
© Xephon plc 2001

October 2001

28

3 MQSI V2 Service Trace
5 Adding user data in MQSeries send

channel exits
10 MQSI exception processing part 2:

coding
26 The CSQUTIL utility
27 HIS and its MSMQ MQSeries Bridge

part 2: deployment and configuration
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSI V2 Service Trace

MQSI V2 has some excellent trace facilities. This article explains how
to take an MQSI V2 Service Trace for the Configuration Manager. It
should then be possible to see how to run an MQSI V2 Service Trace
for other components.

The MQSI V2 User Trace facility is excellent for diagnosing problems
with message flows and, in some cases, databases.

The MQSI V2 Service Trace facility is excellent for diagnosing
‘system’-related problems concerning MQSI V2 components.

A problem often encountered is the inability to deploy to an MQSI V2
Broker because of an inconsistency in the MQSI V2 Configuration
Manager, resulting in the following message:

BIP15Ø3E: Unable to find required message set document in the
configuration repository. When deploying configuration data, the
document for message set '849e4b21-e4ØØ-ØØØØ-ØØ8Ø-8ca4Øb81b5fa'could not
be found in the configuration repository. Another document has
referenced this document, and it is required for the successful
completion of the deploy operation. The referencing document is
broker'BRKNTDØA'.
The message set document '849e4b21-e4ØØ-ØØØØ-ØØ8Ø-8ca4Øb81b5fa' has
either been deleted or has not been checked in. Correct the problem and
retry the deploy operation.
Ø8:55 19/Ø1/2ØØ1

It was simple to detect which MessageSet was causing the problem by
using the Service Trace. The clue was the identifier 849e4b21-e400-
0000-0080-8ca40b81b5fa.

After running the MQSI V2 Service Trace against the Configuration
Manager, looking at the output, and searching for ‘error’, it was
obvious which MessageSet was preventing the deploy operation from
being successful.

Here is how the Service Trace was run from the command prompt:

mqsichangetrace ConfigMgr -t -b -l debug
Execute Deploy Operation
mqsireadlog ConfigMgr -t -b agent -f -o servicetrace.tm$
mqsiformatlog -i servicetrace.tm$ -o servicetrace.txt
mqsichangetrace ConfigMgr -t -b -l none

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Commands one, three, four, and five might be put into a script in order
to make the Service Trace easier to run. A pause is required at
command two, in order to execute the deploy to the MQSI V2 Broker.

Apart from resolving problems, it is possible to learn much about how
the Configuration Manager or Broker work together with MQSeries.

Here is a sample of some of the trace entries you might expect to see.

{CICON=images/MessageProcessingNodeType.gif, CLASTUPDATE=2ØØØ-Ø9-21
13:45:ØØ.443ØØ2, CUUID=5cØdØ3be-e1ØØ-ØØØØ-ØØ8Ø-9ed6221cc8e3,
CSECTION=SHARED, CXMLDATA=<?xml version="1.Ø" encoding="UTF-8"?>
<!DOCTYPE MessageProcessingNodeType SYSTEM "mqsi.dtd" >
<MessageProcessingNodeType scaleableIcon="" longDescription=""
icon="images/MessageProcessingNodeType.gif" versionCreator="" package=""
shortDescription="" version="" collectionPath="" creationTimestamp=""
isPrimitive="false" creator="" versionTimestamp="" xmi.uuid="5cØdØ3be-
e1ØØ-ØØØØ-ØØ8Ø-9ed6221cc8e3" xmi.id="5cØdØ3be-e1ØØ-ØØØØ-ØØ8Ø-
9ed6221cc8e3" xmi.label="BOIFLOW">
 <Connection source="42495dbe-e1ØØ-ØØØØ-ØØ8Ø-9ed6221cc8e3.ErrorFixed"
longDescription="" icon="images/Connection.gif" versionCreator=""
shortDescription="" creationTimestamp="" creator="" target="8fa5Ø5be-
e1ØØ-ØØØØ-ØØ8Ø-9ed6221cc8e3.in" versionTimestamp=""
xmi.label="Connection9">
2ØØ1-Ø3-22 Ø7:43:Ø8.Ø9Ø 424}
com.ibm.broker.config.BrokerManager@952c75.run ConfigMgr ConfigMgr ,
ConfigMgr
2ØØ1-Ø3-22 Ø7:43:17.493 419 ImbQueue::read MQSeries returnCode
and reasonCode , 2, 2161
2ØØ1-Ø3-22 Ø7:43:17.493 419 ImbQueue::read Unable to mqget from
Queue , SYSTEM.BROKER.SECURITY.REPLY, CLIFTON
2ØØ1-Ø3-22 Ø7:43:17.5Ø3 419 ImbQueue::read file:f:/build/argo/
src/AdminAgent/ImbQueue.cpp line:463 message:2Ø7Ø.MQSeriesIntegrator2
Unable to get from Queue , MQGET, SYSTEM.BROKER.SECURITY.REPLY, CLIFTON,
2, 2161
2ØØ1-Ø3-22 Ø7:43:17.5Ø3 419 Error BIP2Ø7ØE: A problem
was detected with MQSeries while issuing MQGET for MQSeries queue
SYSTEM.BROKER.SECURITY.REPLY, MQSeries queue manager CLIFTON. MQCC=2,
MQRC=2161.

The operation on the specified queue or queue manager returned with
the indicated MQSeries completion and reason code.

Check the MQSeries completion and reason codes in the MQSeries
Application Programming Reference Manual to establish the cause of
the error, taking any appropriate action. It may be necessary to restart
the message broker after you have performed this recovery action. If
an MQOPEN was unsuccessful because the queue manager or queue

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

did not exist, then define these objects to MQSeries. If the problem
was because incorrect object names were specified, then the message
broker will try to recover. If the problem persists, it may be necessary
to restart the message broker.

2ØØ1-Ø3-22 Ø7:43:17.5Ø3 419 {
ImbQueue::generalErrorProcessing , 2, 2161
2ØØ1-Ø3-22 Ø7:43:17.5Ø3 419 {
ImbQueueManager::endUnitOfWork , false
2ØØ1-Ø3-22 Ø7:43:17.5Ø3 419 ImbQueueManager::endUnitOfWork
MQSeries returnCode and reasonCode , Ø, Ø.

Ken Marshall
MQSeries Consultant, MQSolutions (UK) © MQSolutions

Adding user data in MQSeries send channel exits

WHAT ARE SEND CHANNEL EXITS?

If the user correctly defines a send channel exit, all data that flows
across the channel is passed to it for modification immediately before
it is passed to the communications protocol for transmission. The send
exit may, for instance, apply a compression algorithm to the data and
return the compressed data to the MQSeries channel code, which then
transmits it. In the case of a compression algorithm, this results in
fewer bytes being sent across the communication protocol. If the send
exit modifies the data, it is, of course, essential that the modification
is reversed at the receiving end of the channel. This is achieved by
specifying an appropriate receive exit at that end to reverse the
algorithm applied by the send exit.

SEND EXITS COULDN’T MAKE THE DATA LARGER

The compression example described above leaves the data smaller
than it was before the exit was called and could have been implemented
on any version of the MQSeries messaging product which supports
send exits. But, prior to version MQSeries V5.2, it was not possible
to implement an algorithm which increased the size of the data. In

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

particular, this restriction arose because MQSeries messages are often
longer than the maximum protocol transmission size (which is generally
32K for TCP/IP). They are, therefore, divided into segments to be sent
across the transmission medium (note that this protocol-level
segmentation is transparent to the MQSeries application programmer
and is quite distinct from the message segmentation which can be
invoked at the MQSeries application programming interface).

As the send exits are called directly before transmission they are
passed individual segments of a segmented message. These segments
were produced such that they completely filled the maximum
transmission buffer size, so there was no room for the user to add data.

WHY WRITE A SEND EXIT WHICH MAKES THE DATA LARGER?

So, prior to V5.2, customers were not able to add to the data in a send
exit. But why would a user want to add extra information to the data
anyway? In general, the demand to add data relates to security
applications – perhaps a key is to be flowed with the data, or the user
wants to add a digital signature.

Digital signatures ensure data integrity and authentication of the
sender for users who are working in an environment where public/
private key pairs are being used. This is commonly referred to as
Public Key Infrastructure (or PKI) security. The text is hashed by the
sender according to an algorithm known by the receiver. The resulting
hash value is then encrypted by the sender using the sender’s private
key. The result is the digital signature for the text. This is appended at
the end of the plain text before it is sent.

The receiver has the public key, which matches the sender’s private
key. The receiver uses this to decrypt the digital signature received
and, hence, to recreate the sender’s hash value. The hashing algorithm
that the receiver applies to the received plain text is the same as the
sender’s algorithm, so this generates another copy of the sender’s hash
value. If the two hash values match, the receiver knows that the plain
text in the message has not been corrupted or tampered with in transit,
and that the sender is as expected.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

THE USER REQUESTS AND USES SPACE FOR DATA

So how does the user add data?

With MQSeries V5.2 a new parameter called ExitSpace is allowed in
the MQCXP structure which is passed to MQSeries channel exit
programs. ExitSpace is an output parameter that the user code in the
send exit sets on exit initialization: the parameter is not used on other
types of channel exit.

An example of the code required to set the ExitSpace field is as
follows:

void MQENTRY EXAMPLE_SENDEXIT (
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 PMQCXP pParms;
 pParms = (PMQCXP)pChannelExitParms;
 if (pParms->ExitId==MQXT_CHANNEL_SEND_EXIT)
 {
 if (pParms->ExitReason == MQXR_INIT)
 {
 pParms->ExitResponse = MQXCC_OK;
 pParms -> ExitSpace = 16;
 return;
 }
 }
}

When the send exit is subsequently invoked to send data this parameter
is used to determine the amount of space that will be left free for user
data. Of course, the matching receive exit must be written to expect
the data, to use it, and to remove it. Examples of send exits adding text,
and receive exits removing it, are included below.

void MQENTRY EXAMPLE_SENDEXIT (
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 PMQCXP pParms;
 pParms = (PMQCXP)pChannelExitParms;
....................................
.......................................
 if (pParms->ExitId == MQXT_CHANNEL_SEND_EXIT)
 {

...................
 if (pParms->ExitReason == MQXR_XMIT)
 /* send exit with data */
 msg += *pDataLength; /* jump over message data */
 for (i = Ø; i <16; i++)
 *(msg + i) = '!';
 *pDataLength += 16;
 pParms->ExitResponse = MQXCC_OK;
 pParms->ExitResponse2 = MQXR2_USE_AGENT_BUFFER;
 return;
 }
}
void MQENTRY EXAMPLE_RECEIVEEXIT (
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 PMQCXP pParms;
 pParms = (PMQCXP)pChannelExitParms;
 if (pParms->ExitId==MQXT_CHANNEL_RCV_EXIT)
 {
 if (pParms->ExitReason == MQXR_XMIT)
 /* receive exit with data */
...........
...........
 msg += *pDataLength - 1; /* jump to last character of send exit data */
 for (i = Ø; i < 16; i++)
 if (*(msg - i) != '!')
 {
 pParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 return;
 };
 *pDataLength -= 16;
 pParms->ExitResponse = MQXCC_OK;
 pParms->ExitResponse2 = MQXR2_USE_AGENT_BUFFER;
 return;
 }
 }

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

SOME DETAILED CONSIDERATIONS

Users are allowed to specify multiple send exits, which are called one
after the other. In general, these are matched by an equivalent chain
of multiple receive exits. Each send exit in the chain can request its
own user data area and MQSeries will ensure that the data passed into
the send exit chain has adequate room for all the exits.

When working with data prior to transmission the user is not restricted
to the amount of user data requested at exit intialization. In fact, all the
spare data in a transmission buffer is made available for user data, so
the user may often be able to use significantly more data than he
initially requested.

Reserving unnecessarily large amounts of user data is not advisable
as this will cause large messages to be divided into more segments
than necessary and will, therefore, slow transmission. A minimum of
1K of message data must be included in each transmission.

CONCLUSIONS

The ability for users to add data in send exits from MQSeries V5.2
gives users important new options for implementing security using
MQSeries channel exits.

Mike Horan
Software Engineer, IBM Hursley (UK) © IBM UK

E-mail alerts

If you’d like to be notified when new issues of MQ Update
have been placed on our Web site, you can sign up for our e-
mail alert, which provides this service. To sign up, go to
http://www.xephon.com/lists.

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSI exception processing part 2: coding

INTRODUCTION

In the last issue I introduced coding for MQSI exception processing.
We should now be ready to code a more sophisticated exception
processing flow for MQSI.

To recap briefly – exception handling paths start at:

• A failure terminal (most message processing nodes have these).

• The catch terminal of an MQInput node or the catch terminal of
a TryCatch node.

Normally, when an exception happens in a unit of work within the
message flow, it is generally sufficient to roll back the message to the
input node and start the exception processing there, in the catch node.

In special circumstances, we might need to add a TryCatch node in
order to capture some intermediate information within that message
flow.

GENERIC EXCEPTION HANDLING FLOW FOR RE-USE

One of the simplest ways to get code re-use in MQSI is to make the
message flow a sub-flow, so that it can be incorporated into other
message flows within the broker.

We can make our exception handling a sub-flow by duplicating and
then removing the main flow, keeping only the exception flow that
was connected to the catch terminal of the MQInput node, replacing
the MQInput node with an MQInput terminal. We can call it
ExceptionHandlingSubFlow, as Figure 1 illustrates.

Once we have created the sub-flow and checked it into the repository
it can be added to the workspace of any MQSI developer that is
connected to the same configuration manager. The developers can
then drag the sub-flow into their message flow and connect it to the
catch terminal of the MQInput node, as Figure 2 shows.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

In this way, you have standard exception processing for your MQSI
developers to use when coding their message flows.

THE STANDARD MQSI EXCEPTION PROCESSING

Now our standard for MQSI exception processing begins to take
shape. Procedures within the standard include:

1 Creating a BackOut queue for every input queue of the message
flow so that problematic messages can be rolled back and stored
for further investigation.

2 Creating an Error queue for the system to hold the error messages
generated by the exception flow. Error messages can be related to
problematic messages in the Backout queue since they will have
the same MessageID.

Figure 1: ExceptionHandlingSubFlow

Figure 2: Re-using the sub-flow

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3 Connecting the ExceptionHandlingSubFlow to the catch terminal
of the MQInput node.

If your site has some monitoring tools in place you may want to add
another step.

4 Monitoring the curdepth of the Backout queue and Error queue.

Further enhancement

Now that we have a standard for our MQSI exception processing you
can adapt this to your site, or you can further enhance the exception
sub-flow.

The MQSI manual describes five types of exception:

• RecoverableException.

• ParserException.

• ConversionException.

• DatabaseException.

• UserException.

We could further refine our exception processing according to the type
of exception that we encounter.

One suggestion is that, if the exception encountered is due to a system
error, we should find a way to stop the message flow. Messages are
thrown to the BackOut queue with a system error, so we should fix the
error before we restart the message flow. In this way, we don’t have
to re-route all the messages from the BackOut queue into the input
queue because the messages were sitting on the input queue when the
message flow was stopped. The message flow will simply pick up
work once again from where it left off, once the system error is fixed.

An example of such a system error is when the error has an SQL code
of -922, indicating an authorization error. We should fix the DB2
authorization error before re-starting the message flow.

There are a couple of ways to stop a message flow automatically,
without using a monitoring tool.

One way is to mimic an administration message issued by the MQSI

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

configuration manager that stops the message flow. If you ‘right-
click’ and choose Stop on a message flow from the Operations tab of
the MQSI configuration manager, the configuration manager actually
puts a stop message into the administration queue
SYSTEM.BROKER.ADMIN.QUEUE (see Figure 3). All administrative
messages are XML messages with the following properties:

• Format of "xml".

• MessageType of MQMT_REQUEST.

• ReplyToQ – specify your reply to queue.

• ReplyToQMgr – specify your queue manager.

• MessageId of MQMI_NONE.

• Report of MQRO_COPY_MSG_ID_TO_CORREL_ID.

• CharacterSet of 1208 (UTF-8).

• Persistence of MQPER_PERSISTENCE_AS_Q_DEF.

The ‘stop message flow’ message will take the following form:

<Broker uuid="1234" label="Broker1" version="1"
 <ExecutionGroup uuid="5678">
 <Stop>

 <MessageFlow uuid="91Ø1112"/>
 </Stop>
 </ExecutionGroup>
</Broker>

In order to mimic an administration stop message we need to know the

Figure 3: Stopping the message flow

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

uu-id for the broker, the execution group, and the message flow before
we can issue the stop message to the broker administration queue. This
requires quite a number of inquiry messages, reading the response
messages, and pasting the information before we can correctly
configure the stop message.

Another point to remember when mimicking administration messages
is that MQSI is sensitive to version numbers, and messages may differ
from one release to another.

An alternative to stopping the message flow automatically from the
message flow itself is to issue an MQ PCF command to alter the input
queue of the message flow and make it GetInhibited. In this way, even
though the message flow is still running, it cannot get messages from
the input queue specified in the MQInput node so the message flow
is as good as stopped.

PCF (PROGRAMMABLE COMMAND FORMATS)

PCFs are described in Part Two of the MQSeries Programmable
System Management book.

PCFs define command and reply messages that can be exchanged
between a program and any queue manager (that supports PCF) in a
network. You can use PCF commands in a systems management
application program for the administration of MQSeries objects, ie
queue managers, process definitions, queues, and channels. The
application can operate from a single point in the network to
communicate command and reply information with any queue manager,
local or remote, via the local queue manager.

Each queue manager has an administration queue with a standard
queue name, and your application can send PCF command messages
to that queue. Each queue manager also has a command server to
service the command messages from the administration queue. PCF
command messages can, therefore, be processed by any queue manager
in the network and the reply data can be returned to your application
using your specified reply queue. PCF command and reply messages
are sent and received using the normal Message Queue Interface
(MQI).

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

Each command and its parameters are sent as a separate command
message containing a PCF header followed by a number of parameter
structures. The PCF header identifies the command and the number of
parameter structures that follow in the same message. Each parameter
structure provides a parameter to the command.

Replies to the commands generated by the command server have a
similar structure.

The change queue PCF command

As described in Chapter eight of the manual, PCF commands can be
grouped into the following categories:

• Queue Manager.

• Namelist.

• Process.

• Queue.

• Channel.

• Statistics.

• Escape.

• Cluster.

Within the queue commands, the following actions can be performed:

• Change queue.

• Clear queue.

• Copy queue.

• Create queue.

• Delete queue.

The detail of the change queue command is as follows:

The change queue command – MQCMD_CHANGE_Q – changes
the specified attributes of an existing MQSeries queue.

• Required parameters

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– QName, QType.

• Optional parameters (any QType)

– QDesc, InhibitPut, DefPriority, DefPersistence.

• Optional parameters (alias QType)

– Force, InhibitGet, BaseQName, Scope, ClusterName,
ClusterNamelist, DefBind.

• Optional parameters (local QType)

– Force, InhibitGet, ProcessName, MaxQDepth,
MaxMsgLength, BackoutThreshold.

– BackoutRequeueName, Shareability, DefInputOpenOption,
HardenGetBackout.

– MsgDeliverySequence, RetentionInterval, DistLists, Usage.

– InitiationQName, TriggerControl, TriggerType,
TriggerMsgPriority.

– TriggerDepth, TriggerData, Scope, QDepthHighLimit,
QDepthLowLimit.

– QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent,
QServiceInterval.

– QServiceIntervalEvent, ClusterName, ClusterNamelist,
DefBind.

• Optional parameters (remote QType)

– Force, RemoteQName, RemoteQMgrName, XmitQName,
Scope, ClusterName.

– ClusterNamelist, DefBind.

• Optional parameters (model QType)

– InhibitGet, ProcessName, MaxQDepth, MaxMsgLength,
BackoutThreshold.

– BackoutRequeueName, Shareability, DefInputOpenOption,
HardenGetBackout.

– MsgDeliverySequence, RetentionInterval, DistLists, Usage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

– InitiationQName, TriggerControl, TriggerType,
TriggerMsgPriority.

– TriggerDepth, TriggerData, DefinitionType,
QDepthHighLimit.

– QDepthLowLimit, QDepthMaxEvent, QDepthHighEvent
QDepthLowEvent,QServiceInterval, QServiceIntervalEvent.

Since we need to change the input queue to become GetInhibited we
should configure a PCF command message with the following:

• A PCF header indicating the change queue command.

• The QName and Qtype parameters.

• An optional parameter for the local queue: InhibitGet.

The parameters must occur in the following order:

1 All required parameters, in the specified order.

2 Optional parameters as required, in any order, unless specifically
noted in the PCF definition.

Defining the PCF command message

MQSI V2.01 does not include the parser for PCF commands but it
does come with a PCF header type, MQCFH structure, pre-defined to
the system. So we just need to define the following:

• The format of the PCF integer parameter MQCFIN.

• The format of the PCF string parameter MQCFST.

• The message repository of the MQSI.

We can accomplish this by simply importing the above parameter
structures into MQSI. Depending on the installation, these c structures
can usually be found in C:/Program Files/MQSeries/Tools/c/include/
mqcfc.h.

We need to cut and paste from the mqcfc.h the sections for MQCFIN
and MQCFST. We will also need to do some editing before the import
can be successful.

The following header files should be included after the statements for

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

typedef MQLONG and MQCHAR.

/* MQCFIN Structure -- PCF Integer Parameter */
 typedef long MQLONG;
 typedef struct tagMQCFIN {
 MQLONG Type; /* Structure type */
 MQLONG StrucLength; /* Structure length */
 MQLONG Parameter; /* Parameter identifier */
 MQLONG Value; /* Parameter value */
 } MQCFIN;
/* MQCFST Structure -- PCF String Parameter */
 typedef long MQLONG;
 typedef char MQCHAR;
 typedef struct tagMQCFST {
 MQLONG Type; /* Structure type */
 MQLONG StrucLength; /* Structure length */
 MQLONG Parameter; /* Parameter identifier */
 MQLONG CodedCharSetId; /* Coded character set identifier */
 MQLONG StringLength; /* Length of string */
 MQCHAR String[1]; /* String value - first character */
 } MQCFST;

Having completed the above editing we can now define a new
MessageSet called MQCFH1 (note that MQCFH is predefined by
MQSI) and start importing the header files into MQSI.

Once we have successfully imported the header files we can start
defining the message for the PCF command. Please refer to the MQSI
manual for details on creating messages, but note that the sequence is:

• Create elements.

• Create message type.

• Create message base on the message type.

Since we already have the MQCHF_TYPE (MQSI pre-defined) and
MQCFST_TYPE and MQCFIN_TYPE (from a previous import) we
need to define four elements:

• PCF_HDR of type MQCHF_TYPE.

• PCF_PARM1 of type MQCFST_TYPE.

• PCF_PARM2 of type MQCFIN_TYPE.

• PCF_PARM3 of type MQCFIN_TYPE.

Then we can move on to define a message type PCF_CMD_TYPE that
is composed of the above elements.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

Finally, we can create the message PCF_CMD base on the
PCF_CMD_TYPE.

COMPUTE NODE THAT ISSUES THE PCF COMMAND

The basic function of this compute node is to configure the header and
parameters of the PCF command that will change the attribute of the
input queue to GetInhibited.

First of all, we need to get the input queue header information. From
this we can get the name of the queue we need to change to GetInhibit,
so we check the copy message header box.

Secondly, we need to set the output message to the PCF_CMD
message that we defined earlier, with the ESQL statements detailed
below.

SET OutputRoot.Properties.MessageSet = 'DJOQ9C8Ø7EØØ1';
SET OutputRoot.Properties.MessageType = 'PCF_CMD';
SET OutputRoot.Properties.MessageFormat = 'CWF';

The PCF_CMD will be a request message of format MQADMIN and
it will expect the PCF_CDM response to go to the ReplyToQ name,
which, in this case, is ALEX_TEST_OUT.

SET OutputRoot.MQMD.MsgType = 1;
SET OutputRoot.MQMD.Feedback = Ø;
SET OutputRoot.MQMD.Format = 'MQADMIN';
SET OutputRoot.MQMD.ReplyToQ = 'ALEX_TEST.OUT';

The subsequent ESQLs will propagate the PCF command header and
the three parameters that follow. The comments on the ESQL are self-
explanatory.

-- Set the PCF Header
-- change queue to get-inhibit
SET OutputRoot.MRM.PCF_HDR.Type = 1;
SET OutputRoot.MRM.PCF_HDR.StrucLength = 36;
SET OutputRoot.MRM.PCF_HDR.Version = 1;
-- Set the PCF command to MQCMD_CHANGE_Q = 8L
SET OutputRoot.MRM.PCF_HDR.Command = 8;
SET OutputRoot.MRM.PCF_HDR.MsgSeqNumber = 1;
SET OutputRoot.MRM.PCF_HDR.Control = 1;
SET OutputRoot.MRM.PCF_HDR.CompCode = Ø;
SET OutputRoot.MRM.PCF_HDR.Reason = Ø;
-- there will be 3 parameter follows: 2 required (QName, Qtype) and 1
optional (InhibitGet)

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SET OutputRoot.MRM.PCF_HDR.ParameterCount = 3;
-- First parameter, the QName whose property is to be Changed
-- set the type to MQCFT_STRING = 4L
SET OutputRoot.MRM.PCF_PARM1.Type = 4;
-- set the length = MQCFST_STRU_LENGTH_FIXED = 2ØL + MQ_Q_NAME_LENGTH =
48L
SET OutputRoot.MRM.PCF_PARM1.StrucLength = 68;
-- set the parameter QName to MQCA_Q_NAME = 2Ø16L
SET OutputRoot.MRM.PCF_PARM1.Parameter = 2Ø16;
SET OutputRoot.MRM.PCF_PARM1.CodedCharSetId = Ø;
-- get this QName from the Input Message Header into this node
SET OutputRoot.MRM.PCF_PARM1.StringLength =
CAST(LENGTH(InputRoot.MQMD.SourceQueue) AS INT);
SET OutputRoot.MRM.PCF_PARM1.String = InputRoot.MQMD.SourceQueue;
-- Second parameter is the QType
-- set the type to MQCFT_INTEGER = 3L
SET OutputRoot.MRM.PCF_PARM2.Type = 3;
-- the Length of this integer parameter is MQFIN_STRUC_LENGTH = 16L
SET OutputRoot.MRM.PCF_PARM2.StrucLength = 16;
-- Set QType to MQIA_Q_TYPE = 2ØL
SET OutputRoot.MRM.PCF_PARM2.Parameter = 2Ø;
-- Set MQQT_LOCAL = 1L
SET OutputRoot.MRM.PCF_PARM2.Value = 1;
-- Thrid parameter is the Option: to set the GetInhibit
-- set the type to MQCFT_INTEGER = 3L
SET OutputRoot.MRM.PCF_PARM3.Type = 3;
-- the Length of this integer parameter is MQFIN_STRUC_LENGTH = 16L
SET OutputRoot.MRM.PCF_PARM3.StrucLength = 16;
-- Set InhibitGet MQIA_INHIBIT_GET = 9L
SET OutputRoot.MRM.PCF_PARM3.Parameter = 9;
-- Set MQQA_GET_INHIBITED = 1L
SET OutputRoot.MRM.PCF_PARM3.Value = 1;

This PCF_CMD message is then put to the
SYSTEM.ADMIN.COMMAND.QUEUE for execution.

THE STOPMESSAGEFLOW FLOW

To test out the PCF_CMD command we can build a very simple
message flow as shown in Figure 4 – the trace nodes are there only to
verify that the command message is configured properly.

For simplicity, the MQInput node was configured to point to an input
queue, ALEX_TEST_IN, and the message domain was XML.

In order to test the message flow, the message set MQCFH1 created
earlier must be deployed to the broker. Once the message flow is
deployed to the execution group any XML message sent to the input

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

queue will set the PCF_CMD in action and the input queue will
become GetInhibited.

The trace of the PCF command will be as shown below.

PCF COMMAND TRACE
*** 2ØØ1-Ø6-23 17:25:5Ø.Ø13
(
 (Øx1ØØØØØØ)Properties = (
 (Øx3ØØØØØØ)MessageSet = 'DJOQ9C8Ø7EØØ1'
 (Øx3ØØØØØØ)MessageType = 'PCF_CMD'
 (Øx3ØØØØØØ)MessageFormat = 'CWF'
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 437
 (Øx3ØØØØØØ)Transactional = TRUE
 (Øx3ØØØØØØ)Persistence = FALSE
 (Øx3ØØØØØØ)CreationTime = GMTTIMESTAMP '2ØØ1-Ø6-24 ØØ:25:49.48Ø'
 (Øx3ØØØØØØ)ExpirationTime = GMTTIMESTAMP '2ØØ1-Ø6-24
ØØ:25:49.862998'
 (Øx3ØØØØØØ)Priority = Ø
 (Øx3ØØØØØØ)Topic = NULL
)
 (Øx1ØØØØØØ)MQMD = (
 (Øx3ØØØØØØ)SourceQueue = 'ALEX_TEST_IN'
 (Øx3ØØØØØØ)Transactional = TRUE
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 437
 (Øx3ØØØØØØ)Format = 'MQADMIN'
 (Øx3ØØØØØØ)Version = 2
 (Øx3ØØØØØØ)Report = Ø
 (Øx3ØØØØØØ)MsgType = 1
 (Øx3ØØØØØØ)Expiry = GMTTIMESTAMP '2ØØ1-Ø6-24
ØØ:25:49.862998'

Figure 4: Testing the PCF_CMD command

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (Øx3ØØØØØØ)Feedback = Ø
 (Øx3ØØØØØØ)Priority = Ø
 (Øx3ØØØØØØ)Persistence = Ø
 (Øx3ØØØØØØ)MsgId =
X'414d512Ø4d5153492Ø2Ø2Ø2Ø2Ø2Ø2Ø2Ø2fdf343b935ØØØØØ'
 (Øx3ØØØØØØ)CorrelId =
X'ØØ'
 (Øx3ØØØØØØ)BackoutCount = Ø
 (Øx3ØØØØØØ)ReplyToQ = 'ALEX_TEST_OUT'
 (Øx3ØØØØØØ)ReplyToQMgr = 'MQSI
'
 (Øx3ØØØØØØ)UserIdentifier = 'Alexau '
 (Øx3ØØØØØØ)AccountingToken =
X'16Ø1Ø515ØØØØØØe5518ØØcb8a4a4Øae558d4ØaeaØ3ØØØØØØØØØØØØØØØØØØØØØb'
 (Øx3ØØØØØØ)ApplIdentityData = ' '
 (Øx3ØØØØØØ)PutApplType = 11
 (Øx3ØØØØØØ)PutApplName = 'C:\WINNT\System32\MMC.EXE '
 (Øx3ØØØØØØ)PutDate = DATE '2ØØ1-Ø6-24'
 (Øx3ØØØØØØ)PutTime = GMTTIME 'ØØ:25:49.48Ø'
 (Øx3ØØØØØØ)ApplOriginData = ' '
 (Øx3ØØØØØØ)GroupId =
X'ØØ'
 (Øx3ØØØØØØ)MsgSeqNumber = 1
 (Øx3ØØØØØØ)Offset = Ø
 (Øx3ØØØØØØ)MsgFlags = Ø
 (Øx3ØØØØØØ)OriginalLength = 12
)
 (Øx1ØØØØØ8)MRM = (
 (Øx1ØØØØØØ)PCF_HDR = (
 (Øx3ØØØØØØ)Type = 1
 (Øx3ØØØØØØ)StrucLength = 36
 (Øx3ØØØØØØ)Version = 1
 (Øx3ØØØØØØ)Command = 8
 (Øx3ØØØØØØ)MsgSeqNumber = 1
 (Øx3ØØØØØØ)Control = 1
 (Øx3ØØØØØØ)CompCode = Ø
 (Øx3ØØØØØØ)Reason = Ø
 (Øx3ØØØØØØ)ParameterCount = 3
)
 (Øx1ØØØØØØ)PCF_PARM1 = (
 (Øx3ØØØØØØ)Type = 4
 (Øx3ØØØØØØ)StrucLength = 68
 (Øx3ØØØØØØ)Parameter = 2Ø16
 (Øx3ØØØØØØ)CodedCharSetId = Ø
 (Øx3ØØØØØØ)StringLength = 12
 (Øx3ØØØØØØ)String = 'ALEX_TEST_IN'
)
 (Øx1ØØØØØØ)PCF_PARM2 = (
 (Øx3ØØØØØØ)Type = 3
 (Øx3ØØØØØØ)StrucLength = 16
 (Øx3ØØØØØØ)Parameter = 2Ø
 (Øx3ØØØØØØ)Value = 1

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

)
 (Øx1ØØØØØØ)PCF_PARM3 = (
 (Øx3ØØØØØØ)Type = 3
 (Øx3ØØØØØØ)StrucLength = 16
 (Øx3ØØØØØØ)Parameter = 9
 (Øx3ØØØØØØ)Value = 1
)
)
)

THE EXCEPTION FLOW

The exception processing message flow can now be incorporated with
the PCF command node to ‘stop’ the message flow when a system
error occurs (see Figure 5).

The WriteErrorMsg compute node is updated to include the SQL code
generated if a DatabaseException occurred. The SQL code will be
written out to the error message if it was a DatabaseException. The
revised ESQL code would be as shown below.

REVISED ESQL CODE
DECLARE I INTEGER;
SET I = 1;

Figure 5: Stopping the message flow

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

WHILE I < CARDINALITY(InputRoot.*[]) DO
SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
/* Error number extracted from exception list */
DECLARE Error INTEGER;
/* Current path within the exception list */
DECLARE Path CHARACTER;
DECLARE ErrorType CHARACTER;
DECLARE ErrorTrans CHARACTER;
DECLARE ErrorText CHARACTER;
DECLARE SQLCode CHARACTER;
SET ErrorType = '';
SET ErrorTrans = '';
SET ErrorText = '';
/* Start at first child of exception list */
SET Path ='InputExceptionList.*[1]';
/* Loop until no more children */
WHILE EVAL('FIELDNAME(' || Path || ') IS NOT NULL') DO
 /* Check if error number is available */
 IF EVAL('FIELDNAME(' || Path || '.Number) IS NOT NULL') THEN
 /* Remember only the deepest error number */
 SET Error = EVAL(Path || '.Number');
 SET ErrorType = EVAL('FIELDNAME('||Path||')');

IF ErrorType = 'DatabaseException' THEN
 SET SQLCode = COALESCE(EVAL(Path || '.Insert[2].Text'),'');
END IF;

 SET ErrorTrans = EVAL(Path || '.Label');
 SET ErrorText = EVAL(Path || '.Text');
 IF ErrorType = 'UserException' THEN
 SET ErrorText = ErrorText || ' (' || (EVAL(Path || '.Insert.Text'))
|| ')';
 END IF;
 END IF;
 /* Step to last child of current element (usually a nested exception
list) */
 SET Path = Path || '.*[LAST]';
END WHILE; /* End loop */
SET OutputRoot.XML.Exception.Type = ErrorType;
IF ErrorType = 'DatabaseException' THEN
 SET OutputRoot.XML.SQLCode = SQLCode;
END IF;
SET OutputRoot.XML.Exception.Number = CAST(Error AS CHAR);
SET OutputRoot.XML.Exception.SuspenseTimestamp = CAST(CURRENT_TIMESTAMP
AS CHAR);
SET OutputRoot.XML.Exception.InboundQueue = InputRoot.MQMD.SourceQueue;
SET OutputRoot.XML.Exception.Transaction = ErrorTrans;
SET OutputRoot.XML.Exception.Reason = ErrorText;

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

SET OutputRoot.XML.Exception.DetailException = InputExceptionList;

The Database Exception filter node will check for DatabaseException
first, if the condition was true, and will then check for the common
DB2 system error:

-- DB2 System Error exceptions:
Root.XML.SQLCode IN('-922','-923','-924')
/**/
/* -922 = AUTHORIZATION FAILURE */
/* -923 = CONNECTION NOT ESTABLISHED */
/* -924 = DB2 CONNECTION INTERNAL ERROR */

If the condition for a DB2 system error was true it will then execute
the StopMessageFlow compute node and issue the PCF command to
the SYSTEM.ADMIN.COMMAND.QUEUE, and then re-throw the
exception so that the message will be rolled back to the BackOut
queue.

The key to success in putting a message into the
SYSTEM.ADMIN.COMMAND.QUEUE is, in the MQOutput node, to
select No for the Transaction Mode drop down list in the Advanced
tab, so that the PCF message written is committed before we re-throw
the exception.

CONCLUSION

One key piece of advice when coding the exception processing sub-
flow is to avoid manipulating the message body content. This is to
avoid any parser exception being thrown from the exception processing
sub-flow by the system.

A message parser will be called if we manipulate the body content of
the message, so if the exception itself was a parser exception before
it was thrown to the exception processing sub-flow, the system will re-
throw a parser exception again and affect the ability of the sub-flow
to generate an error message to the error queue.

The above sample is by no means complete, but will serve well with
the datagram type of message. There is room for improvement for the
request/reply message type. For example, when the message type is
a request, and it encounters some exception during the hub processing,
instead of writing an error message to the error queue, you can write
the error message back to the ReplyToQ specified in the MQMD of the

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

request message, so that the requesting program gets not only a
timeout error, but also a more descriptive error message and can,
therefore, take appropriate follow-up action.

Alex Au
I/T Architect, IBM Global Services (USA) © Alex Au

The CSQUTIL utility

The CSQUTIL is a utility provided with MQSeries to help issue
commands, perform backup and restore, and reorganize tasks.

MAKEDEF COMMAND

In this example, MQSeries commands are passed from an input
dataset referenced by DDname REBUILD to Queue Manager MQM1
on the OS/390 platform in batch. A list of DEFINE statements is
produced that describes the objects in this MQSeries subsystem. Any
changes or new definitions are encompassed and the statements are
used to regenerate all or part of MQM1’s objects and storage classes.

//USERID JOB (SØ9P91T),’DAVIES’,CLASS=T,MSGCLASS=B,
// NOTIFY=&USERID
//* PROGRAM CSQUTIL ISSUES COMMANDS TO QMGR IDENTIFIED BY
//* PARM=’NNNN’ ON THE EXEC CARD
//* MESSAGES ARE PRINTED TO DD SYSPRINT
//* REBUILD AN MQSERIES SUBSYSTEMS USER DEFINITIONS
//COPYDEFS EXEC PGM=CSQUTIL,PARM=’MQM1'
//STEPLIB DD DISP=SHR,DSN=SYS1.SCSQANLE
// DD DISP=SHR,DSN=SYS1.SCSQAUTH
//REBUILD DD DISP=SHR,DSN=MQM1.REBUILD.DATASET(DEFMQM1)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(REBUILD)
DEFMQM1 sample definitions
DISPLAY STGCLASS(*) ALL
DISPLAY QUEUE(*) ALL
DISPLAY NAMELIST(*) ALL
DISPLAY PROCESS(*) ALL
DISPLAY CHANNEL(*) ALL

Saida Davies
IBM (UK) © S Davies

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

HIS and its MSMQ MQSeries Bridge part 2:
deployment and configuration

In the first of this three-part series of articles on HIS (Host Integration
Server) and the MSMQ to MQ Bridge we examined the ways in which
MSMQ and MQ can be linked, with a specific emphasis on the
planning stages. This month, we will focus on deployment and
configuration.

BRIDGE SETUP REQUIREMENTS

In this section we will examine the steps required to set up the Bridge:

• Basic configuration.

• Computers involved.

• Information required.

Basic configuration

The basic configuration allows MSMQ and MQSeries applications to
converse with one another, and can consist of:

• One Bridge, installed on a Win2K server or NT 4.0 Enterprise
server.

• One MSMQ server installed on the same computer as the Bridge
– the MSMQ Routing Server in NT4 Enterprise server or MSMQ
server with routing in Win2K.

• MQSeries Client for NT and the Bridge on the same computer.

• One MQSeries queue manager installed on a supported computer.

Computers involved

You need to work on two computers when installing the Bridge:

• The MSMQ and Bridge computer.

• The computer where MQSeries queue manager is installed;
sometimes called the MQSeries computer.

Data transfers must be performed on each computer.

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Information required

The following items of information, along with their respective
values, are required and must be gathered prior to the configuration
process.

• Machine name (ie MSBRIDGE1).

• Directory in which the MQSeries Client for Win2K or NT is
installed (ie D:\MQCLIENT).

The data required for the MQSeries computer must all be in upper
case, and is as follows:

• Connection data

– when using TCP/IP, the computer name or IP address (ie
IBMNT or 192.10.10.5) and the port number (ie 1414).

– for SNA, the LU 6.2 Side Information Record (CPI-C
Symbolic Destination Name).

• Name of the MQSeries Queue Manager (ie IBMNT).

BRIDGE PREREQUISITES

Your system should meet the requirements detailed below.

Bridge platforms

• The server can be installed on any Win2K server or NT 4.0
Enterprise Edition server.

• The Administrator Client can be installed on Win2K Professional,
Win2K server with Terminal Services installed, NT 4.0
Workstation Service Pack 6a, or NT 4.0 Server Terminal Server
Edition with Service Pack 6.

Prerequisites for NT 4.0 machines

The software detailed below should already be installed on the NT 4.0
computer where you will install the Bridge or Administrator Client.

Server prerequisites

• Windows NT Server 4.0 Enterprise Edition.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

• MSMQ 1.0 (NT 4.0 Option Pack) set up as server (PEC, PSC,
BSC, or Routing Server).

• IBM MQSeries Client for NT or IBM MQSeries for NT (with
server and client installed).

• TCP/IP or SNA (LU 6.2) link to an MQSeries Queue Manager
(QM).

Administrator client prerequisites

• NT 4.0 Workstation with Service Pack 6a, or NT 4.0 Server
Terminal Server Edition with Service Pack 6.

• Any configuration of MSMQ 1.0.

Prerequisites for Windows 2000 machines

The software detailed below should already be installed on the
computer where you will install the Bridge Server or Administrator
Client.

Server prerequisites

• Win2K server.

• MSMQ server, but not part of a workgroup, with Routing
Enabled.

• IBM MQSeries Client for NT or IBM MQSeries for NT (with
server and client installed).

• TCP/IP or SNA (LU 6.2) link to an MQSeries Queue Manager
(QM).

Administrator Client prerequisites

• Win2K Professional, or Win2K server with Terminal Service.

• MSMQ set up, but not part of a workgroup.

Prerequisites for the MQSeries machine

• For OS/390 systems, make sure that your MQSeries Queue
Manager is configured with the Client Attachment feature.

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

BRIDGE PROPERTIES

General tab
The General tab displays the following information:

• Path name: network name of the Bridge computer.

• Service: name of the Microsoft Bridge Service.

• Version: version of the Microsoft Bridge Service.

• Status: status of the Microsoft Bridge Service, ie running, paused,
or stopped.

Advanced tab

The Bridge, by default, allocates one thread for each type of message
pipe. If the Bridge is connected to more than one MQSeries queue
manager you must allocate a larger number of threads, thereby
improving performance, and if a pipe to one QM fails, the other pipes
will continue running. For each type of message pipe, specify:

• Max threads: the maximum number of threads, with a
recommendation of one per QM.

• Refresh queue cache: the interval in minutes that the message
pipes check for cache timeout.

• Support MSMQ to Bridge encryption: check this option to enable
the encryption feature from MSMQ to the Bridge.

• Replace ‘.’ with ‘-’ in the queue manager: MQSeries does not
support ‘hyphen’ (-) characters, so two tasks are required:

– the system administrator needs to replace the hyphen in an
MSMQ computer definition in MQSeries with a period (.).

– check the checkbox to enable the Bridge to replace a period
(.) from the remote queue manager name on MQSeries with
a hyphen (-).

MQI channels tab
Th Bridge accesses MQSeries via MQI channels defined in both
MQSeries and the Bridge. Each MQI channel connects a Bridge to an

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

MQSeries queue manager. You define one MQI channel for each
connected network or foreign site. First, define the channels in the
Bridge properties. Later, you export the definitions to MQSeries. In
the dialog box, click Add for a new MQI channel, Properties to edit the
settings for an existing channel, or Remove to delete a channel. On the
General tab of the Channel Properties window, specify the following
options:

• Channel Name: a legal MQSeries name for the MQI channel,
such as the same name you assigned to the connected network
representing MQSeries in MSMQ, ie IBMNT_CN.

• MQSeries Queue Manager: the MQSeries Queue Manager to
which the channel connects.

• Transport Type: TCP/IP or SNA LU 6.2 communication. On the
Address tab of the Channel Properties window, specify parameters
for TCP/IP, such as IP Address, Port of the MQSeries listener; and
for SNA LU 6.2, specify Side Information Record, which is the
CPI-C Symbolic Name defined in HIS 2000.

On the Security tab of the Channel Properties window you can specify
the MCA user, which is an existing or new MQSeries user name, for
example FMQUSER1, under which the server side of the MQI
channel runs. In MQSeries, you should set the permissions of the
MCA user or queues that the Bridge can address. If you do not specify
an MCA user, the server side of the channel runs under the default user
name, which is the value of the MQSeries SYSTEM.DEF.SVRCONN
parameter.

Working with a CN (Connected Network)

Before adding a CN you can add a CN to a Bridge:

• Identify the CN in MSMQ and associate the Bridge computer
with the CN.

• Identify an MQI Channel for the Bridge.

• Open the Bridge Manager. To add a CN, right-click on the Bridge
to which the CN is connected. Choose ‘New CN’ from the pop-
up menu, and select the CN name from the list.

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When adding a new CN, four message pipes are added to the console
tree:

• MSMQ-MQS transactional: MSMQ to MQSeries transactional.

• MSMQ-MQS non-transactional: MSMQ to MQSeries non-
transactional.

• MQS-MSMQ transactional: MQSeries to MSMQ transactional.

• MQS-MSMQ non-transactional: MQSeries to MSMQ non-
transactional.

Right-click on the new CN and on each message pipe to set their
properties. To delete a CN, right-click on the CN and select Delete
from the pop-up menu. To set the properties of a CN, right-click its
icon in the Bridge Manager and choose the Properties option.

On the General tab, in the CN properties window, you can specify the
following:

• MQSeries QM name: select from the list of MQSeries queue
managers that you have defined as MQI channels. If the same one
is on two connected networks do not connect both of them to the
same QM.

• Reply to QM name: the default MSMQ QM to which MQSeries
should return report or acknowledgment messages. You enter the
name of the Bridge computer, ie XEPHONBridge1. The Bridge
Manager exports your entry to MQSeries as a queue manager
alias. If the Windows computer name contains an invalid hyphen
(-), replace it with another valid character, such as an underscore
(_), in the Reply to QM Name field. If you want to receive
acknowledgments by a non-transactional instead of transactional
message pipe, add a % sign to the name (ie XEPHONBridge1%).
The alias is used in MQSeries to identify the transmission queue
for sending acknowledgments and you can redirect the
acknowledgments by specifying a different alias. For example, if
you want to receive acknowledgments on another computer,
enter the name of the computer and define the name as an alias in
MQSeries.

• Startup: enabled or disabled at the Bridge.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

Setting message pipe properties

To set the properties of a message pipe, right-click its icon in the
Bridge Manager, and choose the Properties option. There are different
intuitive icons for stopped, paused, pending, recovering, running, and
error.

General tab: message pipe

The General tab of the Message Pipe Properties window displays:

• Status: running, paused, pending, recovering, stopped, or error.

• Startup: enabled or disabled at Bridge startup.

For the MQSeries to MSMQ transactional and non-transactional
message pipes:

• Transmission Queue Name is a unique MQSeries transmission
queue name for the pipe. The default names are <CN
name>.XMITQ for the transactional message pipe and <CN
name>.XMITQ.HIGH for the non-transactional message pipe.
Different names can be specified. For example, if the Bridge
computer name is XEPHONBridge1, the default transmission
queue names are XEPHONBridge1.XMITQ and
XEPHONBridge1.XMITQ.HIGH.

Batch tab
The Bridge batches messages, which results in a performance boost,
so increasing the batch size can improve performance. However, with
transactional message pipes, this can increase the quantity of
retransmitted data after a communication failure. To change the batch
size, specify:

• Max number of messages: the maximum number of messages in
a batch.

• Max accumulated size: the maximum byte size of a batch.

• Max accumulated time: the maximum time in milliseconds
during which messages are batched.

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Cache tab

The Bridge caches queue handles and re-uses them when several
messages are sent to the same queue, thereby reducing the overhead
of opening and closing a queue for each message. You can specify:

• Cache expiry: the time in minutes after which the Bridge closes
an unused queue handle.

Retry tab

When a message pipe fails, the Bridge tries to restart it automatically.
You can specify:

• Count: maximum number of retries.

• Delay: interval between retries.

You can specify a short cycle of four retries at 40-second intervals; if
the connection is still not successful the system continues in a long
cycle of 12 retries at 400-second intervals. When using TCP/IP, set the
delay to at least twice the ‘keep alive’ time of the destination
MQSeries computer.

CHOOSE NAMES FOR MSMQ AND MQSERIES ENTITIES

You should choose names identical to or derived from other names
that you recorded (to simplify the process) for certain MSMQ and
MQSeries entities that you will identify during the configuration
process. MSMQ names and values are required for the following:

• A connected network or foreign site (ie IBMNT_CN).

• The queue manager on the foreign computer (ie IBMQM).

• A foreign queue (ie IBM.NT.QUEUE).

• An MSMQ queue to which you will send test messages (ie
MSBRDIGE1.QUEUE).

MQSeries names and values are required for the following:

• MQI channel (ie IBMNT_CN).

• Transmission queue for normal service (ie MSBRIDGE1.XMITQ).

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

• Transmission queue for high service (ie
MSBRIDGE1.XMITQ.HIGH).

• An MQSeries queue to which you will send test messages (ie
IBM.NT.QUEUE).

INSTALLING AND CONFIGURING THE BRIDGE

Installing the Bridge software

The procedure is the same for installing either the Server or the
Administrator Client. Choosing Server installs the Bridge and the
Bridge Manager; choosing Administrator Client installs the Bridge
Manager.

To install the Bridge

• Insert the HIS 2000 CD-ROM and allow the startup page to
appear.

• Click Install Server or Install Administrator Client.

When using the TCP/IP protocol ensure that the setting in the
MQSeries Queue Manager initialization file (qm.ini) Keep Alive is set
to ‘Yes’ and the Keep Alive Time is half or less of the message pipes’
retry delay, allowing the MQSeries Listener to release the resources
of a broken connection before the Bridge retries the connection. To get
to the message pipes retry delay, right-click a message pipe in the
Bridge Manager, select Properties, and then select the Cache tab.

Configuring an MQI channel to use the SNA LU 6.2 protocol has been
discussed earlier in this article.

Configuring the Bridge on Win2K
Constructing the Bridge on Win2K requires an ordered three-stage
process, which requires MSMQ 2.0 to be configured first, followed by
the Bridge, and then MQSeries. Configuring MSMQ 2.0 on Win2K is
the only stage that is different from the configuration process on NT
4.0.

MSMQ 2.0 and the Bridge

Win2K comes with MSMQ 2.0, and provides additional functionality,
including:

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Integration with Active Directory, removing the need to use a
separate SQL server to maintain the MQIS.

• Mixed-mode operation, enabling MSMQ 1.0 and MSMQ 2.0
environments to co-exist.

• Performance improvements, particularly in the area of
transactions.

• Workgroup Mode, enabling Win2K computers to use MSMQ 2.0
without the need for an Active Directory.

The Bridge is capable of running on Win2K and can be installed on
any of the Win2K servers.

To use the Bridge on Win2K, install:

• Win2K server.

• MSMQ server (not in a workgroup) with Routing Enabled.

• IBM MQSeries Client for NT, Version 2.0, 5.0, or 5.1, or IBM
MQSeries for NT, Version 2.0, 5.0, or 5.1, both Server and Client.

• The Bridge from HIS.

You should be aware of the changes in MSMQ 2.0 that are related to
the Bridge, such as:

• In keeping with Active Directory terminology, the term ‘Foreign
Connected Network’ has been replaced with ‘Foreign Site’, so a
CN refers to a foreign site in Win2K.

• With changes in the MSMQ 2.0 COM API, many more of the
MSMQ message properties are now exposed through the MSMQ
COM API, such as the extension property
(PROPID_M_EXTENSION), which is now accessible from Visual
Basic, making it easier to override Bridge conversions.

• The creation of foreign sites and foreign computers is achieved
using Active Directory Sites and Services.

Configuring MSMQ 2.0 on Win2K

Using Control Panel, select Add/Remove Components and install the
Message Queueing Services and Enable Routing during the installation

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

of MSMQ 2.0. This will allow you to define a foreign site and define
routing links to the foreign site. This is required to set up a Bridge.
MSMQ 2.0 should have been installed with Routing Enabled on a
Win2K server. You will use this same server to install the MSMQ-
MQSeries Bridge.

With the Win2K administrators utility Active Directory Users and
Computers set to View Advanced Features, you will see the MSMQ
object under the path: Domain Controllers \ Your computer name \
MSMQ. You can use Active Directory to configure MSMQ 2.0 for use
with the MSMQ-MQSeries Bridge, but, by default, only Enterprise
administrators can make changes. You can, however, make changes
to the permissions to expand the users who have this capability.
Win2K doesn’t permit a period (.) character in computer names so
replace it with a dash (-) and the MSMQ-MQSeries Bridge will map
the dash back to a period when routing the message to its MQSeries
destination.

To define a foreign site in Win2K

• Using Active Directory Sites and Services, select View, and
Show Services Node.

• Under Services, right-click MsmqServices and select New Foreign
Site.

• Enter the name for the foreign site, which is the name of the
Foreign Connected Network in MSMQ 1.0.

To add a foreign computer representing MQSeries in Win2K

• Using Active Directory Sites and Services, select View, and
Show Services Node.

• Under Services, right-click MsmqServices and select New Foreign
Computer.

• Enter the name for the foreign computer. This name must be the
same as that of the MQSeries Queue Manager.

• Select the name for the foreign site, and click OK.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

To set the foreign site permission in Win2K

• Using Active Directory Sites and Services, expand the Sites
folder, and select the Foreign Site created earlier.

• Right-click, and then select Properties.

• Select the Security tab, and select Everyone. If the Bridge was
installed using a local account, enable Open Connector Queue;
otherwise, select the account name used during setup.

To create a foreign queue in Windows 2000 and define the MQSeries queues

• Using Active Directory Users and Computers, select View, and
Advanced Features and then View, and Users, Groups, and
Computers As Containers.

• Expand the Computers folder and select the foreign computer
that was just created.

• Right-click the MSMQ object and select New, followed by
MSMQ Queue.

• Type the name for the queue and click OK. The name must be the
same as that of the MQSeries queue.

• If you want to create a queue to accept transactional messages,
type a name, select the Transactional check box, and then click
OK.

A routing link is required to enable MSMQ 2.0 to route messages
between the current Win2K site and the newly created foreign site that
is used for MQSeries. To create a routing link:

• Using Active Directory Sites and Services, select View, and
Show Services Node.

• Right-click MsmqServices, and select New, followed by MSMQ
Routing Link.

• Set site one to the name of the foreign site that was just created.
Set site two to the name of the current Win2K site.

• Set the routing link cost to ‘one’ and then click OK. Using a value
greater than one is only relevant where multiple routing links are
defined between sites and you want to enforce one route over

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

another. Do not set this value to zero as it will cause routing of
MSMQ messages to the foreign site to fail.

A site gate is an MSMQ server that is configured to route messages
between sites on behalf of other clients and is the computer that will
run the Bridge using the routing link that was just created. To define
a site gate follow the steps detailed below:

• Using Active Directory Sites and Services, select View and Show
Services Node.

• Under Services, right-click MsmqServices; the routing link that
was just created should appear in the details panel.

• Right-click the routing link and select Properties.

• Select the Site Gates tab.

• In Site Servers, select the name of the computer that will run the
Bridge, and then click Add.

The MSMQ Server that is on the same Win2K needs to be added to the
foreign site created earlier.

• Using Active Directory Users and Computers, select View, and
Advanced Features, followed by View and Users, Groups, and
Computers as containers.

• Expand the Domain Controllers or Computers / <Your server
name> / MSMQ folder.

• Right-click the MSMQ object and select Properties.

• Select the Sites tab.

• Select the foreign site created earlier, and then click Add to add
this server to the Foreign Site.

Configuring MSMQ 1.0 on NT 4.0

To define a connected network in NT 4.0

• Open the MSMQ Explorer.

• Right-click the Enterprise icon. Point to New, and then click CN.

• Enter a name for the connected network.

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• For the Protocol, select Foreign and click OK.

To add a foreign computer representing MQSeries in Windows NT 4.0

• In the MSMQ Explorer, expand the Sites folder to display the site
where the Windows computer is located.

• Right-click the Sites icon. Point to New and click Foreign
Computer.

• Copy the foreign computer name.

• Select the connected network name.

• Click Add and then click OK.

To connect to the Bridge in NT 4.0

• In the MSMQ Explorer, right-click the Windows computer icon.

• Click Properties and then click the Network tab. Click Add.

• In the Connected Network Name dialog box, select the connected
network name.

• Click OK three times. The reboot warning is displayed, but do not
reboot at this time.

• Using Control Panel Services, stop and restart the Microsoft
Message Queue Server. This step is equivalent to the reboot
required from the previous step.

To set the Connected Network permission in NT 4.0

• Expand the Connected Networks folder in MSMQ Explorer.

• Right-click the connected network.

• Click Properties and then click the Security tab. Click Permissions.

• Set Type of Access for the Everyone group. If the Bridge was
installed using a local account, set Type of Access to Special,
otherwise select the account name used during setup.

• Select the Open Connector check box.

• Click OK three times. Your PSC and BSC computers may report

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

an ‘Update Not Available Immediately’ message. Click OK to
bypass these warnings.

To create a foreign queue in NT 4.0

• Expand the Sites folder.

• Right-click the foreign computer.

• Select New and then select Queue.

• Enter the foreign queue name and click OK. The complete name
is required, ie XEPHONBRIDGE1.QUEUE.

Configuring the MSMQ-MQSeries Bridge Manager

To define an MQI channel

• On the Windows computer, open the Bridge Manager.

• Expand the Enterprise icon.

• Right-click the Bridge Service icon. Click Stop, and then click
OK.

• Right-click the Bridge Service icon, and click Properties.

• On the MQI Channels tab, click Add.

• Enter the Channel Name.

• Enter the Queue Manager Name.

• For Transport Type, select TCP/IP or SNA LU 6.2.

• On the Address tab, if you connect by TCP/IP, specify the IP
address or computer name to Address and the port number to Port.
For SNA LU 6.2, specify the LU 6.2 Side Information Record.

• Click OK twice. A message appears warning you about changing
the MQI Channel configuration. For now, click OK to bypass this
message.

To add the CN

• Right-click the Bridge Service icon in the Bridge Manager. Point
to New and then click CN.

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Select CN from the drop-down list box.

• Click OK. The CN Properties window (General tab) appears.

• Select the MQSeries QM Name.

• For the Reply to QM Name, enter the name of the Windows
computer.

• For Startup, select Enabled and click OK.

• The Bridge Manager displays four message pipes (MSMQ-MQS
transactional, MSMQ-MQS, etc). The message pipes are auto-
started by default. You can disable the auto-start option in the
appropriate Properties page.

To disable the message pipes

• In the Bridge Manager, right-click the first message pipe icon,
MSMQ-MQS transactional, and then click Properties.

• On the General tab, select Disabled and click OK.

• Repeat the steps for the second message pipe, MSMQ-MQS, and
so on.

To export an MQSeries Server Definition file

• Right-click the Bridge Service icon in the Bridge Manager, and
then click Export Server Definitions.

• Enter a directory name to save the definition file (the default is
C:\Program Files\Host Integration Server\MQBridge) and then
click OK. The Manager saves the file with an extension of .TXT.
If you define more than one CN, a definition file for each
MQSeries Queue Manager is created in the directory.

• Transfer the file(s) to the MQSeries computer. If you use FTP to
transfer the file, be sure to specify the ASCII transfer option.

To export an MQSeries Client Definition file

• Right-click the Bridge Service icon and then click Export Client
Definitions.

• Enter the directory name to save the definition file (the default is

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

C:\Program Files\Host Integration Server\MQBridge) and then
click OK. The Manager saves the file with the name ClientDf.txt.

• Transfer the file to the MQSeries computer. If you transfer by
FTP, be sure to specify the ASCII transfer option.

Configuring MQSeries

To run the MQSeries Server Definition file

• On the MQSeries computer, run the MQSeries Server definition
file that you transferred from the Bridge Manager.

• At the command prompt, run the MQSC command, such as
RUNMQSC IBMNT < IBMNT.TXT > SERVREPORT.OUT
(substitute the MQSeries Queue Manager name for IBMNT).

The MQSeries Queue Manager is now configured. Review the
SERVREPORT.OUT file to be sure that the definitions ran successfully.

To run the MQSeries Client Definition file

Still on the MQSeries Queue Manager computer, run the MQSeries
Client Definition file that you transferred from the MSMQ-MQSeries
Bridge Manager.

• At the command prompt, run the MQSC command, ie:
>RUNMQSC IBMNT < ClientDf.txt >
CLIENTREPORT.OUT .

• The MQSC command creates a channel file called
AMQCLCHL.TAB, located in the directory MQMDirectory/
QMGRS/<QueueManagerName>/@IPCC (the exact location
may differ on various platforms).

• Review the CLIENTREPORT.OUT file to be sure that the
definitions ran successfully.

• Transfer the AMQCLCHL.TAB file to the MQSeries Client
directory on the Windows computer. If you transfer by FTP, be
sure to specify the binary transfer option.

To configure the MQSeries Client

• To complete the MQSeries configuration, return to the Windows
computer where the Bridge is installed.

44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• On NT 4.0, right-click the My Computer icon, click Properties,
and then select the Environment tab. Using Win2K, right-click
the My Computer icon from your desktop, click Properties, select
Advanced tab, and then click on Environment Variable.

• Check that the following variables are in the System Variables. If
not, set them correctly.

– MQCHLLIB should be the directory path of the channel file
(by default, the MQSeries Client directory).

– MQCHLTAB should be the file name of the channel file (by
default, AMQCLCHL.TAB).

– Check that the environment variable MQSERVER is not
defined.

– Click OK. On Windows NT 4.0, reboot the computer.

TESTING THE INSTALLATION

Conveniently, test programs are provided in the directory
Drive:\Program Files\Host Integration Server\System. Testing
involves the following steps:

• Creating the test queues.

• Testing the MQSeries Client definitions.

• Starting the MSMQ-MQSeries Bridge.

• Sending test messages from MSMQ to MQSeries.

• Sending test messages from MQSeries to MSMQ.

To create the test queues

You can use queues that already exist on the Windows and MQSeries
computers or create test queues. To create a new MSMQ queue on NT
4.0:

• Open the MSMQ Explorer.

• Right-click the Windows computer where the Bridge is installed,
point to New, and then click Queue.

• Enter the queue name and click OK.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 45

To create a new MQSeries queue, run the MQSC command on the
MQSeries computer, ie RUNMQSC followed by IBMNT followed
by DEFINE QLOCAL(IBM.NT.QUEUE) .

To create a new MSMQ queue on Windows 2000, create a foreign
queue in Win2K, as outlined earlier. Remember to use IBMNT for
your MQSeries Queue Manager name and IBM.NT.QUEUE for the
MQSeries queue name.

To test the MQSeries Client definitions

• Start the MQSRRECV program: open the command prompt and
go to the Bridge samples directory, which, by default, is in
C:\Program Files\Host Integration Server\System.

• Start the program by typing the command MQSRRECV IBMNT
IBM.NT.QUEUE .

• If the program starts successfully it displays the message ‘Use
<CTRL-C> to stop!’. If you do not receive this message then you
can view the channel file in Windows Notepad and, if the file does
not exist or it contains no entries, delete the AMQCLCHL.TAB
file from the MQSeries server and execute the channel file steps
again. If the program still fails to start, try overriding the channel
file settings by issuing the following command: SET
MQSERVER=<channel name>/<transport type>/
<connection name>[(<port number>)]. For example, in
TCP/IP use: SET MQSERVER=IBMNT_CN/TCP/
10.10.10.5(1414). With SNA, use SET
MQSERVER=IBMNT_CN/LU62/MQSCPIC. Press
CTRL+C to stop the MQSRRECV program.

To start the MSMQ-MQSeries Bridge

• Open the Bridge Manager, right-click on the Bridge Service icon,
and click Start.

• In the Manager display, all four message pipes should start
showing a green arrow.

• If the message pipes don’t start, check the event log.

The MQSeries-MSMQ message pipes may fail if another Bridge is

46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

currently using the same transmission queue, or the Bridge Service is
terminated abnormally, causing the MQSeries server to behave as if
the Bridge is still using the corresponding XMIT queue. You must
restart the MQSeries Queue Manager or configure the Keep Alive
option in your MQSeries server.

To send test messages from MSMQ to MQSeries

• On the Windows computer, open two MS-DOS windows. Change
both windows to the server installation directory, which, by
default, is C:\Program Files\Host Integration Server\System.

• Start the MQSeries receiver program in the first window with the
command MQSRRECV IBMNT IBM.NT.QUEUE .

• In the second window, send ten messages from MSMQ to
MQSeries with the command MSMQSEND
IBMNT\IBM.NT.QUEUE .

If the test succeeds, the first window displays the ten messages that it
receives. Stop the MQSRRECV program by pressing CTRL + C in the
first window.

To send test messages from MQSeries to MSMQ

• Open two MS-DOS windows. Go to the default installation
directory, which, by default, is C:\Program Files\Host Integration
Server\System.

• In the first window, start the MSMQ receiver program. Send from
MQSeries with the command MQSRSend IBMNT
MSBRIDGE1 MSBRIDGE1.QUEUE.

• Receive in MSMQ with the command MSMQRecv
MSBRIDGE1\MSBRIDGE1.QUEUE.

Figure 1 shows a typical configuration, taken from Microsoft’s own
documentation, and Table 1 lists the settings for a typical configuration.
The names in Figure 1 (MSBRIDGE1, IBMNT_CN, IBMNT, etc) are
arbitrary, but you must use the same name for the same entity at
different locations in the configuration. For example, if the MSMQ-
MQSeries Bridge computer is called MSBRIDGE1, you must reference
this same name in the MSMQ-MQSeries Bridge Manager and in
MQSeries.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 47

MSMQ Server MSBRIDGE1

MSMQ-MQSeries Bridge

MQSeries Queue
Queue name: BM.NT.QUEUE

MQSeries Queue Manager
QM name: IBMNT

Figure 1: Overview of a typical configuration

message
message
message
message
message
message
message
message

message
message
message
message

message
message
message
message

message
message
message
message

message
message
message
message

message
message
message
message

message
message
message
message

message
message
message
message

message
message
message
message

This series of articles will conclude next month with an examination
of Bridge administration and performance issues.

Stephen Ibaraki, ISP
Chief Architect, iGen Knowledge Solutions (Canada) © Xephon

Define in MSMQ Foreign connected IBMNT_CN
network or foreign site
Foreign computer IBMNT
Foreign queue IBM.NT.QUEUE

Define in MSMQ-MQSeries Bridge
MSMQ-MQSeries Bridge properties MQI channel IBMNT_CN

Transport type TCP/IP or LU 6.2
Foreign Connected Network CN name IBMNT_CN
or Foreign Site properties MQSeries QM IBMNT

Reply to QM MSBRIDGE1
Message pipe properties MQSeries MSMQ Normal

MQSeries MSMQ High
Transmission queue IBM.NT_CN.XMITQ IBMNT_CN.XMITQ.HIGH

Import or define in MQSeries Transactional service Non-transactional service
Transmission queue IBMNT_CN.XMITQ IBMNT_CN.XMITQ.HIGH
Queue manager alias MSBRIDGE1 MSBRIDGE1%

Model queue Q2Q_SYNC_Q
MQI channel MQS_CN
Transport type TCP/IP or LU 6.2

Table 1: Settings for a typical configuration

MQ news

IBM has announced V2R4 of its Tivoli
Manager for MQSeries. With a policy-based
management approach, the product
integrates IBM’s MQSeries messaging
software into broader systems, linking
management tasks to databases,
applications, and other middleware that
spans host and distributed environments.

It can manage a life-cycle from a central
location across geographically dispersed
systems, and it can install, configure, and
administer multiple MQSeries objects from
a central location.

Among its key features are support for
MQSeries V5.2 for OS/390, OS/400, and
Windows 2000. It offers improved usability
through its GUI, with easily defined
customization and default values displayed
where appropriate.

It supports automated dead letter queue
handling on all supported platforms except
OS/400, and provides Cloning Queue
Managers to endpoints for faster, easier
configuration on distributed platforms only,
and OS/390 statistical data on the internal
performance of queue managers.

For further information contact your local
IBM representative, or:
Tivoli Systems, Sefton Park, Bells Hill,
Stoke Poges, Bucks, SL2 4JS, UK.
Tel: +44 1753-780-000
Fax: +44 1753-780-899
Web: http://www.tivoli.com

* * *

Progress Software has announced that its
SonicMQ messaging server is soon to be
delivered with a wireless messaging
infrastructure. Called SonicAir, it will
support transitions from wired to wireless
networks, across multiple wireless
providers.

It supports multiple wireless protocols
including 802.11 B, Cellular Digital Packet
Data (CDPD), Motient (DataTac), and Bell
South Wireless Data (Mobitex). It
dynamically selects the best available
protocol for message delivery.

Through its Dynamic Routing Architecture
(DRA), the product allows distributed
applications to be developed and deployed
without regard for connection type or
network topology. It makes use of current
and emerging connectionless
communication services and networks.

For further information contact:
Progress Software, 14 Oak Park, Bedford
MA 01730, USA
Tel: +1 781 280 4000
Fax: +1 781 280 4095
Web: http://www.progress.com

Progress Software, The Square, Basingview,
Basingstoke, Hants RG21 2EQ, UK
Tel: +44 1256 816668
Fax: +44 1256 463226

* * *

x xephon

	MQSI V2 Service Trace
	Adding user data in MQSeries send channel exits
	MQSI exception processing part 2: coding
	The CSQUTIL utility
	HIS and its MSMQ MQSeries Bridge part 2: deployment and configuration
	MQ news

