
© Xephon plc 2001

August 2001

26

3 IP multicasting and enterprise
messaging

9 Three ways to connect MQSeries
clients

27 MQSeries and firewalls
34 Using MQ clusters for large

communications buffers
41 Increasing availability on MQ for

OS/390
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/contnote.html.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/
mqupdate.html (you will need to supply a
word from the printed issue).

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

IP multicasting and enterprise messaging

WHAT IS MULTICASTING?

Most high-level network protocols, such as ISO transport protocols or
TCP or UDP, only provide a unicast transmission service. That is,
nodes of the network have only the ability to send to one other node
at a time. All transmissions in a unicast service are inherently point-
to-point. If a node wants to send the same packet of data to multiple
nodes using a unicast transport service it must perform a replicated
unicast and send n copies of the packet to each destination in turn.

A better way to transmit data from one point to many nodes is to use
multicasting. With a multicast transport service a single node can send
data to many destinations by making just a single call over the
transport service.

Multicasting is useful because it allows the construction of truly
distributed applications and provides important performance
optimizations over a unicast service. Many underlying media, eg
Ethernet, provide support for multicast and broadcast at the hardware
or the media access level. Multicasting is currently being used in real-
time audio and video-conferencing applications.

IP multicast is a protocol used for transmitting IP datagrams from one
source to many destinations in a LAN or WAN of hosts that run on the
TCP/IP protocol. The basic facility provided by the IP service is a
unicast servicing mechanism. The current standard for IP only provides
for the unreliable transmission of datagrams from a single source host
to a single destination host. Multicast routing over IP is available but
many vendors have to build the reliability mechanism on top of this
protocol.

However, MTP (the newer breed of multicast service) provides
application programs with a guarantee of atomicity and reliability in
sending datagrams in a multicast fashion.

IP MULTICASTING

On systems that support multicast protocols provision must also be

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

made for sending and receiving multicast datagrams. There is a
standard mechanism for using IP multicast facilities over sockets in
4.4 BSD Unix and other operating systems that support sockets. Every
multicast group has a group address. These addresses are also known
as Class D addresses. Class D addresses are not assigned to individual
hosts, they are assigned to multicast groups. A class D network
address is one defined as having the range of 224.0.0.0 through
239.255.255.255. These addresses are reserved for IP multicast.
Hardware vendors such as CISCO, and software vendors including
IBM, Microsoft, and Sun have incorporated IP multicasting into their
software.

IP multicasting is making significant advances. Using IP multicasting
would not only save a Web broadcaster’s bandwidth, but its use would
mean that the equipment sending out the broadcast would have to
handle only one stream. The adoption of IP multicasting is not just
about bandwidth congestion. The widespread adoption of this
technology is an essential ingredient in the Web’s development as a
mass medium.

BASIC IP MULTICAST PROGRAMMING

The IP multicast routing protocol uses the TTL (Time-To-Live)
property of IP datagrams to decide how far from a sending host a given
multicast packet has to travel. The default value of the TTL field is 1,
which means it can send the packet to other hosts in the local network.

A SetSockOpt(2) option may be used to change the TTL of the
datagram – see below.

 Unsigned char ttl;
 SetSockOpt(sock,IPPROTO_IP,IP_MULTICAST_TTL,&ttl,sizeof(ttl));

As the values of the TTL field increase, routers will expand the
number of hops they will forward a multicast packet.

Sending a multicast packet is easy. The program uses a sendTo.

 System call with the host address to send the packet.
 The "hello world" message could be used as an example here.
 Sender.c pgm.
 #include
 #include
 #include

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

 #include
 #define HELLO_PORT 5423
 #define HELLO_GROUP "226.Ø.Ø.38"
 main(int argc, char *argv[])
 {
 struct sockaddr_in addr;
 int fd, cnt;
 struct ip_mreq mreq;
 char *message="Hello, World!";
 /* create what looks like an ordinary UDP socket */
 if ((fd=socket(AF_INET,SOCK_DGRAM,Ø)) < Ø) {
 perror("socket");
 exit(1);
 }
 /* set up destination address */
 memset(&addr,Ø,sizeof(addr));
 addr.sin_family=AF_INET;
 addr.sin_addr.s_addr=inet_addr(HELLO_GROUP);
 addr.sin_port=htons(HELLO_PORT);
 /* now just sendto() our destination! */
 while (1) {
 if (sendto(fd,message,sizeof(message),Ø,(struct
sockaddr *)&addr,
 sizeof(addr)) < Ø) {
 perror("sendto");
 exit(1);
 }
 sleep(1);
 }
}

LISTENER.C PGM

 #include
 #include
 #include
 #define HELLO_PORT 5423
 #define HELLO_GROUP "226.Ø.Ø.38"
 #define MSGBUFSIZE 256
 main(int argc, char *argv[])
 {
 struct sockaddr_in addr;
 int fd, nbytes,addrlen;
 struct ip_mreq mreq;
 char msgbuf[MSGBUFSIZE];
 /* create what looks like an ordinary UDP socket */
 if ((fd=socket(AF_INET,SOCK_DGRAM,Ø)) < Ø) {
 perror("socket");
 exit(1);
 }

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /* set up destination address */
 memset(&addr,Ø,sizeof(addr));
 addr.sin_family=AF_INET;
 addr.sin_addr.s_addr=htonl(INADDR_ANY); /* N.B.: differs fromsender*/
 addr.sin_port=htons(HELLO_PORT);
 /* bind to receive address */
 if (bind(fd,(struct sockaddr *) &addr,sizeof(addr)) < Ø)
 {perror("bind");
 exit(1);
 }
 /* use setsockopt() to request that the kernel join a multicast
 group */
 mreq.imr_multiaddr.s_addr=inet_addr(HELLO_GROUP);
 mreq.imr_interface.s_addr=htonl(INADDR_ANY);
 if (setsockopt(fd,IPPROTO_IP,IP_ADD_MEMBERSHIP,&mreq,sizeof(mreq)) < Ø)
{
 perror("setsockopt");
 exit(1);
 }
 /* now just enter a read-print loop */
 while (1) {
 addrlen=sizeof(addr);
 if ((nbytes=recvfrom(fd,msgbuf,MSGBUFSIZE,Ø,
 (struct sockaddr *) &addr,&addrlen)) < Ø) {
 perror("recvfrom");
 exit(1);
 }
 puts(message);
 }
}

ENTERPRISE MESSAGING AND IP MULTICASTING

Many software vendors in the enterprise messaging area have
incorporated IP multicasting in their JMS (Java Message Service)
implementations. JMS is becoming a very important part of J2EE, as
the inclusion of message-driven Beans in the EJB 2.0 specification
illustrates. Application developers are finally getting to see the power
that needs to be harnessed from asynchronous messaging models. It’s
no wonder that products from the application servers marketplace,
such as BEA’s Weblogic and Alliare’s JRUN, now incorporate IP
multicasting in their JMS servers. IBM’s MQSeries also provides
support for HTTP firewall tunnelling through both client and server-
side firewalls.

SonicMQ (from Progress Software) also provides support for HTTP
firewall tunnelling. The HTTP tunnelling supports client-side proxy

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

servers as well as server-side reverse-proxy servers. The next generation
of SonicMQ will include a new deployment option based on multicast
architecture. A very good example of a product written entirely in Java
and supporting IP multicasting is FioranoMQ Multicast 4.5. It offers
a distributed architecture based on IP multicast, but it does not provide
any persistence mechanism for its JMS clients.

Typically, most of the enterprise messaging architectures are built or
oriented on centralized architectures, where we have a central message
server or a cluster of servers to provide the messaging backbone, onto
which clients may push and/or pull messages. The implementations
are usually hub-and-spoke models, but distributed or decentralized
architecture implementations are also increasing.

Tasks such as message logging, which are currently carried out by the
server in a centralized architecture, need to be incorporated at the
client level if decentralized or IP multicasting is being used. These
logging mechanisms will come at cost of disk I/O on the client
machines, which could affect the performance of a distributed
application.

IP multicasting is very much analogous to the publish-subscribe
messaging domain rather than a point-to-point setup. With a pub/sub
domain a producer puts a message onto a ‘Topic’ and the consumers
that subscribe to the topic get the messages. Applications like this are
ubiquitous in B2B exchange architectures.

Multicasting maps naturally onto the way messaging systems were
intended to work. Most vendors have built some kind of reliability
mechanism over UDP to do this. Multicast has its drawbacks as well
– UDP traffic is usually not allowed through a firewall so you may
have to negotiate with your network administrators. Furthermore,
multicasting relies heavily on special routing software. Most modern
routers support multicasting but there might be some old routers in the
service path. As a configuration and maintenance consideration,
multicast addresses must be coordinated across the network to avoid
address collisions.

Multicasting may be the ideal choice if we were to use an enterprise
messaging architecture within the enterprise network, but its powers
are yet to be formed on the Internet. So, if for some reason a JMS client

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

needs to access a server over TCP/IP (Internet), multicasting may not
be the ideal choice. In recognition of the problems of IP multicast,
messaging vendors that use IP multicast provide software bridges to
carry traffic across routers and firewalls. If most of your messages
have to go through these bridges performance might not be very
apparent.

So, the rule-of-thumb is to use regular TCP/IP-based messaging
systems if messages travel across the firewall and use IP multicasting
with reliability mechanisms inside a corporate LAN or VPN.

But under current conditions, if NBC, for example, has to push a news
story or video to 10,000 users, it has to send out 10,000 individual
video streams. Ideally, NBC would obviously prefer to broadcast the
10,000 streams simultaneously.

This example says it all, really. IP multicasting has immense power as
far as content delivery mechanisms or high-speed messaging systems
are concerned. With the support of leading software and hardware
vendors the IP multicasting-based messaging mechanism will
eventually become the standard for messaging architectures, not only
in places where asynchronous messaging is required, but it might also
evolve as a medium of choice for synchronous messaging as well.

Sudhanshu Sekhar Kar
Pricewaterhousecoopers (USA) © Xephon

E-mail alerts

If you’d like to be notified when new issues of MQ Update
have been placed on our Web site, you can sign up for our e-
mail alert service, which notifies you when new issues
(including new free issues) have been placed on our Web
site. To sign up, go to http://www.xephon.com/alerts.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

Three ways to connect MQSeries clients

“Two roads diverge in the yellow woods … and I have taken the one
less travelled and that made all the difference …” (Robert Frost).

PREFACE

Every time I meet a customer just getting into MQSeries I find them
using MQSeries Client for everything possible – from the simplest
client/server applications to the most complex transactions. I am not
going to discuss which applications are suitable for MQSeries Client
and which are not – this would require much more then a few pages
– but, rather, if you choose to use MQSeries Client what is the best way
to go about implementing it?

I will, however, mention the types of application that are using
MQSeries Client – at least the ones I know of or helped set up.

BEFORE WE START…

I am assuming the following procedures have been completed. If this
is not the case you should review the relevant MQSeries Quick
Beginnings chapter, or read Appendix 1 to this article.

• MQSeries is installed on both the client and the server.

• There is at least one queue manager defined on the server.

• Communication is up and running between both systems (I
would advise that you don’t go up against firewalls and such on
the first attempt).

• MQSeries Communication is up and running on the server.

I would also suggest reading the following:

• Verification procedure: on AIX (as a sample Unix queue manager).

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
amqaac03/amqaac030s.htm#HDRMANVER

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Verifying a local installation: on Windows NT.

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
amqtac01/amqtac010w.htm#HDRAMQ72ZW

• Configuring communications for the MQSeries Client.

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
amqtac01/amqtac0115.htm#HDRAMQ72A8

To make things easier, I will be using TCP/IP as the transport medium.

MQSERVER – QUICK, SIMPLE, AND GETS THE JOB DONE

I remember the first time I tried setting up an MQ Client machine
(back in V2 days); it was a long and painful task, mainly because the
MQSeries Client book was somewhat obscure on how to get the whole
thing up and running. It dealt at great length on the client connection
channels and how to deploy them, but failed to explain how to create
them. Today, when I meet customers, I see very little has changed:
most of these people are still trying to conduct a simple test of their
own environment.

So, the following procedure is for all those people – it will get the
whole thing up in less then ten minutes.

Getting started
1 Logon as an MQSeries administrator user (any user belonging to

group mqm) to the MQSeries server.

2 Enter a command line mode (DOS in the Windows environment
or shell in Unix).

3 Type runmqsc

4 Type

 "define channel (MY.SVRCONN) +
 chltype (SVRCONN) +
 trptype (TCP) "

5 Type end.

6 Logon as an MQSeries administrator user (any user belonging to
group mqm) to the MQSeries Client.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

7 Use the following command on Windows:

set MQSERVER=MY.SVRCONN/tcp/Server_ip_Address

or in Unix ksh:

export MQSERVER=MY.SVRCONN/tcp/Server_ip_Address

or:

MQSERVER=MY.SVRCONN/tcp/Server_ip_Address
export MQSERVER

8 Use the amqsputc and amqsgetc supplied with the client to make
sure you can both put and get messages.

If all you are trying to do is to make sure you have a connection up and
running, return codes such as 2035 (security issues) or 2085
(definitions) mean all is well – just check with your MQSeries
administrator.

When to use it
I would suggest using this approach in the following cases:

• Testing the MQSeries Client environment is working with the
server.

• A simple client/server environment where MQSeries is used as a
transport layer and one does not want to go into complex
definitions.

• An MQSeries development environment, where you don’t want
to have to install and maintain MQSeries on between five and ten
developers’ workstations.

• With the IBM-supplied Support Pack MO71 – Remote
Administrator.

• When there is one and only one queue manager and no special
features, ie channel exits are to be used.

Basically, from my experience, the best way to use MQSeries Client
is in a small branch or a simple application development environment.
As you can see from the above, it’s easy to set up, and as long as you
don’t try to use it for things it is not meant for, it works well. Also, this

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

is the best way to find out whether or not the client connection works
– you set things up, run the sample programs, and the answer will be
immediately apparent!

Tips, and more

1 When running client code use a batch file to set up the environment.
You can add other environment variables to these files, such as
MQCCSID. Below are two sample batch files, one for DOS
commands and one for K shell script.

RUNCLNT.CMD
 rem Set the MQSERVER Var...
 rem change the values of the IP address and run at will
 set MQSERVER = SYSTEM.DEF.SVRCONN/tcp/127.Ø.Ø.1
 set MQCCSID = 437
 rem run your app from here...

RUNCLNT.SH
 #!\bin\ksh
 # Here is a sample shell script used to run client programs
 # MQSERVER Varible MQSERVER=Channel Name/Transport Type(TCP)/
 Connection Name
 echo "Start script"
 MQSERVER=SYSTEM.DEF.SVRCONN/tcp/127.Ø.Ø.1
 export MQSERVER
 echo $MQSERVER
 # MQCCSID= Your code page
 echo "End Script"

2 Try to use the same CCSID as the queue manager, but if need be
don’t forget client conversion is set by the local MQCCSID
environment variable.

3 Remember that MQSERVER overrides the client connection
tables so try not to set them in any global setting; it may cause
problems to other users you may not be aware of.

4 If you encounter problems with privileges and security is not an
issue (ie local development or a branch program using system
user privileges), run the following command:

 Alter channel (MY.SVRCONN) chltype (SVRCONN) mcauser(‘mqadmin_user)

where the user is an administrator user.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

CLIENT CONNECTION TO SERVER CONNECTION

Of all the ways to set up a client connection this is the most complex
and cumbersome. But from the system point of view this is the best
way to configure multiple queue managers on a client machine if you
don’t need to change the configuration very often, or you need to use
special features that you don’t want the programmers to be aware of
(for example, encryption and security exits).

Getting started
The first four steps are the same as for the MQSERVER variable. But
after that, it takes a turn for the worse! All the commands are detailed
in the def_clnt_svr.mqs program, which is detailed after the following
procedures.

1 Logon as an MQSeries administrator user (any user belonging to
group mqm) to the MQSeries server.

2 Enter a command line mode (DOS in the Windows environment
or shell in Unix).

3 Type runmqsc.

4 Type

 define channel (MY.SVRCONN) +
 chltype (SVRCONN) +
 trptype (TCP) +
 replace
 define channel (MY.SVRCONN) +
 chltype (CLNTCONN) +
 trptype (tcp) +
 conname (Server_Ip_Address) +
 qmname (DEV_SERVER) +
 replace

5 Type end.

6 Logon as an MQSeries administrator user (any user belonging to
group mqm) to the MQSeries Client.

7 Copy the amqclchl.tab file to your client install root from:

– /var/mqm/qmgrs/qmname/@ipcc on Unix machines

or

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– mq_root\qmgrs\qmname\@ipcc on Windows NT or 2000
systems

where qmname is your queue manager name and mq_root is the
high level qualifier for your data files install (usually program
file\MQSeries).

8 Use the amqsputc and amqsgetc supplied with the client to make
sure you can both put and get messages. Make sure you use the
queue manager name or the code will not work. The reason for
this is SYSTEM.DEF.CLNTCONN is one of the entries in the
table, the QMNAME field there is blank, and so this is the default
entry in the table.

9 If all you are trying to do is to make sure you have a connection
up and running, return codes such as 2035 (security issues) or
2085 (definitions) mean all is well – just check with your
MQSeries administrator.

DEF_CLNT_SVR.MQS
 * This defines a set of both client and server connection channels.
 * please make sure they have the same name. Also copy the
 * amqclchl.tab file from the mq_home\qmgrs\queue_manager name\@ipcc
 directory.
 * Server Connection
 define channel (MY.SVRCONN) +
 chltype (SVRCONN) +
 trptype (TCP) +
 replace
 * Client Connection
 define channel (MY.SVRCONN) +
 chltype (CLNTCONN) +
 trptype (TCP) +
 conname (192.168.1.34) +
 qmname (DEV_SERVER) +
 replace

When to use it
I would suggest using this solution in the following cases:

• When there is a need for more then one queue manager to connect
to and from the same run-time environment. (Remember, you can
use a batch file to create your run-time environment.)

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

• When there is a need for fields that do not appear in the
MQSERVER, such as exits and tuning parameters.

• When there is a need for recovery or load balancing managed by
queue manager name.

If you choose to use MQSeries Client as the base transport type for all
client/server communications this is probably the best way to go about
it. This will give you encryption if you need it, as well as load
balancing and recovery through reconnect. (I know of a case where a
customer chose to connect to their local queue manager with clients
to achieve reconnect and encryption – I was against it.)

It is hard to maintain through the distribution of the amqclchl.tab files.
In case of minor changes there is a need for extensive redistribution
of the configuration files.

In case of widespread requirement for a client connection I would
suggest writing a wrapper of some sort using LDAP and the
MQCONNX, which is referred to in more detail later.

Tips, and more

1 If there is a need to use a default queue manager on a client
machine I would suggest altering the SYSTEM.DEF.CLNTCONN
and changing the QMNAME to a value which is not blank. Next,
I would create a set of client and server connection channels with
the name DEFAULT to be more explicit where the QMNAME is
left as blank. It works really well!

2 Create all your client connection channels on the same machine
if you can. Make sure it is not OS/390 or AS/400 to spare you the
conversion and sort (as was detailed in the May issue of MQ
Update). It’s easiest to use Windows NT.

3 When using channel exits, remember clients can use security,
send and receive exits (but not message exits) so take this into
consideration when planning your implementation.

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONNECT FROM CODE USING MQCONNX (FOR THE VETERAN
PROGRAMMER)

This method of operation is different from the two methods previously
mentioned, as it moves control from the environment to the program
itself, or in other words from the administrator to the programmer.
This being so, I will simply add the program source for connecting to
MQSeries using the MQCONNX call in the C programming language,
and give an explanation as to where the code varies from regular
MQSeries code.

I would not suggest trying to use this method unless you are proficient
in writing MQSeries code. Furthermore, after coding this in both
COBOL and C I can strongly recommend that you write in C!

This example demonstrates how to use the MQCONNX in a sample
program.

CLNTTST

 /* Program name: clnttst */
 /* Function: */
 /* clnttst is a C sample program which demonstrates how to use */
 /* the following : */
 /* 1) MQCONNX - the connect call */
 /* 2) MQCNO - The V2 structure that allows the client to */
 /* choose the qmgr without using MQSERVER or */
 /* the client connection channel table. */
 /* 3) MQCD - The Channel Defenition Structure, this */
 /* combined with the MQCD_CLIENT_CONN_DEFAULT */
 /* will be used to point to correct channel. */
 /* Notes : */
 /* This program was linked with mqic32.lib. */
 /* I used the default protocol which is TCP/IP */
 /* clnttst has no input parms. */
 /**/
 #include <cmqc.h> /* MQ Header Files basic and */
 #include <cmqxc.h> /* Channel defs */
 #include <stdio.h> /* IO header */
 #include <string.h> /* String functions */
 int main()
 {
 MQHCONN hConn; /* Connection handle */
 MQHOBJ hObject; /* Object handle */
 MQCHAR48 qmgrName; /* Name of queue manager */
 MQLONG iCompCode; /* Completion code */
 MQLONG iReason; /* Reason code */

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

 MQLONG iMessageLen; /* Messsage Length */
 MQBYTE buffer[1ØØØ]; /* Message data buffer */
 MQLONG iOpenOptions ;
 /* These are the MQ Structs to be used in this program */
 MQOD mqod = {MQOD_DEFAULT}; /* Object description */
 MQMD mqmd = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO mqpmo = {MQPMO_DEFAULT}; /* Put message options */
 /* These are the special structures used */
 MQCNO mqcno = {MQCNO_DEFAULT} ; /* Connection options */
 MQCD mqcd = {MQCD_CLIENT_CONN_DEFAULT}; /* Channel Defs */
 /* Defined in cmqxc.h */
 /* This part emulates data retrived from a database or LDAP Server. */
 /* I use the following: */
 /* 1) qmgrName = "" */
 /* 2) mqcd.ConnectionName = 192.168.1.34 = my dev server */
 /* 3) mqcd.ChannelName = SYSTEM.DEF.SVRCONN = def server
 connection channel */
 /* can also retrive data such as queue name and such */
 memset(qmgrName , Ø , MQ_Q_MGR_NAME_LENGTH) ;
 strncpy(mqcd.ConnectionName,
 "192.168.1.34",
 MQ_CONN_NAME_LENGTH);
 strncpy(mqcd.ChannelName,
 "SYSTEM.DEF.SVRCONN",
 MQ_CHANNEL_NAME_LENGTH);
 /* Point the MQCNO to the client connection definition and set its
 version to version 2 */
 /* or the ClientConnPtr will be ignored... */
 mqcno.ClientConnPtr = &mqcd;
 mqcno.Version = MQCNO_VERSION_2;
 /* MQCONNX - (Queue Manager Name, MQCNO, Connection handle, Completion
 code,
 Reason code) */
 MQCONNX(qmgrName,
 &mqcno,
 &hConn,
 &iCompCode,
 &iReason);
 /* From here on it is a normal MQSeries program, but bear in mind, when
 receiving RC 2Ø59 or 2ØØ9 check the AMQERRØ1.LOG for details. */
 if (iCompCode == MQCC_FAILED)
 {
 printf("MQCONN failed with reason code %ld\n", iReason);
 return(iReason);
 }
 iOpenOptions = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;
 strncpy(mqod.ObjectName, "SYSTEM.DEFAULT.LOCAL.QUEUE",
MQ_Q_NAME_LENGTH);
 /* MQOPEN */
 MQOPEN(hConn,
 &mqod,

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 iOpenOptions,
 &hObject,
 &iCompCode,
 &iReason);
 if (iCompCode == MQCC_FAILED)
 {
 printf("MQOPEN failed with reason code %ld\n", iReason);
 return(iReason);
 }
 strcpy (buffer , "Hello from Client") ;
 memcpy (mqmd.Format , "MQSTR " , 8);
 iMessageLen = strlen(buffer) ;
 MQPUT(hConn,
 hObject,
 &mqmd,
 &mqpmo,
 iMessageLen,
 buffer,
 &iCompCode,
 &iReason);
 if (iCompCode == MQCC_FAILED)
 {
 printf("MQPUT failed with reason code %ld\n", iReason);
 return(iReason);
 }
 /* MQCLOSE */
 MQCLOSE(hConn, &hObject, MQCO_NONE, &iCompCode, &iReason);
 /* MQDISC - Do not forget to use DISC !!! This is Client Code */
 MQDISC(&hConn, &iCompCode, &iReason);
 return(Ø);
}
#include <cmqc.h>
#include <cmqxc.h>

CINTTST.DSP

Microsoft Developer Studio Project File - Name="clnttst" - Package
Owner=<4>
Microsoft Developer Studio Generated Build File, Format Version 6.ØØ
** DO NOT EDIT **
TARGTYPE "Win32 (x86) Application" ØxØ1Ø1
CFG=clnttst - Win32 Debug
!MESSAGE This is not a valid makefile.To build this project using NMAKE,
!MESSAGE use the Export Makefile command and run
!MESSAGE
!MESSAGE NMAKE /f "clnttst.mak".
!MESSAGE
!MESSAGE You can specify a configuration when running NMAKE
!MESSAGE by defining the macro CFG on the command line. For example:
!MESSAGE

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

!MESSAGE NMAKE /f "clnttst.mak" CFG=”clnttst - Win32 Debug"
!MESSAGE
!MESSAGE Possible choices for configuration are:
!MESSAGE
!MESSAGE "clnttst - Win32 Release" (based on "Win32 (x86) Application")
!MESSAGE "clnttst - Win32 Debug" (based on "Win32 (x86) Application")
!MESSAGE

Begin Project
PROP AllowPerConfigDependencies Ø
PROP Scc_ProjName ""
PROP Scc_LocalPath ""
CPP=cl.exe
MTL=midl.exe
RSC=rc.exe
!IF "$(CFG)" == "clnttst - Win32 Release"
PROP BASE Use_MFC 2
PROP BASE Use_Debug_Libraries Ø
PROP BASE Output_Dir "Release"
PROP BASE Intermediate_Dir "Release"
PROP BASE Target_Dir ""
PROP Use_MFC 2
PROP Use_Debug_Libraries Ø
PROP Output_Dir "Release"
PROP Intermediate_Dir "Release"
PROP Target_Dir ""
ADD BASE CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D
“_WINDOWS" /D "_AFXDLL" /YX /FD /c
ADD CPP /nologo /MD /W3 /GX /O2 /I "d:\MQSeries\tools\c\include" /D
"WIN32" /D "NDEBUG" /D "_AFXDLL" /D "_MBCS" /D "_CONSOLE" /YX /FD /c
ADD BASE MTL /nologo /D "NDEBUG" /mktyplib2Ø3 /win32
ADD MTL /nologo /D "NDEBUG" /mktyplib2Ø3 /win32
ADD BASE RSC /l Øx4Ød /d "NDEBUG" /d "_AFXDLL"
ADD RSC /l Øx4Ød /d "NDEBUG" /d "_AFXDLL"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
LINK32=link.exe
ADD BASE LINK32 /nologo /subsystem:windows /machine:I386
ADD LINK32 mqm.lib /nologo /subsystem:console /machine:I386 /
libpath:"d:\MQSeries\tools\lib"
!ELSEIF "$(CFG)” == "clnttst - Win32 Debug"
PROP BASE Use_MFC 2
PROP BASE Use_Debug_Libraries 1
PROP BASE Output_Dir "Debug"
PROP BASE Intermediate_Dir "Debug"
PROP BASE Target_Dir ""
PROP Use_MFC 2
PROP Use_Debug_Libraries 1
PROP Output_Dir "Debug"
PROP Intermediate_Dir "Debug"

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PROP Ignore_Export_Lib Ø
PROP Target_Dir ""
ADD BASE CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /D “WIN32” /D "_DEBUG" /
D "_WINDOWS" /D "_AFXDLL" /YX /FD /GZ /c
ADD CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /I
"d:\MQSeries\tools\c\include" /D "WIN32" /D "_DEBUG" /D "_AFXDLL" /D
“_MBCS" /D "_CONSOLE" /YX /FD /GZ /c
ADD BASE MTL /nologo /D "_DEBUG" /mktyplib2Ø3 /win32
ADD MTL /nologo /D "_DEBUG" /mktyplib2Ø3 /win32
ADD BASE RSC /l Øx4Ød /d "_DEBUG" /d "_AFXDLL"
ADD RSC /l Øx4Ød /d "_DEBUG" /d "_AFXDLL"
BSC32=bscmake.exe
ADD BASE BSC32 /nologo
ADD BSC32 /nologo
LINK32=link.exe
ADD BASE LINK32 /nologo /subsystem:windows /debug /machine:I386 /
pdbtype:sept
ADD LINK32 mqic32.lib /nologo /subsystem:console /debug /machine:I386
/pdbtype:sept /libpath:"d:\MQSeries\tools\lib"
!ENDIF
Begin Target
Name "clnttst - Win32 Release"
Name "clnttst - Win32 Debug"
Begin Group "Source Files"
PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"
Begin Source File
SOURCE=.\clientcode.c
End Source File
End Group
Begin Group "Header Files"
PROP Default_Filter "h;hpp;hxx;hm;inl"
End Group
Begin Group "Resource Files"
PROP Default_Filter "ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe"
End Group
End Target
End Project

We need to include two ‘include’ files:

1 cmqc.h – the regular ‘include’ to be used with MQSeries.

2 Cmqxc.h – the‘include file’ that contains the Channel definition
structure.

 MQHCONN hConn;
 MQCHAR48 qmgrName;
 MQLONG iCompCode;
 MQLONG iReason;

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

These variables are needed for connecting to MQSeries and would be
used in any MQSeries code. New in this code, however, are the
following structures:

 MQCNO mqcno = {MQCNO_DEFAULT};
 MQCD mqcd = {MQCD_CLIENT_CONN_DEFAULT};

MQCNO mqcno = {MQCNO_DEFAULT}; is used for MQCONNX
for both client and server code. The difference is in a member called
ClientConnPtr, which is the pointer to the MQCD structure.

MQCD mqcd = {MQCD_CLIENT_CONN_DEFAULT}, the channel
definition structure, is where things really happen. It is used to build
one’s own client connection channel definitions. In this sample I use
defaults for almost everything and use constants to populate the
structure. If you choose to use this method of implementing MQSeries
Client I would suggest using LDAP or a database; furthermore, I
suggest you don’t leave out fields not used in this sample, such as:

• Exit information.

• Tuning information.

• Transport type relevant information.

In this part I populate the minimal fields to achieve a connection.

I use the default queue manager name:

 memset(qmgrName , Ø , MQ_Q_MGR_NAME_LENGTH ; (

Because I use the default transport type (TCP/IP) I do not state it, but
just place an IP address as the connection name:

 strncpy(mqcd.ConnectionName,"192.168.1.34"
 , MQ_CONN_NAME_LENGTH) ;

I use a channel name I know exists on the server machine:

 strncpy(mqcd.ChannelName,"SYSTEM.DEF.SVRCONN", MQ_CHANNEL_NAME_LENGTH);

The following code is important for the whole thing to work. I pass the
pointer to the MQCD structure, and state the MQCNO is of Version 2
or else the pointer field will not be referenced.

 mqcno.ClientConnPtr = &mqcd;
 mqcno.Version = MQCNO_VERSION_2;
 I now call the MQCONNX

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MQCONNX (qmgrName,
 &mqcno,
 &hConn,
 &iCompCode,
 &iReason);

Make sure to check the return code after this call. If you receive reason
code 2059 or 2009 please look at the AMQERR01.LOG for further
details.

From here it is code as usual, but do not forget this; it is very important
to code MQDISC in client code. I usually code the MQCONNX right
along with the MQDISC, like malloc and free, just to be on the safe
side.

 MQDISC(&hConn, &iCompCode, &iReason);

Prerequisites

Make sure of the following.

• You have MQSeries Client Development Tool Kit installed.

• You link your program with the client libraries.

• You know the following:

– the connection name = IP address

– the SVRCONN channel name; you can use the
SYSTED.DEF.SVRCONN, but I would not make a habit of it

– last but not least, the queue manager name.

• The user you choose is authorized to use MQSeries or you will get
2035 for every call you issue.

When to use it

I would suggest using this approach in the following cases:

• When you write embedded MQSeries code as part of an integration
suite. This will ease the pain of integrating the product and will
save the user a lot of configuration hassle. The best example of
such code is the MQSeries Explorer using such a connection.

• If applications have multiple queue managers to connect to, and

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

managing the amqclchl.tab files is a problem (and it usually is),
I would use this code for both load balancing and controlling the
connections to the different queue managers. For this purpose I
would suggest using either LDAP or a database to populate the
MQCD in the program.

• If you build an MQSeries wrapper of one sort or another and want
to make it available as both server and client code. Again, I would
use LDAP or a database to hold the client definitions.

• When your programmers are proficient in using MQSeries and
your code needs to have a short set-up time and must work on
many types of systems where you cannot rely on the environment
to supply the relevant data.

To summarize

This way is probably the best way to go about using clients for a multi-
queue manager environment. But it requires previous planning, some
central way to hold the definitions, and, last but not least, ample
experience with MQSeries code to make sure you don’t get all the
negative side-effects of moving data usually managed by the
administrators to the control of the programmers (ie having code
connecting and disconnecting all over the place and you don’t really
now how and where to control it).

Tips, and more

• Define a channel for all your programs to use and have a mcauser
defined, which limits the programs from doing things they are not
supposed to do, such as creating their own definitions.

• Maintain your connection information on some central site, such
as LDAP or a database.

• Make sure you leave ample room for definitions: basically,
support all the fields in the client definition channel.

• Don’t forget the MQCNO version!!! Your code won’t work and
you will not understand why (I have seen it in three separate cases
where customers tried using this code).

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

APPENDIX 1: SETTING UP A SIMPLE MQSERIES ENVIRONMENT
ON WINDOWS NT 4.0.

In this section I will show you how to create a basic queue manager
on the Window NT/2000 system. I am assuming that MQSeries is
already installed.

1 First, enter MQSeries Explorer (see Figure 1).

2 Right-click on ‘queue managers’ and select ‘new->queue manager’
(see Figure 2).

3 Enter the queue manager name and check ‘make this the default
queue manager’ (see Figure 3).

4 Hit ‘next’(see Figure 4).

5 Check both boxes (see Figure 5).

6 Select a port (1414 is best...) and click ‘finish’ (see Figure 6).

7 If you see the guy shown in Figure 7 you’re the proud owner of
a queue manager – use it wisely!

Figure 1: Enter MQSeries Explorer

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

Figure 2: Right-click on ‘queue managers’ and select
‘new->queue manager’

Figure 3: Enter the queue manager name and check ‘make this
the default queue manager’

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 4: Hit ‘next’ Figure 5: Check both boxes

Figure 6: Select a port
(1414 is best...) and click
‘finish’

Figure 7: You’re the proud
owner of a queue manager

Didi Dotan
Technological Solutions Consultant
Multiconn (Israel) © Xephon

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

MQSeries and firewalls

INTRODUCTION

As B2B commerce becomes more pervasive an increasing number of
companies are finding they need to integrate their Web sites with
back-office systems. MQSeries provides an ideal solution to this
requirement.

In most scenarios, one or more firewalls will be employed to protect
your own enterprise network from the Internet or another company’s
network. These firewalls may also provide Network Address
Translation (NAT) to prevent situations where, for example, a TCP/
IP address on your own network conflicts with an address on the other
network. Consider the problems of providing a link between your
company and a partner if you both use the IP address range of
192.168.xxx.yyy – both networks could have devices with the same
IP address (eg 192.168.12.34).

IBM provides a SupportPac extension to the base product that can
assist in connecting MQSeries over the Internet. The MQIPT (MQSeries
Internet Pass-Thru) SupportPac allows channel communication to
occur across firewalls by tunnelling the protocols through HTTP, or
SSL (secure sockets), or by acting as a proxy. The SupportPac runs on
AIX, Sun Solaris, HP-UX, Microsoft Windows NT, and Windows
2000, and provides an administrative graphical user interface for
managing one or more MQIPT servers. For more information on the
MQIPT see SupportPac MS81 at: http://www.ibm.com/software/ts/
mqseries/txppacs/ms81.html.

This article deals with the issues surrounding the use of MQSeries
across firewalls without the MQIPT SupportPac. I will discuss my
own experiences in setting up MQSeries running across firewalls, and
also, briefly, some issues concerned with using MQSeries and
MQSeries clusters that are affected by NAT firewalls.

MQSERIES AND TCP/IP

MQSeries intercommunication operates just like any other TCP/IP-

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

based application when carrying out the same task. A host using TCP/
IP sockets selects a free local port at random and initiates a connection
to a fixed TCP/IP port on a remote host. The remote host uses TCP/
IP sockets to listen on the fixed port for these incoming connections.

TCP/IP sockets

Sockets are used by TCP/IP applications for conversations. Each
socket is identified by four components: the source and destination IP
addresses and port numbers. For example, a source on
192.168.12.34(1234) talking to a destination on 192.168.56.78(1414)
would be one socket and a source on 192.168.9.10(3456) talking to
the same destination on 192.168.56.78(1414) would be another.

Note that the destination IP address and port numbers are the same
since the listener is only listening on one port number. Only one
connection can exist with a specific ‘source IP (port) address to
destination IP (port) address’ signature.

FIREWALLS AND TCP/IP

Firewall products typically apply rules to the four components of
sockets to allow or restrict TCP/IP conversations. All four components
are used to uniquely identify a conversation and different combinations
of the components are used to allow or restrict specific IP address and/
or port number combinations.

Typical firewall architectures look something like the diagram shown
in Figure 1. Your specific implementation may be more complicated,
depending on your network requirements. For example, some sites
may choose to use two firewalls: one between the Internet and the Web
server and a separate one between the Web server and your internal
network.

Using two firewalls can increase security so that if somebody
compromises the first firewall they still need to compromise the
second to get onto your internal network. The principles of configuring
MQSeries in a multi-firewall configuration do not change, however.

A firewall may only allow connections from the Internet to connect to
port 80 on a Web server (ie HTTP). Applications on the Web server

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

may need to communicate with back-office servers in your internal
network.

The firewall will generally restrict access to your internal network
directly from the Internet. However, if somebody compromises the
security of your Web server and manages to gain access, they can then
use the Web server as a base to begin attacking your internal network,
unless the firewall restricts access from the Web server to your internal
network.

If your Web server is running MQSeries to allow intercommunication
with your back-office systems the firewall will need to be configured
to allow MQSeries channel agents to communicate over TCP/IP
connections.

MQSERIES CHANNELS AND FIREWALLS

In order to configure firewalls to allow MQSeries channel agents to

Internet
browser

Internet
browser

Internet

Back-office
systems

Web server

▲

▲

▼
▼

Figure 1: Example Internet architecture

▼▼

Firewall

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

communicate, it is important to understand the sequence of events
during channel start-up. This is as follows:

1 The sending MCA selects a free port at random (greater than 1023
– these are reserved for services such as HTTP and FTP) and
requests a connection to the MQSeries listener at the receiving
end.

2 The MQSeries listener deals with the request by starting a
receiver MCA for the channel.

3 The receiving MCA initiates a connection to the sending MCA
using local port 1414 and the randomly-selected remote port on
the sending end. In essence, it calls the sender back.

4 The original conversation is only used to request that the receiving
MCA call the sending MCA back.

This sequence of events should apply to all channel types.

In the following examples I will discuss two hosts. The host outside
the firewall I will call outside_host and it will run queue manager
OUTQM. The host inside the firewall (on your internal network) I will
call inside_host and it will run queue manager INQM. This example
also assumes the default port 1414 is used by the MQSeries listener
on both hosts. I will show the rules required to allow the channels
OUTQM.TO.INQM and INQM.TO.OUTQM to be started. Figure 2
illustrates the required intercommunication.

In order for a channel from outside_host to inside_host
(OUTQM.TO.INQM) to start, the following two firewall configurations
are needed:

• Allow the outside_host, on any port greater than 1023, to initiate
a connection to the inside_host on port 1414 only. This allows
step one above in the channel start-up to occur.

• Allow the inside_host, on port 1414 only, to initiate a connection
to the outside_host on any port greater than 1023. This allows step
three above in the channel start-up to occur.

In order for a channel in the opposite direction (ie INQM.TO.OUTQM)
to start, the following two additional firewall configurations are
needed:

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

• Allow the inside_host, on any port greater than 1023, to initiate
a connection to the outside_host on port 1414 only. This allows
step one above in the channel start-up to occur.

• Allow the outside_host, on port 1414 only, to initiate a connection
to the inside_host on any port greater than 1023. This allows step
three above in the channel start-up to occur.

You should note that these two rules are the same as the first two,
except that inside_host and outside_host have switched places.
Therefore, to allow channels to start in both directions, the four rules
shown in Table 1 are required. Depending on the functionality of your
firewall, you may be able to reduce it to two rules (see Table 2).

Figure 2: MQSeries intercommunication example

▼

MCA

▼

▼

Q1.REMOTEQ

Q2.LOCALQ

OUTQM.TO.INQM

MCA

MCA

MCA

outside_host inside_host

INQM.TO.OUTQM

Q2.REMOTEQ

Q1.LOCALQ

INQMOUTQM

▼

▼

▼

OUTQM
.TO.
INQM

INQM
.TO.
OUTQM

▲
▲

Firewall

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSERIES AND NETWORK ADDRESS TRANSLATION

Your MQSeries queue manager host inside your firewall corporate
LAN may use a publicly-assigned private IP address (eg those
beginning 192.168.x.y). The queue manager outside your firewall
will be unable to communicate with it unless it is given a ‘real’ IP
address.

One way to achieve this is by using Network Address Translation
(NAT). This is where your firewall (or a network router) converts the
internal IP address of your MQSeries host to a ‘real’ IP address for
TCP/IP packets destined for the host outside your firewall. The ‘real’
IP address is also converted to your private IP address for TCP/IP
packets destined for the host inside the firewall.

It is always a good idea to give your host names rather than IP
addresses when defining channels, and if you use NAT it becomes
particularly important.

Host Port Host Port Initiator

outside_host >1023 inside_host 1414 outside_host

outside_host >1023 inside_host 1414 inside_host

inside_host >1023 outside_host 1414 inside_host

inside_host >1023 outside_host 1414 outside_host

Table 1: Four rules to allow channels to start in both
directions

Host Port Host Port Initiator

outside_host >1023 inside_host 1414 Both

inside_host >1023 outside_host 1414 Both

Table 2: Reducing the rules to two, depending upon
firewall functionality

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

In order to get MQSeries clusters working correctly across a NAT
firewall, host names must be used. This is because some channels will
be auto-defined by the queue manager based on actual definitions
stored on other queue managers in the cluster. Since a remote host’s
IP address is different depending on which side of the firewall you are
on, IP addresses cannot be used for cluster channel definitions.

For example, if you defined a cluster receiver channel (TO.INQM)
with a connection name of 192.168.12.34, it would not work from
outside the firewall because the IP address required is a ‘real’ IP
address of (for example) 123.45.67.89.

Using 123.45.67.89 does not work from other queue qanagers in the
cluster inside the firewall; they require the original definition using
192.168.12.34. Thus, using a connection name of inside_host will
solve this problem. Just define inside_host in the hosts file outside the
firewall as 123.45.67.89 and as 192.168.12.34 inside the firewall so
that the channel definition is the same, regardless of the location of the
queue manager.

CONCLUSION

MQSeries channels operate like other TCP/IP connections except that
the receiving MCA ‘calls the sender back’, requiring that connections
can be initiated in both directions.

Once you understand how channels start it is a relatively simple
configuration task to allow those channels to run successfully over a
firewall link.

With this knowledge, and careful consideration of the fact that host IP
addresses may differ when working with Network Address Translating
firewalls, it is even possible to get MQSeries clusters with auto-
defined channels up and running.

John Scott
Senior Middleware Technical Specialist
Argos Ltd (UK) © John Scott

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Using MQ clusters for large communications
buffers

INTRODUCTION

This article presents an idea for using MQSeries and clusters for
deploying large communications buffers in a high-workload
environment. It provides examples of specific strategies that may be
used to overcome MQSeries limitations on queue space.

THE REQUIREMENT

MQSeries is generally a good solution for creating an asynchronous
message link between two applications. However, as MQSeries
pervades the IT industry its limitations are being stretched to capacity
by some industry requirements – with specific reference to throughput
and queue space. This article will not deal with the problematic
aspects of using MQSeries in high-workload environments. Its intent
is to suggest the use of MQSeries and clustering in order to achieve
large asynchronous buffers that are needed in a high-end environment.

Consider a chain of store-and-forward applications: A→B→C→…→N.
Each application in the chain is a link that receives messages from the
previous link, does some unique processing, and forwards the processed
message to the next link. The message rate between each pair of
applications is very high (ie in the scale of 100MB per minute).

Buffer space is the area where messages reside on their way from the
sender to the receiver application. Usually, the number of messages in
the buffer space is small, because the system is tuned so that the
receiver’s message rate is the same as (or higher than) the sender’s
message rate. But if a malfunction occurs in the receiver application,
inhibiting or delaying it from getting messages from the queue, the
buffer space begins to fill up. If the problem persists, the buffer space
eventually becomes full, inhibiting the sender from putting messages
and possibly expanding the malfunction to the area of the sender
application.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

This is similar to a traffic jam caused by an obstruction of a highway
exit: the traffic builds up behind the obstruction and the road must be
cleared before the whole highway becomes blocked.

The time between the receiver’s malfunction and the sender’s
malfunction (sometimes called ‘breathing time’) is a major factor in
the design of such systems. This buffer space should allow enough
breathing time for the correction and recovery of a problem in a link
without causing the problem to expand up the chain.

SIMPLE DEPLOYMENT

Using MQSeries, buffer space translates directly to queue space.
Except for mainframe environments, the maximum capacity of a
single MQSeries queue in the current version is 2GB. A simple
deployment consisting of a single queue manager and a single queue
between the sender and the receiver applications (see Figure 1) will
give 20 minutes of breathing time. This may be sufficient under
certain circumstances but complex problems may take hours to
resolve and recover. Furthermore, in time, as the data that flows in the
chain becomes more complex (say XML replaces fixed-width binary
fields), throughput tends to grow considerably and so does the
required buffer space, so 2GB is hardly enough.

Figure 1: A single queue manager and a single queue give a
buffer space of 2GB

QM1

Q1

QLocal

ReceiverSender

▲ ▲

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

QCluster
QLocal

Q1

QM1

Receiver
1

QCluster
QLocal

Q1

QCluster
QLocal

Q1

Receiver
2

Receiver
n

Sender QCluster

Q1

QXmit
CLUS
XMIT

QM2QMA

MQ cluster

QMn

▲

▲

▲ ▲
▲

▲

▲
▲

Figure 2: Sending each message to a different instance of the
queue in the cluster

CLUSTERED DEPLOYMENT

The use of MQSeries clusters can lift the 2GB limit. Several physical
queues on different queue managers can be pooled together to
increase the buffer space. The sender application opens the queue
specifying MQOO_BIND_NOT_FIXED, and each message is sent to
a different ‘instance’ of the queue in the cluster (see Figure 2) using
MQ’s ‘round-robin’ algorithm.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

In Figure 2, the sender connects to QMA, which only has a cluster
queue definition of Q1. Q1 is also defined as a local queue in
QM1..QMn. Messages are stored in the cluster transmission queue
(SYSTEM.CLUSTER.TRANSMIT.QUEUE) of QMA and in the local
instances of Q1 in QM1..QMn, giving a total buffer space of (n+1)*2GB.

n instances of the receiver application are required in order to read
from all instances of Q1.

This lifts the 2GB limit at the cost of added complexity. You can have
multiple queue managers in the cluster, each adding 2GB of buffer
space and 20 more minutes of breathing time. For example, for three
hours of breathing time you would have nine queue managers (eight
with local queues plus one that the sender connects to).

The problem with this deployment lies in the fact that clustering only
delivers ‘push’ load balancing – only the sender’s puts are spread
throughout the queue instances. The receiver must get messages from
a specific instance of the queue on a specific queue manager. Since a
single thread or process can only connect to a single queue manager
at a time, the receiver application needs to launch as many receiver
processes as there are instances of the queue. Having more than one
process and reading from more than one queue is awkward at best, for
the reasons outlined below.

• Internal synchronization of the separate receiver processes is
needed. For example, if message priority is used, each separate
queue has a separate prioritized queue, and a prioritization sync
between the queues must be implemented.

• All receiver processes must be running. If a process halts,
messages begin to accumulate in the queue that it serves.

• In case the receiver’s design enforces a single process to receive
messages (which happens frequently), the deployment may be
impossible.

CLUSTERED DEPLOYMENT WITH FRONT ENDS

Another approach, which is illustrated in Figure 3, uses only one
front-end queue manager per application and multiple back-end
queue managers for the buffer space.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 3 shows QMA and QMB as front-ends and QM1..QMn as back-
ends. It is similar to Figure 2, except that QM1..QMn do not have a
local queue Q1 defined. Instead, a remote queue – Q1 – is defined,
which directs messages to QMB through a transmission queue. The
receiver gets messages from the local queue Q1 in QMB. This gives
a buffer space of (n+2)*2GB and enables the receiver to have only one
instance that reads from a single queue.

This eliminates the need for a multi-process receiver, since all
messages get routed from the buffered back-end to the receiver’s
front-end.

QCluster
QLocal

Q1

ReceiverSender QXmit
CLUS
XMIT

QMA

MQ cluster

▲▲

Figure 3: Using one front-end queue per application and
multiple back-end queue managers

▲ ▲ ▲QCluster

Q1

QXmit

QMB

QM1

▲QCluster
QRemote

Q1

QXmit

QMB

QM2
▲▲ QCluster

QRemote
Q1

QMn

▲

▲

▲

▲

QCluster
QRemote

Q1

QXmit

QMB

QMB

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

The obvious drawback of this solution is its complexity. However,
since more than one queue can be defined in each queue manager, a
single deployment can be used for the entire chain of applications (see
Figure 4). This can actually reduce the management overhead in
certain environments.

QCluster
QRemote

A.to.B

QCluster
QRemote

B.to.C

QM2

QXmit

QMB

QXmit

QMC

QCluster
QRemote

A.to.B

QCluster
QRemote

B.to.C

QM1

QXmit

QMB

QXmit

QMC

QCluster
QRemote

A.to.B

QCluster
QRemote

B.to.C

QMn

QXmit

QMB

QXmit

QMC

A

QMA

QCluster

A.to.B

QXmit
CLUS
XMIT

QCluster

B.to.C

QXmit
CLUS
XMIT

QMB

QLocal

A.to.B

QMC

QCluster
QLocal
B.to.C

B

C

Figure 4: Same queue managers used for a chain of
applications

○

○

▲ ▲

▲ ▲

▲
▲

▲ ▲
▲

▲

▲

▲

▲

▲

▲ ▲
▲

▲

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 4 shows that the same queue managers are used for a chain of
applications: A→B→C. For each link in the chain a front-end queue
manager is created (QMA..QMC). Also, in every back-end queue
manager (QM1..QMn), definitions are made for remote queues,
cluster queues, and transmission queues to all the front-end queue
managers that need to receive messages. At the front-end queue
manager a cluster queue is defined for every link that needs to be sent
to, and a local queue is defined for every link that needs to be received
from.

In Figure 4, A sends, C receives, and B does both. For clarity, arrows
were only drawn for the link between A→B.

This deployment gives a buffer space of (n+2m)*2GB, where n is the
number of back-end queue managers, and m is the number of links in
the chain of applications.

IMPLEMENTATION

As previously stated, this article does not deal with specific
implementation issues. It merely suggests an idea for an MQSeries
deployment that lifts the queue space limit. Implementing such a
deployment for production environments does not seem feasible at
the moment, primarily because the clustering technology is not yet
mature enough to be used on such a scale.

That being so, it does address two major problems:

• Installing, administering, and operating a large number of queue
managers and computer boxes.

• Cluster technology does not scale well. Currently adding and
removing queue managers from the cluster is a tedious task that
often fails, creating zombie entries in the cluster.

A possible solution for the first problem resides in the uniformity of
the many queue managers that comprise the back-end. When installed,
all these queue managers are exactly the same in terms of definitions,
except for their name. This suggests that the back-end queue managers
might be a set of cloned hosts, for example cheap PC boxes that will
only act as CPUs. A central high capacity storage facility (such as a
box of RAID disks) can be connected to the CPUs to be used as
protected storage for the queues. This way of creating a new queue

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

manager will consist of simply cloning a file system and connecting
a CPU box to it. Since buffer storage resides on protected storage it
makes the addition and replacement of queue managers in case of a
hardware failure quite simple – disconnect the failed CPU box and
replace it with a newly-cloned one.

The cloned installation can also be included in the remit of
administration and operation tools (such as Candle Command Center
or BMC’s Patrol).

Another approach that can be combined is creating more than one
queue manager per host to help reduce the amount of CPUs needed.

The second problem affects every cluster user but is yet to be resolved
by IBM. Experience tells us that establishing a cluster for the first time
is not as tricky as modifying it once it’s established. A possible work-
around, then, is to create as many queue managers as possible for the
back-end. These queue managers will remain suspended from the
cluster and the administrator will resume them on demand.

Roy Razon
MQSeries Consultant (Israel) © Roy Razon

Increasing availability on MQ for OS/390

MQSeries for OS/390 does not always benefit from the sysplex
facilities of OS/390. MQSeries queues holding persistent messages
cannot be shared between all LPARs in a sysplex. If this queue
manager shuts down for any reason (ie maintenance or abend) all
applications (in our case, CICS transactions) accessing the queues on
this queue manager will fail. To overcome this situation we designed
the following implementation.

We have two LPARs. We have created one queue manager named
PMQ1 on LPAR1, which holds all application queues. All CICS
regions on that LPAR connect to PMQ1 by default.

We have created another queue manager named PMQ2 on LPAR2,
which holds only one queue and is a transmission queue for PMQ1.
All CICS regions on that LPAR connect to PMQ2.

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

We have defined a Namelist called TARGET_QMGR on both queue
managers. Both namelists have only one entry (PMQ1) as shown
below.

 Display a Namelist Row 1 of 1
 Press Enter to refresh details.
 Namelist name : TARGET_QMGR
 DESCRIPTION :
 Last alteration time :
 Name
 PMQ1
 End of list

All transactions in all CICS regions on any LPAR use a common
program – let’s call it COMMQPUT (common MQPUT). When a
message wants to MQPUT to a queue the application program
prepares a commarea containing the message and the target queue
name and links to COMMQPUT. COMMQPUT gets the commarea,
and makes an MQINQ NAMELIST(TARGET_QMGR).

The result of the MQINQ is the target queue manager name where the
target queue resides. Note that the target queue manager is always
PMQ1 holding all the application queues. This means that transactions
running on LPAR1 are MQPUTing to the local queue manager PMQ1
and transactions running on LPAR2 are MQPUTing on remote queue
manager PMQ1, through local queue manager PMQ2, transmission
queue PMQ1, and PMQ2_TO_PMQ1 channel (see Figure 1).

If a planned interruption is to be carried out on one of the queue
managers, let’s say PMQ1 on LPAR1, the only requirement is to
modify the CICS definition of the program COMMQPUT to become
a remote definition on another CICS region on LPAR2. So all
transactions running on LPAR1 are using the COMMQPUT program
remotely from LPAR2, and COMMQPUT MQPUTs messages on its
local queue manager PMQ2. The messages will be held on the
transmission queue PMQ1 until the PMQ1 queue manager starts
running (see Figure 2).

Where unplanned interruptions occur, the downtime is the time
required to install the remote definition for the program COMMQPUT
in CICS, which is a few seconds. This can be done manually or a
program can automatically install the definition when the CICS MQ
connection is down or Qmanager abends.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

Figure 2: Holding messages on transmission queue PMQ1

LPAR1 LPAR2

Link

PMQ1

Namelist :
TARGET_QMGR
: PMQ1

Target queue

COMMQPUT

PMQ2

Namelist :
TARGET_QMGR
: PMQ1

Xmit q :PMQ1

MQINQMQPUT

▲

▼

▼

▲

▲

Figure 1: PMQ1 holds all the application queues

LPAR2

CICS

CICS application

Link
COMMQPUT

PMQ2

Namelist :
TARGET_QMGR
: PMQ1

Xmit q :PMQ1

MQINQMQPUT

▼

▼

▲

LPAR1

CICS

CICS application

Link
COMMQPUT

PMQ1

Namelist :
TARGET_QMGR
: PMQ1

Target queue

MQPUTMQINQ

▼

▼

▲

▼

CICS

CICS application

CICS

CICS application

Link▲

COMMQPUT
▼

Yucel Okan Senturk
Transaction and Messaging Systems Manager (Turkey) © Xephon

MQ news

Candle Corporation has recently announced
Version 200 for MQSecure, which offers
end-to-end security for MQSeries
applications. MQSecure provides security
for messages travelling over MQSeries
networks and enables users to implement
security services that currently are not
provided by MQSeries software. In addition,
says Candle, the product supplements the
user authorization capabilities of various
external security programs, such as RACF,
ACF2, and Top Secret on OS/390, and
operating system security tools on Unix and
Windows systems.

MQSecure Version 200 incorporates a
number of enhancements including: LDAP-
based distribution of public keys, friendlier
APIs, support for hardware encryption
devices, support for MQSeries clustering,
performance enhancements for node-to-
node encryption, enhanced database
support, Java API, and dual log support.

For further information contact:
Candle Corporation, 201 N Douglas St, El
Segundo, CA 90245, USA
Tel: +1 310 535 3600
Fax: +1 310 727 4287
Web: Candle.com

Candle, 1 Archipelago, Lyon Way, Frimley,
Camberley, Surrey, GU16 7ER, UK
Tel: 44 1276 414700
Fax: 44 1276 414777

* * *
CommerceQuest has announced the release
of enableNet Business Process Integrator
(enableNet BPI), an integration platform
that, it’s claimed, enables enterprise

applications to be accessed, re-assembled,
and re-used to improve business
interoperability and speed business process
automation.

Features include a graphical user interface
and components to automate, change, and
create new business processes. The
framework interoperates with various data
formats and applications. It runs on multiple
platforms including MVS, Unix, AS/400,
and Windows NT, and supports most
common programming languages.

The company claims it is an automatic and
simplified way to leverage IBM MQSeries
and MQSeries Integrator to perform
business process automation.

Within enableNet BPI, XML-based
MQSeries or SOAP message formats are
automatically created, thereby allowing
components to be integrated in an open,
loosely-coupled environment. enableNet
BPI also provides native interfaces to
essential communication protocols, such as
HTTP, FTP, and SMTP.

For further information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL, 33607, USA
Tel: +1 813 639 6300
Fax: +1 813 639 6900
Web: http://www.CommerceQuest.com

CommerceQuest (UK), Doncastle House,
Doncastle Road, Bracknell, Berkshire,
RG12 8PE, UK
Tel: +44 (0) 1344 861010
Fax: +44 (0) 1344 861011

* * *

x xephon

	IP multicasting and enterprise messaging
	Three ways to connect MQSeries clients
	MQSeries and firewalls
	Using MQ clusters for large communications buffers
	Increasing availability on MQ for OS/390
	MQ news

