
© Xephon plc 2000

October 2000

16

3 An introduction to MQSeries
installable services

26 MQSeries clusters: a hands-on
view (part 2)

39 Customizing CSQ4ZPRM
43 Starting the channel initiator

and command server
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

An introduction to MQSeries installable services

INSTALLABLE SERVICE TYPES

Most MQSeries administrators should be familiar with the Object
Authority Manager (OAM), the MQSeries component that controls
access by applications to queue manager resources. The OAM is an
example of an installable service – it’s effectively a plug-in component
of the queue manager and its plug-in interface is the installable
services API described in the Programmable Systems Management
Guide.

There are three types of installable service described by the installable
services API:

• An authorization service, which mediates application access to
MQSeries Objects (queues, processes, and the queue manager
itself).

• A name service, which provides a look-up mechanism for obtaining
the queue manager name on which a particular remote queue is
defined, and is used to identity the name of a local transmission
queue for routing messages.

• A userid service, which provides a user-id and password that are
associated with an application (this service applies to MQSeries
for OS/2 Warp only).

Of these, the authorization service is probably the one of greatest
general interest. To implement a user-written authorization service
implies replacing the OAM, and this offers many possibilities, from
building a bridge that connects to an existing non-MQSeries
authorization service to employing a distributed authorization service,
perhaps based on a repository that’s accessed via the network.

THE AUTHORIZATION SERVICE INTERFACE

The installable services interface consists of three sets of function
definitions, one for each type of installable service (authorization,
name, and userid). An installable service implements the set of

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

functions corresponding to its service type, and registers pointers to
these functions during initialization in order to make them known to
the queue manager. The registration is performed using an additional
installable services function, MQZEP, which associates a function
pointer with the appropriate function identifier defined in the MQSeries
include file cmqz.h.

Initialization and termination

The identification of a particular module that is to serve as an
installable services component is controlled by Service and
ServiceComponent entries in the queue manager configuration file.
The queue manager knows the location of installable service functions
only after the installable service invokes the function MQZEP to
register them. MQZEP calls are initiated using the function that is
declared as the external entry point of the module that implements the
service, which must (for an authorization service) conform with the
MQZ_INIT_AUTHORITY signature. For other service types,
MQZ_INIT_NAME and MQZ_INIT_USERID actually have equivalent
signatures.

The service initialization and termination functions are each called in
two different modes, where the mode – primary or secondary – is
indicated by the Options parameter that’s passed to the function.
Primary initialization and termination each occur only once during
the lifetime of an installable service component – they correspond to
the initialization and termination of the queue manager itself.

Secondary initialization and termination may occur many times
during the lifetime of the queue manager, and correspond to the
initialization and termination of individual processes or threads. The
Hconfig parameter that’s passed during initialization and termination
can be used by the service component to correlate a pair of initialization
and termination calls.

By including more than one Service and ServiceComponent entry in
the queue manager configuration file, a number of instances of an
installable service can be ‘chained’. Each function invoked on a
particular instance is then able to indicate to the queue manager
whether another service in the chain should be invoked by setting the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

pContinuation parameter, if present, in the installable service function
call. A trap for the unwary is that the default setting of this parameter,
which may be either MQZCI_CONTINUE or MQZCI_STOP, varies
between different functions.

Authorization service operation

For an authorization service, the minimum set of functions that must
be implemented is:

MQZ_INIT_AUTHORITY

MQZ_TERM_AUTHORITY

MQZ_CHECK_AUTHORITY or MQZ_CHECK_AUTHORITY_2

These three functions (counting the two variants of
CHECK_AUTHORITY as one) are invoked on an authorization service
by the queue manager during normal application activity.

The main task of an authorization service is to implement either
MQZ_CHECK_AUTHORITY or MQZ_CHECK_AUTHORITY_2,
which determines whether access from a specified entity to a specified
MQSeries object is permitted. The definition of the authorization
service interface assumes that the entity is a user-id (principal) or
group, with an entityType value of MQZAET_PRINCIPAL or
MQZAET_GROUP respectively. The implementor of the service is,
however, ultimately responsible for determining which of the
underlying authorization mechanisms to apply and how to treat user-
ids and groups.

A further set of functions defines the interface that’s used for
administering the permissions managed by the authorization service.
These are invoked as a result of administrative activity, such as
creating and deleting queues and using the administration commands
dspmqaut and setmqaut. The functions are:

MQZ_GET_AUTHORITY or MQZ_GET_AUTHORITY_2

MQZ_GET_EXPLICIT_AUTHORITY or MQZ_GET_EXPLICIT_AUTHORITY_2

MQZ_SET_AUTHORITY or MQZ_SET_AUTHORITY_2

MQZ_COPY_ALL_AUTHORITY

MQZ_DELETE_AUTHORITY

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If an authorization service is designed to be administered through
some mechanism other than calling the MQSeries dspmqaut and
setmqaut commands, then it need not implement this second set of
functions.

Authorization service functions

MQZ_INIT_AUTHORITY

This function is called once when the queue manager is started, and
thereafter each time an MQCONN is performed on the queue manager.
The function prototype is shown below.

void MQENTRY MQZ_INIT_AUTHORITY (MQHCONFIG Hconfig,
 MQLONG Options, MQCHAR48 pQMgrName,
 MQLONG ComponentDataLength, PMQBYTE pComponentData,
 PMQLONG pVersion, PMQLONG pCompCode, PMQLONG pReason);

The first time this function is called, Options is set to
MQZIO_PRIMARY. Thereafter it’s set to MQZIO_SECONDARY. The
Hconfig parameter is associated with the connection – it can be used
to correlate a later call to MQZ_TERM_AUTHORITY with a call to
MQZ_INIT_AUTHORITY. This would free the resources associated
with a particular connection.

The size of the component data area is defined in the ServiceComponent
entry of the queue manager configuration file. This data area is
allocated by the queue manager and made available on every call to
the installable service. It provides a mechanism for storing arbitrary
data that persists from call to call. If the service does not use the
component data area, the area can be configured with a size of zero
bytes.

By setting the value of the pointer pReason to either
MQRC_SERVICE_NOT_AVAILABLE or MQRC_INITIALIZATION_
FAILED, the code that implements the service can indicate to the
queue manager that it is unable to execute.

MQZ_TERM_AUTHORITY

This function is called with the Options parameter set to
MQZIO_SECONDARY by each application when the application’s

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

connection to the queue manager terminates (a secondary termination),
and is called once with the Options parameter set to MQZIO_PRIMARY
when the queue manager itself terminates (a primary termination).

void MQENTRY MQZ_TERM_AUTHORITY (MQHCONFIG Hconfig,
 MQLONG Options, PMQCHAR pQMgrName, PMQBYTE pComponentData,
 PMQLONG pCompCode, PMQLONG pReason);

MQZ_CHECK_AUTHORITY and MQZ_CHECK_AUTHORITY_2

Either variant of this function is invoked by the queue manager to
provide the functionality of an authorization service. The two variants
differ only in the way the name of the entity is passed, and only one
variant is used in the lifetime of the service. MQZ_CHECK_
AUTHORITY is passed the name of the entity as a string (pEntityName),
as shown below.

void MQENTRY MQZ_CHECK_AUTHORITY (PMQCHAR pQMgrName,
 PMQCHAR pEntityName, MQLONG EntityType,
 PMQCHAR pObjectName, MQLONG ObjectType, MQLONG Authority,
 PMQBYTE pComponentData, PMQLONG pContinuation,
 PMQLONG pCompCode, PMQLONG pReason);

MQZ_CHECK_AUTHORITY_2 takes an MQZED structure instead
of a string:

void MQENTRY MQZ_CHECK_AUTHORITY_2 (PMQCHAR pQMgrName,
 PMQCHAR pEntityName, PMQZED pEntityData,
 PMQCHAR pObjectName, MQLONG ObjectType, MQLONG Authority,
 PMQBYTE pComponentData, PMQLONG pContinuation,
 PMQLONG pCompCode, PMQLONG pReason);

The MQZED structure contains fields for a domain and security
identifier, in addition to the field that stores the entity name. These
fields are intended for use in MQSeries for Windows NT, though the
MQZ_CHECK_AUTHORITY_2 function and MQZED structure are
also found on Unix systems, where the domain and security identifier
fields are not applicable.

Both variants of this function use the MQZID_CHECK_AUTHORITY
identifier, which means that only one can be registered with MQZEP.
MQZ_INIT_AUTHORITY’s pVersion parameter identifies which
variant is used – MQZAS_VERSION_1 specifies MQZ_CHECK_
AUTHORITY and MQZAS_VERSION_2 specifies MQZ_CHECK_
AUTHORITY_2.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The check authority function’s task is to check whether an entity
identified in pEntityName (or pEntityData->pEntityNamePtr) is
permitted the type of access described by the authority parameter of
the MQSeries object pObjectName. The result of the check is assigned
to both the completion code and reason code variables (pointers to
these variables are passed as pCompCode and pReason respectively).
Only three reason codes – MQRC_NOT_AUTHORIZED, MQRC_
SERVICE_NOT_AVAILABLE, and MQRC_SERVICE_ERROR – are
applicable. In addition, the reason code MQRC_NONE indicates that
the check was successful.

MQZ_GET_AUTHORITY and MQZ_GET_EXPLICIT_AUTHORITY

These two functions and their variants, MQZ_GET_AUTHORITY_2
and MQZ_GET_EXPLICIT_AUTHORITY_2 respectively, which take
an input of type MQZED instead of a string and are not shown below,
are used in administrative operations to discover the authority over a
particular object that’s assigned to the entity specified.

void MQENTRY MQZ_GET_AUTHORITY (PMQCHAR pQMgrName,
 PMQCHAR pEntityName, MQLONG EntityType,
 PMQCHAR pObjectName, MQLONG ObjectType,
 PMQLONG pAuthority,
 PMQBYTE pComponentData, PMQLONG pContinuation,
 PMQLONG pCompCode, PMQLONG pReason);

void MQENTRY MQZ_GET_EXPLICIT_AUTHORITY (PMQCHAR pQMgrName,
 PMQCHAR pEntityName, MQLONG EntityType,
 PMQCHAR pObjectName, MQLONG ObjectType,
 PMQLONG pAuthority, MQLONG AuthorityMask,
 PMQBYTE pComponentData, PMQLONG pContinuation,
 PMQLONG pCompCode, PMQLONG pReason);

Both functions return a collection of MQZAO constants (described
later) that apply to the entity and the specified MQSeries object. The
constants are returned in the location to which the pointer pAuthority
points. However, the documented behaviour differs subtly between
the two functions:

• MQZ_GET_EXPLICIT_AUTHORITY masks the returned
authority value using the mask in the AuthorityMask parameter,
which is not present in MQZ_GET_AUTHORITY.

• MQZ_GET_EXPLICIT_AUTHORITY returns the authority of
the principal “without the additional authority of the nobody

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

group”. (In the OAM authorization service implementation,
permissions associated with the nobody group are used for
checking the authority of entities that have no specifically assigned
permissions. This may not be appropriate for other
implementations.)

MQZ_COPY_ALL_AUTHORITY

This administrative function assigns the authority associated with
another object to an MQSeries object.

MQZ_DELETE_AUTHORITY

This function deletes all permissions associated with a specified
MQSeries object.

Authority flags

The authority parameter is a combination of MQZAO* flags, which
precisely describe the type of access being requested. There are two

Figure 1: MQZAO constants and their MQOO equivalents

MQZAO_CONNECT –

MQZAO_BROWSE MQOO_BROWSE

MQZAO_INPUT MQOO_INPUT_AS_Q_DEF

MQOO_INPUT_SHARED

MQOO_INPUT_EXCLUSIVE

MQZAO_OUTPUT MQOO_OUTPUT

MQZAO_INQUIRE MQOO_INQUIRE

MQZAO_SET MQOO_SET

MQZAO_PASS_IDENTITY_CONTEXT MQOO_PASS_IDENTITY_CONTEXT

MQZAO_PASS_ALL_CONTEXT MQOO_PASS_ALL_CONTEXT

MQZAO_SET_IDENTITY_CONTEXT MQOO_SET_IDENTITY_CONTEXT

MQZAO_SET_ALL_CONTEXT MQOO_SET_ALL_CONTEXT

MQZAO_ALTERNATE_USER_AUTHORITY MQOO_ALTERNATE_USER_AUTHORITY

MQZAO MQI group constant MQOO constant

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

groups of MQZAO flags, of which the MQI flags (covered by the mask
MQZAO_ALL_MQI) correspond closely to the MQOO options
supplied to the MQOPEN call. This is no coincidence – the MQZ_
CHECK_AUTHORITY function is invoked by the queue manager
with a set of MQZAO flags each time an MQOPEN is attempted. The
other MQZAO constant in the MQI flags is MQZAO_CONNECT,
which is specified during an MQCONN attempt.

The other group of MQZAO flags – the administration flags covered
by the MQZAO_ALL_ADMIN mask – appear in calls to MQZ_
GET_AUTHORITY, MQZ_GET_EXPLICIT_AUTHORITY, and
MQZ_SET_AUTHORITY as the result of running the dspmqaut and
setmqaut commands and other administration operations.

A SIMPLE FILE-BASED AUTHORIZATION SERVICE

This section provides an example using a simple file-based
authorization service implemented on AIX. The example service uses
rules defined in a text file when assigning permissions to MQSeries
objects. A rule occupies a single line in the text file and conforms with
the following format:

object-name [entity:[r][w][x]] [...]

The meaning of r, w, and x in the context of the example service is as
follows:

• r specifies read permission and applies to the constants
MQZAO_BROWSE, MQZAO_INPUT, MQZAO_INQUIRE,
MQZAO_DISPLAY, and MQZAO_DISPLAY_STATUS.

• w specifies write permission and applies to the constants
MQZAO_OUTPUT, MQZAO_SET , MQZAO_CREATE ,
MQZAO_DELETE, MQZAO_CHANGE, and MQZAO_CLEAR.

• x specifies execute permission and applies to the constants
MQZAO_START_STOP, MQZAO_RESOLVE_RESET, and
MQZAO_PING.

MQZAO_CONNECT authority is provided if any of the three
permissions (r, w, or x) are present.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

An asterisk (‘*’) can be used as a wildcard to refer to all objects or all
entities. Specific permissions take precedence over wildcard
permissions, and no distinction is made between users and groups.

Here are three example rules (one on each line):

REQUEST.Q mqm:rwx service:rw bob:rw
SYSTEM.DEAD.LETTER.Q mqm:rwx *:rw
* mqm:rwx

The first rule sets the permissions for the queue REQUEST.Q and
assigns permissions rwx to the user (or group) mqm, permissions rw
to service, and permissions rw to bob. The second rule assigns rwx
permission to mqm and rw to all others for queue
SYSTEM.DEAD.LETTER.QUEUE. The third rule assigns rwx
permissions to mqm for all objects not named explicitly in a rule.

The example service logs details of all accesses and access attempts
(the source code for it, fileauthservice.c, is listed below). For
simplicity’s sake, it’s presented as a single source file, and there is no
corresponding include file. Note the use of the continuation character,
‘➤ ’, in the code below to indicate a formatting line break that’s not
present in either the original source code or the code that can be
downloaded from Xephon’s Web site (http://www.xephon.com/
mqupdate.html).

FILEAUTHSERVICE.C
#pragma options CPLUSCMT

#define _THREAD_SAFE

#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/mode.h>
#include <search.h>
#include <cmqc.h>
#include <cmqzc.h>

#define MQCHARS "abcdefghijklmnopqrstuvwxyz" \

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" \
 "0123456789" \
 "./_%"
#define CONFIG_FILE "/var/mqm/fileauthservice.conf"
#define LOG_FILE "/var/mqm/fileauthservice.log"

// Prototypes for installable service functions

void mqz_init_authority (MQHCONFIG config, MQLONG options, MQCHAR48 qm,
 MQLONG dataLength, PMQBYTE data, PMQLONG version,
 PMQLONG cc, PMQLONG rc);
void mqz_term_authority (MQHCONFIG config, MQLONG options, PMQCHAR qm,
 PMQBYTE data, PMQLONG cc, PMQLONG rc);
void mqz_check_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_check_authority_2 (PMQCHAR qm,
 PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);

void mqz_get_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_get_authority_2 (PMQCHAR qm,
 PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_get_explicit_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType,
 PMQLONG authority, MQLONG authorityMask,
 PMQBYTE componentData,
 PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_get_explicit_authority_2 (PMQCHAR qm,
 PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType,
 PMQLONG authority, MQLONG authorityMask,
 PMQBYTE componentData,
 PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_set_authority (PMQCHAR qm, PMQCHAR entityName, MQLONG
➤ entityType,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_set_authority_2 (PMQCHAR qm, PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_copy_all_authority (PMQCHAR qm, PMQCHAR refObjectName,
 PMQCHAR objectName, MQLONG objectType,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc);
void mqz_delete_authority (PMQCHAR qm, PMQCHAR objectName, MQLONG
➤ objectType,
 PMQBYTE data, PMQLONG continuation, PMQLONG cc, PMQLONG rc);

// Prototypes for other functions

int init_file_authority (char *filename);
void check_file_authority (PMQCHAR entityName,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQLONG cc, PMQLONG rc);
void check_auth (char * permissions, MQLONG authority,
 PMQLONG cc, PMQLONG rc);

// Prototypes for utility functions

size_t mqstrlen (const char *string);
char *mqstrncpy (char *dest, const char *src, size_t number);
void replace (char *string, char a, char b);
int log (char *message, ...);

// Hashtable used to store authorization entries for look-up

struct hsearch_data hashtable = { NULL, 0, 0, 0, 0 };

// Buffer contains configuration data from file

char *buffer = NULL;

// File descriptor for log file

int logfd;

// Entry point of the installable service function MQZ_INIT_AUTHORITY

void mqz_init_authority (MQHCONFIG config, MQLONG options, MQCHAR48 qm,
 MQLONG dataLength, PMQBYTE data, PMQLONG version,
 PMQLONG cc, PMQLONG rc)
{
 if (options == MQZIO_PRIMARY)

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 {
 logfd = open (LOG_FILE, O_WRONLY | O_CREAT | O_APPEND,
 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
 log ("fileauthservice initialized (%s last modified %s)\n",
 __FILE__, __TIMESTAMP__);
 }
 else
 {
 logfd = open (LOG_FILE, O_WRONLY | O_APPEND, 0);
 }

 MQZEP (config, MQZID_INIT_AUTHORITY,
 (PMQFUNC) mqz_init_authority, cc, rc);
 MQZEP (config, MQZID_TERM_AUTHORITY,
 (PMQFUNC) mqz_term_authority, cc, rc);
 MQZEP (config, MQZID_COPY_ALL_AUTHORITY,
 (PMQFUNC) mqz_copy_all_authority, cc, rc);
 MQZEP (config, MQZID_DELETE_AUTHORITY,
 (PMQFUNC) mqz_delete_authority, cc, rc);

 if (*version == MQZAS_VERSION_2)
 {
 MQZEP (config, MQZID_CHECK_AUTHORITY,
 (PMQFUNC) mqz_check_authority_2, cc, rc);
 MQZEP (config, MQZID_GET_AUTHORITY,
 (PMQFUNC) mqz_get_authority_2, cc, rc);
 MQZEP (config, MQZID_GET_EXPLICIT_AUTHORITY,
 (PMQFUNC) mqz_get_explicit_authority_2, cc, rc);
 MQZEP (config, MQZID_SET_AUTHORITY,
 (PMQFUNC) mqz_set_authority_2, cc, rc);
 }
 else
 {
 MQZEP (config, MQZID_CHECK_AUTHORITY,
 (PMQFUNC) mqz_check_authority, cc, rc);
 MQZEP (config, MQZID_GET_AUTHORITY,
 (PMQFUNC) mqz_get_authority, cc, rc);
 MQZEP (config, MQZID_GET_EXPLICIT_AUTHORITY,
 (PMQFUNC) mqz_get_explicit_authority, cc, rc);
 MQZEP (config, MQZID_SET_AUTHORITY,
 (PMQFUNC) mqz_set_authority, cc, rc);
 }

 if (init_file_authority (CONFIG_FILE) < 0)
 {
 *cc = MQCC_FAILED;
 *rc = MQRC_SERVICE_ERROR;
 }
}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

// Installable service function MQZ_TERM_AUTHORITY

void mqz_term_authority (MQHCONFIG config, MQLONG options, PMQCHAR qm,
 PMQBYTE data, PMQLONG cc, PMQLONG rc)
{
 if (buffer)
 {
 free (buffer);
 }

 if (options == MQZIO_PRIMARY)
 {
 log ("fileauthservice terminated.\n");
 }

 close (logfd);
}

// Installable service function MQZ_CHECK_AUTHORITY

void mqz_check_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 check_file_authority (entityName, objectName, objectType,
 authority, cc, rc);
}

// Installable service function MQZ_CHECK_AUTHORITY_2

void mqz_check_authority_2 (PMQCHAR qm,
 PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 check_file_authority (entity->EntityNamePtr, objectName, objectType,
 authority, cc, rc);
}

// Installable service function MQZ_GET_AUTHORITY
// (not implemented in this example)

void mqz_get_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

{
 return;
}

// Installable service function MQZ_GET_AUTHORITY
// (not implemented in this example)

void mqz_get_authority_2 (PMQCHAR qm,
 PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, PMQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 return;
}

// Installable service function MQZ_GET_EXPLICIT AUTHORITY
// (not implemented in this example)

void mqz_get_explicit_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType,
 PMQLONG authority, MQLONG authorityMask,
 PMQBYTE componentData,
 PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 return;
}

// Installable service function MQZ_GET_EXPLICIT_AUTHORITY_2
// (not implemented in this example)

void mqz_get_explicit_authority_2 (PMQCHAR qm,
 PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType,
 PMQLONG authority, MQLONG authorityMask,
 PMQBYTE componentData,
 PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 return;
}

// Installable service function MQZ_SET_AUTHORITY
// (not implemented in this example)

void mqz_set_authority (PMQCHAR qm,
 PMQCHAR entityName, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 return;
}

// Installable service function MQZ_SET_AUTHORITY_2
// (not implemented in this example)

void mqz_set_authority_2 (PMQCHAR qm, PMQZED entity, MQLONG entityType,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 return;
}

// Installable service function MQZ_COPY_ALL_AUTHORITY
// (not implemented in this example)

void mqz_copy_all_authority (PMQCHAR qm, PMQCHAR refObjectName,
 PMQCHAR objectName, MQLONG objectType,
 PMQBYTE componentData, PMQLONG continuation,
 PMQLONG cc, PMQLONG rc)
{
 return;
}

// Installable service function MQZ_DELETE_AUTHORITY
// (not implemented in this example)

void mqz_delete_authority (PMQCHAR qm,
 PMQCHAR objectName, MQLONG objectType,
 PMQBYTE data, PMQLONG continuation, PMQLONG cc, PMQLONG rc)
{
 return;
}

// This function builds a hashtable of authorization entries
// from a configuration file that contains lines in the format:
//
// object-name [entity":"["r"]["w"]["x"]] [...]
//
// Examples:
// REQUEST.Q alice:rw bob:rw carol:r
// SYSTEM.DEAD.LETTER.QUEUE mqm:rwx *:rw
// * mqm:rwx

int init_file_authority (char *filename)
{

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 static char *buffer;

 struct stat file_info;
 char *start;
 char *next_line;
 char *comment;
 int fd;
 int size;
 int entries = 0;

 // Open the configuration file and find its size.

 if ((fd = open (filename, O_RDONLY, 0)) == -1 ||
 fstat (fd, &file_info) == -1)
 {
 return -1;
 }

 // Allocate a buffer for the file contents and read them

 if ((buffer = (char *) malloc (file_info.st_size + 1)) &&
 (size = read (fd, buffer, file_info.st_size)) ==
 ➤ file_info.st_size)
 {
 *(buffer + size) = '\0';
 start = buffer;
 close (fd);
 }
 else
 {
 close (fd);

 return -2;
 }

 // Create a hashtable. As a rough estimate, we'll guess there are
 // size/20 entries (average 20 chars per line). The size we request
 // doesn't have to be exactly right -- it will grow if necessary.

 if (!hcreate_r ((size / 20) + 1, &hashtable))
 {
 return -3;
 }

 // Create a hashtable entry for each valid authorization line
 // in the file.

 while (start)
 {
 // Find the end of the line and terminate it.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

 if (next_line = strchr (start, '\n'))
 {
 *next_line++ = '\0';
 }
 else
 {
 next_line = NULL;
 }

 // If there's a comment, terminate the line there.

 if ((comment = strchr (start, '#')))
 {
 *comment = '\0';
 }

 // Split the line into { key value } where key is the first token
 // and value is separated from key by whitespace.

 if ((start = strtok (start, " \t")))
 {
 ENTRY entry, *result;

 entry.key = start;
 entry.data = strtok (NULL, "\0");

 if (!hsearch_r (entry, ENTER, &result, &hashtable))
 {
 entries++;
 }
 else
 {
 // Insert into hashtable failed.

 return -4;
 }
 }

 start = next_line;
 }

 // Return the number of entries added to the hashtable (for info).

 return entries;
}

// This function checks whether entityName has the specified authority
// over objectName. It looks up objectName in the hashtable and
// searches for permissions flags associated with entityName.

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

void check_file_authority (PMQCHAR entityName,
 PMQCHAR objectName, MQLONG objectType, MQLONG authority,
 PMQLONG cc, PMQLONG rc)
{
 char target [MQ_Q_NAME_LENGTH + 1]; // + 1: trailing null
 char entity [MQ_USER_ID_LENGTH + 2]; // + 2: trailing colon and null
 char *permissions = NULL;
 ENTRY named = { target, NULL };
 ENTRY unnamed = { "*", NULL };
 ENTRY *result;

 // Get null-terminated copies of the objectName and entityName.

 mqstrncpy (target, objectName, MQ_Q_NAME_LENGTH);
 mqstrncpy (entity, entityName, MQ_USER_ID_LENGTH);
 strcat (entity, ":");

 // We do a hashtable look-up using the target (the object name) as
 // the key. If the object has no specific named entry, we try "*"
 // instead.

 if (!hsearch_r (named, FIND, &result, &hashtable) ||
 !hsearch_r (unnamed, FIND, &result, &hashtable))
 {
 // We look for a token entity: in the result.

 permissions = strstr (result->data, entity);

 // If this entity does not appear, check for wildcard
 // permissions.

 if (!permissions)
 {
 permissions = strstr (result->data, "*:");
 }
 }

 // Perform the check with whatever flags we found (if any) and log
 // the result

 check_auth (permissions, authority, cc, rc);
 log ("%s %s authority 0x%08lX on target %s\n",
 entity, (*rc == MQRC_NONE ? "granted" : "denied"),
 authority, target);
}

// Check whether the specified permissions flags allow the requested
// authority

void check_auth (char * permissions, MQLONG authority,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

 PMQLONG cc, PMQLONG rc)
{
 // These definitions group MQZAO constants under broader read/write/
 // execute/connect permissions flags. Connections are allowed if any
 // read/write/execute permissions are present.

 #define READ_OPTIONS (MQZAO_BROWSE | MQZAO_INPUT | \
 MQZAO_INQUIRE | MQZAO_DISPLAY | MQZAO_DISPLAY_STATUS)
 #define WRITE_OPTIONS (MQZAO_OUTPUT | MQZAO_SET | \
 MQZAO_CREATE | MQZAO_DELETE | MQZAO_CHANGE | MQZAO_CLEAR)
 #define EXECUTE_OPTIONS (MQZAO_START_STOP | MQZAO_RESOLVE_RESET | \
 MQZAO_PING)
 #define CONNECT_OPTIONS (MQZAO_CONNECT)

 if (permissions)
 {
 char *r = strchr (permissions, 'r');
 char *w = strchr (permissions, 'w');
 char *x = strchr (permissions, 'x');

 if (((authority & CONNECT_OPTIONS) && (!r && !w && !x)) ||
 ((authority & READ_OPTIONS) && !r) ||
 ((authority & WRITE_OPTIONS) && !w) ||
 ((authority & EXECUTE_OPTIONS) && !x))
 {
 *cc = MQCC_FAILED;
 *rc = MQRC_NOT_AUTHORIZED;
 }
 }
 else
 {
 *cc = MQCC_FAILED;
 *rc = MQRC_NOT_AUTHORIZED;
 }
}

// Internal convenience functions

size_t mqstrlen (const char *string)
{
 return (string ? strspn (string, MQCHARS) : 0);
}

char *mqstrncpy (char *dest, const char *src, size_t number)
{
 // dest must be (size + 1) bytes or larger to accommodate the
 // terminating byte

 strncpy (dest, src, number);
 dest [number] = '\0';

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 dest [strspn (dest, MQCHARS)] = '\0';

 return dest;
}

void replace (char *string, char a, char b)
{
 register char *c;

 for (c = string; *c; c++)
 {
 if (*c == a) *c = b;
 }
}

// This function writes log file entries with a date/timestamp and
// process identifier

int log (char *message, ...)
{
 #define BUFFER_SIZE 4096

 static char buffer [BUFFER_SIZE];
 int bytes = 0;

 // Write the log message after a timestamp

 if (logfd)
 {
 time_t timenow;
 struct tm *tm;
 va_list arg_list;

 timenow = time (NULL);
 tm = localtime (&timenow);
 bytes = sprintf (buffer, "[%ld] %02d/%02d/%04d %02d:%02d:%02d ",
 getpid (),
 tm->tm_mon + 1, tm->tm_mday, tm->tm_year + 1900,
 tm->tm_hour, tm->tm_min, tm->tm_sec);

 va_start (arg_list, message);
 bytes += vsprintf (&buffer [bytes], message, arg_list);
 va_end (arg_list);

 write (logfd, buffer, bytes);
 }

 return bytes;
}

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

BUILDING THE EXAMPLE SERVICE

The following command can be used (or included in a makefile) to
build the example installable service from the source file
fileauthservice.c as object fileauthservice:

cc -o fileauthservice fileauthservice.c -lc_r -lpthreads
➤ -lmqmzf_r -e mqz_init_authority -bM:SRE

The threaded versions of the C, ‘pthreads’, and MQSeries installable
service libraries are used. The initialization function mqz_init_authority
is defined as the external entry point.

CONFIGURING THE EXAMPLE SERVICE

The queue manager’s authorization service is specified in the qm.ini
configuration file. It’s advisable to use a newly created and dedicated
queue manager rather than an existing one that was previously
configured to use the OAM. This avoids any difficulty of reinstating
the OAM later in the presence of a previously defined set of access
control definitions.

The Module line in the ServiceComponent entry must identify the path
of the object file that contains the installable service module (here, it
is assumed to be the directory /var/mqm).

Service:
 Name=AuthorizationService
 EntryPoints=9
ServiceComponent:
 Service=AuthorizationService
 Name=fileauthservice
 Module=/var/mqm/fileauthservice
 ComponentDataSize=0

THE EXAMPLE SERVICE IN OPERATION

The installable service creates a log file (specified in the source as
/var/mqm/fileauthservice.log), in which an entry is written for every
MQZ_CHECK_AUTHORITY request. Here is an example collection
of entries that occur during the initialization of the queue manager.
Each line begins with the process identifier in square brackets,
followed by the date and timestamp of the entry. The entityName for

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

whom authority is requested appears next, followed by a colon, the set
of authority bits (MQZAO constants) requested, and the name of the
target object.

[10468] 08/24/2000 22:08:02 fileauthservice initialized
➤ (fileauthservice.c last modified Sun Aug 24 22:01:23 2000)
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000001 on
➤ target SERVICE.QM
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000010 on
➤ target
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000010 on
➤ target SYSTEM.DEFAULT.NAMELIST
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000034 on
➤ target SYSTEM.CLUSTER.COMMAND.QUEUE
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x0000000E on
➤ target SYSTEM.CLUSTER.TRANSMIT.QUEUE
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000200 on
➤ target SERVICE.QM
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000200 on
➤ target SYSTEM.CLUSTER.TRANSMIT.QUEUE
[9454] 08/24/2000 22:08:08 mqm: granted authority 0x00000002 on
➤ target SYSTEM.CLUSTER.REPOSITORY.QUEUE
[9712] 08/24/2000 22:08:09 mqm: granted authority 0x00000001 on
➤ target SERVICE.QM
[12274] 08/24/2000 22:08:09 mqm: granted authority 0x00000001 on
➤ target SERVICE.QM
[12274] 08/24/2000 22:08:09 mqm: granted authority 0x00000024 on
➤ target SYSTEM.CHANNEL.INITQ
[9454] 08/24/2000 22:08:09 mqm: granted authority 0x0000000E on
➤ target SYSTEM.CLUSTER.REPOSITORY.QUEUE
[9454] 08/24/2000 22:08:09 mqm: granted authority 0x00000006 on
➤ target SYSTEM.CLUSTER.TRANSMIT.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00000010 on
➤ target
[9454] 08/24/2000 22:08:10 mqm: denied authority 0x00040000 on
➤ target APP_TEST.Q
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target REPLY.Q
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target REQUEST.Q
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.ADMIN.CHANNEL.EVENT
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.ADMIN.COMMAND.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.ADMIN.PERFM.EVENT
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.ADMIN.QMGR.EVENT

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.CHANNEL.INITQ
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.CHANNEL.SYNCQ
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.CICS.INITIATION.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.CLUSTER.COMMAND.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.CLUSTER.REPOSITORY.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.CLUSTER.TRANSMIT.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.DEAD.LETTER.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.DEFAULT.ALIAS.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.DEFAULT.INITIATION.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.DEFAULT.LOCAL.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.DEFAULT.MODEL.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.DEFAULT.REMOTE.QUEUE
[9454] 08/24/2000 22:08:10 mqm: granted authority 0x00040000 on
➤ target SYSTEM.MQSC.REPLY.QUEUE

INSTALLABLE SERVICES AS A WINDOW TO QUEUE MANAGER
ACTIVITY

As installable services are exposed to details of the queue manager’s
internal operation, they offer interesting possibilities for monitoring
the activity of the queue manager. In the log excerpt above, the process
identifiers correspond to the execution controller (10468) and two
agents (9454 and 12274). This information can be obtained from the
ps command. From the queues and authorities requested, we can infer
that 9454 is acting for the cluster controller and 12274 for the channel
initiator, and we can observe the subsequent activity of each of them.

Chris Markes
HCI Architect
IBM UK Laboratories Ltd (UK) © Xephon 2000

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries clusters: a hands-on view (part 2)

This is the second part of this two-part article on MQSeries clustering
(the first part appeared in last month’s issue). This article illustrates
MQSeries clustering using the example set-up show in Figure 1. Note
that this figure also appeared in last month’s instalment, though the
boxes around the queue managers were omitted in that version.

COMPARISON OF THE NUMBER OF DEFINITIONS

At this point, we have defined a cluster with four queue managers, so
let’s check how many definitions were made:

Number of
definitions

One cluster sender channel per queue manager 4
One cluster receiver channel per queue manager 4
One cluster queue per queue manager 4

Total 12

Figure 1: The sample MQSeries cluster

TO.QM1(R) TO.QM2(R)

QM1
TO.QM2(S)

(Full repository)

QM2

TEST.CLUSQ1

TO.QM1(S)

TEST.CLUSQ2

TO.QM1(S)

QM3WinNT

(Partial repository)

(Full repository)

(Partial repository)

TO.QM1(S)

QM4Sun

TEST.CLUSQ4TEST.CLUSQ3

TO.QM3WinNT(R) TO.QM4Sun(R)

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

So, using just 12 definitions (ignoring the required ‘system’ definitions),
I am able to connect four queue managers together, and each is able
to write to any of the cluster queues.

If the same network of queue managers was created using ‘traditional’
queuing definitions, we would need:

Number of
definitions

Three sender channels per queue manager Total 12
Three receiver channels per queue manager Total 12
One local queue per queue manager Total 4
Three remote queues per queue manager Total 12
Three XmitQs per queue manager Total 12
Three process definitions per queue manager Total 12

Total Total 64

This clearly demonstrates the significant saving in administration that
clustering yields.

DATA CONVERSION

As would be the case with traditional distributed queuing methods,
messages going from one platform to another will probably need
conversion.

Even though MQSeries will happily convert data at the channel level,
it is recommended that conversion is managed by the application
when it gets messages – this is easily achieved by using MQGET with
the CONVERT option. This is particularly important when a message
is sent to several platforms (so-called ‘multi-hopping’). You want to
avoid having to convert the message at each stage – instead convert
at the last stage using your program. Note that changing from MQGET
alone to MQGET plus CONVERT means that you’ll need to handle
situations where MQSeries is unable to convert the data.

A close inspection of the new cluster channels shows that the receiver
channel has a new field ‘convert by sender’. It is this field – and this
field only – that determines whether MQSeries will automatically
convert the data. This can lead to some confusing situations, as
demonstrated by the table overleaf.

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 CONVERT = ?
Cluster sender Cluster receiver Does conversion

TO.QM1 TO.QM3WinNT take place?
Y Y Yes
Y N No
N Y Yes
N N No

In the second row, the ‘sender’ indicates that conversion is to take
place, and yet the overall result is that it does not. Rather than display
the channel attributes to check whether conversion takes place, it is
better – in a clustering environment – to display the channels from the
cluster’s point of view using the DIS CLUSQMGR command and
check the status of the CONVERT field.

Another issue you may encounter when using clustering concerns the
use of channel message exits in traditional distributed queuing
environments. I myself don’t like using exits – the system should cope
with my needs – though there are situations when exits have to be
introduced. One such situation is when you use ‘MERVA’ on the
mainframe (MERVA is a financial messaging system that allows
access to the SWIFT network), whose internal settings expect data to
be in codepage 500. MERVA uses a set of control characters to
recognize the start and end of data. The control characters are ‘{’ and
‘}’, and MERVA expects them as hex characters xC0 and xD0. The
problem arises if the mainframe queue manager uses, say, codepage
273 (German) instead of codepage 500. If the MQSeries channels
convert messages (in other words, you set CONVERT=Y and the
message format as MQSTR), the control characters will be converted
to x43 and xDC respectively. Many years ago it was decided that a
message exit should be used to convert the data to code page 500, even
though the queue manager uses codepage 273. This leads to the
horrible situation where the CCSID in the MQSeries message header
reads ‘273’, though the data is, in reality, in CCSID ‘500’!

This ‘works’ in a traditional channel set-up, but fails in a clustered
environment. Remember that the receiving queue manager has only
one cluster receiver channel, and so all data sent to this channel would
be converted to codepage 500 if the message exit is used there! The
solution, as mentioned earlier, is to ensure that the receiving program,
and not the channel, does the conversion by using the CONVERT
option with MQGET and setting the codepage to 500.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

Another solution to the MERVA problem is to set the CCSID of the
queue manager to 500, though this may lead to even bigger problems
if your language’s alphabet includes special characters.

OPERATIONS

Once clustering is implemented, the Master address space will show
these new messages at start-up:

CSQV452I MQV1 CSQVXLDR Cluster workload exits not available

This is fine (if you are not using the exit specified).

CSQI007I MQV1 CSQIERS3 BUILDING IN-STORAGE INDEX FOR
QUEUE SYSTEM.CLUSTER.REPOSITORY.QUEUE

The above message results from the fact that MQSeries builds indices
for every queue that has an index.

When the OS/390 channel initiator (CHIN) address space starts, you
should see the Repository Manager starting (see the message below).
This is an essential component of the repository.

CSQX131I MQV1 CSQXADPI 8 adapter subtasks started, 0 failed
CSQX410I MQV1 CSQXREPO Repository Manager started

If the Repository Manager isn’t running, cluster queues cannot be
seen and new cluster definitions cannot be propagated to other queue
managers.

Under normal circumstances, you should see cluster sender and
receiver channels starting and stopping in exactly the same way as
standard channels, as indicated by the following messages:

CSQX500I MQV2 CSQXRESP Channel TO.MQV2 started
CSQX500I MQV2 CSQXRCTL Channel TO.MQV1 started

PROBLEMS AND HOW TO DEAL WITH THEM

As with any other type of system, problems do occur in clustered
environments. The following is a subset of things that can happen:

1 The Repository Manager stops.

This is potentially a nasty one. The first thing to do is ensure
you’ve got all the latest maintenance patches applied. This

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

problem can happen when an internal MQSeries error has occurred,
for instance:

CSQX038E MQXX CSQXREPO Unable to put message to
SYSTEM.CLUSTER.TRANSMIT.QUEUE, MQCC=2 MQRC=2013
CSQX448E MQXX CSQXREPO Repository Manager stopping because
➤ of errors. Restart in 600 seconds

As you can see, the Repository Manager will attempt a restart in
ten minutes’ time, but if the message states ‘Repository Manager
stopped’, the only course of action is a CHIN restart. By the way,
you cannot change the restart time of 600 seconds.

2 You get a return code 2085 (unknown object) after an MQPUT to
a cluster queue.

This is a beauty! There are many reasons for getting this return
code, but you would have thought it wouldn’t happen in a
clustered environment. Provided the Repository Manager hasn’t
stopped, and you’ve given the correct cluster queue name, then
the only reason that remains is that your local queue manager
can’t ‘see’ the cluster queue, even though it is part of the cluster!
The first thing to do is to issue some display commands:

DIS QCLUSTER(*)

This should display all instances of the queue, and this command:

DIS CLUSQMGR(*)

 should display information on all relevant queue managers and
cluster channels.

If these are correct, then you may have a problem similar to one
I discovered a little while ago. Remember the set-up of a cluster
where the third queue manager was added? This works fine,
provided the third queue manager has a partial repository. If,
however, the third queue manager has a full repository, then don’t
rely on dynamically generated cluster channels – for a full
repository queue manager to join a cluster and ensure that all
updates are reflected in its repository, its cluster channels must be
defined manually.

In our case, when a new cluster queue was defined, it was not

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

propagated to the newly added queue manager, so it got an
RC2085 (unknown object) when it then performed an MQPUT.

You can temporarily get the repository back ‘in line’ by issuing
the command REFRESH CLUSTER(TEST_REPOS), though this
is not a command to be used lightly. This command basically
deletes all the cluster information and rebuilds it.

3 When you try to write to a cluster queue, the message does not
arrive, but when the operation is carried out using a remote queue,
it works fine.

The scenario here is that you’ve got an existing working application
using traditional channels. The application does an MQPUT
specifying the destination queue name and queue manager. A
standard transmission queue with the same name as the remote
queue manager exists. You then prepare for clustering by going
to the remote queue manager, defining the cluster channels, and
changing the queue to a cluster queue. The standard receiver
channel is then stopped.

The application does an MQPUT, which succeeds, but the message
doesn’t land on the cluster queue. You may imagine that the
message instead landed on the cluster transmission queue, but
this is not the case. The message was finally tracked down to the
old transmission queue – the reason for it being sent there is that
the application specified the destination queue manager, and,
because a transmission queue with the same name as the remote
queue manager exists, MQSeries duly placed the message there,
as expected! To remedy this, you either remove the transmission
queue or, if you intend to continue using it, change the program
by not specifying the destination queue manager.

4 You write to a cluster queue that is defined in two places but the
message only arrives in one place.

Check the queue’s Default Bind Option. For equal distribution
across all available queue managers, this should be set to ‘N’ (Not
fixed). If the option is correct, then check the status of the queue
manager itself, then check the channel, and finally verify that the
queue is put-enabled.

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

5 Beware of the DLQ!

If you write messages to a clustered queue on another platform,
and that queue becomes full, the sending application will not be
informed of the problem (however, with a local queue, you’d get
an ‘RC=2053’). Any messages that cannot be delivered are
written to the DLQ. If the DLQ is not there or is ‘put-disabled’,
messages remain on the sending system’s
SYSTEM.CLUSTER.TRANSMIT.QUEUE. Obviously, You also
need a program to process messages on the DLQ.

6 The effect of the Default Bind Option.

Imagine you have a cluster with three queue managers. An
application MQPUTs on the first queue manager, while on the
other two you have defined the same cluster queue, each with
Default Bind Option=N (Not fixed). If no errors occur, then
messages are distributed equally among them in a round-robin
fashion.

Now imagine that, while writing one hundred messages, the
channel to one of the queue managers becomes unavailable.
What happens?

– On one cluster queue, where the channel is unavailable, no
messages are delivered.

– On the other cluster queue we see messages 2, 4, 6, 8, …, 100
followed by 1, 3, 5, 7, …, 99 (originally bound for the other
queue).

The same would happen if the queue is made ‘put disabled’.

Now suppose that both cluster queues are changed to use Default
Bind Option=O (Open) and another hundred messages are written
to them. All messages stay on the sending system’s
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

Why does this happen? The answer is that MQSeries selects one
of the queue managers and starts writing to it. Option ‘O’ means
‘write all messages to the queue manager selected’, so when its
channel becomes unavailable, there is no other place to send

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

messages, and messages remain at the source queue manager.
When you browse the cluster xmitq, you see that its CORRELID
is the name of the cluster channel that became unavailable.

You must, therefore, realize that these messages will remain
unprocessed until the channel becomes available again. The same
happens if the queue manager is forcibly stopped.

Finally, imagine a scenario where a cluster queue exists only in
one place and the queue is ‘put disabled’. This results in an
‘RC=2051’. If the cluster queue exists in more than one place, the
message is redirected to the next available queue manager.

7 How do I get rid of old cluster definitions?

If you want permanently to remove a queue manager from a
cluster, follow the instructions in Apar PQ35026. If you want to
remove the queue manager temporarily, use the SUSPEND and
RESUME commands. There are, however, situations where
‘orphan’ cluster items are left around that cannot be deleted using
either TSO panels or commands. This can happen if, for instance,
a machine crashes and has to be rebuilt. This can lead to confusing
situations where a cluster channel appears to reside in more than
one cluster when you list it via the DIS CLUSQMGR command.
If the channel is started, then both entries are started. This is
something that I would like IBM to address.

VARIOUS CLUSTER COMMANDS

The existing commands, like DEFINE, ALTER, and DISPLAY, have
been updated with the new cluster attributes. The new commands are:

REFRESH CLUSTER(xxxxxxxx)

This discards locally held information, and rebuilds the cluster. This
command should not be used as a matter of course, though experience
has shown that this is sometimes the only way!

RESET CLUSTER(xxxxxxxx) ACTION(FORCEREMOVE) QMNAME(qqqq)

This command forcibly removes a queue manager ‘qqqq’ from the
cluster.

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SUSPEND QMGR CLUSTER(xxxxxxxx) MODE(mmmm)

This command temporarily suspends a queue manager’s membership
of a cluster. The mode (QUIESCE or FORCE) determines how this is
achieved.

RESUME QMGR CLUSTER(xxxxxxxx)

This command is the reverse of SUSPEND QMGR.

DIS CLUSQMGR

This command displays list of queue managers in a cluster along with
their cluster channels.

DIS QCLUSTER

This command displays a list of cluster queues and default bindings
and tells you where they’re defined.

One thing that’s worth mentioning is that you can define a QALIAS as
part of a cluster. The result is that the queue to which the alias points
gets ‘advertised’ in the cluster.

CLUSTER WORKLOAD EXIT

Most installations will probably be happy with the default settings of
this feature. It’s also worth pointing out that the name ‘workload exit’
is a little misleading, as the exit only distributes messages to ‘available’
destinations. The exit checks the queue manager, the status of the
channels, and whether the queue is ‘put enabled’. It doesn’t check how
‘busy’ a queue manager is or the general workload on the machine.
Also note that, if MQSeries finds a cluster queue that is defined
locally, then messages are written locally and are not subject to cluster
distribution.

You can, of course, code your own exit, and IBM has provided
samples to help you do this. However, the samples do not correspond
with the ‘default’ way MQSeries distributes messages. The assembler
sample (CSQ4BAF1 for OS/390) works with the ‘Exit Data’ supplied
(see below).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

There are several things you need to do to activate your own exit:

• Assemble/link the source.

• Add a DD statement //CSQXLIB to the Master address space
pointing to an exit load library. (You probably already have a DD
statement allocated to CHIN for channel exits.)

• Alter the queue manager by setting the Exit Name and Exit Data
– for example:

ALTER QMGR CLWLEXIT(CSQ4BAF1)

ALTER QMGR CLWLDATA('TO.QMGR')

TO.QMGR is the name of the cluster sender channel to which you
want to send messages.

SECURITY

You should have all your MQSeries resources protected before you
introduce clustering.

Although clustering doesn’t change your security requirements, if
your security is not fully in place, then you should be aware of the
following security problem: in a traditional distributed queuing
environment, channels have to be defined at both ends. In a lot of
firms, the mainframe definitions are made by one department, and the
definitions for other platforms by another. If only one set of definitions
is in place, you won’t be able to send messages, and this is quite a good
way to stop ‘unauthorized’ queue managers from connecting to the
host.

However, with clustering, if one end is defined, MQSeries will define
the return cluster channels dynamically. So, equipped with the host’s
IP address, MQSeries port, and the name of the cluster, any Tom, Dick,
or Harry can connect his PC using, say, MQSeries for Windows NT
to the host, and ….

Just a thought: you can code a channel security exit to stop this
happening, and there are security exits available from third-party
vendors.

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

USING A QUEUE MANAGER ALIAS

In order fully to enjoy the benefits of being in a cluster, a queue
manager needs to be a ‘member’ of it. There may be circumstances in
which you cannot do this for either technical reasons or as a result of
the local set-up. In such cases, a special set of definitions could allow
an ‘external’ queue manager to make use of a cluster.

In order to send messages from a queue manager outside a cluster to
a queue hosted by a queue manager inside a cluster (or vice versa) you
have to build a so-called ‘gateway’. This handles messages transferred
into and out of clusters. The gateway itself has to be a member of the
cluster. Use the following procedure to implement a gateway (see
Figure 2):

1 Define the cluster TEST.CLUSTER, as above.

2 Define a cluster queue (Q.GENERAL in Figure 2) as a local queue
on QM2.

3 Decide which queue manager is to be the gateway within the
cluster (QM1 in Figure 2).

4 Define a queue manager alias on QM1 that looks like a remote
queue but isn’t:

DEFINE QREMOTE(Qmgr.Alias) RNAME(' ') RQMNAME(' ')

This entry maps any message destined for queue manager
Qmgr.Alias to null, meaning that the QREMOTE definition in the
queue manager outside the cluster can use Qmgr.Alias as the
queue manager name, instead of using the actual queue manager’s
name.

5 On the queue manager outside the cluster (QM5), define the
remote queue:

DEFINE QREMOTE(Q.GENERAL) RNAME(Q.GENERAL)
RQMNAME(Qmgr.Alias) XMITQ(QM1)

6 Define standard sender and receiver channels between the gateway
queue manager and the queue manager outside the cluster (plus,
of course, a standard transmission queue).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

If an application like AMQSPUT on QM5 issues an MQPUT call to
put a message on Q.GENERAL, the remote definition causes the
message to be routed to the gateway queue manager (QM1) first, and
from there to any queue manager in the cluster hosting cluster queue
Q.GENERAL (such as QM2), regardless of the target queue’s location.

Figure 2: Using a queue manager alias in a cluster

Cluster TEST_REPOS

Qmgr.Alias
Remote queue

Q.GENERAL
Cluster queue

QM2
Full repository

QM1
Full repository

QM5
No repository

Q.GENERAL
Remote queue

QM1
XmitQ

TO.QM1(R) TO.QM2(R)

TO.QM2(S)

TO.QM1(S)

QM5.TO.QM1(S)

QM5.TO.QM1(R)

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

VARIOUS APARS/PTFS RELATED TO CLUSTERING

When examining the list below, remember that it’s not exhaustive and
some PTFs may be superseded.

APAR PTF Description
PQ36946 UQ41981 Fix for RC2087 when using a Queue

Manager Alias.
PQ35026 Method for removing clustering data

from a queue manager.
PQ36747 UQ41650 Fix for RC2189 when putting messages on

SYSTEM.CLUSTER.COMMAND.QUEUE.
PQ37956 UQ43192 Fix for RC2013 after REFRESH CLUSTER
PQ38133 UQ44637 New messages for clusters on OS/390s.
PQ34433 UQ41413 Undeliverable repository command after

REFRESH.

FUTURES

On April 4, 2000 IBM made a preview announcement of MQSeries
for OS/390 V2.2.

This new release introduces the concept of shared queues held in a
coupling facility. Two or more queue managers on OS/390 can
participate in this environment, and all can write to and read from the
same shared queue. As shared queues aren’t owned by a particular
queue manager, if one queue manager fails, the others continue to
work with the shared queue.

Shared queues are restricted to non-persistent messages with a
maximum size of 63 KB.

This is a further improvement to MQSeries availability. Shared
queues can, of course, be part of a cluster, which means that any
application (including non-OS/390 applications) can write to a shared
queue, provided the queue manager is part of the cluster.

CONCLUSION

It is clear that MQSeries clusters reduce administration and improve
availability. However, while the benefits of reduced administration
are obvious, the side-effects of clustering can at times be surprising.
In order to implement a cluster, you will need a detailed knowledge

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

of the applications that read and write MQSeries messages, any
affinities that might exist, and any data conversion requirements.

It is also important to make sure that operations staff are aware of the
changes to TSO ISPF panels and of modified and new commands.

Applications that have special requirements with regards to affinity
may need to be changed, though you may be able to handle them by
changing the Default Bind Option to ‘Open’. Systems that use channel
message exits should ideally have them removed and their applications
changed to issue MQGETs with the CONVERT option set to ‘Y’.

To make full use of clustering, applications should not have any
affinities that tie them to one particular environment or link them to
one particular system. To maximize availability, you need two or more
queue managers that are configured in the same way (cloned), that are
all part of a cluster, and are all served by – and trigger – applications
that can run in more than one place.

Ruud van Zundert (ruud@tesco.net)
Independent Consultant (UK) © Xephon 2000

Customizing CSQ4ZPRM

This article and the next one (Starting the channel initiator and
command server) offer further examples of installing and customizing
MQSeries on the mainframe. This article deals with CSQZMQxx,
which is an example of how the file CSQ4ZPRM supplied in the
MQM.SCSQPROC dataset can be customized to meet an installation’s
specific requirements. Here you can define the Hlq that’s to be used
with your archive dataset and activate and de-activate archiving, SMF
tracing, and so on. This job is used to create the Queue Manager
Options module. Edit the parameters for the CSQ6LOGP, CSQ6ARVP,
and CSQ6SYSP macros to determine your system parameter’s relink
module, CSQZPARM.

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

An example of a customized CSQZPARM(CSQZMQxx) module is
shown below. If you search the file for the string ‘MQxx’, you’ll find
references that you need to set.

JOB CSQZ4PRM

//JOBCARD
//**
//* Customize MQP1 Options module
//**
//* The Macros in this deck are tracked by OS/390 SMPE usermod
//**
//* CUSTOMIZE THIS JOB HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//**
//*
//* IBM MQSeries for MVS/ESA
//* This job assembles and links a new system parameter module.
//* Edit the parameters for the CSQ6LOGP,
//* CSQ6ARVP, and CSQ6SYSP macros to determine your
//* system parameters.
//* See "MQSeries for MVS/ESA System Management Guide"
//* for a full description of the parameters.
//*
//* This member replaces CSQZPARM
//*
//**
//*
//* Assemble step for CSQ6LOGP
//*
//LOGP EXEC PGM=ASMA90,PARM='DECK,NOOBJECT,LIST,XREF(SHORT)'
//SYSLIB DD DSN=MQM.SCSQMACS,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=VOL?
// DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=VOL?
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&LOGP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6LOGP INBUFF=48, LOG INPUT BUFFER SIZE KB X
 MAXALLC=3, MAX ALLOCATED ARCHLOG VOLS X
 MAXARCH=5, MAX ARCH LOG VOLUMES MQxx X
 OFFLOAD=YES, ARCHIVING ACTIVE X
 OUTBUFF=4000, LOG OUTPUT BUFFER SIZE X
 TWOACTV=YES, DUAL ACTIVE LOGGING X
 TWOARCH=NO, DUAL ARCHIVE LOGGING X
 TWOBSDS=YES, DUAL BSDS X
 WRTHRSH=32 ACTIVE LOG BUFFERS

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

 END
/*
//*
//* Assemble step for CSQ6ARVP
//*
//ARVP EXEC PGM=ASMA90,COND=(0,NE),
// PARM='DECK,NOOBJECT,LIST,XREF(SHORT)'
//SYSLIB DD DSN=MQM.SCSQMACS,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=vol?
// DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=vol?
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&ARVP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6ARVP ALCUNIT=CYL, ARCLOG ALLOCATION UNIT X
 ARCPFX1=MQARCH.MQxx.LOG1, DSN PREFIX FOR ARCLOG1 MQxx X
 ARCPFX2=MQARCH.MQxx.LOG2, DSN PREFIX FOR ARCLOG2 MQxx X
 ARCRETN=3, ARCLOG RETENION PERIOD DAYS X
 ARCWRTC=(1,3,4), ARCHIVE WTO ROUTE CODE X
 ARCWTOR=NO, PROMPT BEFORE ARCLOG MOUNT X
 BLKSIZE=24576, ARCLOG BLOCKSIZE X
 CATALOG=YES, CATALOG ARCLOG DATASETS X
 COMPACT=NO, ARCHIVE LOGS COMPACTED X
 PRIQTY=800, PRIMARY SPACE ALLOCATION X
 PROTECT=NO, NO DISCRETE PROFILES CREATED X
 QUIESCE=80, MAX QUIESCE TIME IN SECONDS X
 SECQTY=80, SECONDARY SPACE ALLOCATION X
 TSTAMP=YES, NO TIMESTAMP SUFFIX IN DSN X
 UNIT=DISK ARCLOG ALLOCATION UNIT MQxx
 END
/*
//*
//* Assemble step for CSQ6SYSP
//*
//SYSP EXEC PGM=ASMA90,COND=(0,NE),
// PARM='DECK,NOOBJECT,LIST,XREF(SHORT)'
//SYSLIB DD DSN=MQM.SCSQMACS,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=vol?
// DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,VOL=SER=SYS001 <=vol?
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&SYSP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6SYSP CTHREAD=330, TOTAL NUMBER OF CONNECTIONS X
 CMDUSER=CSQOPR, DEFAULT USERID FOR COMMANDS X
 IDBACK=20, NUMBER OF NON-TSO CONNECTIONS X
 IDFORE=100, NUMBER OF TSO CONNECTIONS X

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 LOGLOAD=100000, LOG RECORD CHECKPOINT NUMBER X
 OTMACON=(,,DFSYDRU0,2147483647,CSQ), OTMA PARAMETERS X
 QMCCSID=0, QMGR CCSID X
 ROUTCDE=1, DEFAULT WTO ROUTECODE X
 SMFACCT=YES, GATHER SMF ACCOUNTING MQxx X
 SMFSTAT=YES, GATHER SMF STATS MQxx X
 STATIME=15, STATISTICS RECORD INTERVAL X
 TRACSTR=NO, TRACING AUTO START X
 TRACTBL=16 GLOBAL TRACE TABLE SIZE X4K
 END
/*
//*
//* LINKEDIT CSQARVP, CSQLOGP and CSQSYSP into a system parameter module.
//*
//LKED EXEC PGM=IEWL,COND=(0,NE),
// PARM='SIZE=(900K,124K),RENT,NCAL,LIST,AMODE=31,RMODE=ANY'
//*
//* OUPUT AUTHORIZED APF LIBRARY FOR THE NEW SYSTEM
//* PARAMETER MODULE.
//*
//*YSLMOD DD DSN=MQM.SCSQAUTH,DISP=SHR
//SYSLMOD DD DSN=MQM.MQxx.PARMODS,DISP=SHR <= MQxx Options loadlib
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//ARVP DD DSN=&&ARVP,DISP=(OLD,DELETE)
//LOGP DD DSN=&&LOGP,DISP=(OLD,DELETE)
//SYSP DD DSN=&&SYSP,DISP=(OLD,DELETE)
//*
//* LOAD LIBRARY containing the default system parameter module (CSQZPARM).
//*
//OLDLOAD DD DSN=MQM.SCSQAUTH,DISP=SHR
//SYSLIN DD *
 INCLUDE SYSP
 INCLUDE ARVP
 INCLUDE LOGP
 INCLUDE OLDLOAD(CSQZPARM)
 ENTRY CSQZMSTR
 NAME CSQZMQxx(R) MQxx system parameter module name
/*
_

Saida Davies
IBM (UK) © Xephon 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

Starting the channel initiator and command server

CSQ4CHNA is a brief code sample that contains the channel initiator
and command server start commands.

These can be added at the beginning of the CSQ4CHNL member file
for each queue manager. The reason to put these files in a separate
member is to accommodate situations where a queue manager is
designed to be shared between systems in a parallel Sysplex. In such
instances, all channels that are to be shared are isolated in one member
and the channel initiator is defined in another, which is started via a
unique Options module (CSQ4XPARM).

AN EXAMPLE OF CUSTOMIZED CSQ4INP2 (CSQ4CHNA)

*
* Start MQA1 Channel Initiator with LPARA1 options module
START CHINIT PARM(CSQXMQA1)
*
* Start command server
START CMDSERV
*

Saida Davies
IBM (UK) © Xephon 2000

Contributing to MQ Update

Contributions to MQ Update may be sent to the editor, Harry
Lewis, at: MQ Update, Xephon, 27-35 London Road, Newbury,
Berkshire RG14 1JL, UK. You may also e-mail articles to
harryl@xephon.com. For more information about contributing,
please download a copy of Notes for contributors from Xephon’s
Web site at www.xephon.com/nfc.pdf.

MQ news

CommerceQuest has entered into an OEM
agreement with Tivoli, whereby its
e-Adapter Suite, a bulk data movement and
integration package based on MQSeries, is
to be combined with Tivoli’s system
management suite under the name ‘Tivoli
Data Exchange’. Tivoli will sell and promote
the product. The e-Adapter Suite adds bulk
data movement, conversion, and integration
capabilities to MQSeries and its status
management subsystem provides an audit
trail of information as it flows between
systems.

For further information contact:
Tivoli Systems, 9442 Capital of Texas
Highway, N Austin, TX 78759, USA
Tel: +1 512 436 8000
Fax: +1 512 794 0623
Web: http://www.tivoli.com

CommerceQuest, 3550 West Waters
Avenue, Tampa, FL 33614, USA
Tel: +1 813 903 3000
Fax: +1 813 903 3095
Web: http://www.commercequest.com

* * *

WRQ has announced a new suite of
integration tools, including WRQ
VeraStream, based on the recently-acquired
SuperNova technology. VeraStream
combines rapid visual development tools,
native database and application adapters,
and an integration engine. Also included are
visual tools for implementation connectivity
options including MQSeries, XML,
CORBA/IIOP, CICS, and Java.

VeraStream is out now and prices start at
US$10,000.

For further information contact:
WRQ, 1500 Dexter Avenue North, Seattle,
WA 98109, USA
Tel: +1 206 217 7100
Fax: +1 206 217 0293
Web: http://www.wrq.com

WRQ, 40 West Street, Marlow,
Buckinghamshire SL7 2NB, UK
Tel: +44 1628 400 800
Fax: +44 1628 400 801

* * *

IBM has announced VisualAge for Java
Version 3.5 Professional and Enterprise
Editions. Both support incremental RAD
and server-side programming, and come
with a WebSphere test environment and
Tool Integrator API. Also new is better
support for change management tools, such
as VisualAge TeamConnection, Merant
PVCS, Microsoft SourceSafe, and Rational
ClearCase. The Enterprise Edition also
comes with Enterprise Access Builders for
MQSeries.

Out now, the Professional Edition costs
US$150 and the Enterprise Edition
US$3,000.

For further information, contact your local
IBM representative.

x xephon

	An introduction to MQSeries installable services
	MQSeries clusters: a hands-on view (part 2)
	Customizing CSQ4ZPRM
	Starting the channel initiator and command server
	MQ news

