
© Xephon plc 2001

November 2001

29

3 HIS and its MSMQ MQSeries
Bridge part 3: administration and
performance

6 Writing exits for enableNet Data
Integrator (eNDI)

27 MQ message throughput reporting
on AIX

36 What’s new in MQSeries Integrator
V2.0.2?

44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

HIS and its MSMQ MQSeries Bridge part 3:
administration and performance

Concluding the series of articles on Host Integration Server (HIS)
2000 and its MSMQ MQSeries Bridge, we look this month at
administration and performance.

CONTROLLING THE BRIDGE

• To control the Bridge, you right-click an object in the Bridge
Manager and select options. For example, you can stop, start,
pause, and resume operations, and the command selected affects
all objects in the object tree.

• Periodically, you can refresh the cache memory to close queues
needed by other applications. To do this, you right-click a Bridge
Service or Message Pipe and choose the Refresh Cache selection.

• The Bridge configuration is stored in the registry and you can use
the Registry Editor to back-up this configuration:

– in a non-clustered set-up use: HKEY_LOCAL_MACHINE\
Software\Microsoft\MQBridge\Server

– in a clustered set-up use: HKEY_LOCAL_MACHINE\
Cluster\Software\Microsoft\MQBridge\Server.

• MQSeries doesn’t support queue manager names with hyphens
(–), so the Bridge provides a feature to provide name replacement,
enabled by going to the Bridge Properties, Advanced tab. In
MQSeries you can use a period (.) and the Bridge will convert the
period back to a hyphen.

• Win2K does not allow computer names to use a period so they
can’t be used in naming a remote MQSeries Queue Manager. The
Bridge provides a feature, which is enabled in the Registry by
default, allowing name replacement, so that in Win2K you can
use a hyphen and the Bridge will convert the hyphen to a period
when the message arrives. You can use the Registry Editor to
change this default. The required key is: HKEY_LOCAL_
MACHINE\Software\Microsoft\MQBridge\Server.

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• There are two queues for messages that are undeliverable:

– MQBridge Dead Letter Queue: messages sent through the
non-transactional message pipe

– MQBridge Xact Dead Letter Queue: messages sent through
the transactional message pipe.

You can locate these queues in NT 4 using the MSMQ Explorer
under enterprise_name, enterprise_servers, bridge_computer, and
in Win2K using Active Directory Users and Computers, Domain
Controllers or Computers, bridge_computer, msmq.

• The Bridge converts foreign queue and queue manager names to
upper case (UPPER CASE), since the Bridge can only send
messages to MQSeries queue managers and queues that have
upper case names.

• You should wait up to 15 minutes after enabling or disabling
encryption to allow sufficient time for the Bridge to work
correctly.

• To convert a Bridge into a cluster resource: in the Program
Files\Host Integration Server\system directory, type BCLUSTER
at the command line, click Add Bridge Resource; in the Bridge
Manager right-click the Microsoft MSMQ-MQSeries Bridge
Service, select Bring Online. In W2K, to run the cluster only on
the local node, run BCLUSTER, click Remove Resource. In
W2K you need to stop the Bridge Service on all local nodes
before you bring the Bridge cluster resource online.

• It’s often necessary to modify the access for users created during
the install. You can do this by using Active Directory Sites and
Services; right-click the foreign site, click the Security tab and
select Domain Admins, select Full Control.

• To set up a foreign site in W2K you should install MSMQ server
with routing, run Active Directory Sites and Services to create a
new foreign site and new foreign computer, and right-click the
Services\MsmqServices folder. To create a routing link between
the foreign site and the default first site name: enter a number in
the Routing Link Cost – 1 has the highest priority and 0 means no
link. Select Property, select the Site Gates tab and add the Bridge

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

computer to be a member. Using Active Directory Users and
Computers, Domain Controllers or Computers, bridge computer,
msmq, select Property, Sites tab and add the computer to the
foreign site created earlier. Reprocess the MSMQ service on the
Domain Controllers.

• It’s recommended that the MQSeries client and MQSeries server
connection be tested using IBM’s AMQSPUTC and AMQSGETC
tools.

• You need to use the Add Schema program before you can enable
Bridge encryption. You do this by logging in as the Schema
Administrator. Go to the Program Files\Host Integration
Server\system directory and type this command line: addschma
hiserver.schema. Using the Bridge Manager, go to Enterprise,
Computers, computer name. Right-click the Bridge Service,
select Properties, select the Advanced tab, select the Support
MSMQ to Bridge Encryption check box, select OK, click Yes,
click OK; restart the Bridge Service. To disable encryption:
advanced tab, clear the Support MSMQ to Bridge Encryption
box, reprocess the Bridge Service.

• One final point to note is that the Bridge rejects MSMQ Messages
with MQMSG_AUTH_LEVEL_MSMQ20 authentication under
Win2K.

PERFORMANCE ISSUES

The Bridge is not CPU-bound, allowing other back-end applications
to run on the same machine. Generally, the more queue managers
added to a Bridge, the more throughput increases without much
degradation. You should set the number of threads that are utilized for
each of the message pipes to reflect the number of queue managers
that the Bridge will service, since there is no noticeable difference in
performance if you put in more threads than MQSeries Queue
Managers.

The settings that do have an impact are on each message pipe and can
be configured by right-clicking, selecting Properties, Batch tab, and
three configurable batch options:

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Default:

– maximum number of: 10

– maximum accumulated size: 1024

– maximum accumulated time: 512.

• Try sample settings such as:

– maximum number of: 1200

– maximum accumulated size: 350000

– maximum accumulated time: 256.

Optional fields such as Reply To Queue Manager and Encryption can
be used to increase the amount of time required to send messages.
Encryption is a costly operation when a call requires an MSMQ SQL
database lookup. Limiting the number of times that the MSMQ and
MQSeries protocols are needed helps to keep overheads to a minimum.
It’s expensive on the network to open and close queues, but if a queue
is not closed after long periods of time it has consequences for the
machine.

Stephen Ibaraki, ISP
Chief Architect, iGen Knowledge Solutions (Canada) © Xephon

Writing exits for enableNet Data Integrator (eNDI)

A BRIEF HISTORY OF ENDI

FTF/MQ

enableNet Data Integrator is a tool for moving bulk data across an
MQSeries infrastructure. It has been around in various incarnations
since 1996 and was originally known as FTF/MQ, which is an
abbreviation for File Transfer Facility for MQSeries. In its original
form it performed the task of moving files across networks using the
facilities of MQSeries V2, which was the latest level available. There

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

were many motives, which are still valid now, for choosing this
method of file transfer over traditional file transfer products. These
products are typically modelled on the free Unix FTP utility, which
implements a synchronous transfer model between a client and server.
They typically have the following characteristics and limitations:

• Connection-oriented: a network session or conversation is
established between the source and the destination. The underlying
transport mechanism may be reliable or unreliable. Sessions are
created, used, and terminated for each and every individual file
transfer request.

• Non-network transparent: because they have to interact directly
with the network layer protocols, most file transfer utilities
cannot isolate the source and the destination processes from the
idiosyncrasies of the network layer.

• Non-modular: in most file transfer utilities the source and the
destination processes interact directly with the file systems and
are directly responsible for manipulating the files on both the
source and the destination.

• Limited restart and recovery: most file transfer utilities provide
limited restart and recovery logic to recover from system and
network failures. In most cases the entire file transfer request has
to be restarted from scratch in case of system and network
failures.

• Limited workflow and application integration: tools such as FTP
provide very limited – if any – workflow and business application
integration hooks.

• Lack of centralized monitoring and administration: providing a
consistent management and administration framework for both
the file transfer utility as well as the underlying transport
mechanism is limited to very few file transfer utilities.

• Non-scalable: eNDI is the only tool available that can move a
single file to a destination across multiple network paths in
parallel.

enableNet Data Integrator addresses and alleviates these limitations
by the clever use of MQSeries facilities and additional features.

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Even in its original form the product incorporated the ability to make
calls to user exits, which allows business processes to be incorporated
within the flow of data. A toolkit for writing user exits is supplied with
the product and is the focus of this article. I shall expand on where exits
fit into the transfer in the architecture section.

e-Adapter

In 1998, there came the introduction of connectors, which differ
slightly from exits. Business process integration exits are user-
customizable and can be employed in a ‘plug and play’ manner. They
are called at strategic points during the data transfer transaction.
Connectors are internal integration points that can be used to override
the internal I/O in favour of custom or specialized I/O. This provides
a level of data access far above and beyond the capabilities and
limitations of base file I/O. For example, the enableNet Data Integrator
Connectors can perform any type of data access and data manipulation
within the data transfer transaction. This includes databases and/or
proprietary data sources. In general, exits allow user-written processes
to execute and, potentially, access the file being transferred, but
connectors works at the I/O level so that the data is read or written out
directly to an alternative data store, not necessarily a file.

Because the product was no longer restricted to file transfer, but could
be used as a more general data integration tool, it was thought that the
name FTF/MQ didn’t reflect the facilities available. With the advent
of e-everything in 1998, e-Adapter was thought to be a suitable name
to reflect the credentials of the enhanced product.

enableNet Data Integrator

In 2000, CommerceQuest launched a B2B offering named enableNet,
which allows business to business integration covering point to point
communication right through to wholesale e-business marketplaces.
Business rules, data transformation, and workflow capabilities can be
executed at the hub or spokes by a tool known as enableNet Business
Process Integrator (eBPI). I won’t go into any of the details of
enableNet, but at the core of this offering is the bulk data movement
product. In order to maintain consistency of branding it was decided
to bring e-Adapter under the umbrella of enableNet by renaming it
enableNet Data Integrator. With the latest release comes the virtual

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

machine toolkit for writing exits and connectors using the eBPI
scripting capabilities and various other enhancements, including
support for XML-formatted transfer requests. The product currently
has implementations on the following platforms: Windows NT,
Windows 2000, HP-UX, Sun Solaris, AIX, SCO, OS/390, OS/400,
VAX VMS, VAX Alpha, OS/2, Windows 98/Me (with MQWin), 4690
(with CommerceQuest’s 4690 MQSeries client).

ENDI ARCHITECTURE

eNDI comprises three components: a Manager, a Sender, and a
Receiver.

Exits provide for pre- and post-processing during a transaction. These
exits are designed to be customizable for specialized processing or
they can consist of existing business modules. The exits operate as
part of the base transfer request and allow for autonomous processing
steps to be included as part of the processing. The exits are called as
either the first processing step or last processing step of the Manager,
Sender, or Receiver.

Connectors are a unique type of exit. The Connector is called in place
of reading or writing a file so that any type of data processing can take
place and there is no limitation or restriction to a data format or a file.

Manager

The Manager is responsible for maintaining the state of all processing,
dispatch requests, and load balancing. Multiple managers in strategic
locations can cater for transaction frequency. The Manager component
accepts the request for processing. If a Manager pre-processing exit
is installed, control will be passed to this module. Given positive
results from the exit, the Manager will continue processing. The
Manager will dispatch the request to the appropriate Sender and
continue processing subsequent requests. Additionally, the Manager
will accept replies from the other components, thus completing the
transaction. After all correspondence between components is complete
for a given transaction, the last activity the Manager will perform is
to call the post process exit (if one is installed) and finally reply to the
calling interface.

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Sender

The Sender will accept a request that was dispatched from the
Manager. If a Sender pre-processing exit is installed, control will be
passed to this module. Given positive results from the exit, the Sender
will continue processing. After the user has been authorized to read
the data, if a Connector is installed it is the responsibility of this
module to hand the data to the Sender (via the Connector interface),
otherwise the Sender itself will be responsible for reading the data
object via its base file I/O support. The Sender will send the data as
messages to the target Receiver component. Following successful
submission of the data, if a post-processing exit is installed control is
passed to the exit followed by a confirmation of activity to the
Manager. A sender post-process exit is executed even if there was a
failure sending the file.

Receiver

The Receiver is responsible for receiving the incoming messages and
reconstructing the target data object. Like the Sender, multiple
Receivers will cater to concurrent processing. The Receiver will
accept incoming data from a Sender. If a Receiver pre-processing exit
is installed control will be passed to this module. Given positive
results from the exit, the Receiver will continue processing. After the
user has been authorized to write the data, if a Connector is installed
it is the responsibility of the Receiver to pass the data to the Connector
so that the Connector can perform its desired actions, otherwise the
Receiver will write the data object via its base file I/O support.
Following the processing of the data, if a post-processing exit is
installed control is passed to the exit followed by a confirmation of
activity to the Manager. A receiver post-process exit is executed even
if there was a failure writing out the file.

Operation

The Manager, Sender, and Receiver are not required to operate on the
same platform. Furthermore, the request does not have to be made on
the system where the source data resides. The request can be made
from any node in the infrastructure. Data Integrator will resolve the
source and target destinations.

The status sub-system is responsible for directing the status messages

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

to the appropriate systems. There are several queries and interfaces
available to present and manipulate the data.

Processing flow

Figure 1 illustrates the processing flow of a typical transfer. Notice
that the exit points are executed at each of the components before and
after processing. This allows total flexibility in user process integration.

THE STRUCTURE OF EXITS

Outline

eNDI uses the dynamic load library (DLL) facilities available on all
platforms that support eNDI. The components dynamically load the

Application
processing

Request
processing

Send
processing

Receive
processing

Interfaces

User app

Command
line

ISPF/5250

Java GUI

MMC

Manager

Pre-process
exit

▼

▲

Source
business
object

▼

▲

▼

▲

Pre-process
exit

Sender

Post-process
exit

Post-process
exit

Post-process
exit

Pre-process
exit

Security
authorization

Target
business
object

Security
authorization

123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345

Connector

123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345

Connector

Receiver

Figure 1: Processing flow of a typical transfer

1234567890123456789
1234567890123456789
1234567890123456789
1234567890123456789
1234567890123456789
1234567890123456789
1234567890123456789
1234567890123456789
1234567890123456789

API

▲ ▲
5 10

▼ ▼

6 11

2 4 9

13 8 12

▲

1

14

3

▼

▲ ▲

7

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

user-specified exit and execute the specified functionality. All user-
exit functionality must be compiled into DLLs and the entry points
must be exported according to the platform specifications. (See
Compiling and Generating DLLs, below.) eNDI invokes the entry
points with arguments according to the specific exit number. All exit
modules (except those for the VM Connector) must be written in the
C language. The specific data structures for each of the exits are found
in the ftfc.h that resides in the eNDI directory. These data structures
and all the API calls are described in detail in the product documentation.

Headers

The header file ftfc.h is included in the development toolkit supplied
with the eNDI product. This header file in turn uses some MQSeries
definitions, so it includes the MQSeries header file cmqc.h. The file
ftfc.h defines many constants, structures, and function prototypes that
are used by the API; it should always be kept up-to-date when
installing new versions of eNDI.

Parameters passed to the exit

When an exit is invoked by eNDI through its published entry point, a
standard set of parameters is passed to that entry point.

Note that none of the transfer parameters can be altered by the eNDI
exits, so they cannot be used for dynamic routing or load balancing
after the transfer has started. Any such utilities would have to be
invoked before making the transfer request.

FTFExitInfo

This structure is passed to all types of exit. It is defined as follows:

typedef struct _FTFExitInfo
{
 FTFCHAR ftfid[FTF_MAX_FTFID_SIZE];
 FTFLONG exitNumber;
 FTFCHAR *pDllName;
 FTFCHAR *pEntryPoint;
 FTFCHAR *pUserId;
 FTFCHAR *pPassword;
 FTFLONG cUserData;
 FTFCHAR *pUserData;
 FTFRC rc;
 FTFRC rc2;

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

 FTFVOID *pInternal;
 FTFIdentifiersInfo Ids;
} FTFExitInfo;

The ftfid parameter holds the unique identifier for the data transfer
currently underway. This identifier is passed along with all stages of
the transfer and can be used to get information relating to it from the
status sub-system.

The exitNumber parameter informs the exit code of the particular exit
that is being invoked. This is useful when writing code for multiple
exit types using the same entry point. The exit numbers are as follows:

• 1,2 – reserved for special compression/decompression.

• 3,4 – manager’s pre- and post-processing.

• 5,6 – sender’s pre- and post-processing.

• 7,8 – receiver’s pre- and post-processing.

• 9,10 – sender and receiver connector.

This article will deal with exit numbers three to eight.

The pDllName and pEntryPoint elements are pointers to the name of
the currently executing dll and the code entry point.

The pUserId and pPassword elements are pointers to the current user
id and password in use by the eNDI component during the current
transfer. The password is not currently implemented but may be used
in future releases.

The pUserData and cUserData elements carry data that has been
passed by the transfer request relating to the exit. This equates to the
text passed on the command line in the –exitdata parameter, and the
cUserData is the length of that data. In many exits and connectors this
acts as parameters to the user exit code and modifies its behaviour in
some way. An example of this is in the supplied Message Connector,
where the –exitdata parameter allows you to specify whether the data
is to be split up by record length, tags, or delimiters, whether the
messages are to be persistent, etc.

rc1 and rc2 contain primary and secondary return codes. rc1 should
be tested on entry to the user code, particularly for Manager post-
process exits as this reflects the status of the transfer so far. By setting

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

these return codes the user can influence the overall transfer and cause
it to succeed or fail. An example of this may be, say, the sender pre-
process exit extracts the data from a database to a file, then the sender
process sends that file. If the database is currently off-line and the
extract fails, by returning a non-zero value in rc1 and specifying your
own specific value indicating ‘database off-line’ the transfer will not
proceed beyond that point. The status sub-system will indicate a
sender exit failure and display your user failure code. I will go into
more detail about how to place entries into the eNDI status sub-system
later.

Note that if either the sender or receiver nodes have a failure the
Manager post-process exit is always executed. This is why the rc1
parameter should be checked on entry to a manager post-process exit.

Note also that, as the Manager post-process exit has the transfer status
passed to it, this can be used to interface to external system monitoring
tools, such as Unicenter or Tivoli, to give detailed information about
the eNDI transfers.

The FTFIdentifiersInfo is a structure containing three identifiers,
which are populated by user data passed into the request. These can
be any value that the user chooses to employ. Unlike the pUserData
parameter, these values do not relate to one specific exit; instead, the
same data is passed to all exits and connectors.

FTFExitRequestInfo

This structure is passed as the second parameter to Manager pre and
post exits only; it contains all the current information about the data
transfer in flight and is defined as follows:

typedef struct _FTFExitRequestInfo {
 FTFExitQMgrsInfo *pQMgrs;
 FTFExitSourceFileInfo *pSource;
 FTFExitTargetFileInfo *pTarget;
 FTFExitJobInfo *pJob;
 FTFExitUserInfo *pUser;
} FTFExitRequestInfo;

The FTFExitQMgrsInfo structure contains the names of the queue
managers of the four eNDI nodes involved in the transfer.

FTFExitJobInfo contains details of some of the options used to

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

determine the behaviour and display of the transfer job. Many of these
options are for the more advanced functions of eNDI, which are
beyond the scope of this article.

The FTFExitSourceFileInfo and FTFExitTargetFileInfo structures
are dealt with below.

The FTFExitUserInfo structure contains the transfer label and group
name. The label is defined by the user as part of the request parameters
(-label on the command line) and groupName is an internal eNDI
value.

FTFExitSourceFileInfo

This structure is passed as the second parameter to the sender pre- and
post-processing exits and the manager’s exits as described above. It
contains all the relevant details about the source file. Note that the
sender has no details about the target file or the other job-related
information, only the source file.

typedef struct _FTFExitSourceFileInfo {
 FTFCHAR *pFileName;
 FTFBOOL isStaged;
 FTFBOOL isStagePersistent;
 FTFBOOL isDataPersistent;
 FTFBOOL isCompressed;
 FTFFileTypeInfo fileType;
 FTFLONG bufNo;
} FTFExitSourceFileInfo;

This structure holds information about how the file is to be read and
transferred. The pFileName parameter is a pointer to the full path of
the source file. The two staging values are for when the transfer is
staged at an intermediate point. With eNDI, the data is normally
transmitted as non-persistent messages (these are fully recoverable,
but, again, beyond the scope of this document), but this can be
overridden and this value passes its current state. Transfers can be
compressed by eNDI and the ‘isCompressed’ value passes the requested
option for this transfer. The fileType is either FTF_TEXT or
FTF_BINARY and bufNo is an internal value only used on OS/390.

FTFExitTargetFileInfo
This structure is passed as the second parameter to the receiver’s pre-
and post-processing exits and the manager’s exits. It contains all the

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

relevant details about the target file. Note that the receiver has no
details about the source file or the other job-related information, only
the target file.

typedef struct _FTFExitTargetFileInfo {
 FTFCHAR *pFileName;
 FTFBOOL isCompressed;
 FTFFileTypeInfo fileType;
 FTFFileModeInfo fileMode;
 FTFFileOrgInfo fileOrg;
 FTFLONG cDirectoryBlocks;
 FTFRecordFormatInfo recordFormat;
 FTFLONG lrecl;
 FTFLONG blockSize;
 FTFCHAR unitName [FTFREQ_UNITNAME_SIZE];
 FTFCHAR volser [FTFREQ_VOLSER_SIZE];
 FTFAllocUnitInfo allocationUnit;
 FTFLONG primaryAllocSize;
 FTFLONG secondaryAllocSize;
 FTFTextFileWrapInfo textWrapRecord;
 FTFBOOL createDirectory;
 FTFBOOL isDataPersistent;
 FTFLONG bufNo;
} FTFExitTargetFileInfo;

Much of this information is related to the particular file type and
organization of OS/400 and OS/390 file types. Apart from those, the
type of information is very similar to the source file information: file
name, compression value, binary/text value, and persistence.

Exit definitions

Manager pre and post process

A typical definition for a manager pre or post exit is as follows:

DLLEXPORT void MyMgrExit(FTFExitInfo *pExitInfo,
 FTFExitRequestInfo *pInfo)

This exposes the entry point to the compiler. Obviously, for this to be
portable across platforms, the DLLEXPORT is defined using the
compiler switches based on the target platform. For Win32 this is:

#define DLLEXPORT _declspec(dllexport)

For MVS, declarations similar to the following are required:

#define DLLEXPORT
#pragma export(MyMgrExit)

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

For Unix, all the non-static functions are exposed, so a null definition
of DLLEXPORT is all that’s required:

#define DLLEXPORT

Sender pre and post process
DLLEXPORT void MySdrExit(FTFExitInfo *pExitInfo,
 FTFExitSourceFileInfo *pInfo)

Receiver pre and post process
DLLEXPORT void PopupRcvExit(FTFExitInfo *pExitInfo,
 FTFExitTargetFileInfo *pInfo)

Status messages

Status messages are a vital part of eNDI. The e-Adapter status sub-
system manages messages that describe the status of an e-Adapter
data transfer request. These status messages can be generated by e-
Adapter or from within any user exit or connector. In order to allow
your business process to fully integrate into the data transfer, an API
call is available to place status messages into eNDI. The API call is
defined as follows:

FTFVOID FTFSubmitStatusMsg (FTFExitInfo *info,
 FTFCHAR *customComponent, FTFCHAR *customType,
 FTFCHAR *errorText, FTFCA *ftfca);

The pointer to the FTFexitInfo structure, which was passed to the exit,
must be passed back to this call. The second parameter allows the user
to specify a name for the component, such as ‘My Custom Exit’. The
next parameter is also text, which appears in the custom status field
and should be used for a brief description about what task the exit is
performing, for example ‘Processing Source Data’. The third parameter
is again text, and appears in the ‘error’ field of the status message. An
example of this may be “Processing failed – unable to access data
‘MyData’”.

The last parameter is a structure containing the return codes of the
function call.

Processing
If the user exit function is designed to run specifically as, say, a sender
pre-process exit then the first piece of processing work to do is to

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

check whether this is actually being invoked at the correct exit point.
The following code does exactly this by comparing the actual exit
number with the exit type expected.

if (pExitInfo->exitNumber != FTF_EXITNO_SOURCE_PRE)
{
 pExitInfo->rc = 2ØØ; /*May or may not wish to fail the transfer*/
 sprintf(str,"MyExit – Exit no %d", pExitInfo->exitNumber);
 FTFSubmitStatusMsg(pExitInfo, str,
 "Exit not executed", "Must be sender pre", &ftfca);
 return;
}

All the entry points take the same first parameter, which means that
any of the ExitInfo parameters will be valid as long as the code is called
by eNDI.

If the same code is to be called by all exit types it is still necessary to
make three different entry points, as in the following example:

DLLEXPORT void PopupMgrExit(FTFExitInfo *pExitInfo,
FTFExitRequestInfo *pInfo)
{
 ExitCode(pExitInfo, pInfo->pSource->pFileName,
 pInfo->pTarget->pFileName);
}
DLLEXPORT void PopupSdrExit(FTFExitInfo *pExitInfo,
 FTFExitSourceFileInfo *pInfo)
{
 ExitCode(pExitInfo, pInfo->pFileName, NULL);
}
DLLEXPORT void PopupRcvExit(FTFExitInfo *pExitInfo,
FTFExitTargetFileInfo *pInfo)
{
 ExitCode(pExitInfo, NULL, pInfo->pFileName);
}

In the example above, the function ExitCode() takes the pExitInfo
parameter, the source file name, and the target file name. The pExitInfo
is needed for calls to the status sub-system and any other information
specifically relating to the exit in operation. Both source and file name
are only available to the manager exits so the ExitCode() function
should be designed to handle NULL values in either of these parameters.

Return value

When processing is complete, a value must be placed in the pExitInfo-
>rc variable, which indicates to the eNDI component the success or

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

otherwise of the user process. If a non-zero value is returned the
transfer will stop executing at that point and indicate a failure to the
overall status system. As mentioned earlier, in the event of a failure at
any component the manager post process exit is still invoked.

Synchronous or asynchronous?

eNDI exits can be invoked only as a synchronous process, so the
transfer is blocked until the code returns control to the calling
component. To run an exit asynchronously it is necessary to spawn or
fork a new process, then return from the original one. There may be
a good reason for doing this, but it should only be done if the transfer’s
success is not dependent on the success of the user process.

Compiling and generating DLLs

For Windows development using Visual Studio or Visual C++ a new
project should be defined, specifying an empty project of type ‘Win32
dynamic link-library’. Unless extensive use of MFC or other Windows
utility functions is required, all the libraries specified in the link
section can be removed except for mqm.lib, ftflib.lib and ftfxmoma.lib.
Obviously, the path to the eNDI and MQSeries libraries needs to be
set up using the directories tab under the tools/options menu.

When compiling under Unix systems the code must be compiled for
sharing (+z on HP, no extra options for Solaris) and linked as a shared
library (-b for HP, -G for Solaris). Make sure that the linked library has
execute access and that the MQSeries shared libraries and the libftf.so
(or .sl depending on platform) are in the LD_LIBRARY_PATH.

SAMPLE PROGRAM 1 – DISPLAY TRANSFER DETAILS (WINDOWS
GUI)

This program is very simple, but is designed to demonstrate many of
the features discussed above.

It is a Win32 dll named Popup.dll, which displays a Windows message
box displaying the contents of some of the important parameters. It is
designed to operate on any of the exit points during a transfer and can,
if desired, be used on all the exit points, demonstrating graphically the
process flow.

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

POPUP.DLL
/* Standard includes */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <afxwin.h>
/* eNDI includes */
#include "ftfc.h"
#if defined(__cplusplus)
 extern "C" {
#endif
static void ExitCode(FTFExitInfo *pExitInfo, char *spath, char *dpath);
#ifdef WIN32
 #define DLLEXPORT _declspec(dllexport)
#endif
/* The 3 entry points for manager, sender, and receiver respectively */
DLLEXPORT void PopupMgrExit(FTFExitInfo *pExitInfo,
FTFExitRequestInfo *pInfo)
{
 ExitCode(pExitInfo, pInfo->pSource->pFileName, pInfo->pTarget-
>pFileName);
}
DLLEXPORT void PopupSdrExit(FTFExitInfo *pExitInfo,
FTFExitSourceFileInfo *pInfo)
{
 ExitCode(pExitInfo, pInfo->pFileName, NULL);
}
DLLEXPORT void PopupRcvExit(FTFExitInfo *pExitInfo,
FTFExitTargetFileInfo *pInfo)
{
 ExitCode(pExitInfo, NULL, pInfo->pFileName);
}

/* Text definitions for the exit names for use in status displays */
static char *ExitNames[] =
{ "Compression", "Decompression", "Manager Preprocess", "Manager
Postprocess",
 "Sender Preprocess", "Sender Postprocess", "Receiver Preprocess",
 "Receiver Postprocess", "Sender Connector", "Receiver Connector"
} ;
/* The main part of the code, common to all the exits */
static void ExitCode(FTFExitInfo *pExitInfo, char *spath, char *dpath)
{
 char *str = (char *)calloc(1,2ØØØ);
 static char *unknown = "Unknown";
 FTFCA ftfca;
 int rc = true;
 /* Check for bad pointer to the main exit information */
 if (!pExitInfo)
 return;

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

 /* Format the string to display in the message box */
 sprintf(str,
 "Demo Popup %s Exit in progress. \n\n"
 "FTFID:\t\t%s\nDLL name:\t%s\nEntry Point:\t%s\n"
 "User Id:\t\t%s\nPassword:\t%s\n"
 "Source File:\t%s\nDest File:\t\t%s\n"
 "Id1:\t\t%s\n"
 "Id2:\t\t%s\n"
 "Id3:\t\t%s\n"
 "rc1 = %-5ld\trc2 = %-5ld\n",
 ExitNames[pExitInfo->exitNumber-1],
 pExitInfo->ftfid,pExitInfo->pDllName, pExitInfo->pEntryPoint,
 pExitInfo->pUserId ? pExitInfo->pUserId : unknown ,
 pExitInfo->pPassword ? pExitInfo->pPassword : unknown,
 spath ? spath : unknown, dpath ? dpath : unknown ,
 pExitInfo->Ids.Id1, pExitInfo->Ids.Id2, pExitInfo->Ids.Id3,
 pExitInfo->rc, pExitInfo->rc2
);
 /* Check that the transfer hasn’t already failed somewhere else */
if (pExitInfo->rc!=Ø) /* This can only happen for a post process exit
*/
 {
 strcat(str, "User exit not executed - FTF failed");
 AfxMessageBox(str, MB_OK | MB_ICONSTOP);
 sprintf(str,"Demo Popup %s Exit", ExitNames[pExitInfo->exitNumber-1]);
 FTFSubmitStatusMsg(pExitInfo, str, "Exit not executed",
 "User exit not executed - FTF failed", &ftfca);
 }
 else
 {
/* We’re ok up to this point – now give the user a choice to succeed or
fail */
 strcat(str, "Make this exit succeed?");
 rc = AfxMessageBox(str, MB_YESNO | MB_ICONQUESTION);
 sprintf(str,"Demo Popup %s Exit",ExitNames[pExitInfo->exitNumber-1]);
 if (rc == IDYES)
 {
 /* User chose to succeed – good return value and status message */
 pExitInfo->rc = Ø;
 FTFSubmitStatusMsg(pExitInfo, str, "User Input - PASS",
 "User choice: Pass", &ftfca);
 }
 else
 {
 /* User chose to fail – bad return value and status message */
 pExitInfo->rc = -123;
 FTFSubmitStatusMsg(pExitInfo, str,
 "User Input - FAIL", "User choice: Fail", &ftfca);
 }
 }
 /* Clean up & return */

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 free(str);
 return;
}
#if defined(__cplusplus)
 }
#endif

Command Line

To invoke this exit on the command line, the following options can be
used:

ftf -label Popups -oqm M_QMGR -lqm L_QMGR -sqm S_QMGR -dqm D_QMGR -spath
c:\hello.txt -dpath c:\hello.txt -ID1 "This is ID1" -ID2 "This is ID2" -
ID3 "This is ID3" -exit 3 -exitdll Popup.dll -exitentry PopupMgrExit -
exit 4 -exitdll Popup.dll -exitentry PopupMgrExit -exit 5 -exitdll
Popup.dll -exitentry PopupSdrExit -exit 6 -exitdll Popup.dll -exitentry
PopupSdrExit -exit 7 -exitdll Popup.dll -exitentry PopupRcvExit -exit 8
-exitdll Popup.dll -exitentry PopupRcvExit

Notes

This command line specifies that, to invoke the command, it will
connect directly to L_QMGR, specifying M_QMGR as the transfer
manager, S_QMGR as the source of the data, and D_QMGR as the
destination. The spath and dpath specify the source and destination
filenames, and the identifiers ID1 to ID3 are specified.

For each of the exits the exit number must be specified first, followed
by the -exitdll (the name) and -exitentry (the code entry point)
parameters. In this example no parameters are passed to the dll, so the
–exitdata parameter is not used.

Note that when eNDI is started as a Windows service, there is a choice
whether the service is allowed to interact with the Windows desktop.
Unless the eNDI service is set to allow this, the popup message boxes
will not be visible, but will block the eNDI transfers. This is true for
all interactive exits, so care should be taken on how the service is
started.

SAMPLE PROGRAM 2 – START A SYSTEM COMMAND (WINDOWS
AND UNIX)

This program is designed to be portable to any platform. On OS/390
it only prints the system command to the console. Full job submission

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

is more complicated and would not serve the purpose of clarifying
how to write eNDI exits. The exit will start a command line specified
in the –exitdata transfer parameter and performs some macro
substitutions. For example, $dpath on the command line gets substituted
for the destination path specified in the transfer. It also allows for
synchronous or asynchronous command execution and the ability to
pass the command-line return code back to the eNDI component to
determine the transfer success.

 CMDEXIT.DLL (OR CMDEXIT SHARED LIBRARY ON UNIX)
/* Standard includes */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
/* eNDI includes */
#include "ftfc.h"
/* Platform-specific definitions for function export */
static void ExitCode(FTFExitInfo *pExitInfo, char *spath, char *dpath);
#ifdef WIN32
 #define DLLEXPORT _declspec(dllexport)
#elif defined(UNIX) || defined(OS2)
 #define DLLEXPORT
#elif defined(OS4ØØ)
 #define DLLEXPORT
#elif defined(MVS)
 #define DLLEXPORT
 #pragma export(CmdMgrExit)
 #pragma export(CmdSdrExit)
 #pragma export(CmdRcvExit)
#endif
#if defined(__cplusplus)
 extern "C" {
#endif
DLLEXPORT void CmdMgrExit(FTFExitInfo *pExitInfo, FTFExitRequestInfo
*pInfo)
{
 ExitCode(pExitInfo, pInfo->pSource->pFileName, pInfo->pTarget-
>pFileName);
}
DLLEXPORT void CmdSdrExit(FTFExitInfo *pExitInfo, FTFExitSourceFileInfo
*pInfo)
{
 ExitCode(pExitInfo, pInfo->pFileName, NULL);
}
DLLEXPORT void CmdRcvExit(FTFExitInfo *pExitInfo, FTFExitTargetFileInfo
*pInfo)

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

{
 ExitCode(pExitInfo, NULL, pInfo->pFileName);
}
static void ExitCode(FTFExitInfo *pExitInfo, char *spath, char *dpath)
{
 char commandString = calloc(1,2ØØØ); /* The command string */
 char statString = calloc(1,2ØØ); /* The status message string */
 char *tmpstr = NULL, tmpnum[3Ø]; /* Temporary storage */
 int systemrc=Ø; /* System return code */
 unsigned int i, j; /* Counters */
 FTFCA ftfca; /* FTFSubmitStatusMsg return */
 int UseRet = FALSE; /* Switch to use the cmd return code */
 if (pExitInfo->pUserData)
 {
 /* Allocate some space for temporary string */
 tmpstr = malloc(pExitInfo->cUserData + 1); /* Allocate it */
/* Copy the user data into temporary area */
sprintf(tmpstr, "%.*s", pExitInfo->cUserData ,pExitInfo->pUserData);
 /* Substitute any $sysret, $spath and $dpath variables for actual
paths...*/
#ifdef WIN32
if (!strstr(tmpstr,"$async ")) /* On Windows start new process if
$async */
strcpy(commandString,"start ");
#endif
 /* The next test is if the userdata contains $fail.
 * If so, don’t execute if transfer so far failed */
 if (strstr(tmpstr,”$fail “) && pExitInfo->rc!=Ø)
 {
 sprintf(statString,"User command not executed - FTF failed"
 " (Code %ld) and $fail specified”,pExitInfo->rc);
 sprintf(tmpnum,”EXIT %ld SYSTEM CMD”, pExitInfo->exitNumber);
 FTFSubmitStatusMsg(pExitInfo, tmpnum, "RETURN CODE",
statString, &ftfca);
 return;
 }
 /* Now make the macro substitutions if present */
 if (strstr(tmpstr,"$sysret") || strstr(tmpstr,"$spath") ||
 strstr(tmpstr,"$dpath"))
 {
 for (i=Ø, j=strlen(commandString); i<strlen(tmpstr); i++)
 {
 if (!strncmp(&tmpstr[i],"$sysret ",8))/* sysret return code required */
 {
 /* Use the system command return code for eNDI return code. */
 /* Don’t pass this to command */
 i += 7; /* Skip over $sysret and space */
 UseRet = TRUE;
 continue;
 }
 if (!strncmp(&tmpstr[i],"$fail ",6))/* sysret return code required */

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

 {
 /* If eNDI has failed, don’t do the exit. Don’t pass this to command */
 i += 5; /* Skip over $fail and space */
 continue;
 }
#ifdef WIN32
 if (!strncmp(&tmpstr[i],"$async ",7))/* Asynchronous process
required */
 {
 /* NT only - choose sync/async exit, (used above). */
 /* Don’t pass this to command */
 i += 5; /* Skip over $sync and space */
 continue;
 }
#endif
 /* Look for source path substitution – can only do this on mgr &
sdr exits */
if (!strncmp(&tmpstr[i],”$spath”,6) && spath)/* spath substitution reqd
*/
 {
 strcat(commandString, spath); /* Append the real source path */
 i += 5; /* Skip over ‘$spath’ */
 j = strlen(commandString); /* Reset the command string index */
 continue;
 }
/* Look for dest path substitution – can only do this on mgr & rcv exits
*/
if (!strncmp(&tmpstr[i],"$dpath",6) && dpath)/* spath substitution reqd
*/
 {
 strcat(commandString, dpath); /* Append the real traget path */
 i += 5; /* Skip over ‘$dpath’ */
 j = strlen(commandString); /* Reset the command string index */
 continue;
 }
 commandString[j++] = tmpstr[i]; /* Just copy the next byte */
 commandString[j] = ‘\Ø’; /* Add a trailing terminator */
 }
 }
 else
strcat(commandString, tmpstr);/* No special macros, just the command */
 /* Make up the command string as requested */
#if defined (UNIX)|| defined (OS4ØØ) || defined (WIN32)
 systemrc = system(commandString);
#elif defined (MVS) || defined(OS2)
 printf("%s\n", commandString);
#endif
 sprintf(statString,"Command \"%.9ØØs\" returned
(%d)”,commandString, systemrc);
 sprintf(tmpnum"EXIT %ld SYSTEM CMD",pExitInfo->exitNumber);
 FTFSubmitStatusMsg(pExitInfo, tmpnum, "RETURN CODE", statString,

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

&ftfca);
 }
 /* If $sysret specified, use the system return code for exit error
level. */
 /* The eNDI component will check this code on return.
*/
 if (UseRet)
 pExitInfo->rc = systemrc;
 return;
}
#if defined(__cplusplus)
 }
#endif

Command Line

To invoke this exit on the command line to execute the notepad.exe
utility to display the destination file after it has arrived at the receiver,
the following command line could be used:

ftf -label "Command Line" -oqm M_QMGR -lqm L_QMGR -sqm S_QMGR -dqm
D_QMGR -spath c:\hello.txt -dpath c:\hello.txt -exit 8 -exitdll
CmdExit.dll -exitentry CmdRcvExit –exitdata "notepad $dpath"

Notes

This command line specifies that to invoke the command it will
connect directly to L_QMGR, specifying M_QMGR as the transfer
manager, S_QMGR as the source of the data, and D_QMGR as the
destination. The spath and dpath specify the source and destination
filenames.

On this command line, the –exitdata parameter is specified, which, for
this exit, determines what process is executed. Note that, when using
Windows, a GUI process such as notepad is always executed
asynchronously when using the system() call, so it is not possible to
get the return code from the process. A command script will be
executed synchronously unless the macro $async is specified on the
command line, in which case it is started as a separate process.

Valid macro substitutions are:

• $async – Windows only. Starts a command script with ‘start’ at
the beginning of the command line. The text will be taken out of
the command passed to the system.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

• $spath – substitutes the source path value in place of this macro.
This value is not available to either receiver exit.

• $dpath – substitutes the destination path value in place of this
macro. This value is not available to either sender exit.

• $sysret – when specified, will use the return code from the
system() call to pass back as the return code of the exit.

• $fail – if specified, the exit will check the current status of the
transfer and not execute the exit if the current status is non-zero.

This is not intended to be a complete command-execution exit, it
serves merely as an example of how exits are structured. There is a
similar exit supplied with the product that also supports OS/390 (and
all other platforms).

SUMMARY

enableNet Data Integrator is a powerful – possibly essential – tool for
file transfer in an MQSeries environment. With the exploitation of the
exit and connector capabilities the product becomes a focal point for
enterprise data integration. The connectors allow data to be extracted
or inserted from alternative sources to the file system, while the user
exits can be exploited to fully integrate the data transfer into the
overall business process flow.

This article illustrates the simplicity with which enableNet Data
Integrator exits can be written. Hopefully, it will enable current
customers to fully exploit its features and potential customers to see
the benefits of the product over and above the file transfer capability.

Chris Howarth
Senior Systems Engineer, CommerceQuest (UK) © Xephon

MQ message throughput reporting on AIX

How do you know how much work is going through your MQ
infrastructure? Determining how busy your MQ infrastructure is can
be a difficult exercise. Monitoring CPU use and message throughput

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

can be a valuable aid in capacity planning, but an easy, automated
method is required to gather this information and track it over time.

This article provides scripts and jobs for automated collection of
message throughput statistics across MQ channels. We are running
Version 4.3.3.0 of AIX and Version 5.1 of MQ. The collection script
is written using the korn shell for use on AIX, but the logic of the script
could be ported to other platforms. The output of the script is
transferred using FTP to our mainframe and is then processed by SAS,
but it can be processed by any data manipulation tool, eg Excel.

The message throughput statistics can then be correlated with CPU
utilization figures for capacity forecasting.

CHANNEL STATISTICS

MQ provides useful information about message throughput in the
channel statistics. This can be accessed by running the DIS
CHSTATUS command, eg:

DIS CHSTATUS(QPØ1.TO.QPØ2) msgs
AMQ8417: Display Channel Status details.
 CHANNEL(QPØ1.TO.QPØ2) XMITQ(QPØ2)
 CONNAME(127.Ø.Ø.1) CURRENT
 CHLTYPE(SDR) STATUS(RUNNING)
 MSGS(344989)

There have been 344,989 messages sent across channel QP01.TO.QP02
since it started. Note that the statistics are reset when the channel is
stopped or becomes inactive. If you set the disconnect interval to a
reasonable length of time or to 0, this should not be an issue. The
collection script interval can also be set quite short, which should
avoid any potential problems.

The following collection script runs the DIS CHSTATUS command
for a specified MQ channel. It checks the number of messages sent (or
received) every specified interval, eg 600 seconds. It writes the
gathered information to a history file.

COLLECTION SCRIPT
#!/bin/ksh
Channel message counts
Captures message counts across named channel.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

Input arguments
channel=$1 #channel name e.g. QPØ1.TO.QPØ2
qmgr=$2 #Queue Manager name e.g. QPØ1
interval=$3 #Gather stats every x seconds eg 6ØØ
days=4 # days history to keep
outfile=/data/MQM/data1Ø/defs # directory for output file
trap 'rm temp_$$; exit' Ø 1 2 15 # removes temp files on exit (clean or
otherwise)
echo 'dis chstatus('$channel') all' > temp_$$ # create temp file as
input into runmqsc
echo end >>temp_$$
oldcount=`runmqsc $qmgr < temp_$$ | grep ' MSGS(' | cut -c9-|cut -d ")"
-f1` # initialize msgs
 # count
if [-z "$oldcount"] # if oldcount not set by runmqsc
 #ie the channel is stopped then set to Ø.
 then
 oldcount=Ø
fi
tot=Ø
echo Trans Total Date\(dd/mm/yyyy\) Time Channel >> $outfile/$channel
column headings
 #
in output file
h=`date +%H` # calculate number of intervals to do till midnight
m=`date +%M`
s=`date +%S`
i=`expr $h * 36ØØ + $m * 6Ø + $s`
calculate number of iterations loop should do till end of the day
endofday=`expr 864ØØ - 6ØØ - $interval` #midnight minus 1Ø minutes and 1
interval,
 #allow for drift in the loop
while [$i -lt $endofday] # loop until just before midnight,
 # don’t check time every loop because of the overhead
do
 count=`runmqsc $qmgr < temp_$$ | grep ' MSGS(' | cut -c9-|cut -d ")" -
f1`
 if [-z "$count"] # if count not set by runmqsc function then
set to Ø.
 then
 count=$oldcount
 fi
 if [$count -lt $oldcount] # channel stopped/disconnected
 then
 count=Ø
 oldcount=Ø
 fi
 date=`date +%d/%m/%Y` # dd/mm/yyyy e.g. 18/Ø7/2ØØ1
 time=`date +%H:%M:%S` # hh:mm:ss e.g. 15:32:38
 trans=`expr $count - $oldcount`

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 tot=`expr $tot + $trans`
 echo $trans $tot $date $time $channel >> $outfile/$channel
 if ["$count"] # check that count was set okay by the runmqsc
function.
 then
 oldcount=$count
 fi
 sleep $interval
 i=`expr $i + $interval`
done
Housekeeping
tail -n `expr '(' 864ØØ / $interval ')' * $days` $outfile/$channel >
t_$$
 # keep $days days
cp t_$$ $outfile/$channel
rm t_$$
End of script

SCHEDULING

Schedule this script using crontab:

1Ø ØØ * * * /data/MQM/data1Ø/scripts/chanmess.sh QPØ1.TO.QPØ2 QPØ1 6ØØ

This runs the script at 12.10 am every day, with an interval of 600
seconds. Set the interval lower if your channels disconnect more
frequently.

HISTORY FILE

The output from the script is written to a history file with the same
name as the channel in the $outfile directory specified in the script, eg
/data/MQM/data10/defs/QP01.TO.QP02.

The file output is:

Trans Total Date(dd/mm/yyyy) Time Channel
Ø Ø 18/Ø7/2ØØ1 ØØ:1Ø:Ø1 QPØ1.TO.QPØ2
14 14 18/Ø7/2ØØ1 ØØ:2Ø:Ø1 QPØ1.TO.QPØ2
21 35 18/Ø7/2ØØ1 ØØ:3Ø:Ø2 QPØ1.TO.QPØ2
23 58 18/Ø7/2ØØ1 ØØ:4Ø:Ø2 QPØ1.TO.QPØ2
11 69 13/Ø7/2ØØ1 ØØ:5Ø:Ø3 QPØ1.TO.QPØ2

As you can see, one record is written every interval with the number
of messages sent during the interval, a running total since the start of
the day, the interval end time, and the channel name.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

The script performs housekeeping on this file, keeping a number of
days’ history specified by the $days variable.

If the channel stops/disconnects during the collection interval a value
of 0 will be recorded for the message count. You may have to
experiment with the interval time and the disconnect interval to
optimize your collection.

POST PROCESSING

The history file can be transferred daily using FTP and processed by
any data manipulation product, in this case SAS on the mainframe.

An example of the FTP job is detailed here.

//MQMCDTØ5 JOB ,ISOS-TSTMW-RAB,CLASS=4,MSGCLASS=J
//* FTP Channel message counts.
//FTP EXEC PGM=FTP,REGION=2Ø48K,
// PARM='172.31.81.81 (timeout 18Ø'
//STEPLIB DD DSN=SYS1.SEZATCP,DISP=SHR
//SYSTCPD DD DSN=TP.VOTCPBP.PARMLIB(TCPDATA),DISP=SHR
//SYSFTPD DD DUMMY
//NETRC DD DUMMY
//SYSMDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//INPUT DD *
userid
password
cd /data/MQM/data1Ø/defs/
get QPØ1.TO.QPØ2 'mq.prod.msgs(chan1)' (REPLACE
get QPØ2.TO.QPØ1 'mq.prod.msgs(chan2)' (REPLACE
QUIT

This job is automatically scheduled to run every day at 6.00 am.

SAS PROCESSING

The first job creates a long-term history database. It keeps 35 days’
interval data and one year’s daily totals for each channel being
monitored.

//MQMCDT1Ø JOB ,ISOS-TSTMW-RAB,CLASS=4,MSGCLASS=J
//* MQ Message counts.
//STEP1 EXEC ASV6,OPTIONS='ERRORABEND NOMACROGEN NOSOURCE NOSOURCE2'
//MSGSTAT DD DSN=MQ.PROD.MSGSTAT,DISP=SHR
//NEW DD DSN=MQ.PROD.MSGSTAT.NEW,DISP=(NEW,CATLG,DELETE),

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// SPACE=(CYL,(5Ø,5Ø),RLSE),AVGREC=U,
DCB=(RECFM=FS,DSORG=PS,LRECL=27648,BLKSIZE=27648)
//IN DD DSN=MQ.PROD.MSGS,DISP=SHR
//SYSIN DD *
 * PURPOSE : Message counts across channels ;
 %macro chan(file);
 data tis;
 infile in(&file) LENGTH=LEN;
 input @1 LINE £VARYING2ØØ.LEN;
 length channel £4Ø.;
 format date date. time time.;
 drop line;
 if line=:'Trans Total' then delete;
 trans=input(scan(line,1,' '),8.);
 total=input(scan(line,2,' '),8.);
 date=input(scan(line,3,' '),ddmmyy1Ø.);
 time=input(scan(line,4,' '),time8.);
 channel=scan(line,5,' ');
 if date=today()-1;
 label trans='Tran*Count'
 total='Total*Trans Count*Today To Date'
 date='Interval*End*Date'
 time='Interval*End Time'
 channel='Channel*Name';
 run;
 proc append data=tis base=tismch;
 run;
%mend;
%chan(chan1); /* list each channel history file to process */
%chan(chan2);
proc sort data=tismch;
by channel date time;
run;
data new.dismch; /* keep 35 days history of interval data */
update msgstat.dismch tismch; /* use update so job can be rerun */
by channel date time;
if intck('day',date,today())<35;
run;
* create daily totals file ;
proc summary data=tismch;
by channel date;
var trans;
output out=tdsmch(drop=_type_ _freq_) sum=;
run;
data new.ddsmch; /* keep 12 months history of interval data */
update msgstat.ddsmch tdsmch; /* use update so job can be rerun */
by channel date;
if intck('month',date,today())<12;
run;
//*CLEAN UP
//CLEANUP EXEC PGM=IDCAMS

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE MQ.PROD.MSGSTAT
 IF LASTCC = Ø THEN DO
 ALTER MQ.PROD.MSGSTAT.NEW -
 NEWNAME(MQ.PROD.MSGSTAT)
 END
//*

The second job produces graphs in gif format. The graphs show the
daily history of the total message count.

//MQMCDT15 JOB ,'ISOS TST MW RAB',CLASS=4,MSGCLASS=X
//* PURPOSE : MQ Channel message count graphs
//B1 EXEC ASV6,OPTIONS='NOERRORABEND'
//MSGSTAT DD DSN=MQ.PROD.MSGSTATS,DISP=SHR
//GIFS DD DSN=MQ.PROD.WEBFILE,DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=VB,LRECL=132,BLKSIZE=Ø),
// SPACE=(TRK,(5Ø,5Ø,1ØØ))
//SYSIN DD *
goptions
 device=gif
 gsfmode=replace
 gsflen=128
 cback=white
 ctext=black
 ctitle=black
 nodisplay
;
axis1
 c=blue
 w=3
 label = none
 value = (font=swiss h=1.5)
;
axis2
 c=blue
 w=3
 label = (font=swiss h=2 a=-9Ø r=9Ø ‘Number of Messages’)
 value = (font=swiss h=1.5)
;
symbol1 i=j l=1 w=3 c=blue v=none;
symbol2 i=j l=2 w=3 c=red v=none;
%macro gifs(channel,FILEd);
 * daily peak graphs ;
 title;
 title1 font=swiss h=3 "Daily Message Count History";
 title2 font=swiss h=3 "Channel &channel";
 * dynamic file allocation to a PDS ;
 filename &filed "mq.prod.webfile(&filed)" disp=shr;
 goptions gsfname=&filed;

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 proc gplot data=msgstat.ddsmch;
 where channel="&channel";
 plot trans*date/haxis=axis1 vaxis=axis2 overlay;
 run;
 quit;
%mend;
*list channels to graph ;
%gifs(QPØ1.TO.QPØ2, gp1p2);
%gifs(QPØ2.TO.QPØ1, gp2p1);

GRAPHIC OUTPUT

Figure 1 shows the regular peaks and troughs of the weekday and
weekend workload. The large peak at the start of July is due to a new
application going live.

Figure 1: Daily message count history Channel QP01.TO.QP02l

N
um

be
r

of
 m

es
sa

ge
s

30,000

25,000

20,000

15,000

10,000

26/3/01 15/4/01 5/5/01 25/5/01 14/6/01 4/7/01 24/7/01
Date

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

PUBLISHING

This graph can now be published on your Web site. This is a simple
process using FTP.

This job is very similar to the previous FTP job but it does a PUT
instead of a GET.

//MQMCDT2Ø JOB ,'ISOS TST MW RAB',CLASS=4,MSGCLASS=X
//* PURPOSE : MQ Channel message count graphs FTP
///FTP EXEC PGM=FTP,REGION=2Ø48K,PARM='SYSD 21 (TIMEOUT 2Ø'
//STEPLIB DD DSN=SYS1.SEZATCP,DISP=SHR
//SYSTCPD DD DSN=TP.VOTCPBP.PARMLIB(TCPDATA),DISP=SHR
//SYSFTPD DD DUMMY
//NETRC DD DUMMY
//SYSMDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//INPUT DD *
userid
password
quote site umask Ø22
binary
put 'mq.prod.webfile(gp1p2)' /internal/mq/channel/gp1p2.gif
put 'mq.prod.webfile(gp2p1)' /internal/mq/channel/gp2p1.gif

SAMPLE HTML CODE

This html displays a page with two small graphs, gp1p2.gif and
gp2p1.gif. Clicking on either of these gifs brings up a full-screen
version of it.

MAIN PAGE
<html>
<head>
<title>PRODUCTION MQ MESSAGE COUNT STATS </title>
</head>
<p align="center">CHANNEL MESSAGE COUNT STATS</
b>
</p>
<img vspace=Ø border=2 src=gp1p2.gif width=48%
height=4Ø%>
<img vspace=Ø border=2 src=gp2p1.gif width=48%
height=4Ø%>

</p>

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

P1P2.HTM PAGE
<html>
<head>
<title>PRODUCTION MQ MESSAGE COUNT STATS </title>
</head>
 <p align="center">CHANNEL QPØ1.TO.QPØ2 STATS</
b>
</p>

p2p1.htm page
<html>
<head>
<title>PRODUCTION MQ MESSAGE COUNT STATS </title>
</head>
<p align="center">CHANNEL QPØ2.TO.QPØ1 STATS</
b>
</p>

Rab McGill
Senior Technician (UK) © Xephon

What’s new in MQSeries Integrator V2.0.2?

Earlier this year, IBM announced an update to MQSeries Integrator
(MQSI) V2 with the release of V2.0.2. The formal announcement can
be viewed at http://www.ibm.com/software/ts/mqseries/integrator/
v202.

In this article I want to look at the most notable changes in a little more
detail than was covered in the announcement. To describe each of
them in depth would take a considerable amount of space and that is
not the function of articles such as this: my intent is to highlight issues
of particular interest and, hopefully, inspire you to find out more for
yourselves. The ultimate aim, of course, is to have you use the
product!

AVAILABILITY ON HP-UX AND IBM ISERIES 400

Previous versions of MQSI V2 had support for Windows NT, AIX,
and Solaris. This list has now been extended to include the HP-UX and
IBM iSeries 400 platforms. As with the other implementations of
MQSI V2, the Control Centre and Configuration Manager must run
on Windows NT V4 or Windows 2000.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

In order to run MQSI V2.0.2 on an HP server you will need year 2000-
compliant Hewlett Packard HP-9000 hardware, HP-UX V11.00 with
year 2000-fixes, and IBM MQSeries for HP-UX Version 5.1 or later.

Databases supported on this platform are IBM DB2 Universal Database
Version 6.1 with ODBC or Version 7.1, Microsoft SQLServer 6.5, 7.0,
and 2000, and Sybase Version 12. However, transactional support
(coordinated message processing and database updates in a single unit
of work) is only available with DB2.

Support on the iSeries 400 is provided through the use of an Integrated
xSeries Server rather than a native iSeries implementation. The
Integrated xSeries Server for iSeries provides an Intel processor and
PC memory, which are contained on a motherboard located within the
iSeries 400 server. This allows MQSI for Windows NT V2.0.2 to run
on the Intel processor. The Integrated xSeries Server contains an Intel
Pentium III 700 MHz and up to 4 GB of main memory. In order to use
this Integrated xSeries Server you will need OS/400 V4R5 in one of
the following iSeries servers: 270, 820, 830, 840, SB2, or SB3. (See
http://www.as400.ibm.com/windowsintegration/hdwspec.htm for
more details on the Integrated xSeries Server.)

NATIONAL LANGUAGE SUPPORT

MQSI V2.0.2 has extended the number of supported national languages
to ten. The user interface and message catalogues support the following
languages: Brazilian Portuguese, French, German, Italian, Japanese,
Korean, Simplified Chinese, Spanish, Traditional Chinese, and US
English. There is a restriction, however, with some of the New Era of
Networks’ support, which is for US English only. This applies to the
Rules and Formatter support nodes and graphical interfaces.

MQSI V2.0.2 is able to process and construct messages in any of the
code pages for which MQSeries supports conversion to and from
Unicode, on all operating systems.

MQSERIES EVERYPLACE AND SCADA PROTOCOL SUPPORT

Prior to V2.0.2 the only supported input and output message format
was that of MQSeries. With V2.0.2 that has changed, and it is now
possible to process MQSeries Everyplace and the SCADA Device
protocol messages within MQSI V2.

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries Everyplace and the SCADA protocols are specifically
designed for use with pervasive computing devices. MQSeries
Everyplace is typically used on small handheld devices and PDAs.
SCADA is used on small footprint devices which are usually remote
and unattended. Such devices typically monitor flow rates or
temperatures, for example.

Because there is now support for these new message types there are
four new IBM-supplied input and output nodes. These are:

• The MQeInput and MQeOutput nodes to provide support for
MQSeries Everyplace.

• The SCADAInput and SCADAOutput nodes for the SCADA
protocol.

There have also been modifications to the Publication node to add
support for MQSeries Everyplace and the SCADA protocol.

The MQeInput node represents an MQSeries to MQSeries Everyplace
bridge. The MQeOutput node allows messages to be written to an
MQSeries Everyplace queue.

For those interested in using the MQSeries Everyplace support there
is Supportpac ID03 (http://www.ibm.com/software/ts/mqseries/
txppacs/id03.html), which contains very useful information on how to
implement MQSI V2 and MQSeries Everyplace communication. The
Supportpac shows how MQSeries Everyplace and MQSeries Integrator
work together. It also provides sample code to configure MQSeries
Everyplace to MQSeries Integrator communication, as well as a
description of how to use that code.

The SCADAInput node represents a SCADA input port. It receives a
message from a client connection using the MQIdsp protocol in the
format recognized by MQSI V2 and establishes a processing
environment for the message.

Although the SCADAOutput node can be used to write an output
message it is not normally used for this purpose. The Publication node
is used instead.

One restriction to note is that all message flows containing SCADA
nodes must be deployed to the same execution group.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

MQSeries Everyplace and SCADA applications have significant
differences when compared with a typical MQSeries application. It is
advisable to read the available documentation before starting to work
with either of these new message formats. The Introduction and
Planning Manual has a useful introduction and a section on special
considerations when using this new support.

MESSAGE FLOW DEBUGGING TOOL

In the past, facilities to debug message flows have been limited to user
trace and trace nodes. V2.0.2 has added significant new functionality
in this area, with a message flow debugger. The debugger is selected
by using the debugger option on the Message Flows view in the
Control Centre. Using the debugger, it is possible to define breakpoints
with a message flow.

The debugger will only work on assigned message flows so you must
have a broker defined and running. Using the debugger screen in the
Control Centre it is possible to start and stop debugging as well as set
options. The breakpoints are set and removed on the message flow
panel. There is a SmartGuide to help with the setting of debugger
options.

When a breakpoint is encountered, control is returned to the Control
Centre user and it is then possible to inspect or modify the message
contents. This greatly improves the process of debugging message
flows. It provides the ability to see incorrect conditions with filter
nodes or see incorrect logic in compute nodes, for example.

There are two modes of operation possible with the debugger. The first
is to trace the course of execution of a single message. The second is
to set a breakpoint in a particular message flow to catch messages
going down a particular path, perhaps an error path for when you do
not understand why messages were going along that path, for example.
Having set the breakpoint you would process messages. When a
message was sent along the path with the breakpoint set, control
would be returned to you and you would then be able to examine the
message and see why it was going along that error path. The book
MQSeries Integrator Using the Control Centre has a chapter dedicated
to the debugger, which provides valuable information on how to use
this new feature.

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

NEW ERA OF NETWORKS VERSION 5.2

Support for New Era of Networks Rules and Formatter Version 5.2 has
been added to MQSI V2.0.2. This brings three new nodes
(NEONRulesEvaluation, NEONTransform, NEONMap) and a new
parser (NEONMSG).

The new support significantly enhances the function previously
available. A statement recently appeared in some publications stating
that support for the old nodes (NEONRules and NEONFormatter)
and domain parser (NEON) was to be deprecated and discontinued.
This is incorrect, as the product ‘readme’ (available after product
installation) makes clear. They are still within the product, and usable.

All of the improvements to Rules and Formatter V5.2 are available
within MQSI V2.0.2.

You must follow the migration and administration steps detailed in the
MQSeries Integrator V2.0.2 documentation before using either the
existing function (NEONRules and NEONFormatter nodes and NEON
domain message parser) or the new function (NEONRulesEvaluation,
NEONTransform, and NEONMap nodes, and NEONMSG domain
parser).

By providing both the existing and new functions, the intention is to
enable you to run existing New Era of Networks nodes ‘as is’, and also
gain exposure to the new nodes and function that they bring. The new
function is not simply a new implementation of the existing function;
it provides additional functionality.

At the core of the new technology is the NEONMSG domain parser,
which is the new domain parser for messages defined in the Rules and
Formats database. The old domain remains, but is really there for
compatibility. The NEONMSG parser has the ability to translate wire-
format messages into an MQSeries Integrator message tree. There is
also the ability to translate the message tree into a wire-format
message. The message tree produced by NEONMSG has a different
structure from the NEON parser, so look closely at the documentation.
There are also some restrictions that you need to be aware of, so, again,
read the manuals closely.

NEONMSG can only parse messages defined as input formats in the
Rules and Formats database, so it does not cover all message formats.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

It identifies the input format by using the Message Type property on
the MQInput node or the <Type> element in a message content
descriptor (<mcd>) folder in an RFH2 header.

The NEONRulesEvaluation node is intended as a direct replacement
for the old NEONRules nodes. The attributes of the old and new nodes
are the same. However, because of some of the changes in the new
NEONRules and NEONFormatter function, some difference in
behaviour for particular Subscription Actions will be seen.

The NEONTransform node is intended as a replacement for the old
NEONFormatter node. It is capable of reproducing the same function
as the old node; however, slightly different usage may be required in
some situations because of a change to the Rules and Formatter
support in MQSI V2.0.2.

In a NEONTransform node a two-stage process takes place. In the first
stage, the message data is mapped from the fields of the input format
to the fields of a specified target format according to the default
mapping or the specified Map Name and Map Version. In the second
stage, the node applies the output operations which were specified for
each field in the target format (that is as defined in the NEONFormatter
User Interface). In stage one, a field would be parsed and potentially
reordered; in stage two, it might be translated to upper case (UPPER
CASE), for example.

The NEONMap node is identical to the NEONTransform node, but it
performs only the mapping stage of a reformat; it would not perform
the translation to upper case as described in the example for the
NEONTransform node.

SUPPORT FOR MQSERIES 5.2

MQSI V2.0.2 supports the use of MQSeries 5.2. This is good news.
It will allow you to pick up the latest MQSeries performance
improvements. Laboratory tests have shown significant gains in
performance with Version 5.2 compared with Version 5.1, particularly
for persistent messages. Logging was rewritten in Version 5.2, and, as
a result, syncpoint processing is significantly more efficient. With
Version 5.1, only one application at a time was able to commit
updates. This meant that the maximum commit rate was largely

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

constrained by the speed of the disk on which the log was located.
With Version 5.2 it is possible for multiple applications to commit
updates at the same time. This has led to a significant increase in
message throughput rates. Version 5.2 has been available since
October 2000.

PERFORMANCE IMPROVEMENTS

There are a number of performance improvements with V2.0.2. These
are in the areas of parsing(MQ header parsing), string processing, and
Field Handling. These changes are internal to the product and you do
not need to do anything to activate the benefits other than use V2.0.2.
Laboratory tests have shown improvements of between 10% and 60%
for Filter Nodes, Compute Nodes, the MRM, and Publish/Subscribe.
The benefits you observe will always vary of course, because of
differences in the processing taking place and the environment.

Message throughput using the Message Repository Manager (MRM)
is also significantly improved with V2.0.2 compared with V2.0.1.
There was a problem with V2.0.1 MRM performance as a result of
which an efix was produced. This was called efix ‘MSDW01’ and had
to be applied on top of CSD1 for MQSI V2.0.1. The efix is now rolled
into CSD2 for V2.0.1. The benefits of the efix were most significant
when converting to or from CWF format messages. The MRM fix is
included in V2.0.2. If there are any V2.0.1 installations using the
MRM that do not have either the efix or CSD2 installed there is a
strong recommendation to update your system and benefit from the
performance improvement.

DOCUMENTATION

There have been a number of changes to the product documentation,
intended to extend its scope and the way in which it is structured.

Using The Control Centre has been restructured. The book is essentially
split into two parts. The tasks that you need to perform, along with
details on their execution, are in the first part. The second part
describes the concepts that lie behind the tasks. There is a new section
on New Era of Networks Rules and Formatter support. The Control
Centre tour has been moved to the Introduction and Planning Book.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

There is a new book called ESQL Reference. Much of the material
about the use of ESQL, which was in Using The Control Centre, has
been moved to this new book. The book gives an overview of ESQL,
describes key concepts, and shows the syntax of field definitions and
ESQL statements. Complex SELECTs, ROWs, and LISTs are
discussed, as is querying external databases. The Appendices provide
additional information, such as the details of ESQL components
(Special characters, datatypes, etc), examples (the format of the
example message used in much of the book for illustration purposes
and use of trace to view message structure), and also details of the
MQSeries message header parsers (MQRFH, MQIIH etc).

The Introduction and Planning Book contains a number of changes to
include information on the new features in this product version. This
includes coverage of MQSeries Integrator for HP-UX Version 2.0.2
and a discussion of the capabilities of the new debugger function
available in the Control Centre.

The main changes in the Programming Guide are coverage of the
Plug-in SmartGuide for the defining of new Plug-in nodes and a
description of the MQSeries Integrator SCADA device protocol.

The Administration Guide has been updated to deal with national
language support, a discussion of commands to manipulate message
sets, the message flow debugger, and migration issues when upgrading
from previous versions of the product. Information on the New Era of
Networks Rules and Formatter nodes has been moved to the
Administration Guide from the Installation Guide, and is provided for
each of the supported platforms. The information has also been
updated to include the new functionality in the New Era of Networks
Rules and Formatter support.

TRANSACTIONAL DATABASE SUPPORT

Transactional database support on Solaris is now extended to include
Oracle 8.1.6 or 8.1.7. Previously, only DB2 supported transactional
processing on Solaris.

Tim Dunn
Software Engineer, IBM Hursley (UK) © IBM

MQ news

Strategic Thought has released the first of its
new Active Integrator gateway products,
MQ/Tuxedo, providing an XML message-
based interface between BEA Tuxedo and
IBM WebSphere MQ, allowing applications
in either environment to initiate
communications via the gateway. The
company claims that the product enables
communication between the two systems
without needing to rewrite code or configure
the gateway for each message.

Active Integrator – MQ/Tuxedo is currently
available on NT and Solaris, has been tested
on AIX, and can be provided on other
platforms running Tuxedo and MQ.

A second Active Integrator product will also
be released shortly: MQ/File Adapter,
which offers the ability to transport files
from point-to-point using WebSphere MQ.

For further information contact:
Strategic Thought, 4 Queens Road, The Old
Town Hall, Wimbledon, London SW19
8YA, UK.
Phone + 44 (0) 208 410 4000
Fax + 44 (0) 208 410 4030
Web:http://www.strategicthought.co.uk

* * *

Xephon’s annual MQ Update 2001 event
runs 12-13 December at the Radisson SAS
Portman Hotel in London. This two-day
Conference provides a thorough analysis of
recent product developments in the MQ
environment and provides essential pointers

on how to maximize performance within the
enterprise.

For further information contact:
Xephon, 27-35 London Road, Newbury,
Berks, RG14 1JL, UK.
Tel: + 44 (0) 1635 33823
Fax: + 44 (0) 1635 38345
Web:http://www.xephon.com/events

* * *

IONA has announced the release of
Enterprise Integrator V3.1. A standards-
based enterprise integration solution,
Enterprise Integrator V3.1 offers new Web
services and business-to-business
integration features through interoperability
with the IONA XMLBus and native IONA
B2B Integrator adapters.

The company claims that these new features
and advanced adapters for JMS, CORBA,
and MQSeries allow companies to leverage
and better utilize multiple messaging
infrastructures.

For further information contact:
IONA, The IONA Building, Shelbourne
Road, Ballsbridge, Dublin 4, Ireland.
Tel: + 353 1 637 2000
Fax: + 353 1 637 2888
Web: http://www.iona.com

IONA, 200 West Street 4th Floor, Waltham,
MA024451, USA.
Tel: + 781 902 8000
Fax: + 781 902 8001

* * *

x xephon

	HIS and its MSMQ MQSeries Bridge part 3: administration and performance
	Writing exits for enableNet Data Integrator (eNDI)
	MQ message throughput reporting on AIX
	What’s new in MQSeries Integrator V2.0.2?
	MQ news

