
© Xephon plc 2000

November 2000

17

3 MQSeries recovery for Unix
15 Microsoft MSMQ to MQSeries

Bridge
39 Customizing CSQ4MQxx for an

application
43 Migrating MQSI 1 rules and

formats to Version 2
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSeries recovery for Unix

INTRODUCTION

The MQSeries recovery process outlined in this article uses only
supported MQSeries recovery procedures and utilities. It is based on
MQSeries Version 5.1, and the latest IBM documentation should be
reviewed for any improvements since this article was written.

In preparing these procedures, it is assumed that the required back-up
and log files are available. Another consideration is that, while this
article applies to most Unix installations, it was tested on Sun Solaris.
This means that one or two details may differ from your installation.

RECOVERY CONCEPTS

A messaging system ensures that messages entered into the system are
delivered to their destination. This means that the system must include
a method of tracking messages in the system and recovering messages,
if the system fails for any reason.

MQSeries ensures that messages are not lost by maintaining records
(logs) of the activity of queue managers that handle the receipt,
transmission, and delivery of messages. It uses these logs for two
basic types of recovery:

1 Restart recovery, when you stop MQSeries in an orderly way.
This is not covered in this article, though it’s discussed in the IBM
documentation.

2 Crash recovery, when MQSeries is stopped by an unexpected
failure. This is the subject of this article.

In all cases, the recovery restores the queue manager to the state it was
in when the queue manager stopped, with the exception that any in-
flight transactions are rolled back, removing from the queues any
messages that were not committed when the queue manager stopped.
Recovery restores all persistent messages, though non-persistent
messages are lost.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RISKS

You should be aware of the following risks associated with recovering
an MQSeries system:

1 Recovery relies on the availability of all the necessary log files.
The absence of a required file will prevent MQSeries recovery
from taking place.

2 Only persistent messages are recovered.

3 Circular logging supports only restart recovery, which means
that transactions that were in progress are rolled back. Linear
logging is required if full restart and either media or forward
recovery is required; in this case, existing transactions will be
completed, if possible.

4 Logging requires that sufficient disk space is available.

For circular logging, the disk space required is determined when
the system is configured, and no extra space is allocated as the
system runs, so space is not a problem with this type of log.

For linear logging, a new log file is created only when it is
needed, and it is then allocated sufficient space to accommodate
its maximum size. Thus the system can run out of space only
when a new log file is created, and regular archiving and
management of the logs will ensure that this is not a problem.

MANAGING THE LOG FILES

Circular logging is generally used to minimize the support overhead.
While linear logging maximizes the likelihood of recovering from
errors, this is usually not necessary on non-transactional systems,
where the majority of user-generated message traffic is designed to
expire if not processed within a short interval. Procedures for both
methods are described in this article.

The log files are stored in the directory:

/var/mqm/log/queue_mgr_name

All files and sub-directories in this directory must be backed up

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

together – using files from different back-ups will cause the MQSeries
queue manager to fail to start.

Over time, older linear log files are no longer required to restart the
queue manager or perform the media recovery of any damaged
objects. Periodically, the queue manager issues a pair of messages to
indicate which of the log files are required:

• Message AMQ7467 gives the name of the oldest log file needed
to restart the queue manager. This log file and all newer log files
must be available during queue manager restart.

• Message AMQ7468 gives the name of the oldest log file needed
to perform media recovery.

Log files older than the ones identified by these messages can either
be archived and removed from the system or deleted, if not required
for any business purpose.

If any log file that is needed cannot be found, operator message
AMQ6767 is issued. Make the log file, and all subsequent log files,
available to the queue manager and retry the operation.

Note that, if you’re performing media recovery using linear log files,
all the required log files must be available in the log file directory at
the same time. Make sure that you take regular media images of any
objects you may wish to recover to avoid running out of disk space
necessary to hold all the required log files.

CHECK-POINTING – ENSURING COMPLETE RECOVERY

Persistent updates to message queues happen in two stages. First, the
records representing the update are written to the log, then the queue
file is updated. The log files can, therefore, be more up-to-date than
the queue files. To ensure that restart processing begins from a
consistent point, MQSeries uses checkpoints. A checkpoint is a point
in time when the record described in the log is the same as the record
in the queue. The checkpoint itself consists of a series of log records
that are needed to restart the queue manager, such as records relating
to the state of all transactions (that is, units of work) active at the time

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

of the checkpoint. This is why it is important to back up all the files
in the log directory at the same time.

Checkpoints are generated automatically by MQSeries. They are
taken when the queue manager starts, when it shuts down, when
logging space is running low, and after every 1,000 logged operations.

As queues handle subsequent messages, the checkpoint record becomes
inconsistent with the current state of the queues.

When MQSeries is restarted, it locates the latest checkpoint record in
the log. This information is held in the checkpoint file that is updated
at the end of every checkpoint. The checkpoint record represents the
most recent point of consistency between the log and the data. The
data from this checkpoint is used to rebuild the queues as they existed
at the last checkpoint time. When the queues are recreated, the log is
then played forward to bring the queues back to the state they were in
before system failure or shutdown.

Checkpoints are used to make recovery more efficient and to control
the re-use of primary and secondary log files.

BACKING UP AND RESTORING MQSERIES

When you run MQSeries, you must periodically take a back-up of
your queue manager data to protect it against possible corruption
resulting from hardware failure.

If the message data used by a system is short-lived, you may be
tempted not to take back-ups. In this case, you can use the following
shell scripts to recreate queue managers in the event of a failure:

createqm

this recreates the queue manager, while:

configqm

configures the queue manager with its default values. Note that, if you
chose not to take back-ups, this is the only option that is available for
restoring the system – in many cases, you will not be able to restart the
queue manager, and it must be deleted and recreated in this way. This
is not recommended.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

The remainder of this article describes what to back up and how to use
the back-ups to restore MQSeries to a working condition.

BACKING UP MQSERIES

To take a back up of a queue manager’s data, you must:

1 Ensure that the queue manager is not running.

If your queue manager is running, stop it with either the endmqm
-w command or the stopqm shell script and wait while it
quiesces. Note that, if you try to take a back-up of a running queue
manager, the back-up may not be consistent as a result of updates
that were in progress while the files were being copied.

2 Take copies of all the queue manager’s data and log file directories,
including the following subdirectories:

/var/mqm/config

/var/mqm/conv

/var/mqm/log/q_mgr_name

/var/mqm/qmgrs/q_mgr_name

/var/mqm/mqs.ini

$APPL_HOME/

Make sure that you don’t miss any files – especially the log
control file and the configuration files. Some of the directories
may be empty, but they’ll all be required when you restore the
back-up at a later date, so it is advisable to save them too.

3 Ensure that you preserve the ownership of the files (you can do
this, for instance, with the tar command).

RESTORING MQSERIES

To restore a back-up of a queue manager’s data, you must:

1 Ensure that the queue manager is not running.

2 Clear out the directories in which you are going to place the data
you backed up.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3 Copy the backed up queue manager data and log files to the
correct places.

4 Check the resulting directory structure to ensure that you have all
of the ones required.

Also make sure that you have a log control file, as well as the log files
themselves, and check that the MQSeries and queue manager
configuration files are consistent so that MQSeries can look in the
correct places for the restored data.

If the data was backed up and restored correctly, the queue manager
will now start. Note that, even though the queue manager data and log
files are held in different directories, you should back up and restore
the directories at the same time. If the queue manager data and log files
have different ages, the queue manager is not in a valid state and will
probably not start. If it does start, your data will almost certainly be
corrupt.

RECOVERING FROM PROBLEMS

MQSeries can recover from both communication failures and outages
resulting from loss of power. In addition, it is sometimes possible to
recover from other types of problem, such as the inadvertent deletion
of a file.

There are several ways that your data can be damaged. MQSeries
helps you recover from:

• A power loss in the system

• A communication failure

• A damaged data object (if linear logging is used)

• A damaged log volume (again, if linear logging is used).

This section looks at how the logs are used to recover from these types
of problem. In some cases, such as recovering damaged objects, only
linear logging provides sufficient information to support recovery.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

Loss of power

If your system goes down after a power outage, MQSeries restores the
queues to their committed state at the time of the failure when the
queue manager is restarted. This ensures that no persistent messages
are lost. Non-persistent messages, which don’t survive when MQSeries
stops, are discarded.

Whenever the Unix system stops unexpectedly, the TCP/IP links that
support the channels between Unix and OS/390 need re-establishing
(if applicable). Starting the queue manager automatically achieves
this as far as the Unix system is concerned, but the OS/390 system is
generally not aware of any problem, or will be permanently in a
‘retrying’ state. The channels on the OS/390 must be re-started to re-
establish communication.

Communications failure

In the case of a communications failure, messages remain on queues
until they are removed by a receiving application. If the message is
being transmitted, it remains on the transmission queue until it is
successfully transmitted. To recover from a communications failure,
it is normally sufficient just to restart the channels using the link that
failed.

Media recovery

Media recovery is the re-creation of objects from information recorded
in a linear log – this is not applicable to systems running circular logs.
For example, if an object file is inadvertently deleted or becomes
unusable for some other reason, media recovery can be used to
recreate it. The information in the log that’s required for the media
recovery of an object is called a media image. Media images can be
recorded manually using the rcdmqimg command, and they’re also
recorded automatically in some circumstances.

A media image is a sequence of log records containing an image of an
object from which the object itself can be recreated.

The first log record required to recreate an object is known as its media
recovery record – this is the start of the most recent media image of

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the object. An object’s media recovery record is part of the information
recorded during a checkpoint.

When an object is recreated from its media image, it is also necessary
to replay any log records describing updates performed on the object
since the last image was taken.

Consider, for example, a local queue that has an image of the queue
object taken before a persistent message was put on the queue. In order
to recreate the latest image of the object, it is necessary to replay the
log entries that record the putting of the message on the queue, as well
as replaying the image itself.

When an object is created, the log records written contain enough
information to recreate the object completely. These records make up
the object’s first media image. Media images of the following objects
are subsequently recorded automatically by the queue manager at
each shutdown:

• All process objects and queues that are not local

• Empty local queues.

As stated, media images can be recorded manually with the rcdmqimg
command. This command causes a media image of the MQSeries
object to be written. Once this is done, only the logs that hold the
media image, and all logs created after this, are needed to recreate
damaged objects. The benefit of doing this depends on such factors as
the amount of free storage available and the speed at which log files
are created.

Recovering media images
MQSeries automatically recovers some objects from their media
image if it finds that they are corrupt or damaged. This applies
particularly to damaged objects found during normal queue manager
start-up. If any transaction was incomplete at the time of the last queue
manager shutdown, any queue affected is also recovered automatically
in order to complete the start-up operation.

You must recover other objects manually using the rcrmqobj
command. This command replays the relevant records in the log to

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

recreate the MQSeries object. The object is recreated from its latest
image in the log, together with all applicable log events between the
time the image was taken and the recreate command was issued. Note
that, if an MQSeries object becomes damaged, the only valid actions
that can then be performed on it are to delete it and to recreate it by this
method. Also note that non-persistent messages cannot be recovered
in this way.

It is important to remember that both the log file that contains the
media recovery record and all subsequent log files must be available
in the log file directory when attempting the media recovery of an
object. If a required file cannot be found, operator message AMQ6767
is issued and the media recovery operation fails. If you do not take
regular media images of the objects that you may need to recreate, you
can get into a situation where you have insufficient disk space to hold
all the log files required to recreate an object.

RECOVERING DAMAGED OBJECTS DURING START UP

If the queue manager discovers a damaged object during start-up, the
action it takes depends on the type of object and whether the queue
manager is configured to support media recovery.

If the queue manager object is damaged, the queue manager cannot
start unless it can recover the object. If the queue manager is configured
with a linear log, and thus supports media recovery, MQSeries
automatically tries to recreate the MQSeries object from its media
images. If the logging method selected does not support media
recovery, you can either restore a back-up of the queue manager or
delete the queue manager.

If any transactions were active when the queue manager stopped, then
local queues that contain persistent uncommitted messages that were
put on or got from the queue as part of these transactions are also
needed if the queue manager is to start successfully. If any of these
local queues are found to be damaged, and the queue manager
supports media recovery, it automatically attempts to recreate them
from their media images.

If any queues cannot be recovered, MQSeries cannot start. Any

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

damaged local queues that contain uncommitted messages that are
discovered during the start-up processing of a queue manager that
does not support media recovery are marked as ‘damaged objects’ and
the uncommitted messages on them are ignored. This is because it is
not possible to perform media recovery of damaged objects on such
a queue manager and the only action left is to delete them. Message
AMQ7472 is issued to report the damage.

RECOVERING DAMAGED OBJECTS AT OTHER TIMES

Media recovery of objects is automatic only during start-up. At other
times, when object damage is detected, operator message AMQ7472
is issued and most operations using the object fail. If the queue
manager object is damaged at any time after the queue manager has
started, the queue manager performs a pre-emptive shutdown. If an
object is damaged you may delete it or, if the queue manager has a
linear log, attempt to recover it from its media image using the
rcrmqobj command.

PROTECTING MQSERIES LOG FILES

It is important that you do not remove the log files manually when an
MQSeries queue manager is running. If a user inadvertently (or
maliciously) deletes log files that a queue manager needs to restart,
MQSeries does not issue an error message and continues to process
data, including persistent messages. The queue manager will shut
down normally, but will fail to restart. Media recovery of messages
then becomes impossible.

Any user with sufficient authority to remove logs that are being used
by an active queue manager also has the authority necessary to delete
other important queue manager resources, such as authorization files,
queue files, the object catalogue, and MQSeries executables. They
can, therefore, damage a running or dormant queue manager, either
through inexperience or intent, in a way against which MQSeries
cannot protect itself.

For this reason, you should exercise caution when conferring superuser
or mqm authority.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

RECOVERY SCENARIOS

This section looks at a number of possible problems and indicates how
to recover from them.

Disk drive failure
You may suffer problems with a disk drive containing the queue
manager data, the log, or both. Problems can include data loss or
corruption. The above three cases differ only in the part of the data that
survives, if any.

In all cases you must first check the directory structure for any damage
and, if necessary, repair it. If you lose queue manager data, there is a
danger that the queue manager directory structure is also damaged. If
so, you must recreate the directory tree manually before you try to
restart the queue manager.

Having checked for structural damage, there are a number of alternative
things you can do, depending on the type of logging that you use. Bear
in mind that, even if the MQSeries system initially uses circular logs,
this may be changed in future. This article, therefore, covers both
linear and circular logging recovery methods.

Where there is major damage to the directory structure or any damage
to the log, remove all the old files back to the QMgrName level,
including configuration files, logs, and the queue manager directory.
Restore the last back-up and try to restart the queue manager.

For linear logging with media recovery, ensure the directory structure
is intact and try to restart the queue manager. If the queue manager
does not restart, restore a back-up. If the queue manager restarts,
check whether any other objects have been damaged using MQSC
commands, such as DISPLAY QUEUE . Recover those objects that
are reported damaged using the rcrmqobj command, for example:

rcrmqobj -m QMgrName -t all *

where QMgrName is the queue manager being recovered. -t all *
indicates that all objects of any type (except channels) are to be
recovered. If only one or two objects are reported damaged, you may
want to specify those objects by name and type.

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

For linear logging with media recovery and an undamaged log, you
may be able to restore a back-up of the queue manager data leaving the
existing log files and log control file unchanged. Starting the queue
manager applies changes from the log to bring the queue manager
back to its state when the failure occurred. This method relies on two
sources of data. Firstly, the checkpoint file contains the information
that determines how much of the data in the log must be applied to
yield a consistent queue manager, so it’s vital that this file is restored
as part of the queue manager data. Secondly, you must have the oldest
log file that was required to start the queue manager at the time of the
back-up – and all subsequent log files – available in the log file
directory.

If this is not possible, you must restore a back-up of both the queue
manager data and the log, both of which were taken at the same time.

Damaged queue manager object

If the queue manager object is reported as damaged during normal
operation, the queue manager performs a pre-emptive shutdown.
There are two ways of recovering from this, depending on the type of
logging you use:

• For linear logging only, delete the file containing the damaged
object manually and restart the queue manager. (You can use the
dspmqfls command to determine the damaged object’s name in
the filesystem.) Media recovery of the damaged object is automatic.

• For either circular or linear logging, restore the last back-up of the
queue manager data and log and restart the queue manager.

Damaged single object

If a single object is reported as damaged during normal operation:

• Recreate the object from its media image (this works only with
linear logging)

or:

• Restore the last back-up and restart the queue manager (this
works with both circular and linear logging).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

Automatic media recovery failure

If a local queue that’s required to start a queue manager that uses a
linear log is damaged, and automatic media recovery fails, restore the
last back-up of the queue manager data and log and restart the queue
manager.

Saida Davies
IBM (UK) © Xephon 2000

Microsoft MSMQ to MQSeries Bridge

INTRODUCTION

In this article, I first look at the structure of MSMQ, Microsoft’s
message queueing product, with which MQSeries users may be
unfamiliar. Next, I discuss the integration of MQSeries with MSMQ,
which is Windows NT/2000-specific and communicates with
heterogeneous platforms via Microsoft’s MSMQ-MQSeries Bridge.

MSMQ is an integral part of Windows 2000, so it’s inevitable that
many MQSeries users will be confronted with the task of integrating
MSMQ islands with an MQSeries framework, even in organizations
where an MQSeries infrastructure is already present in Windows NT.
One of the primary drivers for the use of MSMQ in organizations
where MQSeries is the message-oriented middleware standard is the
current shortage of MQSeries skills – this may be compared with the
‘application backlog’ of the nineties, which led to the development of
isolated departmental systems. While the integration of those systems
proved to be one of the main challenges of the past decade, proper
planning and an understanding of the interoperation of MSMQ and
MQSeries could make the task of integrating the two systems painless.

This article is in two part – the second and concluding part appears in
next month’s issue of MQ Update.

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MESSAGE QUEUEING WITH MSMQ

In common with MQSeries, message queueing in an MSMQ
environment uses a store-and-forward technique to allow applications
running at different times to communicate across distributed networks.
This allows programs to share data across a network without having
a synchronized connection between the sending and receiving
components of the distributed application.

As you’d expect, the two main parts of MSMQ are messages and
queues. Messages containing data are placed on message queues by
a sending program. The message queue is just the location where
messages are stored, and the messages are retrieved from queues by
the receiving program. Queues can be managed using the GUI-based
MSMQ Explorer, which provides a high-level view of the MSMQ
hierarchy.

MSMQ messages consist of fields, known as message properties. Any
number of properties is allowed, including none, yielding a message
with a dynamic data structure. This is in contrast to MQSeries, where
the fields comprise a fixed data structure.

The process of sending a message is as follows:

• The sending application specifies the message fields or properties,
provides the field values, and then issues an API call to MSMQ
to send the message.

• The MSMQ queue manager conveys the message to the destination
queue. If the destination queue is not available, the message is
stored and is subsequently automatically forwarded when a
connection link is established.

• A receiving application issues an API call to receive the message
from the queue.

Hence, both MSMQ and MQSeries provide the following services:

• Connectionless, asynchronous messaging.

• Guaranteed delivery.

• Message prioritization, allowing the order in which the receiving
application gets messages to be specified.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

• A user-defined message structure consisting of anything from no
data, to a single byte, a text string, or a long and complex data
structure, perhaps involving an encryption mechanism that restricts
access to just the communicating applications.

• ‘Send message’ and ‘receive message’ operations that can
participate in a transaction that is coordinated with other database
operations, so that the entire transaction can be committed, if all
operations succeed, or cancelled and rolled back, if any of the
operations fail.

• An Application Programming Interface (API) that operates at the
Application Layer of the ISO Reference Model for Open System
Interconnection, thereby providing a simple interface between an
application program and the network, freeing the application
programmer from concerns about how networking or
communications are implemented.

MSMQ OPERATION

As previously stated, MSMQ comprises several objects and
components, the two most fundamental being the message and the
queue. A message may contain text or binary data in any format, as
long as the sender and receiver agree on the format.

Queues hold messages, and there are two types of queue:

• Application queues that are used by applications to send and
receive data.

• System queues that are created when MSMQ is installed and
include the dead letter queue, transactional dead letter queue, and
journal queues.

The Message Queue Information Store (MQIS) is an SQL database
that contains definitions of both queues and the MSMQ topology.
Note that Active Directory Services replaces the MQIS in Windows
2000. Messages themselves exist either in memory or in the file
system.

Using the graphical tool, MSMQ Explorer, you can modify the
following MSMQ objects:

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The MSMQ enterprise

The enterprise is the top layer of the MSMQ hierarchy and all
other objects are affiliated with an enterprise. Right-clicking the
Enterprise icon brings up the Enterprise Properties dialogue,
which contains the tabs: General, MQIS Defaults, and Security.
The General tab contains the enterprise name, the enterprise
server, and the default lifetime of a message on the network. The
MQIS Defaults tab contains the replication interval (the number
of seconds between updates, which may be external inter-site,
internal, or intra-site). The Security tab is for setting permissions,
auditing, and ownership.

• Servers

The PEC (Primary Enterprise Controller) is the basis of MSMQ’s
infrastructure or foundation. It holds the master copy of the MQIS
and can serve as a PSC (Primary Site Controller), BSC (Backup
Site Controller), or Routing Server. Right-clicking the PEC
computer icon allows you to choose the Computer Properties
dialogue with the tabs: General, Network, Events, Status, IS
Status, Dependent Clients, Tracking, and Security.

The General tab specifies:

– The Pathname, which is the name of the machine that hosts
the queue and is used as a prefix for the queue’s pathname,
which specifies the queue’s physical location.

– The Original Site, which is the site with which the machine
was originally affiliated.

– The Site, which is a parameter that allows the machine to be
relocated to another site.

– The ID, which is the GUID (Globally Unique Identifier)
that’s automatically assigned to every object.

– The Service, which is a function of the computer.

– The parameters Limit Message Storage (in KB) and Limit
Journal Storage (also in KB), which limit the number of

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

bytes that may be allocated to all messages in all queues (this
doesn’t limit the size of individual messages – a message is
limited to 4 MB in Windows NT and 400 KB in Windows
98).

The Network tab contains buttons to Add, Edit, and Remove
connected networks (CNs). A CN is a logical grouping of computers
in which any two can have a direct session with each other. The
Events tab provides a filtered listing of MSMQ-related events
from the Event Viewer and includes a button to launch the Event
Viewer itself. If you need to isolate a problem more rigorously, set
up auditing using the Security tab. The Status tab provides
MSMQ-related MQIS resource statistics from Performance
Monitor, such as the number of sessions, IP sessions, IPX
sessions, incoming messages per second, MSMQ incoming
messages, outgoing messages per second, MSMQ outgoing
messages, total messages in all queues, and total bytes in all
queues. A button is also provided to launch Performance Monitor.
The IS Status tab provides statistics on database replication. The
Dependent Clients tab shows all clients connected to the server
(clients that have synchronous MSMQ sessions with the server
via RPC). With the Tracking tab, you can enable tracking on a
queue and specify the type of message to track as it moves
through the MSMQ network. This is useful for checking that
messages are reaching their destination via the best route. The
Security tab is equivalent to the one discussed earlier.

• Connected Networks (CNs)

CNs map protocol types running on your network, presenting a
logical group of computers in which any two systems in the group
can establish a session with each other. For example, clients using
IP would be in their own CN. You have the option to create an IP,
IPX, or foreign CN. It is here that you can connect to an MQSeries
system by creating a foreign CN. Right-clicking on a CN brings
up a Connected Network properties page with two tabs: General
and Security. The General tab displays the CN name, the protocol
(such as IP), and the CN’s ID (its GUID).

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Queues

A queue is a logical representation of the physical data storage
area for messages. Right-clicking on a queue brings up the
General, Advanced, Status, and Security tabs. The General tab
displays the GUID of the queue object, an application-defined
LABEL, a user-defined TypeID (typically a GUID generated with
the guidgen.exe utility), the creation date and time of the queue,
and the last modification date and time of the queue. Note that the
LABEL and TypeID are used to select a queue. The Advanced tab
allows you to limit the amount of storage for all messages (the
value is specified in KB), to specify whether the queue accepts
only authenticated messages, to specify whether the queue can be
used for transactional messages (this is specified when the queue
is created), to specify whether the queue is ‘journal enabled’
(allowing you to store a copy of outgoing messages), to limit the
amount of storage for journal messages (the value is, again, in
KB), to set the queue’s ‘privacy level’ (this determines whether
the queue accepts only private encrypted messages, non-private
messages, or both), and to specify the base priority of messages
sent to a public queue on a scale from –32768 to +32767 (queue
priority takes precedence over message priority).

• Messages

As mentioned already, the size of messages is limited to 4 MB in
NT and 400 KB in Windows 98. Right-clicking on a message
brings up a Message Properties dialogue, which contains the
General, Queues, Body, and Sender tabs. The General tab displays
the application-defined message LABEL, which can be used to
convey (for example) the message’s purpose, the message’s ID or
GUID (which is created automatically when the message is
placed on the queue), an application-defined priority level (on a
scale from 0 to 7, the default being 0, which stands for ‘no
priority’, so that messages are processed ‘first in, first out’ or
FIFO), the message’s Tracked flag, which indicates whether the
message is being tracked, the MSMQ-set Class or message type,
such as Normal, Positive/Negative Acknowledgement (arrived
and read), or Report, the date and time the message was sent (for

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

outgoing messages), and the date and time the message arrived
(for incoming messages).

The Queues tab displays the names of the destination queue, the
response queue (for reply messages), and the administration
queue (for administrative messages, such as acknowledgements).
The Body tab displays the content of the message and shows the
message size in bytes. The Sender tab provides information on
the sending computer and application, including the sending
computer’s GUID, the pathname or name of the computer, the
User ID and Security Identifier (SID) of the sending application,
and whether the message is either authenticated or encrypted (and
the algorithm used, if applicable).

MSMQ capabilities include:

• Integration with Windows NT, which means integration with
NT’s security infrastructure, event/performance monitoring and
logging, transaction support, and clustering support.

• Easy administration through the GUI-based MSMQ Explorer.

• Building applications using ActiveX components (primarily with
Visual Basic) and Active Server Pages (ASP – both C++ and J++
are supported), and a C API.

• Message and queue prioritization. Messages can be assigned a
priority from 0 to 7 (7 being the highest) by the programmer; the
receiving application then receives messages in order of priority.
Queues can also be assigned a priority, and messages are then
routed by queue priority first and message priority second.

• Dynamic message routing, which can be set by the administrator
based on site-link costs. This allows you to implement load-
balancing.

• The retention of a copy of the message until successful delivery
by Microsoft Transaction Server (MTS). An application can
manage a Unit Of Work (UOW) to prevent data loss in the event
of a failure. It’s the responsibility of either MTS or DTC (the
Distributed Transaction Coordinator) to coordinate the transaction.
MTS can ensure safe delivery by retrieving a message under

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

syncpoint control and writing the message to the destination also
under syncpoint control. A syncpoint is the point where outstanding
updates are made available and it works like a flag on a process
thread. A UOW usually controls the transaction, and MTS manages
all threads in the UOW. When all the UOW threads complete
successfully, they’re committed. If any thread fails, then all
threads are stopped and the resources rolled back to the state
before the UOW was initiated.

MSMQ ARCHITECTURE

There are four main servers that comprise the MSMQ infrastructure:

• Primary Enterprise Controller (PEC)

The PEC is the first server to be installed when building an
MSMQ infrastructure. It holds both the enterprise configuration
data and the certification keys used in authenticating messages in
the MQIS. The MQIS contains the master definitions for the
enterprise, site, site links, connected networks, and users, plus the
master copy of the PEC site’s computer and queue definitions. In
addition, the PEC contains a read-only copy of MQIS data from
other sites obtained by replication. The PEC can perform the jobs
of the other three servers, though this isn’t advisable for
performance reasons.

• Primary Site Controller (PSC)

A site is typically a geographical location rather than just a logical
division of LANs, and a PSC should be installed at each site. For
example, you could place a PEC at the company headquarters and
a PSC at each branch office. The PSC MQIS database holds
master data about computers and queues at the site. In addition,
the PSC contains a read-only copy of MQIS data from other sites
obtained by replication. The PSC can also act as a Routing Server.

• Back-up Site Controller (BSC)

A BSC should be installed at each site that contains a PEC or PSC
to provide load balancing and redundancy in the event of a PEC
or PSC failure. The BSC holds a read-only copy of the MQIS

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

database replicated from the PSC or PEC, so no queues can be
created using this server. The BSC can also act as a Routing
Server. To install a BSC, a PEC or PSC must be available.

• Routing Server (RS)

You install RSs to provide more than one path for messages to
reach their destination queues. As a result, RSs can distribute
messages to different servers and prevent ‘session concentration’,
where too many hits are on one particular resource. RSs provide
load balancing, intermediate store-and-forward message queuing,
and dynamic routing. An RS doesn’t hold the MQIS database and
therefore requires a previously-installed PEC.

When changes occur to the infrastructure, such as changes to queues
or computers, the MQIS is replicated. By default, intrasite replication
occurs every two seconds, while intersite replication occurs every ten
seconds.

Two types of client are supported: independent clients (ICs) and
dependent clients (DCs). The programming interface is the same for
both clients and servers, though clients require fewer resources. The
client software can be installed on Windows 98/95 and NT systems
(IC software requires NT4 or better).

• DCs require a highly available network where the session is
maintained with the MSMQ server. If the link is broken, MSMQ
services are not available to the application.

• ICs can store messages in private queues, which are normally
used as reply queues and are not registered with the MQIS. These
queues can be addressed only by their direct format name. A client
application creates a private queue and sends the queue’s format
name in messages so that responding applications can reply to the
named queue. Unlike DCs, an IC’s application will continue to
run when the link is broken with the network. Any messages sent
that cannot be forwarded are just stored locally.

MSMQ-MQSERIES BRIDGE OPERATION

MSMQ-MQSeries Bridge was originally developed by Level 8

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Systems and marketed as the FalconMQ Bridge. The product was then
sold and licensed to Microsoft in early 1998 and is now bundled with
Microsoft SNA Server, Service Pack 3.

The bridge acts as an intermediary or interface between MSMQ and
MQSeries, allowing MSMQ applications to send messages to
MQSeries queues and vice versa. The process is fairly transparent,
operating entirely in the background. For example, an MSMQ
application sends a message using a standard MSMQ
MQSendMessage() API call (or an ActiveX control that implements
this functionality) and the MQSeries application receives the message
from the MQSeries queue using a standard MQSeries MQGET() API
call. Since each application deals with its native environment, the
complexity of the interaction is removed. Messages are routed to and
from each messaging system even if both systems are not connected
to the network at the same time.

The code example below illustrates the use of the MSMQ-MQSeries
Bridge for sending messages between the two messaging systems (I’d
like to thank Microsoft for their assistance in creating this code). It
comprises six simple C programs that you can use to send test
messages between the two systems:

• EPRecv.c is a client application for MSMQ that retrieves a
message from a specified MSMQ queue and prints out its field
values. The application is also able to recognize an MQSeries
MQMD (MQ Message Descriptor) structure and print it out, if
present.

• EPSend.c is another MSMQ client application that sends a
message to MQSeries via a specified MSMQ queue. The
application creates an MQSeries MQMD, setting the
MQMD.MsgType to MQMT_REPLY.

• MQSRRecv.c is an MQSeries client application that gets messages
from a queue using the MQI interface. You need to specify the
MQSeries queue manager and the queue name.

• MQSRSend.c is another MQSeries client application that sends a
batch of ten messages to an MQSeries queue for forwarding to
MSMQ. You need to specify the QM to which to connect and the
destination queue manager and queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

• MSMQRecv.c and MSMQSend.c are simple MSMQ clients that
respectively receive and send messages from MSMQ queues
(MSMQSend.c, like MQSRSend.c, sends messages in batches of
ten).

EPRECV.C
/*///
// PROGRAM: EPRecv.c //
// //
// PURPOSE: //
// Receives messages from MSMQ, prints extension fields values. //
// Recognizes and prints MQMD structure, if it's stored in //
// PROPID_M_EXTENSION. //
// //
// PARAMETERS: //
// 2. MSMQ queue name to receive from. //
///*/

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <cmqc.h>
#include <mq.h>
#include "MSMQExt.h"
#include "MQSRExt.h"

void Error(char *szFuncName, HRESULT hRes)
{
 printf("Error in %s: %X.\n", szFuncName, hRes);
 exit(1);
}

void DumpByteField(BYTE *pField, DWORD dwSize)
{
 DWORD i;
 for (i=0; i<dwSize; i++) {
 printf("%02X", pField[i]);
 if (i%8==7 && i<dwSize-1) printf(" ");
 }
}

void DumpGUID(GUID *pGUID)
{
 printf("{%08X-%04X-%04X-%04X-%02X%02X%02X%02X%02X%02X}",
 pGUID->Data1, pGUID->Data2, pGUID->Data3, *(WORD *)pGUID->Data4,
 pGUID->Data4[2], pGUID->Data4[3], pGUID->Data4[4],
 pGUID->Data4[5], pGUID->Data4[6], pGUID->Data4[7]);
}

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

void DumpCharField(char *pField, DWORD dwSize)
{
 char s[80];
 memcpy(s, pField, dwSize); s[dwSize] = '\0';
 printf("%s", s);
}

void DumpExtensionProperty(DWORD dwSize, void *pExtBuffer)
{
 HANDLE hExt;
 HANDLE hCursor;
 HRESULT hRes;
 BYTE *pField;
 MQMD *pMQMD;
 DWORD dwFieldSize;
 GUID FieldGUID;
 if((hRes = EPOpen(&hExt, pExtBuffer, dwSize)) != MQ_OK)
 Error("EPOpen", hRes);

 hCursor = NULL;
 while((hRes = EPGet(hExt, EP_NEXT_FIELD, &hCursor, NULL, NULL,
 &dwFieldSize)) == MQ_OK) {
 pField = malloc(dwFieldSize);
 if((hRes = EPGet(hExt, EP_CURRENT_FIELD, &hCursor, &FieldGUID,
 pField, &dwFieldSize)) != MQ_OK)
 Error("EPGet", hRes);

 if(!memcmp(&FieldGUID, &sg_MSMQExtMQMD, sizeof(GUID))) {
 pMQMD = (MQMD *)pField;
 printf(" MQMD Extension Field found. Dumping values:\n"
 " MQMD.Report = %08X MQMD.MsgType = %08X\n"
 " MQMD.Feedback = %08X MQMD.Priority = %d\n",
 pMQMD->Report, pMQMD->MsgType, pMQMD->Feedback,
 pMQMD->Priority);
 printf(" MQMD.ReplyToQMgr = '");
 DumpCharField(pMQMD->ReplyToQMgr, 48); printf("'\n");
 printf(" MQMD.ReplyToQ = '");
 DumpCharField(pMQMD->ReplyToQ, 48); printf("'\n");
 printf(" MQMD.UserIdentifier = '");
 DumpCharField(pMQMD->UserIdentifier, 12); printf("'\n");
 printf(" MQMD.ApplIdentityData = '");
 DumpCharField(pMQMD->ApplIdentityData, 12); printf("'\n");
 printf(" MQMD.PutApplName = '");
 DumpCharField(pMQMD->PutApplName, 12); printf("'\n");
 printf(" MQMD.PutDate = '");
 DumpCharField(pMQMD->PutDate, 8); printf("'\n");
 printf(" MQMD.PutTime = '");
 DumpCharField(pMQMD->PutTime, 8); printf("'\n");
 printf(" MQMD.MsgId = '");
 DumpByteField(pMQMD->MsgId, 24); printf("'\n");
 printf(" MQMD.CorrelId = '");

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

 DumpByteField(pMQMD->CorrelId, 24); printf("'\n");
 } else {
 printf(" Unknown Field: ");
 DumpGUID(&FieldGUID); printf("\n");
 printf(" Data = '");
 DumpByteField(pField, dwFieldSize); printf("'\n");
 }
 free(pField);
 }

 if(hRes != MQ_ERROR_EXTENSION_FIELD_NOT_FOUND)
 Error("EPGet", hRes);

 EPClose(&hExt);
}

void main(unsigned int argc, char *argv[])
{
WCHAR wszFormatName[256], wszPathName[256];
HRESULT hRes;
DWORD dwSize;
QUEUEHANDLE hQueue;
MSGPROPID PropIds[6] = { PROPID_M_LABEL, PROPID_M_LABEL_LEN,
 PROPID_M_BODY, PROPID_M_BODY_SIZE,
 PROPID_M_EXTENSION, PROPID_M_EXTENSION_LEN };
MQPROPVARIANT PropVars[6];
HRESULT PropStatus[6];
MQMSGPROPS MsgProps = { 6, PropIds, PropVars, PropStatus };
WCHAR wszLabel[256];
char szBody[256], szExt[1024];

 /* check for queue name */
 if (argc != 2) {
 printf("Usage: EPRecv <queue name>\n");
 return;
 }

 wsprintf(wszPathName, TEXT("%S"), argv[1]);
 dwSize = 256;
 if((hRes = MQPathNameToFormatName(wszPathName, wszFormatName,
 &dwSize)) != MQ_OK)
 Error("MQPathNameToFormatName", hRes);

 if((hRes = MQOpenQueue(wszFormatName, MQ_RECEIVE_ACCESS,
 MQ_DENY_RECEIVE_SHARE, &hQueue)) != MQ_OK)
 Error("MQOpenQueue", hRes);

 printf("Queue opened.\n"
 "Waiting for messages to arrive.\n"
 "Use CTLR-C to stop.\n");

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 while(1) {
 PropVars[0].vt = VT_LPWSTR;
 PropVars[0].pwszVal = wszLabel;
 PropVars[1].vt = VT_UI4;
 PropVars[1].ulVal = 256;
 PropVars[2].vt = VT_UI1|VT_VECTOR;
 PropVars[2].caub.cElems = 256;
 PropVars[2].caub.pElems = szBody;
 PropVars[3].vt = VT_UI4;
 PropVars[3].ulVal = 256;
 PropVars[4].vt = VT_UI1|VT_VECTOR;
 PropVars[4].caub.cElems = 1024;
 PropVars[4].caub.pElems = szExt;
 PropVars[5].vt = VT_UI4;
 PropVars[5].ulVal = 1024;

 if((hRes = MQReceiveMessage(hQueue, INFINITE, MQ_ACTION_RECEIVE,
 &MsgProps, NULL, NULL, NULL, NULL)) != MQ_OK)
 Error("MQReceiveMessage", hRes);

 printf("-------> Message arrived:\n");
 printf("Label = '%S'\n", PropVars[0].pwszVal);
 printf("Body = '%s'\n", PropVars[2].caub.pElems);

 if(PropVars[5].ulVal) {
 printf("Extension property found. Dumping values:\n");
 DumpExtensionProperty(PropVars[5].ulVal,
 PropVars[4].caub.pElems);
 }

 printf("\n");
 }

 MQCloseQueue(hQueue);
 exit(0);
}

EPSEND.C

/*///
// PROGRAM: EPSend.c //
// //
// PURPOSE: //
// Sends messages to MSMQ queue, filling in the MQMD extension //
// field values. MQMD.MsgType is set to MQMT_REPLY. //
// //
// PARAMETERS: //
// 2. MSMQ queue name to send to. //
///*/

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <cmqc.h>
#include <mq.h>
#include "MSMQExt.h"
#include "MQSRExt.h"

void Error(char *szFuncName, HRESULT hRes)
{
 printf("Error in %s: %X.\n", szFuncName, hRes);
 exit(1);
}

void main(unsigned int argc, char *argv[])
{
WCHAR wszFormatName[256], wszPathName[256];
HRESULT hRes;
DWORD dwSize;
QUEUEHANDLE hQueue;
MSGPROPID PropIds[3] = { PROPID_M_LABEL, PROPID_M_BODY,
 PROPID_M_EXTENSION };
MQPROPVARIANT PropVars[3];
MQMSGPROPS MsgProps = { 3, PropIds, PropVars, NULL };
char szBody[80], szLabel[80], szBuffer[1024];
WCHAR wszLabel[80];
HANDLE hExt;
MQMD TheMQMD, MQMDDef = { MQMD_DEFAULT };

 /* check for queue name */
 if (argc != 2) {
 printf("Usage: EPSend <queue name>\n");
 return;
 }

 wsprintf(wszPathName, TEXT("%S"), argv[1]);
 dwSize = 256;
 if((hRes = MQPathNameToFormatName(wszPathName, wszFormatName,
 &dwSize)) != MQ_OK)
 Error("MQPathNameToFormatName", hRes);

 if((hRes = MQOpenQueue(wszFormatName, MQ_SEND_ACCESS, 0,
 &hQueue)) != MQ_OK)
 Error("MQOpenQueue", hRes);

 printf("Queue opened.\n");

 while(1) {
 printf("------> Sending message (Use CTRL-C to stop).");
 printf("Label: "); gets(szLabel);
 printf("Body: "); gets(szBody);

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 wsprintf(wszLabel, TEXT("%S"), szLabel);
 PropVars[0].vt = VT_LPWSTR; PropVars[0].pwszVal = wszLabel;
 PropVars[1].vt = VT_VECTOR|VT_UI1;
 PropVars[1].caub.cElems = strlen(szBody) + 1;
 PropVars[1].caub.pElems = szBody;

 memcpy(&TheMQMD, &MQMDDef, sizeof(MQMD));
 TheMQMD.MsgType = MQMT_REPLY;

 if((hRes = EPOpen(&hExt, NULL, 0)) != MQ_OK)
 Error("EPOpen", hRes);
 if((hRes = EPAdd(hExt, &sg_MSMQExtMQMD, &TheMQMD, sizeof(MQMD),
 NULL)) != MQ_OK)
 Error("EPAdd", hRes);
 dwSize = 1024;
 if((hRes = EPGetBuffer(hExt, szBuffer, &dwSize)) != MQ_OK)
 Error("EPGetBuffer", hRes);
 EPClose(&hExt);

 PropVars[2].vt = VT_VECTOR|VT_UI1;
 PropVars[2].caub.cElems = dwSize;
 PropVars[2].caub.pElems = szBuffer;

 if((hRes = MQSendMessage(hQueue, &MsgProps, NULL)) != MQ_OK)
 Error("MQSendMessage", hRes);
 }

 MQCloseQueue(hQueue);
 exit(0);
}

MQSRRECV.C

/*///
// PROGRAM: MQSRRecv.c //
// //
// PURPOSE: //
// Receive messages from IBM MQSeries queue using MQI channel. //
// //
// PARAMETERS: //
// 1. MQSeries queue manager to connect. //
// 2. MQSeries queue name (on the same QM) to receive from. //
///*/

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <cmqc.h>

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

void main(int argc, char *argv[]){
 PSTR pszBuf = NULL;
 MQLONG lCompCode,lReason,lBufferLength = 0,lDataLength;
 MQHCONN hConn;
 MQHOBJ hQueue;
 MQOD MqOd = {MQOD_DEFAULT};
 MQMD MqMdDef = {MQMD_DEFAULT},MqMd;
 MQGMO MqGmo = {MQGMO_DEFAULT};
 MQCHAR48 szQMName;

 /* check for queue name */
 if (argc < 3) {
 printf("Usage: MQSRRecv <queue manager name> <queue name>\n");
 return;
 }

 /* connect to queue manager */
 strncpy(szQMName, argv[1], 48);
 MQCONN(szQMName,&hConn,&lCompCode,&lReason);
 if (lCompCode != MQCC_OK){
 printf("ERROR: MQCONN %s CC = %lu RS = %lu\n",argv[1],lCompCode,
 lReason);
 return;
 }

 /* Open the queue for recieve */
 strncpy(MqOd.ObjectName,argv[2],sizeof(MqOd.ObjectName));
 strncpy(MqOd.ObjectQMgrName,argv[1],sizeof(MqOd.ObjectQMgrName));
 MQOPEN(hConn,&MqOd,MQOO_INPUT_SHARED,&hQueue,&lCompCode,&lReason);
 if (lCompCode != MQCC_OK){
 printf("ERROR: MQOPEN QMNGR:%s QUEUE:%s CC = %lu RS = %lu\n",
 argv[1],argv[2],lCompCode,lReason);
 return;
 }

 printf("Use <CTL-C> to stop !\n");

 /* initialize put options */
 MqGmo.Options |= MQGMO_NO_SYNCPOINT | MQGMO_WAIT;
 MqGmo.WaitInterval = MQWI_UNLIMITED;

 /* receive all messages and print out */
 while (TRUE) {
 /* initialize message descriptor */
 memmove(&MqMd,&MqMdDef,sizeof(MqMd));
 /* receive message */
 MQGET(hConn,hQueue,&MqMd,&MqGmo,lBufferLength,pszBuf,&lDataLength,
 &lCompCode,&lReason);
 /* the buffer is too small for the message then realloc */
 if (lCompCode == MQCC_WARNING && lReason ==
 MQRC_TRUNCATED_MSG_FAILED){

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if (pszBuf) free(pszBuf);
 pszBuf = malloc(lDataLength);
 lBufferLength = lDataLength;
 } else if (lCompCode != MQCC_OK){
 printf("ERROR: MQGET QMNGR:%s QUEUE:%s CC = %lu RS = %lu\n",
 argv[1],argv[2],lCompCode,lReason);
 return;
 } else {
 printf("%s\n", pszBuf);
 }
 }
}

MQSRSEND.C
/*///
// PROGRAM: MQSRSend.c //
// //
// PURPOSE: //
// Send 10 messages from IBM MQSeries using MQI channel. //
// //
// PARAMETERS: //
// 1. MQSeries QM to connect (server side of the MQI channel). //
// 2. Destination QM for the message(s). //
// 3. Destination queue name for the message(s). //
///*/

#include <windows.h>
#include <stdio.h>
#include <cmqc.h>

void main(int argc, char *argv[]){
 DWORD i;
 char szMessage[256];
 MQLONG lCompCode,lReason;
 MQHCONN hConn;
 MQHOBJ hQueue;
 MQOD MqOd = {MQOD_DEFAULT};
 MQMD MqMdDef = {MQMD_DEFAULT},MqMd;
 MQPMO MqPmo = {MQPMO_DEFAULT};

 /* check for queue name */
 if (argc < 4) {
 printf("Usage: MQSRSend <server Qmngr> <queue manager name>
 <queue name>\n");
 return;
 }

 /* connect to queue manager */
 MQCONN(argv[1],&hConn,&lCompCode,&lReason);

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

 if (lCompCode != MQCC_OK){
 printf("ERROR: MQCONN %s CC = %lu RS = %lu\n",argv[1],lCompCode,
 lReason);
 return;
 }

 /* Open the queue for send */
 strncpy(MqOd.ObjectName,argv[3],sizeof(MqOd.ObjectName));
 strncpy(MqOd.ObjectQMgrName,argv[2],sizeof(MqOd.ObjectQMgrName));
 MQOPEN(hConn,&MqOd,MQOO_OUTPUT,&hQueue,&lCompCode,&lReason);
 if (lCompCode != MQCC_OK){
 printf("ERROR: MQOPEN QMNGR:%s QUEUE:%s CC = %lu RS = %lu\n",
 argv[1],argv[2],lCompCode,lReason);
 MQDISC(&hConn, &lCompCode, &lReason);
 return;
 }

 /* initialize put options */
 MqPmo.Options |= MQPMO_NO_SYNCPOINT;

 /* Send 10 messages */
 for (i = 0 ; i < 10 ; i++) {
 /* build message body */
 sprintf(szMessage,"Test Message %lu - ",i);
 GetTimeFormat((LCID)NULL,0,NULL,"HH':'mm':'ss",
 szMessage+strlen(szMessage),256-strlen(szMessage));
 /* initialize message descriptor */
 memmove(&MqMd,&MqMdDef,sizeof(MqMd));

 /* send the message */
 MQPUT(hConn,hQueue,&MqMd,&MqPmo,sizeof(szMessage),szMessage,
 &lCompCode,&lReason);
 if (lCompCode != MQCC_OK){
 printf("ERROR: MQPUT QMNGR:%s QUEUE:%s CC = %lu RS = %lu\n",
 argv[1],argv[2],lCompCode,lReason);
 MQDISC(&hConn, &lCompCode, &lReason);
 return;
 }

 /* print the sent message */
 printf("%s\n",szMessage);
 }
 MQDISC(&hConn, &lCompCode, &lReason);
}

MSMQRECV.C

/*///
// PROGRAM: MSMQRecv.c //
// //
// PURPOSE: //

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// Receive messages from Microsoft MSMQ queue. //
// //
// PARAMETERS: //
// 1. Source machine name. //
// 2. Source queue name. //
///*/

#include <windows.h>
#include <stdio.h>
#include <wchar.h>
#include <mq.h>

void main(int argc, char *argv[]){
 HRESULT hRes;
 QUEUEHANDLE hQueue;
 WCHAR wszArgv[256];
 WCHAR wszFormatName[256];
 DWORD dwFormatNameLen = 256;
 MSGPROPID aPropID[2] = {PROPID_M_BODY,PROPID_M_BODY_SIZE};
 MQPROPVARIANT aPropVar[2] = {{VT_VECTOR|VT_UI1,0,0,0,0},
 {VT_UI4,0,0,0,0}} ;
 MQMSGPROPS MessageProps = {2,aPropID,aPropVar,NULL};

 /* check for queue name */
 if (argc < 2) {
 printf("Usage: MSMQRecv <machine name>\\<queue name>\n");
 return;
 }
 mbstowcs(wszArgv,argv[1], strlen(argv[1])+1);

 /* get the queue format name */
 hRes = MQPathNameToFormatName(wszArgv,wszFormatName,
 &dwFormatNameLen);
 if (hRes != MQ_OK) {
 wprintf(L"ERROR: MQPathNameToFormatName %s RC = %p\n",
 wszArgv,hRes);
 return;
 }

 /* Open the queue for recieve */
 hRes = MQOpenQueue(wszFormatName,MQ_RECEIVE_ACCESS,0,&hQueue);
 if (hRes != MQ_OK) {
 wprintf(L"ERROR: MQOpenQueue %s RC = %p\n",wszArgv,hRes);
 return;
 }

 printf("Use <CTL-C> to stop !\n");

 /* receive all messages and print out */
 while (TRUE) {
 hRes = MQReceiveMessage(hQueue,INFINITE,MQ_ACTION_RECEIVE,

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

 &MessageProps,NULL,NULL,NULL,NULL);
 /* the buffer is too small for the message then realloc */
 if (hRes == MQ_ERROR_BUFFER_OVERFLOW) {
 if (aPropVar[0].caub.pElems) free(aPropVar[0].caub.pElems);
 aPropVar[0].caub.pElems = malloc(aPropVar[1].ulVal);
 aPropVar[0].caub.cElems = aPropVar[1].ulVal;
 } else if (hRes != MQ_OK) {
 wprintf(L"MQReceiveMessage failed for queue %s RC = %p\n",
 wszArgv,hRes);
 return;
 } else {
 printf("%s\n",aPropVar[0].caub.pElems);
 }
 }
}

MSMQSEND.C
/*///
// PROGRAM: MSMQSend.c //
// //
// PURPOSE: //
// Send 10 messages from Microsoft MSMQ. //
// //
// PARAMETERS: //
// 1. Destination machine name. //
// 2. Destination queue name. //
///*/

#include <windows.h>
#include <stdio.h>
#include <wchar.h>
#include <mq.h>

void main(int argc, char *argv[]){
 HRESULT hRes;
 QUEUEHANDLE hQueue;
 WCHAR wszFormatName[256];
 DWORD dwFormatNameLen = 256,i;
 char szMessage[256];
 WCHAR wszArgv[256];
 MSGPROPID aPropID[1] = {PROPID_M_BODY};
 MQPROPVARIANT aPropVar[1] = {{VT_VECTOR|VT_UI1,0,0,0,0}} ;
 MQMSGPROPS MessageProps = {1,aPropID,aPropVar,NULL};

 /* check for queue name */
 if (argc < 2) {
 wprintf(L"Usage: MSMQSend <machine name>\\<queue name>\n");
 return;
 }

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 mbstowcs(wszArgv,argv[1], strlen(argv[1])+1);

 /* get the queue format name */
 hRes = MQPathNameToFormatName(wszArgv,wszFormatName,
 &dwFormatNameLen);
 if (hRes != MQ_OK) {
 wprintf(L"ERROR: MQPathNameToFormatName %s RC = %p\n",
 wszArgv,hRes);
 return;
 }

 /* Open the queue for send */
 hRes = MQOpenQueue(wszFormatName,MQ_SEND_ACCESS,0,&hQueue);
 if (hRes != MQ_OK) {
 wprintf(L"ERROR: MQOpenQueue %s RC = %p\n",wszArgv,hRes);
 return;
 }

 /* initialize message body property */
 aPropVar[0].caub.pElems = (PBYTE)szMessage;
 aPropVar[0].caub.cElems = sizeof(szMessage);

 /* Send 10 messages */
 for (i = 0 ; i < 10 ; i++) {
 /* build message body */
 sprintf(szMessage,"Test Message %lu - ",i);
 GetTimeFormat((LCID)NULL,0,NULL,"HH':'mm':'ss",
 szMessage+strlen(szMessage),256-strlen(szMessage));

 /* send the message */
 hRes = MQSendMessage(hQueue,&MessageProps,NULL);

 if (hRes != MQ_OK) {
 wprintf(L"MQSendMessage failed for queue %s RC = %p\n",
 wszArgv,hRes);
 return;
 }

 /* print the sent message */
 printf("%s\n",szMessage);
 }
}

The MSMQ-MQSeries Bridge has two main components:

• The bridge itself, which converts and transmits messages between
the two environments.

• The bridge Explorer, which lets you configure, monitor, and
control message traffic through the bridge.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

The bridge converts fields or properties between the two environments,
mapping the fields of an incoming message to ones that are appropriate
to the destination message’s queuing system. The actual operation
proceeds as follows: in sending a message from MQSeries to MSMQ,
the bridge maps the fields of the MQSeries message to its MSMQ
counterpart and, if non-existent additional fields are required at the
destination, then the bridge provides the fields. For example, if an
MSMQ message includes a specific value of the
PROPID_M_TIME_TO_BE_RECEIVED property, then the MSMQ-
MQSeries Bridge maps this property to the MQSeries MQMD.Expiry
property, multiplying the value by 10 to change the units from seconds
to tenths of a second.

The power of using the Bridge comes from the fact that there is no
restriction on message content. The sending and receiving applications
can impose their own internal structure or encryption schemes, which
are left unaltered by the bridge.

The MSMQ-MQSeries Bridge is an MSMQ Connector server
application. This requires further explanation: when MSMQ
communicates with other PECs or Exchange Server, it does so
through the MSMQ Connector. The Connector allows MSMQ
applications to communicate with computers that use other messaging
systems. The MSMQ-MQSeries Bridge uses the MSMQ Connector
– the bridge is installed on a Windows NT system that serves as a
connection point between the networks. An MSMQ Server must be
installed on the same computer that hosts the MSMQ-MQSeries
Bridge, and the computer must be connected by either a TCP/IP or
SNA link to an MQSeries Queue Manager.

You can connect any number of MSMQ or MQSeries systems or
networks using the MSMQ-MQSeries Bridge, and you can connect
more than one MSMQ-MQSeries Bridge to one or more MQSeries
Queue Managers.

Running the MSMQ-MQSeries Bridge in conjunction with Level 8
Systems’ FalconMQ Client and FalconMQ Server extends MSMQ to
non-Windows systems such as CICS or Unix. You can then transmit
messages between, for example, MSMQ applications running under
Unix and MQSeries applications running under MVS (it’s unlikely,
though, that MQSeries users would connect Unix and MVS applications

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

this way – it’s more likely that they would run MQSeries on both Unix
and MVS).

As indicated earlier, the MSMQ-MQSeries Bridge uses the MSMQ
Connector, which allows MSMQ applications to communicate with
‘foreign computers’ that use other messaging systems. The MSMQ
Connector communicates with foreign computers using foreign
connected networks and foreign queues. The steps to create a foreign
connected network (which is just another CN) are:

• At the top of the MSQM Explorer hierarchy, right-click on the
Enterprise icon to display a context menu for the PEC.

• Select New followed by CN to create a new connected network.

• You are prompted for a name and a protocol. The protocol options
include establishing a connection between MSMQ nodes running
different protocols (IP, IPX) and between nodes running a foreign
queuing system (including MQSeries).

Once the foreign CN (connected network) is created, you then create
a ‘foreign computer’. An MQSeries Queue Manager would be a
foreign computer or, essentially, a node hosting queues or functioning
like a computer from MSMQ’s point of view. The steps to create a
foreign computer are:

1 Within MSMQ Explorer, right-click the yellow ‘building site’
icon.

2 Select New, Foreign computer.

3 You are prompted for the foreign computer’s name, which is the
name of your MQSeries Queue Manager.

4 Select the Foreign connected network to which the foreign
computer belongs from the list in the left window pane.

5 Click Add to transfer the selection to the right window pane.

Next you need to activate the MSMQ Open Connector security
permissions. The steps to do this are:

1 Within MSMQ Explorer, right-click the newly created foreign
connected network.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

2 Select Properties.

3 Click the Security tab, and then click the Permissions button.

4 Double-click the group that will communicate with the foreign
connected network.

5 A panel appears with the following fields:

Connected Network: Sample_CN
Name: Sample_Group
O Full Control (All)
O Other
[] Open Connector
[] Set Properties (Sp)
[] Delete CN (D)
[] Get Permissions (Pg)
[] Set Permissions (Ps)
[] Take Ownership (O)

6 Check the Open Connector option.

The MSMQ configuration outlined is used to communicate with
another MSMQ Enterprise or any foreign system.

This article concludes in next month’s issue of MQ Update.

Stephen Ibaraki
Technical Manager and Head of Research
Capilano College (Canada) © Xephon 2000

Customizing CSQ4MQxx for an application

This article provides an example CSQ4MQxx file, which shows how
the file CSQ4DISX that’s supplied in the MQM.SCSQPROC dataset
can be customized to meet the requirements of a specific application.
This sample contains a set of object definitions that are for tailoring
a unique MQxx queue manager. The attributes of the queues may be
changed here, and these objects must be reviewed if this member is
being copied to create another queue manager.

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

AN EXAMPLE OF CUSTOMIZED CSQ4DISX (CSQ4MQXX)

*
* @START_COPYRIGHT@
* Statement: Licensed Materials - Property of IBM
*
* 5695-137
* (C) Copyright IBM Corporation. 1993, 1996
*
* Status: Version 1 Release 1
* @END_COPYRIGHT@
*

*
* IBM MQSeries for MVS/ESA
* CSQ4MQxx
*

*
* This sample dataset contains a set of object definitions
* that are specific to tailoring an MQxx queue manager.
*
* These objects must be reviewed if this member is being copied to
* create another queue manager.
*

* NON-SYSTEM DEFINITIONS

*
* The queue manager should have a default transmission queue and
* a dead-letter local queue.
* The names of the queues are specified by the ALTER QMGR command.
*
* This is a SAMPLE definition of what is needed.
*
* The attributes of the queues may be changed. However, if the
* attributes are changed such that when the queue manager tries
* to PUT a message on the dead-letter queue the PUT fails,
* the message will be discarded.
*

DEFINE QLOCAL(MQxx.DEFXMIT.QUEUE') +
 REPLACE +
* Common queue attributes
 DESCR(MQxx default transmission queue') +
 PUT(ENABLED) +
 DEFPRTY(0) +
 DEFPSIST(YES) +

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

* Local queue attributes
 GET(ENABLED) +
 SHARE +
 DEFSOPT(EXCL) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(999999999) +
 MAXMSGL(4194304) +
 NOHARDENBO +
 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('REMOTE') +
 USAGE(XMITQ) +

* Event control attributes
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* Trigger attributes
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*

DEFINE QLOCAL(MQxx.DEAD.QUEUE') +
 REPLACE +
* Common queue attributes
 DESCR(MQxx dead-letter queue') +
 PUT(ENABLED) +
 DEFPRTY(0) +
 DEFPSIST(YES) +

* Local queue attributes
 GET(ENABLED) +
 SHARE +
 DEFSOPT(SHARED) +
 MSGDLVSQ(FIFO) +
 RETINTVL(999999999) +
 MAXDEPTH(999999999) +
 MAXMSGL(4194304) +
 NOHARDENBO +

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 BOTHRESH(0) +
 BOQNAME(' ') +
 STGCLASS('SYSTEM') +
 USAGE(NORMAL) +

* Event control attributes
 QDPMAXEV(ENABLED) +
 QDPHIEV(DISABLED) +
 QDEPTHHI(80) +
 QDPLOEV(DISABLED) +
 QDEPTHLO(40) +
 QSVCIEV(NONE) +
 QSVCINT(999999999) +

* Trigger attributes
 NOTRIGGER +
 TRIGTYPE(NONE) +
 TRIGMPRI(0) +
 TRIGDPTH(1) +
 TRIGDATA(' ') +
 PROCESS(' ') +
 INITQ(' ')
*

* Alter the queue manager attributes for this instance.
*
ALTER QMGR +
 DESCR(MQxx, IBM MQSeries for MVS/ESA - V1.1.4') +
 TRIGINT(999999999) +
 MAXHANDS(256) +
 INHIBTEV(DISABLED) +
 LOCALEV(DISABLED) +
 REMOTEEV(DISABLED) +
 STRSTPEV(ENABLED) +
 PERFMEV(DISABLED) +
 DEFXMITQ(MQxx.DEFXMIT.QUEUE') +
 DEADQ(MQxx.DEAD.QUEUE')
*

* END OF CSQ4MQP1

_

Saida Davies
IBM (UK) © S Davies 2000

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

Migrating MQSI 1 rules and formats to Version 2

If your rules and formats are in MQSeries Integrator 1.1 format, then
you don’t need to convert them to use them with MQSeries Integrator
Version 2, as they’re already compatible with the latter. The only
requirement is that you must ensure that MQSI V2 components are
able to access the rules and formats in your database (this task is
described in the IBM documentation – see the MQSeries Integrator
Installation Guide for your OS). If you’re migrating from MQSI 1.0,
however, your formats and rules need to be converted. To do this, use
the following procedure, which makes use of the support for MQSI
V1.1 formats in MQSI V2:

1 Export your rules and formats to flat files using the MQSI V1
NNRie and NNFie Import/Export utilities. Make sure you
complete this step before you uninstall MQSI V1. Also note that
you cannot use the NEONFormatter and NEONRules user
interface tools to complete this step.

2 After installing MQSeries Integrator, create the database
containing table spaces that are required by MQSI 1.1. The exact
details of this step depend on your choice of database (you must
choose the one that you use for MQSI V1 data).

3 Import your MQSeries Integrator Version 1.0 rules and formats
from the flat file into your MQSeries Integrator Version 1.1
database, using NNFie and NNRie. These tasks are described in
IBM’s MQSeries Integrator Version 1.1 Installation and
Configuration Guide.

4 Use the Consistency Checker utility to check the consistency of
your MQSI 1.1 rules and formats in the database.

You can now use your V1.1 rules and formats with MQSI V2.

Motul Patel
MQSeries Administrator (UK) © Xephon 2000

MQ news

Progress Software has extended the
connectivity of its SonicMQ Internet
messaging server with a family of bridges to
other Java Message Service (JMS) and
messaging systems, including MQSeries,
and Internet B2B services. The new
components comprise SonicMQ Bridge for
IBM MQSeries, Bridge for JMS, Mail
Connector, which extends and integrates
JMS messaging with ubiquitous e-mail
protocols, and the Bridge Programming
Framework.

Beta versions of the bridges and connector,
documentation, sample code, and the
SonicMQ Programming Framework can be
downloaded currently for free. The price and
shipping date have yet to be announced.

For further information contact:
Progress Software, 14 Oak Park, Bedford
MA 01730, USA
Tel: +1 781 280 4000
Fax: +1 781 280 4095
Web: http://www.progress.com

Progress Software, The Square, Basingview,
Basingstoke, Hants RG21 2EQ, UK
Tel: +44 1256 816668
Fax: +44 1256 463226

* * *

J D Edwards has announced OneWorld
Adapter for IBM MQSeries, a storefront
package that integrates OneWorld B2B
software and WebSphere Commerce Suite
using Commerce Integrator Server and
MQSeries.

The integration allows sales orders to be
placed and tracked by customers via the
Internet.

It’s out now, and details on pricing are
available on request from the vendor.

For further information contact:
J.D. Edwards, One Technology Way,
Denver, CO 80237, USA
Tel: +1 303 334 4000
Fax: +1 303 334 4141
Web: http://www.jde.com

J D Edwards, Colorado House, 300 Thames
Valley Park Drive, Reading, Berkshire RG6
1RD, UK
Tel: +44 118 909 1700
Fax: +44 118 909 1699

* * *

IBM has announced VisualAge Smalltalk
5.5, the latest version of its application
development tool for building object-
oriented programs. The new version
supports the latest levels of MQSeries, DB2
Universal Database, Oracle, Domino, and
Java. The product includes VisualAge
Smalltalk library support for Red Hat Linux
Version 6, Windows 2000, and OS/2 Warp
Server Version 4.5.

Out now, Enterprise Version 5.5 costs
US$5,000.

For further information, contact your local
IBM representative.

x xephon

	MQSeries recovery for Unix
	Microsoft MSMQ to MQSeries Bridge
	Customizing CSQ4MQxx for an application
	Migrating MQSI 1 rules and formats to Version 2
	MQ news

