
© Xephon plc 2000

December 2000

18

3 ‘Queue Manager Not Active’
messages on S/390

7 Microsoft MSMQ to MQSeries
Bridge (part 2)

24 MQSeries Queue Manager
Clusters

35 APPC support using the
‘SideInfo’ dataset

42 Articles wanted
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2000. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: harryl@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: +1 303 410 9344
Fax: +1 303 438 0290

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 3

‘Queue Manager Not Active’ messages on S/390

Some new Service Level Agreements (SLAs) are being drawn up in
our organization that stipulate certain requirements with regards to
MQSeries Queue Manager and channel availability. Meeting our SLA
also requires us to produce statistics to show whether the stipulated
levels of availability were attained. The obvious thing to use to
implement this seemed to be event messages. By enabling queue
manager start/stop instrumentation events, we should get messages
on the SYSTEM.ADMIN.QMGR.EVENT queue from which we can
extract the times during which the queue manager was available.
Channel event messages cannot be disabled, so we should also get
messages about when channels are started and stopped, as long as the
SYSTEM.ADMIN.CHANNEL.EVENT queue exists. Now we just need
to write some event monitors to process these messages and extract
the information we need to produce the statistics required by
management.

However, according to the MQSeries Programmable System
Management manual, the Queue Manager Not Active event is not
produced by MQSeries for OS/390. So our problem was to find a way
to determine when the queue manager stops.

The solution we chose was to make some simple changes to an
existing program – the MQSeries SupportPac’s MA12: MQSeries for
MVS/ESA Batch Trigger Monitor, which can be downloaded from:

http://www-4.ibm.com/software/ts/mqseries/txppacs/

The trigger monitor is a COBOL program, CKTIBAT2 , which runs
continuously whenever MQSeries is active, waiting for messages on
an initiation queue. For each message that arrives, it submits a JCL
stream to the JES internal reader. The changes we made were to
include the MQGMO-FAIL-IF-QUIESCING option on the MQGET
call and then to test for Reason Code MQRC-Q-MGR-QUIESCING if
the MQGET fails. If the queue manager is quiescing, we put a Queue
Manager Not Active event message on the
SYSTEM.ADMIN.QMGR.EVENT queue.

4 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Some limitations of this approach:

• The obvious shortcoming is that the event message will not be
created in a forced shutdown. However, our procedures dictate
that a normal shutdown should always be attempted first, in
which case the Queue Manager Not Active event message will be
created.

• The program changes described below reserve only four characters
for the Queue Manager’s name. That being said, it’s worth
remembering that OS/390 also imposes this restriction on Queue
Manager names.

To implement the changes, CKTIBAT2 was altered as detailed
below. Where existing code has been included, the new lines have
been highlighted for clarity.

The first thing to do is add structures to WORKING-STORAGE to
accommodate the options of the message being MQPUT and the event
message:

CODE SEGMENT #1
 01 W05-MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
 *
 * Structure for queue manager not active event message.
 *
 01 W05-MQM-EVENT-MESSAGE.
 COPY CMQCFHV.
 COPY CMQCFSTV.
 ** String - Queue manager name limited to 4 chars on MVS.
 15 MQCFST-STRING PIC X(4) VALUE SPACES.
 COPY CMQCFINV.

Also add a structure to WORKING-STORAGE to print a message
when the queue manager shuts down:

CODE SEGMENT #2
01 W04-MESSAGE-5.
 05 W04-HOURS-5 PIC X(2).
 05 FILLER PIC X VALUE ':'.
 05 W04-MINUTES-5 PIC X(2).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 5

 05 FILLER PIC X VALUE ':'.
 05 W04-SECONDS-5 PIC X(2).
 05 FILLER PIC X(3) VALUE SPACES.
 05 FILLER PIC X(42) VALUE
 '********** Queue manager quiescing.'.
 05 FILLER PIC X(79) VALUE SPACES.

Include the constants required for event messages (you’ll find this
section of code at line 216 in the original source file):

CODE SEGMENT #3

 *
 * Copy file of constants (for filling in the control blocks)
 * and return codes (for testing the result of a call)
 *
 01 W05-MQM-CONSTANTS.
 COPY CMQV.
 COPY CMQCFV.

Add MQGMO-FAIL-IF-QUIESCING before the MQGET call (at line
428):

CODE SEGMENT #4
 MOVE MQGMO-WAIT TO MQGMO-OPTIONS.
 ADD MQGMO-NO-SYNCPOINT TO MQGMO-OPTIONS.
 ADD MQGMO-FAIL-IF-QUIESCING TO MQGMO-OPTIONS.

Test for MQRC-Q-MGR-QUIESCING after the MQGET loop (at line
478):

CODE SEGMENT #5
 IF NOT W03-COMPCODE = MQCC-OK
 THEN
 IF W03-REASON = MQRC-Q-MGR-QUIESCING
 THEN
 PERFORM PUT-EVENT-MESSAGE
 ELSE
 MOVE 'GET' TO W04-MSG4-TYPE
 MOVE W03-COMPCODE TO W04-MSG4-COMPCODE
 MOVE W03-REASON TO W04-MSG4-REASON
 MOVE W04-MESSAGE-4 TO PRINT-DATA
 END-IF
 END-IF.

6 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Lastly, add the section PUT-EVENT-MESSAGE:

CODE SEGMENT #6
 PUT-EVENT-MESSAGE SECTION.
 * --
 * This section is called when the queue manager is quiescing.
 * It puts a queue manager not active event message on the
 * SYSTEM.ADMIN.QMGR.EVENT queue.
 * --
 *
 ACCEPT W00-TIME FROM TIME.
 MOVE W00-HOURS TO W04-HOURS-5.
 MOVE W00-MINUTES TO W04-MINUTES-5.
 MOVE W00-SECONDS TO W04-SECONDS-5.
 MOVE W04-MESSAGE-5 TO PRINT-DATA.
 *
 MOVE 'SYSTEM.ADMIN.QMGR.EVENT' TO MQOD-OBJECTNAME.
 *
 MOVE MQRO-NONE TO MQMD-REPORT.
 MOVE MQMT-DATAGRAM TO MQMD-MSGTYPE.
 MOVE MQEI-UNLIMITED TO MQMD-EXPIRY.
 MOVE MQFB-NONE TO MQMD-FEEDBACK.
 MOVE MQENC-NATIVE TO MQMD-ENCODING.
 MOVE MQCCSI-Q-MGR TO MQMD-CODEDCHARSETID.
 MOVE MQFMT-EVENT TO MQMD-FORMAT.
 MOVE MQPRI-PRIORITY-AS-Q-DEF TO MQMD-PRIORITY.
 MOVE MQPER-PERSISTENT TO MQMD-PERSISTENCE.
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE MQCI-NONE TO MQMD-CORRELID.
 MOVE SPACES TO MQMD-REPLYTOQ.
 MOVE SPACES TO MQMD-REPLYTOQMGR.
 *
 COMPUTE W03-DATA-LENGTH = MQCFH-STRUC-LENGTH +
 MQCFST-STRUC-LENGTH-FIXED + 4 +
 MQCFIN-STRUC-LENGTH.
 *
 MOVE MQCFT-EVENT TO MQCFH-TYPE.
 MOVE MQCMD-Q-MGR-EVENT TO MQCFH-COMMAND.
 MOVE MQCC-WARNING TO MQCFH-COMPCODE.
 MOVE MQRC-Q-MGR-NOT-ACTIVE TO MQCFH-REASON.
 MOVE 2 TO MQCFH-PARAMETERCOUNT.
 COMPUTE MQCFST-STRUCLENGTH = MQCFST-STRUC-LENGTH-FIXED + 4.
 MOVE MQCA-Q-MGR-NAME TO MQCFST-PARAMETER.
 MOVE 4 TO MQCFST-STRINGLENGTH.
 MOVE W02-MQM TO MQCFST-STRING.
 MOVE MQIACF-REASON-QUALIFIER TO MQCFIN-PARAMETER.
 MOVE MQRQ-Q-MGR-QUIESCING TO MQCFIN-VALUE.
 *
 * Put the message

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 7

 *
 CALL 'MQPUT1' USING W03-HCONN
 MQOD
 MQMD
 MQPMO
 W03-DATA-LENGTH
 W05-MQM-EVENT-MESSAGE
 W03-COMPCODE
 W03-REASON.
 *
 IF NOT W03-COMPCODE = MQCC-OK
 THEN
 WRITE PRINT-REC
 MOVE 'PUT1' TO W04-MSG4-TYPE
 MOVE W03-COMPCODE TO W04-MSG4-COMPCODE
 MOVE W03-REASON TO W04-MSG4-REASON
 MOVE W04-MESSAGE-4 TO PRINT-DATA
 END-IF.
 *
 PUT-EVENT-MESSAGE-END.
 EXIT.

Eric Judd
Technical Consultant
Metropolitan Life (South Africa) © Xephon 2000

Microsoft MSMQ to MQSeries Bridge (part 2)

This month’s instalment concludes this article on the MSMQ to
MQSeries Bridge (the first instalment appeared in last month’s issue
of MQ Update).

To send a message from MSMQ to MQSeries, you define an MSMQ
foreign computer that represents the MQSeries Queue Manager
(assuming that the MQSeries destination queue already exists). The
following process can be used for sending messages:

• Either create the foreign queue using the MSMQ Explorer or
ensure that your MSMQ application issues an MSMQ
MQCreateQueue() API call that creates a foreign queue on the
foreign computer that represents the MQSeries destination queue.

8 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• To open the foreign queue, the application issues an MSMQ
MQOpenQueue() API call.

• To send a message to the foreign queue, the application issues an
MSMQ MQSendMessage() API call. MSMQ transmits the
message and stores it temporarily on an MSMQ Connector
queue.

• MSMQ-MQSeries Bridge takes the message from the MSMQ
Connector queue and converts the message properties to the
MQSeries message structure. MSMQ-MQSeries Bridge transmits
the message to the MQSeries destination queue.

• An MQSeries application issues an MQSeries MQGET() API call
to receive the message from the MQSeries queue.

MSMQ processes the message from the initial MQSendMessage()
call until it is placed on the Connector queue. MSMQ-MQSeries
Bridge converts and transmits the message to MQSeries, which then
handles the transmission from that point on.

While there are a few differences in the reverse process of sending a
message from MQSeries to MSMQ, the process is nevertheless
essentially the inverse of that of sending messages from MSMQ to
MQSeries. You define MQSeries aliases, transmission queues, and
channels for the MSMQ destination queue and/or the MSMQ Server
(assuming the MSMQ destination queue already exists). A typical
procedure for sending a message from MQSeries to MSMQ is:

• An MQSeries application issues an MQOPEN() API call to a
remote queue that represents the MSMQ destination queue.

• The MQSeries application issues an MQPUT() API call to send
a message to the remote queue. MQSeries transmits the message
and stores it temporarily on an MQSeries transmission queue
located at the MQSeries Queue Manager.

• MSMQ-MQSeries Bridge takes the message from the transmission
queue and converts the message structure to MSMQ message
properties. The MSMQ-MQSeries Bridge then transmits the
message to the MSMQ destination queue.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 9

• An MSMQ application then issues an MSMQ
MQReceiveMessage() API call to receive the message from the
MSMQ queue.

With MSMQ-MQSeries Bridge, you send messages either by normal
service or high service.

Normal service makes use of MSMQ’s and MQSeries’ ‘deliver once’
feature, which ensures that each message is delivered once and only
once to the receiving application. However, there is overhead associated
with using this form of delivery. High service can improve performance,
but a message may be delivered more than once in the event of a
system failure during transmission.

The MSMQ-MQSeries Bridge sends messages that are part of a
transaction by normal service and those that are not by high service
when sending messages from MSMQ to MQSeries. When sending
messages from MQSeries to MSMQ, you specify a particular alias for
the remote queue manager address, and this determines whether
messages are sent by normal or high service.

After installation, you need to configure MSMQ, MQSeries, and the
MSMQ-MQSeries Bridge.

With MSMQ Explorer, you can:

• Set up foreign connected networks (CNs) that act as gateways to
MQSeries.

• Set up foreign computers that act as MQSeries Queue Managers.

• Set up other foreign computers and computers that host MSMQ-
MQSeries Bridge on foreign connected networks.

You can use either the MSMQ Explorer or the MQCreateQueue() API
call to set up foreign queues that represent MQSeries queues to
MSMQ.

Use the MSMQ-MQSeries Bridge Explorer to:

• Set up MQI (Message Queue Interface) channels to MQSeries.

• Define the MSMQ foreign connected networks to the MSMQ-
MQSeries Bridge and set up their properties.

10 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Define the names of MQSeries transmission queues for normal
and high service message pipes.

• Export definition files for transfer to MQSeries.

To configure the MSMQ-MQSeries Bridge for use in your MSMQ
and MQSeries networks:

• Insert the foreign CNs that allow the MSMQ-MQSeries Bridge
to communicate with MSMQ.

• Set up the MQSeries Queue Manager and MQI channel that allow
MSMQ-MQSeries Bridge to communicate with MQSeries.

• Set up properties, such as timeouts and number of threads, that
MSMQ-MQSeries Bridge uses for communication.

• Complete the MSMQ-MQSeries Bridge configuration, then export
the configuration as MQSeries definitions and transfer them to
MQSeries.

You need to define the properties of the following objects to send
messages using the MSMQ-MQSeries Bridge:

• The MSMQ-MQSeries Bridges themselves

• Connected networks

• Message pipes.

While most of these properties take default values, some must be set
up by the administrator.

In MQSeries, you need to:

• Import the definition files that you created in the MSMQ-
MQSeries Bridge Explorer (alternatively, manually set up the
transmission queues), queue manager aliases, model queues, and
MQI channels for TCP/IP or SNA transport.

• Ensure that you use the same name for the same entity when
defining it at different locations (for instance, an MSMQ-
MQSeries Bridge computer called SAMPLEMQ1 should have
the same name in both the MSMQ-MQSeries Bridge Explorer
and in MQSeries).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 11

USING AND CUSTOMIZING THE MSMQ-MQSERIES BRIDGE

Within the MSMQ-MQSeries Bridge Explorer, right-click the MSMQ-
MQSeries Bridge icon and choose the Properties option. The properties
window displays several tabs. Before you add a connected network,
set up the properties on the MQI Channels tab.

General tab
This displays the following read-only information:

• Path name

The network name of the MSMQ-MQSeries Bridge computer.

• Service name

The name of the MSMQ-MQSeries Bridge.

• Version

The version of the MSMQ-MQSeries Bridge.

• Status

Running, Paused, or Stopped.

Advanced tab
By default, MSMQ-MQSeries Bridge allocates one thread for each
type of message pipe. If the MSMQ-MQSeries Bridge is connected to
more than one MQSeries Queue Manager, you should allocate it a
larger number of threads. This improves performance and availability
(if a pipe to a Queue Manager fails, other pipes continue running). For
each type of message pipe, specify:

• Max threads

The maximum number of threads (the recommended number is
one per MQSeries QM).

• Refresh queue cache

The interval (in minutes) at which the message pipes check for
cache timeout.

12 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQI channels tab

MSMQ-MQSeries Bridge accesses MQSeries via MQI channels
defined in both MQSeries and MSMQ-MQSeries Bridge. Each channel
connects an MSMQ-MQSeries Bridge to an MQSeries Queue Manager.
Ordinarily, you should define one MQI channel for each foreign
connected network.

First, you should define the properties of the channels in the MSMQ-
MQSeries Bridge. You can then export the definitions to MQSeries.
The channels currently defined are listed in the dialog box. Click Add
to create a new MQI channel, Properties to edit the settings of an
existing channel, or Remove to delete a channel.

1 On the General tab of the Channel Properties window, specify
the following options:

– Channel name

An MQSeries name for the MQI channel. For convenience,
you can assign the same name as you assigned to the
connected network representing MQSeries in MSMQ, for
example MQS_CN.

– MQSeries queue manager

The QM to which the channel connects.

– Transport type

TCP/IP or SNA.

2 On the Address tab of the Channel Properties window, specify the
following parameters for TCP/IP:

– IP address and port

The IP address and port number of the MQSeries listener.

For SNA specify:

– Side information record

The CPI-C symbolic name defined in SNA Server.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 13

3 On the Channel Properties window’s Security tab you specify:

– MCA user

This is an existing or new MQSeries user name, for example
SAMPQUSER1, under which the server side of the MQI
channel runs.

In MQSeries, you should set the MCA user’s permissions (in
other words, the queues that MSMQ-MQSeries Bridge can
address). If you do not specify an MCA user, the server side of the
channel runs under the default user name, which is given by the
MQSeries SYSTEM.DEF.SVRCONN parameter.

Before you can add a foreign CN to an MSMQ-MQSeries Bridge, you
should:

• Define the foreign CN in MSMQ and associate the MSMQ-
MQSeries Bridge machine with the CN.

• Define an MQI Channel for the MSMQ-MQSeries Bridge.

• Open the MSMQ-MQSeries Bridge Explorer, if it is not already
open.

To add a foreign CN, right-click the MSMQ-MQSeries Bridge to
which the CN is connected. Choose New, CN from the pop-up menu,
and select the CN name from the list. Along with the new CN, the
following four message pipes are added to the tree in the left pane.

• The MSMQ-to-MQSeries normal service pipe:

MSMQ->MQS Normal

• The MSMQ-to-MQSeries high service pipe:

MSMQ->MQS High

• The MQSeries-to-MSMQ normal service pipe:

MQS->MSMQ Normal

• The MQSeries-to-MSMQ high service pipe:

MQS->MSMQ High

14 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Right-click the new CN and set the properties of each message pipe.
To delete a CN, right-click the CN and select Delete from the pop-up
menu. To set the properties of a foreign connected network, right-click
its icon in the MSMQ-MQSeries Bridge Explorer and choose the
Properties option. On the General tab of the connected network
properties window, specify the following options:

• MQSeries QM name

Select from the list of MQSeries Queue Managers for which MQI
channel definitions have been entered. Note that, if the same
MSMQ-MQSeries Bridge is on two connected networks, they
shouldn’t both be connected to the same QM.

• Reply-to QM name

This is the default MSMQ QM to which MQSeries should return
report or acknowledgement messages. You would normally enter
the name of the computer hosting the MSMQ-MQSeries Bridge
here, for example SAMPLEMQ1.

The MSMQ-MQSeries Bridge Explorer exports your entry to
MQSeries as a queue manager alias. If the Windows NT machine
name contains an invalid MQSeries character, such as a hyphen
(‘-’), replace it with another character, such as an underscore (‘_’)
in the Reply-to QM Name field. If you want to receive
acknowledgements by high rather than normal service, append a
percentage sign (‘%’) to the name (for example SAMPLEMQ1%).

As MQSeries uses aliases to identify the transmission queue to
which it should send acknowledgements, you can redirect
acknowledgements by specifying a different alias. For example,
if you want to receive acknowledgements on another machine on
which MSMQ-MQSeries Bridge is installed, enter the name of
the machine and define the name as an alias in MQSeries.

• Startup

Enabled or Disabled at MSMQ-MQSeries Bridge start-up (the
procedure to change the status is detailed in the section below
entitled Starting, stopping, and pausing an object).

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 15

To set the properties of a message pipe, right-click its icon in the
MSMQ-MQSeries Bridge Explorer, and choose the Properties option.
Here you’ll find icons for message pipes.

The General tab of the message pipe properties window displays the
following:

• Status

Running, Paused, Pending, Recovering, Stopped, or Error (this
property is read-only; again, see the section on Starting, stopping,
and pausing an object for details of how you can change the
message pipe’s status).

• Startup

Enabled or Disabled at MSMQ-MQSeries Bridge start-up.

The transmission queue name of an MQSeries-MSMQ normal or high
service pipe is the unique MQSeries transmission queue name for the
pipe. The default names are:

<CN name>.XMITQ

for a normal service pipe and:

<CN name>.XMITQ.HIGH

for a high service pipe. You may specify different names, if you wish.
For example, if the CN name is MQS_CN, the default transmission
queue names are:

MQS_CN.XMITQ

and:

MQS_CN.XMITQ.HIGH

Batch tab

To optimize performance, MSMQ-MQSeries Bridge batches messages.
Increasing the batch size may improve performance, but it also
increases the quantity of re-transmitted data after a communication
failure.

To change the batch size, specify any combination of:

16 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Maximum number of messages

The maximum number of messages in a batch.

• Maximum accumulated size

The maximum size (in bytes) of a batch.

• Maximum accumulated time

The maximum time (in milliseconds) during which messages are
batched.

Transmission begins as soon as there are sufficient messages to be
sent. When any of the above limits is reached, the message pipe checks
that the batch was fully received on the destination side.

Cache tab

To reduce the overhead of opening and closing a queue for each
message, MSMQ-MQSeries Bridge caches queue handles and reuses
them when several messages are sent to the same queue. To customize
this facility, specify the following option:

• Cache expiry

The time (in minutes) after which MSMQ-MQSeries Bridge
closes an unused queue handle.

The system checks the cache timeout only at the cache refresh time.
Thus the maximum time that an unused queue handle could remain
open is:

cache timeout + cache refresh time

Details on how to refresh the cache immediately (for example, to
release a queue that is needed by another application) are provided in
the section Refreshing the cache (at the end of this article).

Retry tab

If a message pipe fails, MSMQ-MQSeries Bridge tries to restart it
automatically. For both the ‘short’ and ‘long’ retry cycles, specify:

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 17

• Count

Maximum number of retries.

• Delay

Interval between retries.

For example, you might specify a short cycle of three retries at 30-
second intervals. If the connection is still not successful, the system
continues in a long cycle of, say, ten retries at 300-second intervals.

Note that, if you connect by TCP/IP, you should set the Delay to at
least twice the ‘keep alive’ time of the destination MQSeries system.
This allows the MQSeries listener to release the resources of a broken
connection before MSMQ-MQSeries Bridge tries to reconnect.

Many of the properties that you set in the MSMQ-MQSeries Bridge
Explorer relate to MQSeries entities, such as:

• MQI channels

• Transmission queues

• QM names.

It is usually easier to enter names and options for these entities before
you create the entities in MQSeries. This lets you export the data to a
set of MQSeries definition files, which you can then use in MQSeries
to create the entities automatically.

The MSMQ-MQSeries Bridge Explorer creates two types of definition
file: one for MQSeries Server entities and one for MQSeries Client
entities. Together, the files define all the MQSeries entities that you
need for a basic MSMQ-MQSeries Bridge configuration.

The file <QM_name>.txt (for example, mqs1.txt) contains definitions
for an MQSeries Server (one such file exists for each MQSeries
Queue Manager), while the file clientdf.txt contains definitions for all
MQSeries Client (only one such file is necessary).

To export the MQSeries definitions:

1 Configure the MSMQ-MQSeries Bridge in the MSMQ-MQSeries
Bridge Explorer. Make sure you set all the properties for the

18 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries connection, such as MQI channel names, TCP/IP or
SNA details, MCA user name, QM names, and transmission
queue names.

2 Right-click the MSMQ-MQSeries Bridge icon and choose Export
Server Definitions from the pop-up menu.

3 In the dialogue box, specify a directory to store the
<QM_name>.txt definition files.

4 Right-click the MSMQ-MQSeries Bridge and choose Export
Client Definitions from the pop-up menu.

5 In the dialogue box, specify a directory to store the clientdf.txt
definition file.

6 Repeat the above steps for each MSMQ-MQSeries Bridge in
your network, storing each set of definition files in a separate
directory.

7 Follow the instructions earlier in this article on configuring
MQSeries and importing MQSeries definitions from the MSMQ-
MQSeries Bridge Explorer to complete the MQSeries
configuration.

To back up a configuration, use regedt32 to copy the following
registry entries to a back-up file:

• Registry key to back up for stand-alone MSMQ-MQSeries
configuration:

HKLM\Software\Microsoft\MQBridge\Server

• Registry key to back up for clustered MSMQ-MQSeries
configuration:

HKLM\Cluster\Software\Microsoft\MQBridge\Server

MSMQ-MQSERIES BRIDGE EXPLORER DISPLAY

Open the MSMQ-MQSeries Bridge Explorer from your MSMQ-
MQSeries Bridge folder. The MSMQ-MQSeries Bridge Explorer

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 19

window is divided into two panes. In the left pane, an expandable tree
displays the MSMQ-MQSeries Bridge installations in your network,
foreign CNs, and message pipes. The right pane shows detailed
information about an object that is selected in the tree.

Column name:

• MQS H threads

The number of high service MQSeries-to-MSMQ threads.

• MQS N threads

The number of normal service MQSeries-to-MSMQ threads.

• MSMQ H threads

The number of high service MSMQ-to-MQSeries threads.

• MSMQ N threads

The number of normal service MSMQ-to-MQSeries threads.

• Lifetime

The time since the MSMQ-MQSeries Bridge started.

• Path name

The machine name.

• Status

The MSMQ-MQSeries Bridge’s status (Running, Paused, or
Stopped).

• DLQ depth

The number of messages on the MSMQ-MQSeries Bridge’s
untransacted dead letter queue.

• XDLQ depth

The number of messages on MSMQ-MQSeries Bridge’s
transacted dead letter queue.

20 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Foreign CN display

• QM name

The name of the MQSeries Queue Manager to which the CN is
connected.

• Startup

This setting determines whether the CN is enabled or disabled at
MSMQ-MQSeries Bridge start-up.

• Status

The CN status (Running, Paused, or Stopped).

Message pipe display

• Acc size

The accumulated size (in bytes) of all messages transmitted since
the message pipe started.

• Lifetime

The time elapsed since the message pipe started.

• Messages sent

The total number of messages that were sent since the message
pipe started.

• Msgs/sec

The number of messages per second (the current throughput of
the pipe).

• Q depth

The queue depth (the number of messages in the queue waiting
to be transmitted).

• Q name

The name of the MQSeries transmission queue or MSMQ
connector queue associated with the message pipe.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 21

• Retries

The number of times the MSMQ-MQSeries Bridge has tried to
activate the message pipe.

• Startup

Whether the message pipe is enabled or disabled at MSMQ-
MQSeries Bridge start-up.

• Status

The message pipe status (Running, Paused, Pending, Recovering,
Stopped, or Error).

CUSTOMIZING THE COLUMN DISPLAY

To add or remove a column in the right pane of the MSMQ-MQSeries
Bridge Explorer:

• Select Columns from the View menu.

• Select the tab that corresponds with the type of object whose
display you wish to customize (‘MSMQ-MQSeries Bridge’,
‘CN’, or ‘Message Pipe’).

• To add a column to the display, select its name in the Available
Columns list and click Add.

• To remove a column, select its name in the Show list and click
Remove.

• To change the sequence of the column display, select Columns in
the Show list and click the up or down arrow.

The context menu of the MSMQ-MQSeries Bridge Explorer

MSMQ-MQSeries Bridge Explorer offers the standard Windows
Explorer menu and toolbar. In addition, you can display a special pop-
up menu with one or more of the following options by right-clicking
an object:

• New

22 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Start

• Stop

• Refresh cache

• Pause

• Resume

• Delete

• Export server definitions

• Export client definitions

• Properties.

The subset of options on the menu depends on the object and its
current status.

Status bar
The status bar at the bottom of the MSMQ-MQSeries Bridge Explorer
window displays status and error messages. For example, the status
bar displays an access denied message if an unauthorized user tries to
start or stop the MSMQ-MQSeries Bridge service.

CONTROLLING MSMQ-MQSERIES BRIDGE

To control the operation of an object, right-click the object in the
MSMQ-MQSeries Bridge Explorer and choose the appropriate
command. Some of the commands are also available on the main
Explorer menu.

STARTING, STOPPING, AND PAUSING AN OBJECT

Foreign CNs and message pipes start automatically at MSMQ-
MQSeries Bridge start-up, if you selected the Startup Enabled option
in the object’s properties. To change the status of an object, right-click

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 23

the object in the MSMQ-MQSeries Bridge Explorer and select one of
the following options:

• Stop

Stops the object and resets its counters (lifetime, messages sent,
and accumulated size).

• Start

Starts a stopped object.

• Pause

Pauses the object, retaining its counters.

• Resume

Resumes the operation of an object after a Pause.

The commands affect the selected object and all objects below it in the
hierarchy. For example, starting a foreign CN starts all its enabled
message pipes.

REFRESHING THE CACHE

Occasionally, you may want to refresh the MSMQ-MQSeries Bridge
cache memory. A reason for doing this is to close queues needed by
other applications.

To do this, right-click an MSMQ-MQSeries Bridge’s icon in the
MSMQ-MQSeries Bridge Explorer and choose the Refresh Cache
option.

Stephen Ibaraki
Technical Manager and Head of Research
Capilano College (Canada) © Xephon 2000

24 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries Queue Manager Clusters

The popularity of MQSeries springs from the unarguable benefits of
connecting disparate platforms – something that’s essential in today’s
environment of mergers, acquisitions, and joint ventures. But, while
everyone might agree that connecting platforms is necessary, no one
considers it easy.

MQSeries Version 5.1 on distributed platforms and Version 2.1 on OS/
390 (‘z/OS’) allow you to network groups of related MQSeries queue
managers, known as clusters. Using clusters on large, complex queue
manager networks significantly reduces MQSeries’ administrative
burden. In addition, the clusters allow workload to be handled across
queue managers, resulting in easier workload balancing and dynamic
failover support. Clusters truly support the principle of strength in
numbers.

This article describes the structure of MQSeries clusters and defines
clustering components and their functions. It also examines the
benefits that clustering offers and explores the steps needed to set up
clusters. (Also see MQSeries clusters: a hands-on view in issues 15
and 16 of MQ Update, which offer practical advice on clustering.)

STRUCTURE OF CLUSTERING

Queue managers can be aggregated in a cluster if they share a common
characteristic, such as location, department, or business function.
What makes a cluster useful and powerful is its ability to share queues
among its members. Any queue controlled by one queue manager is
accessible to any other queue manager in the cluster, as long as it’s
defined as a cluster queue. Queue managers added to the cluster can
access all cluster queues, regardless of which cluster queue belongs to
which queue manager. This is networking at its finest.

GATEWAYS

Combining clusters allows you to integrate large, complex MQSeries
networks. A queue manager that belongs to two or more clusters is

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 25

known as a gateway, and it allows services that are provided by cluster
queues in one cluster to be available to applications in other clusters.
By creating gateways to interconnect multiple clusters, it is possible
to bridge MQSeries networks.

NEW OBJECTS AND TERMS

Several new MQSeries objects and terms are associated with clustering:

• A cluster queue manager belongs to at least one cluster. It may
make some of the queues it owns known to other members of the
cluster, keeping others ‘hidden’. A cluster queue manager may
not own any queues at all, in which case it simply feeds messages
to other queue managers in the cluster.

• A cluster namelist allows administrators to group clusters and
refer to them as a single entity when defining cluster queue
managers and queues. Namelists let a single queue or queue
manager belong to multiple clusters.

• A cluster queue is owned by a queue manager that is a member
of a cluster. It’s made known to other queue managers in the
cluster by a new attribute that defines the cluster to which it
belongs. Note that a cluster queue may belong to one or more
clusters (namelists are used to make a queue known to more than
one cluster). An application can only send data to cluster queues
that aren’t local – you can’t ‘get’ from a cluster queue that isn’t
local. No such restriction applies to cluster queues that are local
to an application – you can both output and input messages from
them.

• A repository collects information about queue managers that
belong to a cluster. This information includes queue manager
names and locations and the objects that the queue managers host.
The repository is implemented via messages on a queue. There
are two kinds of repository: full and partial. A full repository
contains information on all queue managers in a cluster. A partial
repository contains only enough information to exchange
messages. Information in a partial repository is updated on a
need-to-know basis, and a full repository is notified about all

26 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

information that is passed to a partial repository. This allows
synchronization between partial and full repositories.

It is recommended that at least two queue managers in a cluster
host full repositories. Other queue managers that are members of
the cluster would then host partial repositories. Repository
information is stored in a queue named:

SYSTEM.CLUSTER.REPOSITORY.QUEUE

• A cluster receiver channel is an end-point of a channel from
which a cluster queue manager may receive messages, which
may be destined for either an application or the repository. The
queue manager announces that it is available to receive messages
using the cluster receiver channel.

• A cluster queue manager can send cluster information to a full
repository from a cluster sender channel. This channel also
notifies repository queue managers of any changes to either a
queue manager’s status or objects that the queue manager hosts.
It also transmits messages similar to those in standard sender
channels. One cluster sender channel is initially required to allow
the queue manager to join a cluster. Other cluster sender channels
are defined automatically when the need arises.

CLUSTER TRANSMISSION QUEUE

Every cluster queue manager requires a cluster transmission queue
(SYSTEM.CLUSTER.TRANSMIT.QUEUE). This queue moves all
messages in a cluster from one queue manager to another. Unlike
sender channels, which allow you to specify the transmit queue they
service, cluster sender channels have no such attribute, using the
cluster transmission queue instead. This queue’s name cannot be
changed and is created as one of the default objects.

BENEFITS OF CLUSTERS

With the working definitions above, we now have a context in which
we can discuss the benefits that clusters provide, which include
reduced administration and workload balancing.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 27

Reduced administrative burden

Building an MQSeries network using clusters eliminates many of the
object definitions that are required when configuring MQSeries
distributed queuing using the ‘standard’ methodology. With fewer
definitions, reconfiguration is also simplified. Another benefit is that
fewer objects means a reduced likelihood of error when defining
objects.

Let’s compare configuration of three queue managers using traditional
distributed queuing versus clustering. A queue manager hosts a local
queue that provides a service, such as responding to inventory status
inquiries. It must communicate directly with other queue managers.

1 Objects for distributed queuing:

In the simple configuration shown in Figure 1, definitions are
required for 39 objects. If you need to add another queue
manager, this requires 19 additional definitions on the queue
itself and 18 additional definitions on existing queue managers.
This would bring the total up to 76 objects. Clearly, this becomes
a large burden as the number of queue managers increases. You
can reduce the number of objects by not using queue manager
aliases and process definitions for channel triggering, though this
does not significantly reduce the administrative burden.

Definitions needed

MQSeries object
Per queue
manager

For three queue
managers

Sender channel to other’s queue manager 2 6

Receiver channel from other’s queue manager 2 6

Transmission queue 2 6

Local queue 1 3

Remote queue 2 6

Queue manager alias 2 6

Process definition for starting channel 2 6

Figure 1: Objects required for distributed queuing

28 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

2 Objects required with clusters:

In contrast to the distributed queuing example, a similar
configuration with clustering (Figure 2) requires just nine objects.
What is even more remarkable is the reduction in the number of
objects that are required to add a fourth queue manager to the
network. With clusters, the number of new definitions is constant:
each new queue manager requires only three definitions, and
existing queue managers in the cluster require no additional
objects.

Clustering lightens the administration load in other ways as well:

• Moving a cluster queue from one queue manager to another
requires no changes to remote queue definitions.

• Adding and removing queue managers from the cluster requires
changes only to the queue manager being removed.

• Defining fewer objects lessens the risk of some types of problem,
such as channel mismatches and transmission queue
complications.

Clustering also eliminates the possibility of remote queues pointing to
the wrong queue at a remote queue manager.

Managing the workload

Clustering allows you to manage your workload better and increase
service availability. It takes full advantage of networking by allowing
applications to obtain a service from one of a host of queue managers

Figure 2: Objects required using clustering

Cluster sender channel 1 3

Cluster receiver channel 1 3

Local queue (cluster queue) 1 3

Definitions needed

MQSeries object
Per queue
manager

For three queue
managers

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 29

in the cluster. Multiple queue managers in the cluster each host a
queue that provides a service. To applications requesting this service,
it makes no difference where the service provider resides. A network
(or cluster) of independent queue managers providing the service
increases availability – if one queue manager is unavailable,
applications can obtain the service from any other queue manager
that’s configured appropriately. This architecture also offers increased
throughput and even workload distribution across queue managers.

Messages destined for a particular queue can be handled by any queue
manager in the cluster that supports an instance of the queue. Remote
queue definitions and applications no longer explicitly name the
queue manager to which the message should be routed. The destination
queue manager is determined by a workload management algorithm.

The algorithm that ships with MQSeries is very simple – it works as
follows:

1 If the message destination queue is local to the queue manager to
which the application is connected, the message is placed there.

2 If there is no instance of the queue that’s local to the application,
the algorithm determines which destinations are available.
Destinations with higher priority, as set by the MQSeries
administrator, are chosen first using the cluster receiver channel’s
NETPRTY attribute.

3 If multiple channels have the same priority (NETPRTY), the
algorithm chooses destinations sequentially in a circular manner
(A, B, C, A, B, C, etc). A destination is a queue manager in the
cluster that hosts an instance of the local queue to which the
message is destined.

This algorithm doesn’t assess the ability of the destination queue
manager to service requests in a timely manner – it just routes
messages evenly among the available destinations.

However, you can develop a customized workload management
algorithm that takes an input, such as CPU utilization and queue
depth, and uses it to make a more informed decision on where to route
a message. MQSeries provides an exit point that you can call on the

30 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries OPEN or PUT calls. Program control and the information
in the parameters are passed to the exit. The information includes both
a list of available destinations and the one chosen by the queue
manager. The exit can either accept this choice or override it based on
other factors, such as the CPU utilization of the host or the service
response time.

Note that MQSeries always attempts to put your message on a queue
that is local to your application (or, more accurately, a queue that is
local to the queue manager to which you are connected). Therefore,
if you want to take advantage of workload management, you need to
deploy an architecture in which the queue manager you connect to
does not host an instance of the queue on which you want to put
messages. If the queue on which you put your messages does have a
local instance, and you don’t necessarily want your messages to go to
this queue, then you must use a custom workload exit.

Workload balancing may also require that you partition the data being
accessed. Data access services that use clustering for workload
balancing must make data accessible to requests that may end up on
any instance of a queue. The workload management exit must be able
to choose the destination queue based on the content of the request
message. This ensures that requests go to queues that are capable of
servicing them. It can be quite challenging to handle multiple request
types using workload balancing, as only one workload management
exit can be defined per queue manager.

SETTING UP A CLUSTER

Now that we have a basic knowledge of the structure of a cluster and
its usefulness, we can examine the mechanics of deploying one. In
most cases, a cluster will consist of at least two queue managers,
which means there are at least two full repositories, providing a degree
of fail-over. Consider a hypothetical MQSeries network belonging to
Acme Co, with one queue manager in Vancouver, BC (Canada), and
the other in Los Angeles, California. The Vancouver queue manager
hosts a queue that provides data about the inventory at a Vancouver
warehouse.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 31

Below are the steps needed to set up this cluster. Bear in mind that you
would issue the commands using whatever standard methods are
associated with your platform.

1 Determine which queue managers will host full repositories (in
our example, both queue managers do so). Our queue managers
are called LOS_ANGELES and VANCOUVER, and between
them they support our warehouse systems, so we’ll call our
cluster WAREHOUSE.

2 Configure channel listeners and initiators as you would if you
were setting up traditional distributed queuing on both of the
queue managers.

3 Alter the VANCOUVER queue manager to define it as a cluster
queue manager that hosts a full repository:

ALTER QMGR REPOS(WAREHOUSE)

4 Define a cluster receiver channel (CLUSRCVR) on the
VANCOUVER queue manager. This is required and can be
accomplished with the following commands:

DEFINE CHANNEL(TO.VANCOUVER)
CHLTYPE(CLUSRCVR)
CONNAME(‘VANCOUVER.ACME.COM(1414)’)
CLUSTER(WAREHOUSE)

5 Define a cluster sender channel (CLUSSDR) on the VANCOUVER
queue manager. The cluster sender channel must point to a queue
manager in the cluster that hosts a full repository. This step can
be accomplished with the following commands:

DEFINE CHANNEL(TO.LOS_ANGELES)
CHLTYPE(CLUSSDR)
CONNAME(‘LOS_ANGELES.ACME.COM(1414)’)
CLUSTER(WAREHOUSE)

6 Define a cluster receiver channel (CLUSRCVR) on the
LOS_ANGELES queue manager:

DEFINE CHANNEL(TO.LOS_ANGELES)
CHLTYPE(CLUSRCVR)
CONNAME(‘LOS_ANGELES.ACME.COM(1414)’)
CLUSTER(WAREHOUSE)

32 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

7 Define a cluster sender channel (CLUSSDR) on the
LOS_ANGELES queue manager:

DEFINE CHANNEL(TO.VANCOUVER)
CHLTYPE(CLUSSDR)
CONNAME(‘VANCOUVER.ACME.COM(1414)’)
CLUSTER(WAREHOUSE)

8 Define a cluster queue on one of the queue managers. In our
example, the LOS_ANGELES application requires inventory
status reports from the VANCOUVER warehouse. A service has
been created at the VANCOUVER queue manager to provide this
information. A queue is created on the VANCOUVER queue
manager that services this requirement:

DEFINE QLOCAL(INVENTORY_STATUS)
CLUSTER(WAREHOUSE)

Figure 3 illustrates our small but functional cluster.

In our example, an application connecting to queue manager
LOS_ANGELES can put messages on the INVENTORY_STATUS
queue because information about INVENTORY_STATUS has been
sent from queue manager VANCOUVER to queue manager

VANCOUVER

INVENTORY_STATUS

LOS_ANGELES

TO LOS_ANGELES

TO VANCOUVER

WAREHOUSE

Figure 3: Basic cluster involving two locations

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 33

LOS_ANGELES. This information is stored in the repository at queue
manager LOS_ANGELES in a queue named:

SYSTEM.CLUSTER.REPOSITORY.QUEUE

An application servicing the INVENTORY_STATUS queue builds a
reply using the ‘reply to queue manager’ and ‘reply to queue’ fields in
the request’s message descriptor to establish the reply’s destination.
The application will open this queue successfully even though there
are no queue manager alias definitions. It knows about LOS_ANGELES
in this case because the cluster queue managers share this information
when they connect.

GROWING OUR NETWORK

In our Acme example, let’s suppose a new queue manager is deployed
in Dallas to support an on-line order processing system. This system
requires access to both the LOS_ANGELES and VANCOUVER queue
managers to collect inventory information.

Using traditional distributed queuing, you would need to define
objects for facilitating a connection to LOS_ANGELES and, perhaps,
VANCOUVER (you could always hop through LOS_ANGELES to
VANCOUVER to reduce the number of definitions needed). You
would also need remote queue definitions for access to the
INVENTORY_STATUS queue and, ideally, a queue manager alias on
VANCOUVER to return responses to DALLAS. Bringing DALLAS on-
line would require some careful planning.

Using clusters, this effort is reduced substantially. Only two channel
definitions are required: a cluster sender channel definition from
DALLAS to any queue manager that hosts a repository (VANCOUVER
or LOS_ANGELES, in our example) and a cluster receiver channel
definition.

Once a connection is made to either VANCOUVER or LOS_ANGELES,
the cluster queue managers pass information between them that
allows DALLAS to access all cluster queues. No remote queue
definitions are needed on DALLAS and no channel definitions are
required on either VANCOUVER or LOS_ANGELES.

34 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

What if we make the connection from DALLAS to LOS_ANGELES?
When we define the request to access the INVENTORY_STATUS
queue on VANCOUVER from DALLAS, we don’t do so via
LOS_ANGELES, even though this is the queue manager with which
we’re registered in the cluster. Instead, the request causes the creation
of objects to connect DALLAS directly to VANCOUVER. These are
dynamic objects that you can display, but not alter or delete. The
modified cluster is shown in Figure 4.

MIXING ENVIRONMENTS

So far we’ve looked at an environment comprising only cluster queue
managers. However, real-life environments are typically more complex
than this, which poses the question: can a queue manager in a cluster
communicate with queue managers outside the cluster? The answer is
‘yes’.

VANCOUVER

INVENTORY_STATUS

LOS_ANGELES

DALLAS

TO LOS_ANGELES

TO VANCOUVER

TO DALLAS

TO LOS_ANGELES

WAREHOUSE

Figure 4: Enhanced cluster involving three locations

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 35

In our Acme example, you can use traditional distributed queuing
techniques to route messages to queue managers outside the cluster.
You can also define a single queue manager in a cluster that acts as a
gateway to other queue managers outside the cluster. The traditional
definitions on this queue manager, such as queue manager alias (or
transmission queue), would include the cluster attribute, causing the
definition to be propagated to other queue managers in the cluster –
clustering provides benefits, even in a mixed environment.

CONCLUSION

Clustering is a significant step forward in easing the administrative
burden of MQSeries and improving workload management. By using
clusters, administrators are freed from the burden of defining numerous,
tightly coupled objects just to connect queue managers. That process
is replaced with the simple task of defining two channels. By networking
queue managers, workload management occurs automatically,
improving the availability and reliability of MQSeries-based
applications. MQSeries workload management still requires tweaking,
but this is a good starting point.

Marc Verhiel (marc_verhiel@candle.com)
Candle Corporation (USA) © Candle 2000

APPC support using the ‘SideInfo’ dataset

This article demonstrates how to customize APPC for distributed
queuing without CICS by editing the file CSQ4SIDE.

CSQ4SIDE, which is supplied in the MQM.SCSQPROC dataset, can
be customized to meet your site’s specific requirements. It’s here that
you can define a ‘SideInfo’ structure for APPC support. A ‘side
information definition’ is required for each connection to a remote
queue manager, and one side information definition is required for
listening on connections from remote queue managers. This provides

36 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

sample definitions for APPC side information used for distributed
queueing without CICS.

AN EXAMPLE OF A CUSTOMIZED CSQ4SIDE JOB
//JOBCARD
//*CSQ4SIDE JOB
//***
//*
//* @START_COPYRIGHT@
//* Statement: Licensed Materials - Property of IBM
//*
//* 5695-137
//* (C) Copyright IBM Corporation. 1993, 1996
//*
//* Status: Version 1 Release 1
//* @END_COPYRIGHT@
//*
//***
//* IBM MQSeries for MVS/ESA
//* This provides sample definitions for the APPC side information
//* dataset that's used for distributed queueing without CICS.
//*
//***
//* CUSTOMIZE THIS JOB HERE FOR YOUR INSTALLATION
//* YOU MUST MAKE GLOBAL CHANGES ON THESE PARAMETERS USING YOUR
//* EDITOR
//***
//*
//* Replace ++SIDE++
//* with the name of the APPC side information
//* dataset to be used.
//*
//* Replace ++MVSconn++
//* ++CICSconn++
//* TST4D100
//* with the connection names to be used.
//*
//* Replace ++listen++
//* with the listener LU name to be used.
//*
//* Replace ++MVSluname++
//* ++CICSluname++
//* ++OS2luname++
//* with the names of the LUs used by the
//* remote queue managers.
//*
//* Replace ++LOCALluname++
//* with the name of the LU used by the

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 37

//* local queue manager.
//*
//**
//*
//DEFINE EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//*SYSSDLIB DD DSN=SYS1.APPC.APPCSI,DISP=SHR
//SYSSDLIB DD DSN=SYSB.APPCSI,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA,DLM=ZZ
 /*
 /**
 /*
 /* A side information definition is required for each connection
 /* to a remote queue manager, and one side information definition is
 /* required for listening on connections from remote queue managers.
 /*
 /* DESTNAME For connections to a remote queue manager,
 /* this is the connection name (CONNAME) specified by
 /* the channel definition on the local queue manager.
 /* For connections from a remote queue manager,
 /* this is the logical unit name (LUNAME) specified by
 /* the START LISTENER command for the local queue manager.
 /*
 /* MODENAME This is the logon mode used for the SNA session
 /* connecting the LU for the local queue manager
 /* with the LU for the remote queue manager.
 /*
 /* TPNAME, PARTNER_LU
 /* These values depend on the remote queue manager.
 /*
 /* There is a sample definition for connections to each type of
 /* remote queue manager. Repeat the definitions for each connection,
 /* specifying the DESTNAMEs that you want; customize the other
 /* values as appropriate.
 /*
 /* There is a sample definition for connections from remote queue
 /* managers. Specify the DESTNAME that you want; customize the
 /* other values as appropriate. (Multiple definitions can be set up
 /* if desired, but only ONE can be used for listening at a time.)
 /*
 /**
 /*
 /* Sample side information for connection TO a remote queue manager on
 /* MVS/ESA without CICS, OS/400, or AIX:
 /*
 /* TPNAME Any value, but must be the same as in the corresponding
 /* side information on the remote queue manager.
 /* PARTNER_LU
 /* The name of the LU used by the remote queue manager.

38 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /*
 /* SIDELETE
 /* DESTNAME(++MVSconn++)
 /* SIADD
 /* DESTNAME(++MVSconn++)
 /* TPNAME(APINGD)
 /* MODENAME(#INTER)
 /* PARTNER_LU(++MVSluname++)
 /*
 /**
 /*
 /* Sample side information for connection TO a remote queue manager on
 /* MVS/ESA using CICS:
 /*
 /* TPNAME CKRC for a connection for a sender or server channel,
 /* CKSV for a connection for a requester channel.
 /* PARTNER_LU
 /* The name of the LU used by the CICS system.
 /*
 /* SIDELETE
 /* DESTNAME(++CICSconn++)
 /* SIADD
 /* DESTNAME(++CICSconn++)
 /* TPNAME(CKRC)
 /* MODENAME(#INTER)
 /* PARTNER_LU(++CICSluname++)
 /*
 /**
 /*
 /* Sample side information for connection TO a remote queue manager on
 /* OS/2:
 /*
 /* TPNAME As specified on the OS/2 Run Listener command, or
 /* defaulted from the OS/2 queue manager configuration
 /* file.
 /* PARTNER_LU
 /* The name of the LU used by the OS/2 queue manager.
 /*
 SIDELETE
 DESTNAME(ST17817C)
 SIDELETE
 DESTNAME(ST67817C)
 SIDELETE
 DESTNAME(SF67123C)
 SIADD
 DESTNAME(SF67123C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67123C)
 SIDELETE

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 39

 DESTNAME(SF61048C)
 SIADD
 DESTNAME(SF61048C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61048C)
 SIDELETE
 DESTNAME(SF69848C)
 SIADD
 DESTNAME(SF69848C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF69848C)
 SIDELETE
 DESTNAME(SF61097C)
 SIADD
 DESTNAME(SF61097C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61097C)
 SIDELETE
 DESTNAME(SF67739C)
 SIADD
 DESTNAME(SF67739C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67739C)
 SIDELETE
 DESTNAME(SF67781C)
 SIADD
 DESTNAME(SF67781C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67781C)
 SIDELETE
 DESTNAME(SF61106C)
 SIADD
 DESTNAME(SF61106C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61106C)
 SIDELETE
 DESTNAME(SF67747C)
 SIADD
 DESTNAME(SF67747C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67747C)
 SIDELETE
 DESTNAME(SF61118C)

40 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 SIADD
 DESTNAME(SF61118C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61118C)
 SIDELETE
 DESTNAME(SF61042C)
 SIADD
 DESTNAME(SF61042C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61042C)
 SIDELETE
 DESTNAME(SF61046C)
 SIADD
 DESTNAME(SF61046C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61046C)
 SIDELETE
 DESTNAME(SF67746C)
 SIADD
 DESTNAME(SF67746C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67746C)
 SIDELETE
 DESTNAME(SF67770C)
 SIADD
 DESTNAME(SF67770C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67770C)
 SIDELETE
 DESTNAME(SF69341C)
 SIADD
 DESTNAME(SF69341C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF69341C)
 SIDELETE
 DESTNAME(SF67342C)
 SIADD
 DESTNAME(SF67342C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67342C)
 SIDELETE
 DESTNAME(SF67111C)
 SIADD

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 41

 DESTNAME(SF67111C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67111C)
 SIDELETE
 DESTNAME(SF67387C)
 SIADD
 DESTNAME(SF67387C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67387C)
 SIDELETE
 DESTNAME(SF61103C)
 SIADD
 DESTNAME(SF61103C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF61103C)
 SIDELETE
 DESTNAME(SF67771C)
 SIADD
 DESTNAME(SF67771C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67771C)
 SIDELETE
 DESTNAME(SF65256C)
 SIADD
 DESTNAME(SF65256C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF65256C)
 SIDELETE
 DESTNAME(SF67753C)
 SIADD
 DESTNAME(SF67753C)
 TPNAME(RECV)
 MODENAME(LU62C)
 PARTNER_LU(SF67753C)

The remainder of this article appears in next month’s issue of MQ
Update.

Saida Davies
IBM (UK) © Xephon 2000

42 © 2000. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Articles wanted

The following topics have been proposed for articles in MQ Update.
If you have any suggestions/comments on any of the topics, or (better
still!) if you can write the article requested, please contact the Editor
(see inside front cover for details).

1 Scaling the MQSeries administrative framework

MQSeries products are available on a variety of platforms, and
the administration of queue managers on these platforms is
usually tackled in a piecemeal way. There are some references in
the MQSeries documentation to ‘hub-and-spoke’ architectures,
and some nice ideas about MQSeries administration products
with Web consoles and so on; however, what we need is an article
on real-life MQSeries administration, using a single point-of-
control for managing a complex MQSeries network. The article
would deal with some or all of the following issues:

– Managing a large number of queue managers, channels, etc.

– Handling remote locations (or secure access).

– Managing a large number of object definitions using dynamic
definitions.

– Routine problem fixes.

– ‘Attention seeking’ (how to send pages to the administrator,
use flashing displays, etc).

2 Microsoft’s .Net strategy and MQSeries

We’re looking for an article giving an insight into what’s possible
with .Net, and what it and the MSMQ-MQSeries Bridge offer
MQSeries users, revealing any surprises associated with
integration, message attributes, dealing with a large number of
messages, data conversion, etc.

© 2000. Reproduction prohibited. Please inform Xephon of any infringement. 43

3 Application development in MQSeries

MQSeries is used for many application types, such as request/
response, FTP, scheduling, and event-based. Can anyone produce
an article discussing design guidelines for such applications,
tacking such subjects as how to engineer an application to deliver
a performance target?

4 MQSeries applications for PDAs

MQSeries is now available on PDAs, and there is an exciting
opportunity for developing, deploying, managing, and integrating
applications as never before. We’d be very interested in some
discussion on developing for MQSeries on PDAs, starting with
a primer on PDA development, as most MQSeries developers
will probably be unfamiliar with this.

5 MQSeries in disaster recovery

The way MQSeries is typically used in applications can result in
updates to distributed data and/or data replication involving more
than one database, such as DB2 UDB on NT and Oracle on the
mainframe. Each of these databases has its own recovery options
and schedules. However, from a business perspective, what’s
important is to tie the recovery of all the databases together. We’d
like an article discussing the problems that using MQSeries
brings to disaster recovery and providing tips on how these
problems may be tackled.

6 MQSeries programming models

MQSeries can be programmed using a number of interfaces:
AMI, JMS, MQI, and (possibly) SOAP. Can anyone compare and
contrast the similarities and differences between these APIs from
a programming perspective?

Contributions to MQ Update may be sent to the Editor at: MQ Update,
Xephon, 27-35 London Road, Newbury, Berkshire RG14 1JL, UK.
You may also e-mail articles to info@xephon.com. For more
information about contributing, please download a copy of Notes for
contributors from Xephon’s Web site at www.xephon.com/nfc.pdf.

MQ news

MQSoftware is to enable its Q Pasa!
management tool for MQSeries to work with
IBM’s WebSphere software, providing
WebSphere and MQSeries users with a
management system within their business
applications. Q Pasa! provides management
of MQSeries, MQSeries Integrator (Version
1 and 2), MQSeries Workflow, and
MQSeries Everyplace, and provides
management control of the MQSeries
middleware environment including
configuration, performance, problem,
operations, and analysis management.

For further information contact:
MQSoftware Inc, 7575 Golden Valley Road,
Suite 140, Minneapolis, MN 55427, USA
Tel: +1 612 546 9080
Fax: +1 612 546 9082
Web: http://www.mqsoftware.com

MQSoftware Europe Ltd, The Surrey
Technology Centre, 40 Occam Road, Surrey
Research Park, Guildford, Surrey GU2 5YH,
UK
Tel: +44 1483 295400
Fax: +44 1483 573704

* * *

New Era of Networks has launched Open
Business Interchange (also known as ‘Open
Biz’), which provides flexible and easy-to-
use connections for B2C and B2B
transactions. Acting as a connectivity hub
between subscribers and their partners, it
provides data transport, transformation,
routing, and message tracking and
authorization over virtually all standard
Internet protocols and for most message

formats. Open Biz allows trading partners to
connect quickly using their chosen
technology, eliminating the need for
multiple gateways and sets of connectivity
software.

Subscribers can choose formats, protocols,
and encryption technologies independently.
Support is provided for e-mail, FTP,
MQSeries, HTTPS, XML, EDI, ebXML,
and SOAP.

Available now as a hosted service or as a self-
hosted service for beta customers, software
licenses will be available in 2001. Pricing for
the hosted service is subscription-based and
depends on transaction volumes.

For further information contact:
NEON, 7400 East Orchard Road,
Englewood, CO 80111, USA
Tel: +1 303 694 3933
Fax: +1 303 694 3885
Web: http://www.neonsoft.com

New Era of Networks Ltd, Aldermary
House, 15 Queen Street, London EC4N
1TX, UK
Tel: + 44 171 329 4669
Fax:+ 44 171 329 4567

* * *

IBM has announced MQSeries for VSE/
ESA Version 2.1.1, which comes with
improved security, message data
conversion, automatic VSAM
reorganization, support for Java clients, and
an improved batch interface.

x xephon

	 Queue Manager Not Active’ messages on S/390
	Microsoft MSMQ to MQSeries Bridge (part 2)
	MQSeries Queue Manager Clusters
	APPC support using the ‘SideInfo’ dataset
	Articles wanted
	MQ news

