
© Xephon plc 2001

September 2001

27

3 How to include a local cluster
queue in workload balancing

6 MQSI V2 exception processing
(part 1)

22 Add-on for BMC PATROL to
measure a channel’s message rate

25 Simplifying journal management in
MQSeries for AS/400 V5.2

31 HIS and its MSMQ to MQSeries
Bridge (part 1)

46 The su facility
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/contnote.html.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/
mqupdate.html (you will need to supply a
word from the printed issue).

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

How to include a local cluster queue in workload
balancing

The problem of how to include a local cluster queue in workload
balancing is of interest to many people. Figure 1 illustrates the
difficulties.

Figure 1 shows that three queue managers have been connected in a
single MQSeries cluster. The queue ‘Fred’ has been defined on each
queue manager as a cluster queue with its ‘default bind’ option set to
‘not fixed’. As we know, this means that the workload exit of the
sending queue manager will distribute messages equally amongst the
available queue managers. If Application 1, for example, is connected
to queue manager QM1, then QM1’s workload exit will try to send its
messages to QM2 and QM3 in a round-robin fashion.

But … there is a big proviso, namely that, if there is a local instance
of the cluster queue (as shown), the queue manager will select that
queue, and the workload exit does not even get called. In fact, the IBM
Queue Manager Clusters manual states this in its Programming
Considerations, as reproduced here:

“If an application opens a target queue for output, the MQOPEN call
chooses between all available instances of the queue. If there is a local

Figure 1: Difficulties in including a local cluster queue in
workload balancing

Application 1

Application 2 Application 2 Application 2

QM1

3: MQGET
Fred

1: Connect

3: MQGET
Fred

3: MQGET
Fred

▲ ▲

2: MQPUT Fred

▲

▲

Fred Fred Fred

QM2 QM3

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

version of the queue this is chosen in preference to the other instances.
This may limit the ability of your applications to exploit clustering.”

So how do we get round this problem? The solution is to use the old
favourite – the ‘Alias’ queue – and carry out the following steps.

1 Define a new queue manager – QM4 – whose sole purpose is to
re-route messages (or, if you already have a queue manager that
doesn’t host the cluster queue, use that one).

2 On QM4, define a QAlias – let’s say ‘Pete’ – as part of the cluster,
whose base or target queue is the original cluster queue ‘Fred’.

DEFINE QALIAS(Pete) TARGQ(Fred) Cluster(CLUSTEST) DEFBIND(NOTFIXED)

Note that if you accidentally leave off the DEFBIND parameter
it defaults to ‘OPEN’, and will result in a reason code x'822'/2082
meaning MQRC_UNKNOWN_ALIAS_BASE_Q.

3 Alter Application 1 to MQPUT to the new alias queue ‘Pete’.

Figure 2 illustrates how the cluster looks now.

Figure 2: Using an ‘Alias’ queue to resolve the problem

Application 1

Application 2 Application 2 Application 2

QM1

6: MQGET
Fred

1: Connect

2: MQPUT Pete

6: MQGET
Fred

6: MQGET
Fred

▲

▲

QM2 QM3

▲ ▲

Fred Fred Fred

Pete

4: Map to Fred▲

5: Distribute

▲▲

▲

Workload exit

▲

3: Route to
QM4

QM4

Workload exit

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

▲

All four queue managers could reside on different platforms or, in the
case of OS/390, on different LPARs. The queue drawn with a dotted
line is shown for reference only, and is not defined on that particular
queue manager.

This particular configuration has been tested on MQSeries for Windows
NT/2000 V5.1 at CSD6, as well as MQSeries for OS/390 V2.1, and
should work on any of the platforms that support clustering. Please
make sure you have all the latest maintenance applied.

If you feel that the ‘router’ queue manager could be a single point of
failure then you could define more queue managers, as Figure 3
illustrates.

Although this diagram looks quite busy, remember that all these queue
managers could reside on different machines, platforms, or LPARs.

Figure 3: Avoiding a single point of failure

Application 1

Application 2 Application 2 Application 2

6: MQGET
Fred

1: Connect

2: MQPUT Pete

6: MQGET
Fred

6: MQGET
Fred

▲

▲

QM2 QM3

▲ ▲

Fred Fred Fred

Pete

4: Map to Fred

5: Distribute

▲

▲ ▲

3: Route to
QM4 or QM5

QM5

Workload exit

▲

Pete
QM4

Workload exit

5: Distribute

4: Map to Fred

▲ ▲

▲ ▲

▲

QM1
Workload exit

Ruud van Zundert
Independent MQSeries Consultant (UK) © Xephon

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSI V2 exception processing (part 1)

INTRODUCTION

MQSI V2 exception processing lacks sufficient IBM support
documentation, except for a section within the Appendix on ESQL
reference.

This article serves as a starting point for anyone wanting to know more
about implementing exception processing in an MQSI message flow.
It can be elaborated upon for individual MQSI shops, as each shop will
probably have different requirements for exception processing.

TO BEGIN

When an MQSI exception condition occurs message processing is
suspended and an exception is thrown. Control is passed back to a
higher level, that is, an enclosing catch block. An exception list is built
to describe the failure condition and then the whole message, together
with the destination list and the newly-populated exception list, is
propagated through an exception-handling message flow path.

Exception handling paths are no different in principle from a normal
message flow path, but they start at:

• A failure terminal (most message processing nodes have these).

• The catch terminal of an MQInput node or the catch terminal of
a TryCatch node.

Normal message flows consist of a set of interconnected message
flow nodes defined by the message flow designer. The exception
handling paths differ in detail; for example, they might examine the
exception list to determine the nature of the error and so be able to
make an appropriate response.

The simplest way to implement exception processing of a message
flow is to connect the failure terminals of the IBM node in your
message flow to a failure queue. In this way, when exceptions happen,
messages detailing the problem(s) will be captured in the failure

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

queue. These messages can then be re-routed to the message flow in
the development environment in order to determine the cause of the
problem.

Figure 1 illustrates a typical message flow with failure terminals
connected to an output failure queue.

An MQ monitoring tool can also be set to monitor the failure queue
and trigger some action if the ‘curdepth’ (current depth) of such a
failure queue is not zero.

It may also be helpful to connect the different failure terminals to
different failure queues instead of connecting all the failure terminals
to the same failure queue. This enables us to determine the actual error
by the presence of a message in a particular failure queue; for
example, if it’s in the failure queue connected to the compute node that
does the transformation of CWF to XML format, we will know that
the problem is within the message transformation section.

One setback of such an approach is that there will be a lot of queues
associated with the message flow. As more projects buy into using
MQSI, the growth in the number of queues associated with message
flows will also be significant. This may create a problem with some
shops that treat queues as overheads that take up space. Furthermore,
it may make administration or maintenance of the system more
difficult.

Figure 1: A typical message flow

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

THE QUIRK

Once the failure terminal of an IBM node is connected to an output
queue MQSI makes the assumption that the exception processing will
then be handled by the developer on their message flow. MQSI will
then no longer issue error logs to the NT event logs (or the SYSLOG
if the broker is hosted in a Unix environment). Many MQSI developers
only become aware of this feature after working with MQSI for some
time, because, as mentioned earlier, the MQSI documentation is
limited. The only place where it is documented is on the SupportPac
IHI1, MQSI Version 2.1 problem determination, version 1.3, as
reproduced below.

“Answer 4.3b: if the ‘out’ terminal of the MQInput node is correctly
wired up, check in the local error log for the broker for a message
indicating that message processing has been terminated due to
problems. Additional messages will give more detailed information.

“Note: if the failure terminal of the MQInput node has been wired to
an MQOutput node, for example, these messages will not appear.
Wiring a node to a failure terminal of any node indicates that you have
designed the message flow to deal with all error processing. If you
connect a failure terminal to an MQOutput node your message flow
ignores any errors that occur.”

THE QUICK FIX

To fix the quirk we can connect the failure terminal to a trace node
first, before wiring it to the MQOutput failure queue. In the trace node
we specify the trace node to print out a trace of the ExceptionList of
the message (see Figure 2).

 **** ExceptionList generate by messageflow exceptionhandlingl
 **** exception generated at ${CURRENT_TIMESTAMP}
 ${ExceptionList}
 **** Message Properties is
 ${Properties}
 **** Message descriptor is
 ${Root.MQMD}

The following is a sample output of the trace file captured with
ExceptionList trace.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

SAMPLE OUTPUT
**** ExceptionList generate by messageflow exceptionhandlingl
**** exception generated at 2ØØ1-Ø6-16 17:26:38.8Ø9ØØ1
(
 (Øx1ØØØØØØ)RecoverableException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø1_P/src/
DataFlowEngine/ImbDataFlowNode.cpp'
 (Øx3ØØØØØØ)Line = 538
 (Øx3ØØØØØØ)Function =
'ImbDataFlowNode::createExceptionList'
 (Øx3ØØØØØØ)Type = 'ComIbmMQInputNode'
 (Øx3ØØØØØØ)Name = 'bØab6922-e7ØØ-ØØØØ-ØØ8Ø-
ca4d18331a1Ø'
 (Øx3ØØØØØØ)Label = 'ExceptionHandling1.MQInput1'
 (Øx3ØØØØØØ)Text = 'Node throwing exception'
 (Øx3ØØØØØØ)Catalog = 'MQSIv2Ø1'
 (Øx3ØØØØØØ)Severity = 3
 (Øx3ØØØØØØ)Number = 223Ø
 (Øx1ØØØØØØ)RecoverableException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø1_P/src/DataFlowEngine/
ImbComputeNode.cpp'
 (Øx3ØØØØØØ)Line = 354
 (Øx3ØØØØØØ)Function = 'ImbComputeNode::evaluate'
 (Øx3ØØØØØØ)Type = 'ComIbmComputeNode'
 (Øx3ØØØØØØ)Name = 'b9d46922-e7ØØ-ØØØØ-ØØ8Ø-
ca4d18331a1Ø'
 (Øx3ØØØØØØ)Label = 'ExceptionHandling1.Compute1'
 (Øx3ØØØØØØ)Text = 'Caught exception and rethrowing'
 (Øx3ØØØØØØ)Catalog = 'MQSIv2Ø1'

Figure 2: Specifying where to print a trace of the message
ExceptionList

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (Øx3ØØØØØØ)Severity = 3
 (Øx3ØØØØØØ)Number = 223Ø
 (Øx1ØØØØØØ)ParserException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø1_P/src/MTI/
MTIforBroker/GenXmlParser/XmlImbParser.cpp'
 (Øx3ØØØØØØ)Line = 8Ø3
 (Øx3ØØØØØØ)Function = 'XmlImbParser::parseFirstChild'
 (Øx3ØØØØØØ)Type = ''
 (Øx3ØØØØØØ)Name = ''
 (Øx3ØØØØØØ)Label = ''
 (Øx3ØØØØØØ)Text = 'XML Parsing Errors have occurred'
 (Øx3ØØØØØØ)Catalog = 'MQSIv2Ø1'
 (Øx3ØØØØØØ)Severity = 3
 (Øx3ØØØØØØ)Number = 5ØØ9
 (Øx1ØØØØØØ)ParserException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø1_P/src/MTI/MTIforBroker/
GenXmlParser/XmlBrokerAsgardParser.cpp'
 (Øx3ØØØØØØ)Line = 1995
 (Øx3ØØØØØØ)Function = 'XmlBrokerAsgardParser::error'
 (Øx3ØØØØØØ)Type = ''
 (Øx3ØØØØØØ)Name = ''
 (Øx3ØØØØØØ)Label = ''
 (Øx3ØØØØØØ)Text = 'An error has been reported by the
 BIPXML4C component.'
 (Øx3ØØØØØØ)Catalog = 'MQSIv2Ø1'
 (Øx3ØØØØØØ)Severity = 3
 (Øx3ØØØØØØ)Number = 5ØØ4
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 2
 (Øx3ØØØØØØ)Text = '65551'
)
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 5
 (Øx3ØØØØØØ)Text = ''
)
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 2
 (Øx3ØØØØØØ)Text = '1'
)
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 2
 (Øx3ØØØØØØ)Text = '2'
)
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 5
 (Øx3ØØØØØØ)Text = 'Invalid document structure'
)
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 5
 (Øx3ØØØØØØ)Text = 'XML'

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

)
)
)
)
)
)
**** Message Properties is
(
 (Øx3ØØØØØØ)MessageSet = ''
 (Øx3ØØØØØØ)MessageType = ''
 (Øx3ØØØØØØ)MessageFormat = ''
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 437
 (Øx3ØØØØØØ)Transactional = TRUE
 (Øx3ØØØØØØ)Persistence = FALSE
 (Øx3ØØØØØØ)CreationTime = GMTTIMESTAMP '2ØØ1-Ø6-16 22:26:38.61Ø'
 (Øx3ØØØØØØ)ExpirationTime = -1
 (Øx3ØØØØØØ)Priority = Ø
 (Øx3ØØØØØØ)Topic = NULL
)
**** Message descriptor is
(
 (Øx3ØØØØØØ)SourceQueue = 'ALEX_TEST_IN'
 (Øx3ØØØØØØ)Transactional = TRUE
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 437
 (Øx3ØØØØØØ)Format = 'MQSTR '
 (Øx3ØØØØØØ)Version = 2
 (Øx3ØØØØØØ)Report = Ø
 (Øx3ØØØØØØ)MsgType = 8
 (Øx3ØØØØØØ)Expiry = -1
 (Øx3ØØØØØØ)Feedback = Ø
 (Øx3ØØØØØØ)Priority = Ø
 (Øx3ØØØØØØ)Persistence = Ø
 (Øx3ØØØØØØ)MsgId =
X'414d512Ø4d5153492Ø2Ø2Ø2Ø2Ø2Ø2Ø2ØcccØ2b3be362ØØØØ'
 (Øx3ØØØØØØ)CorrelId =
X'ØØ'
 (Øx3ØØØØØØ)BackoutCount = Ø
 (Øx3ØØØØØØ)ReplyToQ = '
'
 (Øx3ØØØØØØ)ReplyToQMgr = 'MQSI
'
 (Øx3ØØØØØØ)UserIdentifier = 'Alexau '
 (Øx3ØØØØØØ)AccountingToken =
X'16Ø1Ø515ØØØØØØe5518ØØcb8a4a4Øae558d4ØaeaØ3ØØØØØØØØØØØØØØØØØØØØØb'
 (Øx3ØØØØØØ)ApplIdentityData = ' '
 (Øx3ØØØØØØ)PutApplType = 11
 (Øx3ØØØØØØ)PutApplName = 'C:\WINNT\System32\MMC.EXE '
 (Øx3ØØØØØØ)PutDate = DATE '2ØØ1-Ø6-16'
 (Øx3ØØØØØØ)PutTime = GMTTIME '22:26:38.61Ø'

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (Øx3ØØØØØØ)ApplOriginData = ' '
 (Øx3ØØØØØØ)GroupId =
X'ØØ'
 (Øx3ØØØØØØ)MsgSeqNumber = 1
 (Øx3ØØØØØØ)Offset = Ø
 (Øx3ØØØØØØ)MsgFlags = Ø
 (Øx3ØØØØØØ)OriginalLength = 4
)

One problem with adding the trace node before the failure queue is the
maintenance of the trace file captured.

Most MQSI shops have a requirement that, before a message flow is
rolled out to production, all trace nodes need to be disconnected from
the message flow. This is because administration problems can arise
if trace files accumulate in the production system.

A BETTER APPROACH

A better approach to handling exception processing is to implement
an exception flow logic in the catch terminal of the MQInput node, or
put the TryCatch node into the message flow.

When an exception condition arises in the message flow, and if the
message flow is processing messages in a unit of work (UOW) and
getting the message under syncpoint, an error in your message flow
will cause the UOW to be backed out. This results in that message
being reinstated on the input queue and, therefore, being processed
again. If the error condition persists, the message will continue to be
passed through the message flow and backed out, causing a processing
loop. The message will continue to be processed until the MQMD
BackoutCount equals or exceeds the value of the backout threshold
(BOTHRESH) attribute of the input queue. MQSeries Integrator will
then attempt backout processing by attempting to propagate the
message to the following, in order:

1 The failure terminal of the MQInput node.

2 The queue’s backout requeue (BOQNAME).

3 The dead-letter queue (DLQ).

Since we are not connecting the failure terminal in this approach, it is
good practice to define a backout queue for the input queue and

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

specify a value for the backout threshold count. In this way we can
avoid the processing loop, capture the roll-back message in the
backout queue, and investigate the cause of failure.

The backout queue can be defined by a ‘right-click’ on the queue,
followed by selecting Storage on the Property tab.

In the following sections we will set up some exception processing
logic to help determine the problem with the message exceptions.

A SAMPLE EXCEPTION HANDLING FLOW

Figure 3 shows a very simple exception processing flow connected to
the catch terminal of the MQInput node.

When an exception happens – either on the MQInput node or the
compute node – the message will be rolled back into the MQInput
node and will be processed via the flow connected to the catch node
of the MQInput node. In this flow a trace of the ExceptionList will be
recorded in a text file and the problem message will be thrown back
to the backout queue.

A LOOK AT THE EXCEPTION LIST

This section will look at the ExceptionList structure and how to get the
most out of it.

As Figure 4 illustrates, the ExceptionList tree has a definite structure.

Figure 3: A simple exception processing flow

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The root of the tree is called ExceptionList, and the tree itself consists
of a set of one or more exception descriptions. Each exception
description consists of one of the following name elements:

• RecoverableException.

• ParserException.

• ConversionException.

• DatabaseException.

• UserException.

These name elements contain children that take the form of a number
of name-value elements that give details of the exception, and zero or
more name elements whose name is Insert.

THROWING A USEREXCEPTION

Of the above listed exceptions, the type UserException can be inserted
within the MessageFlow in anticipation of an erroneous situation, and
thereby redirect the flow to the exception handling flow.

Figure 4 depicts a sample message flow where user exceptions can be
thrown within a compute node and trapped by a filter node. Then a
throw node redirects the message to the exception handling flow,
which, in this case, is the flow attached to the catch node of the
MQInput node.

Figure 4: A sample message flow

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

In this example, to trap the error situation in the compute node when
a field on the input message should be present but is not, the exception
can be set with the following ESQL statement:

 SET OutputExceptionList.UserException.Text = 'The mandatory field
 of AddOrder.xml is missing!!';

The UserException can then be trapped by a filter node attached to the
output terminal of the compute node with the statement:

 Cardinality(ExceptionList.UserException[])>0

In order for this to work, one key requirement is to make sure the
output of the compute node contains the ExceptionList, together with
the message itself. This can be done by selecting the Exception and
Message option from the pull-down list of the Compute Mode, in the
Advanced tab of the compute node.

When an exception occurs, the UserException is inserted into the
ExceptionList. The filter node condition should be set to true. The
exception is thrown by the throw node attached to the true terminal of
the filter node.

The message will then be routed to the exception processing flow
connected to the catch terminal of the MQInput node. This flow will
capture the exception trace on file indicating the detail of the
UserException, and the message will be rolled back to the backout
queue.

**** ExceptionList generated by messageflow exceptionhandlingl
**** exception generated at 2ØØ1-Ø6-16 21:39:55.387ØØ1
(
 (Øx1ØØØØØØ)RecoverableException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø1_P/src/DataFlowEngine/
ImbDataFlowNode.cpp'
 (Øx3ØØØØØØ)Line = 538
 (Øx3ØØØØØØ)Function = 'ImbDataFlowNode::createExceptionList'
 (Øx3ØØØØØØ)Type = 'ComIbmMQInputNode'
 (Øx3ØØØØØØ)Name = 'bØab6922-e7ØØ-ØØØØ-ØØ8Ø-ca4d18331a1Ø'
 (Øx3ØØØØØØ)Label = 'ExceptionHandling2.MQInput1'
 (Øx3ØØØØØØ)Text = 'Node throwing exception'
 (Øx3ØØØØØØ)Catalog = 'MQSIv2Ø1'
 (Øx3ØØØØØØ)Severity = 3
 (Øx3ØØØØØØ)Number = 223Ø
 (Øx1ØØØØØØ)UserException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø1_P/src/DataFlowEngine/
BasicNodes/ImbThrowNode.cpp'

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (Øx3ØØØØØØ)Line = 229
 (Øx3ØØØØØØ)Function = 'ImbThrowNode::evaluate'
 (Øx3ØØØØØØ)Type = 'ComIbmThrowNode'
 (Øx3ØØØØØØ)Name = '29ae1123-e7ØØ-ØØØØ-ØØ8Ø-ca4d18331a1Ø'
 (Øx3ØØØØØØ)Label = 'ExceptionHandling2.Throw2'
 (Øx3ØØØØØØ)Text = 'User exception thrown by throw node'
 (Øx3ØØØØØØ)Catalog = 'MQSIV2Ø1'
 (Øx3ØØØØØØ)Severity = 1
 (Øx3ØØØØØØ)Number = 3ØØ2
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 5
 (Øx3ØØØØØØ)Text = 'The ADDOrder.XML has a mandatory field
missing'
)
)
)
)

The error encountered will also be written out as an NT event log,
indicating the problem encountered by the throw node, as shown in
Figure 5.

Figure 5: An NT event log

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

ADDING A TRYCATCH NODE

Sometimes, when an exception occurs at a certain point on the
message flow you may not want to roll back the message all the way
to the MQInput node, but would prefer to examine the ExceptionList
to determine the nature of the error and thereby make an appropriate
response.

Figure 6 illustrates the use of a TryCatch node in the message flow.

A message (M1) and destination list (D1) are being processed by a
message flow. They are passed through the Compute1 node to the
TryCatch1, and then onto the Compute2 node.

Compute1 updates the message and destination list and propagates a
new message (M2) and destination list (D2) to the next compute node,
Compute2.

An exception is thrown in Compute2. The exception is propagated
back to theTryCatch node, but the message and destination list are not.
Therefore, the exception handling path starting at point B has access
to the intermediate message and destination list, M2 and D2.

If there had been no TryCatch node in the message flow, the message
and destination list M1 and D1 would have been propagated to the
catch terminal connected to that MQInput node. The intermediate
information of the message M2 that may be of interest to solve the
message flow problem will be lost.

BEST PRACTICE

A useful point to remember is that, when a messaging exception
occurs, MQ can generate an error message that includes all the

Figure 6: The use of a TryCatch node in the message flow

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

information that will help in debugging the problem. The error
message generated will be propagated with the same Message-ID and
Corel-ID as the failure message. In this way, the message that failed
and was sent to the backout queue can be referenced by the error
message generated in the error queue.

The same practice can be implemented with MQSI in the exception
handling flow.

Figure 7 depicts the message flow that will propagate the information
on the ExceptionList to an error message and output it to the error
queue.

The essence of the ExceptionList can be extracted and propagated into
the error message. This can be achieved with the following ESQL
statement in the WriteErrorMsg compute node.

/* Error number extracted from exception list */
DECLARE Error INTEGER;
/* Current path within the exception list */
DECLARE Path CHARACTER;
DECLARE ErrorType CHARACTER;

Figure 7: Message flow propagating ExceptionList information
to error message

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

DECLARE ErrorTrans CHARACTER;
DECLARE ErrorText CHARACTER;
SET ErrorType = '';
SET ErrorTrans = '';
SET ErrorText = '';
/* Start at first child of exception list */
SET Path ='InputExceptionList.*[1]';

/* Loop until no more children */
WHILE EVAL('FIELDNAME(' || Path || ') IS NOT NULL') DO

 /* Check if error number is available */
 IF EVAL('FIELDNAME(' || Path || '.Number) IS NOT NULL') THEN
 /* Remember only the deepest error number */
 SET Error = EVAL(Path || '.Number');
 SET ErrorType = EVAL('FIELDNAME('||Path||')');
 SET ErrorTrans = EVAL(Path || '.Label');
 SET ErrorText = EVAL(Path || '.Text');
 IF ErrorType = 'UserException' THEN
 SET ErrorText = ErrorText || ' (' || (EVAL(Path || '.Insert.Text'))
|| ')';
 END IF;
 END IF;
 /* Step to last child of current element (usually a nested exception
 list) */
 SET Path = Path || '.*[LAST]';
END WHILE; /* End loop */
SET OutputRoot.XML.Exception.Type = ErrorType;
SET OutputRoot.XML.Exception.Number = CAST(Error AS CHAR);
SET OutputRoot.XML.Exception.SuspenseTimestamp = CAST(CURRENT_TIMESTAMP
 AS CHAR);
SET OutputRoot.XML.Exception.InboundQueue = InputRoot.MQMD.SourceQueue;
SET OutputRoot.XML.Exception.Transaction = ErrorTrans;
SET OutputRoot.XML.Exception.Reason = ErrorText;
SET OutputRoot.XML.Exception.DetailException = InputExceptionList;

THE KEY TO SUCCESS

Two important steps need to be included in this error message
generating flow. Firstly, in order for the error message to be written out
successfully to the output error queue, a FlowOrder node named
WriteErrorOutFirstBeforeThrow is implemented to ensure that the
error message generated in the compute node WriteErrorMsg is
written out to the error queue before we re-throw the exception and
backout the input message to the backout queue.

Secondly, in the MQOutput node ErrorQueue, the action to put the
error message into the error queue must be committed immediately.

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Otherwise, when we re-throw the message to the backout queue, the
uncommitted error message in the error queue will also be backed out.

This can be accomplished by selecting No from the drop down list in
the Transaction Mode of the Advanced tab in the MQOutput node.

THE ERROR MESSAGE

The error message generated in the error queue will contain all the
useful information from the ExceptionList generated from the message
flow – a sample output is shown below.

SAMPLE OUTPUT
- <Exception>
 <Type>UserException</Type>
 <Number>3ØØ2</Number>
 <SuspenseTimestamp>TIMESTAMP '2ØØ1-Ø6-16 23:17:28.143999'</
 SuspenseTimestamp>
 <InboundQueue>ALEX_TEST_IN</InboundQueue>
 <Transaction>ExceptionHandling2.Throw2</Transaction>
 <Reason>User exception thrown by throw node (The ADDOrder.XML has a
 mandatory field missing)</Reason>
- <DetailException>
- <RecoverableException>
 <File>F:/build/S2Ø1_P/src/DataFlowEngine/ImbDataFlowNode.cpp</File>
 <Line>538</Line>
 <Function>ImbDataFlowNode::createExceptionList</Function>
 <Type>ComIbmMQInputNode</Type>
 <Name>bØab6922-e7ØØ-ØØØØ-ØØ8Ø-ca4d18331a1Ø</Name>
 <Label>ExceptionHandling2.MQInput1</Label>
 <Text>Node throwing exception</Text>
 <Catalog>MQSIv2Ø1</Catalog>
 <Severity>3</Severity>
 <Number>223Ø</Number>
- <UserException>
 <File>F:/build/S2Ø1_P/src/DataFlowEngine/BasicNodes/ImbThrowNode.cpp</
 File>
 <Line>229</Line>
 <Function>ImbThrowNode::evaluate</Function>
 <Type>ComIbmThrowNode</Type>
 <Name>29ae1123-e7ØØ-ØØØØ-ØØ8Ø-ca4d18331a1Ø</Name>
 <Label>ExceptionHandling2.Throw2</Label>
 <Text>User exception thrown by throw node</Text>
 <Catalog>MQSIV2Ø1</Catalog>
 <Severity>1</Severity>
 <Number>3ØØ2</Number>

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

- <Insert>
 <Type>5</Type>
 <Text>The ADDOrder.XML has a mandatory field missing</Text>
 </Insert>
 </UserException>
 </RecoverableException>
 </DetailException>
 </Exception>

CONCLUSION

This concludes our introduction to exception handling for MQSI.
Using these techniques we can further improve the exception handling
of the message flows to filter out more granularity of the exception,
and perform the appropriate action. This may include actions such as
stopping the message flow when a system error (such as a DB2
authorization failure on a user table) occurs. This will be covered in
part 2 of this article, which will appear in next month’s MQ Update.

Alex Au
I/T Architect, IBM Global Services (USA) © Alex Au

Free weekly Enterprise IS News

A weekly enterprise-oriented news service is available free from
Xephon. Each week, subscribers receive an e-mail listing around
40 news items, with links to the full articles on our Web site. The
articles are copyrighted by Xephon – they are not syndicated,
and are not available from other sources.

To subscribe to this newsletter, send an e-mail to news-list-
request@xephon.com, with the word subscribe in the body of
the message. You can also subscribe to this and other Xephon e-
mail newsletters by visiting this page, http://www.xephon.com/
lists, which contains a simple subscription form.

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Add-on for BMC PATROL to measure a channel’s
message rate

The add-on KM (Knowledge Module) ‘ChannelShob’ for BMC
PATROL defines parameters for monitoring the MQ channels’ message
rate.

The KM is provided as it stands and is for educational purposes only,
with no warranties. Although the supplied files were used without
errors, rigorous testing was not performed. It is recommended that
you use it in a test environment first. The addition and modification
of KMs to PATROL is a complicated task and while detailed instructions
are supplied it is strongly recommended that you don’t modify your
PATROL environment without proper training. Furthermore, when
performing modifications, users are encouraged to backup all their
files first.

(Editor’s note: the ChannelShob.KM, Collectors_addition.txt, and
NT_Collectors.KM subroutines supporting this article are available
from Xephon’s Web site at http://www.xephon.com/extras/
ChannelShob.KM.)

NOTES

• The KM is independent of BMC’s MQOperator product, but can
be used with it.

• The KM collects the data from runmqsc DISPLAY CHS
commands that are being executed in the monitored hosts.

• If MQ Operator V1.2 and upwards is used, the KM may be
modified to collect the data from channel parameters that its MQ
Operator supplies.

INSTALLATION INSTRUCTIONS

On the host(s) running PATROL Agent, make sure that PATROL’s
login has MQ permissions to run DISPLAY MQSC commands.

Carry out the following steps on the host running PATROL Console
in developer mode.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

1 Backup the folder $PATROL_HOME/lib/knowledge before
proceeding.

2 Copy ChannelShob.KM to $PATROL_HOME/lib/knowledge.

3 Using a text editor, change myhostname and myqmgrname in the
file ChannelShob.KM to the hostname and queue manager name
to be monitored. If multiple hosts or queue managers are to be
monitored, these code segments need to be repeated for every
host and queue manager, respectively.

4 If Windows NT hosts are to be monitored, copy
NT_COLLECTORS.KM to the same folder.

5 If Unix hosts are to be monitored, close the developer console and
insert the contents of the file collectors_addition.txt to the file
COLLECTORS.KM at $PATROL_HOME/lib/knowledge after
the following lines:

 INFO_BOX = {
 { NAME = "Unix KM Version", AVAILABILITY = AVAILABLE_ALWAYS,
 SECURITY = SECURITY_INHERIT,
 BASE_COMMAND = {
 { COMPUTER_TYPE = "ALL_COMPUTERS", COMMAND_TYPE = "PSL",
 COMMAND_TEXT = LOAD "unixkm_version.psl"}
 }
 }
 },
 PARAMETERS = {

And before the following line:

 { NAME = "PSColl", PARAM_TYPE = COLLECTOR, ACTIVE = False, MONITOR
 = False, CHECK = False,

6 The module will be activated once you restart the console, select
File->Load KM from the menu, and select the files that were
copied. The channel tree will be built automatically.

7 The default behaviour is to show all channels under every queue
manager of the monitored hosts. To change that, at the developer
console, ‘right-click’ ChannelShob and select KM commands-
>edit list (see Figure 1).

8 The parameters can be configured to warn or alarm at certain
values like any other PATROL parameters (see Figure 2).

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: Changing the
default behaviour

Figure 2: Configuring the
parameters

Figure 3: Monitoring the channels

9 The channels will be monitored as long as the console remains
connected. To continue monitoring while not connected, the KM
can be defined as ‘preloaded’ at the target agents (see Figure 3).

Roy Razon, MQSeries Consultant (Israel) and
Liat Sabag, PATROL Consultant (Israel) © Roy Razon

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

Simplifying journal management in MQSeries for
AS/400 V5.2

INTRODUCTION

This article briefly discusses the way in which MQSeries for AS/400
uses journalling and how the journals can be managed. Source code
is included for a command and CL program, which provides a single
step to compute which journal receivers are required by one or all
queue managers on a system.

MQSeries for AS/400 uses OS/400 journalling support to record
message data flows and changes to queue manager objects. The data
stored in the journals is used by MQSeries to ensure transactional
integrity on queue manager restart, and to allow recovery of damaged
objects.

Each queue manager has its own journal (AMQAJRN), which is stored
in a queue manager-specific library, and each journal has a single
attached journal receiver. The data that is being journalled is appended
to the currently-attached receiver until that receiver reaches a predefined
threshold size (defaulting to 65,536 KB in MQSeries for AS/400
V5.2).

The operating system detaches the attached receiver when it reaches
the threshold size and attaches a new one. Detached receivers remain
on disk until they start to become a significant disk overhead and are
manually deleted.

Freeing disk space is just one reason for deleting redundant journal
receivers; another important reason is to improve performance.
MQSeries reads back through the journal receivers when a queue
manager starts, and periodically, when the queue manager is running.
Reading the journal receivers is an expensive operation so minimizing
the ‘chain’ of receivers you keep on your system improves the
performance of MQSeries.

DELETING RECEIVERS

Once detached, journal receivers cannot necessarily be deleted

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

immediately, because they may still contain journal entries that are
required by MQSeries. Journal entries fall into two categories:

• Startup journal entries – required to restart the queue manager.

• Media recovery journal entries – required to rebuild objects.

For the normal operation of MQSeries for AS/400 you do not need to
keep all of the media recovery journal receivers available on your
disks. You can back up and delete media recovery journal receivers
and keep only the journal receivers required for startup. In this way,
your journal receivers will consume less disk space, but if an object
is damaged you will need to restore the media recovery journal
receivers from the backup in order to recreate the object.

To help determine which receivers are required MQSeries writes two
messages to the queue manager’s message queue (QMQMMSG in the
queue manager library). The first of these messages is AMQ7460,
which reports the time stamp and receiver name of the journal entry
that is required for a queue manager to be restarted. The second
message is AMQ7462, which reports the time stamp and receiver
name of the oldest journal entry that is required to recover any object.
See the System Administration Guide for more details about these
messages.

In order to calculate which receivers can be deleted for a queue
manager you must find the AMQ7460 and AMQ7462 messages in the
queue manager’s QMQMMSG message queue, compare their values,
and only delete receivers earlier than those shown as still required.
This can become a time-consuming process when you have installed
MQSeries for AS/400 on several machines with multiple queue
managers on each one.

MQSERIES V5.2 ENHANCEMENTS

In MQSeries for AS/400 V5.2 a new option was added to the
RCDMQMIMG command, which forces it to issue the AMQ7460
and AMQ7462 messages to the current job log. This allows the
messages to be generated on demand and simplifies the first step in
automated journal management – establishing which journal receivers
can be safely deleted.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

THE QRYMQMJRN COMMAND

The QRYMQMJRN command accompanying this article can be
used to report the journal receivers you need to keep on the system for
each queue manager. The command bases its recommendations on the
cautious policy of keeping all of the media recovery journal receivers
online.

Note that information is only reported for active queue managers.

The program demonstrates the use of AMQXLIST to retrieve a list of
queue manager names, and the use of RCDMQMIMG to retrieve
journal receiver information for each queue manager. It also shows
how the journal receiver date and time information can be compared
to determine the oldest receiver that should be kept.

This command does not make any attempt to automate the backup and
deletion of journal receivers, though the program could be modified
to include that function. A program to determine the names of journal
receivers for backup and deletion will be the subject of a later article.

Compiling the QRYMQMJRN program

The CL program is dependent on a physical file in QTEMP, so you
must create that file before compiling the CL program. These commands
assume that the source has been placed in a member called
QRYMQMJRN in file QCLSRC in a library (YOURLIB).

To compile the CL program run these two commands:

 CRTPF FILE(QTEMP/AMQQMGRS) RCDLEN(48)
 CRTCLPGM PGM(YOURLIB/QRYMQMJRN) SRCFILE(YOURLIB/QCLSRC)

Compiling the QRYMQMJRN command

Assuming that the source has been placed in a member called
QRYMQMJRN in file QCMDSRC in a library (YOURLIB), you can
create the QRYMQMJRN command by running the following
command:

 CRTCMD CMD(YOURLIB/QRYMQINF) PGM(YOURLIB/QRYMQINF)
 SRCFILE(YOURLIB/QCMDSRC) SRCMBR(QRYMQMJRN)

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Running the QRYMQMJRN command

Once you have built the QRYMQMJRN command you can query
journal receiver information for a single queue manager with the
following command:

 QRYMQMJRN MQMNAME(YourQmgrName)

...or you can query all queue managers with the command:

 QRYMQMJRN MQMNAME(*ALL)

The QRYMQMJRN command produces the following output:

> QRYMQMJRN MQMNAME(*ALL)
For Queue manager:"MP" the oldest startup journal entry is dated:
"Ø1/Ø5/31 15:29:13" in receiver: "AMQAØØØØØ6". The oldest media recovery
journal entry is dated: "Ø1/Ø5/3Ø Ø9:47:2Ø" in receiver:AMQAØØØØØ2".
ACTION: delete receivers earlier than media journal receiver
"AMQAØØØØØ2".
Unable to get data for Queue Manager MQBLD
For Queue manager:"INVOICING" the oldest startup journal entry is dated:
"Ø1/Ø6/Ø1 Ø9:47:37" in receiver: "AMQAØØØØ68". The oldest media recovery
journal entry is dated: "Ø1/Ø5/31 14:1Ø:54" in receiver:AMQAØØØØ34".
ACTION: delete receivers earlier than media journal receiver
"AMQAØØØØ34".
Unable to get data for Queue Manager TESTQMGR

This output shows that four queue managers have been created on the
system.

Queue managers MQBLD and TESTQMGR are both inactive and so
have not produced any results, but queue managers MP and INVOICING
are running and have reported which journal receivers are needed.

In this example we can see that queue manager MP no longer needs
journal receivers older than AMQA000002, so you can run the OS/400
WRKJRNRCV command to see which journal receivers are older
than AMQA000002 in the queue manager library. For example:

 WRKJRNRCV JRNRCV(QMMP/AMQA*)

produces the following list, showing that receivers AMQA000000 and
AMQA000001 can be safely deleted:

Type options, press Enter.
 1=Create 4=Delete 5=Display attributes 13=Change description
 Journal
Opt Receiver Library Text
 AMQAØØØØØØ QMMP MQM local journal receiver

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

 AMQAØØØØØ1 QMMP MQM local journal receiver
 AMQAØØØØØ2 QMMP MQM local journal receiver
 AMQAØØØØØ3 QMMP MQM local journal receiver
 AMQAØØØØØ4 QMMP MQM local journal receiver
 AMQAØØØØØ5 QMMP MQM local journal receiver
 AMQAØØØØØ6 QMMP MQM local journal receiver

QRYMQJRN
Program: QRYMQJRN */
/* Function: Sample program to issue a RCDMQMIMG command */
/* against specified queue manager(s), then extract */
/* the information needed to report on the journal */
/* receivers that can be safely deleted. */
/* Parameters: &MQMNAME - Blank padded 48 character queue */
/* manager name */
 PGM PARM(&MQMNAME)
 DCL VAR(&MQMNAME) TYPE(*CHAR) LEN(48)
 DCL VAR(&DATFMT) TYPE(*CHAR) LEN(4)
 DCL VAR(&ALLQMGRS) TYPE(*LGL) VALUE('Ø')
 DCLF FILE(QTEMP/AMQQMGRS)
/* Message handling variables */
 DCL VAR(&RSPMSG) TYPE(*CHAR) LEN(7)
 DCL VAR(&DATA1) TYPE(*CHAR) LEN(6Ø)
 DCL VAR(&DATA2) TYPE(*CHAR) LEN(6Ø)
 DCL VAR(&DATALEN) TYPE(*DEC) LEN(5 Ø) VALUE(4Ø)
 DCL VAR(&MSGID1) TYPE(*CHAR) LEN(7)
 DCL VAR(&MSGID2) TYPE(*CHAR) LEN(7)
 DCL VAR(&DATE1) TYPE(*CHAR) LEN(17)
 DCL VAR(&DATE2) TYPE(*CHAR) LEN(17)
 DCL VAR(&NAME1) TYPE(*CHAR) LEN(1Ø)
 DCL VAR(&NAME2) TYPE(*CHAR) LEN(1Ø)
 DCL VAR(&RESPONSE) TYPE(*CHAR) LEN(3ØØ)
/* Error handling variables */
 DCL VAR(&ERRORSW) TYPE(*LGL)
 DCL VAR(&MSGID) TYPE(*CHAR) LEN(7)
 DCL VAR(&MSGDTA) TYPE(*CHAR) LEN(1ØØ)
 DCL VAR(&MSGF) TYPE(*CHAR) LEN(1Ø)
 DCL VAR(&MSGFLIB) TYPE(*CHAR) LEN(1Ø)
 MONMSG MSGID(CPFØØØØ) EXEC(GOTO CMDLBL(STDERR1))
/* If processing all Qgmrs, populate file and set flag */
 IF COND(&MQMNAME *EQ '*ALL') THEN(DO)
 CALL PGM(QMQM/AMQXLIST) PARM('-q')
 CHGVAR VAR(&ALLQMGRS) VALUE('1')
 ENDDO
/* If processing all Qgmrs, read names from file */
 STARTLOOP: IF COND(&ALLQMGRS *EQ '1') THEN(DO)
 RCVF
 MONMSG MSGID(CPFØ864) EXEC(GOTO CMDLBL(FINISH))
 CHGVAR VAR(&MQMNAME) VALUE(&AMQQMGRS)
 ENDDO

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* Save job date format and set to YY/MM/DD for easy comparison */
 RTVJOBA DATFMT(&DATFMT)
 CHGJOB DATFMT(*YMD)
/* Record media image */
 RCDMQMIMG OBJ(&MQMNAME) OBJTYPE(*MQM) +
 MQMNAME(&MQMNAME) DSPJRNDTA(*YES)
/* Restore job date format and pick up response messages */
 CHGJOB DATFMT(&DATFMT)
 RCVMSG MSGID(&RSPMSG)
 RCVMSG MSGDTA(&DATA1) MSGDTALEN(&DATALEN) +
 MSGID(&MSGID1) /* Get AMQ746Ø */
 RCVMSG MSGDTA(&DATA2) MSGDTALEN(&DATALEN) +
 MSGID(&MSGID2) /* Get AMQ7462 */
/* We succeeded if we got AMQ7486, AMQ746Ø and AMQ7462 messages */
 IF COND((&RSPMSG *NE 'AMQ7Ø86') *OR (&MSGID1 +
 *NE 'AMQ746Ø') *OR (&MSGID2 *NE +
 'AMQ7462')) THEN(DO)
 SNDPGMMSG MSG('Unable to get data for Queue Manager' +
 *BCAT &MQMNAME)
 GOTO CMDLBL(ENDLOOP)
 ENDDO
/* Extract the relevant data from the messages */
 CHGVAR &DATE1 %SST(&DATA1 17 17) /*Extract date from AMQ746Ø*/
 CHGVAR &NAME1 %SST(&DATA1 36 1Ø) /*Extract name from AMQ746Ø*/
 CHGVAR &DATE2 %SST(&DATA2 17 17) /*Extract date from AMQ7462*/
 CHGVAR &NAME2 %SST(&DATA2 36 1Ø) /*Extract name from AMQ7462*/
/* Report the action to take */
 CHGVAR VAR(&RESPONSE) VALUE('For Queue manager:"' +
 *TCAT &MQMNAME *TCAT '" the oldest +
 startup journal entry is dated: "' *TCAT +
 &DATE1 *TCAT '" in receiver: "' *TCAT +
 &NAME1 *TCAT '". The oldest media +
 recovery journal entry is dated: "' *TCAT +
 &DATE2 *TCAT '" in receiver: ' *TCAT +
 &NAME2 *TCAT '". ACTION: delete receivers +
 earlier than')
 IF COND(&DATE1 *LE &DATE2) THEN(SNDPGMMSG +
 MSG(&RESPONSE *BCAT 'startup receiver "' +
 *TCAT &NAME1 *TCAT '".'))
 ELSE CMD(SNDPGMMSG MSG(&RESPONSE *BCAT 'media +
 journal receiver "' *TCAT &NAME2 *TCAT '".'))
/* If processing all Qmgrs, loop to get next queue manager */
ENDLOOP: IF COND(&ALLQMGRS *EQ '1') THEN(GOTO +
 CMDLBL(STARTLOOP))
FINISH: RETURN
/* Handle unexpected errors */
 STDERR1:
 IF COND(&ERRORSW) THEN(SNDPGMMSG MSGID(CPF9999) +
 MSGF(QCPFMSG) MSGTYPE(*ESCAPE))
 CHGVAR VAR(&ERRORSW) VALUE('1')
 STDERR2: RCVMSG MSGTYPE(*DIAG) MSGDTA(&MSGDTA) MSGID(&MSGID) +

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

 MSGF(&MSGF) MSGFLIB(&MSGFLIB)
 IF COND(&MSGID *EQ ' ') THEN(GOTO +
 CMDLBL(STDERR3))
 SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
 MSGDTA(&MSGDTA) MSGTYPE(*DIAG)
 GOTO CMDLBL(STDERR2)
 STDERR3: RCVMSG MSGTYPE(*EXCP) MSGDTA(&MSGDTA) MSGID(&MSGID) +
 MSGF(&MSGF) MSGFLIB(&MSGFLIB)
 SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
 MSGDTA(&MSGDTA) MSGTYPE(*ESCAPE)
 ENDPGM

QRYMQMJRN
/* Command name: QRYMQMJRN */
/* Description: Query journal information for one or more queue */
/* managers */
 QRYMQMJRN: CMD PROMPT('Query MQSeries Journal Info')
 PARM KWD(MQMNAME) TYPE(*CHAR) LEN(48) RSTD(*NO) +
 DFT(*ALL) SPCVAL((*ALL *ALL)) MAX(1) +
 PROMPT('Queue manager name')

Mark Phillips
MQSeries Development, IBM Hursley © IBM

HIS and its MSMQ to MQSeries Bridge (part 1)

HIS (Host Integration Server) 2000 provides bi-directional services
for integrating and linking Microsoft Windows environments with
legacy computing systems. HIS provides interoperability in the
following areas:

• Application integration services.

• Data integration services.

• Network integration services.

HIS 2000 offers a means to enable Internet, intranet, and client/server
technologies while still allowing organizations to maximize existing
and future investments in enterprise computing platforms such as
SNA – a proprietary networking architecture developed by IBM. SNA
defines a set of communication protocols and message formats for

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

managing network data; and methods for terminal access to mainframe
computers, file transfer, printing, and peer-to-peer communications
that allow applications to exchange data over a network. In this
mainframe network HIS appears as a cluster controller PU 2 (physical
unit type 2) device, which can be attached directly to the host via a
high-speed data channel.

The MSMQ-MQSeries Bridge enables your applications to exchange
messages between IBM MQSeries and Microsoft Message Queue
Server (MSMQ). The Bridge provides connectionless store-and-
forward messaging across messaging systems and computing
platforms.

In this series of three articles, we will examine how system
administrators can link MSMQ with MQSeries using the HIS integrated
MSMQ-MQSeries Bridge. The first article will cover planning, the
second will focus on deployment and configuration, and the third will
focus on administration and performance.

MESSAGE QUEUEING AND BRIDGING CONCEPTS

A message queueing system is basically a store-and-forward system
that allows applications running at different times to communicate
across distributed networks. Programs can share data across a network
without having a synchronized connection between the sending and
receiving components of the distributed application – a sending
application can put the data, or message, on a message queue, which
is then retrieved by the receiving application.

MSMQ and MQSeries use the fundamental concepts of a message and
message queue. A message is a set of data that needs to be transmitted
from one application to another on the same or a different computer
in a network. A message queue is the location where messages are
stored and the messages can be written and read by applications.

MSMQ messages consist of fields known as message properties. Any
number of properties is allowed – including zero – yielding a message
with a dynamic data structure. This is in contrast to MQSeries, where
the fields are in a fixed data structure. The process for sending a
message is detailed below.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

• A sending application specifies the message fields or properties,
provides the field values, and then issues an API call to MSMQ
or MQSeries to send a message.

• The MSMQ or MQSeries queue manager stores and forwards the
message to the destination queue. If the destination queue is not
available, the message is forwarded automatically when a
connection is established.

• A receiving application issues an API call to receive the message
from the queue.

In summary, MSMQ and MQSeries provide the following services:

• Connectionless, asynchronous messaging.

• Guaranteed delivery.

• Message prioritization, enabling the order in which the receiving
application obtains the messages to be specified.

• A user-defined message structure, consisting of no message, a
single byte, a text string, or a long and complex data structure –
even involving encryption that only the communicating
applications understand.

• Send-message or receive-message operations, which can
participate in a transaction so that there can be coordination with
other database operations, and the entire transaction can be
cancelled and rolled back if any of the operations fail.

• Application programming interfaces (APIs) operating on the
Application Layer of the ISO Reference Model for Open System
Interconnection, thereby providing a simple interface between an
application program and the network, freeing the application
programmer from concern about network or communication
details.

A bridge is required between MSMQ and MQSeries so that applications
can exchange messages between the two systems. The MSMQ-
MQSeries Bridge achieves this by mapping the messages, data fields,
and values of the sending system to the fields and values of the
receiving environment. After the mapping and conversion, the Bridge

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

completes the process by routing the message across the combined
MSMQ and MQSeries networks.

The MSMQ-MQSeries Bridge was originally developed by Level 8
Systems and released as the FalconMQ Bridge. Since being sold and
licensed to Microsoft in early 1998, the Bridge has become part of
Microsoft’s HIS 2000.

The bridge process is transparent, operating entirely in the background.
An MSMQ application sends a message using a standard MSMQ
MQSendMessage() API call or ActiveX control and the MQSeries
application receives the message from the MQSeries queue using a
standard MQSeries MQGET() API call. Since each application is
dealing with its native environment, complexity is removed. Messages
are routed to and from each messaging system even if the two systems
are not connected to the network at the same time.

The MSMQ-MQSeries Bridge system contains two principal
components:

• The Bridge, which converts and transmits messages between the
two environments.

• The Bridge Explorer/Manager, which enables configuration,
monitoring, and control of messaging traffic through the Bridge.

In sending a message from MQSeries to MSMQ, the bridge maps the
fields of the MQSeries message to its MSMQ counterpart and, if a
non-existent additional field is required at the destination, then the
bridge provides the field. The support documentation states, “suppose,
for example, that an MSMQ message includes the
PROPID_M_TIME_TO_BE_RECEIVED property with a specific
value. The Bridge maps this property to the MQSeries MQMD.Expiry
property and multiplies the value by ten to change the units from
seconds to tenths of seconds”.

The advantage in using the Bridge comes from the fact that there is no
restriction on message content. The sending and receiving applications
can impose their own internal structure or encryption schemes, which
are left unaltered by the Bridge.

The MSMQ-MQSeries Bridge is an MSMQ Connector Server
application. The connector allows MSMQ applications to communicate

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

with foreign computers that use other messaging systems. As part of
HIS 2000, the Bridge is installed on a Windows 2000 system that
serves as a connection point between the networks. So the Bridge
itself consists of Windows 2000, HIS 2000, and its integrated bridging
capabilities. The computer must be connected by a TCP/IP or SNA
link to an MQSeries Queue Manager.

You can connect any number of MSMQ or MQSeries systems or
networks using MSMQ-MQSeries Bridge. For example, you can
connect one or more MSMQ-MQSeries Bridge(s) to one or more
MQSeries Queue Manager(s).

MQSERIES AND MSMQ MESSAGE FIELDS OR PROPERTIES

A message can contain one or more fields. Examples include the
message buffer or body, label, priority, or sender-ID.

• In MQSeries, the fields are members of a fixed data structure.

• In MSMQ, the fields are known as properties and there can be any
number of properties, even zero. An application assembles a
dynamic (rather than fixed) data structure from one or more
properties.

SENDING AND RECEIVING MESSAGES

When creating a message, an application specifies the message fields
or properties plus field values and then issues an MSMQ or MQSeries
API call to send the message. The MSMQ or MQSeries queue
manager (server) transmits the message to the destination message
queue. If the destination location is not currently connected to the
network the message queueing system stores the message at an
interim location and then forwards the message automatically when
a connection is established. An application on the receiving side issues
an API call that reads the message from the queue.

SENDING MESSAGES FROM MSMQ TO MQSERIES

You first define an MSMQ ‘foreign’ computer, representing the
MQSeries Queue Manager. This assumes that the MQSeries destination

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

queue already exists. As stated earlier, the MSMQ-MQSeries Bridge
uses the MSMQ Connector, which allows MSMQ applications to
communicate with ‘foreign’ computers that use other messaging
systems, connected networks, and queues. Once the ‘foreign’ connected
network is created you then create a ‘foreign’ computer, which would
be the MQSeries Queue Manager – essentially a node hosting queues
or functioning like a ‘computer’ under MSMQ. Next, you need to
activate the MSMQ Open Connector security permissions. Once
these steps have been completed, the messaging process works as
follows:

• An MSMQ application issues an MSMQ MQCreateQueue()
API call to create a ‘foreign’ queue on the ‘foreign’ computer
representing the MQSeries destination queue. This ‘foreign’
queue can also be created using MSMQ. In Windows 2000 the
‘foreign’ queue is a part of the Active Directory Users and
Computers.

• The application calls MQOpenQueue() to open the ‘foreign’
queue.

A message being sent from MSMQ to MQSeries follows this process:

• The MSMQ application sends a message to the MQSeries queue.

• MSMQ stores the message on a connector queue.

• The Bridge takes the message from the connector queue and then
converts and forwards it to MQSeries.

• MQSeries delivers the message to the destination queue.

• The MQSeries application receives the message from the
MQSeries queue.

• The MSMQ application calls the API MQSendMessage() to
send a message to the foreign queue. MSMQ routes the message
and stores it temporarily on an MSMQ connector queue. MSMQ
processes the message from the initial MQSendMessage() call
until it is placed on the connector queue.

• The Bridge takes the message from the connector queue and
converts the message properties to the MQSeries message data

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

structure. The Bridge routes the message to the MQSeries
destination queue. The Bridge converts and transmits the message
to MQSeries, which handles the transmission from that point on.

• An MQSeries application issues an MQSeries MQGET() API
call to receive the message from the MQSeries queue.

SENDING MESSAGES FROM MQSERIES TO MSMQ

A message being sent from MQSeries to MSMQ goes through the
following stages.

• The MQSeries application sends a message to the MQSeries
queue.

• MQSeries stores the message on the transmission queue.

• The message is transmitted from the MQSeries transmission
queue to the Bridge.

• The Bridge takes the message and converts and then forwards it
to MSMQ.

• The message resides in the MSMQ destination queue.

• The MSMQ application receives a message from the MQSeries
queue and MQSeries application.

Excepting a few minor differences, the process for sending a message
from MQSeries to MSMQ is essentially the inverse of MSMQ to
MQSeries. You define MQSeries aliases, transmission queues, and
channels for the MSMQ destination queue and/or the MSMQ Server
– assuming the MSMQ destination queue already exists.

The messaging process will be as follows:

• An MQSeries application issues an MQOPEN() API call for a
remote queue representing the MSMQ destination queue.

• The MQSeries application issues an MQPUT() API call to send
a message to the remote queue. MQSeries transmits the message
and stores it temporarily on an MQSeries transmission queue
located at the MQSeries Queue Manager.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The Bridge takes the message from the transmission queue and
converts the message structure to MSMQ message properties.
The Bridge transmits the message to the MSMQ destination
queue.

• An MSMQ application issues an MSMQ MQReceiveMessage()
API call to receive the message from the MSMQ queue.

Normal and high service

Messages are sent by normal service or high service.

Normal service entails the ‘deliver once’ feature of MSMQ and
MQSeries that ensures that each message is delivered exactly once to
the receiving application. However, there is an overhead. High service
can improve performance, but a message may be delivered more than
once in the event of a system failure during transmission.

The MSMQ-MQSeries Bridge sends transacted messages by normal
service and untransacted messages by high service when sending
from MSMQ to MQSeries. When sending from MQSeries to MSMQ,
you specify a particular alias for the remote queue manager address to
send a message by normal or high service.

TRANSACTIONAL AND NON-TRANSACTIONAL MESSAGE PIPES

With the Bridge, you can send messages through transactional or non-
transactional message pipes. The transactional message pipe supports
the ‘deliver once’ feature, but, as with normal service, there is a
performance overhead.

The non-transactional message pipe improves performance, although
a message may be delivered more than once. MSMQ messages in the
foreign transactional queue will go through transactional message
pipes, and MSMQ messages in the foreign non-transactional queue
will go through the non-transactional message pipes.

From MSMQ to MQSeries the Bridge sends transacted messages by
normal service and untransacted messages by high service.

From MQSeries to MSMQ you can send a message by transactional
or non-transactional message pipe by specifying the appropriate

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

remote queue manager alias, such as BRIDGEQMNAME for the
transactional message pipe and BRIDGEQMNAME% for the non-
transactional message pipe.

MSMQ OPERATION

As previously stated, MSMQ comprises several objects and
components, of which the two fundamental parts are the message and
the queue.

A message can contain text or binary data using any format, as long
as both the sender and receiver agree on the format.

Queues hold the messages and there are two types of queue:

• Application queues, which are used by applications to send and
receive data.

• System queues, which are created when MSMQ is installed, and
include the dead letter queue, transactional dead letter queue, and
journal queues.

The Message Queue Information Store (MQIS) is an SQL database
that contains the definitions of the queues, and MSMQ topology.
Active Directory Services replaces the MQIS in Windows 2000. The
messages themselves exist in memory or in the file system.

Using a GUI tool, modifications can be carried out on the following:

• The MSMQ Enterprise.

• Servers.

• Connected networks.

• Queues.

• Messages.

The MSMQ Enterprise

The Enterprise is the top layer in the MSMQ hierarchy and all other
objects are affiliated with an Enterprise. A ‘right-click’ on the Enterprise
icon brings up the Enterprise Properties page with the tabs: General,
MQIS Defaults, and Security. The General tab contains the Enterprise

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

name, Enterprise server, and Default lifetime of a message on the
network. The MQIS Defaults tab contains the Replication interval –
seconds between updates (external – inter-site; internal – intra-site).
The Security tab provides buttons for setting permissions, auditing,
and ownership.

Servers

The PEC (Primary Enterprise Controller) provides the infrastructure
foundation for the MSMQ by holding the master copy of the MQIS.
It can also serve as a PSC (Primary Site Controller), BSC (Backup Site
Controller), or Routing Server.

A ‘right-click’ on the PEC computer icon allows you to bring up the
Computer Properties page with the tabs: General, Network, Events,
Status, IS Status, Dependent Clients, Tracking, and Security.

The General tab specifies the following:

• Pathname: the machine name prefix on the queue’s physical
location pathname.

• The Original Site: the site with which the machine was originally
affiliated.

• The Site: permit machine relocation to another site.

• ID: GU-ID (Globally Unique Identifier) value automatically
assigned to each object.

• Service: function of the computer.

• Limit Message Storage in Kilobytes and Limit Journal Storage in
Kilobytes: this limits the bytes allocated for all messages in all
queues but doesn’t limit the size of each message. In NT, a
message is limited to 4MB and in Win98 to 400K.

The Network tab contains buttons to Add, Edit, or Remove connected
networks (CNs). A CN is a logical grouping of computers where any
two can have a direct session with each other.

The Events tab provides a filtered listing of MSMQ-related events
from the Event Viewer and includes a button to launch the full Event
Viewer. To further isolate a problem, set up auditing using the security
tab.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

The Status tab provides MSMQ-related MQIS resource statistics
from the Performance Monitor, such as sessions (IP and IPX),
incoming messages/sec, MSMQ incoming messages, outgoing
messages/sec, MSMQ outgoing messages, total messages in all
queues, and total bytes in all queues.

A button is provided to launch the full Performance Monitor. The IS
Status tab provides statistics on database replication. The Dependent
Clients tab shows all dependent clients connected to the server – these
clients have synchronous MSMQ sessions with the server from RPC
applications.

With the Tracking tab, you can enable a queue and specify the types
of message to track as they move through the MSMQ network. This
is useful for checking that messages are reaching their destinations
using the best route. The Security tab is the same throughout and was
discussed earlier.

Connected Networks (CNs)

CNs map the protocol types running in your network and represent a
logical group of computers where any two can establish a session with
each other. For example, clients using IP would be in their own CN.
You have the option to create an IP, IPX, or foreign CN. For example,
you would create a foreign CN to connect to an MQSeries queueing
system. ‘Right-clicking’ on a CN brings up a Connected Network
Properties page with two tabs: General and Security. The General tab
displays the CN name, protocol such as IP, and ID (GU-ID).

Queues

The queue is a logical representation of the physical data storage area
for messages. ‘Right-clicking’ on a queue brings up the tabs: General,
Advanced, Status, and Security. The General tab displays the following:

• A GU-ID for the queue object.

• An application-defined LABEL that can be used in combination
with the Type-ID to aid in queue selection.

• A user-defined Type-ID, typically a GU-ID generated using
guidgen.exe and used in combination with a LABEL to aid in
queue selection.

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Queue creation date/time and queue last modified date/time.

The Advanced tab provides the ability to:

• Limit message storage in kilobytes for total message accumulation.

• Specify that the queue only accepts authenticated messages.

• Specify that the queue can be used to hold transactional messages.

• Store a copy of an outgoing message via the ‘Journal-enabled’
option.

• Limit journal storage in kilobytes to limit the accumulation of
journal messages.

• Specify the privacy level, so that the queue accepts private
(encrypted messages), non-private, or both.

• Specify a base priority of –32768 to +32767 for messages sent to
a public queue. Queue priority takes precedence over message
priority.

Messages
Message size is limited to 4 MB in NT and to 400 KB in Win98.
‘Right-clicking’ on a message brings up a Message Properties page
with the tabs: General, Queues, Body, and Sender.

The General tab displays the following:

• The application-defined message label, which can be used to
denote the purpose of the message, for example.

• The ID or message GU-ID created automatically when the
message is placed into the queue.

• The application-defined priority level of between 0 to 7, with 0
as the default (with no priority, messages are processed first in,
first out – FIFO).

• A tracked flag – indicating that the message is tracked.

• The MSMQ-set class or message type, such as normal, positive
or negative acknowledgement (arrived and read), or report.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

• Sent date and time for outgoing message.

• Arrived date and time for incoming message.

The Queues tab displays the destination queue name, the response
queue name for reply messages, and the administration queue name
for administration-type messages such as acknowledgements.

The Body tab displays the body content of the message and provides
a byte count.

The Sender tab provides information on the sending computer and
application, including the sending computer GU-ID, Pathname or
name of the computer, the User ID and Security Identifier (SID) of the
sending application, and an indication as to whether or not the
message is authenticated and/or encrypted (and the algorithm(s)
used).

MSMQ capabilities include:

• Integration with Windows, taking advantage of its security
features, event/performance monitoring and logging, and
transaction and clustering support.

• Easy administration through the GUI-based MSMQ Explorer.

• ActiveX components primarily for use with Visual Basic and in
Active Server Pages (C++ and J++ are supported), and a C
language API.

• Message and queue prioritization. Messages can be assigned a
priority (0 to 7 – 7 is the highest) by the programmer and the
receiving application will receive the messages in priority order.
Queues can also be assigned a priority resulting in messages
being routed based upon queue priority first, followed by message
priority.

• Dynamic message routing. This is set by the administrator and is
based upon site link costs allowing load balancing.

• Retention of a copy of the message until it’s delivered successfully
by the Microsoft Transaction Server (MTS). An application can
manage a unit of work (UOW) to prevent data loss in the event of
a failure. The MTS or DTC (Distributed Transaction Coordinator)
coordinates the transaction.

44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Under syncpoint control, MTS can ensure safe delivery by
retrieving a message, and writing the message at the destination.
A syncpoint is the point where outstanding updates are made
available and it works like a flag on a process thread. A UOW
usually controls the transaction and MTS manages all the threads.
When all the UOW threads are successful they are committed. If
only one fails, then all the threads are stopped and the resources
are rolled back to the state before the UOW was initiated.

MSMQ ARCHITECTURE

Four principal servers comprise the MSMQ infrastructure. These are
described below.

• The Primary Enterprise Controller (PEC). This is the first element
to be installed when building an MSMQ infrastructure. In the
MQIS SQL database the PEC holds the enterprise configuration
data and the certification keys used in authenticating messages.

The MQIS contains the master definitions for the enterprise, site,
site links, connected networks, user settings, and the master copy
of each site’s computers and queue definitions. In addition, the
PEC contains a read-only copy of the MQIS data from other sites
obtained by replication.

The PEC can perform the jobs of the other three servers though
this isn’t advisable for obvious performance reasons.

• The Primary Site Controller (PSC). A site is typically a
geographical location and a PSC should be installed at each site.
For example, you could place a PEC at the company headquarters
and one at each branch office location.

The PSC MQIS database holds the master data about the computers
and queues at the site. In addition, the PSC contains a read-only
copy of the MQIS data from other sites obtained by replication.
The PSC can perform the job of a Routing Server.

• The Backup Site Controller (BSC). A BSC should be installed for
each site containing a PSC or PEC to provide load balancing and
redundancy support in the event of failure.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 45

The BSC holds a read-only copy of the MQIS database replicated
from the PSC or PEC so no queues can be created. The BSC can
perform the job of a Routing Server. A BSC requires a previously
installed PSC or PEC.

• Routing Server (RS). You install RSs to provide more than one
path for messages to reach their destination queues. As a result,
RSs can distribute messages through different servers and prevent
session concentration where you have too high a volume accessing
a resource.

RSs provide load balancing, intermediate store-and-forward
message queueing, and dynamic routing. An RS doesn’t hold the
MQIS database and, therefore, requires a previously installed
PEC.

When changes occur to the infrastructure, such as queue or computer
changes, the MQIS is replicated. By default, intra-site replication for
changes to be replicated within a site occur every two seconds while
inter-site replication between sites occur every ten seconds.

There are two types of client supported: an independent client (IC),
and a dependent client (DC). The programming interface is identical
whether it’s a client or server, but clients require fewer resources. The
client software can be installed in Win98/95/ME and NT/2000
computers. IC software requires NT4 or better.

• DCs require a highly available network where the session is
maintained with the MSMQ server. If the link is broken then the
services of MSMQ are not available to the application.

• ICs can store messages in private queues, usually used as reply
queues, which are not registered in the MQIS. These queues can
only be addressed by their direct format name. A client application
creates a private queue, sends the format name in the message so
that the responding application can reply to the named queue.
Unlike DCs, an IC’s application will continue to run when the
link is broken with the network. Any sent messages are just stored
locally. (Editor’s note: this article will be continued next month.)

Stephen Ibaraki, ISP
Chief Architect, iGen Knowledge Solutions (Canada) © Xephon

46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The su facility

This article describes how to use the Unix platform’s su facility to
provide security and accountability of the MQ Administrator account.

All Unix systems provide a facility to log all attempts to become root.
The good news is that you can also use this facility for other
administrative accounts. This information can be invaluable when:

• Your business has one generic administrative account with more
than one person using it. This can be useful when there was a
mysterious system change at 5.00 am, for example, and you need
to see who was logged into the administrative account at that
time.

• You have developers who need administrative access to use
MQCONNX or other trusted applications and you need to log
their usage.

• You can track negative login attempts by hackers from inside or
outside the company.

THE SULOG DISPLAY

Typically, messages logged in the sulog are written out along the
following lines:

 SU Ø6/17 12:37 - ttyp1 gabled-mqm
 SU Ø6/17 12:38 + ttyp1 gabled-mqm
 SU Ø6/25 1Ø:44 + ttyp2 oracle-gabled
 SU Ø6/25 11:Ø5 + ttyp2 gabled-mqm

The log lists all uses of the su command, not those just used to su to
an id. This can be seen when the Oracle account first su’d to gabled
and then to mqm. As you may have guessed, the log uses positive signs
for a successful login and negative signs for failed logins.

Table 1 lists the directories of the su log on some of the different
flavours of Unix.

There follows a simple shell script that will e-mail you the id of
anyone who tried unsuccessfully to login to the mqm account:

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 47

#!/usr/bin/ksh
#Tested on HP-UX 11.Ø
SERVER=‘hostname‘
grep mqm /var/adm/sulog > su.test
grep " - " su.test > su.test1
awk -F " " '{print $6}' su.test1 > su.test2
awk -F "-" '{print $1}' su.test2 > su.test3
elm -s "People who unsuccessfully tried to login to the mqm account on
 $SERVER"
mqm@yourcompany.com < su.test3
rm su.test
rm su.test1
rm su.test2
rm su.test3

INHIBITING DIRECT LOGINS

Now that you know where to look and what to look for, you’ll have
to block everyone from logging directly into the MQSeries
administrative account and force them to use the su facility. Inserting
this piece of code in the /etc/profile (a system-wide login initialization
file) is an easy way to do this.

LOG1='logname'
if [$LOG1 = "mqm"]
 then
 echo "You must use the su command from your own ID to access mqm."
 exit 1
fi

This entry in the /etc/profile file will not only force usage of the su
facility, but will send the person logging in an error message describing
what action they should take next.

Paul Siracusa, Middleware Architect
Blue Cross Blue Shield of Missouri (USA) © Paul Siracusa

HP-UX 9 /usr/adm/sulog

HP-UX 10, 11, /var/adm/sulog

Solaris Listed in SULOG setting in /etc/default/su

AIX and IRIX /var/adm/sulog

Digital Unix /var/adm/sialog

Table 1: Directories of the su log on different Unix variations

MQ news

MQSoftware has announced the release of
Version 2.3.1 of Q Pasa!, a management tool
providing control of the MQSeries
middleware environment including:
configuration, performance, problem,
operations, and analysis management.

New features in Version 2.3.1 include
MQSeries object security, monitoring of
OS/390 buffer manager statistics, expanded
MQSeries Integrator Version 2 support,
expanded message management support,
and improved history reporting.

Separately, MQSoftware has also
announced the release of Q Liner Version
1.6.5, which provides centralized
administration and management of all
enterprise file transfers from one location.

For further information contact:
MQSoftware, 7575 Golden Valley Road,
Suite 140, Minneapolis, MN55427, USA
Tel: +1 763 546 9080
Fax: +1 763 546 9082
Web: http://www.mqsoftware.com

MQSoftware International, Surrey
Technology Centre, 40 Occam Road, Surrey
Research Park, Guildford, Surrey, GU2
7YG, UK
Tel: +44 1483 295400
Fax: +44 1483 573704

* * *

Candle Corporation has announced the
release of the CandleMonitor message
processing plug-in node. The new release is

part of CandleNet Command Center for
MQSeries Integrator Version 2.

CandleMonitor provides message flow
performance and event monitoring for
MQSI plug-in nodes, which, Candle claims,
enables more effective management of
applications.

Each node is deployed in message flows
using standard MQSI control centre
facilities. Performance statistics are
gathered by placing the node at various
points in a message flow.

Message flow events are produced
automatically when the node detects a
message flow exception, and events can be
specifically configured by the user by
assigning an event message attribute to a
node placed in a failure path in a flow.

The CandleMonitor node is available for
MQSeries Integrator Version 2 on Windows
NT, Sun Solaris, and AIX.

For further information contact:
Candle Corporation, 201 N Douglas St, El
Segundo, CA 90245, USA
Tel: +1 310 535 3600
Fax: +1 310 727 4287

Candle Service, 1 Archipelago, Lyon Way,
Frimley, Camberley, Surrey, GU16 7ER,
UK
Tel: +44 276 414 777
Fax: +44 1276 414 856

* * *

x xephon

	How to include a local cluster queue in workload balancing
	MQSI V2 exception processing (part 1)
	Add-on for BMC PATROL to measure a channel’s message rate
	Simplifying journal management in MQSeries for AS/400 V5.2
	HIS and its MSMQ to MQSeries Bridge (part 1)
	The su facility
	MQ news

