not named explicitly in arule.

The example service logs details of all accesses and access attempts
(the source code for it, fileauthservice.c, is listed below). For
simplicity’ssake, it’s presented asasingle sourcefile, and thereisno
corresponding includefile. Notethe use of the continuation character,
‘07, in the code below to indicate a formatting line break that’s not
present in either the original source code or the code that can be
downloaded from Xephon's Web site (http://www.xephon.conv
mqupdate.html).

FILEAUTHSERVICE.C
f#fpragma options CPLUSCMT

jidefine _THREAD SAFE

#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <time.h>
#include <sys/time.h>
f#include <sys/types.h>
#include <fcntl.h>
#include <sys/mode.h>
#include <search.h>
#include <cmqc.h>
#include <cmgzc.h>

ffdefine MQCHARS "abcdefghijklmnopgrstuvwxyz™ \

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11



"ABCDEFGHIJKLMNOPQRSTUVWXYZ" \

"0123456789" \

"I %"
jtdefine CONFIG_FILE "/var/mgm/fileauthservice.conf"
ffdefine LOG_FILE "/var/mgm/fileauthservice.log"

// Prototypes for installable service functions

void mgz_init_authority (MQHCONFIG config, MQLONG options, MQCHAR48 gm,
MQLONG datalLength, PMQBYTE data, PMQLONG version,
PMQLONG cc, PMQLONG rc);
void mgz_term_authority (MQHCONFIG config, MQLONG options, PMQCHAR gm,
PMQBYTE data, PMQLONG cc, PMQLONG rc);
void mqz_check_authority (PMQCHAR gm,
PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mqz_check_authority_2 (PMQCHAR qgm,
PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);

void mqz_get_authority (PMQCHAR qgm,
PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mqz_get_authority_2 (PMQCHAR qgm,
PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mgqz_get_explicit_authority (PMQCHAR gm,
PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType,
PMQLONG authority, MQLONG authorityMask,
PMQBYTE componentData,
PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mgqz_get_explicit_authority_2 (PMQCHAR gm,
PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType,
PMQLONG authority, MQLONG authorityMask,
PMQBYTE componentData,
PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mgz_set_authority (PMQCHAR gm, PMQCHAR entityName, MQLONG
O entityType,

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mqz_set_authority_2 (PMQCHAR gm, PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mqz_copy_all_authority (PMQCHAR gm, PMQCHAR refObjectName,
PMQCHAR objectName, MQLONG objectType,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc);
void mqz_delete_authority (PMQCHAR gm, PMQCHAR objectName, MQLONG
O objectType,
PMQBYTE data, PMQLONG continuation, PMQLONG cc, PMQLONG rc);

// Prototypes for other functions

int init_file_authority (char *filename);

void check_file_authority (PMQCHAR entityName,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQLONG cc, PMQLONG rc);

void check_auth (char * permissions, MQLONG authority,
PMQLONG cc, PMQLONG rc);

// Prototypes for utility functions

size_t mgstrlen (const char *string);

char *mgstrncpy (char *dest, const char *src, size_t number);

void replace (char *string, char a, char b);

int log (char *message, ...);

// Hashtable used to store authorization entries for look-up

struct hsearch_data hashtable = { NULL, 0, 0, 0, 0 };

// Buffer contains configuration data from file

char *buffer = NULL;

// File descriptor for log file

int logfd;

// Entry point of the installable service function MQZ_INIT_AUTHORITY

void mgz_init_authority (MQHCONFIG config, MQLONG options, MQCHAR48 gm,
MQLONG datalength, PMQBYTE data, PMQLONG version,
PMQLONG cc, PMQLONG rc)

if (options == MQZIO_PRIMARY)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13



lTogfd = open (LOG_FILE, O_WRONLY | O_CREAT | O_APPEND,
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
log ("fileauthservice initialized (%s last modified %s)\n",
_ FILE__, _ TIMESTAMP_ );
}
else
{
logfd = open (LOG_FILE, O_WRONLY | O_APPEND, 0);
}

MQZEP (config, MQZID_INIT_AUTHORITY,
(PMQFUNC) mqgz_init_authority, cc, rc);
MQZEP (config, MQZID_TERM_AUTHORITY,
(PMQFUNC) mqz_term_authority, cc, rc);
MQZEP (config, MQZID_COPY_ALL_AUTHORITY,
(PMQFUNC) mqgz_copy_all_authority, cc, rc);
MQZEP (config, MQZID_DELETE_AUTHORITY,
(PMQFUNC) mqgz_delete_authority, cc, rc);

if (*version == MQZAS_VERSION_2)

{
MQZEP (config, MQZID_CHECK_AUTHORITY,
(PMQFUNC) mgz_check_authority_2, cc, rc);
MQZEP (config, MQZID_GET_AUTHORITY,
(PMQFUNC) mgz_get_authority_2, cc, rc);
MQZEP (config, MQZID_GET_EXPLICIT_AUTHORITY,
(PMQFUNC) mgz_get_explicit_authority_2, cc, rc);
MQZEP (config, MQZID_SET_AUTHORITY,
(PMQFUNC) mqgz_set_authority_2, cc, rc);
}
else
{
MQZEP (config, MQZID_CHECK_AUTHORITY,
(PMQFUNC) mgz_check_authority, cc, rc);
MQZEP (config, MQZID_GET_AUTHORITY,
(PMQFUNC) mqgz_get_authority, cc, rc);
MQZEP (config, MQZID_GET_EXPLICIT_AUTHORITY,
(PMQFUNC) mqz_get_explicit_authority, cc, rc);
MQZEP (config, MQZID_SET_AUTHORITY,
(PMQFUNC) mqgz_set_authority, cc, rc);
}

if (init_file_authority (CONFIG_FILE) < 0)

*cc = MQCC_FAILED;
*rc MQRC_SERVICE_ERROR;

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



// Installable service function MQZ_TERM_AUTHORITY

void mgz_term_authority (MQHCONFIG config, MQLONG options, PMQCHAR gm,
PMQBYTE data, PMQLONG cc, PMQLONG rc)

{
if (buffer)
{
free (buffer);
}
if (options == MQZIO_PRIMARY)
{
log ("fileauthservice terminated.\n");
}
close (logfd);
}

// Installable service function MQZ_CHECK_AUTHORITY

void mqz_check_authority (PMQCHAR gm,
PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)

check_file_authority (entityName, objectName, objectType,
authority, cc, rc);
}

// Installable service function MQZ_CHECK_AUTHORITY_2

void mqz_check_authority_2 (PMQCHAR gm,
PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)

check_file_authority (entity->EntityNamePtr, objectName, objectType,
authority, cc, rc);
}

// Installable service function MQZ_GET_AUTHORITY
// (not implemented in this example)

void mgz_get_authority (PMQCHAR gm,
PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15



{
return;

}

// Installable service function MQZ_GET_AUTHORITY
// (not implemented in this example)

void mqz_get_authority_2 (PMQCHAR gm,
PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)
{
return;
}

// Installable service function MQZ_GET_EXPLICIT AUTHORITY
// (not implemented in this example)

void mqz_get_explicit_authority (PMQCHAR gm,
PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType,
PMQLONG authority, MQLONG authorityMask,
PMQBYTE componentData,
PMQLONG continuation,
PMQLONG cc, PMQLONG rc)

{
return;

}

// Installable service function MQZ_GET_EXPLICIT_AUTHORITY_2
// (not implemented in this example)

void mqz_get_explicit_authority_2 (PMQCHAR gm,
PMQZED entity, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType,
PMQLONG authority, MQLONG authorityMask,
PMQBYTE componentData,
PMQLONG continuation,
PMQLONG cc, PMQLONG rc)

{
return;

}

// Installable service function MQZ_SET_AUTHORITY
// (not implemented in this example)

void mgqz_set_authority (PMQCHAR gm,

PMQCHAR entityName, MQLONG entityType,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)
{

return;

}

// Installable service function MQZ_SET_AUTHORITY_2
// (not implemented in this example)

void mqz_set_authority_2 (PMQCHAR gm, PMQZED entity, MQLONG entityType,

PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)
{
return;
}

// Installable service function MQZ_COPY_ALL_AUTHORITY
// (not implemented in this example)

void mgz_copy_all_authority (PMQCHAR gm, PMQCHAR refObjectName,
PMQCHAR objectName, MQLONG objectType,
PMQBYTE componentData, PMQLONG continuation,
PMQLONG cc, PMQLONG rc)
{
return;
}

// Installable service function MQZ_DELETE_AUTHORITY
// (not implemented in this example)

void mgz_delete_authority (PMQCHAR gm,

PMQCHAR objectName, MQLONG objectType,

PMQBYTE data, PMQLONG continuation, PMQLONG cc, PMQLONG rc)
{

return;
}

// This function builds a hashtable of authorization entries

// from a configuration file that contains Tines in the format:
//

// object-name [entity":"["r"]1["w"]1["x"]1] [...]

//

// Examples:

// REQUEST.Q alice:rw bob:rw carol:r

// SYSTEM.DEAD.LETTER.QUEUE mgm:rwx *:rw

/] * mgm:rwx

int init_file_authority (char *filename)
{

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

17



static char *buffer;

struct stat file_info;
char *start;

char *next_line;

char *comment;

int fd;

int size;

int entries = 0;

// Open the configuration file and find its size.
if ((fd = open (filename, O_RDONLY, 0)) == -1 ||
fstat (fd, &file_info) == -1)
{
return -1;
}
// Allocate a buffer for the file contents and read them
if ((buffer = (char *) malloc (file_info.st_size + 1)) &&
(size = read (fd, buffer, file_info.st_size)) ==
O file_info.st_size)
{
*(buffer + size) = '"\0"';
start = buffer;
close (fd);
}
else
{
close (fd);
return -2;
}
// Create a hashtable. As a rough estimate, we'll guess there are
// size/20 entries (average 20 chars per line). The size we request
// doesn't have to be exactly right -- it will grow if necessary.
if (lhcreate_r ((size / 20) + 1, &hashtable))
{
return -3;
}
// Create a hashtable entry for each valid authorization line
// in the file.
while (start)
{
// Find the end of the 1ine and terminate it.
18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



if (next_line = strchr (start, '\n'))

{
*next_line++ = '\0";
}
else
{
next_line = NULL;
}

// If there's a comment, terminate the Tine there.
if ((comment = strchr (start, '#')))
*comment = '\0';
// Split the line into { key value } where key is the first token
// and value is separated from key by whitespace.
if ((start = strtok (start, " \t")))
ENTRY entry, *result;

entry.key = start;
entry.data = strtok (NULL, "\0");

if (!hsearch_r (entry, ENTER, &result, &hashtable))
{
entries++;

}
else

{
// Insert into hashtable failed.
return -4;

}

start = next_line;
}

// Return the number of entries added to the hashtable (for info).

return entries;

// This function checks whether entityName has the specified authority
// over objectName. It looks up objectName in the hashtable and
// searches for permissions flags associated with entityName.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19



void check_file_authority (PMQCHAR entityName,
PMQCHAR objectName, MQLONG objectType, MQLONG authority,
PMQLONG cc, PMQLONG rc)

{
char target [MQ_Q_NAME_LENGTH + 1]; // + 1: trailing null
char entity [MQ_USER_ID_LENGTH + 2]1; // + 2: trailing colon and null
char *permissions = NULL;
ENTRY named = { target, NULL };
ENTRY unnamed = { "*", NULL };
ENTRY *result;
// Get null-terminated copies of the objectName and entityName.
mgstrncpy (target, objectName, MQ_Q_NAME_LENGTH);
mgstrncpy (entity, entityName, MQ_USER_ID_LENGTH);
strcat (entity, ":");
// We do a hashtable look-up using the target (the object name) as
// the key. If the object has no specific named entry, we try "*"
// instead.
if (!'hsearch_r (named, FIND, &result, &hashtable) ||
'hsearch_r (unnamed, FIND, &result, &hashtable))
{
// We look for a token entity: in the result.
permissions = strstr (result->data, entity);
// If this entity does not appear, check for wildcard
// permissions.
if (!permissions)
{
permissions = strstr (result->data, "*:");
}
}
// Perform the check with whatever flags we found (if any) and 1log
// the result
check_auth (permissions, authority, cc, rc);
log ("%s %s authority 0x%081X on target %s\n",
entity, (*rc == MQRC_NONE ? "granted"” : "denied"),
authority, target);
}

// Check whether the specified permissions flags allow the requested
// authority

void check_auth (char * permissions, MQLONG authority,

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



PMQLONG cc, PMQLONG rc)

// These definitions group MQZAO constants under broader read/write/
// execute/connect permissions flags. Connections are allowed if any
// read/write/execute permissions are present.
ffdefine READ_OPTIONS (MQZAO_BROWSE | MQZAO_INPUT | \
MQZAO_INQUIRE | MQZAO_DISPLAY | MQZAO_DISPLAY_STATUS)
jtdefine WRITE_OPTIONS (MQZAO_OUTPUT | MQZAO_SET | \
MQZAO_CREATE | MQZAO_DELETE | MQZAO_CHANGE | MQZAO_CLEAR)
ftdefine EXECUTE_OPTIONS (MQZAO_START_STOP | MQZAO_RESOLVE_RESET | \
MQZAO_PING)
ffdefine CONNECT_OPTIONS (MQZAO_CONNECT)
if (permissions)
{
char *r = strchr (permissions, 'r');
char *w = strchr (permissions, 'w');
char *x = strchr (permissions, 'Xx');
if ((Cauthority & CONNECT_OPTIONS) && (!r && !w && !x)) ||
(Cauthority & READ_OPTIONS) && !r) ||
(Cauthority & WRITE_OPTIONS) && !w) ||
((authority & EXECUTE_OPTIONS) && !x))
{
*cc = MQCC_FAILED;
*rc = MQRC_NOT_AUTHORIZED;
}
}
else
{
*cc = MQCC_FAILED;
*rc = MQRC_NOT_AUTHORIZED;
}
}

// Internal convenience functions

size_t mgstrlen (const char *string)

{
return (string ? strspn (string, MQCHARS) : 0);

}

char *mgstrncpy (char *dest, const char *src, size_t number)
{

// dest must be (size + 1) bytes or Targer to accommodate the
// terminating byte

strncpy (dest, src, number);
dest [number] = "\0'";

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21



dest [strspn (dest, MQCHARS)] = "\0';

return dest;

}
void replace (char *string, char a, char b)
{

register char *C;

for (c = string; *c; c++)

{

if (*c == a) *c = b;

}

}

// This function writes log file entries with a date/timestamp and
// process identifier

int lTog (char *message, ...)
{
Jfdefine BUFFER_SIZE 4096

static char buffer [BUFFER_SIZE];
int bytes = 0;

// Write the 1og message after a timestamp

if (logfd)

{
time_t timenow;
struct tm *tm;
va_list arg_Tlist;

timenow = time (NULL);

tm = Tocaltime (&timenow);

bytes = sprintf (buffer, "[%1d] %02d/%02d/%04d %02d:%02d:%02d ",
getpid (),
tm->tm_mon + 1, tm->tm_mday, tm->tm_year + 1900,
tm->tm_hour, tm->tm_min, tm->tm_sec);

va_start (arg_list, message);
bytes += vsprintf (&buffer [bytes], message, arg_list);

va_end (arg_list);

write (logfd, buffer, bytes);
}

return bytes;

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



BUILDING THE EXAMPLE SERVICE

The following command can be used (or included in a makefile) to
build the example installable service from the source file
fileauthservice.c as object fileauthservice:

cc -o fileauthservice fileauthservice.c -Tc_r -l1pthreads
O -Imgmzf_r -e mqz_init_authority -bM:SRE

Thethreaded versions of the C, ‘ pthreads’, and MQSeriesinstallable
servicelibrariesareused. Theinitidizationfunctionmgz_init_authority
is defined as the external entry point.

CONFIGURING THE EXAMPLE SERVICE

The queue manager’s authorization service is specified in the gm.ini
configurationfile. It'sadvisableto useanewly created and dedicated
gueue manager rather than an existing one that was previously
configured to usethe OAM. Thisavoids any difficulty of reinstating
the OAM later in the presence of a previoudy defined set of access
control definitions.

TheModulelineinthe ServiceComponent entry must identify thepath
of the object file that contains theinstallable service module (here, it
is assumed to be the directory /var/mgm).

Service:
Name=AuthorizationService
EntryPoints=9

ServiceComponent:
Service=AuthorizationService
Name=fileauthservice
Module=/var/mgm/fileauthservice
ComponentDataSize=0

THE EXAMPLE SERVICE IN OPERATION

The installable service creates alog file (specified in the source as
Ivar/mgmvfileauthservice.log), in which an entry iswritten for every
MQZ CHECK_ AUTHORITY request. Hereisan example collection
of entries that occur during the initialization of the queue manager.
Each line begins with the process identifier in square brackets,
followed by the date and timestamp of the entry. The entityName for

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23



whom authority isrequested appearsnext, followed by acolon, the set
of authority bits (MQZAQ constants) requested, and the name of the

target object.

[10468] 08/24/2000 22:08:02 fileauthservice initialized
O (fileauthservice.c Tast modified Sun Aug 24 22:01:23 2000)

24

[9454] 08/24/2000 22:08:08 mgm: granted authority
O target SERVICE.QM

[9454] 08/24/2000 22:08:08 mgm: granted authority
0 target

[94547 08/24/2000 22:08:08 mgm: granted authority
O target SYSTEM.DEFAULT.NAMELIST

[9454] 08/24/2000 22:08:08 mgm: granted authority
O target SYSTEM.CLUSTER.COMMAND.QUEUE

[9454] 08/24/2000 22:08:08 mgm: granted authority
O target SYSTEM.CLUSTER.TRANSMIT.QUEUE

[94547 08/24/2000 22:08:08 mgm: granted authority
O target SERVICE.QM

[9454] 08/24/2000 22:08:08 mgm: granted authority
O target SYSTEM.CLUSTER.TRANSMIT.QUEUE

[9454] 08/24/2000 22:08:08 mgm: granted authority
O target SYSTEM.CLUSTER.REPOSITORY.QUEUE

[9712] 08/24/2000 22:08:09 mgm: granted authority
O target SERVICE.QM

0x00000001

0x00000010

0x00000010

0x00000034

0x0000000E

0x00000200

0x00000200

0x00000002

0x00000001

on

on

on

on

on

on

on

on

on

[12274] 08/24/2000 22:08:09 mgm: granted authority 0x00000001 on

O target SERVICE.QM

[12274] 08/24/2000 22:08:09 mgm: granted authority 0x00000024 on

0O target SYSTEM.CHANNEL.INITQ

[94547 08/24/2000 22:08:09 mgm: granted authority 0x0000000E on

0O target SYSTEM.CLUSTER.REPOSITORY.QUEUE

[9454] 08/24/2000 22:08:09 mgm: granted authority 0x00000006 on

O target SYSTEM.CLUSTER.TRANSMIT.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00000010 on

0 target

[9454] 08/24/2000 22:08:10 mgm: denied authority 0x00040000 on

O target APP_TEST.Q

[9454] 08/24/2000 22:08:10 mgm: granted authority
O target REPLY.Q

[9454] 08/24/2000 22:08:10 mgm: granted
O target REQUEST.Q

[9454] 08/24/2000 22:08:10 mgm: granted
O target SYSTEM.ADMIN.CHANNEL.EVENT
[9454] 08/24/2000 22:08:10 mgm: granted
O target SYSTEM.ADMIN.COMMAND.QUEUE
[9454] 08/24/2000 22:08:10 mgm: granted
O target SYSTEM.ADMIN.PERFM.EVENT
[9454] 08/24/2000 22:08:10 mgm: granted
O target SYSTEM.ADMIN.QMGR.EVENT

authority
authority
authority
authority

authority

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

0x00040000

0x00040000

0x00040000

0x00040000

0x00040000

0x00040000

on

on

on

on

on

on



[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.CHANNEL.INITQ

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.CHANNEL.SYNCQ

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.CICS.INITIATION.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.CLUSTER.COMMAND.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.CLUSTER.REPOSITORY.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.CLUSTER.TRANSMIT.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.DEAD.LETTER.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.DEFAULT.ALIAS.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.DEFAULT.INITIATION.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.DEFAULT.LOCAL.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.DEFAULT.MODEL.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.DEFAULT.REMOTE.QUEUE

[9454] 08/24/2000 22:08:10 mgm: granted authority 0x00040000 on
O target SYSTEM.MQSC.REPLY.QUEUE

INSTALLABLE SERVICESASA WINDOW TO QUEUE MANAGER
ACTIVITY

Asinstallable services are exposed to details of the queue manager’s
internal operation, they offer interesting possibilities for monitoring
theactivity of thequeuemanager. Inthelog excerpt above, theprocess
identifiers correspond to the execution controller (10468) and two
agents (9454 and 12274). Thisinformation can be obtained from the
pscommand. From the queuesand authoritiesrequested, we caninfer
that 9454 isacting for the cluster controller and 12274 for the channel
initiator, and we can observe the subsequent activity of each of them.

Chris Markes
HCI Architect
IBM UK Laboratories Ltd (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25



MQSeries clusters: a hands-on view (part 2)

Thisisthe second part of thistwo-part articleon MQSeriesclustering
(thefirst part appeared inlast month’sissue). Thisarticleillustrates
M QSeriesclustering using theexampl e set-up show in Figure 1. Note
that this figure also appeared in last month’s instalment, though the
boxes around the queue managers were omitted in that version.

TO.QM1(R) l l TO.QM2(R)
TO.QM2(S)
QM1 —> QM2
(Full repository) (Full repository)
TEST.CLUSQ1 LI <+— LI~ TEST.CLUSQ2
| TO.QML(S) |
TO.QM1(S) T
TO.QM1(S)
QM3WiInNT QM4Sun
(Partial repository) (Partial repository)
TEST.CLUSQ3 L[ LI TEST.CLUSQ4
TO.QM3WinNT(R)T T TO.QM4Sun(R)

Figure 1. The sample MQSeries cluster

COMPARISON OF THE NUMBER OF DEFINITIONS

At thispoint, we have defined a cluster with four queue managers, so
let’s check how many definitions were made:

Number of

definitions
One cluster sender channel per queue manager 4
One cluster receiver channel per queue manager 4
One cluster queue per queue manager 4
Total 12

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



So, usingjust 12 definitions(ignoringtherequired‘ system’ definitions),
| am able to connect four queue managers together, and each is able
to write to any of the cluster queues.

If thesamenetwork of queuemanagerswascreated using ‘ traditional’
gueuing definitions, we would need:

Number of

definitions

Three sender channels per queue manager Total 12
Three receiver channels per queue manager Total 12
One local queue per queue manager Total 4
Three remote queues per queue manager Total 12
Three XmitQs per queue manager Total 12
Three process definitions per queue manager Total 12
Total Total 64

Thisclearly demonstratesthe significant savinginadministrationthat
clustering yields.

DATA CONVERSION

As would be the case with traditional distributed queuing methods,
messages going from one platform to another will probably need
conversion.

Even though M QSerieswill happily convert dataat thechannel level,
it is recommended that conversion is managed by the application
when it gets messages—thisiseasily achieved by using MQGET with
the CONVERT option. Thisisparticularly important when amessage
Is sent to severa platforms (so-called * multi-hopping’). You want to
avoid having to convert the message at each stage — instead convert
at thelast stageusingyour program. Notethat changing from MQGET
aone to MQGET plus CONVERT means that you' Il need to handle
situations where MQSeries is unable to convert the data.

A closeinspection of the new cluster channel sshowsthat thereceiver
channel hasanew field ‘convert by sender’. It isthisfield —and this
field only — that determines whether MQSeries will automatically
convert the data. This can lead to some confusing Situations, as
demonstrated by the table overleaf.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27



CONVERT = ?

Cluster sender Cluster receijver Does conversion
TO.QM1 TO.QM3WinNT take place?
Y Yes

N No
Y Yes
N No

== <<

In the second row, the ‘sender’ indicates that conversion is to take
place, and yet the overall result isthat it does not. Rather than display
the channel attributes to check whether conversion takes place, it is
better —inaclustering environment —to display the channelsfromthe
cluster’s point of view using the DIS CLUSQMGR command and
check the status of the CONVERT field.

Another issue you may encounter when using clustering concernsthe
use of channel message exits in traditional distributed queuing
environments. | myself don’tlikeusing exits—the system should cope
with my needs — though there are situations when exits have to be
introduced. One such situation is when you use ‘MERVA' on the
mainframe (MERVA is a financial messaging system that allows
accessto the SWIFT network), whoseinternal settings expect datato
be in codepage 500. MERVA uses a set of control characters to
recognizethe start and end of data. The control charactersare‘{’ and
‘}’, and MERVA expects them as hex characters xCO and xDO. The
problem arises if the mainframe queue manager uses, say, codepage
273 (German) instead of codepage 500. If the MQSeries channels
convert messages (in other words, you set CONVERT=Y and the
message format as MQSTR), the control characterswill be converted
to x43 and xDC respectively. Many years ago it was decided that a
messageexit should beusedto convert thedatato codepage 500, even
though the queue manager uses codepage 273. This leads to the
horrible situation where the CCS D in the M QSeries message header
reads ‘ 273, though the datais, in reality, in CCSD ‘500’!

This ‘works’ in atraditional channel set-up, but failsin a clustered
environment. Remember that the receiving queue manager has only
onecluster receiver channel, and so all datasent to thischannel would
be converted to codepage 500 if the message exit is used there! The
solution, asmentioned earlier, isto ensurethat therecei ving program,
and not the channel, does the conversion by using the CONVERT
option with MQGET and setting the codepage to 500.

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



Another solution to the MERVA problem is to set the CC3 D of the
gueue manager to 500, though thismay lead to even bigger problems
If your language's alphabet includes special characters.

OPERATIONS

Once clustering isimplemented, the Master address space will show
these new messages at start-up:

CSQVv4521 MQV1 CSQVXLDR Cluster workload exits not available
Thisisfine (if you are not using the exit specified).

CSQI007I MQV1 CSQIERS3 BUILDING IN-STORAGE INDEX FOR
QUEUE SYSTEM.CLUSTER.REPOSITORY.QUEUE

Theabovemessageresultsfromthefact that M QSeriesbuildsindices
for every queue that has an index.

When the OS/390 channel initiator (CHIN) address space starts, you
should seethe Repository Manager starting (seethe message below).
Thisis an essential component of the repository.

CSQX131I MQV1 CSQXADPI 8 adapter subtasks started, 0 failed
CSQX410I MQV1 CSQXREPO Repository Manager started

If the Repository Manager isn’'t running, cluster queues cannot be
seen and new cluster definitions cannot be propagated to other queue
managers.

Under normal circumstances, you should see cluster sender and
receiver channels starting and stopping in exactly the same way as
standard channels, as indicated by the following messages.

CSQX500I MQV2 CSQXRESP Channel TO0.MQV2 started
CSQX500I MQV2 CSQXRCTL Channel TO0.MQV1 started

PROBLEMSAND HOW TO DEAL WITH THEM

As with any other type of system, problems do occur in clustered
environments. The following is a subset of things that can happen:

1 The Repository Manager stops.

This is potentially a nasty one. The first thing to do is ensure
you've got al the latest maintenance patches applied. This

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29



30

problem can happenwhenaninternal M QSerieserror hasoccurred,
for instance:

CSQX038E MQXX CSQXREPO Unable to put message to
SYSTEM.CLUSTER.TRANSMIT.QUEUE, MQCC=2 MQRC=2013

CSQX448E MQXX CSQXREPO Repository Manager stopping because
O of errors. Restart in 600 seconds

Asyou can see, the Repository Manager will attempt arestartin
tenminutes' time, but if the message states’ Repository Manager
stopped’, theonly course of actionisa CHIN restart. By theway,
you cannot change the restart time of 600 seconds.

You get areturn code 2085 (unknown object) after an MQPUT to
acluster queue.

Thisis abeauty! There are many reasons for getting this return
code, but you would have thought it wouldn’t happen in a
clustered environment. Provided the Repository Manager hasn’t
stopped, and you' ve given the correct cluster queue name, then
the only reason that remains is that your local queue manager
can't ‘see' the cluster queue, eventhough it ispart of the cluster!

Thefirst thing to do is to issue some display commands:

DIS QCLUSTER(*)
Thisshoulddisplay al instancesof thequeue, and thiscommand:
DIS CLUSQMGR(*)

should display information on all relevant queue managers and
cluster channels.

If these are correct, then you may have a problem similar to one
| discovered alittle while ago. Remember the set-up of acluster
where the third queue manager was added? This works fine,
provided the third queue manager has a partia repository. If,
however, thethird queuemanager hasafull repository, thendon’t
rely on dynamically generated cluster channels — for a full
repository queue manager to join a cluster and ensure that all
updatesarereflectedinitsrepository, itscluster channelsmust be
defined manually.

In our case, when a new cluster queue was defined, it was not

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



propagated to the newly added queue manager, so it got an
RC2085 (unknown object) when it then performed an MQPUT.

You can temporarily get the repository back ‘inline' by issuing
thecommand REFRESH CLUSTER(TEST REPQOS), thoughthis
is not a command to be used lightly. This command basically
deletes all the cluster information and rebuildsit.

3 When you try to write to a cluster queue, the message does not
arrive, but whentheoperationiscarried out using aremotequeue,
it works fine.

Thescenariohereisthat you' vegot anexistingworking application
using traditional channels. The application does an MQPUT
specifying the destination queue name and queue manager. A
standard transmission queue with the same name as the remote
gueue manager exists. You then prepare for clustering by going
to the remote queue manager, defining the cluster channels, and
changing the queue to a cluster queue. The standard receiver
channel is then stopped.

Theapplicationdoesan MQPUT, which succeeds, but themessage
doesn’'t land on the cluster queue. You may imagine that the
message instead landed on the cluster transmission queue, but
thisisnot the case. The message wasfinally tracked down to the
old transmission queue —thereason for it being sent thereisthat
the application specified the destination queue manager, and,
because a transmission queue with the same name as the remote
gueue manager exists, MQSeries duly placed the messagethere,
asexpected! To remedy this, you either removethetransmission
gueue or, if you intend to continue using it, change the program
by not specifying the destination queue manager.

4  Youwriteto acluster queue that is defined in two places but the
message only arrivesin one place.

Check the queue’s Default Bind Option. For equal distribution
acrossall avail ablequeuemanagers, thisshouldbesetto‘N’ (Not
fixed). If the option is correct, then check the status of the queue
manager itself, then check the channel, and finally verify that the
gueue is put-enabled.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31



5

32

Beware of the DLQ!

If you write messages to a clustered queue on another platform,
and that queue becomes full, the sending application will not be
informed of the problem (however, with alocal queue, you’' d get
an ‘RC=2053"). Any messages that cannot be delivered are
written to the DLQ. If the DLQ is not there or is‘ put-disabled’,
messages remain on the sending system’s
SYSTEM.CLUSTER. TRANSMIT.QUEUE. Obvioudly, You also
need a program to process messages on the DLQ.

The effect of the Default Bind Option.

Imagine you have a cluster with three queue managers. An
application MQPUTSs on the first queue manager, while on the
other two you have defined the same cluster queue, each with
Default Bind Option=N (Not fixed). If no errors occur, then
messages are distributed equally among them in a round-robin
fashion.

Now imagine that, while writing one hundred messages, the
channel to one of the queue managers becomes unavailable.
What happens?

— Onone cluster queue, where the channel is unavailable, no
messages are delivered.

—  Ontheother cluster queuewe seemessages2, 4,6, 8, ..., 100
followedby 1, 3,5, 7, ..., 99 (originally bound for the other
gueue).

The same would happen if the queue is made ‘put disabled’.

Now supposethat both cluster queuesare changed to use Default
Bind Option=0 (Open) and another hundred messagesarewritten
to them. All messages stay on the sending system’s
SYSTEM.CLUSTER. TRANSMIT.QUEUE.

Why doesthis happen? The answer isthat MQSeries selectsone
of the queue managers and startswriting to it. Option ‘O’ means
‘write all messages to the queue manager selected’, so when its
channel becomes unavailable, there is no other place to send

© 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



messages, and messages remain at the source queue manager.
When you browse the cluster xmitg, you seethat its CORRELID
IS the name of the cluster channel that became unavailable.

You must, therefore, realize that these messages will remain
unprocessed until thechannel becomesavailableagain. Thesame
happens if the queue manager is forcibly stopped.

Finally, imagine a scenario where a cluster queue existsonly in
one place and the queue is ‘put disabled’. This results in an
‘RC=2051". If thecluster queueexistsin morethan oneplace, the
message is redirected to the next available queue manager.

7 How do |l getrid of old cluster definitions?

If you want permanently to remove a queue manager from a
cluster, follow theinstructionsin Apar PQ35026. If you want to
remove the queue manager temporarily, use the SUSPEND and
RESUME commands. There are, however, situations where
‘orphan’ cluster itemsareleft around that cannot be del eted using
either TSO panelsor commands. Thiscan happenif, for instance,
amachinecrashesand hastoberebuilt. Thiscanleadtoconfusing
situationswhere acluster channel appearsto residein morethan
one cluster when youlist it viathe DISCLUSQMGR command.
If the channdl is started, then both entries are started. This is
something that | would like IBM to address.

VARIOUS CLUSTER COMMANDS

The existing commands, like DEFINE, ALTER, and DISPLAY, have
been updated with the new cluster attributes. The new commandsare:

REFRESH CLUSTER(XXXXXXXX)

Thisdiscardslocally held information, and rebuilds the cluster. This
command should not be used asamatter of course, though experience
has shown that this is sometimes the only way!

RESET CLUSTER(xxxxxxxx) ACTION(FORCEREMOVE) QMNAME(qqqq)

This command forcibly removes a queue manager ‘qgqq’ from the
cluster.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33



SUSPEND QMGR CLUSTER(xxxxxxxx) MODE (mmmm)

Thiscommand temporarily suspendsagueue manager’ smembership
of acluster. The mode (QUIESCE or FORCE) determineshow thisis
achieved.

RESUME QMGR CLUSTER(XXXXXXXX)
This command is the reverse of SUSPEND QMGR.

DIS CLUSQMGR

Thiscommand displayslist of queue managersinacluster aongwith
their cluster channels.

DIS QCLUSTER

This command displays alist of cluster queues and default bindings
and tells you where they’ re defined.

Onething that’sworth mentioning isthat you can defineaQALIASas
part of a cluster. Theresult isthat the queue to which the alias points
gets ‘advertised’ in the cluster.

CLUSTER WORKLOAD EXIT

Most installationswill probably be happy with the default settings of
thisfeature. It’salso worth pointing out that the name ‘ workload exit’
isalittlemideading, astheexitonly distributesmessagesto‘ available
destinations. The exit checks the queue manager, the status of the
channels, andwhether thequeueis' put enabled’ . It doesn’t check how
‘busy’ a queue manager is or the general workload on the machine.
Also note that, if MQSeries finds a cluster queue that is defined
locally, then messagesarewrittenlocally and arenot subject to cluster
distribution.

You can, of course, code your own exit, and IBM has provided
samplesto help you do this. However, the samples do not correspond
withthe'‘ default’ way M QSeriesdistributes messages. Theassembl er
sample (CSQ4BAF1 for OS/390) workswiththe® Exit Data’ supplied
(see below).

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



There are severa things you need to do to activate your own exit:
e Assemblé/link the source.

e Add a DD statement //CSQXLIB to the Master address space
pointingtoan exitload library. (You probably already haveaDD
statement allocated to CHIN for channel exits.)

» Alter the queue manager by setting the Exit Name and Exit Data
— for example:

ALTER QMGR CLWLEXIT(CSQ4BAF1)
ALTER QMGR CLWLDATA('TO.QMGR")

TO.QMGR is the name of the cluster sender channel to which you
want to send messages.

SECURITY

You should have all your MQSeries resources protected before you
introduce clustering.

Although clustering doesn’'t change your security requirements, if
your security is not fully in place, then you should be aware of the
following security problem: in a traditional distributed queuing
environment, channels have to be defined at both ends. In a lot of
firms, themainframe definitionsare made by one department, and the
definitionsfor other platformsby another. If only oneset of definitions
isinplace, youwon't beableto send messages, and thisisquiteagood
way to stop ‘unauthorized’ queue managers from connecting to the
host.

However, with clustering, if oneendisdefined, MQSerieswill define
thereturn cluster channels dynamically. So, equipped with the host’s
| Paddress, M QSeriesport, and thenameof thecluster, any Tom, Dick,
or Harry can connect his PC using, say, MQSeries for Windows NT
to the host, and ....

Just a thought: you can code a channel security exit to stop this
happening, and there are security exits available from third-party
vendors.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35



USING A QUEUE MANAGERALIAS

In order fully to enjoy the benefits of being in a cluster, a queue
manager needsto bea‘ member’ of it. There may be circumstancesin
which you cannot do thisfor either technical reasons or asaresult of
thelocal set-up. In such cases, aspecial set of definitions could allow
an ‘external’ queue manager to make use of acluster.

In order to send messages from a queue manager outside a cluster to
aqueue hosted by aqueue manager insideacluster (or viceversa) you
havetobuildaso-called‘ gateway’ . Thishandlesmessagestransferred
into and out of clusters. The gateway itself hasto be amember of the
cluster. Use the following procedure to implement a gateway (see
Figure 2):

1 Definethe cluster TEST.CLUSTER, as above.

2 Defineacluster queue(Q.GENERAL inFigure2) asalocal queue
on QM2.

3 Decide which queue manager is to be the gateway within the
cluster (QM1in Figure 2).

4  Define aqueue manager alias on QM1 that looks like a remote
gueue but isn't:

DEFINE QREMOTE(Qmgr.Alias) RNAME(" ') RQMNAME(' ")

This entry maps any message destined for queue manager
Qmgr.Aliasto null, meaning that the QREMOTE definitioninthe
gueue manager outside the cluster can use Qmgr.Alias as the
gueuemanager name, instead of usingtheactual queuemanager’s
name.

5 On the queue manager outside the cluster (QM5), define the
remote queue:

DEFINE QREMOTE(Q.GENERAL) RNAME(Q.GENERAL)
ROMNAME (Qmgr.ATias) XMITQ(QMI)

6 Definestandard sender andreceiver channel shetweenthegateway
gueue manager and the queue manager outside the cluster (plus,
of course, a standard transmission queue).

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



If an application [ike AMQSPUT on QM5 issues an MQPUT call to
put a message on Q.GENERAL, the remote definition causes the
message to be routed to the gateway queue manager (QM1) first, and
from there to any queue manager in the cluster hosting cluster queue
Q.GENERAL (suchasQM2), regardlessof thetarget queue'slocation.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

/ Cluster TEST_REPOS \
l TO.QM1(R) l TO.QM2(R)
QM1 TO.QM2(S) QM2
Full repository —P Full repository
|u) |u)
Qmgr.Alias 4— Q.GENERAL
Remote queue TO.QML(S) Cluster queue
QM5.TO.QM1(R)
v
QM5.TO.QM1(S)
QM5
No repository
Q.GENERAL
Remote queue U
QM1
XmitQ U
Figure 2: Using a queue manager aliasin a cluster
37



VARIOUSAPARS/PTFS RELATED TO CLUSTERING

When examining thelist bel ow, remember that it’snot exhaustiveand
some PTFs may be superseded.

APAR PTF Description

PQ36946 uQ41981 Fix for RC2087 when using a Queue
Manager Alias.

PQ35026 Method for removing clustering data
from a queue manager.

PQ36747 UQ41650 Fix for RC2189 when putting messages on
SYSTEM.CLUSTER.COMMAND.QUEUE.

PQ37956 UQ43192 Fix for RC2013 after REFRESH CLUSTER

PQ38133 uQ44637 New messages for clusters on 0S/390s.

PQ34433 uQ41413 Undeliverable repository command after
REFRESH.

FUTURES

On April 4, 2000 IBM made a preview announcement of MQSeries
for OS/390V2.2.

This new release introduces the concept of shared queues held in a
coupling facility. Two or more queue managers on OS390 can
participatein thisenvironment, and all can writeto and read from the
same shared queue. As shared queues aren’t owned by a particular
gueue manager, if one queue manager fails, the others continue to
work with the shared queue.

Shared queues are restricted to non-persistent messages with a
maximum size of 63 KB.

This is a further improvement to MQSeries availability. Shared
gueues can, of course, be part of a cluster, which means that any
application (including non-OS/390 applications) can writeto ashared
gueue, provided the queue manager is part of the cluster.

CONCLUSION

Itisclear that MQSeries clusters reduce administration and improve
avallability. However, while the benefits of reduced administration
are obvious, the side-effects of clustering can at times be surprising.
In order to implement a cluster, you will need a detailed knowledge

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



of the applications that read and write MQSeries messages, any
affinities that might exist, and any data conversion requirements.

It isalso important to make sure that operations staff are aware of the
changes to TSO ISPF panels and of modified and new commands.

Applications that have special requirements with regards to affinity
may need to be changed, though you may be able to handle them by
changingtheDefault Bind Optionto‘ Open’ . Systemsthat usechannel
messageexitsshouldideally havethemremovedandtheir applications
changed to issue MQGETs with the CONVERT option setto ‘Y.

To make full use of clustering, applications should not have any
affinities that tie them to one particular environment or link them to
oneparticular system. Tomaximizeavailability, youneed two or more
gueue managersthat are configuredinthesameway (cloned), that are
al part of acluster, and are all served by — and trigger — applications
that can run in more than one place.

Ruud van Zundert (ruud@tesco.net)
Independent Consultant (UK) © Xephon 2000

Customizing CSQ4ZPRM

This article and the next one (Starting the channel initiator and
command server) offer further exampl esof installingand customizing
MQSeries on the mainframe. This article deals with CSQZMQxX,
which is an example of how the file CSQ4ZPRM supplied in the
MQM.SCSQPROC dataset can becustomizedto meet aninstallation’s
specific requirements. Here you can define the Hlq that’s to be used
withyour archivedataset and activateand de-activatearchiving, SMF
tracing, and so on. This job is used to create the Queue Manager
Optionsmodule. Edittheparametersfor the CSQ6LOGP, CSQ6ARVP,
and CSQ6SYSP macros to determine your system parameter’srelink
module, CSQZPARM.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39



An example of a customized CSQZPARM(CSQZMQxx) module is
shown below. If you search thefilefor the string ‘M Qxx’, you'll find
references that you need to set.

JOB CSQZ4PRM
//J0OBCARD

//******************************************************************************

//* Customize MQP1 Options module

//******************************************************************************

//* The Macros in this deck are tracked by 0S/390 SMPE usermod
//******************************************************************************
//* CUSTOMIZE THIS JOB HERE FOR YOUR INSTALLATION

//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//******************************************************************************
/1*

/1% IBM MQSeries for MVS/ESA

//* This job assembles and Tinks a new system parameter module.

/1* Edit the parameters for the CSQ6LOGP,

/1* CSQ6ARVP, and CSQ6SYSP macros to determine your

/1* system parameters.

/1* See "MQSeries for MVS/ESA System Management Guide"
/1* for a full description of the parameters.

/1*

/1* This member replaces CSQZPARM

/1*

//******************************************************************************

/1%

/1% Assemble step for CSQ6LOGP

/1*

//L0OGP EXEC PGM=ASMA90,PARM="DECK,NOOBJECT,LIST,XREF(SHORT)"

//SYSLIB DD DSN=MQM.SCSQMACS,DISP=SHR,UNIT=3390,V0OL=SER=SYS001 <=V0L?
// DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,V0L=SER=SYS001 <=V0L?

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&LOGP,

// UNIT=SYSDA,DISP=(,PASS),

/1 SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

CSQ6LOGP INBUFF=48, LOG INPUT BUFFER SIZE KB X
MAXALLC=3, MAX ALLOCATED ARCHLOG VOLS X
MAXARCH=5, MAX ARCH LOG VOLUMES MQxx X
OFFLOAD=YES, ARCHIVING ACTIVE X
OUTBUFF=4000, LOG OUTPUT BUFFER SIZE X
TWOACTV=YES, DUAL ACTIVE LOGGING X
TWOARCH=NO, DUAL ARCHIVE LOGGING X
TWOBSDS=YES, DUAL BSDS X
WRTHRSH=32 ACTIVE LOG BUFFERS

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



END

/*

/1*

/1* Assemble step for CSQ6ARVP

/1*

//ARVP EXEC PGM=ASMA90,COND=(0,NE),

// PARM="'DECK,NOOBJECT, LIST,XREF(SHORT)"

//SYSLIB DD DSN=MQM.SCSQMACS,DISP=SHR,UNIT=3390,V0L=SER=SYS001 <=vol?
// DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=vol?

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&ARVP,

/17 UNIT=SYSDA,DISP=(,PASS),
/7 SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

CSQ6ARVP ALCUNIT=CYL, ARCLOG ALLOCATION UNIT

END
/*
/1*
/1%
/1*
//SYSP EXEC
/7
//SYSLIB DD
1/ DD

//SYSUT1 DD
//SYSPUNCH DD

ARCPFX1=MQARCH.MQxx.LO0G1,
ARCPFX2=MQARCH.MQxx.L0G2,
ARCRETN=3,
ARCWRTC=(1,3,4),
ARCWTOR=NO,
BLKSIZE=24576,
CATALOG=YES,

COMPACT=NO,

PRIQTY=800,

PROTECT=NO,

QUIESCE=80,

SECQTY=80,

TSTAMP=YES,

UNIT=DISK

Assemble step for CSQ6SYSP

PGM=ASMA90,COND=(0,NE),

DSN PREFIX FOR ARCLOGL MQxx
DSN PREFIX FOR ARCLOGZ2 MQxx
ARCLOG RETENION PERIOD DAYS
ARCHIVE WTO ROUTE CODE
PROMPT BEFORE ARCLOG MOUNT
ARCLOG BLOCKSIZE

CATALOG ARCLOG DATASETS
ARCHIVE LOGS COMPACTED
PRIMARY SPACE ALLOCATION

NO DISCRETE PROFILES CREATED
MAX QUIESCE TIME IN SECONDS
SECONDARY SPACE ALLOCATION
NO TIMESTAMP SUFFIX IN DSN
ARCLOG ALLOCATION UNIT MQxx

PARM="'DECK,NOOBJECT,LIST,XREF(SHORT)"

DSN=MQM.SCSQMACS,DISP=SHR,UNIT=3390,VOL=SER=SYS001
DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,V0L=SER=SYS001

UNIT=SYSDA,SPACE=(CYL,(1,1))
DSN=&&SYSP,

<=vol?
<=vol?

>X X X X X X X X X X X X X X

/17 UNIT=SYSDA,DISP=(,PASS),
/7 SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

CSQ6SYSP CTHREAD=330,
CMDUSER=CSQOPR,
IDBACK=20,
IDFORE=100,

TOTAL NUMBER OF CONNECTIONS
DEFAULT USERID FOR COMMANDS
NUMBER OF NON-TSO CONNECTIONS
NUMBER OF TSO CONNECTIONS

© 2000. Reproduction prohibited. Please inform Xephon of any infringement.

>< X< X X



LOGLOAD=100000, LOG RECORD CHECKPOINT NUMBER X
OTMACON=(, ,DFSYDRU0,2147483647,CSQ), OTMA PARAMETERS X
QMCCSID=0, QMGR CCSID X
ROUTCDE=1, DEFAULT WTO ROUTECODE X
SMFACCT=YES, GATHER SMF ACCOUNTING MQxx X
SMFSTAT=YES, GATHER SMF STATS MQxx X
STATIME=15, STATISTICS RECORD INTERVAL X
TRACSTR=NO, TRACING AUTO START X
TRACTBL=16 GLOBAL TRACE TABLE SIZE X4K
END
/ *
/1%
//* LINKEDIT CSQARVP, CSQLOGP and CSQSYSP into a system parameter module.
/1*
//LKED EXEC PGM=IEWL,COND=(0,NE),
// PARM="SIZE=(900K,124K),RENT,NCAL,LIST,AMODE=31, RMODE=ANY"
/1*
//*  OUPUT AUTHORIZED APF LIBRARY FOR THE NEW SYSTEM
/1* PARAMETER MODULE.
/1%
//*YSLMOD DD DSN=MQM.SCSQAUTH,DISP=SHR
//SYSLMOD DD DSN=MQM.MQxx.PARMODS,DISP=SHR <= MQxx Options loadlib
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//ARVP DD DSN=&&ARVP,DISP=(0LD,DELETE)
//LOGP DD DSN=&&LOGP,DISP=(0LD,DELETE)
//SYSP DD DSN=&&SYSP,DISP=(0LD,DELETE)
/1%
/1* LOAD LIBRARY containing the default system parameter module (CSQZPARM).
/1%
//OLDLOAD DD DSN=MQM.SCSQAUTH,DISP=SHR
//SYSLIN DD *
INCLUDE SYSP
INCLUDE ARVP
INCLUDE LOGP
INCLUDE OLDLOAD(CSQZPARM)
ENTRY CSQZMSTR
NAME CSQZMQxx(R) MQxx system parameter module name
/ *
Saida Davies
IBM (UK) © Xephon 2000
42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.



Starting the channel initiator and command server

CSQ4CHNA isabrief code samplethat containsthe channel initiator
and command server start commands.

These can be added at the beginning of the CSQ4CHNL member file
for each queue manager. The reason to put these files in a separate
member is to accommodate situations where a queue manager is
designed to be shared between systemsin aparallel Sysplex. Insuch
instances, all channel sthat areto beshared areisolatedin onemember
and the channel initiator is defined in another, which is started viaa
unique Options module (CSQ4XPARM).

AN EXAMPLE OF CUSTOMIZED CSQ4INP2 (CSQ4CHNA)

*

* Start MQAL Channel Initiator with LPARAL options module
START CHINIT PARM(CSQXMQA1)

*

* Start command server

START CMDSERV

*

Saida Davies
IBM (UK) © Xephon 2000

Contributing to MQ Update

Contributions to MQ Update may be sent to the editor, Harry
Lewis, at: MQ Update, Xephon, 27-35 London Road, Newbury;,
Berkshire RG14 1JL, UK. You may also e-mail articles to
har ryl @xephon.com. For moreinformation about contributing,
pleasedownloadacopy of Notesfor contributorsfrom Xephon's
Web site at www.xephon.convnfc.padf.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43



MQ news

CommerceQuest has entered into an OEM
agreement with Tivoli, whereby its
e-Adapter Suite, a bulk data movement and
integration package based on MQSeries, is
to be combined with Tivoli’s system
management suite under the name ‘Tivoli
DataExchange’. Tivoli will sell and promote
the product. The e-Adapter Suite adds bulk
data movement, conversion, and integration
capabilities to MQSeries and its status
management subsystem provides an audit
trail of information as it flows between
systems.

For further information contact:

Tivoli Systems, 9442 Capital of Texas
Highway, N Austin, TX 78759, USA

Tel: +1 512 436 8000

Fax: +1 512 794 0623

Web: http://www.tivoli.com

CommerceQuest, 3550 West Waters
Avenue, Tampa, FL 33614, USA

Tel: +1 813 903 3000

Fax: +1 813 903 3095

Web: http://www.commercequest.com

* % %

WRQ has announced a new suite of
integration tools, including WRQ
VeraStream, based on the recently-acquired
SuperNova technology. VeraStream
combines rapid visual development tools,
native database and application adapters,
and an integration engine. Alsoincluded are
visual toolsfor implementation connectivity
options including MQSeries, XML,
CORBA/IIOP, CICS, and Java.

VeraStream is out now and prices start at
US$10,000.

For further information contact:

WRQ, 1500 Dexter Avenue North, Seattle,
WA 98109, USA

Tel: +1 206 217 7100

Fax: +1 206 217 0293

Web: http://www.wrg.com
WRQ, 40 West Street, Marlow,
Buckinghamshire SL7 2NB, UK

Tel: +44 1628 400 800

Fax: +44 1628 400 801

* k% %

IBM has announced VisuaAge for Java
Version 3.5 Professional and Enterprise
Editions. Both support incrementa RAD
and server-side programming, and come
with a WebSphere test environment and
Tool Integrator API. Also new is better
support for change management tools, such
as VisualAge TeamConnection, Merant
PV CS, Microsoft SourceSafe, and Rational
ClearCase. The Enterprise Edition also
comes with Enterprise Access Builders for
MQSeries.

Out now, the Professional Edition costs
US$150 and the Enterprise Edition
US$3,000.

For further information, contact your local
IBM representative.

xephon



	An introduction to MQSeries installable services
	MQSeries clusters: a hands-on view (part 2)
	Customizing CSQ4ZPRM
	Starting the channel initiator and command server
	MQ news

