
© Xephon plc 2001

April 2001

22

3 Parsing XML messages using the
MRM

4 MQSeries V5.1 for NT: security for
client/server

22 Freeing a hung Unix queue manager
28 MQSI V2 performance trace analysis
33 What’s new in MQSeries for AS/400

V5.1 and V5.2
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/contnote.html.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you will need to supply a
word from the printed issue).

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

Parsing XML messages using the MRM

To enable an MQSI V2 message flow to parse a legacy message, the
message format must be defined to the MRM. All the fields contained
within the legacy message and their corresponding field lengths
defined in the message set must be brought together in the message
type, giving a unique message set identifier and message identifier,
against which the message itself may be parsed. The choice of which
message set identifier and message identifier to use is, of course,
provided either in the RFH2 header or in the MQInput node default
information in the message flow.

Having created this environment, legacy messages may then be
successfully parsed in a message flow and the data manipulated in the
required manner.

Legacy messages, by their nature, already exist within organizations.
They can be passed into a message flow for processing without
modification. But what about messages created by a new application,
or a partner organization, which is restricted to creating messages in
XML format? Such messages might be processed by an adaptor,
which will convert the XML format to the desired legacy format prior
to processing by the message flow. However, it is possible to create
messages in XML format, which can utilize this MRM definition.

The XML message must contain embedded tags which exactly match
the MRM data names; for example, look at the following MRM
definition.

MESSAGE SETS
 ACCT_SET Identifier: DFØSDMØØ6SØØ1
 Messages
 ACCTMSG Identifier: ACCTMSGID
 Type: ACCTREC
 ACCTNO STRING
 ACCTYPE STRING
 CATEGORY STRING
 Types:

ACCTREC
 ACCTNO STRING
 ACCTYPE STRING
 CATEGORY STRING

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The RFH2 header will contain the following information:

<mcd>
 <Msd>MRM</msd>
 <Set>DFØSDMØØ6SØØ1</Set>
 <Type>ACCTMSGID</Type>
 <Fmt>XML</Fmt>
 </mcd>

The XML data should appear in the input record as follows:

<MRM>
 <ACCTMSGID>
 <ACCTNO>123456<\ACCTNO>
 <ACCTYPE>TTR<\ACCTYPE>
 <CATEGORY>M<\CATEGORY>
 </ACCTMSGID>
</MRM>

The important detail in the RFH2 header is the <Fmt> field setting of
‘XML’. This would normally contain the value ‘MRM’ with the data
following being supplied in legacy format. A value of ‘XML’ forces
the message flow to use a standard XML parser and assign the values
to appropriate field names defined in the MRM. These fields are then
accessible in message-processing nodes, as if they had been derived
from a message in legacy format.

Ken Marshall
MQSeries Consultant, MQSolutions (UK) © MQSolutions Ltd

MQSeries V5.1 for NT: security for client/server

BACKGROUND

This article looks in depth at MQSeries V5.1 client/server security
with specific reference to the NT platform. This documentation will
apply equally well to MQ V5.2. There are a number of benefits with
MQSeries V5.1 client, including ActiveX controls. However, on
MQSeries V5.1 server, Object Authority Management (OAM) is
enabled by default. This means that, unless the correct authorizations
have been set up, the MQSeries V5.1 client will not be able to access
the queue manager or any objects within it.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

This is because MQSeries V5.1 Unix and NT clients send the logged-
on user-id to be authenticated at the server. If your SVRCONN
channel MCAUSER is blank, the client user-ids have to exist at the
server and be properly authorized. Authorization definitions appear to
be cached, so the queue manager has to be recycled in order to pick up
the new definitions.

However, MQSeries V5.0 clients do not send the logged-on user-id.
The user-id that is sent is taken from the environment variable
MQ_USER_ID. If this is not set, the user-id used to authenticate the
client’s MQI calls is the user-id under which the SVRCONN channel
runs. For Unix, this is specified in at/etc/inetd.conf. For NT, it is the
user-id under which runmqlsr is started. Therefore, there is a potential
security risk when using the V5.0 client.

Please note that, while you can use MQ V5.0 client with MQ V5.1
server, I have found that you cannot always reliably use the MQ V5.1
client with MQ V5.0 server.

While the work on which this article is based was carried out using
MQ V5.1 server, the setting and displaying of authorizations applies
equally to V5.0. However, the constraints in terms of using the V5.0
client as pointed out above should be remembered, and it is
recommended that the MQ_USER_ID, at least, is specified when
using the V5.0 client.

This article will:

• Document how the MQSeries OAM works within NT.

• Define the process of setting authorizations.

• Recommend the best approach for providing client/server security
within MQSeries V5.1 on NT.

HOW OAM WORKS WITHIN NT

Outline

The OAM works in conjunction with NT’s own security mechanisms
and provides authorization services for MQSeries. It is enabled by
default on MQ V5.1.

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Access is granted to MQSeries queue managers and objects within the
queue manager using the setmqaut command. It is important to
remember that, when granting access to a particular object, such as a
queue, access must also be granted to the queue manager.

On NT, access can be granted to users or groups. Users belonging to
a group will inherit the access rights granted to their group. If the user
belongs to more than one group their access rights will be a combination
of the those groups. If access rights have been set for a specific user
then these rights will take precedence over any group rights the user
may inherit. For instance:

• User1 belongs to group MQUsers.

• User2 belongs to group MQUsers.

• MQUsers has been granted connect access to queue manager
QM1.

• MQUsers has been granted put/get access to local queue QM1.QL1
in queue manager QM1.

• Get access has been removed from User1.

As a result of the above:

• User2 can put/get messages to/from QM1.QL1 in queue manager
QM1.

• User1 can put messages to QM1.QL1 in queue manager QM1.

The specifics of the setmqaut command are covered in more detail in
the section Setting object authorizations within MQSeries V5.1.

MQSeries for Windows NT handles the user-id of the logged-on user
in two ways:

• The user-id is stored in the message descriptor of messages when
they are created.

• The user-id is used when MQSeries performs authorization
checks for access to MQSeries objects, such as queues.

A user-id can be up to 20 characters long and can be domain-qualified,
eg user@domain. The domain name can be up to 15 characters long.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

A group-id can also be specified and this can be up to 64 characters
long.

The OAM for V5.1 has been rewritten to allow security identifier and
domain information to be specified in addition to a user-id.

The Windows NT clients send the logged-in user-id and the user’s SID
when they connect to a queue manager. They no longer read the
MQ_USER_ID and MQ_PASSWORD environment variables.
However, the Windows ’95 or ’98 clients do send the MQ_USER_ID
if set, or the current user-id if logged in.

The Security Identifier (SID)

In addition to the user-id, the Windows NT Security Identifier (SID)
records information identifying the full user account details on the
Windows NT security account manager (SAM) where the user is
defined. Within MQSeries, the SID is stored in the Accounting Token
field of the MQ Message Descriptor.

MQSeries directly queries the SAM identified by the SID when
performing authorization checks. For this query to succeed the SAM
database must be available. On NT, this could be the local database,
the primary domain, or any trusted domain, all of which are checked.

If the OAM receives an authority request that does not contain a
Windows NT SID, the security policy for the queue manager determines
how the OAM behaves.

MQSeries security policies

The default MQ security policy allows the OAM to receive authority
requests that do not contain a Windows NT security identifier. This
would be the case with multi-platform environments.

In this situation the OAM attempts to resolve the user-id into a
Windows NT SID by searching:

• The local security database.

• The security database of the primary domain.

• The security database of the trusted domain.

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If the security policy is set to NTSIDsRequired both the user-id and
NT SID information must be passed to the OAM. A check is made to
ensure the two are consistent. It should be noted that the supplied user-
id is compared with the first 12 characters of the id associated with the
SID.

DEFINING SECURITY POLICIES

Within MQSeries V5.1 the following entries are added automatically
to the NT registry for each queue manager created. The Service
specifies the AuthorizationService service while the
ServiceComponent specifies the name of the service and module to
use, which by default is the OAM. If you are using the OAM supplied
you can also specify a SecurityPolicy on the Service stanza. The
possible values are:

• Default. If, for a particular user, a Windows NT security identifier
(NT SID) is not passed to the OAM, the relevant security
databases are searched in an attempt to find the appropriate SID.

• NTSIDsRequired. An NT SID must be passed to the OAM to
perform the security checks.

The security policy is added as follows:

• Within MQSeries Explorer, right-click on the queue manager and
select the Properties.

• Click on the Services tab.

• Select AuthorizationService from the Services drop down box.

• Select NTSIDsRequired from the SecurityPolicy drop down
box then click OK.

SETTING OBJECT AUTHORIZATIONS WITHIN MQSERIES V5.1

Outline

The setmqaut command is used to define access rights on queue
managers and queue objects. It is important to remember that access
must be granted to the queue manager as well as to the objects within
the queue manager.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

Access can be granted to individual users or groups of users. When a
user is defined to more than one group that user’s access is a
combination of his/her groups’ access. Access rights defined
specifically for a user override the user’s group access.

The dspmqaut command can be used to view the access rights for a
particular user or group.

This section will cover the format of the commands and how they may
be used in a typical environment. For further information on the use
of the commands see the MQSeries Systems Management Guide.

In the examples given below, the queue manager is QM1 with local
queues QM1.Q1 and QM1.Q2.

The setmqaut command

The format of the setmqaut command is: Setmqaut –m <qmgr> -t
<obj type> -n <obj.name> -s <service component> -p <user> -g
<group> <auth>, where bold parameters are required:

-m <qmgr> The name of the queue manager: optional if changing
default queue manager.

-t <obj type> Object type for which authorizations are to be
changed. Possible values are:
– q or queue
– prcs or process
– qmgr
– nl or namelist.

-n <obj name> The name of the object for which authorizations are
to be changed. It must not be generic.

-s <service component>
This only applies if you are using installable
authorization services. It can be ignored for our
purposes.

-p <user> This specifies the name of the principal, ie user
whose authorizations are to be changed. On NT this
can also specify a domain, ie userid@domain.

-g <group> Specifies the name of the group whose authorizations

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

are to be changed. At least one principal or group
must be specified. More than one principal and/or
group can be specified but each must be prefixed
‘–p’ or ‘–g’ respectively.

<auth> Specifies the authorizations to be given (prefixed
‘+’) or removed (prefixed ‘-’). A number of
authorizations can be specified in one setmqaut
command. The authorizations that can be given are
categorized as follows:
– authorizations for issuing MQI calls
– authorizations for MQI context
– authorizations for issuing commands for

administration tasks
– generic authorizations.

In Appendix A, Table 1 lists all the authorizations.

Granting access to the queue manager

In order for a user to access queues or other MQ objects they must first
be granted access to the queue manager itself. For application
developers it is sufficient to grant connect access to the queue
manager, for example:

Setmqaut –m QM1 –t qmgr +connect –p mousem

This command would grant connect access to queue manager QM1
for user mousem.

Setmqaut –m QM1 –t qmgr +connect –g mqusers

This command would grant connect access to queue manager QM1
for group mqusers.

Granting access to queues
Once access has been granted to the queue manager, appropriate
access to the queue objects can be specified. For application developers
it is sufficient to grant connect access to the queue manager, ie:

Setmqaut –m QM1 –t q –n QM1.Q1 +put –get –p mousem

This command would enable user mousem to put messages to QM1.Q1
but prevent the user from retrieving messages.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

Setmqaut –m QM1 –t q –n QM1.Q2 +put +get –g mqusers –p duckd

Setmqaut –m QM1 –t q –n QM1.Q2 -put –p mousem

The first command grants put/get access to queue QM1.Q2 for group
mqusers and user duckd (who, in this instance, is not a member of the
mquser group).

The second command prevents user mousem from putting messages
to QM1.Q2. If user mousem is also a member of group mqusers then
he would be able to get messages from QM1.Q2 by virtue of the first
command.

Note that, in addition to the above commands, a further setmqaut
would need to be issued to give connect access to queue manager
QM1 for group mqusers and users duckd and mousem.

The dspmqaut command

The format of the dspmqaut command is: Dspmqaut –m <qmgr> -t
<obj type> -n <obj.name> -s <service component> -p <user> -g
<group> , where bold parameters are required.

-m <qmgr> Specifies the name of the queue manager
on which the enquiry is to be made.

-t <obj type> Object type on which the enquiry is to be
made. Possible values are:
– q or queue
– prcs or process
– qmgr
– nl or namelist.

-n <obj name> Name of object on which the enquiry is to
be made. It must not be generic. It should
not be included if enquiring on the queue
manager.

-s <service component>This only applies if you are using installable
authorization services. It can be ignored
for our purposes.

-p <user> Specifies the name of the principal, ie user
whose authorizations are to be changed.

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

On NT this can also specify a domain, eg
userid@domain

-g <group> Specifies the name of the group whose
authorizations are to be changed. Only
one principal or group must be specified.

OPTIONS AND RECOMMENDATIONS

Detailed below is a brief summary of the options available when
configuring MQSeries V5.1 client/server security.

(1) By-passing MQSeries security

Set the mqsnoaut variable to ‘yes’ prior to creating the queue
manager, or remove the authorization service component from the
queue manager. The advantages include:

• No security checking so no problems with client access. Any
client with the appropriate MQSERVER variable or channel
table will be OK.

The disadvantages include:

• There is no way to restrict access on the queue manager.

(2) Take the user-id from the server connection channel
Set the MCA User-id on the server connection channel to a valid user
defined on the server. Ensure this user has access to the MQ objects.
The advantages include:

• Any client with the appropriate MQSERVER variable or channel
table will be OK.

The disadvantages include:

• This does not provide real security – any client using the channel
will get on.

(3) Take user-id passed by client, define MQ access on principals

Each user accessing the queue manager objects will have to be defined
as a principal using the setmqaut command. The advantages include:

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

• This option gives tight security control at the user level.

The disadvantages include:

• You need to define every user using setmqaut. New users will
also need to be defined.

(4) Take user-id passed by client, define MQ access on principals,
NTSIDsRequired

Each user accessing the queue manager objects will have to be defined
as a principal using the setmqaut command. The advantages include:

• This option gives tight security control at the user level.

• It ensures the user is coming from a valid client – without
NTSIDsRequired, if a matching user-id is defined on the server,
it will be used instead.

The disadvantages include:

• You need to define every user using setmqaut. New users will
also need to be defined.

(5) Take user-id passed by client, define MQ access on groups
Each user accessing the queue manager objects will have to be defined
as a member of a group. The group is then given access to the queue
manager objects. (Note: do not put the users in the mqm group as they
will get administrative functions.) The advantages include:

• This option gives tight security control at the user level.

• You only need to set access options once to the group, regardless
of how many new clients access the server.

The disadvantages include:

• You need to define every user to the group via the user manager.

Recommended approach

Option five, detailed above, is the one recommended. Options one and
two do not provide any security. The third and fourth options provide
tight security, but at the expense of heavy maintenance and potential
disruption to the client base.

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

From an MQ perspective, the last option provides simpler maintenance.
Different groups can be defined to represent different types of access.
Users can be added to more than one group to get combined access.
While this does involve user manager maintenance it is probably more
straightforward than using the setmqaut command. This can also be
performed by the server maintenance teams and does not require
specialist MQ knowledge.

You can add domain groups into the local group defined on the MQ
Server. For instance, assume you have defined local group mqusers on
the MQ server. If you have a number of users in a domain group called
‘Ipswich’, then this group can be added to the mqusers group, thus
removing the need to define all users individually.

Please note that the group mqm should not be used – this group has
administration rights to all the queue managers that users defined to
‘group inherit’. Adding users to this group effectively by-passes any
security measures.

SUMMARY

If you are planning to upgrade an MQSeries V5.0 server to V5.1, your
existing clients will continue to function as before and no additional
measures in terms of granting access to MQ objects will be required
to those you already had in place for V5.0. If you do upgrade your
clients to V5.1 then you will also need to upgrade your MQ server to
V5.1 and grant the necessary access rights. Remember that access
needs to be granted to the queue manager as well as the queues.

To facilitate maintenance and recovery it is advisable to put your
authorization requests in a command file. It is also recommended that
you identify different types of MQ users and create local groups in the
NT security database for each of these. Access to MQ objects should
then be based on these security groups.

Users can be added into the appropriate MQ group in order to gain
access. For ease of maintenance, domain groups can be added to the
MQ groups, removing the need to define individual users. Please note
that the mqm group should only contain users who need to have
administration rights to all the queue managers.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

APPENDIX A: MQ AUTHORIZATIONS

Table 1 lists all possible authorization values that can be specified on
the setmqaut command. For further information on each of these you
should refer to the following sections in the IBM MQSeries Systems
Administration guide:

• 17.27.1 Authorizations for MQI calls.

• 17.27.2 Authorizations for context.

• 17.27.3 Authorizations for commands.

• 17.27.4 Authorizations for generic operations.

Authority Type Qmgr Queue Process Namelist
All Generic Yes Yes Yes Yes
Alladm Generic Yes Yes Yes Yes
Allmqi Generic Yes Yes Yes Yes
Altusr MQI calls Yes No No No
Browse MQI calls No Yes No No
Chg Commands Yes Yes Yes Yes
Clr Commands No Yes No No
Connect MQI calls Yes No No No
Crt Commands Yes Yes Yes Yes
Dlt Commands Yes Yes Yes Yes
Dsp Commands Yes Yes Yes Yes
Put MQI calls No Yes No No
Inq MQI calls Yes Yes Yes Yes
Get MQI calls No Yes No No
Passall Context No Yes No No
Passid Context No Yes No No
Set MQI calls Yes Yes Yes No
Setall Context Yes Yes No No
Setid Context Yes Yes No No

Table 1: Authorization values

APPENDIX B: TESTS

The following tests were carried out using an NT workstation connected
to a server on which MQ V5.1 was installed. The workstation had
MQSeries V5.0 installed initially, and the first test ensured that this
client worked with an MQSeries V5.1 server. MQSeries V5.1 client

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

was then installed on this machine. The MQSERVER variable was
used to connect the client to the server. The user-id for the tests
initiated on my machine was mousem.

Queue manager QM2 was created specifically for the tests. The
listener for this queue manager was on port 1415. The following user-
ids were used on the server:

Mqboss This id is in the administrator’s group, and was used to
create queue manager QM2 and set object
authorizations.

mousem This id was used for testing access to the queue manager.

mqtest This id was used for testing access to the queue manager.

Test cases
1 Put/get messages to/from local queue on MQ V5.1 server using MQ V5.0 client.

– user on workstation: mousem
– user on server: Mqboss
– result: puts/gets worked successfully.

2 Put messages to local queue on MQ V5.1 server using MQ V5.1 client. User mousem
is not defined as a local user on the MQ V5.1 server.
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.

Following error message in amqerr01.log on server:
05/11/00 08:52:21
AMQ8075: authorization failed because the SID for entity
mousem cannot be obtained

– explanation: the Object Authority Manager was unable to
obtain a SID for the specified entity

– action: ensure that the entity is valid, and that all necessary domain controllers
are available.

3 Put messages to local queue on MQ V5.1 server using MQ V5.1 client. User mousem
is defined as a local user on the MQ V5.1 server. The password for mousem on the
server is different from the password for mousem on the client.
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.

Following error message in amqerr01.log on server:
05/11/00 09:03:52
AMQ8077: entity mousem has insufficient authority to

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

access object QM2
– explanation: the specified entity is not authorized to access

the required object. The following requested permissions are
unauthorized: connect

– action: ensure that the correct level of authority has been set for this entity against
the required object, or ensure that the entity is a member of a privileged group.

4 User mousem on MQ V5.1 server is added to the mqm group.
Put messages to local queue on MQ V5.1 server using MQ V5.1
client.
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized

Following error message in amqerr01.log on server:
05/11/00 09:06:58
AMQ8077: Entity mousem has insufficient authority to
access object QM2

– explanation: the specified entity is not authorized to access
the required object. The following requested permissions
are unauthorized: connect

– action: ensure that the correct level of authority has been set for this entity against
the required object, or ensure that the entity is a member of a privileged group.

Note

Tests five to eight were carried out on the MQ V5.1 server. No client workstation was
involved.

5 Issue runmqsc command on MQ V5.1 server against queue
manager QM2.
– user mousem is in the mqm group
– user on workstation: not applicable
– user on server: mousem
– result: command fails with RC 2035 – user not authorized.

Following error message in amqerr01.log on server:
05/11/00 09:12:01
AMQ8077: entity mousem has insufficient authority to
access object QM2

– explanation and action: as above.

6 Issue crtmqm command on MQ V5.1 server.
– user mousem is in the mqm group
– user on workstation: not applicable
– user on server: mousem
– result: queue manager created successfully.

7 Removed mousem from mqm group.

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– issue crtmqm command on MQ V5.1 server
– user on workstation: not applicable
– user on server: mousem
– result: command fails with RC 2035 – user not authorized.

Following error message in amqerr01.log on server:
05/11/00 09:18:01
AMQ8077: entity mousem has insufficient authority to
access object QM2

– explanation and action: as above.

8a Access granted to the following MQ objects:
– connection to queue manager QM2:

setmqaut -m QM2 -t qmgr +connect -p mousem.
– put/get access to local queue QM2.Q1:

setmqaut -m QM2 -n QM2.Q1 -t q +put +get -p mousem.

8b Put/get messages to/from local queue QM2.Q1 on MQ V5.1 under user mousem.
– user on workstation: not applicable
– user on server: a) Mqboss, b) mousem
– result: puts/gets worked successfully.

9 Put/get messages to/from local queue QM2.Q1 on MQ V5.1 server using MQ V5.1
client.
– user on workstation: mousem
– user on server: mousem
– result: puts/gets worked successfully.

10a Create local queue QM2.Q2 in queue manager QM2.

10b Put/get messages to/from local queue QM2.Q1 and QM2.Q2 on MQ V5.1 server using
MQ V5.1 client.
– user on workstation: mousem
– user on server: a) Mqboss, b) Mqboss
– result: puts/gets worked successfully on QM2.Q

put/get on QM2.Q2 fails with RC 2035 – user not authorized
Following error message in amqerr01.log on server:
05/11/00 15:21:33
AMQ8077: entity mousem has insufficient authority to
access object QM2.Q2

– explanation: the specified entity is not authorized to access
the required object. The following requested permissions are
unauthorized: put

– action: ensure that the correct level of authority has been set for this entity against
the required object, or ensure that the entity is a member of a privileged group.

11a Access removed to local queue QM2.Q1 on queue manager QM2:
setmqaut -m QM2 -n QM2.Q1 -t q -put -get -p mousem.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

11b Put/get messages to/from local queue QM2.Q1 on MQ V5.1 under user mousem
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized

following error message in amqerr01.log on server:
05/11/00 15:43:20
AMQ8077: entity mousem has insufficient authority to
access object QM2.Q1

– explanation: the specified entity is not authorized to access
the required object. The following requested permissions are
unauthorized: put.

– action: ensure that the correct level of authority has been set
for this entity against the required object, or ensure that the
entity is a member of a privileged group.

12a Created group mqtest on MQ V5.1 server and add user mousem to this group. Access
granted to the following MQ objects for group mqtest:
– connection to queue manager QM2:

setmqaut -m QM2 -t qmgr +connect -g mqtest
– put/get access to local queue QM2.Q1:

setmqaut -m QM2 -n QM2.Q1 -t q +put +get -g mqtest.

12b Put/get messages to/from local queue QM2.Q1 on MQ V5.1 under user mousem
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.
– following error message in amqerr01.log on server:

05/11/00 15:49:46
AMQ8077: Entity mousem has insufficient authority to
access object QM2.Q1

– explanation: the specified entity is not authorized to access
the required object. The following requested permissions are
unauthorized: put

– action: ensure that the correct level of authority has been set for this entity against
the required object, or ensure that the entity is a member of a privileged group.

Note

Access to queue QM2.Q1 for user mousem was specifically restricted. This takes precedence
over the group access granted to mqtest.

13 User bunnyb is defined as a local user on the MQ V5.1 server and is added to group
mqtest. Put/get messages to/from local queues QM2.Q1 and QM2.Q2 under user
bunnyb.
– user on workstation: not applicable
– user on server: bunnyb
– result: put/get worked successfully to QM2.Q1 but returned 2 0 3 5

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

against QM2.Q2
– expected as group mqtest was granted access to QM2.Q1 but

not QM2.Q2.

14 User mousem has no put/get access to QM2.Q1. Amended server connection channel
C1.CLIENT.QM2 to include fudde in MCA user field. Put messages to local queues
QM2.Q1 under user mousem.
– user on workstation: mousem
– MCA user: fudde
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.

Following error message in amqerr01.log on server:
05/11/00 08:52:21
AMQ8075: authorization failed because the SID for entity
fudde cannot be obtained.

– explanation: the Object Authority Manager was unable to
obtain a SID for the specified entity

– action: ensure that the entity is valid, and that all necessary domain controllers
are available.

15 User mousem has no put/get access to QM2.Q1.
Defined fudde as a local user on MQ V5.1 server and added to group mqtest. Put
messages to local queues QM2.Q1 under user mousem.
– user on workstation: mousem
– MCA user: fudde
– user on server: Mqboss
– result: put works; group mqtest has access to put/get messages to/from QM2.Q1.

Note

Tests 16 to 22 test the use of security policies and methods of bypassing security.

16 Open command prompt.
Set mqsnoaut=yes, then issue crtmqm command to create queue manager QM3.
Define queue QM3.Q1 in queue manager QM3. Put messages to local queue QM3.Q1
under user mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put works.

17 Delete queue manager QM3 then recreate using MQSeries explorer. Define queue
QM3.Q1 in queue manager QM3. Put messages to local queue QM3.Q1 under user
mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

18 Delete AuthorizationService from queue manager QM3 via the MQSeries Services
panels. Stop and restart QM3. Put messages to local queue QM3.Q1 under user
mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put works.

19 Delete queue manager QM3 then recreate using MQSeries explorer. Define queue
QM3.Q1 in queue manager QM3. Put messages to local queue QM3.Q1 under user
mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.

20 Use the setmqaut command to grant access to QM3 and local queue QM3.Q1 for user
mousem. Put messages to local queue QM3.Q1 under user mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put works.

21 Amend the security policy to NTSIDsRequired. Stop and restart QM3. Put messages
to local queue QM3.Q1 under user mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put fails with RC 2035 – user not authorized.

22 Reset the security policy to default. Stop and restart QM3. Put messages to local queue
QM3.Q1 under user mousem.
– user on workstation: mousem
– user on server: Mqboss
– result: put works.

Mark Richards (UK) © Xephon

E-mail alerts

If you’d like to be notified when new issues of MQ Update
have been placed on our Web site, you can sign up for our
e-mail alert service, which notifies you when new issues
(including new free issues) have been placed on our Web
site. To sign up, go to http://www.xephon.com/
mqupdate.html and click the ‘Receive an e-mail alert’ link.

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Freeing a hung Unix queue manager

INTRODUCTION

From time to time, most people using MQSeries on a Unix system will
have had experience of a queue manager that does not respond to any
valid MQ command at all. Using runmqsc against it just results in a
hung system, as does any attempt to shut it down (including endmqm
-p). Typically, this happens on heavily overloaded development or
test systems, and often in an environment where application
programming teams have the freedom to do as they please. MQ’s
problems in these circumstances are often the result of system
resource shortages or contentions, but the end result is the same – the
queue manager is well and truly broken!

Given this situation, the only remedial action you can take is to end all
of the queue manager’s processes manually, using the Unix kill
command.

THE CORRECT SEQUENCE

When using this method to stop a queue manager it is important that
the various processes involved are terminated in the correct order.
Table 1 details the sequence required.

On systems with inbound channels from other remote queue managers
it is probable that there will be a number of amqcrsta processes
running. These are spawned by the inet daemon detecting connections
on the port assigned to the queue manager in question. These can also
be terminated, although MQ is quite tolerant of them being there when
you eventually try to restart the queue manager.

These processes can be identified with the Unix ps command. For
example, to stop the command server for a queue manager called
TESTQM1, you can first issue the following command to identify its
process-id:

ps -ef | grep amqpcsea | grep TESTQM1,

which results in the following output:

mqm 74Ø7 1 Ø Ø9:58:4Ø ? Ø:ØØ amqpcsea TESTQM1.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

To terminate the process you will need to issue a kill command for it.
Frequently, kill used on its own will not succeed in removing the
process, and in these cases, you will need to add a terminate signal to
the command, with -9 being the most powerful. So, to be one hundred
per cent certain of terminating the process shown above, you would
need to issue:

kill -9 74Ø7

Note that, in order to issue the Unix kill command for any MQ
process, you will need to be logged on as either mqm or a superuser.

MQ’S IPCS USAGE

Often, where a queue manager has hung on a system that is very
heavily overloaded, killing the queue manager’s processes will still
not allow it to be restarted. When this happens, the strmqm command
that has been issued also appears to hang, even though there are no
processes running.

Under these circumstances, the problem will almost certainly be with
MQ’s use of semaphores and shared memory sets – and these too will
need to be freed before the queue manager can be restarted.

A problem here is that, on systems where multiple queue managers are
being run, MQ does not differentiate between them in its usage of such
IPCS resources: ie it is impossible to tell which semaphores are being
used by which queue manager, they are all shown as simply owned by
mqm. As a result, you will need to shut down any other active queue
managers before using the system ipcrm command to terminate them.

Order Function MQ process name

1 Command server amqpcsea
2 Logger amqhasmx
3 Linear log formatter amqharmx
4 Checkpoint processor amqzllpØ
5 Queue manager agents amqzlaaØ
6 Processing controller amqzxmaØ
7 Cluster repository process amqrrmfa

Table 1: Correct order for terminating processes

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQ’s IPCS resources can be identified by issuing the following
command:

ipcs | grep mqm

This will result in output that looks like the following:

m 12323 ØxØØ231b2e --rw-rw---- mqm mqm
m 12324 ØxØØ231b2f --rw-rw---- mqm mqm
m 12325 ØxØØ231b56 --rw-rw---- mqm mqm
m 12326 ØxØØ2112f2 --rw-rw-rw- mqm mqm
m 12327 ØxØØ2112f3 --rw-rw-rw- mqm mqm
m 12328 ØxØØ2112f4 --rw-rw-rw- mqm mqm
s 65548 Øx8Ø217cc3 --ra-ra---- mqm mqm
s 65549 Øx8Ø2261e9 --ra-ra---- mqm mqm
s 196622 ØxØØ22b145 --ra-ra---- mqm mqm
s 196623 ØxØØ2Ø8e71 --ra-ra-ra- mqm mqm
s 65552 ØxØØ2Ø1acØ --ra-ra-ra- mqm mqm

To terminate an IPCS resource you need to use the ipcrm command
together with its type and id, so to remove the first one shown above
you could issue:

ipcrm -m 12323

Clearly, having to go through each one like this can be very tedious
and time-consuming, particularly on heavily-used queue managers.
Fortunately, thanks to the power of Unix facilities, there is a single
command that will remove them all. You can issue:

ipcrm `ipcs | grep "mqm" | cut -c1-12 | sed 's/[m^s]/\-&/g'`

Again, note that you will need to be logged on either as mqm or a
superuser to do this.

THE KILLQMGR.KSH UTILITY

This utility carries out all of the actions detailed above in a single shell
script, making it possible to free a hung queue manager with a single
one-line command. Below, I have listed some points to note about the
utility and its code.

• The utility takes one parameter – the name of the queue manager
to be stopped. Some help text can be displayed by entering the
command killqmgr.ksh -h .

• First, the queue manager’s processes are counted by using grep
-c, with grep -v used before this to eliminate the grep process

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

itself. If no processes are found for the specified queue manager,
the utility is exited.

• There are certain processes which may not be running, for
example the command server, or the linear log formatter if you
are using circular logging. For these particular ‘optional’ processes
a check is first made to see if they are actually there before issuing
the appropriate kill command.

• Based on past experience, I’ve used kill -9 here to ensure that the
process is terminated.

• Once the seven processes listed in Table 1 have been killed, I’ve
used a ‘catch-all’ to terminate any other process running that can
be identified as being associated with the specified queue manager.

• Once all processes have been terminated, the utility prompts the
user as to whether they want to kill off MQ’s IPCS resources as
well. If the answer is ‘y’, the system is checked for any other
queue manager that might be running.

• If other queue managers are found, their names are obtained by
searching for their processing controllers, again using ps -ef. One
problem here is that different versions of Unix will show the
queue manager’s name within this output at different offsets: AIX
will show it starting in column 62 whereas Solaris will have it in
column 60. If you are running on other versions of Unix you will
need to tailor these lines appropriately.

• In shutting down these other queue managers I’ve made the
assumption that they will respond to an endmqm -i command to
stop them. This may need to be changed to endmqm -p if they
still refuse to come down, as the shell script could hang at this
point if they don’t.

KILLQMGR.KSH
Script for killing Queue Manager
and optionally IPCS resources for MQ
Help Text Requested ?
if [[$1 = "-h"]]
then
 print "**"
 print "* killqmgr.ksh *"

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 print "* *"
 print "* This is a utility for freeing a hung *"
 print "* Queue Manager - by killing all of its *"
 print "* processes (in the correct sequence), and *"
 print "* optionally all of its IPCS resources. *"
 print "* *"
 print "* Usage is: killqmgr.ksh qmgrname *"
 print "**"
 exit 1
fi
Queue Manager entered as parameter ?
if [[$# -ne 1]]
then
 print "Usage is: killqmgr.ksh qmgrname"
 exit 1
fi
Are any processes actually running for this QM ?
prcs=`ps -ef | grep -v "grep" | grep -c "$1"`
if [[$prcs -eq Ø]]
then
 print "No processes running for $1 ..."
 exit 1
fi
Kill all QM's processes in correct sequence
print "Shutting Down $1 Command Server if running ..."
print " "
ps -ef | grep "$1" | grep "amqpcsea" >/dev/null
if [[$? -eq Ø]]
then
 kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqpcsea" | cut c1Ø-15`
fi
 print "Shutting Down $1 Logger ..."
print " "
kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqhasmx" | cut -c1Ø-15`
print "Shutting Down $1 Log Formatter if running ..."
print " "
ps -ef | grep "$1" | grep "amqharmx" >/dev/null
if [[$? -eq Ø]]
then
kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqharmx" | cut -c1Ø-15`
fi
print "Shutting Down $1 Checkpoint Processor ..."
print " "
kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqzllpØ" | cut -c1Ø-15`
print "Shutting Down $1 Queue Manager Agents ..."
print " "
kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqzlaaØ" | cut -c1Ø-15`
print "Shutting Down $1 Processing Controller ..."
print " "
kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqzxmaØ" | cut -c1Ø-15`

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

print "Shutting Down $1 Repository Process if running ..."
print " "
ps -ef | grep "$1" | grep "amqrrmfa" >/dev/null
if [[$? -eq Ø]]
then
 kill -9 2>/dev/null `ps -ef | grep "$1" | grep "amqrrmfa" | cut-c1Ø-15`
fi
print "Killing off any other processes for $1 ..."
print " "
ps -ef | grep -v grep | grep "$1" >/dev/null
if [[$? -eq Ø]]
then
 kill -9 2>/dev/null `ps -ef | grep "$1" | cut -c1Ø-15`
fi
Kill IPCS Resources for mqm ?
print "Do you want to kill of MQ's IPCS resources (y/n) ?:"
read ans
if [[$ans != "y"]]
then
 print "Exiting ..."
 exit 1
fi
 qmgrs=`ps -ef | grep -v "grep" | grep -c "amqzxmaØ"`
if [[$qmgrs -ne Ø]]
then
 print "There is at least one other Queue Manager running ..."
 print "Killing MQ's IPCS resources will affect these too ..."
 print "Shut down other Queue Manager(s) (y/n) ?:"
 read ans2
 if [[$ans2 != "y"]]
 then
 print "Exiting ..."
 exit 1
 fi
fi
Are we on AIX or Solaris here ?
os=`uname`
if [[$os = "AIX"]]
then scol="62"
elif [[$os = "SunOS"]]
then scol="6Ø"
else scol="6Ø"
fi
ps -ef | grep -v "grep" | grep "amqzxmaØ" | cut -c$scol-9Ø > @tmp1
awk '{
 tfile = "@qmgr."NR
 print $Ø > tfile
 }' @tmp1
Shut down other active QMs
i=1
while [$i -le $qmgrs]

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

do
 qm=`cat @qmgr.$i`
 print "Shutting Down $qm ..."
 endmqm -i $qm
 i="`expr $i + 1`"
done
Kill all mqm's IPCS resources
print "Killing off all MQ's IPCS resources .."
ipcrm `ipcs | grep "mqm" | cut -c1-12 | sed 's/[m^s]/\-&/g'`
print "Ready for Queue Manager Restart ..."
rm @*

Chris Bell
Systems Consultant, British Airways (UK) © Xephon

MQSI V2 performance trace analysis

THE PROBLEM

The problem we had to address, and which this article describes, was
to search for performance bottlenecks in an MQSI V2 user trace,
which could have many message flows, each with up to 500 nodes in
the flow. Assistance in identifying which nodes took the most time
was also desired.

THE SOLUTION

The mqsichoptrace.pl program is used to reformat the MQSI V2
user trace formatted output to enable the user to diagnose performance
bottlenecks. A ‘debug’ level trace is recommended, as it shows the
user ESQL statements. It does this by:

• Keeping track of the elapsed time for each node.

• Simplifying the presentation of the data.

• Attempting to mark the start and end of flows and nodes.

Any MQPUT statements are also marked. Marking the end of a node
isn’t as clear-cut as one would like, but the eye should be drawn to the
right area of the trace.

The latest stable version of Perl is 5.6.0 and it can be downloaded from

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

www.perl.com. MQSI V2 runs on Windows NT, SUN, and RS/6000
platforms, as does mqsichoptrace.pl.

EXECUTION OF MQSICHOPTRACE.PL

Take the output from mqsiformatlog and supply it as input to the
mqsichoptrace.pl Perl program. mqsichoptrace.pl is a Perl (V5)
program with two parameters:

• --f=input_file_name (mandatory).

• --l= -1 or 0 or 1 (optional, 0 is default).

Example command line
perl mqsichoptrace.pl --f=trace.fil --l=-1 >summary.txt

EXAMPLE OUTPUT
14:18:13.937 136 The Execution Group 'sherwin' has processed
a configuration message successfully.
14:18:13.937 136 MQPUT to queue 'SYSTEM.BROKER.EXECUTIONGROUP.REPLY'
on queue manager 'CSIM': MQCC=Ø, MQRC=Ø; node
'ConfigurationMessageFlow.outputNode'.
14:18:13.937 136 Message successfully output by output node
'ConfigurationMessageFlow.outputNode' to queue
'SYSTEM.BROKER.EXECUTIONGROUP.REPLY' on queue manager 'CSIM'.
****** message put - Elapsed Time from previous Ø.ØØØ *****
******************* New Flow starting *******************************
14:18:21.75Ø 473 Parser type 'Properties' created on behalf of node
'Input XML' to handle portion of incoming message of length Ø bytes
beginning at offset 'Ø'.
14:18:21.75Ø 473 Parser type 'MQMD' created on behalf of node 'Input
XML' to handle portion of incoming message of length '364' bytes
beginning at offset 'Ø'. Parser type selected based on value
'MQHMD' from previous parser.
14:18:21.75Ø 473 Message being propagated to the output terminal;
node 'Input XML'.
****** Leaving Node - Elapsed Time from previous Ø.ØØØ *****
14:18:21.75Ø 473 Parser type 'XML' created on behalf of node 'Input XML'
to handle portion of incoming message of length '1681' bytes
beginning at offset '364'. Parser type selected based on value
'XML' from previous parser.
14:18:21.764 473 Node 'LoopControl': Executing statement 'SET
OutputRoot = InputRoot;' at (4, 1).
14:18:21.764 473 Node 'LoopControl': Evaluating expression 'InputRoot'
at (4, 18).
14:18:21.764 473 Node 'LoopControl': (4, 5) : Navigating path element.

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

14:18:21.764 473 Node 'LoopControl': Performing tree copy of 'InputRoot'
to 'OutputRoot'.
14:18:21.764 473 Node 'LoopControl': Executing statement 'SET dLoc =
CARDINALITY(OutputDestinationList.Destination.RouterList.DestinationData[])
+ 1;' at (6, 1).
14:18:21.764 473 Node 'LoopControl': Evaluating expression
'CARDINALITY(OutputDestinationList.Destination.RouterList.DestinationData[])
+ 1' at (6, 88).
14:18:21.764 473 Node 'LoopControl': Evaluating expression
'CARDINALITY(OutputDestinationList.Destination.RouterList.DestinationData[])'
at (6, 12).
14:18:21.764 473 Node 'LoopControl': (6, 46) : Failed to navigate to
path element.
14:18:21.781 473 Node 'LoopControl': Assigning value ''Propogate'' to
'OutputDestinationList.Destination.RouterList.DestinationData[dLoc].labelname'.
14:18:21.781 473 Message propagated to out terminal from compute
node 'LoopControl'.
****** Leaving Node - Elapsed Time for previous Ø.Ø31 *****
14:18:21.781 473 Message propagated to target label node by router
node 'PropogateOrEnd'.
****** Leaving Node - Elapsed Time for previous Ø.ØØØ *****
14:18:21.781 473 Message propagated to out terminal from node
'Propogate'.
****** Leaving Node - Elapsed Time for previous Ø.ØØØ *****
14:18:21.781 473 Message propagated to match terminal by check node
'FlowOrder1'.
****** Leaving Node - Elapsed Time for previous Ø.ØØØ *****
14:18:21.781 473 Node 'MakeNewDoc': Executing statement 'SET I = 1;'
at (1Ø, 1).
14:18:21.812 473 Node 'MakeNewDoc': Performing tree copy of
'InputRoot.XML.SW_CUSTOMER.BILLTO' to
'OutputRoot.XML.SW_CUSTOMER.BILLTO'.
14:18:21.812 473 Node 'MakeNewDoc': Executing statement 'SET
OutputRoot.XML.SW_CUSTOMER.SHIPTO =
InputRoot.XML.SW_CUSTOMER.SHIPTO[I];'at (19, 1).
14:18:21.812 473 Node 'MakeNewDoc': Evaluating expression
'InputRoot.XML.SW_CUSTOMER.SHIPTO[I]' at (19, 41).
14:18:21.812 473 Node 'MakeNewDoc': Evaluating expression 'I' at (19,
74).
14:18:21.812 473 Node 'MakeNewDoc': (19, 5) : Navigating path element.
14:18:21.812 473 Node 'MakeNewDoc': Performing tree copy of
'InputRoot.XML.SW_CUSTOMER.SHIPTO[I]' to
'OutputRoot.XML.SW_CUSTOMER.SHIPTO'.
14:18:21.812 473 Message propagated to out terminal from compute
node 'MakeNewDoc'.
****** Leaving Node - Elapsed Time from previous Ø.Ø31 *****
14:18:21.812 473 MQPUT to queue 'TESTOUT1' on queue manager '':
MQCC=Ø,
MQRC=Ø; node 'Qoutput'.
14:18:21.812 473 Message successfully output by output node 'Qoutput'
to queue 'TESTOUT1' on queue manager ''.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

****** message put - Elapsed Time from previous Ø.ØØØ *****
14:18:21.827 473 Message propagated to match terminal by check
node 'FlowOrder1'.
****** Leaving Node - Elapsed Time from previous Ø.Ø15 *****
******************** New Flow starting *******************************
14:18:3Ø.4Ø6 136 Parser type 'Properties' created on behalf of node
'ConfigurationMessageFlow.InputNode' to handle portion of incoming
message of length Ø bytes beginning at offset 'Ø'.
14:18:3Ø.4Ø6 136 Parser type 'MQMD' created on behalf of
node 'ConfigurationMessageFlow.InputNode' to handle portion of incoming
message of length '364' bytes beginning at offset 'Ø'. Parser type
selected based on value 'MQHMD' from previous parser.
14:18:3Ø.4Ø6 136 Message being propagated to the output terminal;
node 'ConfigurationMessageFlow.InputNode'.
****** Leaving Node - Elapsed Time from previous Ø.ØØØ *****
Finished:

RECOMMENDATION ON USE

Given a large user trace file with lots of nodes being executed, run with
level -1. This gives just two lines for every node and it should be
simple to spot the longest elapsed times. Re-run with the default of 0
(or just leave it off) to give more detail. It is usually best to pipe this
output to a new file. For completeness, a parameter value --l=1 will
show all trace data in the original, albeit in a better format.

SOURCE CODE
#!/usr/bin/perl
use Getopt::Long;
$secstor=Ø;
$secsold=Ø;
$nodemsg=" ";
$outline="";
if (!GetOptions("f=s","l:i")) {
 usage();
}
l=-1 gives summary detail and l=1 gives most detail; l=Ø is default
if ($opt_f ne undef) {
 $file = lc $opt_f;
} else {
 usage();
}
if ($opt_l eq undef) {
 $detail = Ø;
} else {
 $detail = $opt_l;
}

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

unless (open (FILE, "$file")) {
die "couldn't open the input trace file $file: $!";}
while (<FILE>) { # read the formatted MQSI V2 trace file
 chomp($_);
 if (/UserTrace/) { # trace line with most information
 if (($secsold != Ø) and (($nodemsg ne " " and $detail >=-1) or
($nodemsg eq " " and $detail > -1))) {
 chomp($outline);
 print "$outline\n";
 }
 if ($nodemsg ne " ") { # detected what we think is node end
 $secsdiff = sprintf("%.3f",$secsdiff);
 $msgline = "****** $nodemsg - Elapsed Time from previous
 $secsdiff *****";
 $nodemsg = " ";
 print "$msgline\n";
 }
 ($dat,$tim,$thread,$ut,$bip,$body) = split(' ',$_,6);
 ($hr,$min,$sec) = split(':',$tim);
 $secs = substr($sec,Ø,6); # assumes nn.nnn format
 $secsnew=($hr*36ØØ)+($min*6Ø)+$secs; # total seconds from midnight
 if ((/Parser type/) and (/Properties/)) { # the trigger to
 start a flow
 $secstor = $secsnew;
 $msgline = " ";
 print "$msgline\n";
 $msgline = "********* New Flow starting *******************";
 print "$msgline\n";
 }
 $secsdiff=$secsnew-$secsold;
 if ($secsold == Ø) { # 1st time through processing only
 $secstor = $secsnew;
 }
 $secsold = $secsnew;
 $timt = join(':',$hr,$min,$secs);
 $outline= join(' ',$timt,$thread,$body); # put the interesting
 bits back together
 if (/propagated/) { # triggers to exit a node
 $secsdiff=$secsnew-$secstor;
 $secstor = $secsnew;
 $nodemsg = "Leaving Node";
 }
 elsif (/Message successfully output/) { # final put node
 $secsdiff=$secsnew-$secstor;
 $secstor = $secsnew;
 $nodemsg = "Message Put";
 }
}
 elsif ($detail > Ø) { # print all trace lines?
 s/\s+/ /;
 $outline = $outline . $_;

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

 }
}
print "Finished:\n";
exit Ø;
sub usage {
 print "usage mqsichoptrace (options)
 options:
 --f=filename [--l= -1 or Ø or 1] \n";
 exit 1;
}

R E Branagan
Programmer, IBM Hursley (UK) © Copyright IBM

What’s new in MQSeries for AS/400 V5.1 and V5.2

INTRODUCTION

This article looks at the changes that have been made in MQSeries
versions V5.1 and V5.2 for the AS/400, and considers why it was
necessary to make those changes.

The AS/400 was one of the first MQSeries platforms and its design
concentrated more on performance than portability, taking advantage
of a number of unique OS/400 features. For an example of this,
consider the way that MQSeries queues resolve to user spaces
(*USRSPC) in the QMQMDATA library, or the implementation of
shared memory, using user spaces and user queues (*USRQ).

Since the first AS/400 release, MQSeries has been implemented on a
number of Unix and PC operating systems and these platforms have
tended to receive the bulk of Hursley’s development focus. New
features in MQSeries distributed platforms were not always easy to
implement in MQ/400 due to differences in architecture, and, because
MQ/400 was tied into the Rochester OS/400 release schedule, new
function was often released later, if at all.

By the time MQSeries for AS/400 had reached V4R2M1, the gap in
functionality between MQ/400 and the other distributed platforms
had grown to the point where it was obvious that something needed
to be done.

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The decision was taken to close the function gap with the next release
of MQSeries for AS/400, and that future releases of MQSeries on the
AS/400 should be tied into the MQSeries distributed family release
cycle. The objectives for the V5.1 release were:

• To achieve parity of function with the MQSeries Unix V5.1
platforms.

• To satisfy additional customer requirements – most significantly,
allowing better configuration of MQSeries’ job run attributes.

• To retain the best of the current product – for example, it was
important to retain the usability of earlier releases of MQ/400.

• To provide a migration path for existing users.

• To avoid any detrimental impact on performance.

FUNCTIONAL CHANGES

The following functions have been added into MQ/400 V5.1:

• Multiple queue manager support.

• Queue manager cluster support.

• Support for two-phase commit and local and global units of
work.

• Support for threaded applications.

• Enhanced work management configuration.

• Increased maximum message size (100 MB) and maximum
queue size (2 GB).

• Support added for MQCONNX , MQCMIT , MQBACK , and
(to some extent) MQBEGIN .

• Enhanced MQSeries classes for Java and bindings for COBOL.

The following functions are not supported in MQ/400 V5.1:

• The Admin. application. This was a product option in V4R2M1
and earlier releases, which has now been dropped. The new
WRKMQM command now provides some of the same function

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

in the base product, but remote administration of queue managers
is better handled by the NT MQSeries explorer.

• Publish/subscribe. There is no publish/subscribe broker for
MQ/400, but MQ/400 queue managers can participate in a
publish/subscribe network.

• XA transaction coordination. At the time of writing, MQ/400
does not support participation in XA transactions.

Discussion of the new function is divided into the following sections:

• Multiple queue managers and API changes.

• Changes to commands.

• Changes to the data storage model.

• Changes to the process model.

• Clustering and channel changes.

• Logging and recovery changes.

• Work management configuration.

• Security.

MULTIPLE QUEUE MANAGERS AND API CHANGES

One of the objectives of this release was to bring the standard V5
MQSeries API to the AS/400 while allowing applications written
against earlier releases of MQ/400 to run on V5, without the need for
changes or recompilation.

This was complicated because earlier versions of MQSeries for
AS/400 allowed users to make implicit connections to the (only)
queue manager. It was not necessary to issue an MQCONN to get a
connection handle because a default connection handle could be
passed to MQSeries functions. This feature was unique to the AS/400
and so was not supported by the V5.x API.

The delivery of new function, combined with previous release
compatibility, is accomplished by supplying the V5 API in the new
service programs LIBMQM (for non-threaded applications) and
LIBMQM_R (for threaded applications).

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

For compatibility with V4R2M1, separate service programs
AMQZSTUB and AMQVSTUB are supplied. These service programs
do not have access to new functions like MQCONNX , MQBEGIN ,
MQCMIT , and MQBACK , but they do support the default connection
handle, which allows implicit connections to the default queue
manager.

COMMAND CHANGES

To support multiple queue managers a new parameter MQMNAME
has been added to the commands that did not have it before. The
parameter is optional and is placed after the positional parameters so
that CL programs from the earlier releases will not need recompilation.

If the MQMNAME parameter is not specified it defaults to the default
queue manager. This will allow sites with a single queue manager to
continue using their MQSeries applications without any disruption. In
addition to the new MQMNAME parameter, the following commands
have been added or modified in other ways.

WRKMQM

The new ‘work with queue managers’ command (WRKMQM)
allows top-level administration of queue managers on a machine.
From this command you can see the status of all queue managers;
start, stop, and change queue managers; and work with queues,
channels, processes, namelists, etc.

WRKMQMTRN

The new ‘work with transactions’ command is needed for the two-
phase commit support, which has been introduced in V5. It lists
transactions which are in doubt because they have been prepared but
not committed, and allows you to choose whether to commit or back
them out.

ENDMQM

Over the past few releases, MQ/400 has had a number of utility
programs to fully quiesce a queue manager and all jobs connected to
it. In V5.1 these were combined into a single program (AMQSTOP4).
In V5.2 this program was incorporated into the ENDMQM command.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

The option ENDCCTJOB (end-connected jobs) and a time-out value
have been added to facilitate this. If ENDCCTJOB(*YES) is specified
on ENDMQM , then *ALL can be specified as the queue manager
name, allowing all queue managers to be ended. The
ENDCCTJOB(*YES) option does the following:

• Starts the command server (if necessary) and stops all channels.

• Ends the command server.

• Records all media images.

• Ends the queue manager.

• Ends any listeners.

• Ends any jobs with dangling connections to the queue manager.

• Reclaims the QMQM activation group.

• Cleans up shared memory and semaphores.

• Issues message AMQ6154 if successful.

• Issues message AMQ6153 if unsuccessful.

WRKMQMCHST

On V5.1 and earlier releases, the ‘work with channel status’ command
only showed SAVED channel status, which was the cause of some
confusion. In V5.2 we have added a new option – CHLSTS() – to the
command to allow users to specify *CURRENT , *SAVED , or *ALL
types of status. The panel has been modified to show what type of
status is displayed.

RCDMQMIMG

A common requirement has been for an easy way to find out which
journal receivers are required by MQSeries to restart the queue
manager or perform media recovery. In the past, this information has
been made available via the AMQ7460 and AMQ7462 messages,
issued when a queue manager starts and when a new journal receiver
is attached. In V5.2 these messages can be forced to the job log using
a new option on the RCDMQMIMG command.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RFRMQMAUT

A new command has been added in V5.2 called RFRMQMAUT
(Refresh MQSeries Authorities). This command performs the same
function as the new MQSC command REFRESH SECURITY, ie it
forces a refresh of the OAM’s cache so that it is no longer necessary
to stop and restart the queue manager for changes to group memberships
to take effect.

Miscellaneous

In addition to the commands detailed, a number of new commands
have been added to allow management of queue manager clusters and
namelists.

DATA STORAGE CHANGES

To support multiple queue managers, the data libraries QMQMDATA
and QMQMPROC, which were used in V4R2M1 and earlier releases,
have been replaced with a data library for each queue manager. These
libraries are named QMxxxxxxxxxx where xxxxxx is the queue manager
name, if less than eight characters. If the name is more than eight
characters it is truncated to eight characters. If there is already a library
with that name then a two-digit counter is appended to the name.

The queue manager library contains the queue manager’s local
journal and receivers; the channel definition file; a queue manager-
specific SNA receiver program; and the QMQMMSG message queue.
The QMQMMSG message queue is used as the message queue when
the queue manager starts jobs, so messages about the queue manager
jobs are written to this queue. Messages that used to be sent to
QSYSOPR are also written to this queue (for example the AMQ7460
and AMQ7462 messages about which receivers are required at start-
up and for media recovery).

Unlike QMQMDATA, the new queue manager libraries do not contain
any queue data or definitions – we now use stream files (*STMF) in
the IFS file system to store MQSeries object definitions and data. In
this respect, MQ/400 is now very similar to the PC and Unix
platforms.

When MQSeries for the AS/400 is installed, two top level IFS
directories are created:

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

• /QIBM/ProdData/mqm. Subdirectories below this directory
contain MQSeries include files, samples, and the trace formatting
file.

• /QIBM/UserData/mqm. Subdirectories below this directory
contain error logs, trace data, and a directory for each queue
manager holding the information that used to be in QMQMDATA.

In order to perform a full backup of MQSeries you must back up all
of the queue manager specific libraries, and all IFS directories below
the /QIBM/UserData/mqm directory hierarchy.

THE PROCESS MODEL

In previous releases, a user who called an MQSeries application
program did not need to be authorized to access the data in
QMQMDATA. The AMQZSTUB service program was owned by
QMQM and ran with the QMQM adopted authority using the
USRPRF(*OWNER) USEADPAUT(*YES) technique. This meant
that, when the user’s application called the MQSeries API, the
QMQM profile’s authorities would be adopted and the application
would have access to MQSeries data in the QMQMDATA library.

This method for adoption of authorities does not work for data in the
IFS, so from V5.1 onwards it is necessary for application jobs to
communicate with separate MQSeries agent jobs to access and
change MQSeries data. The agent jobs run under the QMQM user
profile and so have authority to MQSeries shared resources. The
application jobs communicate with the agents so the application has
no direct access to MQSeries resources, eliminating the risk of an
application accidentally or maliciously corrupting MQSeries data.

MQCONN is different from most calls in that the application
communicates directly with the Execution Controller (EC). The
Execution Controller owns the agent jobs. When an application tries
to make a connection, the EC decides whether to start a new agent, to
start a thread in an existing agent, or to re-use an existing agent that
has just been released by another application.

Figure 1 shows the jobs started by an MQSeries queue manager and
the way they relate to the user’s application (shown on the left). A
greater number of jobs is started for every queue manager, compared

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

with earlier releases. Configuring these jobs is discussed in the section
on work management. The queue manager that a job is servicing can
be identified by message AMQ7163 in the job log.

Fastpath binding

The MQCONNX API call (extended connect) includes an
MQCNO_FASTPATH_BINDING option, which runs all MQSeries
code in the application’s job rather than using an agent job. It is
effectively the old process model, but MQ/400 V5 cannot adopt
authorities so the following restrictions apply:

• The application must be running in multi-threaded job mode.

• The application must be running under the QMQM user profile.

• The application must not terminate abnormally – this could lead
to corruption of data.

For this reason, fastpath bindings should be used with extreme
caution, if at all, and applications using fastpath bindings should be
tested in-depth using the standard bindings before switching to
fastpath binding.

CHANNEL CHANGES

Clustering
Clustering is a major addition to MQSeries V5. Linking queue

Checkpoint process
(amqalmpx)

Channel Initiator
(runmqchi)

Authority Manager V5.2
(amqzfuma)

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

Execution Controller
(amqzxmaØ)

Agent
(amqzlaaØ)

Queue Manager shared resources

Repository Manager
(amqrrmfa)

MQCONN
MQDISC

MQOPEN
MQCLOSE
MQPUT
MQGET
etc

▼
▼

▼

▲

▲▲

▲

▼
▼

▼▼

▼ ▼

▼

User
application

MQI stub
(libmqm or
libmqm_r)

Figure 1: The process model

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

managers in clusters results in reduced system administration, increased
availability, and the potential for workload balancing.

To simplify administration, a queue manager can send a message to
any other queue manager in the same cluster without the need for
explicit channel definitions, remote-queue definitions, or transmission
queues for each destination – channels are defined dynamically when
needed.

Because you can define instances of the same queue on more than one
queue manager the workload can be distributed throughout the queue
managers in a cluster. Networks become more scalable because new
instances of the queue can be added by introducing new queue
managers into the network.

Clustering offers increased availability because multiple instances of
the same queue can be on more than one server. If one server fails then
messages will continue to be routed to the other servers with instances
of the queue.

TCP/IP channels

In V4R2M1 and earlier releases of MQ/400, all receiver channels ran
as separate non-threaded jobs (AMQCRSTA).

In V5.1 this was changed so that receiver channels ran as threads
within the listener job (RUNMQLSR). Channels that run as threads
in a listener start more quickly than channels that run as jobs, and,
because resources are shared within the listener, resource utilization
is lower than for channels that run as jobs. However, there is a
maximum of 1024 channel threads in a single listener, so they are not
as scalable as AMQCRSTA channels, and channels that run as
threads need thread-safe channel exits.

In V5.2 the decision was taken to allow channels to be configurable
- they can run as threads or jobs. The configuration is done in the
qm.ini file, and therefore, works at the queue manager level. There is
a new ‘ThreadedListener’ value in the Channels stanza which is set to
‘Yes’ or ‘No’.

The default is to run channels as processes (like V4) to make migration
easy for customers who are still using V4R2M1, or earlier. Customers
who upgrade from V5.1 and want to continue using threaded channels

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

must set ‘ThreadedListener=Yes’ in their qm.ini Channels stanza.

The STRMQMLSR command in V5 allows you to specify the
TCP/IP port number to listen on. This makes it easier to run multiple
listeners on different ports for a queue manager (in earlier releases the
port number could only be specified in the QMINI file in QMQMDATA).

SNA channels

The configuration of SNA channels has not been changed, except that
the AMQCRC6A program now connects to the default queue manager,
rather than the only queue manager. Each queue manager library
contains a copy of program AMQCRC6B . For a queue manager-
specific SNA channel connection, use routing data that will call the
appropriate QMGRLIB/AMQCRC6B program.

LOGGING AND RECOVERY CHANGES

Prior to MQ/400 V5.1, the only unit of work that was supported was
a single-phase global unit of work. In V5 of MQSeries for the AS/400
we now support local and global units of work. The global units of
work in V5 use a two-phase commit process.

Global units of work allow MQSeries and other resources, such as
databases or CICS, to work in conjunction with each other. Other
platforms support two types of global unit of work:

• Internal global units of work, where MQSeries acts as the
coordinating transaction manager, controlling other participants
(resource managers) via XA.

• External global units of work, where an external transaction
manager coordinates participants, controlling the units of work.

Because XA is not supported by MQ/400, only external global units
of work are allowed (with OS/400 acting as the coordinator). Global
units of work are only allowed in single-threaded jobs. This is because
an OS/400 unit of work has the scope of a job but an MQSeries
connection has the scope of a thread. This could allow a thread which
had not connected to MQSeries to attempt to commit or back-out
changes in MQSeries.

 A local unit of work contains only updates to MQSeries resources and

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

uses the API calls MQCMIT and MQBACK to commit or rollback
the unit of work. MQSeries for the AS/400 identifies the unit of work
type by checking whether commitment control is running with *JOB
scope when the first MQPUT/MQPUT1/MQGET call is made
under syncpoint.

• If commitment control is running, an external global unit of work
will be started and OS/400 will be the coordinator.

• If commitment control is not running, the unit of work will be
local and MQSeries will coordinate.

Once a local unit of work has started, beginning OS/400 commitment
control will not change the unit of work type. Disconnecting from
MQSeries will reset the type of unit of work.

MQBEGIN

XA is not supported by MQSeries for AS/400, so the MQBEGIN API
call can’t be used to register participants in a unit of work. It is
provided to aid compatibility when applications are ported from other
platforms. The MQBEGIN call will return an error:

(MQCC_FAILED - MQRC_ENVIRONMENT_ERROR)

if commitment control is running for the job and a warning:

(MQCC_WARNING - MQRC_NO_EXTERNAL_PARTICIPANTS)

if commitment control is not running.

Pending disconnect
When an external global unit of work is started, MQSeries registers
a special exit program with OS/400. This exit is called by OS/400
whenever a COMMIT or ROLLBACK command is issued. The exit
performs the work needed by MQSeries to carry out the commit or
rollback request and so it needs a connection to the queue manager. It
is, therefore, necessary to keep connections alive to a queue manager
if a disconnect is issued while a global unit of work is in progress. The
disconnect appears to complete normally but it is really only pending.

Once in this state, certain restrictions apply. The job can reconnect to
the same queue manager and even do more work in the same unit of
work, but the job cannot connect to a different queue manager, and the

44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

user cannot end commitment control. A commit or rollback request
completes the pending disconnect and lifts the restrictions.

WORK MANAGEMENT

The Work Management features of V5 allow customization of all
MQSeries job attributes. There is a tiered method for configuring
jobs, allowing you to change an individual job for a specific queue
manager, all jobs for a queue manager, or all jobs on a system.

Work Management Objects

A number of objects are supplied in the QMQM library to assist
MQSeries work management. These include:

• A QMQM subsystem where all MQSeries jobs run by default.
The subsystem description is supplied preconfigured with a job
queue entry for the QMQM job queue and routing entries for the
supplied class descriptions.

• QMQM job queue: linked to QMQM subsystem with maximum
active jobs set to *NOMAX .

• Class descriptions:

– QMQMRUN20 : high priority class, to start jobs with run
priority 20

– QMQMRUN35 : medium priority class, to start jobs with
run priority 35

– QMQMRUN50 : default class, to start jobs with run priority
50

– QMQMMSG : default message queue.

• Job descriptions:

– AMQZLAA0 : queue manager agent job description

– AMQZXMA0 : execution controller job description.

MQSeries work management configuration

Job descriptions are the most important element when customizing
MQSeries jobs.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 45

When the job is submitted the SBMJOB command takes the job
queue, library list, routing data, and output queue from the job
description. When the job starts, the routing data from the job
description is matched with routing entries in the subsystem which are
used to find a class. The class description defines the job run priority
and timeslice as well as less commonly used items, such as maximum
number of threads, maximum temperature for storage, etc.

When MQSeries submits jobs it follows this pattern:

1 Searches for a job description matching the job name in the queue
manager library.

2 If that is not found, it looks for the QMQMJOBD in the queue
manager library.

3 If that is not found, it looks for a job description matching the job
name in the QMQM library.

4 If that is not found, it looks for the QMQMJOBD in the QMQM
library.

Work management examples

The easiest way to understand how to configure MQSeries by changing
job descriptions is to look at some examples.

Example one

Configure all non-threaded receiver channels (AMQCRSTA jobs)
for all queue managers to run at priority 35.

• Create a new job description in library QMQM called
AMQCRSTA . Set its routing data parameter to
RTGDTA(QMQMRUN35).

• When a receiver channel is started, MQSeries will check the
queue manager library for job descriptions AMQCRSTA and
QMQMJOBD . As long as these don’t exist MQSeries will use
the newly created AMQCRSTA job description in library QMQM.
When the job starts, it will match its routing data with the
QMQMRUN35 routing entry in the subsystem routing table,
which will force it to use the job class with run priority 35.

46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Example two

Configure all jobs for a specific queue manager to use a different
subsystem.

• Create the new subsystem and associated objects including at
least one job queue. Make sure that the subsystem’s job queue
entry has the maximum number of active jobs set to *NOMAX
so that multiple MQSeries jobs can be run at the same time from
a single job queue.

• Copy the QMQMJOBD job description into the queue manager
library, and change its JOBQ() parameter to point to the new
subsystem’s job queue.

When MQSeries starts any job for the queue manager it will check for
a job description matching the job name in the queue manager library.
As long as that does not exist it will use the new default QMQMJOBD
job description, and put jobs on the job queue specified by the
modified JOBQ() parameter.

SECURITY

In earlier releases of MQSeries all MQSeries objects resolved to
AS/400 objects (usually *USRSPCs) in the QMQMDATA library.
When authorities were granted or revoked from MQSeries objects,
those authorities were mapped to equivalent OS/400 authorities and
granted or revoked from the underlying *USRSPC object.

In V5, MQSeries objects are represented by stream files in the IFS and
it is no longer possible to map MQSeries authorities directly to their
underlying objects. MQ/400 now uses the same security system as
MQSeries on the PC and Unix platforms, ie the Object Authority
Manager (OAM). The OAM is an MQSeries-pluggable service,
which means that third parties can write their own OAM to replace the
one supplied with MQSeries.

The default OAM in V5.1 uses a system whereby each MQSeries
object has an associated Access Control List file. These ACL files are
text files containing a list of users and a hex value for each user
indicating which authorities have been granted. The ACL files can be
browsed with the DSPF command to find out those users who have

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 47

authority to an object, and the DSPMQMAUT command will report
which authorities have been granted.

The default OAM in V5.2 has been changed to store authorities in an
MQSeries system queue called SYSTEM.AUTH.DATA.QUEUE. This
provides much better performance than the ACL files, but without a
text file it is not so easy to determine who is authorized to an object.
To solve this, a utility program called amqoamd is supplied. This
program can list which users are authorized to one or all objects for a
queue manager.

The OAM caches authorizations the first time an object is referenced.
If changes are made to a user’s group authorities the caches will not
automatically be updated. In V5.1 it was necessary to stop and restart
the queue manager to refresh the cache. In V5.2 the new command –
RFRMQMAUT – carries out this function.

Special authorities

The AS/400 has a number of special authorities which can be granted
to user profiles. One of these is *ALLOBJ authority and, when this
is granted to a user profile, that user can access all objects on the
system.

In the initial release of V5.1, MQSeries did not honour the *ALLOBJ
special authority, so, for example, the QSECOFR profile (all-powerful
security officer which has *ALLOBJ authorities) did not automatically
have authority to run MQSeries commands or access MQSeries data.
This was fixed in V5.2 (and by PTF in V5.1) so that a user with
*ALLOBJ authority can run all MQSeries commands and access all
data.

Command authorities

Two user profiles are shipped with MQSeries V5, QMQM and
QMQMADM. The QMQMADM profile is the MQSeries
administration profile. Users who need to run MQSeries commands
must have the QMQMADM profile as their group profile or
supplementary group profile.

Mark Phillips
MQSeries Development, IBM Hursley (UK) © IBM

MQ news

IBM has announced MQSeries link for R/3,
providing connection between SAP R/3
business applications and back-end systems
running MQSeries.

MQSeries link for R/3 products participate
with other MQSeries versions, including
MQSeries Integrator and MQSeries
Workflow.

It connects existing R/3 applications with
other R/3, R/2, and non-SAP legacy systems.
It also connects SAP R/3 with other
programs across IBM and compatible
platforms.

It works with the Application Link Enabling
(ALE) layer of the R/3 system to transmit
Intermediate Documents (IDOCs) into and
out of R/3, using MQSeries to carry the
information.

Out now, prices weren’t announced.

For further information, contact your local
IBM representative.

* * *

Fiorano software, a provider of standards-
based Java messaging solutions, has shipped
version 5.0 of its JMS 1.0.2-compliant Java
messaging server.

New features of FioranoMQ 5 include a
pluggable, scalable connection management
module, Java REALMS security support,
and message routing across geographically
distributed servers using the FioranoMQ
Repeater.

Fiorano has also released the Fiorano Test
Suite for JMS. It includes automated
conformance tests for each line of the JMS
1.0.2 API and provides complete profiling of
all JMS features. Test Suite for JMS is
available to evaluators of FioranoMQ 5 free
of charge for a limited time.

For further information contact:
Fiorano Software, 718 University Avenue,
Suite 212, Los Gatos, CA 95032, USA.
Tel: +1 408 354 3210
Fax: +1 408 354 0846
Web: http://www.Fiorano.com

* * *

x xephon

	Parsing XML messages using the MRM
	MQSeries V5.1 for NT: security for client/server
	Freeing a hung Unix queue manager
	MQSI V2 performance trace analysis
	What’s new in MQSeries for AS/400 V5.1 and V5.2
	MQ news

