
June 2001

24

© Xephon plc 2001

3 MQSeries V5.2: clusters update
11 How to improve message

throughput in an MQSI V2 broker
24 Copying queue contents from

MQSeries V1.2 to V2.1 on OS/390
27 Monitoring a Unix queue

manager’s error logs
33 MQLST: a REXX utility to filter

and list MQ objects and attributes
for OS/390

41 The CSQUTIL utility
42 Customizing CSQXMQxx
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/contnote.html.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/
mqupdate.html (you will need to supply a
word from the printed issue).

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSeries V5.2: clusters update

When IBM announced the raft of MQSeries V5.2 products (with the
notable absence of MQ for OS/2!) most people picked up on the
performance enhancements as well as the new shared queue capability
on the OS/390 platform. Very little was written about the clustering
enhancements made and this article aims to rectify matters. It will
only touch upon the new enhancements; if you require more detailed
information please refer to the MQSeries clustering article that
appeared in the September and October 2001 issues of MQ Update,
and the following manuals:

• MQSeries Release Guide GC34-5761-01.

• MQSeries Queue Manager Clusters SC34-5349-03.

The specific enhancements added to the clustering capabilities include
the ability to:

• Define a cluster-receiver channel without specifying the queue
manager’s network address.

• Define a cluster-sender channel without specifying the name of
the repository queue manager.

• Dynamically allocate the cluster cache.

THE PROBLEM WHEN USING DYNAMIC IP ADDRESSES

If your environment uses the Dynamic Host Configuration Protocol
(DHCP), which automatically generates a new IP address when a
machine reconnects, prior to V5.2, you had to stop the channel,
change its address as part of the CONNAME field, and restart it.

If an existing conversation was active when the IP address changed,
then you may have needed to reset the message sequence numbers on
the channels.

The purpose of these enhancements is to simplify further the task of
the system administrator. It is no longer necessary for you to know the
network address of your queue manager, nor the names of the other
queue managers in the cluster.

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

THE SOLUTION

In an environment where TCP/IP is used as the network protocol, the
cluster-receiver channel no longer requires the network address of the
queue manager. In fact, when you make the definition, you can leave
the CONNAME blank. MQSeries automatically generates a
CONNAME for you using the current IP address of the system. The
generated CONNAME is always in the dotted-decimal form (x.x.x.x)
rather than in the form of an alphanumeric DNS host name. Note that
this only works when the default port number – 1414 – is being used.

How does this work with the repository? The MQSeries-generated
CONNAME is stored in the repositories, and, therefore, the other
queue managers in the cluster do not know that the CONNAME was
originally blank.

Be careful when you issue the DISPLAY CHANNEL command
because the CONNAME shown is not the generated address, and will
be blank. Instead, use the DISPLAY CLUSQMGR command.

A restart of the queue manager with a different IP address (courtesy
of DHCP) causes MQSeries to change the CONNAME and store it in
the repositories.

Auto-defined cluster-sender channels – careful!

As we know, clustering means having to define fewer channels. The
cluster receiver of the remote queue manager is used as a template to
auto-define the cluster sender – even manually-defined cluster-sender
channels get modified.

It is possible, therefore, to define a cluster receiver (as mentioned
above) without a CONNAME, which MQSeries then changes to the
local IP address, and for the cluster sender to be defined with the same
CONNAME. If the remote queue manager does not listen to the default
port 1414, then the channel will go into a retry state.

STEPS REQUIRED TO USE DHCP WITH MQSERIES

• Suspend the local queue manager from the cluster.

SUSPEND QMGR CLUSTER(cccccc)

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

• Stop the cluster-receiver channel on the queue manager.

STOP CHL(yyyy)

• Alter the CLUSRCVR definition to remove the CONNAME or set
it to blank.

ALTER CHL(yyyy) CHLTYPE(CLUSRCVR) CONNAME(‘’)

• Put queue manager back in the cluster.

RESUME QMGR CLUSTER(cccccc)

• Start the cluster receiver channel.

START CHL(yyyy)

Do not use DHCP for queue managers with a FULL repository.

Queue managers with a FULL repository are known either by their IP
address or HOSTNAME, as specified in the CONNAME. When
another queue manager wants to join the cluster, its cluster-sender
channel definition must refer to the CONNAME of the FULL repository.
In an environment where DHCP is used, the IP address could have
changed, so a CONNAME of the format x.x.x.x would not work.

Even if a HOSTNAME is specified you may not be able to rely upon
DHCP to update the DNS directory with the new address for the host.

CHANGES TO THE CLUSTER-SENDER CHANNEL WHEN JOINING A
CLUSTER

To further reduce the administrative task, when defining a cluster-
sender channel in order to join a cluster, you do not need to know
which queue manager hosts the FULL repository, provided that the
channel-naming convention has the name of the queue manager that
hosts the FULL repository.

For example, if queue manager QM1 has a cluster-receiver channel
called QM1, then on the queue manager joining the cluster, say QM2,
you define the cluster-sender channel as follows:

DEF CHL(+QMNAME+) CHLTYPE(CLUSSDR) TRPTYPE(TCP) CONNAME(cccccc)

MQSeries uses the CONNAME to get to the queue manager, interrogates
the repository, and substitutes +QMNAME+ with the name of the

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

queue manager hosting the FULL repository – in this case with the
name QM1.

HOW IT WORKS IN PRACTICE

We’ve seen the theory – now let’s ‘prove’ it by using some worked
examples. The environment I’ve used is Windows 2000 with MQSeries
for Win NT/2000 V5.2 (no CSDs). Definitions were made via the
MQSeries explorer GUI and confirmed via the RUNMQSC commands
in a DOS window.

• Create a queue manager called QM1.

• On QM1, alter it to have a repository called CLUS1.

• On QM1, define a cluster-receiver channel called QM1 within
cluster CLUS1 and a specific CONNAME with a TCP/IP port
number, eg Win2000-pc(1500).

• Create a queue manager called QM2.

• On QM2, define a cluster receiver called QM2 within the cluster
CLUS1 but with a blank CONNAME. (See Figure 1.)

Figure 1: Defining QM1 and QM2

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

• On QM2, define a cluster-sender channel called +QMNAME+
within the cluster CLUS1 but pointing to a specific CONNAME,
eg Win2000-pc(1500). (See Figure 2.)

• When the screen is refreshed, the +QMNAME+ has been changed
to QM1, as Figure 3 illustrates.

Figure 2: Defining the cluster-sender channel within CLUS1,
pointing to a specific CONNAME

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

To confirm what MQSeries has done, run RUNMQSC against queue
manager QM2.

First, display the channel status:

C:\>runmqsc QM2
Ø784726, 5639-B43 (C) Copyright IBM Corp 1994, 2ØØØ. ALL RIGHTS
RESERVED.
Starting MQSeries Commands.
dis chs(*)
 1 : dis chs(*)
AMQ8417: Display Channel Status details.
 CHANNEL(QM1)
XMITQ(SYSTEM.CLUSTER.TRANSMIT.QUEUE)
 CONNAME(Win2ØØØ-pc(15ØØ)) CURRENT
 CHLTYPE(CLUSSDR) STATUS(RUNNING)
AMQ8417: Display Channel Status details.
 CHANNEL(QM2) XMITQ()
 CONNAME(169.123.123.123) CURRENT
 CHLTYPE(CLUSRCVR) STATUS(RUNNING)

Notice that the CONNAME, which was left blank at definition time,
is now prefilled with the local IP address.

(You can confirm this via the IPCONFIG command in a DOS
window.) Notice also that the port has been left off, which then
defaults to 1414.

Figure 3: +QMNAME+ changes to QM1

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

The same sorts of detail are displayed when using the
DIS CLUSQMGR command:

dis clusqmgr(*) status conname
 2 : dis clusqmgr(*) status conname
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(QM1) CLUSTER(CLUS1)
 CHANNEL(QM1) CONNAME(Win2ØØØ-pc(15ØØ))
 STATUS(RUNNING)
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(QM2) CLUSTER(CLUS1)
 CHANNEL(QM2) CONNAME(169.123.123.123)

However, if we display the channel definition itself, the CONNAME
is still blank:

dis chl(QM2)
 3 : dis chl(QM2)
AMQ8414: Display Channel details.
 CHANNEL(QM2) CHLTYPE(CLUSRCVR)
 TRPTYPE(TCP) DESCR()
 MCANAME() MODENAME()
 TPNAME() BATCHSZ(5Ø)
 DISCINT(6ØØØ) SHORTRTY(1Ø)
 SHORTTMR(6Ø) LONGRTY(999999999)
 LONGTMR(12ØØ) SCYEXIT()
 SEQWRAP(999999999) MAXMSGL(41943Ø4)
 PUTAUT(DEF) CONVERT(NO)
 SCYDATA() MCATYPE(THREAD)
 CONNAME() MREXIT()
 MRDATA() MRRTY(1Ø)
 MRTMR(1ØØØ) HBINT(3ØØ)
 BATCHINT(Ø) NPMSPEED(FAST)
 MCAUSER() CLUSTER(CLUS1)
 CLUSNL() NETPRTY(Ø)
 ALTDATE(2ØØ1-Ø2-Ø7) ALTTIME(12.28.37)
 MSGEXIT()
 SENDEXIT()
 RCVEXIT()
 MSGDATA()
 SENDDATA()
 RCVDATA()

Just to emphasize that only port 1414 works on dynamically generated
connection addresses, define a third queue manager, QM3, which
listens to port 1415.

Define the cluster receiver and cluster sender as before.

Now display the result via RUNMQSC on QM3:

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

dis clusqmgr(*) conname status
 1 : dis clusqmgr(*) conname status
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(QM3) CLUSTER(CLUS1)
 CHANNEL(QM3) CONNAME(169.123.123.123)
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(SYSTEM.TEMPQMGR.Win2ØØØ-pc(15ØØ))
 CLUSTER(CLUS1) CHANNEL(QM1)
 CONNAME(Win2ØØØ-pc(15ØØ)) STATUS(RUNNING)

Notice that the full repository QM1 name has not been resolved, and
is still the ‘temporary’ name SYSTEM.TEMPQMGR.Win2000-
pc(1500).

If we use the same command from QM1 we get:

dis clusqmgr(*) conname status
 1 : dis clusqmgr(*) conname status
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(QM1) CLUSTER(CLUS1)
 CHANNEL(QM1) CONNAME(Win2ØØØ-pc(15ØØ))
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(QM2) CLUSTER(CLUS1)
 CHANNEL(QM2) CONNAME(169.123.123.123)
 STATUS(INACTIVE)
AMQ8441: Display Cluster Queue Manager details.
 CLUSQMGR(QM3) CLUSTER(CLUS1)
 CHANNEL(QM3) CONNAME(169.123.123.123)
 STATUS(RETRYING)

This time, the automatically-defined cluster-sender channel QM3 is in
‘retrying’ state. This is not surprising, as the CONNAME does not
have a port number.

It therefore defaults to 1414, but QM3 is listening on 1415.

DYNAMIC ALLOCATION OF CLUSTER CACHE

Clustered MQSeries objects, such as queues and channels, are held in
a cache. In V5.1 the size of the cache was fixed when the queue
manager was started, which could cause problems when a large
number of clustered objects was defined. The only way to resolve this
was to define a smaller number of clustered objects, restart the queue
manager, and repeat this process until all objects were defined.

MQSeries V5.2 allows the cache to grow ‘on demand’. If you have an
existing exit in V5.1 that relies on a fixed layout of the cache and you

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

do not want to change the exit, then the cache size can be made ‘static’
via a tuning parameter. (See the qm.ini file with new parameter in the
TuningParameters stanza: ClusterCacheType=DYNAMIC|STATIC.)

CONCLUSION

In a DHCP environment, MQSeries V5.2 further reduces the
administrative task of setting up clusters. Users must be aware of the
limitations regarding the TCP/IP port numbers for cluster-receiver
channels, and must have an appropriate channel-naming convention
for cluster-sender channels.

Those companies with a large – and growing – number of clustered
objects will benefit from the dynamic cluster cache, which avoids the
need to restart the queue manager.

Ruud van Zundert
Independent Consultant (UK) © Xephon 2001

How to improve message throughput in an MQSI
V2 broker

INTRODUCTION

The performance you can obtain with a given message flow in
MQSeries Integrator (MQSI) V2 is a function of the way in which the
flow is written, the hardware on which the broker is located, and the
performance of the broker queue manager. Given a particular hardware
environment, it is still possible to make changes to improve
performance. This article discusses a number of such changes.

The changes relating to queue manager log and data location and log
parameter tuning will apply equally to any MQSeries queue manager
and not just one used by an MQSI broker.

DETERMINE THE MESSAGE TYPE

There is a significant difference in the message rate that can be

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

achieved with non-persistent and persistent message rates. Non-
persistent message processing is typically CPU-bound, whereas
persistent message processing is I/O-bound (on the MQSeries queue
manager log). Since the speed of I/O is much slower than a CPU, the
message rate for persistent messages is similarly much lower than that
for non-persistent messages.

The first requirement is to be absolutely sure that persistent messages
are required before using them, since they are so expensive.

Here are some recommendations when using non-persistent or
persistent messages.

Non-persistent messages

• Set ‘transactionMode’ on the MQInput nodes to either ‘automatic’
or ‘no’ – the default is ‘yes’.

• Eliminate I/O where possible. Even with non-persistent messages
it is possible to perform I/O within MQSeries. I/O arises when
using a large number of records in a queue and/or large messages
because the messages overflow the queue buffer (64K by default)
for each queue. This buffer is held in memory. By keeping the size
of the queue down, ie the number of messages on the queue at any
point in time, it is more likely that messages will be held in
memory rather than overflowing to disk.

It is more efficient to be continually processing messages rather than
pre-loading the queue prior to the start of processing, so aim to
continually top-up the queue. This mode of operation is also more
realistic. It is unlikely that thousands of messages will be pre-loaded
onto a queue.

Persistent messages

• Locate each MQSeries queue manager log on a dedicated disk.*

• Locate each MQSeries queue manager data on a dedicated disk.*

• When using an XA connection make sure the database log and
data are each located on a dedicated disk.

• Look at the settings in effect for the queue manager log*: in

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

particular:

– the number of LogBufferPages: this controls the maximum
amount of data which can be written in one log I/O.

– the number of LogFilePages: this controls the size of the log
on disk and will affect the amount of log switching that takes
place.

* See Appendix A, which details the procedure to follow in order to
locate the queue manager data and log on different disks, as well as
how to change log-related parameter settings.

• Use the fastest device possible for the queue manager log. Disks
which have a fast-write, non-volatile cache can significantly
improve message processing rates when compared with a SCSI
disk. Measurements have shown that, when using an SSA Fast-
Write disk with non-volatile cache for the queue manager log
disk, it was possible to improve message throughput for persistent
messages by between three and four times, when compared with
using a SCSI disk.

• Do not use IDE disks. Although they may appear to offer better
performance, the write I/O completion is signalled before the
write is actually complete. This can compromise the integrity of
the data because a write could subsequently fail and there is no
non-volatile cache to back-up the data.

• The use of multiple brokers (and queue managers) will allow you
to overcome the limitation of a single queue manager’s maximum
persistent message rate in order to achieve the required throughput
rate.

You will see some benefits from locating the log and data on different
disks – the greatest is likely to come from increasing the
LogBufferPages and LogFilePages values. The benefits obtained will
vary in each case, and will depend upon the size of messages. It is
worth conducting tests with a simple program to repeatedly GET or
PUT messages in order to see the benefits of making these changes.

IMPROVING NODE PERFORMANCE

• It is better to have fewer, more complex, compute nodes than a

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

larger number where the processing is spread out amongst the
nodes. There are startup costs associated with each node and it is
best to minimize these. Make sure that the nodes are manageable
though, when combining ESQL, and that you do not have an
excessive number of lines of ESQL to manage, for example.

• When using publication nodes where the number of subscribers
receiving publications is greater than 30 for any published
message, ensure that the size of the cache of open queue handles
is set appropriately. The cache has a default of 30 entries. Ideally,
the value should be at least the number of subscribers who will
receive the publications. Be aware that increasing the size of the
cache will have an effect on the amount of storage used by the
execution group. If the number of entries in the cache is too small
then one queue has to be closed and a new one opened before the
message can be written to the required queue. This is repeated for
each subscriber over the cache size. This becomes costly if there
are many more subscribers than entries in the cache.

In order to increase the size of the cache use the following
command:

 mqsichangeproperties <broker> -e <execution group >
 -o ComIbmMQConnectionManager -n queueCacheMaxSize -v <size>

where <broker> is the name of the message broker being used,
<execution group > is the name of an execution group containing
a publication node, and <size> is the size to which the cache is
to be increased. The command is issued to a named execution
group. Be aware that you may need to issue it to more than one
execution group, depending upon the message flows you have.

• It is possible to modify the level of persistence on the published
message for each subscriber. Although the input message from
the publisher may be persistent, not all the published messages
have to be. This provides the opportunity to reduce the cost of
writing the published message to each queue, where appropriate.

Deciding when this is appropriate will depend upon the data
being published. Consider the following two cases: one where the
current score in a football game is being published, and the

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

second where stock prices are being published. In both cases,
publications take place twice a second.

In the case of the football score it is not essential to receive every
message. There is unlikely to be any impact from not receiving a
particular message, especially since there will be another
publication in half a second. It is appropriate to make these
messages non-persistent. With the stock price notification there
could well be an impact, since the failure to act in a timely manner
could result in financial loss as you failed to sell or buy at the
correct point in time. In this case it is important that all messages
are delivered and so it is appropriate to opt for persistent messages.

• Do not have the CARDINALITY function coded in an ESQL
WHILE loop. Coding it in that manner means that the function
will be invoked for every iteration of the loop. With a large
message this could add a significant amount of processing, as
CARDINALITY determines the size of the message.

The approach you should use is to set a variable to the value of the
message size prior to entering the loop. For example:

 DECLARE I INTEGER;
 DECLARE LIMIT INTEGER;
 SET LIMIT = CARDINALITY(InputRoot.XML.A.B[]);
 WHILE I < LIMIT DO

 END WHILE

• Do not use trace nodes when trying to monitor performance. They
are costly.

ESTIMATING THE BENEFITS OF SCALING

Although it is normally possible to achieve higher message throughput
by using multiple execution groups (as opposed to using multiple
message flows in an execution group or additional instances of a
message flow), it is not possible to predict precisely what benefit will
be obtained by running multiple execution groups. The results will
vary between no additional benefit and significant benefit, with very
good scaling – almost N times the throughput of a single execution
group when running N execution groups.

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

No additional benefit arises when there is data conflict, all copies of
the message are after the same rows in a database, or there is
contention for queue access, for example.

Maximum benefit comes when there is additional processing in a
message flow, such as compute nodes with ESQL, and there is no
contention. In this case each message is processed independently,
there is very little contention for common resources (queues or
database data), and it is possible to add more parallel pieces of work
(execution groups). As the processing of individual messages is
independent, the scaling ratio is much higher.

With persistent messages you need to bear in mind that there is an
upper limit, which is the maximum rate at which the MQSeries queue
manager log is able to operate, and, as such, it will not be possible to
continuously scale.

MAXIMIZING THROUGHPUT

Your aim should be to get the maximum possible CPU utilization
possible, that is 100%. You do not have to run your servers at this level,
but it is good to know that they are capable of it should you need to,
rather than having them limited at 50% because of data contention, for
example.

Depending upon conditions, full CPU utilization may or may not be
possible. If it is not happening you need to find the limitations.
Reasons for not achieving it would include:

• Data contention – multiple execution groups trying to update the
same row in a database at the same time, for example.

– The solution is to remove the data contention or, failing that,
find some work-around.

• Contention on queue access – this is most likely to be a problem
where very simple message-copying is taking place from one
queue to another. A message consisting purely of an MQInput and
MQOutput node would be an example of a flow that could
encounter this problem.

– Contention for queue access is best overcome by running

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

multiple pairs of input and output queues. This would mean
multiple message flows.

• I/O – disks will go so fast and then no faster.

– It is possible to reduce I/O times by using solid state disks or
disks with caches – the fastest I/O is no I/O! I/O occurs with
MQSI because of:
• Queue data being written to or read from disk.
• Queue manager logging to provide recovery.
• Data being written to/read from a database causes the

database to perform I/O.

If you are using persistent messages you need to follow the points
detailed in the section Persistent Messages, above. It will not be
possible to eliminate I/O; all you can do is minimize its effect.

Where the I/O is taking place in a database, tune the database
wherever possible. For example, try to ensure the database is local,
increase buffer sizes, or use faster disks for data and logs.

Whatever type of messages are in use you will derive benefit (increased
message rate) by ensuring the number of messages on the queue is
kept low. The arrival rate of messages needs to be the same as, or only
slightly higher than, the rate at which they are being processed. If the
number of messages increases more rapidly than the rate at which they
are being processed, an increase in I/O occurs and slows the message
rate. In a production environment the arrival rate is not always
controllable, so you need to ensure that there is sufficient processing
power available to cope with the highest arrival rate. In a test
environment there is more control. Continually feed messages onto a
queue rather than pre-load all the messages which are to be processed.

You will also derive benefit by immediately reading the messages off
the queue as soon as they have been processed rather than allowing the
queue depth to increase.

Benefits can be obtained even when there are only a few thousand
records on the input queue.

• Waiting for a response from some other component – maybe an
application on another queue manager.

– When your configuration involves receiving messages from,

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

or passing them on to, another queue manager or piece of
software, you need to ensure that those other components
have sufficient resources and are well tuned.

GENERAL POINTS

• Use the fastest processors available, and multiples of them, so
that you can benefit from the use of multiple instances and/or
execution groups.

• Ensure there is plenty of memory available so that the chances of
paging are minimized: a minimum of 0.5 GB – preferably 1GB
or more for large configurations or where all components are on
one machine.

• Ensure that any paging or swap space is located on a dedicated
disk.

• Use as many execution groups as processors initially, and then
adjust the number to get the maximum message rate. Each case
is likely to vary.

• Use the minimum number of nodes in a message flow that can
perform the task.

• Use a trusted broker where possible.

• Be careful when using ‘Logical Order’ on the MQInput node.
Using a value of ‘By UserID’ can restrict message throughput.
Messages for a given user will be restricted to a single thread of
processing.

• Plan the level of data recovery required:

– Only use an XA connection if needed, ie only if updating
messages in MQSeries and data in a database.

– Do you really want to make non-persistent messages
transactional?

• Do not make any deployments when evaluating message
throughput capabilities as they will cause the execution groups to
be stopped and started.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

• Ensure that you have the latest product level, CSD, and any
e-fixes installed.

• Use MQSeries 5.2. It has improved logging performance which
will be of particular help with persistent messages.

APPENDIX A: MQSERIES TUNING

This appendix details the procedure to follow in order to locate the
MQSeries queue manager log and data on different disks. It also
shows how to change the LogBufferPages and LogFilePages values
for a queue manager.

The procedure is slightly different for the NT and the Unix platforms,
although the principle is the same. Both methods are shown.

Some of the details in this section show how to modify the Windows
NT registry. Such tasks should only be undertaken by experienced
users. It is recommended that you take a copy of the registry prior to
making any changes.

Locating the MQSeries data on a dedicated disk

This change must be made before the queue manager is created.

NT
An initial value for the data location is specified as part of the
MQSeries installation process on NT. To change it subsequently, you
will need to follow the procedures below.

1 On the disk that is to be used for the MQSeries data, create a
directory to hold the data.

2 Run regedit.

3 Locate the key: HKEY_LOCAL_MACHINE\SOFTWARE\IBM
\MQSeries\CurrentVersion.

4 In that key, change the setting of ‘WorkPath’ to point to the
directory created in 1 above.

5 If no other changes are required, create the queue manager.

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Unix

1 Allocate a file system that is to be used for the MQSeries data and
create a directory that is to be used for the data.

2 Edit the file /var/mqm/mqs.ini.

3 Change the value of ‘DefaultPrefix’ in the ‘AllQueueManagers’
stanza to the name of the directory that is to be used for the data.

4 Save the changes.

5 If no other changes are required, create the queue manager.

All queue managers that are subsequently allocated will use the same
value of ‘WorkPath’ (or ‘DefaultPrefix’), and, consequently, the data
will be located on the same disk. Remember to update the value each
time when allocating multiple queue managers.

Locating the MQSeries log on a dedicated disk
 The easiest method of specifying the queue manger log location is to
use the ‘-ld’ flag when you issue the crtmqm command to create the
queue manager.

NT

1 On the disk that is to be used for the MQSeries log, create a
directory to hold the log.

2 Use the name of the directory created above for the ‘-ld’ flag on
the crtmqm command.

3 If no other changes are required, create the queue manager using
the crtmqm command.

Unix

1 Allocate a file system that is to be used for the MQSeries log and
create a directory that is to be used for the log.

2 Use the name of the directory created above for the ‘-ld’ flag on
the crtmqm command.

3 If no other changes are required, create the queue manager using
the crtmqm command.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

An alternative approach is to follow the procedure below. This change
must be made before the queue manager is created.

NT

1 On the disk that is to be used for the MQSeries log, create a
directory to hold the log.

2 Run regedit.

3 Locate the key HKEY_LOCAL_MACHINE\SOFTWARE\IBM\
MQSeries\CurrentVersion\Configuration\LogDefaults.

4 In that key, change the setting of ‘LogDefaultPath’ to point to the
directory created in 1 above.

5 If no other are changes required, create the queue manager.

Unix

1 Allocate a file system that is to be used for the MQSeries log and
create a directory that is to used for the log.

2 Edit the file /var/mqm/mqs.ini.

3 Change the value of ‘LogDefaultPath’ in the ‘LogDefaults’
stanza to the name of the directory that is to be used for the log.

4 Save the changes.

5 If no other changes are required, create the queue manager.

Changing the ‘LogFilePages’ value

It is possible to specify the log size when creating the queue manager
by using the ‘-lf’ flag on the crtmqm command. For NT, the minimum
is 32 and the maximum is 4095. For Unix, the minimum is 64 and the
maximum is 16384.

An alternative approach is as follows. This change must be made
before the queue manager is created.

NT

1 Run regedit.

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

2 Locate the key HKEY_LOCAL_MACHINE\SOFTWARE\
IBM\MQSeries\CurrentVersion\Configuration\LogDefaults.

3 In that key, change the setting of LogFilePages. The larger the
value, the larger the size of the log extent on the disk. The
minimum value is 32 and the maximum is 4095.

4 If no other changes are required, create the queue manager.

Unix

1 Edit the file /var/mqm/mqs.ini.

2 Change the value of ‘LogFilePages’ in the ‘LogDefaults’ stanza.
The larger the value, the larger the size of the log extent on the
disk. The minimum value is 64 and the maximum is 16384.
Ensure that there is sufficient space in the file system for the log
to accommodate the value you are specifying.

3 Save the changes.

4 If no other changes are required, create the queue manager.

Changing the ‘LogBufferPages’ value
The value of ‘LogBufferPages’ can be set either before or after the
queue manager has been created.

To set it before queue manager creation, follow the procedures
detailed below.

NT

1 Run regedit.

2 Locate the key HKEY_LOCAL_MACHINE\SOFTWARE\
IBM\MQSeries\ CurrentVersion\Configuration\LogDefaults.

3 In that key, change the setting of ‘LogBufferPages’ – try 512 if
using MQSeries 5.2 (32 for MQSeries 5.1). The larger the value,
the larger the size of the buffer that is written with each log I/O.
Large values are required for large messages and/or busy systems.

4 If no other changes are required, create the queue manager.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

Unix

1 Edit the file /var/mqm/mqs.ini.

2 Change the value of ‘LogBufferPages’ in the ‘LogDefaults’
stanza. Try 512 if using MQSeries 5.2 (32 for MQSeries 5.1). The
larger the value, the larger the size of the buffer that is written with
each log I/O. Large values are required for large messages and/
or busy systems.

3 Save the changes.

4 If no other changes are required, create the queue manager.

To change the value of ‘LogBufferPages’ after queue manager creation,
follow the procedure below:

NT

1 Run regedit.

2 Locate the key HKEY_LOCAL_MACHINE\SOFTWARE\IBM\
MQSeries\CurrentVersion\Configuration\QueueManager\<qmgr
name>\Log.

3 In that key, change the setting of ‘LogBufferPages’ – try 512 if
using MQSeries 5.2 (32 for MQSeries 5.1). The larger the value,
the larger the size of the buffer that is written with each log I/O.
Large values are required for large messages and/or busy systems.

4 If no other changes are required, restart the queue manager.

Unix

1 Edit the file /var/mqm/qmgrs/<qmgr name>/qm.ini.

2 Change the value of ‘LogbufferPages’ in the Log stanza. Try 512
if using MQSeries 5.2 (32 for MQSeries 5.1). The larger the
value, the larger the size of the buffer that is written with each log
I/O. Large values are required for large messages and/or busy
systems.

3 Save the changes.

4 If no other changes are required, restart the queue manager.

Tim Dunn
Software Engineer, IBM UK Laboratories (UK) © Tim Dunn

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Copying queue contents from MQSeries V1.2 to
V2.1 on OS/390

INTRODUCTION

Copying queue contents from V1.2 to V2.1 queue managers on
OS/390 has an undocumented pitfall. This article describes the
problem and the solution.

WHERE AND HOW THE PROBLEM ARISES

When migrating from MQSeriesV1.2 to V2.1 on the OS/390 platform
there is often a need to copy the queue contents from the old queue
manager pagesets to the new queue manager’s pagesets. For example,
before an upgrade of an MQSeries production system is carried out,
a test system with the new version will be installed on a separate LPAR
and some data will be required in the queues to perform the test
operations. This data needs to be copied from the production queue
manager, which is installed on the production LPAR, and its operation
need not be disturbed.

Using IBM’s CSQUTIL utility is the obvious solution for this task.
With it, you can COPY a queue’s contents to a flat VBS dataset,
transfer the file to the target system (or vary online the volume on
which it resides), and LOAD it to the target queue manager. However,
there is an undocumented pitfall in CSQUTIL’s COPY and LOAD
behaviour.

As a result of the addition of new features, such as clustering, to the
queue and message properties, the flat VBS dataset format, which
CSQUTIL COPY outputs, has changed from V1.2 to V2.1. Version
2.1. CSQUTIL LOAD is not backwards-compatible with V1.2 COPY
format. This causes V2.1 CSQUTIL LOAD operations to fail when
used with datasets that were created on a V1.2 queue manager. This
incompatibility is not documented in IBM’s manual – even the
Migrating from Version 1.2 to Version 2.1 section. Also, the message
which CSQUTIL outputs when the LOAD operation fails is obscure,
and does not specify the nature of the problem.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

However, V2.1’s CSQUTIL COPY function is backwards-compatible
with V1.2’s pagesets. So the solution is to use the new version of
CSQUTIL when COPYing the older version’s queues. This may
sound trivial to experienced MVS people, but the rest of us may
encounter difficulties, especially if the two versions are installed on
different systems or LPARs.

The following method was used extensively in my shop to copy from
a V1.2 production system to a V2.1 system between different LPARs.
IBM support personnel have acknowledged that, although it’s
undocumented, this is the only way of transferring queue contents
between the two versions.

First, you need access to the new version’s binary datasets on the
source (old version) system. This can be done either by copying the
datasets to disks used by the source system, or by varying online the
disks on which they currently reside (ask your system people for
help). The three required datasets are:

• thlqual.SCSQANLE.

• thlqual.SCSQLINK.

• thlqual.SCSQAUTH.

(thlqual is the high level qualifier of the V2.1 binary datasets.)

Note that no changes to the runtime environment (LPA, linklist) or to
the source queue manager are needed, so your production system can
continue to operate normally while you do this.

The job to COPY the contents of the queue (or a whole pageset) from
the source system is as follows:

//COPY EXEC PGM=CSQUTIL,PARM='CSQ1'
//STEPLIB DD DISP=SHR,UNIT=uuuuu,VOL=SER=vvvvvv,
// DSN=thlqual.SCSQANLE
// DD DISP=SHR,UNIT=uuuuu,VOL=SER=vvvvvv,
// DSN=thlqual.SCSQLINK
// DD DISP=SHR,UNIT=uuuuu,VOL=SER=vvvvvv,
// DSN=thlqual.SCSQAUTH
//OUTPUTA DD DSN=SAMPLE.UTILITY.COPYA,DISP=(NEW,CATLG),
// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ØØ)
//CSQUOUT DD DSN=SAMPLE.UTILITY.COPY3,DISP=(NEW,CATLG),

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// SPACE=(CYL,(5,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VBS,BLKSIZE=232ØØ)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* COPY WHOLE PAGESET TO 'CSQUOUT'
COPY PSID(Ø3)
* COPY ONE QUEUE TO 'OUTPUT'
COPY QUEUE(ABC123A) DDNAME(OUTPUTA)
/*

This is the same job as in IBM’s System Management Guide, except
STEPLIB has three DD statements concatenated to it with the V2.1
binary datasets. Essentially, what it does is execute the V2.1 CSQUTIL
with the V1.2 queue manager pagesets.

USAGE NOTES

• Replace CSQ1 with the source queue manager subsystem name,
uuuuu and vvvvvvv with the unit and volser of the disk on which
the V2.1 binary datasets reside, respectively, and thlqual with the
high level qualifier of the V2.1 binary datasets.

• Note that the queue must not be opened by any application during
the execution of CSQUTIL COPY or the operation will fail. This
means you need to terminate all applications that are reading
from or writing to the source queue before running the job. You
can check this by issuing the following command to the source
queue manager:

DISPLAY QL(queuename) IPPROCS OPPROCS

• If the source queue manager is down, you can replace COPY with
SCOPY. See the System Management Guide for details.

• For detailed CSQUTIL reference: http://www-4.ibm.com/
software/ts/mqseries/library/manuals99/csqrap/csqrap3e.htm -
HDRQUMGT)

The next step is simply to make the output dataset available to the
destination queue manager (again, either by copying it, by varying the
disk online, or any other method), and run a standard CSQUTIL
LOAD job:

 //LOAD EXEC PGM=CSQUTIL,PARM=('CSQ1')
//STEPLIB DD DISP=SHR,DSN=thlqual.SCSQANLE

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

// DD DISP=SHR,DSN=thlqual.SCSQAUTH
//OUTPUTA DD DSN=MY.UTILITY.OUTPUTA,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
LOAD QUEUE(ABC123) DDNAME(OUTPUTA)
/*

That’s it. Happy upgrading!

Roy Razon
MQSeries Consultant (Israel) © Roy Razon

Monitoring a Unix queue manager’s error logs

INTRODUCTION

In all Unix MQSeries installations, the queue manager’s error logs are
one of the main sources of information about what exactly has been
occurring within the system. In addition to listing all of the regular
(and perfectly normal) activities, such as channel starts and stops, it
will also contain entries for any error conditions that have been
detected. This makes error logs an essential tool in the diagnosis of
any problems that might have occurred.

Each queue manager will have a set of three error logs which are
usually written to the directory /var/mqm/qmgrs/<queue manager
name>/errors. Each log has a capacity of 256K, with AMQERR01.LOG
always being the active one that is actively being written to by the
queue manager. When AMQERR01.LOG is about to exceed 256K, it
is copied to AMQERR02.LOG. However, before this operation can
complete, AMQERR02.LOG is in turn copied to AMQERR03.LOG.
The previous contents of AMQERR03 are discarded, and in this way,
the logs cycle.

Unfortunately, on very busy queue managers the error logs may cycle
too fast, which can be a problem. This is especially true where there
are a lot of channels with relatively short disconnect intervals. In these
cases, entries that you need to see in order to resolve a problem that
has occurred can be lost because the error logs are swamped by lots
of channel starts and stops. If you are told by operational support staff

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

or a particular application’s support team that a certain MQ system
had problems overnight, key messages for the time period in question
may well have gone from the logs by the time you check them. What
is needed is a copy of any log that may contain error messages
indicating a problem has occurred.

THE CHKMQLOGS UTILITY

This utility runs as a background task and monitors queue manager
error logs. It does this by periodically checking to see if a particular
error log has a new system date/time stamp. In the sample code below,
this is AMQERR02.LOG, but this is a configurable setting within the
startup shell script. If it finds that the file hasn’t changed it will wait
for a specified time interval before checking once again. However, if
it finds that there has been a change – in this case if AMQERRO1.LOG
has scrolled into AMQERR02.LOG – it launches a new script (gochklog)
that analyses that log (ie AMQERR02), passing to it the parameters it
needs.

Some points to note about chkmqlogs and its code

• The utility takes no parameters, but contains a block of code
where all the variables needed must be set. These are:

– The directory containing the queue manager’s error logs.

– The particular log file you want to monitor.

– The parent directory for copies of error logs and the utility’s
console.

– The queue manager name.

– The sleep interval, ie the length of time it waits before
checking the date/time stamp again.

• The date/time stamp is captured by routing the output of the Unix
ls -l command to a shell script variable.

THE CHKMQLOGS SHELL SCRIPT
#!/bin/ksh
chkmqlogs

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

Script that checks if a new version of a Queue Manager's
Error Log has been created - and if found, calls gochklog
to scan it for specific AMQnnnn errors
Display Help Text for Utility?
if [[$1 == '?']]
then
 print "chkmqlogs:"
 print " "
 print "Utility to scan a Queue Manager's Error Logs"
 print "for error codes specified within the config"
 print "file chkmqlogs.cfg"
 print " "
 print "If any are found - the Error Log is copied..."
 print " "
 print "Variables needed are:"
 print " Log File Directory"
 print " Error Log Name"
 print " Directory to copy Logs into"
 print " Queue Manager Name"
 print " Sleep Interval"
 print " "
fi
exit
Set all variable parameters here
#===#
logdir=/var/mqm/qmgrs/MYQMGR/errors # Directory containing QMs Logs
logname=AMQERRØ2.LOG # Log to analyse
copypdir=/var/mqm/copylogs # Parent Directory for Copy Logs
qm=MYQMGR # Queue Manager Name
sleepfor=6ØØ # Check Interval (Secs)
#===#
mqlog=$logdir/$logname
Capture timestamp of file and see if it has changed
- if it has, call analysis script
olddate=""
while :
do

newdate=$(ls -l $mqlog)
 if [[$olddate != $newdate]]

then
print "New log found"
print "Calling gochklog .."
gochklog $logdir $logname $copypdir $qm

fi
Wait for specified interval before checking again

sleep $sleepfor
olddate=$newdate

done
exit Ø

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

THE UTILITY’S CONFIG FILE

In analysing the error log, the utility needs to know what specific
MQSeries error codes may indicate that a problem has occurred, and
so trigger the copying of that file. This is done by means of a
configuration file called chkmqlogs.cfg, which should reside in the
same directory as the shell scripts.

An example of this file is shown below.

Configuration File for chkmqlogs utility
Enter all error message codes to be scanned for
in the format AMQnnnn - separated by the pipe character
NB - do NOT leave any blank lines below this header
AMQ9254|AMQ9558|AMQ67Ø9|AMQ8ØØ3|AMQ8ØØ4

Here, amongst other things, we are interested in whether the queue
manager has been stopped or started at any time during the lifecycle
of the log.

NOTES ON GOCHKLOG

• The utility puts out a series of messages as it analyses the log.
Under normal circumstances these will be written to a file called
chkmqlogs.console but if the variable ‘debug’ is set to ‘y’ they
will be written to the screen. This will be located in a directory
with the same name as the queue manager, under the directory
specified in the variable ‘copypdir’ (a sample of its contents will
be shown later in this article).

• The start and end date/times of the log are determined by issuing
the Unix head and tail commands to find the appropriate lines.

• All unique AMQnnnn message identifiers are retrieved and
routed to a temporary file on the system’s /tmp directory.

• This file is then processed in order to find out how many
occurrences of each message have been found in the log.

• Finally, the message codes that have been found are checked
against those specified in the config file. If any matches are found
the entire log is copied and made unique by appending a date/time
stamp as part of its name.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

THE GOCHKLOG SCRIPT
#!/bin/ksh
gochklog
Script that actually does the checking of the specified
Queue Manager Error log
Parameters are:
1 Error Log Directory
2 Error Log Name
3 Parent Directory for Copy Logs and Console File
4 Queue Manager Name
debug=n
Are we running in Debug Mode ?
if [[$debug = 'y']]
then set -o xtrace
fi
print "gochklog running ..."
Set exact location and name of Queue Manager Log
logdir=$1
logname=$2
copypdir=$3
mqlog=$logdir/$logname
Set Queue Manager Name and Temporary File Name/Loc
qm=$4
tmp=/tmp/$LOGNAME.$$.tmp
Set Directory to copy Logs and Console File to ..
copyldir=$copypdir/$qm
ls $copyldir > /dev/null 2>&1
rc=$?
if [[${rc} != Ø]]
then
 mkdir $copyldir
fi
console=chkmqlogs.console
consout="$copyldir/$console"
Get Error Codes from config file into variable
copymqlog=`cat chkmqlogs.cfg | grep -v '#'`
print " Error Log Monitor for $qm" >> $consout
print " " >> $consout
print "Log Start at $(head -1 $mqlog)" >> $consout
print "Log End at $(tail -1ØØ $mqlog |grep '../../'| tail -1)" >>
$consout
grep ^AMQ $mqlog | cut -f1 -d':' | sort | uniq > $tmp
Examine Log to determine how many occurrences of
each error message there are ..
print " " >> $consout
print " Number of MQSeries" >> $consout
print "Occurrences Message" >> $consout
print "=========== ========" >> $consout
for err in $(cat $tmp)

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

do
 print "$(grep $err $mqlog| wc -l) - $(grep $err $mqlog |head -1)" >>
$consout
done
Compare each error to those specified in config
file - if any match, copy the log ..
egrep $copymqlog $mqlog > /dev/null 2>&1
rc=$?
if [[${rc} == Ø]]
then

newlog=$(date +%d%m%H%M)
 print " " >> $consout
 print "Specified error detected -" >> $consout
 print "Saving $mqlog to" >> $consout
 print "Saving Error Log ..."
 print " $copyldir/$logname.$newlog" >> $consout
 cp $mqlog $copyldir/$logname.$newlog
fi
print " " >> $consout
print "======== End Log File Analysis ========" >> $consout
print >> $consout
rm $tmp
exit Ø

After the utility has run, this is what the console file chkmqlogs.console
shows:

Error Log Monitor for MYQMGR
Log Start at 24/Ø2/Ø1 Ø2:58:51 AM
Log End at Ø1/Ø3/Ø1 12:34:29 PM
No of Occurrences MQSeries Message
 3 - AMQ8ØØ3: MQSeries queue manager 'MYQMGR' started.
 1 - AMQ8ØØ4: MQSeries queue manager ended.
 1 - AMQ85Ø6: Command server MQGET failed with reason code 2ØØ9.
 3 - AMQ941Ø: Repository manager started
 3 - AMQ9411: Repository manager stopped
 2 - AMQ9447: Unable to backout repository changes.
 2 - AMQ95Ø9: Program cannot open queue manager object.
 5 - AMQ951Ø: Messages cannot be retrieved from a queue.
 1 - AMQ9542: Queue manager is ending.
 48 - AMQ9999: Channel program ended abnormally.
Specified error detected -
Saving /var/mqm/util/AMQERRØ2.LOG to
 /var/mqm/copylogs/MYQMGR/AMQERRØ2.LOG.16Ø3Ø946
 ======== End Log File Analysis ========

Chris Bell
Systems Consultant, British Airways (UK) © Xephon

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

MQLST: a REXX utility to filter and list MQ objects
and attributes for OS/390

This REXX creates a list of MQSeries objects according to given
parameters and writes it to SYSPRINT. The list can be filtered to
contain a specified string, and a certain attribute of the object can be
printed along with its name.

POINTS TO NOTE

• Parameters are separated by commas, eg:

– MQLST QMGR,ObjectType,FilterString,Attribute.

• QMGR: the queue manager’s name.

• ObjectType: any legal MQ object type (QUEUE,CHANNEL,
etc). Please refer to ‘Usage notes’, below.

• FilterString: only objects whose name contains the string will be
returned.

• Attribute: optional, can be omitted. MQ object attribute (such as
CURDEPTH for QUEUE objects), whose value is to be printed
along with the object name.

Example 1: listing certain queues’ depth
 MQLST CSQ1,QUEUE,MYPROJ,CURDEPTH

will output:

 searching for <MYPROJ> in list of all <QUEUE>
 in MQSeries QManager <CSQ1>
 also retrieving <CURDEPTH>
 TEST.MYPROJ1 Ø
 TEST.FOO.MYPROJ.OUTPUT 1ØØ
 search completed successfully
 2 objects written to SYSPRINT

Example 2: listing all stopped channels
 MQLST CSQ1,CHS,STOPPED

will output:

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 searching for <STOPPED> in list of all <CHS>
 in MQSeries QManager <CSQ1>
 also retrieving <>
 CSQ1.TO.UNIX1
 CSQ1.TO.PRODNT
 TESTNT.TO.CSQ1
 search completed successfully
 3 objects written to SYSPRINT

Prerequisites

Support pack MA19 REXX TSO interface for MQSeries must be
installed, and, specifically, the module RXMQVC, which it contains,
must be in the LNKLST or in the STEPLIB of the current job.

Usage notes

The cause of a common problem is that the ObjectType parameter
should be specified as it would appear in the MQSC DISPLAY
command. For example, the command MQLST
CSQ1,QLOCAL,BLA will output an empty list. This is because the
output of the command "DISPLAY QLOCAL(*)" is as follows:

 CSQM2Ø1I +CSQ1 CSQMDMSG DIS QLOCAL DETAILS
 QUEUE(MQ.PROJ1)
 TYPE(QLOCAL)
 CSQMDMSG END QLOCAL DETAILS

The word QLOCAL does not appear on the searched line and the
program cannot draw the object name from it. The solution is simply
to use the word QUEUE and not QLOCAL in your query.

Programming notes

This REXX contains a useful general procedure, perform_mq_cmd(),
which performs an MQSC command through the TSO REXX Interface
and returns the results in a stem. This procedure can be used wherever
an MQSC command needs to be executed – it simplifies the use of the
support pack for REXX programs.

MQLST
/* This REXX creates a list of MQSeries objects according to */
/* given parameters and writes it to screen. */
/* The list created is a list of objects where a certain string */

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

/* (given as parameter) exists in its name or the parameter */
/* requested (MQparm). */
/* EXAMPLE OF USAGE : */
/* MQLST <Qmanager>,<MQobj>,<String>,<MQparm> */
/* For example, the command : */
/* 'MQLST CSQ1,QUEUE,PROJ1,CURDEPTH' */
/* Will print a table of local queues and their depth with the */
/* string 'PROJ1' in their name (example 'MQ.PROJ1.INPUT'). */
/* Another example of usage, is: */
/* 'MQLST CSQ1,CHS,RUNNING,STATUS' */
/* Will print a list of all running channels... */
/* PARAMETERS : */
/* Qmanager - MQSeries queue manager name (without prefix). */
/* MQobject - MQSeries legal object name(QUEUE,CHANNEL etc). */
/* String - String to search in MQSeries object names or */
/* in parameter MQparm. */
/* MQparm - MQSeries object parameter (CURDEPTH, STATUS) .*/
/* MODULES USED: */
/* RXMQVC - Rexx TSO interface for MQSeries */
/* supplied as Support Pack MA19. */
/* REXX'S USED : */
/* NONE. */
/* IMPORTANT NOTE: */
/* The REXX gets the objects name using the string you typed as */
/* your 'MQobject' parameter, this causes a problem im several */
/* cases. */
/* for example, if you type 'MQLST CSQ1,QLOCAL,BLA', you will */
/* get a blank list, this is because the output of the command */
/* "DISPLAY QLOCAL(*)" is as follows: */
/* CSQM2Ø1I +CSQ1 CSQMDMSG DIS QLOCAL DETAILS */
/* QUEUE(MQ.PROJ1) */
/* TYPE(QLOCAL) */
/* CSQMDMSG END QLOCAL DETAILS */
/* the word "QLOCAL" does not appear in the searched line, */
/* and the program cannot draw the object name from it. */
/* the solution is simple enough, use the word "QUEUE" and not */
/* QLOCAL in your query. */
/* RETURN VALUE: */
/* Ø/8 - (RC) whether creating the list succeeded */
/* Updates */
/* 23/1Ø/2ØØØ MQACID RRNO */
/* Creation */
/* Ø2/11/2ØØØ MQACID RRNO */
/* Final Version */
/* 19/11/2ØØØ MQACID RRNO */
/* Added mqprm parameter */
/* 12/Ø4/2ØØ1 MQACID RRNO */
/* Further commenting added */
 /* Constants Definition */
 TRUE = 1;
 FALSE = Ø;

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 NULL = '';
 INDEX_STRING_NOT_FOUND = Ø;
 OUTPUT_TO_SCREEN = 'SYSPRINT';
 /* Arguments Section */
 qmgr_name = NULL;
 mqobj = NULL;
 mqobj_str = NULL;
 mqobj_prm = NULL;
 PARSE ARG qmgr_name','mqobj','mqobj_str','mqobj_prm
/*
 qmgr_name = 'QM1';
 mqobj = 'QUEUE';
 mqobj_str = 'NERL';
 mqobj_prm = 'CURDEPTH'
*/
/*
 say 'FOR DEBUG PURPOSES';
 say 'qmgr_name <'qmgr_name'>';
 say 'mqobj_str <'mqobj_str'>';
 say 'mqobj <'mqobj'>';
*/
 /* Variables Initialization */
 /* MAIN */
 /* Strip parameters */
 qmgr_name = STRIP(qmgr_name);
 mqobj_str = STRIP(mqobj_str);
 mqobj = STRIP(mqobj);
 mqobj_prm = STRIP(mqobj_prm);
 /* Check parameters validity */
 if(qmgr_name = NULL |,
 mqobj_str = NULL |,
 mqobj = NULL) then do;
 say 'MQLST Parameters Invalid.'
 say 'Rexx Usage:'
 say 'MQLST <qmgr>,<mqobj>,<string>,<mqobj_prm>';
 say 'qmgr = MQSeries queue manager name (without prefix)'
 say 'mqobj = CHANNEL/QLOCAL/PROCESS etc.';
 say 'string = string to be searched in MQSeries objects';
 say 'mqobj_prm = (OPTIONAL) MQS object parameter (exp. CURDEPTH)'
 say 'NOTE: USE UPPER CASE LETTERS'
 parms_valid = FALSE;
 end;
 else,
 parms_valid = TRUE;
 if (parms_valid = TRUE) then do;
 /* Notify user of search at hand */
 say 'searching for <'mqobj_str'> in list of all <'mqobj'>'
 say 'in MQSeries QManager <'qmgr_name'>'
 say 'also retrieving <'mqobj_prm'>';
 /* create object list */
 objlist_received =,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

 cre_objlist(qmgr_name,mqobj,mqobj_str,mqobj_prm);
 /* Write results to screen */
 "EXECIO * DISKW SYSPRINT (STEM new_objlist. FINIS";
 end;
 else,
 objlist_received = FALSE;
 /* Check if object list received */
 if (objlist_received = TRUE) then do;
 say 'search completed successfuly';
 say new_objlist.Ø' objects written to SYSPRINT';
 MQlst_RC = Ø;
 end;
 else do;
 say 'search was unsuccessful';
 say 'no objects objects written to SYSPRINT';
 MQlst_RC = 8;
 end;
return (MQlst_RC);
/*---*/
/* get_all_objlist */
/* DESCRIPTION: */
/* This procedure gets all wanted object names from queue */
/* manager by using a DISPLAY * MQSeries command. */
/* It then creates the object list. */
/* PARAMETERS: */
/* qmgr_name - MQSeries queue manager name (without prefix). */
/* mqobj - MQSeries object type (CHANNEL etc.) */
/* mqobj_prm - MQSeries object's parameter (exp. CURDEPTH) */
/* RETURN VALUE: */
/* Ø/1 whether procedure succeeded. */
/*---*/
get_all_objlist: procedure,
 expose TRUE,
 expose FALSE,
 expose INDEX_STRING_NOT_FOUND,
 expose mqerr_msg.,
 expose objlist.;
PARSE ARG qmgr_name,mqobj,mqobj_prm;
 /* Constants Definition */
 /* Variables Initialization */
 proc_success = FALSE;
 NO_OBJ_FOUND = '';
 NO_PRM_FOUND = '';
 objlist.Ø = Ø;
 /* MAIN */
 /* Perform mq display all mq objects command */
 /* Build basic command */
 mq_dis_cmd = "DIS "mqobj"(*)";
 /* If mqobject parameter stated, add to command */
 if (mqobj_prm ^= NULL) then,
 mq_dis_cmd = mq_dis_cmd' 'mqobj_prm;

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /* Perform built command and check results */
 mq_cmd_success = perform_mq_cmd(qmgr_name,mq_dis_cmd);
 if (mq_cmd_success = TRUE) then do;
 /* Go through all lines in command output and extract */
 /* queue names - from them create mq obj list */
 do line_counter = 1 to mq_cmd_output.Ø;
 /* Parsing string to find object name */
 obj_name = NO_OBJ_FOUND;
 obj_prm = NO_PRM_FOUND;
 /* Parse string to object name and object parameter */
 PARSE VALUE mq_cmd_output.line_counter with,
 dummy VALUE(mqobj)'('obj_name')',
 dummy VALUE(mqobj_prm)'('obj_prm')',
 dummy;
 /* Check if string parmsed correctly */
 if(obj_name ^= NO_OBJ_FOUND) then do;
 next_objlist_line = objlist.Ø + 1;
 objlist.next_objlist_line =,
 LEFT(STRIP(obj_name),4Ø,' ')||' '||STRIP(obj_prm);
 objlist.Ø = objlist.Ø + 1;
 end;
 end;
 proc_success = TRUE;
 end;
 else do;
 /* Put error message received in stem to notify user */
 mqerr_msg.Ø = mq_cmd_output.Ø;
 do mqerr_line = 1 to mq_cmd_output.Ø;
 mqerr_msg.mqerr_line = mq_cmd_output.mqerr_line;
 end;
 proc_success = FALSE;
 end;
return (proc_success);
/*---*/
/* cre_objlist */
/* DESCRIPTION: */
/* This procedure creates the wanted object list. */
/* This is done by going through all objects in queue manager */
/* and finding the requested string (given as parameter). */
/* PARAMETERS: */
/* qmgr_name - MQSeries queue manager name (without prefix). */
/* mqobj - MQSeries object (CHANNEL, QLOCAL etc.) */
/* mqobj_str - The string searched in all object names. */
/* mqobj_prm - MQSeries object's parameter (exp. USAGE) */
/* RETURN VALUE: */
/* Ø/1 procedure success. */
/*---*/
cre_objlist: procedure,
 expose TRUE,
 expose FALSE,
 expose INDEX_STRING_NOT_FOUND,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

 expose new_objlist.;
PARSE ARG qmgr_name,mqobj,mqobj_str,mqobj_prm;
 /* Constants Definition */
 /* Variables Initialization */
 proc_success = TRUE;
 /* MAIN */
 /* Get queue list */
 objlist_received = get_all_objlist(qmgr_name,mqobj,mqobj_prm);
 if (objlist_received = TRUE) then do;
 /* Go thorugh all lines in object list and find string. */
 /* Create object list from those lines. */
 new_objlist.Ø = Ø;
 do line_counter = Ø to objlist.Ø;
/*
 say 'CREobjlist: search for <'mqobj_str'>';
 say 'CREobjlist: in <'objlist.line_counter'>';
*/
 cfgidx = INDEX(objlist.line_counter, mqobj_str);
 /* if string found, add it to new object list */
 if (cfgidx ^= INDEX_STRING_NOT_FOUND) then do;
 next_cfg_line = new_objlist.Ø + 1;
 new_objlist.next_cfg_line = objlist.line_counter;
 new_objlist.Ø = new_objlist.Ø + 1;
/*
 say 'CREobjlist: << string found';
*/
 end;
 end;
 proc_success = TRUE;
 end;
 else,
 proc_success = FALSE;
return (proc_success);
/*---*/
/* perform_mq_cmd */
/*---*/
/* This procedure performs and MQSeries command and returns results */
/* All this using the RXMQVC module supplied by MQSeries MA19 SP */
/* */
/* Parameters: qmgr_name - MQSeries queue manager name (NO PREFIX) */
/* mq_cmd - MQSeries command */
/* Return code: command success (TRUE/FALSE) */
/* Exposed parameters: NONE. */
/*---*/
perform_mq_cmd: procedure,
 expose TRUE,
 expose FALSE,
 expose RXMQWX_mq_cmd_rcc,
 expose mq_cmd_return_code,
 expose mq_cmd_reason_code,
 expose mq_conn_return_code,

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 expose mq_conn_compl_code,
 expose mq_conn_reason_code,
 expose mq_cmd_output.;
PARSE ARG qmgr_name, mq_cmd;
 /* Constants Definition */
 RXMQVC_NO_TRACE = '';
 /* Variables Initialization */
 /* MAIN */
 /* Init RXMQVC and associated variables */
 rcc = RXMQVC('INIT');
 RXMQVCTRACE = RXMQVC_NO_TRACE;
 mq_cmd_output.Ø = Ø;
 mq_cmd_successful = FALSE;
 /* Call RXMQVC to execute command and get output */
 mq_cmd_rcc =,
 RXMQVC('command ',qmgr_name,mq_cmd,'mq_cmd_output.');
 mq_cmd_rcc = STRIP(mq_cmd_rcc);
 /* Init exposed variables */
 RXMQVC_cmd_rcc = mq_cmd_rcc;
 mq_cmd_return_code = mq_cmd_output.CC;
 mq_cmd_reason_code = mq_cmd_output.AC;
 mq_conn_return_code = word(mq_cmd_rcc,1);
 mq_conn_compl_code = word(mq_cmd_rcc,2);
 mq_conn_reason_code = word(mq_cmd_rcc,3);
 /* */
 /* Check if connection to MQSeries successful and */
 /* Check if MQSeries command successful */
 if (mq_conn_compl_code ^= 'Ø' |,
 mq_cmd_return_code ^= 'ØØØØØØØØ') then,
 mq_cmd_successful = FALSE;
 else,
 mq_cmd_successful = TRUE;
 /* If command not successful - print messages */
 if (mq_cmd_successful = FALSE) then do;
 say 'MQLST | ---';
 say 'MQLST | Error executing cmd <'mq_cmd'>';
 say 'MQLST | on queue manager <'qmgr_name'>';
 say 'MQLST | MQCONN return code <'mq_conn_return_code'>';
 say 'MQLST | MQCONN compl code <'mq_conn_compl_code'>';
 say 'MQLST | MQCONN reason code <'mq_conn_reason_code'>';
 say 'MQLST | return code <'mq_cmd_return_code'>';
 say 'MQLST | reason code <'mq_cmd_reason_code'>';
 say 'MQLST | MQ err msg number <'mq_cmd_output.Ø'>';
 say 'MQLST | ---';
 do line_counter = 1 to mq_cmd_output.Ø;
 say 'MQLST | 'mq_cmd_output.line_counter;
 end;
 say 'MQLST | ---';
 say 'MQLST | RXMQVC rcc message <'RXMQVC_cmd_rcc'>';
 say 'MQLST | ---';
 end;

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

 /* Terminate RXMQVC */
 rcc = RXMQVC('TERM');
return (mq_cmd_successful);

Roy Razon
MQSeries Consultant (Israel) © Roy Razon

The CSQUTIL utility

CSQUTIL is a utility provided with MQSeries to help issue commands,
perform backups and restores, and reorganize tasks.

MAKECLNT COMMAND

In this example the dataset referenced by DDname COPYWHAT,
member (COPYMSMQ) contains an MQSeries DISPLAY
CHANNEL command. The MAKECLNT keyword causes this to be
converted into corresponding sets of client channel definitions. These
are put into the dataset referenced by DDname MAKECLNT , which
is ready to be downloaded to the client machine. The Queue Manager
is MQM1 and the job is run in batch on the OS/390 platform.

//USERID JOB (SØ9P91T),'DAVIES',CLASS=T,MSGCLASS=B,
// NOTIFY=&USERID
**
//* PROGRAM CSQUTIL ISSUES COMMANDS TO QMGR IDENTIFIED BY PARM='NNNN'
//* ON THE EXEC CARD
//* MESSAGES ARE PRINTED TO DD SYSPRINT
//* USING MAKECLNT CREATS AN OUTPUT FILE THAT CAN BE USED TO
//* BUILD A CLIENT CHANNEL DEFINITION FILE IN BINARY FORMAT
//MAKECLNT EXEC PGM=CSQUTIL,PARM='MQM1'
//STEPLIB DD DSN=SYS1.SCSQAUTH,DISP=SHR
// DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.MQM1.LINKLIB,DISP=SHR
//COPYWHAT DD DISP=SHR,DSN=QMGRMQM1.CHNL.JCL(COPYMSMQ)
//MAKECLNT DD DISP=SHR,DSN=QMGRMQM1.CHNL.MAKECLNT
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(COPYWHAT) MAKECLNT(MAKECLNT)
COPYMSMQ sample definitions
DISPLAY CHANNEL(MSMQTOMQS) ALL

Saida Davies
IBM (UK) © S Davies

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Customizing CSQXMQxx

CSQXMQxx is an example of how the file CSQ4XPRM, which is
supplied in the MQM.SCSQPROC dataset, can be customized to meet
specific requirements. Here you can define the correct LU name and
TCP/IP task name.

This job is used to create a channel initiator options module. It
assembles and links a new channel initiator parameter module for
distributed queueing without CICS. Edit the parameters for the
CSQ6CHIP macro to determine your parameters and relink module
CSQXPARM.

JOB CSQX4PRM

//JOBCARD
**
//* Customize Channel Initiator options module
**
//* The Macros in this deck are tracked by OS/39Ø SMPE usermod
**
//* CUSTOMIZE THIS JOB HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
**
//* IBM MQSeries for MVS/ESA
//* This job assembles and links a new channel initiator
//* parameter module for distributed queueing without CICS.
//* Edit the parameters for the CSQ6CHIP macro to determine
//* your parameters.
//* See MQSeries for MVS/ESA System Management Guide
//* for a full description of the parameters.
//* Replace ++THLQUAL++
//* with the high level qualifier of the
//* SCSQMACS target library.
//* Replace ++HLQ.USERAUTH++
//* with the data set name of the authorized
//* load library in which to store your
//* channel initiator parameter module.
//* Replace ++NAME++
//* with the name of your channel initiator
//* parameter module.
//* Note - do NOT use the default version
//* name of CSQXPARM if you are using the
//* IBM library SCSQAUTH to store your
//* channel initiator parameter module.
//**

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

//* Assemble step for CSQXPARM
//CHIP EXEC PGM=ASMA9Ø,PARM='DECK,NOOBJECT,LIST,XREF(SHORT)'
//SYSLIB DD DSN=MQM.SCSQMACS,DISP=SHR,UNIT=339Ø,VOL=SER=SYSØØ1 <=vol?
// DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=339Ø,VOL=SER=SYSØØ1
<=vol?
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&CHIP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(4ØØ,(1ØØ,1ØØ,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6CHIP ADAPS=8, ADAPTER SUBTASKS Ø-9999 X
 ACTCHL=2ØØ, MAX ACTIVE CHANNELS 1-9999 X
 CURRCHL=2ØØ, MAX CURRENT CHANNELS 1-9999 X
 DISPS=5, DISPATCHERS 1-9999 X
 LUNAME=MVSMQLU1, LU NAME FOR OUTBOUND DATA (LPARx) X
 LU62CHL=2ØØ, MAX LU6.2 CHANNELS Ø-9999 X
 TCPCHL=2ØØ, MAX TCP/IP CHANNELS Ø-9999 X
 TCPKEEP=NO, TCP/IP KEEPALIVE OPTION YES|NO X
 TCPNAME=TCPIPx, TCP/IP ADDRESS SPACE NAME (LPARx) X
 TRAXSTR=YES, START TRACE AUTOMATICALLY YES|NO X
 TRAXTBL=2 TRACE DATASPACE SIZE IN MB Ø-2Ø48
 END
//* LINKEDIT CSQXPARM into a parameter module.
//*//LKED EXEC PGM=IEWL,COND=(Ø,NE),
// PARM='SIZE=(9ØØK,124K),RENT,NCAL,LIST,AMODE=31,RMODE=ANY'
//* OUTPUT AUTHORIZED APF LIBRARY FOR THE NEW CHANNEL INITIATOR
//* PARAMETER MODULE.
//*YSLMOD DD DSN=MQM.SCSQAUTH,DISP=SHR
//SYSLMOD DD DSN=MQM.MQxx.PARMODS,DISP=SHR <= MQxxCHIN steplib
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1Ø24,
// SPACE=(1Ø24,(2ØØ,2Ø))
//SYSPRINT DD SYSOUT=*
//CHIP DD DSN=&&CHIP,DISP=(OLD,DELETE)
//*
//SYSLIN DD *
 INCLUDE CHIP
 ENTRY CSQXPARM
 NAME CSQXMQxx(R) MQxx channel initiator parameter module name
/*

Saida Davies
IBM (UK) © S Davies

MQ news

CommerceQuest has announced version 4.0
of its patent-pending software, enableNet
Data Integrator, a message-to-file-to
message broker for MQSeries.

Introduced in 1997, enableNet Data
Integrator provides assured delivery of
mission-critical information. The software
supports a comprehensive range of
platforms including MVS, Unix, NT,
Windows 2000, AS/400, IBM 4690, TPF,
and others.

Enhancements in version 4.0 include a wider
range of platform support, greatly improved
customization capabilities, and easier
installation and configuration for complex
information integration projects.

An evaluation copy of the software is
available for free trial at http:/
www.commercequest.com/eval

For further information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL, 33607, USA
Tel: +1 813 639 6300
Fax: +1 813 639 6900
Web: http://www.CommerceQuest.com

CommerceQuest (UK), Doncastle House,
Doncastle Road, Bracknell, Berkshire,
RG12 8PE, UK
Tel: +44 (0)1344 861010
Fax: +44 (0) 1344 861011

* * *

Science Applications International
Corporation’s (SAIC) Broadway and
Seymour Group has announced the release
of version 7.0 of its TouchPoint customer
relationship management (CRM) solution.
Built on a browser-based architecture,
TouchPoint 7.0 provides enhanced sales and
service functionality across multiple
delivery channels for financial services
institutions.

Specifically, this new release has added
support for MQSeries as a transaction
processing middleware option. Other new
features include significantly expanded
report extraction and report generation
capabilities, and additional sales and
services features such as product
presentation and user messaging.

Along with MQSeries and enhanced
reporting, TouchPoint 7.0 features
additional sales tools such as user
messaging, rates, fees, and scripting that
enable users to view on-line product
footnotes and benefits, while the product
presentation component assists users in
providing detailed information to customers
about the products and services available
throughout their institution.

For further information contact:
SAIC, 10260 Campus Point Drive, San
Diego, CA 92121
Tel: +1 858 826 6000
Web: http://www.saic.com

* * *

x xephon

	MQSeries V5.2: clusters update
	How to improve message throughput in an MQSI V2 broker
	Copying queue contents from MQSeries V1.2 to V2.1 on OS/390
	Monitoring a Unix queue manager’s error logs
	MQLST: a REXX utility to filter and list MQ objects and attributes for OS/390
	The CSQUTIL utility
	Customizing CSQXMQxx
	MQ news

