
© Xephon plc 2001

March 2001

21

3 BLOB-based message processing
techniques for MQSeries Integrator
Version 2

11 MQSeries channel security exits
27 Architect your MQSeries

environment on Unix
39 Clustered queue managers
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/contnote.html.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

BLOB-based message processing techniques for
MQSeries Integrator Version 2

MQSeries Integrator Version 2 (MQSI) implements the ESQL message
processing language. ESQL can be used to transform and augment
messages in many ways, both on its own and in interaction with other
components of MQSI or external DBMS data sources. In this article
we look at some techniques for processing messages using ESQL that
operate on the body of an incoming message as a single BLOB entity.

‘BLOB’ is an ESQL data type. An ESQL field or variable of type
BLOB is considered to hold binary data, that is, it represents no value
over and above the string of bytes that it contains as data. So a message
body consisting of a single BLOB entity is considered to represent
nothing more than its constituent bytes. There are two main situations
where this might be useful:

• When a legacy-format message, which for some reason cannot be
modelled satisfactorily with the MRM or other IBM-supplied
parser, is being processed.

• When modifying the message body at a binary level evades or
alleviates some problem that would otherwise be complex or
time-consuming to solve.

Examples of both these situations, drawn from real life situations, are
discussed below.

The ESQL, which implements a BLOB-based processing technique,
will generally be contained in an MQSI Compute node. In the cases
considered below, we will be assuming that the job of the ESQL,
which does the actual processing, is to take the BLOB value held in
an ESQL variable named inputData and transform it into another
BLOB value to be placed in the ESQL variable named outputData.
The body of the Compute node’s input message will be placed in
inputData before the transformation begins; the value of outputData
will be used as the body of the Compute node’s output message once
the transformation is complete.

Using a temporary ESQL variable in this way is more efficient than
repeatedly referencing the input and output messages themselves.

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

GETTING THE INPUT MESSAGE BODY INTO INPUTDATA

This is easily achieved with the following ESQL (all ESQL in this
article was created and tested using MQSI v2.0.1):

DECLARE inputData BLOB;
SET inputData = BITSTREAM(InputBody);

Note that here, and throughout the rest of this article, it is assumed that
any message headers have already been dealt with, for example by
selecting the ‘copy message headers’ radio button from the Compute
node configuration panel. The BITSTREAM function returns the
input message body’s bitstream as a BLOB value, which is assigned
to inputData.

This will work regardless of the domain of the input message (BLOB,
MRM, XML, etc). For example, consider an XML message in an
ASCII code page with the simple body <Data>hello</Data>. This
would be processed by the above ESQL so as to result in the BLOB
value X'3c446174613e68656c6c6f3c2f446174613e' (the binary
values of the ASCII characters <Data>hello</Data>) being assigned
to inputData.

ASSIGNING OUTPUTDATA TO THE OUTPUT MESSAGE BODY

The ESQL from the previous section can easily be extended so that it
performs the necessary steps:

DECLARE inputData BLOB;
DECLARE outputData BLOB;
SET inputData = BITSTREAM(InputBody);
SET outputData = inputData;
SET OutputRoot."BLOB"."BLOB" = outputData;

The final line creates an output message body using the IBM-supplied
BLOB parser and assigns to it the value contained in outputData. It
should be emphasized that the BLOB parser is a separate entity to the
ESQL BLOB data type. The parser is so named because its action on
parsing a message is to create a single field named BLOB, which has,
as an ESQL BLOB data type value, the binary data of the message
body.

Conversely, when building an output message it takes any binary data
contained in an existing BLOB field and uses it as the bitstream of the

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

output message. Hence the field reference
OutputRoot."BLOB"."BLOB" refers to (and creates if it does not
already exist) a field of the output message named BLOB, which
belongs to the BLOB parser – precisely what we want. The double
quotes around both instances of BLOB are not necessary and have no
particular significance; they are included purely to avoid a bug in the
Compute node syntax checker – present in versions of MQSI to date
– which causes it to report an error if an ESQL keyword identifier is
included as part of a field reference. Using keyword identifiers in this
way is not an error and will not cause a deploy-time failure; the only
reason for putting quotes around the keyword identifier is that it
mollifies the syntax checker.

The penultimate line, SET outputData = inputData, is perhaps the
simplest possible example of a message transformation, copying the
input message body, unchanged, to the output message body. It is this
line that we will be replacing with some more complex algorithms to
implement the various processing techniques discussed below. The
other lines remain constant, and although they are implicitly present,
will not be repeated in subsequent ESQL examples.

THE RCD NODE

The end result of the above will be that your Compute node outputs
a message in the BLOB domain with the transformed binary value
from outputData as its body. It may be that a BLOB domain message
is not what you want; for example, having tinkered with the bitstream
directly in the Compute node you may want to treat the message as
XML or MRM. The ‘Reset Content Descriptor’ node makes this
possible.

An RCD node reserializes an incoming message, invoking the
necessary parsers to turn its tree into a wire-format sequence of bytes
– the binary data that is actually transmitted along the network ‘wire’.
It then changes the domain (and, if required, other associated attributes,
such as message type and format) of the message and passes it down
the message flow. The next time any subsequent node tries to parse it,
the bitstream will be treated as belonging to whatever new domain the
RCD specified. Consider the following ‘transformation’:

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SET outputData = X'3c4e616d653e4a6f686e3c2f4e616d653e';

This assigns a binary literal representing the ASCII string
<Name>John</Name> to outputData. If this is assigned to
OutputRoot."BLOB"."BLOB" then the parser invoked by the RCD
node to effect reserialization will be the BLOB parser, which simply
uses whatever BLOB value it fields in the BLOB field as the wire-
format byte sequence. If the RCD node changes the domain to XML
then the next node to parse the message would see an XML message
with the single field <Name> containing the value ‘John’. This is
because the wire format produced by the BLOB parser upon
reserialization of the above value is such that it can also form the wire
format of a valid XML message.

THE TRANSFORMATIONS

Now that we can get data into and out of the Compute node it is time
to look at what happens in between. BLOB-based transformations
rely on the fact that an ESQL BLOB value is, in effect, a string of bytes
and, as such, can be operated upon by the string manipulation
functions, including POSITION , LENGTH , TRIM , SUBSTRING,
OVERLAY , and the concatenation operator, ||. Each of the following
techniques using these operations was developed to solve a real
problem, the nature of which is discussed below. However, they can
easily be adapted for use in other situations.

Find and replace

Scenario

We needed to put a NULL value, consisting of the four-byte sequence
X'FFFFFFFF', into a four-character field of an MRM message. The
message was processed in an ASCII code page but then converted into
EBCDIC. This caused a problem because the X'FFFFFFFF' value was
treated as if it were ASCII data and itself ‘converted’ by the MRM
parser. EBCDIC does not support any character with a binary value of
X'FF', so it was not possible to preserve this value after conversion
from ASCII – we just ended up with X'40404040'.

The solution we adopted was to allow conversion to take place, then
process the message as a single BLOB entity, replacing the value

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

X'40404040' with X'FFFFFFFF'. Because this processing took place
after conversion, it allowed us to put the necessary value into the
EBCDIC message.

The sample ESQL copies inputData to outputData with all occurrences
of the BLOB literal specified in find replaced, with the BLOB literal
specified in replace.

ESQL

DECLARE find BLOB;
DECLARE replace BLOB;
DECLARE pos INTEGER;
SET find = X'4Ø4Ø4Ø4Ø';
SET replace = X'FFFFFFFF';
SET outputData = X'';
SET pos = POSITION(find IN inputData);
WHILE (pos <> Ø AND inputData IS NOT NULL) DO
 SET outputData = outputData ||
 SUBSTRING(inputData FROM 1 FOR (pos-1)) || replace;
 SET inputData = SUBSTRING(inputData FROM pos+LENGTH(find));
 SET pos = POSITION(find IN inputData);
END WHILE;
SET outputData = outputData || inputData;

Notes

• The concatenation operator cannot accept NULL as one of its
operands. This may be fixed in subsequent versions of MQSI,
but, for now, we have to write the ESQL is such a way that NULL
operands are avoided. This is why outputData is initialized to X''
before processing begins.

• Every SUBSTRING and concatenation operation takes up
processing time. To maximize efficiency, POSITION is used to
locate the next instance of the search string in inputData. This
means that the number of SUBSTRING/concatenation operations
is dependent on the number of occurrences of the search string,
not the length of inputData. The size of the input message does
not, therefore, have a direct linear relationship to the processing
time, which may be an important consideration if you are
processing large messages.

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Parsing a mixed-format message

Scenario

We were trying to process a legacy-format message that consisted of
a 16-byte header followed by XML data. This could not be processed
by the XML parser as it stood, because the header portion was not
valid XML. Initially, we solved this by processing the message as a
BLOB, modifying the bitstream so that the header appeared to be just
another XML field, then using an RCD node to turn it into an XML
message.

The sample ESQL transforms a message with the format: [16-byte
header]<xml_data> ... </xml_data>, into <Msg><Header>[16 -
byte header]</Header><xml_data> ... </xml_data></Msg>, where
<xml_data> ... </xml_data> represents any valid XML data.

ESQL

SET outputData = '3c4d73673e3c4865616465723e'
 || SUBSTRING(inputData FROM 1 FOR 16)
 || x'3c2f4865616465723e'
 || SUBSTRING(inputData FROM 17)
 || x3c2f4d73673e';

Notes

• The binary literals in the above represent the following ASCII
values:

X'3c4d73673e3c4865616465723e' ==> '<Msg><Header>'

X'3c2f4865616465723e' ==> '</Header>'

X'3c2f4d73673e' ==> '</Msg>'

A quick way to work out the binary literal representation of a
particular ASCII (or other code page) value is to put a message on
an MQSeries queue containing the ASCII literal required.
Investigating the contents of the queue, the MQSeries Explorer
tool or the amqsbcg utility will then show the data portion of the
message with the ASCII literal and its binary representation, next
to each other.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

Interpreting the contents of fields

Scenario

Another problem involved removing, rather than encapsulating, a
non-XML header from an otherwise XML message. There was an
additional difficulty because the header was not of fixed length;
instead, it had a length field in a fixed position in the header. We
needed to process the message, initially as a BLOB, because no other
parser could handle its mixed format; however, this meant that direct
access to the value of the header length field was not possible.

To work around this, we interrogated the bytes making up the length
field directly, and converted their individual binary values into an
integer value for the field as a whole. Once this was obtained we could
remove the correct number of bytes to excise the header, leaving a
pure XML bitstream for an RCD node to convert to XML domain.

The sample ESQL assumes an incoming message with a variable-
length header followed by XML. Bytes five to eight of the header are
assumed to contain an ASCII field representing the length of a header.

ESQL
DECLARE lengthAsBlob BLOB;
DECLARE lengthAsInt INTEGER;
DECLARE index INTEGER;
SET lengthAsBlob = SUBSTRING(inputData FROM 5 FOR 4);
SET index = 1;
SET lengthAsInt = Ø;
WHILE (index < 5) DO
 SET lengthAsInt = lengthAsInt +
 ((CASE SUBSTRING(lengthAsBlob FROM index FOR 1)
 WHEN x'3Ø' THEN Ø
 WHEN x'31' THEN 1
 WHEN x'32' THEN 2
 WHEN x'33' THEN 3
 WHEN x'34' THEN 4
 WHEN x'35' THEN 5
 WHEN x'36' THEN 6
 WHEN x'37' THEN 7
 WHEN x'38' THEN 8
 WHEN x'39' THEN 9
 END)
 *

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (CASE index
 WHEN 1 THEN 1ØØØØ
 WHEN 2 THEN 1ØØØ
 WHEN 3 THEN 1Ø
 WHEN 4 THEN 1
 END));
 SET index = index + 1;
END WHILE;
SET outputData = SUBSTRING(inputData FROM lengthAsInt+1);

Notes

• For all index purposes, ESQL starts counting at one, not zero.
This can sometimes cause confusion if you are used to C-style
indexing, where the count starts at zero.

• CASE is used twice, first to translate the binary value of each
ASCII digit into the corresponding integer value, and second to
multiply that integer by a second integer representing the position
in the ASCII value. In other words, the first digit is multiplied by
10,000, the second by 1,000, and so on, down to one for the last
digit. This is a fairly crude casting mechanism, and in subsequent
versions of MQSI some additional function may be added to
ESQL, which will render such an approach unnecessary.

CONCLUSION

The three scenarios discussed here are just a sample of the many
possible applications of BLOB-based message processing techniques.
Although the aim of MQSI is to offer all the tools necessary to process
messages as pre-defined formats, it will always be the case that there
are some situations where what’s on offer isn’t quite what you need.
In those situations, an understanding of how to use ESQL to modify
the message bitstream directly can be invaluable.

Rafael Jay
Developer, IBM UK © Xephon

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

MQSeries channel security exits

AUTHENTICATION ON THE WIDER NETWORK

The increasing use of MQSeries within organizations has been shown
to pay dividends in facilitating the development of distributed
networked applications. It enables companies to leverage their often
huge investments in legacy applications and brings them into the
distributed world without having to code the networking layer and
manage session-based connections.

As the level of sophistication builds up, and MQSeries is used to
connect to external nodes for B2B or B2C applications, so the security
implications multiply. Security control for messages revolves around
four key criteria:

• Authentication: are the users who they say they are?

• Integrity: on receipt, is the message content exactly the same as
it was when sent?

• Privacy: can the contents be viewed by anyone other than the
intended recipient?

• Non-repudiation: can a sender of a message deny that they sent
the message?

MQSeries security exits can help with the first of these issues.

For many years, secure access to mainframes has been tightly controlled
by the use of user-ids and passwords, together with the proximity of
terminals to the machine. This verification allows access to various
system resources as set up by the systems administrators. With
distributed systems connected by MQSeries channels, it becomes
more difficult to ensure that the node requesting the start of a channel
is given access to mission-critical data.

It is a well known fact that any security system is only as strong as its
weakest link. With MQSeries, the ability to put a message to a queue
is based on applications such as RACF, ACF2, Top Secret, etc on
OS/390, and through the OAM on other platforms. An application’s

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

security level is checked when the application attempts to connect to
a queue manager and access its resources, such as opening a queue or
getting a message.

The request succeeds or fails depending on the permissions granted to
the user. The user is normally verified by the operating system via
some form of password control before access to the queue manager
can be attempted and the user allowed to put a message on a queue.
There is an excellent discussion of how to use RACF and the OAM for
end-to-end security by Sam Garforth in MQ Update Issue 1 (July
1999).

As soon as that message goes outside the domain of that operating
system, however, the user-id in the message header is all that remains
of the verification process. In a tightly-secured Windows network it
is possible to verify that the user-id should have access to resources
within that network, but relying on the internal IS team to maintain
permissions for systems based outside their normal domain of operation
may be difficult. Asking the team to do that for systems outside the
corporation is definitely unreasonable. Some other system of
authentication must be employed.

If some basic information is known about the target system it is
possible to spoof the receiver into thinking that you are somebody
else. With a user-id (password not required), channel name, and TCP/
IP address of the receiver, you can send messages to a remote queue
manager. On a stand-alone Windows system with admin authority you
can set up a logon id in the mqm group and set-up an MQSeries sender
channel to the target system. You can then format the message
appropriately and send it to the receiving system, which will accept
the message as being from that user-id. Even if requester/sender
channels are used to implement a callback system, it is possible,
within the Windows environment, to set a specific TCP/IP address to
simulate the legitimate system, which the sender channel will call
back to.

There is, however, a simple method of implementing additional
security to the initial connection without resorting to encryption
techniques and the administration tasks of key maintenance, in the
form of an MQSeries security exit.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

MQSERIES CHANNEL SECURITY EXITS

MQSeries provides a means of establishing the identity of the partner
channel during initialization by means of a security exit. This exit
allows the exchange of information through user-written code, which
can determine whether the channel should actually start.

The channel security exit is first called at MCA initiation with an
initialization instruction. The standard initial data negotiation then
takes place, first to synchronize message sequence numbers and then
to initiate channel start-up. This is followed by an opportunity for the
exits to execute an exchange of data. In a sender/receiver configuration,
the receiver has the first opportunity to initiate the exchange by
providing a message buffer to be delivered to the sender end. If it
declines the opportunity, the sender may initiate the conversation. An
exchange may then take place, described in detail later.

When both ends have finished sending and processing messages and
returned a successful completion code, the channel will be started for
normal operation.

The exit is re-invoked on termination of the channel. The exchange of
information may be any type of data. An example security exit for
DCE authentication is supplied by IBM as a supportpac. I will show
a much simpler example as a skeleton, to demonstrate the mechanics
and structure of how the channel security exit operates.

EXIT PROGRAM OPERATION BASICS

The exit is designed to operate such that data can be passed in both
directions for cross-validation. There are two entry points:
MY_CHANNELEXIT_SDR and MY_CHANNELEXIT_RCV .
The _RCV entry point is designed to operate on an MQSeries receiver
connection channel, while the _SDR entry point handles the required
functionality for a matching sender channel.

The exit may be invoked one or more times by the Message Channel
Agent (MCA), each time passing a reason code (ExitReason)
indicating why the exit is being called. When the exit finishes
processing, it passes back a response code (ExitResponse) to the
MCA indicating what it should do next, together with an optional

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

information response (ExitResponse2). The ExitResponse can
determine whether to continue as normal (MQXCC_OK), to send a
message to the partner MCA (MQXCC_SEND_SEC_MSG), to
send a message and wait for a reply
(MQXCC_SEND_AND_REQUEST_SEC_MSG), or to not go
any further and close the channel (MQXCC_CLOSE_CHANNEL).

For a channel security exit the reason codes occur in the following
order:

• MQXR_INIT . The exit is invoked with this reason code having
been first called by the MCA. The code to process this event can
be used to allocate any storage for use by the exit.

• MQXR_INIT_SEC . This event is only called for channel security
exits. The receiver’s security exit is always invoked with this
reason immediately after being invoked with MQXR_INIT , to
give it the opportunity to initiate a security exchange. If it declines
the opportunity, the sender’s security exit is invoked with
MQXR_INIT_SEC . If the receiver’s security exit does initiate
a security exchange, however, the sender’s security exit is never
invoked with MQXR_INIT_SEC ; instead it is invoked with
MQXR_SEC_MSG to process the receiver’s message. The
security exchange must complete at the side that initiated the
exchange, so if a security exit is invoked with MQXR_INIT_SEC
and it does initiate an exchange, the next time the exit is invoked
it will be with MQXR_SEC_MSG (see below).

• MQXR_SEC_MSG. Again, this event is only called for channel
security exits, indicating that a security message has been received.
If it is a ‘real’ message (see below), the pAgentBuffer,
pDataLength parameters passed to the exit by the MCA contain
the message data and its length sent by the partner MCA. For the
side which invoked the exchange (see MQXR_INIT_SEC), the
exit is invoked with this reason code even if no message exchange
takes place, but in this case there is no message and pDataLength
is set to zero. Checking for pDataLength==0 can give an
indication that no matching security exit has been invoked on the
partner MCA.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

• MQXR_TERM . This event indicates that the channel is
terminating and should be used to clean-up any memory allocated
in the exit.

THE CODE

Platforms

The attached code has been tested on Windows 2000 and Solaris.
Slight modifications may be required when porting to OS/390. When
defining structures, it is important either to align all members on 16-
byte boundaries or, as in this case, set matching compilation options
that ensure correct byte alignment.

Entry points

There are two entry points to the program:

• MY_CHANNELEXIT_SDR() .

• MY_CHANNELEXIT_RCV() .

They are identical in that they invoke the function MyChannelExit() ,
but each sets a Boolean value isSender to indicate on which side of
the channel it is working. This could in fact be determined by the
program looking at the value of ChannelType, passed into the
function as part of the MQCD structure pointed at by
pChannelDefinition, the second input parameter of the entry point
definition, but this way allows the user to specify which end initiates
the exchange. In this implementation, the receiver side initiates the
exchange.

MyChannelExit()

Once in the function, MyChannelExit() first makes sure it has
cleaned-up any previously allocated memory pointed at by the
pExitBufferAddr parameter. It then checks that this exit is being
invoked by a security exit by checking the pParms->ExitId value. If
an MQSeries administrator mistakenly defined the exit to be a channel
message exit or any other type, then the channel is stopped and no
further action is taken.

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Next, the ExitReason is used to switch between execution paths:

• MQXR_INIT : simply invokes a status printf() message. It can
be used to initialize any storage required by the exit code.

• MQXR_INIT_SEC : this checks to see if we are a receiver
(thereby having the first chance to initiate a message exchange),
and, if so, invokes the sendSecurityInfo() function to send data
to the partner. If the receiver processes this entry the equivalent
ExitReason is not called on the sender.

• MQXR_SEC_MSG: this indicates that we have received a
message from the partner and invokes the function
processSecurityMessage() to check the message contents. If
this function returns a FALSE code the channel is closed. The
same function is called for both sender and receiver.

If this is a sender, it needs to respond to the security message
received above, and so invokes the sendSecurityInfo() function.

• MQXR_TERM : this simply invokes a status printf() message.
It can be used to clean-up any storage required by the exit code.

Figure 1 illustrates the program flow.

sendSecurityInfo()
This function firstly allocates storage to hold the SECEXITDATA
structure, which holds the user-id and password data picked up from
the operating system. In this program, static strings are placed into this
buffer. Also included in this example buffer is the SCYDATA value
taken from the channel definition.

The ExitResponse and ExitResponse2 values are now set to indicate
to the MCA what is expected to happen next. If it is running on a sender
the ExitResponse is set to MQXCC_SEND_SEC_MSG to indicate
that we want the MCA to transport the data pointed to by the
pExitBufferAddr to the partner channel. A sender will have already
received the message from the receiver, so it does not expect a further
reply after sending this message. A receiver node is using this function
to initiate a message exchange and thus uses ExitResponse =
MQXCC_SEND_AND_REQUEST_SEC_MSG to indicate that it
wishes to send the data and expects to receive a reply.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

Initialize variablesMQXR_INIT

Return OK

MQXR_SEC_MSG

MQXR_TERM Clean-up

CLOSE_CHANNEL

FAIL

Return OK

SEND_SEC_MSG

Send security
message

Process
security
message

OK

9

5

4

1 Initialize variables MQXR_INIT

Return OK

2

Send security
message

MQXR_INIT_SEC 3

SEND_AND_REQUEST

MQXR_SEC_MSG 6

Process
security
message

Return OK CLOSE_CHANNEL

FAIL

OK

7

8MQXR_TERMClean-up

Return OK

Figure 1: Program flow

▲
▲

▲ ▲

▲

▼

▼ ▼

▲
▲

▼

▲

▲

The function returns a pointer to the newly allocated buffer.

ProcessSecurityMessage()

This function will be used to validate the message from the partner
MCA.

Firstly, it checks that the size of the incoming message is exactly the
size of the expected structure. Then a further check is made to make
sure it is a recognized message type and that it is not receiving a
message from a channel exit of the same type. (There is potential for
looping if both sides send and expect a reply.) At this point, the

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

message contents can be examined to get an indication that they came
from a partner exit using the same algorithm.

The server should verify the message contents at this point, and the
receiver can verify that it is communicating with the correct server if
that functionality is required. As well as having the hostname passed
as part of the SECEXITDATA structure, the exit has access to the
partner connection name, which, depending on the network, is either
a TCP/IP address or host name.

This function returns either TRUE or FALSE, depending on whether
the security check passed successfully. If it returns FALSE the exit
closes with ExitResponse of MQXCC_CLOSE_CHANNEL , which
causes the channel communication to stop.

COMPILING THE EXIT PROGRAM

The program can be compiled on Solaris using the following command
script:

cc –c –KPIC MySecExit.c
ld –G MySecExit.o –o MySecExit

To compile it on NT (or Windows 2000) using MSVisual C++, the
project should be created as an empty WIN32 Dynamic Link Library.
The MySecExit.c file should be added to the project, and structure
member alignment set to one byte. The additional library module
MQMVX.LIB should be added to the link options. The headers can be
found in {mqm_root}\tools\c\include while the libraries are located at
{mqm_root}\tools\lib.

When compiled, the exit should be copied to /var/mqm/exits on Unix
and {mqm_data_root}\exits on NT/Windows 2000.

MQSERIES SECURITY CHANNEL EXIT DEFINITION

Channel exits must be named in the channel definition. You can do this
when you first define the channels, or you can add the information
later, using for example the MQSC command ALTER CHANNEL .

A sample definition for the skeleton exit provided follows:

ALTER CHANNEL(MYCHLNAME) SCYEXIT('MySecExit(MY_CHANNELEXIT_SDR)')

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

If the channel definition does not contain a user exit program name the
user exit is not called.

A single exit library can contain a number of entry points that can
execute code for any MQSeries exit. The example MySecExit library
contains two entry points, one which is designed to initiate the
message exchange from the receiver end, and one designed for the
sender end, which responds. The exit implements the sending and
processing of security information messages from both partners in the
exchange. Either end can choose not to continue the conversation and
close the channel.

VIEWING THE OUTPUT

If you wish to see the output from the channel security exit stand out
from the printf() statements, a different command needs to be
executed, depending on whether you are looking at the sending or
receiving end of the channel.

Sender

To see the output from the sender exit it is possible to start the channel
directly, even if no messages are waiting to be moved across the
channel, by executing runmqchl , eg:

runmqchl -c MYCHL.TO.YOURCHL -m MYQMGR

Receiver

Receiver channel output can be viewed by starting an MQSeries
listener for the receiving queue manager:

runmqlsr -m MYQMGR -t TCP -p 1415

SETTING UP CLIENT CHANNELS

This exit can be used to verify certain types of client connection,
which can be set up in a number of ways.

Environment

The easiest to use of the client connection definitions is the environment
variable MQSERVER. This defines the connection name, the queue

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

manager, and connection type, in the form:

export␣ MQSERVER=ChannelName/TransportType/ConnectionName

This method does not allow specification of an exit so cannot be
secured by an MQSeries security exit.

Channel table

The next method is to use a client channel table. This is a table set up
by an MQSeries queue manager and referenced by the client machine.
The client will automatically look in the directory /var/mqm for the
file AMQCLCHL.TAB. If the client machine has the environment
variable MQCHLLIB set, this defines the directory in which the
client channel table should be located. Setting the environment
variable MQCHLTAB defines the name of the client channel definition
table. The default file name is AMQCLCHL.TAB.

To define a client connection (for example, to the queue manager
TSTQMGR on host HOST1, port 1416, over the server connection
channel TSTQMGR.CLT1) you would need to define on the server:

DEFINE CHANNEL(TSTQMGR.CLT1) CHLTYPE(CLNTCONN) +
TRPTYPE(TCP) DESCR('Client 1 connection')QMNAME(TESTQMGR) +
SCYEXIT('MySecExit(MY_CHANNELEXIT_SDR)') +
SCYDATA('MySecData') CONNAME('HOST1(1416)'

This will add the client connection definition to the file channel table
file located in the directory /var/mqm/qmgrs/
{QUEUEMANAGERNAME}/@ipcc/amqclchl.tab, in this case:

/var/mqm/qmgrs/TSTQMGR/@ipcc/amqclchl.tab

This file should then either be made accessible to the client, or copied
onto the client’s machine to a file name and directory matched by the
above environment variables.

MQCONNX
The third method of client connection is carried out programmatically,
by setting up the required parameters to make a dynamic client
connection. The MQCONNX call (and associated C++ version)
allows the caller to specify an MQCD structure, which contains all the
parameters required to connect to the server. If the source code can be

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

modified this method can be used by specifying the security exit in the
MQCD structure SecurityExit and SecurityUser data elements.

Java

For Java clients there are no MQSeries channel libraries on the client
machine, but the security exit must be included in the client code. To
provide your own security exit, define a class that implements the
MQSecurityExit interface. Create a new instance of your class and
assign the MQEnvironment.securityExit variable to it before
constructing your MQQueueManager object.

RELATED SECURITY ISSUES

Channel auto-definition

In MQSeries for AIX, AS/400, HP-UX, OS/2 Warp, Sun Solaris,
Windows NT, and OS/390 (cluster-receiver and cluster-sender channels
only), if there is no appropriate channel definition for a receiver or
server-connection channel that has auto-definition enabled, a definition
is created automatically. The definition is created using:

• The appropriate model channel definition:

– SYSTEM.AUTO.RECEIVER

– SYSTEM.AUTO.SVRCONN

The model channel definitions for auto-definition are the same as
the system defaults, SYSTEM.DEF.RECEIVER and
SYSTEM.DEF.SVRCONN, except for the description field,
which is ‘Auto-defined by’ followed by 49 blanks. The systems
administrator can choose to change any part of the supplied
model channel definitions.

• Information from the partner system. The partner’s values are
used for the channel name and the sequence number wrap value.

• A channel exit program, which you can use to alter the values
created by the auto-definition.

The description is then checked to determine whether it has been
altered by an auto-definition exit or because the model definition has

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

been changed. If the first 44 characters are still ‘Auto-defined by’
followed by 29 blanks, the queue manager name is added. If the final
20 characters are still all blanks, the local time and date are added.
Once the definition has been created and stored the channel start
proceeds as though the definition had always existed. The batch size,
transmission size, and message size are negotiated with the partner.

This auto-definition allows for connection by remote users who have
not been specifically set up by the receiving queue manager. There are
two ways to manage this. Firstly, there is the option to disallow auto-
definition of channels by setting the queue manager attribute for auto
channel definition to disabled:

ALTER QMGR CHAD(DISABLED)

Alternatively, the definition templates can be altered so that any
automatically-defined channels are defined to have the security exit
defined. This can be achieved by the following runmqsc commands:

ALTER CHANNEL(SYSTEM.AUTO.RECEIVER)
 SCYEXIT(MySecExit(MY_CHANNELEXIT_RCV))
ALTER CHANNEL(SYSTEM.AUTO.SVRCONN)
 SCYEXIT(MySecExit(My_CHANNELEXIT_RCV))

The first of these options allows for stricter control of connections to
the queue manager. The second allows simpler administration while
still ensuring that new connections are controlled by the security exit.

Usage examples

There are any number of ways that this security exit could be used to
help authenticate an attempted channel connection. The IBM
supportpac mentioned earlier shows how to implement a channel
security exit with DCE security. It would be possible to implement
much simpler custom solutions.

Here is a very brief list of suggestions:

• The sender could maintain its own id/password list and the
receiver could authenticate them against its own set of valid users
(held securely). This would allow the sending system to
authenticate itself independently of the user-id of the application
sending the messages.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

• By checking the partner’s channel parameters a channel exit can
verify that the hostname or TCP/IP address is a valid partner.

• The sender could simply define a special passcode in the
SCYDATA parameter on the channel definition. Obviously, this
is a very basic check, but using cross-validation techniques can
ensure that the partner channel at least has a matching channel
security exit, which in itself is a (basic) form of authentication.

• On OS/390, systems user-ids are held in upper case: Unix
systems administrators hate to use upper case and Windows
administration systems don’t care. The channel security exit
could be used to match the case of the target system before
running a native security check.

MYSECEXIT.C

/* Module Name: MySecExit */
/* Description: Channel Security Exit */
#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>
#include <string.h>
#include <cmqc.h>
#include <cmqxc.h>
typedef short BOOL;
#ifndef TRUE
#define FALSE ((BOOL)Ø)
#define TRUE ((BOOL)1)
#endif
enum { MSGT_INV_LOWER=1ØØ, MSGT_SENDER_ID, MSGT_RECEIVER_ID,
 MSGT_INV_HIGHER } MSGTYPES;
typedef struct
{
 MQBYTE msgType;
 char user-id[16];
 char password[16];
 char channelExitData[16];
} SECEXITDATA, MQPOINTER PSECEXITDATA;
/* Function Name: processSecurityMessage */
/* Function:Process a security message */
/* Input Parameters: pInMsgAddr */
/* pInMsgAddr */
/* inMsgLength */
/* Output Parameters:None */
/* Returns: TRUE (non-zero) if success */

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* FALSE (zero) if security not validated */
BOOL MQENTRY processSecurityMessage(BOOL isSender, PMQCXP pParms, PMQCD
 pChDef, PMQVOID pInMsgAddr, MQLONG inMsgLength)
{
 PSECEXITDATA pSecData;
printf("Received message of length %d\n",inMsgLength);
 if (inMsgLength != sizeof(SECEXITDATA))
 return FALSE; /* The wrong data has been sent back - don’t start */
pSecData = (PSECEXITDATA)pInMsgAddr;/* Map structure onto the message */
 if ((pSecData->msgType == MSGT_RECEIVER_ID && !isSender) ||
 (pSecData->msgType == MSGT_SENDER_ID && isSender) ||
 (pSecData->msgType <= MSGT_INV_LOWER || pSecData->msgType >=
 MSGT_INV_HIGHER))
 return FALSE; /* We are talking to the same type of channel exit */
/* ——— Validate the pSecData->user-id and pSecData->password here ———*/
 printf("pSecData->user-id = %.16s\n",pSecData->user-id);
 printf("pSecData->password = %.16s\n",pSecData->password);
 printf("pSecData->channelExitData = %.16s\n",pSecData
 >channelExitData);
 /* —— Validate the pSecData->user-id and pSecData->password here –—
*/
/* ——— Validate the pChDef->ConnectionName (remote host) here –——*/
 printf("pChDef->ConnectionName = %.48s\n",pChDef->ConnectionName);
 printf("pChDef->ShortConnectionName = %.48s\n",pChDef
 >ShortConnectionName);
 /* ———— Validate the pParms->PartnerName (remote host) here ————*/
return TRUE;
}
//* Function Name: sendSecurityInfo */
/* Function: Send a security info message */
/* Input Parameters: isSender */
/* pExitBufferLength */
/* Output Parameters: None */
/* InOut Parameters: pParms */
/* Returns: Pointer to allocated memory block */
PMQVOID sendSecurityInfo(BOOL isSender, PMQCXP pParms, PMQLONG
 pExitBufferLength)
{
 PSECEXITDATA pSecData;
pSecData = calloc(1, sizeof(SECEXITDATA));
 pSecData->msgType = isSender ? MSGT_SENDER_ID : MSGT_RECEIVER_ID;
/* ——— Populate the pSecData->user-id and pSecData->password here ——*/
 strcpy(pSecData->user-id, isSender ? "SenderUser-id":"ReceiverUser-
id");
 strcpy(pSecData->password, isSender ?
"SenderUserPwd":"ReceiverUserPwd");
 /* —— Populate the pSecData->user-id and pSecData->password here –—
*/
/* ————— Use any of the channel parameters to pass across here ————*/
 strncpy(pSecData->channelExitData, pParms->ExitData,
 sizeof(pSecData->channelExitData)-1);

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

 /* ———— Use any of the channel parameters to pass across here ——*/
pParms->ExitResponse = isSender ? MQXCC_SEND_SEC_MSG :
 MQXCC_SEND_AND_REQUEST_SEC_MSG;
 pParms->ExitResponse2 = MQXR2_USE_EXIT_BUFFER;
 *pExitBufferLength = sizeof(SECEXITDATA);
 return pSecData;
}
/* Function Name: MyChannelExit */
/* Function: */
/* Main entry point for channel security exit */
/* Check to see that this has been called as a security exit */
/* Then switch to whatever is defined by pParms->ExitReason */
/* Input Parameters: pAgentBufferLength UNUSED */
/* isSender Execute the sender-side function */
/* Output Parameters: None */
/* InOut Parameters: pChannelExitParms Channel exit parameter block */
/* pChannelDefinition Channel definition */
/* pDataLength Length of data */
/* pAgentBuffer Agent buffer */
/* pExitBufferLength Length of exit buffer */
/* pExitBufferAddr Address of exit buffer */
/* Returns: None
#ifdef WIN32
__declspec(dllexport) void MY_CHANNELEXIT_SDR();
__declspec(dllexport) void MY_CHANNELEXIT_RCV();
#endif
void MyChannelExit(
 BOOL isSender, /* Label to determine if it is a sender*/
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 PMQCXP pParms = (PMQCXP)pChannelExitParms;
 PMQCD pChDef = (PMQCD)pChannelDefinition;
if (pExitBufferAddr != NULL) /* Free previously allocated buffer */
 {
 free(*pExitBufferAddr);
 *pExitBufferAddr = NULL;
 *pExitBufferLength = Ø;
 }
/* Invoked as security exit? */
 if (!(pParms->ExitId==MQXT_CHANNEL_SEC_EXIT))
 {
 printf("Wrong exit: ExitId == %d\n", pParms->ExitId);
 pParms->ExitResponse = MQXCC_SUPPRESS_FUNCTION;
 return;
 }

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 else
 printf("My MQSeries channel security exit entry\n");
 /* now switch to whatever function we were called to do */
 pParms->ExitResponse = MQXCC_OK;
 switch (pParms->ExitReason)
 {
 case MQXR_INIT: /* Any initialization can be done here */
 printf("Exit reason = MQXR_INIT\n");
 break;
case MQXR_INIT_SEC: /* Initialize security sequence - receiver sends
 first */
printf("%s: Exit reason = MQXR_INIT_SEC\n",
 isSender?"Sender":"Receiver");
 if (!isSender)
 {
*pExitBufferAddr = sendSecurityInfo(isSender, pParms,pExitBufferLength);
 *pDataLength = *pExitBufferLength;
 }
 break;
case MQXR_SEC_MSG: /* Received a security message */
 printf("Exit reason = MQXR_SEC_MSG\n");
 if (!processSecurityMessage(isSender, pParms, pChDef,
pAgentBuffer,*pDataLength))
 {
 /* First part of security failed, close channel */
 pParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 break;
 }
 if (isSender) /* Now the sender’s turn to reply */
 {
*pExitBufferAddr = sendSecurityInfo(isSender, pParms,pExitBufferLength);
 *pDataLength = *pExitBufferLength;
 }
 break;
case MQXR_TERM: /* Termination code goes here */
 printf("Exit reason = MQXR_TERM\n");
 break;
default:
 /* Unrecognized exit function */
 printf("Exit reason = Unrecognised\n");
 break;
 } /* endswitch */
}
/* Exported entry points to allow functions to be visible */
void MQENTRY MY_CHANNELEXIT_SDR(
 PMQVOID pChannelExitParms, /* Channel exi parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 MyChannelExit(1,pChannelExitParms,pChannelDefinition, pDataLength,
 pAgentBufferLength, pAgentBuffer,pExitBufferLength,pExitBufferAddr);
}
void MQENTRY MY_CHANNELEXIT_RCV(
 PMQVOID pChannelExitParms, /* Channel exi parameter block*/
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 MyChannelExit(Ø,pChannelExitParms,pChannelDefinition, pDataLength,
 pAgentBufferLength, pAgentBuffer,pExitBufferLength,pExitBufferAddr);
}
/* Known entry point to allow it to be loadable on Unix */
void MQStart(void) { ; }

Chris Howarth
Senior Systems Engineer, CommerceQuest (UK) ©Xephon

Architect your MQSeries environment on Unix

INTRODUCTION

As your MQ Unix environment grows, it is very important to have a
common architecture. Naming standards and security form a significant
part of setting up MQSeries, but establishing a common architecture
is essential, too. It will make MQSeries administrators’ and system
administrators’ jobs easier.

This article illustrates some of the choices I made in structuring our
system and the reasoning behind them, and may serve as a useful
guide for your own organization.

INSTALLATION GUIDE FOR SYSTEM ADMINISTRATORS

You probably want to create a common document for the AIX, Sun

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Solaris, HP-UX, etc, system administrator. You will need to install
MQSeries on a particular Unix platform, then you can send them a
document that outlines the steps that will be needed not only to install
MQSeries but to maintain it as well. For instance, detailed below is the
likely progression for an HP-UX system administrator.

MQSeries installation guide for HP-UX system administrators

• Install the MQSeries for HP Server (Unix system administrative/
MQSeries administrative).

• See chapter three in Quick Beginnings – MQSeries for HP-UX
V5.1

– see http://www-4.ibm.com/software/ts/mqseries/library/
manualsa/amqcac/amqcac0s.htm#HDRAMQ3712

– except create at least 4 GB for /var/mqm/log

– except create at least 3 GB for /var/mqm

– except create at least 1 GB for /var/mqm/errors

– create /var/mqm/log on a separate disk volume from /var/
mqm

– install MQSeries patches (Unix system administrative)

– install the latest patch for HP-UX V10 only. See ftp://
ftp.software.ibm.com/software/mqseries/fixes/hp51/v10/
U469692/

– install the latest patch for HP-UX V11 only. See ftp://
ftp.software.ibm.com/software/mqseries/fixes/hp51/v11/
U469693/

– see readme.txt for installing the patches.

• Create /mqadmin directory (Unix system administrative)

– create 2 GB /mqadmin directory for user mqm.

• Authorize mqm to use cron (Unix system administrative)

– authorize mqm to create/edit crontab.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

• Kernel configuration (Unix system administrative)

– the kernel configuration must be at the minimal kernel
parameters (see Figure 1).

• Reboot production server (Unix system administrative)

– Reboot HP server.

• Create S99mqm under /etc/rc2.d for starting and shutting down
MQSeries whenever the server is bounced (Unix system
administrative). (Note: MQSeries administrator will give you
the queue manager name.)

case "$1" in
'start')
 # Start MQSeries
 echo "starting audit daemon"
 su – mqm /mqadmin/util/mqm_startup.ksh <Queue Manager Name> ;;
'stop')
 # Stop MQSeries
 su – mqm /mqadmin/util/mqm_shutdown.ksh <Queue Manager Name> ;;
esac

Figure 1: Suggested kernel parameter values

 shmmax 41943Ø4
 shmseg 1Ø24
 shmmni 1Ø24
 shmem 1
 sema 1
 semaem 16384
 semvmx 32767
 semmns 16384
 semmni 1Ø24 (semmni < semmns)
 semmap 1Ø26 (semmni +2)
 semmnu 2Ø48
 semume 256
 msgmni 5Ø
 msgtql 256
 msgmap 258 (msgtql +2)
 msgmax 4Ø96
 msgmnb 4Ø96
 msgssz 8
 msgseg 1Ø24
 maxusers 32

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SETTING UP COMMON DIRECTORIES FOR THE MQSERIES
ADMINISTRATOR

It is important to separate your customized administration from the
actual MQSeries software. Instead of putting your scripts, programs,
configuration files, etc in /var/mqm and /opt/mqm or /usr/mqm, you
should put them under a separate directory. It is preferable to put them
in a unique directory other than a home directory, such as /mqadmin
or /mqm or /mqmuser. The following list shows some possible sub-
directories that you could use under your own directory:

• bin: binaries.

• lib: libraries/shared objects.

• src: sources/make files.

• util: utility scripts.

• log: logs.

• config: MQSeries administrator configurations.

• exit: for any exit routines.

• bkup: backups of MQSeries definitions (queue manager, queues,
processes, channels, etc), mqs.ini, qm.ini, etc.

• man: man pages.

CREATING COMMON UTILITIES FOR ALL UNIX PLATFORMS

You may want to create common start-up and shut-down scripts that
can be re-used for all Unix platforms. These scripts will need to log
any information to your /log directory and you will need to pass a
queue manager name. See the following start-up script:

MQM_STARTUP.KSH

Description: start-up queue manager, command server,
channel init, channels
Last modified: mm/dd/YYYY
Frequency: on request and reboot of the server
Parameters:
MQ_MANAGER: MQSeries Queue Manager
MQ_MANAGER=$1

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

MQ_LOGFILE=/mqadmin/log/'date "%Y%m%d"'.$MQ_MANAGER.log
MQ_CONFIG=/mqadmin/config
echo "### " >>
$MQ_LOGFILE
echo "#'date +%D %T' - Starting MQSeries " >> $MQ_LOGFILE
echo “### " >>
$MQ_LOGFILE
echo "Starting MQSeries QManager " $MQ_MANAGER >> $MQ_LOGFILE
strmqm $MQ_MANAGER >> $MQ_LOGFILE 2>> $MQ_LOGFILE
wait
strmqcsv $MQ_MANAGER >> $MQ_LOGFILE 2>> $MQ_LOGFILE
wait
echo "Starting MQSeries Channel Init & Channels " >> $MQ_LOGFILE
nohup runmqsc $MQ_MANAGER < /mqadmin/config/$MQ_MANAGER.start.channels
>> $MQ_LOGFILE 2>> $MQ_LOGFILE
echo "Starting MQSeries Listener " >> $MQ_LOGFILE
nohup runmqsc $MQ_MANAGER < /mqadmin/config/$MQ_MANAGER.start.listener
>> $MQ_LOGFILE 2>> $MQ_LOGFILE
echo "Re-set crontab " >> $MQ_LOGFILE 2>> $MQ_LOGFILE
crontab $MQ_CONFIG/crontab.config
exit Ø

The script above lists the following information as comments:

• Title.

• Author.

• Description.

• Last modified.

• Frequency.

• Parameters.

It helps the whole team in the long run.

If you review the document MQSeries Installation Guide for System
Administrator you will see that this same script is listed under the /etc/
rc2.d for starting MQSeries at boot-up. If you have a need to modify
the script, you have one place to change it, and then you can export this
script to all the Unix servers.

Also, you will notice that the log files all start with
YYYYMMDD.<Queue Manager Name>.log. You can create your
own standard for log file names. In the case above, I have broken down
the logs by queue manager and date/time.

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Furthermore, this script includes unique configuration parameters for
starting the channels and listener. It will pull in the /config/<Queue
Manager Name>.start.channels file and start the channels unique to
that queue manager. Also, it will populate crontab for any MQSeries
administrator scheduled jobs.

Some of the common scripts that I have created are: start-up, shut-
down, back-up, clean-up, record image, purge syslogs, create queue
manager, delete queue manager, etc.

CREATING COMMON PROGRAMS FOR ALL UNIX PLATFORMS

You may want to create common programs, such as browsing the
message on a particular queue and queue manager, saving queue
manager, queues, processes, channels definitions to a file, channel
exits, etc. These programs can be re-used for all Unix platforms except
for the make files. You will have different make files for AIX, Sun
Solaris, and HP-UX. You may want to create your binaries in your
/bin directory and your shared objects in your /lib.

CREATING UNIQUE CONFIGURATIONS FOR A PARTICULAR
QUEUE MANAGER

You may want to create unique configurations for the queue manager,
such as the names of channels to be started-up in a start-up script, or
names of channels to be stopped in a shut-down script. You may want
a copy of your queue manager definitions.

BACK-UP CRITICAL FILES

It is very important to back-up critical files such as mqs.ini, qm.ini,
queue manager’s definitions, etc. You may have to back-out a change
or research when a change was made, or you may want to create
common back-up scripts that can be re-used for all Unix platforms.

See the following back-up script, which is scheduled to run daily, after
midnight.

MQM_BACKUP.KSH

Description: backing-up queue manager configurations

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

Last modified: mm/dd/YYYY
Frequency: daily
Parameters:
MQ_MANAGER: MQSeries Queue Manager
MQ_MANAGER=$1
MQ_LOGFILE=/mqadmin/log/'date "+%Y%m%d"'.$MQ_MANAGER.log
MQ_CONFIG=/mqadmin/config
MQ_BACKUP=/mqadmin/bkup
echo "### " >>
$MQ_LOGFILE
echo "#'date +%D %T' - Backing up Queue Manager Configurations " >>
$MQ_LOGFILE
echo "### " >>
$MQ_LOGFILE
cp $MQ_CONFIG/$MQ_MANAGER.config $MQ_BACKUP/$MQ_MANAGER.config.'date
+%Y%m%d'
cp $MQ_CONFIG/$MQ_MANAGER.DLQ.handler.rules $MQ_BACKUP/
$MQ_MANAGER.DLQ_handler.rules.'date +%Y%m%d'
cp $MQ_CONFIG/$MQ_MANAGER.start.channels $MQ_BACKUP/
$MQ_MANAGER.start.channels.'date +%Y%m%d'
cp $MQ_CONFIG/$MQ_MANAGER.start.listener $MQ_BACKUP/
$MQ_MANAGER.start.listener.'date +%Y%m%d'
cp $MQ_CONFIG/$MQ_MANAGER.stop.channels $MQ_BACKUP/
$MQ_MANAGER.stop.channels.'date +%Y%m%d'
cp $MQ_CONFIG/$MQ_MANAGER.security.config $MQ_BACKUP/
$MQ_MANAGER.stop.channels.'date +%Y%m%d'
/mqadmin/bin/mqm_saveqmgr -m $MQ_MANAGER -c > $MQ_CONFIG/
$MQ_MANAGER.config
cp /var/mqm/mqs.ini $MQ_BACKUP/$MQ_MANAGER.mqs.ini.'date +%Y%m%d'
cp /var/mqm/qmgrs/$MQ_MANAGER/qm.ini $MQ_BACKUP/$MQ_MANAGER.qm.ini.'date
+%Y%m%d'
exit Ø

You will notice that the back-up files all start with <Queue Manager
Name>.<File Name >.YYYYMMDD. You may create your own
standard for back-up file names.

CLEANING FILES

It is very important to keep your system clean by removing any old
logs, backups, *FDC, etc. See the following clean-up script, which is
scheduled to run daily, after midnight:

MQM_CLEANUP.KSH
Description: Remove logs, errors, traces, back-ups, over five days old
Last modified: mm/dd/YYYY
Frequency: Daily at midnight

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Parameters:
MQ_MANAGER: MQSeries Queue Manager
MQ_MANAGER=$1
MQ_LOGFILE=/mqadmin/log/'date "+%Y%m%d"'.$MQ_MANAGER.log
echo "### " >>
$MQ_LOGFILE
echo "#'date +%D %T' - Cleaning up old logs, traces, errors, backups "
>> $MQ_LOGFILE
echo "### " >>
$MQ_LOGFILE
find /var/mqm/errors/AMQ[Ø-9]* -mtime +5 -print >> $MQ_LOGFILE -exec rm
-f {} \;
find /var/mqm/trace -mtime +5 -print >> $MQ_LOGFILE -exec rm -f {} \;
find /mqadmin/log -mtime +5 -print >> $MQ_LOGFILE -exec rm -f {} \;
find /mqadmin/bkup -mtime +5 -print >> $MQ_LOGFILE -exec rm -f {} \;
echo "# Done cleaning old logs, traces, errors, bkups " >> $MQ_LOGFILE
exit Ø

INSTALLATION GUIDE FOR MQSERIES ADMINISTRATORS

In order to create a common document for the MQSeries administrator
you will need to configure and maintain MQSeries. The following
outlines the likely progression for an MQSeries administrator.

MQSeries configuration guide for an MQSeries administrator

• Update the .profile for user mqm (MQSeries administrative)

– for Sun Solaris, update the .profile for the following
information.

stty istrip
TERM=vt1ØØ; export TERM
EDITOR=/usr/bin/vi; export EDITOR
stty erase ^H
PATH=/opt/SUNWspro/bin:$PATH:/usr/local/bin:/usr/bin:/usr/sbin/:/
mqadmin/bin:/mqadmin/util; export PATH
MANPATH=/opt/SUNWspro/man:/usr/man:/mqadmin/man:$MANPATH; export MANPATH
set –o vi
HOST='uname –n'
PS1=$HOST'${PWD}->'
LD_LIBRARY_PATH=/opt/SUNWspro/lib:/$OPENWINHOME/lib:/opt/mqm/lib:/
mqadmin/lib:$LD_LIBRARY_PATH; export LD_LIBRARY_PATH

For HP-UX, update the .profile for the following information.

stty istrip
TERM=vt1ØØ; export TERM
EDITOR=/usr/bin/vi; export EDITOR

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

stty erase ^H
PATH=$PATH:/usr/local/bin:/usr/bin:/usr/sbin/:/mqadmin/bin:/mqadmin/
util; export PATH
MANPATH=/usr/man:/mqadmin/man:$MANPATH; export MANPATH
set –o vi
HOST='uname –n'
PS1=$HOST’${PWD}->'

• Create directory files under /mqadmin (MQSeries administrative)

– under /mqadmin directory:

mkdir bin lib src util log config exit bkup man
chmod 775 *

– bin: binaries

– lib : libraries/shared objects

– src: sources/make files

– util: utility scripts

– log: logs

– config: MQ, crontab, stop/start, dead letter handler
configurations

– exit: for any exit routines

– bkup: backups

– man: man pages.

• Copy generic scripts to /mqadmin/util (MQSeries administrative).

mqm_cleanup_ipcs.ksh Clean up IPCS resources for user
mqm.

mqm_cleanup.ksh Remove any sprint logs, MQ errors,
MQ traces, sprint back-ups over five
days old.

mqm_startup.ksh Start-up queue manager, command
server, channels.

mqm_shutdown.ksh Shutdown channels, command server,
queue manager.

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

mqm_record_image.kshRecord images for linear logging.

mqm_purge_syslogs.kshPurge MQSeries linear logs that are
not needed any more.

mqm_backup.ksh Back-up MQ configurations.

mqm_handle_DLQ.ksh Handle the dead letter queue.

mqm_expired_message.ksh
Handle expired messages.

mqm_create_qmanager.ksh
Create queue manager.

mqm_delete_qmanager.ksh
Delete queue manager.

mqm_set_security.ksh Set security.

mqm_start_channel.kshStart channel.

mqm_stop_channel.kshStop channel.

mqm_message_performance.ksh
Application message performance.

mqm_transfer_message.ksh
Transfer message from queue to
another.

• Copy generic configurations to /mqadmin/config and upgrade the
configurations for the specific queue manager (MQSeries
administrative).

crontab.config Use to populate the crontab if the
queue manager is up and running.

crontab.empty.config Use to populate the crontab if the
queue manager is down.

<Queue Manager>.start.channel
Use to start the channel initiator and
channels.

<Queue Manager>.stop.channel
Use to stop the channels.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

<Queue Manager>.DLQ.handler.rules
Use to handle messages on the
dead letter queue.

<Queue Manager>.config
A copy of queue manager
configurations.

<Queue Manager>.start.listener
Use to start the listener.

• Copy generic sources/make files to /mqadmin/src (MQSeries
administrative) and make the binaries in /mqadmin/bin.

mqm_expired.c, mqm_expired.mak
Handle expired messages.

mqm_get_message.c, mqm_get_message.mak
Get messages from the queue.

mqm_put_message.c, mqm_put_message.mak
Put messages from the queue.

mqm_browse_message.c, mqm_browse_message.mak
Browse messages from the queue.

mqm_trigger_monitor.c, mqm_trigger_monitor.mak
Trigger monitor.

mqm_channel.c, mqm_channel.mak
Save channel configurations.

mqm_evmon.c, mqm_evmon.mak
Event monitoring.

mqm_inquire_queue.c, mqm_inquire_queue.mak
Inquire queue information.

mqm_message_performance.c,
mqm_message_performance.mak

Application message performance.

mqm_namelist.c, mqm_namelist.mak
Save namelist configurations.

mqm_process.c, mqm_process.mak
Save process configurations.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

mqm_qmgr.c, mqm_qmgr.mak
Save queue manager configurations.

mqm_queue.c, mqm_queue.mak
Save queue configurations.

mqm_saveqmgr.c, mqm_saveqmgr.mak
Save all queue manager
configurations.

mqm_transfer_message.c, mqm_transfer_message.mak
Transfer message from one queue
to another.

mqm_utils.c, mqm_utils.mak
Utilities.

• Create the queue manager (MQSeries administrative).

Note: it will create a log entry under /mqadmin/log directory.

Execute mqm_create_qmanager.ksh <Queue Manager>

• Update mqs.ini file in /var/mqm (MQSeries administrative).

Update mqs.ini:
DefaultQueueManager:

Name=<Queue Manager>

• Update qm.ini file in /var/mqm/qmgrs/<QMgr Name> (MQSeries
administrative).

Update qm.ini:
Log:

LogBufferPages=32

• Start the queue manager (MQSeries administrative).

Note: it will create a log entry under /mqadmin/log directory.

Execute mqm_startup..ksh <Queue Manager>

• Create man pages for every script and binaries (MQSeries
administrative).

CONCLUSION

The environment architecture outlined in this article is just an example,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

and you may want to create a different one, more appropriate for your
own organization, but there is no doubt that having a standard
environment architecture will make the MQSeries administrator’s job
much easier. I have used this architecture for over a hundred Unix
servers, and it saves a condiserable amount of time, not to mention
headaches!

Roberta M Carroll
Systems and Software Support, Sprint (USA) ©Roberta M Carroll

Clustered queue managers

INTRODUCTION

Today, most types of system can be grouped together to form a cluster,
the objective being to provide increased availability and, sometimes,
increased throughput as well. This is true for MQSeries queue
managers, and I will describe three approaches that may be adopted
when aiming to achieve these objectives and discuss the merits of
each. The three methods for clustering queue managers are:

• Built-in MQSeries clustering support, introduced with V5.1
(distributed products) and V2.1 (OS/390).

• Shared queue support, introduced in V5.2 of MQSeries for
OS/390.

• Independent standby management software.

BUILT-IN MQSERIES CLUSTERING SUPPORT

This is a standard feature of MQSeries, introduced with V5.1
(distributed products) and V2.1 (OS/390). The basic idea is that a
group of queue managers advertise the existence of some of their
channels and queues to other members of the cluster. There is no
command to create the cluster, the cluster is formed by including the
queues and channels belonging to the various queue managers.

The improvements in availability and increased throughput come

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

from being able to define equivalent queues, with identical names, on
several of the queue managers in the cluster. A message PUT on one
queue manager may then be moved to any one of these clustered
queues and be processed (see Figure 1). All systems in the diagram are
queue managers; the system where the message is put is a queue
manager, or an MQSeries client attached to a queue manager. If one
of the queue managers or communication to it fails, it is excluded from
the choice of destinations for the messages.

Besides the increased availability and throughput, the administration
needed to maintain the definitions may actually be less than when
MQSeries clustering is not used. The reason is that each queue or

MQput

QM1

QM2

QM3

QM4

Figure 1: Built-in MQ cluster support

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

channel is administered only on the queue manager that hosts it, and
the effects of any changes are advertised to the other members of the
cluster. The amount of administration increases linearly in proportion
to the number of queue managers on the cluster, and avoids the
combinatorial explosion that might happen as more and more queue
managers are added. This is a major benefit of MQSeries clustering,
even if there is no immediate need to exploit it for availability and
scalability reasons.

There is almost no performance overhead for using this form of
clustering. Each queue manager in the cluster detects its own ability
to reach the others by trying to send application messages. Cluster
information itself flows when a definition change is made. This means
that clusters built this way can be very large, perhaps consisting of
thousands of queue managers.

Failure of a network or the destination queue manager manifests itself
as a channel failure, with the channel performing its normal retry
cycle. At the same time, any messages waiting on the
SYSTEM.CLUSTER.TRANSMIT.QUEUE intended to move along
the failed channel will be reprocessed and another destination found,
if this is appropriate. The channels between each pair of queue
managers in the cluster are protected independently, without any
global monitoring of the cluster as a whole, and because there is no
controlling agent these clusters are very robust.

By tuning the value of HBINT on the CLUSRCVR channels the
detection time for channel failures can be made short, and the delay
in re-routing a message to an already active alternate queue manager
is also short, making it feasible to detect and recover from failures
without the failure being noticeable to interactive users. Making the
channel failure detection times too small leads to false failures, where
a slow-down or a delay in network traffic is treated like a failure.

Applications need to be examined carefully to exploit MQSeries
clustering fully. Message affinity is one such pitfall. This is where a
sequence of messages must be processed in the same queue manager,
usually because the application depends on some transient state that
the earlier messages in the sequence create. Fortunately, it is not
particularly common, and MQSeries provides a straightforward way
to deal with it. The administrator or application writer can specify that

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

all messages using an OPEN handle must go to the same queue
instance, by specifying BIND_ON_OPEN. This cures the affinity
problem but means that any failure that occurs after the OPEN handle
has been created will delay the processing of later messages until the
failure is corrected.

If a request message reaches its destination queue manager, or at least
gets in doubt on the channel to the destination, and then the destination
queue manager fails, MQSeries clustering will not be able to recover
the message (because of the possibility of duplicating it) without
recovering the destination queue manager itself. If it is important to
protect against this type of ‘marooned message’ problem, then one of
the following techniques needs to be used in conjunction with MQSeries
clustering.

OS/390 shared queue support

Shared queue support exploits the Coupling Facility hardware running
under OS/390 and was introduced as a standard part of MQSeries for
OS/390 V5.2. Messages reside in queues stored in the shared Coupling
Facility. All the queue managers that are in a queue-sharing group and
have access to the Coupling Facility can GET and PUT messages to
these queues, as illustrated in Figure 2. In the current release, the
messages must be non-persistent and less than 63 KB in size.

MQput

QM1

QM3

QM2

Shared queue

Figure 2: MVS shared queue

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

Availability and scalability derive from the ability of any of the group
of queue managers to process a message. A client-driven request reply
using PUT and GET operations typically takes between 10 and 30 per
cent more CPU than for the same operation to a local queue.

Queue managers in a queue-sharing group can be administered as a
group, with queues being defined as shared and the definition applied
to the group by including the CMDSCOPE keyword. Distributed
queue managers can send messages to queues in the group, rather than
the individual queue managers. A channel defined in the group will be
attached by VTAM or dynamic DNS to one of the queue managers in
the group. If an instance of a channel fails and restarts it may be
attached to a different queue manager in the group.

While the Coupling Facility itself is extremely reliable, if it is stopped,
or it fails, then all the messages within it at that time are lost, hence the
restriction to non-persistent messages. Even though a non-persistent
message in the Coupling Facility may be relatively safe, it is still a
non-persistent message, and when moved outside the sysplex retains
its non-persistent characteristics. For instance, if it happens to be in a
distributed queue manager waiting to be moved to a sysplex, it will be
lost when the distributed queue manager shuts down. This same
restriction means that transmission queues holding messages to be
moved outside the sysplex should not be defined in the Coupling
Facility because they could contain non-persistent messages.

All the queue managers in a queue-sharing group take messages, in
order, from a shared queue when a GET request is executed. This
makes a self-balancing form of workload management known as
‘pull-workload balancing’. The system that is able to execute the most
GET commands processes the most messages.

As with MQSeries clustering, applications need to be capable of
working in this environment. Message affinity is still an important
consideration because there is no guarantee that a particular queue
manager will process a given message.

INDEPENDENT STANDBY MANAGEMENT SOFTWARE

Most systems can be managed by a failover product, examples of
which are listed in Table 1. Generally, they allow a number of

44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

processors to be attached to a shared network and a shared disk, as
illustrated in Figure 3. These clusters provide failure protection but do
not allow any increase in throughput beyond that which can be
obtained from a single system. The overhead of running the failover
software is usually negligible.

The systems are configured so that a queue manager runs on one of the
systems and the messages and the transaction log are written to the
shared disk. All of the systems monitor each other, usually by sending
a request, conceptually asking the question ‘are you dead?’. If no
response is received the system is assumed to have failed. The failover
software must then make sure that the failed queue manager cannot

Operating Failover product MQSeries support
system

OS/390 Automatic Restart http://www-4.ibm.com/software/
Manager ts/mqseries/library/manualsa/

csqsaw00/csqsaw00tfrm.htm
(Chapter 13)

Microsoft Microsoft Cluster Server http://www-4.ibm.com/software/
Windows NT (MSCS) * ts/mqseries/txppacs/mc74.html

AIX HACMP Version 4.3.1 or http://www-4.ibm.com/software/
4.4.0 or HACMP/ES ts/mqseries/txppacs/mc63.html
Version 4.4.0.3*

Solaris Sun Cluster 2.1 or 2.2 * http://www-4.ibm.com/software/
ts/mqseries/txppacs/mc69.html

Compaq Compaq TruCluster http://www-4.ibm.com/software/
Available Server V1.6.* ts/mqseries/txppacs/mc68.html

HP-UX HP Service Guard 10.05* http://www-4.ibm.com/software/
ts/mqseries/txppacs/mc66.html

* Provides network address take-over

Table 1: Failover products

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 45

restart and runs a script or program on a standby processor to restart
the queue manager there. On the standby processor, the queue
manager reads the transaction log and recovers to the point where the
failure occurred.

Many of the failover products provide an additional feature, to take
over a floating IP address. The address is associated with the queue
manager currently running, and means that, when the failure occurs,
there is no need to change the configuration of other systems to reflect
that the take-over has happened.

If this facility is not provided, the failover script can alter the IP
address in the CONNAME field of a CLUSRCVR in the failing
system to advertise the change to an MQSeries cluster. This technique
is used by the ARM support provided with MQSeries for OS/390.

Figure 3: Queue manager failover

Ta
ke

ov
er

 o
f Q

M
3

QM1

MQput

QM3

QM2
QM3

Shared disk

46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

These systems require the provision of access to shared disks, which
must themselves be highly available. In the other clustering techniques
normal operation utilizes all of the queues and channels – to some
degree, they are self-testing. All highly-available systems need frequent
testing, which is crucial in a failover cluster as the standby system may
otherwise have long periods of no usage, and fail itself at the very
moment it is most needed.

These cold standby clusters do not suffer from the marooned message
problems described earlier because the messages are still accessible
on the shared disk. If IP address take-over is used, or the CONNAME
is altered, ‘in-doubt’ messages can also be recovered when the
communications restart to the new system.

Take-over times are usually too long to be invisible to interactive
systems, the detection time can be significant because the failover
support has to be certain that the failing system has permanently
failed. Restarting the queue manager on the alternate system will
require reprocessing of the transaction log. In the situation where the
queue manager fails but the operating system is still viable, the
failover scripts can ensure that the failed queue manager does not
restart and speed up that step.

AND FINALLY

None of the three forms of clustering mentioned above protect against
an errant application. One insidious problem that can arise is where a
server application is apparently functioning well, taking messages
from a queue, and providing responses. However, if the responses are
just indicating that the request cannot be processed because a database
is unavailable, for instance, the system is unaware that anything is
wrong.

This situation is often referred to as a ‘storm drain’ problem and has
to be dealt with by the application code itself, by taking itself off-line,
perhaps.

The principal features of each form of clustering are summarized in
Table 2. Built-in clustering provides good protection for the collection
of queue managers and its network, especially for interactive workloads.
Shared queue and independent standby management enable recovery

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 47

Feature Built-in OS/390 Independent
MQSeries shared standby
clustering queue management

Maximum number Over 1000 32 queue mgrs Usually 2-8
of systems per queue-

sharing group

Geographic None, wide Connection to Connection to
limitation area network Coupling Facility, shared disk,

maximum 27Km usually same
machine room,
but can be further

Usual time to Seconds Sub-second Minutes
recover

Types of system Heterogeneous OS/390 Homogeneous

Failover of network Yes No No
links

Recovery of No Yes Yes
previously
delivered
messages

Scalable Yes Yes No
throughput

Applications must Yes, unless Yes Not applicable
be free from BIND_ON_OPEN
message affinity is used
to exploit
scalability

of messages once they have been delivered to the target queue
manager with shared queue allowing faster recovery, but only if
OS/390 and non-persistent messages can be used.

Andrew Banks
MQSeries Development, IBM (UK) ©IBM

Table 2: Principal features of each clustering option

MQ news

Talarian has recently announced the
availability of its Talarian SmartMQ 2.0
message queueing product. SmartMQ is one
of the components designed to deliver a
unified messaging environment when
combined with the publish-subscribe
architecture of Talarian’s SmartSockets
product. SmartMQ provides data persistence
for messaging transactions.

The company claims that SmartMQ 2.0 will
provide users with significantly increased
performance, a new browser-based interface
for easier administration and configuration,
accessibility via the Internet, and full
compatibility with MQSeries, allowing
conversion between SmartSockets and
MQSeries.

SmartSockets, Talarian’s flagship product,
is an infrastructure solution that is claimed to
enable processes to communicate quickly,
reliably, and securely across multiple
operating systems and platforms.

For further information contact:
Talarian, 333 Distel Circle, Los Altos, CA
94022-1404, USA
Tel: +1 650 965 8050
Fax: +1 650 965 9077
Web: http://www.talarian.com

Talarian, 68 Lombard Street, London, EC3V
9LJ, UK
Tel: +44 20 7868 1630
Fax: +44 20 7868 1752

* * *

Compuware has started shipping the
E-Business Edition of its Abend-AID fault
management tool, designed to help save time
in test and production environments and
speed the integration of legacy systems and
e-business applications.

It provides developers with diagnostic
information that helps pinpoint problems
and suggests corrective actions to resolve
those problems.

It’s said to function as “built-in expertise” for
programmers for MQSeries in batch, IMS,
and CICS environments. It enables
programmers and developers to detect,
analyse, and diagnose problems in
applications that use MQSeries CICS Web
Interface.

It maps out MQSeries so developers can
identify any errors that might occur on those
applications being integrated with
MQSeries.

For further information contact:
Compuware, 31440 Northwestern Highway,
Farmington Hills, MI 48334-2564, USA
Tel: +1 248 737 7300.
Web: http://www.compuware.com

Compuware, 163 Bath Road, Slough,
Berkshire, SL1 4AA, UK
Tel: +44 1753 444000
Fax: +44 1753 444 900

* * *

x xephon

	BLOB-based message processing techniques for MQSeries Integrator Version 2
	MQSeries channel security exits
	Architect your MQSeries environment on Unix
	Clustered queue managers
	MQ news

