
© Xephon plc 2001

May 2001

23

3 Setting up DB2 for MQSI V2 on
AIX

9 Using variable queue names in
MQSI V2

11 System management for
MQSeries OS/390 V5.2

30 Useful MQSeries clustering
configurations

39 Application design
considerations with MQSeries

44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/contnote.html.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/
mqupdate.html (you will need to supply a
word from the printed issue).

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

Setting up DB2 for MQSI V2 on AIX

INTRODUCTION

As you may have realized, the MQSI installation manual has very
little information on database configuration, seeming to assume that
middleware practitioners are also database experts, or that a friendly
database administrator will always be around when we install the
product. This article aims to complement the installation manual,
providing more information on how to set up and configure DB2
databases on AIX for use with MQSI V2.

DATABASES ASSOCIATED WITH MQSI V2

MQSI for AIX consists of two components:

• The Configuration Manager and Control Center, which runs on
Windows NT, exploiting the GUI.

• The Broker, which runs on AIX.

For each component you need to create a corresponding database.

In the Windows NT part there is one database for message repository
and another for configuration management.

In the AIX environment you have to create a broker database, and if
you use NEON Nodes you have to create a database for the NEON
Formatter and Rules.

THE CHALLENGE

Creating a DB2 database in the Windows NT environment is not
‘rocket science’ – with the nice GUI front-end tools on Windows a
middleware integrator should have no problem, even if knowledge of
DB2 commands is limited. The challenge lies with DB2 in the AIX
environment.

DB2 on AIX is very much like MQ in the AIX environment; there is
no GUI front-end to administer the DB2 systems. You have to use DB2
commands, or, to make life a little easier, you can use the DB2 Control

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Center on Windows NT to administer remote DB2 systems, in much
the same way that you would use MQ Explorer on NT to administer
remote MQ systems.

The best place to start gaining DB2 knowledge is from the Quick
Beginning Manual for Unix. A friendly DBA will definitely make
your life a lot easier. Documented below are the requisite steps for
setting up DB2 databases in the AIX environment in case a manual is
not available.

CREATING A DB2 BROKER DATABASE ON AIX

MQSI does not put high demands on the database when it is used to
manage a broker, so you can create the broker database using any
existing database instance on the machine. It is recommended that you
create a new database instance rather than use an existing one.

The following is taken from the MQSI for AIX Installation Manual
GC34-5841-01, chapter four, page 51:

1 Log on as root, using the following commands:

/usr/lpp/db2_6_1/instance/db2icrt -u <username><username>

2 Logon as <username>, using the following command:

.˜/sqllib/db2profile
db2 start database manager
db2 create database MQSIBKDB
db2 connect to MQSIBKDB
db2 bind ˜/sqllib/bnd/@db2cli.lst grant public CLIPKG 5

Note that .˜/sqllib/db2profile should be in the profile of all users.

3 In order for MQSeries Integrator brokers to use the database you
must update the ODBC configuration file (var/mqsi/odbc/
.odbc.ini) to contain definitions for the database. To do this, edit
the file and add the lines listed below.

– at the top of the file add a definition for the database name:

MQSIBKDB=IBM DB2 ODBC Drive

– at the end of the file add the following lines:

Driver=<INSTHOME>/sqllib/lib/db2.o
Description=Broker Database
Database=MQSIBKDB

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

The path identified by the driver definition will be specific to your
installation so you must replace the <INSTHOME> with the path
to your DB2 instance directory.

Following the above steps, a DB2 instance named mqsiuid was
created under the username mqsiuid; the new database MQSIBKDB
was created in the home directory of the mqsiuid. An MQSI broker can
then be created based on this broker database, and receive work
(message flows) deployed from the MQSI configuration manager
from the NT side.

SETTING UP DB2 ON AIX FOR REMOTE ADMINISTRATION

In order for the DB2 database on AIX to be administered by a remote
client, such as the Windows NT workstation or server where the MQSI
Configuration Manager runs, extra steps are need to make the newly
created mqsiuid DB2 instance accessible to the NT client DB2
Control Center.

1 On AIX, edit the etc/services file – there should be two lines like
these for the first db2inst1 instance:

db2cdb2inst1 5ØØØØ/tcp # Connection port for DB2 instance db2inst1
db2idb2inst1 5ØØØ1/tcp # Interrupt port for DB2 instance db2inst1

Create the next two entries like those below, using spare ports, eg:

db2cdb2inst2 5ØØØ2/tcp # Connection port for DB2 instance mqsiuid
db2idb2inst2 5ØØØ3/tcp # Interrupt port for DB2 instance mqsiuid

2 Update the database management configure file for the
SVCENAME for the second DB2 instance with the following
command: (this variable was blank)

db2 update dbm cfg using SVCENAME db2cdb2inst2

You should see the following when you do a DB2 get dbm cfg |
grep SVCENAME
TCP/IP Service name (SVCENAME) = db2cdb2inst2

3 Do a db2get –all to display the DB2 variables set for this
instance:

$ db2set -all
[i] DB2COMM=tcpip

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

[i] DB2AUTOSTART=TRUE
[g] DB2SYSTEM=unixdØ1
[g] DB2ADMINSERVER=db2as

4 If you do not see the variable set for DB2COMM and
DB2AUTOSTART , you need to add this by issuing the following
db2 commands:

db2set –i mqsiuid DB2COMM=tcpip

and

db2set –i mqsiuid DB2AUTOSTART=TRUE

where mqsiuid is the instance name.

5 Stop the instance mqsiuid by issuing db2stop.

6 Stop the db2as by issuing db2admin stop.

7 Start the db2as by issuing db2admin start.

8 Start the db2 instance mqsiuid by issuing db2start.

On the Windows NT side, start the DB2 Control Center, right-click on
the system and choose ‘add’, type in the remote host name and
retrieve, and then click ‘OK’. The remote AIX DB2 system will be
added to your Control Center for administration.

Expand the AIX DB2 system, connect as mqsiuid and its corresponding
password when prompted, and expand the DB2 instance – you should
see the DB2 instance mqsiuid there, ready for remote administration.

CREATING A DB2 NEON DATABASE ON AIX

In order to use NEON support with MQSI V2, a NEON database must
be created first. This database should be created on the same DB2
instance with the broker database MQSIBKDB.

Creating MQSINEON database

There are three steps required to configure the DB2 database for
NEON Formatter and Rules. These are:

• Create a new database to contain the rules and formats.

• Configure a client connection to the new database.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

• Create tablespaces within the database for the MQSeries Integrator
tables.

1 To create a database, log on to the AIX box as mqsiuid, the DB2
database instance user, and run the db2 command. At the command
line, issue the following command:

db2=>create database MQSINEON

2 To connect to a DB2 database with an ODBC driver, use the
Client Configuration Assistant found in: Start->Programs->DB2
for Windows NT -> Client Configuration Assistant and carry out
the following steps:

– click the ‘Add Database’ button.

– a window called ‘Add Database SmartGuide’ appears. Select
the ‘Manually configure a connection...’ option and click
‘Next’.

– connect to the AIX server.

– select TCPIP for the protocol and click ‘Next’.

– type the name of the host machine where the database
instance mqsiuid is running and the port on which the
instance is listening; in our case it is 50002.

– type the name of the database MQSINEON and click ‘Next’.

– change the alias if you want a different name from that of the
database and click ‘Next’.

– the last screen should have a ‘tick’(✓) in the register database
as an ODBC source, and the system data source should be
selected.

– click ‘Done’ to create the service and ODBC driver. It asks
whether to test the connection.

– click ‘Test Connection’.

– enter the mqsiuid as user and its associated password. You
are then successfully connected.

3 To create the tablespace for the NEON Formatter and Rules, use

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the DB2 command line processor found in Start->Programs-
>DB2 for Windows NT-> DB2 command line processor and issue
the following commands:

db2=>connect to MQSINEON user mqsiuid using mqsipw
db2=>create tablespace FORMATTER_DATA managed by system using

('FORMATTER_DATA')
db2=>create tablespace FORMATTER_INDEX managed by system using

('FORMATTER_INDEX')
db2=>create tablespace RULES_DATA managed by system using

(RULES_DATA ')
db2=>create tablespace RULES _INDEX managed by system using

('RULES _INDEX')

Use the quit command to exit the DB2 command line program:

db2=>quit

Install the database schema

1 At the command line prompt, change to the install.sql directory,
for example:

cd c:\Program Files \IBM MQSeries Integrator 2..1 \install.sql

2 To build the MQSeries Integrator schema, type one of the
following:

– open a Windows NT command prompt window and type the
following: db2cmd.

– the db2cmd command opens another command prompt
window. Switch to that window and run the following
command:

inst_db.cmd mqsiuid mqsipw MQSINEON

3 As the script runs, answer the prompts and look for errors.

4 When the script completes the instantiation, a verification message
appears.

5 For installation details look at the inst_db.log file located in the
c:\temp directory.

When the above is done, you can use the NEON Formatter and Rules
from NEON support found in start->programs->IBM MQSeries
Integrator 2.0.1->Neon Support->NEON Formatter or NEON Rules.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

Type in user-id mqsiuid; password mqsipw; DBMS ODBC – DB2;
Driver MQSINEON; leave the qualifier blank and click ‘OK’.

You should then be connected to the NEON Formatter or Rules GUI.

CONCLUSION

There are quite a lot of similarities between MQSeries and the DB2
products; the similarity is particularly obvious on the OS/390 platform.
It is always beneficial for middleware professionals to master more
DB2 skills, including system administration and management skills.
The learning curve isn’t as steep as one might think. Hopefully, this
article will serve as a useful starting point.

Alex Au
I/T Architect, IBM (USA) © Alex Au

Using variable queue names in MQSI V2

One of the restrictions of MQSI V1 was its inability to vary the queue
name when writing a message. When a message is processed by a V1
rules engine it must be written to a specific queue. That queue is hard-
coded in the subscription of the rules definition. Various ways of
achieving a variable queue name have been developed by customers
so that the message itself can carry an indication of the queue to which
to write the message. However, this involved either contrived formats
and re-processing of messages through a rules engine, or writing post-
processors to determine the ultimate destination queue.

Superficially, message flows within MQSI V2 appear to carry the
same restriction. However, it is possible to manipulate the queue name
(and the queue manager name if necessary) by using the destination
list and by modifying advanced properties within a message flow.

The destination list is an array of queue name/queue manager name
pairs, and, like the message properties, may be manipulated for use by
subsequent nodes, particularly the MQOutput node.

By altering nodes within the message flow in the following way, the

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

queue name can be set to any desired value, based, for example, on the
content of the application data within the message body.

THE COMPUTE NODE

This is where the destination list must be set using appropriate ESQL
statements, eg:

SET
OutputDestinationList.Destination.MQDestinationList.DestinationData[1].queueName
 = 'QUEUE.NAME.1';
SET
OutputDestinationList.Destination.MQDestinationList.DestinationData[1].queueManagerName
 = 'QUEUE.MANAGER.1';
SET
OutputDestinationList.Destination.MQDestinationList.DestinationData[2].queueName
 = 'QUEUE.NAME.2';
SET
OutputDestinationList.Destination.MQDestinationList.DestinationData[2].queueManagerName
 = 'QUEUE.MANAGER.2';

The advanced properties compute node setting must be changed to
‘Destination and Message’ so that the destination list will be transmitted
to subsequent processing nodes along with other message data and
properties.

THE MQOUPUT NODE

The advanced properties destination node must be changed from
‘Queue Name’ to ‘Destination List’.

In the example above, the values are supplied as literals, however, in
a real message flow these are likely to be values derived from data
within the message body, either directly or as the result of data
concatenation.

Compute nodes may also access the destination list set by previous
compute nodes. In this case, the data must be referred to as
InputDestinationList…. etc.

Whilst the DestinationList is an array of queue names, it is possible to
utilize just the first subscript of the array to denote a single queue.

Ken Marshall
MQSeries Consultant, MQSolutions (UK) © MQSolutions

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

System management for MQSeries OS/390 V5.2

INTRODUCTION

This article discusses the new facilities and features of MQSeries for
OS/390 V5.2. It will not focus on the function or usage of these
features, but on their impact from a systems management perspective.
The following new features will be discussed:

• Shared queues.

• Command scope.

• Global repository.

• Shared channels.

• Enhanced accounting and statistics.

• Queue and connection status.

• Dead letter queue handler.

There are a number of additional features in MQSeries for OS/390 5.2
that do not specifically impact management and these will not be
covered.

One item that should be addressed relates to the features of MQSeries
for OS/390 5.2 and MQSeries for Distributed Systems 5.2. While the
release numbers were synchronized to reflect the capabilities of each,
the two releases are separate code bases and are not completely
equivalent. The material covered in this article is unique to MQSeries
for OS/390.

SHARED QUEUES

The key benefit in MQSeries for OS/390 5.2 is shared queues. The
need to share messages across the sysplex has been a long-term
requirement for MQSeries. For example, when used with CICS
Transaction Server in a CICSplex, workload balancing could not be
used because of the affinity that existed between the CICS region and
the queues containing messages.

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In this first release of shared queue support IBM has provided a basic
level of support. There are restrictions on messages that can be put in
shared queues: first, the messages must be non-persistent, and second,
the maximum message size is 63K. This size limitation is the result of
the maximum supported Coupling Facility size minus some MQSeries
overhead. The Coupling Facility is the key element of shared queues.
The queue definition and the messages are stored in the Coupling
Facility. In order to use this support, the minimum level for the
operating system is OS/390 V2.9. The Coupling Facility must be at
level nine.

Figure 1 shows the basic concept of shared queueing, with four queue
managers across three images in the sysplex, sharing a coupling
facility. A shared queue called SQ1 has been created and three of the
queue managers are sharing this queue, some putting and some getting
messages. Each of the queue managers has a number of local queues
that are not shared.

The set of queue managers that can access the same shared queues is
called a Queue Sharing Group (QSG). Figure 1 shows that we can
create a queue sharing group, QSGP, consisting of the three queue

QMG1 QMGA QMGB QMGZ

SQ1

▲

▼

▼

▲

Figure 1: Basic concept of shared queueing

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

managers, QMG1, QMGA, and QMGZ. The QMGB queue manager
is not participating in the queue sharing group.

Additionally, as mentioned in the restrictions above, the queue is
created as part of a CF structure, and, in this case, SQ1 could be placed
in a structure called QSGPSTR1. Note that the CF structure name is
preceded by the queue sharing group name.

Considerations

Coupling Facility usage

The Coupling Facility is a shared resource across the sysplex. While
continually increasing in capacity and performance, usage of this
should be well understood before implementing a shared queueing
environment. A number of products provide detailed analysis of the
Coupling Facility.

Because of restrictions within the Coupling Facility, the following
maximum limitations are imposed:

• Eight million messages.

• 512 shared queues per CF structure.

• 512 CF structures per sysplex.

• 63 CF structures per queue manager.

Because of other usage of the Coupling Facility, the maximum
number of objects needs to be assessed and limitations may be further
reduced in real-life operation. Before being used by MQSeries, the CF
structures must be defined to the Coupling Facility policy. These
structures should be carefully managed to prevent problems such as
excessive number of structures or orphaned structures. Deleting a
structure once it’s been created means deleting all queues in the
structure, restarting the queue managers, and updating the Coupling
Facility policy. The structures created use a naming convention where
the queue sharing group prefixes the referenced structure name.

A special structure, qsgCSQ_ADMIN, is created to hold MQSeries
objects. User objects cannot use this structure. Note that the name
contains an underscore (_), which is not supported in user-defined
structures.

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries commands

Since there is really only one instance of the queue, actions taken
against the queue have a global affect. That is, if you alter the
maximum depth of the queue all queue managers are aware of the
change. You cannot restrict the queue from one of the queue managers;
for example, if a problem was occurring on QMGZ and it was disabled
from its queue manager, the queue would be disabled from all queue
managers in the QSG.

Performance events

MQSeries generates performance events in several cases. For queue
full, queue depth high, and queue depth low, the condition will be
observed by one queue manager, but it may not be the queue manager
that contributed to the condition. That is, in the example above, if
queue manager QMG1 was putting ten messages a second to SQ1 and
QMGA was putting one message a minute, it is still possible that
QMGA could put the message that caused the event to occur. In order
to address it, MQSeries will send multiple events. The first event will
be raised at the observing queue manager – QMGA in this example.
The remaining queue managers will then raise events that correlate
back to the original event. These will include the activity statistics for
the queue for each of the queue managers. Even queue managers that
did not use the queue will raise events.

Service interval events are not raised for shared queues.

Statistics

Some of the shared queue information is kept in the local queue
manager. This includes the statistics for the queue, including input and
output counts and queue depth. Input and output count will only
represent the counts from a specific queue manager, not all queue
managers. Queue depth will show the queue depth at the last access
to that queue by the queue manager. Note that this can affect the
statistics reported in the service level event described above.

Triggering

Triggering is handled somewhat differently with shared queues. The
triggered queue or the initiation queue, or both, can be shared queues.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

When using triggering types of ‘first’ and ‘depth’, a CF facility is used
for monitoring. If triggering is required, the CF will notify the queue
managers, which will in turn generate the trigger message.

For triggering of type ‘every’, the queue monitor that is putting the
message will check the trigger conditions and generate the trigger
message.

One difference with shared queues is that uncommitted messages are
not included in the trigger count. This addresses a problem in non-
shared queues when uncommitted messages are counted, potentially
causing a trigger event to be raised – but no messages will be available
to the triggered application.

If the trigger monitors are monitoring the same queue it is possible that
multiple trigger messages will be produced, initiating a race within the
QSG to service the message.

Indexed queues

Another difference in behaviour has to do with indexed queues.
Queues can be indexed by message id, indexed by correlation id, or
not indexed. In non-shared queues, if an application does a ‘get’ by
message id or by correlation id and the queue does not have the
matching index, MQSeries will default to an inefficient sequential
technique to retrieve the message. With shared queues, the index is
built in the Coupling Facility. If the index does not match on the ‘get
by’ request, an error will be returned to the application because the
impact to the Coupling Facility, which is a cross-system resource,
would be considered too large.

Recovery

One of the benefits of shared queueing is that, in the case of a queue
manager failure, sufficient information is contained in the Coupling
Facility for another queue manager to perform recovery. Partial
recovery is possible even when the unit of work contains updates to
non-shared queues.

Persistence

One change that should be considered is that non-persistent messages
will outlive a queue manager. That is, with non-shared queues, non-

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

persistent messages are deleted when the queue manager terminates
and restarts. However, for shared queues, the messages are stored in
the Coupling Facility and are independent of the queue manager that
created them. Thus, they will remain even if the queue manager is
restarted. In fact, the messages will remain except for a Coupling
Facility failure. This has the advantage of almost being persistent, as
the Coupling Facility is highly reliable. If your application can live
with the small potential for failure, you may be able to use non-
persistent messages instead of persistent ones. Another implication is
that, if your applications rely on queue manager restart cleaning up
non-persistent messages, this will no longer occur.

Duplicate queues

One small potential problem is the occurrence of two queues of the
same name – one being a shared queue and the other being a non-
shared queue – within the same QSG. This is not allowed. However,
it is possible to create the situation by having an existing non-shared
queue defined in a queue manager that is added to an existing queue
sharing group that contains a shared queue of the same name. It is also
possible for this to occur if a queue is defined as a shared queue when
the queue manager that contains the non-shared queue is inactive. At
all other times, MQSeries will return an error if duplicate names exist.

However, once the condition is recognized, you will not be able to
open either queue and an error will be returned. The only option is to
fix the problem by deleting one of the queues. If the queue contains
messages that you don’t want to lose, the ‘move messages’ command
will move them to another queue.

QUEUE SHARING GROUPS

A queue manager is joined to a queue sharing group by specifying the
QSGDATA parameter in the CSQ6SYSP parameter macro:

QSGDATA=(qsgname,dsgname,db2name,db2servers)

Where qsgname is the name of the queue sharing group, dsgname is
the name of the data sharing group to be used, db2name is the name
of the DB2 subsystem to connect to, and db2servers is the number of
server tasks to create for activity in DB2.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

Before joining the queue sharing group, the DB2 databases must be
in place and the queue manager registered as a member of the queue
sharing group using the queue sharing group utility, CSQ5PQSG.

Benefits

In addition to shared queues, there are several benefits to using a
queue sharing group. These include:

• Command scope.

• Inter-group communication without channels.

• Group definitions.

• Shared channels.

Each of these will be explored in more detail in later sections.

One benefit to mention briefly here is that, when connecting
(MQCONN), batch and TSO applications can specify the queue
sharing group name rather than the queue manager name. This allows
applications to connect to any queue manager available on the local
system in the queue sharing group. This is not available for CICS or
IMS connections, which can only specify a queue manager name.

Considerations

Association

A queue manager can belong to one, and only one, queue sharing
group. A queue sharing group is a single set of queue manager. Unlike
clustering – where clusters can overlap – a given queue manager can
belong to multiple clusters, and each cluster can contain a different set
of queue managers. Once added to a queue sharing group it is not easy
to remove the queue manager from it. Changing the name of the
associated queue sharing group will cause the queue manager to fail
at startup.

DB2

An important consideration is that, in order to use a queue sharing
group, you must also use DB2 (V5.1 or higher). While not overly
complex this may require an additional level of skills that perhaps

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

isn’t available among the MQSeries group. The queue sharing group
is tied to a DB2 data sharing group (DSG). During queue manager
startup, if DB2 is not active the queue manager will wait for it. RRS
(Resource Recovery Services) is also required for coordination of
recovery. Once active, intermittent outages of DB2 are tolerated, but
if DB2 services are required the queue manager will not be able to
perform any actions that require access to DB2, including starting
shared channels and opening shared-queues it has not previously
accessed.

Authority to access DB2, the data sharing group, and the DB2
resources is required.

Security

A new model of security is available for the queue sharing group. To
simplify authority management, the queue sharing group name can be
used to create resources instead of the MQSeries subsystem name. For
example, using our example, QSGP.SQ1 could be used instead of
QMG1.SQ1, QMGA.SQ1, and QMGZ.SQ1. However, you may still
want to restrict access on a queue manager basis so you can mix and
match the definitions used. To eliminate some ambiguity across the
queue sharing group, you can also use switch classes to customize
which set of definitions to use. If you are not familiar with switch
classes, they are basically options set via RACF classes under the
control of the security administrator, rather than MQSeries parameters
that could be set by the MQSeries administrator.

Security messages have been enhanced to improve ease-of-use of
information. Because of the increased options, messages that explain
the state of security are displayed at queue manager start as well as
after a refresh security command.

COMMAND SCOPE

Command scope is a new feature that provides a mechanism to route
commands around the queue sharing group. After connecting to any
member of the queue sharing group the following options are available:

• cmdscope(' ') – (the default) indicates that the command is
destined for the current queue manager only. Basically, this is the
same as today.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

• cmdscope(qmgr) – allows a command to be targeted to another
queue manager. For example, if connected to QMG1, entering the
command DEFINE QL(AAAA) CMDSCOPE(QMGZ) would
route the command to QMGZ to create the local queue.

• cmdscope(*) – routes the command to all queue managers in the
queue sharing group. For example, as in the above example,
DEFINE QL(AAAA) CMDSCOPE(*) would route the
command to QMG1, QMGA, and QMGZ, and three queues
would be created.

After completion, the responses from each of the queue managers
participating would be displayed back to the requestor at the originating
queue manager.

Considerations

Sysplex management

When using command scope, the requests can only be routed with the
queue sharing group associated with the current queue manager. It
cannot be used to route work to queue managers that are outside of the
queue sharing group or in another queue sharing group. As a result, the
end user entering the commands must have a good working knowledge
of the topology to connect to the proper queue manager to invoke the
command. A queue manager in the required queue sharing group is
needed on the same system as the user because MQSeries does not
support a remote connect. Vendor products that provide sysplex
support are typically not restricted in this fashion.

INTER-GROUP COMMUNICATION

This is a similar concept to that used in command scope and event
propagation. Queue managers in a queue sharing group are able to
communicate directly with one another. Given the right usage, messages
can also use this communication layer. If the message is destined for
one of the queue managers in the queue sharing group and it meets the
requirements for shared queueing (non-persistent and no bigger than
63K), the message will be routed to the target queue manager without
the use of MQSeries channels. If the message does not meet these
requirements it will be placed in the appropriate transmission queue
and routed via traditional MQSeries channels.

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Considerations

Existing structure

If messages put by the same application vary widely in size or are very
close to 63K it is possible that some messages will use the inter-group
communication and others the traditional methods. MQSeries on
OS/390 does not currently support any of the grouping methods
supported on the distributed platforms. This could result in messages
being delivered out of sequence to the retrieving application.

Unless all messages are ‘shared queue-capable’, which is very unlikely,
you will still need to define and manage your normal transmission
queues and channels.

GROUP DEFINITIONS

Group definitions extend the current object definition facilities to
allow objects to be stored in a shared repository. For this repository
MQSeries uses a DB2 database. This repository can be used to store
all types of MQSeries objects – not just queues. A side-benefit is that
SQL could be used to interrogate the definitions to create reports or for
correlating definitions. Update of the data in the database is not
supported except via the standard MQSeries command interfaces.

Figure 2 shows the potential location of the object instances.

When creating objects, a new keyword, QSGDISP (queue sharing
group disposition), determines where it will be created.

• QSGDISP(QMGR) – the default; the object will be created only
within the queue manager page sets. This is the same as is done
for existing levels of MQSeries. In the example above, QueueB,
QueueC, QueueX, and ChnlZ were defined as QMGR objects.

• QSGDISP(GROUP) – definition is to reside in the DB2 repository
and the object is instantiated in each of the queue managers in the
queue sharing group. In the example above, QueueA, ProcA, and
ChnlX were defined as GROUP objects. For each, a copy object
was created in each of the queue managers.

• QSGDISP(SHARED) – definition is a shared queue. In the
example above, SQ1 and SQ2 were defined as shared queues.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

Considerations

QSGDISP
When issuing other commands, such as ‘alter’, additional QSGDISP
values apply and results will vary depending on which is used.

• QSGDISP(LIVE) – the default, and only applicable for display
commands. The response will include one entry for each object
and will be a qmgr, a group (copy), or a shared definition (in the
case of a shared queue). In the example above, if issued with a
command scope of QMGZ, it would display QueueA, QueueX,
ProcA, ChnlX, ChnlZ, SQ1, and SQ2.

• QSGDISP(QMGR) – applicable on all commands and the
default for all commands except display. The target of the
command is a definition defined to the queue manager. If the
definition is another type (group or shared), the command will
fail with an ‘object not found’ error. In the example above, if
issued with a command scope of QMGZ, the alter command

QueueA(copy)
QueueX(qmgr)
ProcA(copy)
ChnlX(copy)
ChnlZ(qmgr)

QMGA QMGZ

QueueA(copy)
QueueC(qmgr)
ProcA(copy)
ChnlX(copy)

SQ1(shared)
SQ2(shared)

QMG1

QueueA(copy)
QueueB(qmgr)
ProcA(copy)
ChnlX(copy)

QueueA(group)
ProcA(group)
ChnlX(group)

Figure 2: Potential location of the object instances

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

would be valid for QueueX, and ChnlZ. If used or defaulted for
QueueA, the command would result in an ‘object not found’ error.

• QSGDISP(GROUP) – applicable to all commands. The target
of the action is the group definition. Once altered, the change will
be broadcast to the queue sharing group. In the example above,
regardless of command scope, the valid objects would be the
QueueA, ProcA, and ChnlX group objects. Note that it is possible
that these object definitions may not match the current copy
definitions in use in each queue manager.

• QSGDISP(COPY) – applicable to update commands only. The
target of the action is the local copy of the object created from a
group definition. Altering the object will remain in effect until the
queue manager is restarted or a change to the group object is
broadcast. In the example above, based on command scope, the
valid objects would be the QueueA, ProcA, and ChnlX copy
objects. Note that it is possible that these object definitions may
not match the global definition or the other copy definitions in use
in each queue manager.

• QSGDISP(SHARED) – only applicable to local queue
commands. The target of the command is a queue that will exist
within the Coupling Facility; when defining a queue a DB2
version will also be created for tracking. In the example above,
regardless of command scope, the valid objects would be SQ1
and SQ2.

• QSGDISP(PRIVATE) – a generic request applicable to alteration
commands. The target of the command is either a queue manager
local definition QSGDISP(QMGR) or a copy of a group object
QSGDISP(COPY). In the example above, if issued with a
command scope of QMGZ, it would represent QueueA, QueueX,
ProcA, ChnlX, and ChnlZ.

• QSGDISP(ALL) – a generic request applicable to display
commands. The command will display all objects. For group
objects, the object will be shown once for the group definition and
once for each queue manager copy. Queue manager objects and
shared queues will be listed once. In the example above, if issued
with a command scope of QMGZ, it would display the group

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

objects for QueueA, ProcA, and ChnlX, the copy objects for
QueueA, ProcA, and ChnlX, the queue manager objects QueueX
and ChnlZ, and the shared objects SQ1 and SQ2.

Group broadcast

As noted above, commands that use QSGDISP(GROUP) will be
broadcast within the queue sharing group. So it is not necessary to use
cmdscope to route the requests. If a queue manager is not active at the
time of the request it will get the current definition at queue manager
startup. Conditions at any of the queue managers could prevent the
command from completing. For example, a delete command will not
complete if the local copy has messages. The request will be re-
attempted at queue manager start. One unlikely but possible situation
may arise here. If the user making the request did not have the
authority to make the change on all of the queue managers the initial
request will fail at those queue managers. However, the command will
be retried at the next queue manager start under the authority of the
queue manager rather than the user, and it will succeed.

Canned definitions

QSGDISP as a parameter is not supported on all releases of MQSeries.
And in fact, for 5.2, it is not valid except as QSGDISP(QMGR) on
a queue manager outside of a queue sharing group. As such, canned
definitions from vendors or other sources will most likely not specify
it. If you want to create these objects as group definitions in a queue
sharing group, you will need to modify the canned definitions manually.

SHARED CHANNELS

Shared channels were also introduced in MQSeries for OS/390 5.2. It
is somewhat misleading to refer to channels as ‘shared’ because it
implies that an instance of a channel could be used by multiple queue
managers, like queues, but in fact this is not the case. It is the
synchronization queue associated with the channel that is shared. A
shared channel is not defined explicitly as such. Its shared state is
determined by its usage. As with normal channels, only a single
instance of a shared channel is active at any given time. However,
another queue manager could host the channel if the existing one were
to fail.

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Inbound shared channels

Inbound shared channels provide fault tolerance and load balancing.
They are receiver channels that refer to a generic port or LU name.
Sending channels on remote queue managers refer to the generic port.
When the connection is made, the communications logic determines
which receiving queue managers reference this generic port and then
routes the connection request to one of them. If the queue manager
were to fail, during retry logic the channel may be connected with
another queue manager. Synchronization data stored in the shared
synchronization queue is used to synchronize with the remote sender.
The queue manager will also have a specific port or LU name that will
be used for normal channels.

Considerations

Message routing

It is possible to define as ‘shared’ channels that are only used for
queues. Alternatively, shared channels could be used for all
communication. In this case, from the remote queue manager’s point
of view, the connection is with a specific queue manager, but in reality,
the connection may not be with that queue manager. Thus, when
messages arrive in the associated queue manager, they may be
targeted to one of the others in the queue sharing group. In this case,
the message will be routed to that queue manager, either using inter-
group routing or via normal channels. If the target is a shared queue
the message will put directly to the queue.

Clustering

When used with clustering, with or without shared channels, shared
queues take on an interesting perspective. From the cluster perspective,
each member of the queue sharing group will have an instance of that
queue, so remote systems will attempt to route work to all members
of the queue sharing group. For example, if the remote system is doing
round-robin to members of the queue sharing group, as each puts its
message it will place it in the shared queue. Since the queue is shared,
the message may be processed by applications on any of the queue
managers, thereby increasing the value of workload balancing. If the
channel is shared, it is interesting to note that the remote queue

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

manager may intend the message to be processed by one queue
manager, but in fact it might be processed by a different one.

Channel disposition

A new keyword is available for channel action commands, CHLDISP
(channel disposition), and while it may appear to be the same, it has
nothing to do with QSGDISP. Channel disposition is used to indicate
the scope of channel requests. ‘Private’ indicates the request is for
normal MQSeries channels and ‘shared’ indicates it is for shared
channels.

Command Scope (CMDSCOPE) can be used with these commands
to direct a command to a given queue manager in the queue sharing
group or to broadcast it to all queue managers.

Outbound shared channels

Outbound shared channels are channels that refer to a transmission
queue that is a shared queue. At any given time, the channel will be
active within one queue manager in the queue sharing group. If that
queue manager were to fail, another queue manager could take over
the channel. Synchronization data stored in the shared synchronization
queue is used to synchronize with the remote receiver.

Considerations

Start channel

One of the major differences with outbound shared channels is that
only a single instance is active in the queue sharing group at a time.
Issuing a start channel in one queue manager may result in the channel
being started in another. The channel start may be routed around the
queue sharing group to another queue manager.

Channel commands

The display channel status command issued in one queue manager
may reflect the status in another. This will be covered in more detail
in the following section.

As with inbound channels, channel commands must include the
CHLDISP command to indicate the scope of the request.

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Command Scope (CMDSCOPE) can be used with these commands
to direct a command to a given queue manager in the queue sharing
group.

Display channel status

Depending on how the command is issued, the results will be based
on data kept in one of four locations. Table 1 shows the source of a
‘display channel status’ command based on the options used.

If the command uses the SHORT and CHLDISP(PRIVATE)
keywords, the channel status will be obtained from the local queue
manager’s local memory. If the channel is a shared channel, no status
will be displayed.

If the command uses the CURRENT keywords and any channel
disposition, the result will be from the local queue manager’s cache.
If the channel is a shared channel, but it is not active in the current
queue manager, no status will be displayed.

If the command uses the SAVED and CHLDISP(PRIVATE)
keywords, the status will be obtained from the local channel sync
queue. Only private channel status is kept in this queue.

If the command uses the SAVED and CHLDISP(SHARED)
keywords, the status will be obtained from the shared channel sync
queue. Only shared channel status is kept in this queue.

If the command uses the SAVED and CHLDISP(ALL) keywords,
both of the above will be returned.

Command source Options used

Local queue Short Private
manager Current ALL ❘ Shared ❘ Private

Local sync
queue Saved Private ALL

Shared sync
queue Saved Shared ALL

Sync table
(DB2) Short Shared

Table 1: Source of ‘display channel status’ command

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

If the command uses the SHORT and CHLDISP(SHARED)
keywords, the data will be obtained from a status kept in a DB2
database.

When used in conjunction with QSGDISP and CMDSCOPE, the
results will vary based on the location of the channel instance and may
produce some unexpected results.

OTHER 5.2 ENHANCEMENTS

This section will look at some enhancements that affect systems
management but do not require a queue sharing group.

SMF statistics

The type 115 SMF records, which contain queue manager statistics,
have been expanded to include statistics from the Coupling Facility
services and the DB2 services running within the queue manager. The
Coupling Facility statistics include the requests made, and elapsed
times. For DB2, the statistics are more detailed and provide basic
server statistics plus detailed request type information and associated
timings.

Another change is that, instead of defining an SMF interval for the
queue manager, the SMF data collection can be tied to the system-
wide SMF collection (triggered by an SMF broadcast). This simplifies
correlation of MQSeries data with data from other subsystems.

Performance collection

Additional detail performance collection is available. This is collected
as extensions to the type 116 SMF records. These statistics are cut at
the end of each task (job) and are also collected at the SMF collection
interval for long-running tasks. The statistics include task-specific
information, such as type, identity, call totals, plus queue level
statistics indicating which queues were accessed, and timings. The
queue level statistics are very detailed and include information
commonly needed by MQSeries support.

While the statistics are fairly detailed, the primary focus was charge-
back, although the data can be collected and correlated to provide
additional insights into MQSeries operation. Partly because of the

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

level of information collected, the activation of the detailed performance
data will add an overhead of between seven and thirteen per cent.

‘Clear queue’ command

The ‘clear queue’ command available on distributed queue managers
is now supported on OS/390. Without this command, clearing messages
from a queue required an application program to read the queue. This
is much more efficient, especially if there are a lot of messages on the
queue.

Queue status

A new command is available to view the status of queue manager
requests. This is commonly needed when troubleshooting problems
and you need answers to questions such as, ‘who is using this queue?’
or ‘what is this application doing?’.

• DISPLAY QSTATUS() TYPE(QUEUE) – displays status of
each queue (one line per queue) showing current input and output
counts, and whether any uncommitted messages exist.

• DISPLAY QSTATUS() TYPE(HANDLE) – displays status of
each thread (one message per thread per queue) identifying the
connection name, the type, and current connection details. Using
this information you can determine the origin of the request and
cancel it. The cancel would have to be done using a local
command to the originating subsystem (unless you had a vendor
product that permitted cancelling from MQSeries).

• DISPLAY THREAD() TYPE(REGIONS) – the display thread
command is summarized to display a single line per address
space. This is most useful for threads that originate from IMS or
CICS regions.

Dead letter queue handler

A dead letter handler has been available on distributed systems. This
has now been made available on OS/390. The handler comprises a
utility program and a set of rules for processing the messages. Rules
can consist of queue names, application names, return codes, and
message characteristics. Messages can be routed to alternative queues,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

retried after a duration to the same queue, discarded, or left on the dead
letter queue.

SUMMARY

MQSeries for OS/390 5.2 provides some advanced features but
potential users should note that new management concepts and
facilities are required. Move carefully, and make sure you clearly
understand the implications of your implementation. The potential
impact on the Coupling Facility should be carefully evaluated.

Additional information

For additional information, the following Web sites are recommended:

• www.software.ibm.com/mqseries

• www.bmc.com

The documentation set that comes with MQSeries for OS/390 V 5.2
contains a wealth of detailed information on all of these topics:

• Concepts and Planning Guide, GC34-5650.

• System Setup Guide, SC34-5651.

• System Administration Guide, SC34-5652.

• Intercommunication Guide, SC33-1872.

Richard G Nikula
Product Author and Strategic Planner
BMC Software (USA) © BMC Software

MQ Update on the Web

Code from individual articles of MQ Update, and complete
issues in Acrobat PDF format, can be accessed on our Web
site, at:

http://www.xephon.com/mqupdate.html

You will be asked to enter a word from the printed issue.

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Useful MQSeries clustering configurations

MQSeries clustering provides many benefits for systems administrators
and developers looking to utilize a simplified network. However, it
does have its limitations. In this article I will detail ‘work-arounds’ for
two of the shortcomings of MQSeries clustering.

CLUSTERED AND NON-CLUSTERED QMR COMMUNICATION

It is often desirable to have an array of identical applications reading
from a series of queues to provide a level of resilience and workload
balancing. The clustering feature of MQSeries can provide this. Using
multiple queue managers running on the same or different physical
machines with each hosting an instance of a particular named queue,
MQSeries can be set up to provide the required load balancing and
resilience.

It should be noted that the resilience provided by this configuration is
not a replacement for using a hardware cluster with cluster-aware
applications. These two forms of clustering are often confused.
Utilization of Microsoft Cluster Server with MQSeries Version 5.1 is
provided in SupportPac MC74. Figure 1 shows this configuration.

Figure 1: Providing load balancing and resilience

Application instance 1 Application instance 2

MQSeries cluster
MQCL

Queue manager
QMA

Queue manager
QMB

APPQ1 APPQ2

▼ ▼

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

The problem arises when the requirement is to link this up with the rest
of the legacy MQSeries network.

For instance, suppose that you have a system running on a Tandem
NSK machine and there is a requirement for it to send messages for
processing to the applications that are reading from queues in the
MQSeries cluster. At present, Tandem NSK does not support the
clustering feature of MQSeries so we have to find a way of getting the
messages into the cluster and then workload-balancing the messages
between each instance of the application in the cluster.

To do this, we need to introduce a gateway into the cluster. This will
be a queue manager hosting a queue manager alias. This queue
manager alias will be the queue manager that the remote queue
definitions on the Tandem NSK point to as the remote queue manager.

This architecture is shown in Figure 2.

Queue manager GATEWAY is a member of the MQSeries cluster
MQCLUS. It hosts a queue manager alias named ANY.Q.

The tandem queue manager TANDEMQM has a sender channel that
connects directly to queue manager GATEWAY inside the cluster.

The remote queue definition APPQ1 on TANDEMQM has an
RQMNAME of ANY.Q.

The message flow is as follows:

• The application connects to TANDEMQM.

• The application writes messages specifying remote queue
definition APPQ1.

• The messages are sent across the dedicated sender channel to
queue manager GATEWAY.

• MQSeries attempts to resolve the queue name APPQ1 (from the
RNAME property of the remote queue definition) on queue
manager GATEWAY.

• Since a queue manager alias was specified in the RQMNAME of
the remote queue definition, the next step is for MQSeries to
attempt to resolve the queue name in the cluster.

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• There are multiple instances of the queue in the cluster, so ‘round-
robin’ workload balancing is used to distribute the messages.

The full MQSeries definitions for this configuration are provided
below.

Application instance 1 Application instance 2

MQSeries cluster
MQCL

Queue manager
QMA

Queue manager
QMB

APPQ1

Queue manager
alias ANYQ

▼

▲

Remote queue
definition APPQ1

Tandem queue
manager TANDEMQM

Figure 2: Introducing a gateway into the cluster

▼

APPQ1

▼

Queue manager
GATEWAY

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

THE MQSERIES CLUSTERED QUEUE MANAGER DEFINITIONS

Two queue managers in the cluster should be defined as repositories.
Repositories are queue managers that store information about the
location of other queues and queue managers in the cluster. All other
queue managers are partial repositories. In this case I have arbitrarily
chosen the repositories to be QMA and GATEWAY.

SETTING UP THE CLUSTER

On QMA
ALTER QMGR +
REPOS(MQCLUS) +
FORCE

Firstly, the cluster channels on QMA must be created. It is possible to
create the cluster using the MQSeries Explorer in a Windows
NT/2000 environment, however, for the benefit of users of other
environments, I include the definitions.

DEFINE CHANNEL(TO.QMA) +
CHLTYPE(CLUSRCVR) +
TRPTYPE(TCP)
CONNAME(localhost) +

(Where local host is the IP address or hostname of the machine that
hosts QMA.)

CLUSTER(MQCLUS)
DEFINE CHANNEL(TO.GATEWAY) +
CHLTYPE(CLUSSDR) +
TRPTYPE(TCP) +
CONNAME(IP Address of machine hosting GATEWAY) +
CLUSTER(MQCLUS)

On QMB
DEFINE CHANNEL(TO.QMB) +
CHLTYPE(CLUSRCVR) +
TRPTYPE(TCP) +
CONNAME(localhost) +

(Where local host is the IP address or hostname of the machine that
hosts QMB.)

CLUSTER(MQCLUS) +
REPLACE

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DEFINE CHANNEL(TO.QMA) +
CHLTYPE(TCP) +
TRPTYPE(TCP) +
CONNAME(IP Address of machine hosting QMA) +

(This sender channel could also have been pointed at GATEWAY.)

CLUSTER(MQCLUS) +
REPLACE

On GATEWAY
ALTER QMGR +
REPOS(MQCLUS) +
FORCE
DEFINE CHANNEL(TO.GATEWAY) +
CHLTYPE(CLUSRCVR) +
TRPTYPE(TCP) +
CONNAME(localhost) +

(Where local host is the IP address or hostname of the machine that
hosts QMB.)

CLUSTER(MQCLUS) +
REPLACE
DEFINE CHANNEL(TO.QMA) +
CHLTYPE(CLUSSDR) +
TRPTYPE(TCP) +
CONNAME(IP address or hostname of the machine hosting QMA) +
CLUSTER(MQCLUS) +
REPLACE

This is enough to configure the cluster in preparation for the creation
of the application queues.

QUEUE AND QUEUE MANAGER ALIAS DEFINITIONS

APPQ1 is simply a standard local queue that is hosted by multiple
queue managers. Therefore, the queue will be created on each queue
manager that an application will connect to in the cluster.

On QMA and QMB
DEFINE QLOCAL(APPQ1) +
DEFPSIST(YES*) +
*If it is deemed important that message survive a restart.
CLUSTER(MQCLUS) +
SHARE +
DEFBIND(NOTFIXED) +
REPLACE

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

On GATEWAY
DEFINE QREMOTE(ANY.Q) +
RQMNAME() +
RNAME() +
XMITQ() +
CLUSTER(MQCLUS) +
REPLACE

On TANDEMQM
DEFINE QREMOTE(APPQ1) +
RNAME(‘APPQ1’) +
RQMNAME(‘ANY.Q’) +
XMITQ(‘HUB’) +

The transmission queue has been arbitrarily named ‘HUB’ in this
case.

WORKLOAD BALANCING FROM WITHIN A CLUSTER

At a recent MQSeries User Group an organization suggested the
requirement that load balancing be implemented between the local
queues of the cluster when the application that is writing to the queues
is local to one of the clustered queue managers.

The scenario here is that there are multiple applications that write to
local queues hosted by queue managers inside an MQSeries cluster.
The messages are read by multiple instances of another application.
Figure 3 shows this configuration.

In this configuration, when an application writes to an instance of a
local queue, the default behaviour of MQSeries is to write the message
to the local instance of the queue.

The problem arises with the default behaviour of MQSeries in regard
to queue resolution in a cluster. When the application writes a message
and does not specify a queue manager, the message will always be
written to the local instance. There are three ways to get around this
problem.

• Write a cluster workload exit.

• Write the workload balancing logic into the application.

• Use a queue manager alias to fool MQSeries into thinking that the
local queue exists on a remote queue manager.

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Writing a cluster workload exit will be a time-consuming exercise
requiring specialist skills in coding MQSeries exits.

Incorporating the workload balancing logic into the application may
not be possible if the application is already written.

The following work-around makes the requirement possible. This is
a variation on the same theme detailed above, which allowed us to
workload-balance messages sent from a queue manager outside the
MQSeries cluster.

This time, the messages are sent from within the cluster. The way in
which we prevent MQSeries from automatically writing the messages
to the local instance of the application queue is by defining a remote
queue on each queue manager in the cluster that hosts an application
queue.

Queue manager
QMA

Queue manager
QMB

APPQ1 APPQ1

MQSeries cluster
MQCL

Figure 3: Workload balancing from within a cluster

Read application
instance 1

Write application
instance 1

Write application
instance 2

Read application
instance 2

▲

▼

▼▼

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

Queue manager QMA Queue manager QMB

APPQ1

MQSeries cluster
MQCL

Figure 4: Introducing an extra queue manager

Read application
instance 1

Write application
instance 1

Write application
instance 2

Read application
instance 2

▲

▼▼

Gateway

▼

ANYQ

RAPPQ1 RAPPQ1 APPQ1

In a similar configuration to above, an extra queue manager is
introduced, hosting a queue manager alias. The remote queue
definitions point to this queue manager alias and have an RNAME
property of the application queue name. The queue manager alias is
a member of the cluster so MQSeries then resolves the RNAME to the
instances of the local application queues in a round-robin manner.

This is shown in Figure 4.

CLUSTER DEFINITIONS

The cluster should be set up as previously defined above.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The following extra definitions should be made:

On QMA
DEFINE QREMOTE(RAPPQ1)
RNAME(APPQ1)
RQMNAME(ANY.Q)
XMITQ()

On QMB
DEFINE QREMOTE(RAPPQ1)
RNAME(APPQ1)
RQMNAME(ANY.Q)
XMITQ()

Considerations

This will either increase the network traffic if queue managers exist
on separate machines or, if they are all hosted on the same machine,
extra processing will be required. This is because messages must be
sent to queue manager GATEWAY and then back again to either QMA
or QMB.

Depending on the workload or time constraints, this solution could be
permanent or a short-term work around while a cluster workload exit
is written.

These techniques are not suitable if message sequence is an issue.
Since MQSeries routes messages based on a ‘round-robin’ algorithm,
message affinities will be destroyed.

If a machine hosting one of the queue managers was to fail, then the
cluster compensates by offering an alternative path for the messages
through the cluster. However, if there were any messages on a local
queue on this queue manager, those messages would be unavailable
until the machine and the queue manager are brought back online.

To compensate for this, the SupportPac MC74 for Microsoft Windows
NT Cluster Server could be utilized. Other platforms, such as Sun
Solaris, can also be hardware-clustered with MQSeries.

Ross Harrison Coundon
Software Development Engineer
Dataroam (UK) © Xephon

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

Application design considerations with MQSeries

Developers new to MQSeries often ask “How do I talk to MQSeries?”,
indicating that they need to get acquainted with the MQSeries API
(MQI), ideally, from a familiar programming language. As an
experienced MQSeries developer I find this question less important
than “What about an application communications protocol?”, since
your MQSeries application program is really talking to another
program. This article discusses some considerations that will enable
the development team to ask the right questions – and to answer them.

THE EASY QUESTION: LEARNING MQSERIES

The typical learning curve when ‘talking’ MQSeries has three distinct
phases.

• You discover that your favourite language is supported – great!
For many languages, some sample programs even come with the
product. Be aware that these programs are often simple utilities,
but useful nevertheless. Provided that somebody installed
MQSeries and did some setup you can be up and running with
your first program surprisingly quickly. That is, if you don’t mind
grabbing pieces of other people’s code to make up your program.

• When trying to use this new knowledge in a real project, you
suddenly discover how many options MQSeries has, and that
they can be combined in so many ways that you can’t count them.
Hopefully, your struggle with these options combined with the
real-life requirements of your project, leads you to phase three.

• There is a limited number of real-life scenarios. Data transmission,
with MQSeries or in other ways, almost always fits into one of
these four models:

– put data on a queue and forget it – called send-and-forget.

– read data from a queue that somebody else puts data on – the
receiver end of send-and-forget messages.

– a client model, sending a request and waiting for a reply.

– a server model, reading requests and producing replies.

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In addition, other matters must be considered, ie message integrity,
clean-up of messages, and code-page conversions.

THE HARD QUESTION: THE NEED FOR A PROTOCOL

It is simple to ‘talk to’ MQSeries, but remember your program is really
‘talking to’ another program, which is the program reading your
output, or vice versa. No matter how many protocol layers you have
beneath MQSeries, remember that you need to invent one for the
communication between two programs talking to each other over
MQSeries. Is your program ‘talking to’ an existing program? You
need to know its protocol and stick to it. Are you designing both ends
of a communication? You need to define a protocol for both the
programs involved. Protocol considerations are:

• Is a unit of work (UOW) one message or more? If it’s more, how
do you determine when the UOW is finished, and how do you
avoid handling a partial UOW, when, for example, the line breaks
in the middle of transmission?

• Determine a maximum message length so receiver programs
won’t be disturbed by unexpectedly long messages.

• A client application will sometimes time-out without getting a
reply. Probably, it will never get back and fetch its reply message,
so you are left with a clean-up problem. The MQSeries expiry
option might help you here. Please note that message integrity
and expiry usually conflict.

• There is a convention, supported by MQSeries Message Descriptor
fields, for servers to know who to reply to, and one for clients to
pick a specific reply message out of a queue with more messages
on it – the copy Message Id to Correlation Id convention. Another
way of getting your own reply and not somebody else’s is to
create a dynamic reply queue. In both situations, the Reply-to-
Queue field can be used. Such parts of the protocol must be
determined and implemented at both ends of a communication.
If implemented properly, a server program can serve new client
machines with no changes except in the MQSeries setup, and it
can serve new client applications with no change at all on the
server side.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

• Code-page conversion can be done by MQSeries, provided that
all data is of the format ‘string’ and that messages are marked as
format ‘string’. This can be very useful, since you should be
prepared for the possibility that one end of a communication
could be replaced by another application on another platform; a
straightforward thing to do because of the architectural openness
of MQSeries. You might be using the same ASCII code page on
Unix and Windows, but remember that there are EBCDIC
platforms too, such as IBM mainframes.

• MQSeries is an asynchronous transport mechanism. A client/
server application is conceptually synchronous, but can
nonetheless, use MQSeries as the transport mechanism for request
and reply messages. Remember, however, that the client and
server programs are never ‘in contact’ because of the asynchronous
nature of MQSeries and are unable to detect whether or not the
other program is up and running. Therefore, problems in a client/
server setup tend to show up as time-out at the client end. Such
time-outs can mean one or more of the following:

– the line between the client and server machines is down

– the MQSeries channels – a sender and receiver channel at
each end – have not all started properly

– the server machine or its MQSeries Queue Manager is not
running properly

– the server application has not started or, in case of triggering,
the triggering is not defined properly

– some machine in between the client and server machines,
such as a gateway or a message broker, might be down

– the server application is too busy to respond within the
expected amount of time.

Here are some questions to ask yourself.

• Is message integrity important? If so, use the persistence and
possibly, syncpoint options. Remember that message integrity
and speed conflict. If your application is of the ‘if it doesn’t
happen within 30 seconds, it doesn’t matter’ type, ie Web inquiries,
typically, you should set the integrity options to off.

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• If working with more MQSeries messages in one UOW and
integrity matters, you should use the syncpoint option to
synchronize one or more MQSeries ‘read and write’ activities.
When running under a transaction monitor, MQSeries updates
can be synchronized with updates to databases.

• For programs reading messages under syncpoint control, consider
using the back-out count, back-out threshold, and back-out queue
name fields from the definition of the input queue. The purpose
is to prevent a ‘poison’ message from stopping your program
prematurely, which in turn makes MQSeries back-out the message
to the input queue, and your program reads it again. If you do not
use this feature to get rid of ‘poison’ messages, a message or
program failure might effectively stop the reader program.

• Similarly, receiver programs should be able to handle unexpectedly
long messages by using the ‘accept truncated message’ option.
The part actually read should be put to the back-out queue for
diagnostic reasons and your program can go on handling OK
messages.

HOW TO SIMPLIFY MATTERS

For those who want to make MQSeries data communications what
application programmers want it to be – a way of sending or receiving
data without too many problems – there are various options.

You can make or buy ‘wrappers’ that hard-code most of the options in
suitable combinations. Typically, you would need wrappers for the
four data transfer models defined above. A potential benefit of
wrappers is a common API for MQSeries and other middleware tools.

The traditional MQSeries interface is called the Message Queue
Interface (MQI). Today, MQSeries comes with an alternative
application interface, the Application Messaging Interface (AMI).
The purpose of this is to simplify the tasks of the application
programmer and leave most of the options to administrators. To
accomplish this, the AMI offers three components:

• The message: what is sent from one program to another.

• The service: where the message is sent.

• The policy: how the message is sent.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

Services and policies are defined by a systems administrator and
stored in a repository. The application programmers need only concern
themselves with messages – when writing calls, they refer the
appropriate service and policy to the AMI. The application programmer
is relieved of the options burden and a particular application program
can be used in different set-ups – simultaneously or over time.

Besides encompassing the four general data transmission models, the
AMI offers distribution to multiple receivers using a distribution list,
and it offers a publish/subscribe service. The AMI can be used by
application programs communicating with other application programs
using AMI or MQI.

BENEFITS

• Not only can programs on different platforms talk to each other,
programs of different languages can talk to each other. To benefit
from this, messages should be designed so that they are not bound
to any particular language. Everything in plain string format
works fine, and on top of that, gives you code-page conversion
when required and no big/little endian trouble.

• For conventional database applications, multi-threading should
be seriously considered. It can be very simple to implement a
multi-threading MQSeries server program. In case of triggering,
you can let MQSeries use the ‘trigger every’ option. For some
platforms, eg Windows NT, remember to define the trigger
command as start <program> rather than just <program>
because this will start an independent thread and the trigger
monitor will immediately go on looking at your trigger queues.
For non-triggering, you can simply start several instances of your
program, since MQSeries will take care of the multi-threaded
aspects of the competition between programs working on a
queue.

• Because MQSeries is so well-established there are many products
available – message brokers and publish-and-subscribe tools, for
example – that will add value to your existing applications.

Christian Sorensen
Senior Systems Engineer, Maersk Data (Denmark) © Xephon

MQ news

IBM has launched its MQSeries Integrator
Agent for CICS Transaction Server,
providing application integration on the
mainframe with CICS and IMS applications.
The software enables functional migration
from the existing Message Driven processor
(Mdp) product originally available from
Early, Cloud & Company.

It consists of two components: a build-time
component that runs on Windows NT and
uses tools that look and feel similar to those
of MQSeries Integrator, and a run-time
component that runs under CICS TS for
OS/390 V1R3 as a CICS application on an
OS/390 server.

The run-time bit uses CICS Business
Transaction Services to manage the
interrelationship, commit scope, recovery,
and restart of the actions that make up a
business transaction.

Together, they enable the construction and
execution of adapters to process requests
from controlling applications for business
transactions running on CICS and IMS host
systems.

Target IMS and CICS applications can be
driven via 3270 data streams. CICS
applications can also be driven through a
Distributed Program Link, while MQSeries-
enabled applications are accessed through
MQSeries. There are server adapter
programs that handle all three classes of
applications.

Out on 27 April, it costs USD100,000.

For further information, contact your local
IBM representative.

* * *
Progress Software’s SonicMQ has begun
shipping Version 3.1 of its SonicMQJava
messaging server, with a new family of
bridges for improved connectivity and
integration with other messaging types and
products, including MQSeries.

The software enables developers to route
messages to other Java message services and
disparate legacy systems. In particular, the
bridge for MQSeries allows connection to
third parties through an MQSeries interface,
as well as to virtually any existing enterprise
application built on top of an MQSeries
infrastructure.

It natively supports Internet standards and is
based on the Java Message Service
specification.

For further information contact:
Progress Software, 14 Oak Park, Bedford
MA 01730, USA
Tel: +1 781 280 4000
Fax: +1 781 280 4095
Web: http://www.progress.com

Progress Software, The Square, Basingview,
Basingstoke, Hants RG21 2EQ, UK
Tel: +44 1256 816668
Fax: +44 1256 463226

* * *

x xephon

	Setting up DB2 for MQSI V2 on AIX
	Using variable queue names in MQSI V2
	System management for MQSeries OS/390 V5.2
	Useful MQSeries clustering configurations
	Application design considerations with MQSeries
	MQ news

