
© Xephon plc 2002

January 2002

31

3 Improving TCP/IP channel
reliability

8 Processing expired messages
21 MQSeries Wrappers
37 End-to-end error handling
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor (temporary)
Harry Harris
E-mail: harrya.harris@virgin.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 3

Improving TCP/IP channel reliability

MQSERIES CHANNELS AND TCP/IP SOCKETS – BACKGROUND

The sender and receiver message channel agents (MCAs) for a TCP/
IP channel pair use a facility called TCP/IP sockets to communicate
with each other. Once a socket connection is initialized (one end
listens on a specific port number, the other connects to a specified IP
address and port number), both ends can send and receive messages
to and from each other.

It is important to understand the way in which the MQSeries channel
protocol operates. When a channel sender/receiver pair is started but
idle, the sender MCA is waiting for an MQGET from the transmission
queue, and the receiver MCA is blocked, waiting for a socket receive
call. The socket receive call is analogous to an MQGET call in that a
wait period can be specified, and execution is blocked until either
some data arrives or the wait period expires.

When a channel is idle (let’s assume channel heartbeats are disabled
– see later section for a discussion of this subject), the MCAs do not
send or receive any data and each MCA will be unaware of the
opposite MCA’s status. In the case of a communications error, such as
a network outage, the sender will be unaware that the receiver is
unavailable until a message arrives on the transmission queue and it
tries to send, over the socket, to the receiver MCA. The sender MCA
will receive an error only when it tries to send data. Furthermore, the
receiver MCA will not normally be aware that the sender is unavailable
as it simply may not be sending any data.

This behaviour is advantageous for large installations where there
may be thousands of channels and network traffic needs to be
minimized, but may cause a lack of resilience where the availability
of channels is a critical factor. Careful consideration of the following
options will allow TCP/IP channels to be more resilient by detecting
and correcting errors as soon as possible, with a minimum of manual
operator intervention.

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ADOPTNEWMCA PARAMETER

This parameter provides a solution in situations where a sender MCA
has terminated because of an error and has closed its end of the TCP/
IP socket, but the receiver MCA did not receive an error and still has
its socket open waiting for data. The listener on the receive end will
refuse the channel start request because the old orphaned instance of
the channel is already running.

If the listener receives a channel start request but the receiver MCA is
already running, then enabling this parameter will cause the listener
to terminate the existing orphaned MCA and start a new MCA to
service the start request.

The symptom of this problem is the receiver channel in a RUNNING
state, but the corresponding sender is unable to start and has gone into
a RETRY state. The channel will only start when the disconnect
interval expires on the receiver MCA and the sender performs its next
retry.

The AdoptNewMCA parameter was introduced with version 5.1 of
MQSeries and is disabled by default. The parameter is enabled by
specifying AdoptNewMCA=ALL in the CHANNELS: stanza within
a queue manager’s QM.INI file (in Windows NT/2000 all parameters
are stored in the registry and can be changed from the queue manager
properties dialog within the MQSeries services console). When
enabled, the listener on the receiver end will give the orphaned MCA
a stop request and will wait AdoptNewMCATimeout seconds for it
to terminate. If it is still running, the listener will then kill the process.

For security purposes, it is also recommended to specify
AdoptNewMCACheck=ALL to prevent channels from being
inadvertently or maliciously closed down. This parameter instructs
the listener to check (before killing the existing MCA) that the
incoming channel start request is coming from the same IP address
and queue manager.

KEEPALIVE PARAMETER

KeepAlive is an option available on TCP/IP sockets that causes each
TCP/IP socket to periodically probe the other end of the socket and
check it is still open and available. If, after retrying, the other end does

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 5

not respond, the socket is closed and an error is returned to the
application. This probing is done by the operating system at the TCP/
IP layer; the MCAs simply request KeepAlive when opening a socket.

A queue manager will request KeepAlive for all outgoing and incoming
channel connections when KeepAlive=YES is specified in the TCP:
stanza. This parameter is available for all recent versions of MQSeries.

On receiving a TCP/IP error, a sender MCA will go into a RETRY state
and attempt to re-establish a new connection: a receiver MCA will go
into the INACTIVE state and wait for a new incoming connection.

The KeepAlive timer determines how often the KeepAlive probe
occurs; it is set in the operating system per TCP/IP stack and cannot
be set on a per socket basis. The same KeepAlive timer value will be
used for all TCP/IP sockets requesting that KeepAlive runs on that
TCP/IP stack. The KeepAlive timer has a high default value of two
hours: enabling KeepAlive will be of little use unless the timer is
configured to a more suitable value.

• On Unix, the KeepAlive timer is a kernel parameter and instructions
for changing its value will depend on the version of Unix running.

• On NT and 2000, the parameter is stored in the registry under the
key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip\Parameters\: the value has the name
KeepAliveTime, is of the type REG_DWORD, and is expressed in
milliseconds. Look at the Microsoft Knowledge Base, article
number Q120642, for further details.

• On AS/400, use the CHGTCPA command.

Some systems may also allow two other parameters to be altered: the
number of KeepAlive probe retries and the time between each retry.
Care must be taken to ensure that the chosen values are suitable for all
applications that request KeepAlive.

CHANNEL HEARTBEATS

A heartbeat flow is sent by the sender MCA after the channel has been
idle (ie transmission queue has been empty) for a period of time
known as the effective heartbeat interval. This value is negotiated

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

when the channel is started and will be the larger of the HBINT
parameters for the channel pair. The HBINT parameter must be
supported by both queue managers otherwise no heartbeats will occur.
This parameter is available with V5.0 of MQSeries and upwards, plus
OS/390 V2.1 and AS/400 V4.2.1.

Do not confuse the heartbeat flow with a message flow: the heartbeat
flow is sent only over the socket between the MCAs; it does not
involve the sending of an MQ message. However, the heartbeat flows
are reflected in the batches completed, buffers sent/received, and
bytes sent/received statistics within the channel status.

The receiver MCA times-out from the socket receive call after twice
the heartbeat interval, as it should have received either a message or
a heartbeat flow within this interval. It can, therefore, assume that the
sender MCA is no longer available and can terminate, returning the
channel status to inactive. After sending the heartbeat flow the sender
MCA expects the heartbeat flow to be echoed back, and if this doesn’t
happen it will assume that the receiver MCA is unavailable, causing
the sender channel to terminate and go into the retry state. Channel
heartbeats provide a similar function to KeepAlive in that they allow
errors to be detected on idle and orphaned channels, but provide this
facility at the program layer rather than at the TCP/IP layer.

Heartbeat flows also allow the receiver MCA to check whether the
queue manager is quiescing. When a channel is started but idle, the
heartbeat flow will allow the receiver MCA to return from the blocked
socket receive call, check whether the queue manager is quiescing,
and then continue with the next blocked receive call. Finally, the
receiver MCA will also free any resources (close open queues and
release buffers) when the heartbeat is received, as it can assume the
channel is not being actively used.

DISCONNECT INTERVAL AND RETRY TIMERS

For queue managers that do not support channel heartbeats (and of
course, AdoptNewMCA, which was introduced in the subsequent
version) and have KeepAlive disabled, the value of the disconnect
interval becomes more critical. In the orphaned MCA situation, where
the sender MCA has failed and restarted but the receiver MCA is still

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 7

waiting on the old socket, the receiver MCA will only end when the
disconnect interval has expired.

The default values for the DISCINT and LONGTMR parameters mean
that a channel could be down for two hours before it recovers
automatically. If this is unacceptable, a shorter DISCINT will have to
be used. Consideration may also be given to the SHORTTMR and
SHORRTY parameters to ensure that the sender channel is still in
short-term retry when the receiver terminates, allowing the channel to
restart as quickly as possible.

CONCLUSION

• When a sender MCA tries to send a message any error is detected
immediately.

• KeepAlive and channel heartbeats allow sender and receiver
MCAs to detect an error while the channel is idle. This may be
important in order to detect errors on an infrequently-used
channel with a long disconnect interval, for example.

• AdoptNewMCA allows a receiver channel to immediately recover
from an orphaned receiver MCA.

• KeepAlive and channel heartbeats allow a receiver MCA to detect
that it has been orphaned within a configured period of time. The
channel will go back to the inactive state and wait for another
incoming start request from the sender MCA.

• Channel heartbeats provide a similar error detection mechanism
to KeepAlive, but are easier to implement, can be set on a per
channel basis, and provide an additional benefit. There is no case
for enabling KeepAlive on adjacent queue managers that support
channel heartbeats.

• The default HBINT value of 300 seconds is adequate for most
purposes. The value may be increased if there are a large number
of started channels and heartbeat flows are causing network
congestion. The value may be decreased to detect errors on idle
channels more quickly, and to allow a queue manager with started
receive channels to quiesce more quickly.

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The value chosen for the KeepAlive timer needs to be coordinated
with those who are familiar with the network and other TCP/IP
applications running on the systems hosting queue managers.

• For queue managers that do not support channel heartbeats (and
AdoptNewMCA), enabling KeepAlive should be considered.
Without KeepAlive or channel heartbeats, a short disconnect
interval will terminate orphaned receiver MCAs more quickly.

• For receiver channels on queue managers that do not support
AdoptNewMCA, ensure that the sender MCA is still in the short
retry state when the receiver MCA terminates. The short retry
time (SHORTTMR x SHORTRTY) should be a margin less
than twice the heartbeat interval or the total time required for a
KeepAlive to fail (keepalive time + (number of retries x retry
interval).

Jonathan Rowe
Consultant, Workstar (UK) © Jonathan Rowe

Processing expired messages

MQSeries for OS/390 did not provide a dead letter queue handler until
version 5.2. The problem with processing messages on the dead letter
queue arises when some of the messages are expired messages.

Expired messages are counted on display q(dead-letter-q) curdepth
commands but are ignored on copy q(dead-letter-q) commands.
Copy q gives ‘no message on the queue’ whereas the queue depth is
greater than zero.

This situation has been reported to IBM but the company doesn’t
regard it as an error, merely a processing difference between the
COPY command and DISPLAY CURDEPTH command.

We have written a COBOL program – MQREMEXP – destined to
remove expired messages from the dead letter queue and leaving only
unexpired messages, which are then processed by the home-written
dead letter handler program, RUNMQDLQ.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 9

The logic in MQREMEXP is to MQGET a message with an unexpected
message-id and correlation-id. MQGET gets MQSeries to search
through the dead letter queue for this non-existent message, and when
an expired message is met, MQSeries removes it from the dead letter
queue.

The dead letter queue handler is similar to the one supplied on other
platforms: it gets as input the destination-q name or the destination-
qmanager name and the action type required. 'all queues' can also be
given as destination-q name.

Below, you will find the source code for MQREMEXP and
RUNMQDLQ, the JCL source named RUNMQDLJ with two steps
mqremexp and runmqdlq, and the input file MQDLQIN.

MQREMEXP

CBL NODYNAM,LIB,OBJECT,RENT,RES,APOST
 IDENTIFICATION DIVISION.
 PROGRAM-ID. MQREMEXP.
 AUTHOR. SERKAN KOCAK.
 DATE-WRITTEN. JAN, 2ØØØ.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 I-O-CONTROL.
 DATA DIVISION.
 FILE SECTION.
 WORKING-STORAGE SECTION.
 Ø1 TARGET-MSGID PIC X(24) VALUE 'TISYS REMOVE EXPIRED MSG'.
 Ø1 TARGET-CORRELID PIC X(24) VALUE 'TISYS REMOVE EXPIRED MSG'.
 Ø1 WØ1-MQM-NAME PIC X(48) VALUE SPACES.
 Ø1 WØ1-QUEUE-NAME PIC X(48) VALUE SPACES.
 Ø1 WØ2-MQM PIC X(48) VALUE SPACES.
 Ø1 WØ2-OBJECT PIC X(48) VALUE SPACES.
 Ø1 WØ3-BUFFER-LENGTH PIC S9(9) BINARY VALUE 52ØØ.
 Ø1 WØ3-HCONN PIC S9(9) BINARY.
 Ø1 WØ3-OPTIONS PIC S9(9) BINARY.
 Ø1 WØ3-HOBJ PIC S9(9) BINARY.
 Ø1 WØ3-DATA-LENGTH PIC S9(9) BINARY.
 Ø1 WØ3-COMPCODE PIC S9(9) BINARY.
 Ø1 WØ3-REASON PIC S9(9) BINARY.
 Ø1 WØ3-MESSAGE-BUFFER PIC X(52ØØ).
 Ø1 WØ5-MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
 Ø1 WØ5-MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 Ø1 WØ5-MQM-GET-MESSAGE-OPTIONS.

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 COPY CMQGMOV.
 Ø1 WØ5-MQM-CONSTANTS.
 COPY CMQV.
 Ø1 WØ6-CSQ4-OK PIC S9(4) VALUE Ø.
 Ø1 WØ6-CSQ4-WARNING PIC S9(4) VALUE 4.
 Ø1 WØ6-CSQ4-ERROR PIC S9(4) VALUE 8.
 Ø1 WØ7-DISPLAY.
 Ø5 WØ7-QNAME PIC X(48).
 Ø5 WØ7-ACTION PIC X(1Ø).
 LINKAGE SECTION
 Ø1 PARMDATA.
 Ø5 PARM-LEN PIC S9(Ø3) BINARY.
 Ø5 PARM-STRING PIC X(1ØØ).
 PROCEDURE DIVISION USING PARMDATA.
 A-MAIN SECTION.
 PERFORM GET-PARAMETERS
 THRU GET-PARAMETERS-EXIT.
 PERFORM MAIN-WORK
 THRU MAIN-WORK-EXIT.
 GET-PARAMETERS.
 * QMANAGER NAME AND THE DEAD_LETTER_Q NAME SHOULB BE
 * BE GIVEN AS INPUT PARAMETERS FROM THE INVOKED JCL
 IF PARM-LEN = Ø THEN
 DISPLAY 'MQREMEXP: NO PARAMAETER SPECIFIED, GIVE QMGR'
 DISPLAY 'MQREMEXP: AND QUEUE NAME SEPARATED BY COMMA.'
 STOP RUN
 END-IF.
 UNSTRING PARM-STRING DELIMITED BY ALL ','
 INTO WØ2-MQM
 WØ2-OBJECT.
 MOVE WØ2-MQM TO WØ1-MQM-NAME.
 MOVE WØ2-OBJECT TO WØ1-QUEUE-NAME.
 IF WØ2-MQM = SPACES OR WØ2-MQM = LOW-VALUES THEN
 DISPLAY 'MQREMEXP: DEFAULT QMGR USED'
 END-IF.
 IF WØ2-OBJECT = SPACES OR WØ2-OBJECT = LOW-VALUES THEN
 DISPLAY 'MQREMEXP: SPECIFY DEAD_LETTER_QUEUE NAME'
 STOP RUN
 END-IF.
 GET-PARAMETERS-EXIT.
 EXIT.
 MAIN-WORK.
 * CONNECT TO THE QMANAGER
 CALL 'MQCONN' USING WØ2-MQM
 WØ3-HCONN
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQREMEXP: MQCONN ENDED WITH REASON ' WØ3-REASON
 STOP RUN
 END-IF.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 11

 * OPEN THE DEAD_LETTER_Q FOR INPUT
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE WØ2-OBJECT TO MQOD-OBJECTNAME.
 COMPUTE WØ3-OPTIONS = MQOO-BROWSE +
 MQOO-INPUT-SHARED.
 CALL 'MQOPEN' USING WØ3-HCONN
 MQOD
 WØ3-OPTIONS
 WØ3-HOBJ
 WØ3-COMPCODE
 WØ3-REASON.

 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQREMEXP: MQOPEN ' WØ2-OBJECT 'ENDED WITH '
 WØ3-REASON
 PERFORM A-MAIN-DISCONNECT
 END-IF.
 COMPUTE MQGMO-OPTIONS = MQGMO-NO-WAIT +
 MQGMO-SYNCPOINT.
 * WE TRY TO MQGET A MESSAGE WITH A MESSAGE-ID AND CORREL-ID
 * THAT WOULDN'T EXIST ON THE DEAD_LETTER_Q. SO PASSING OVER
 * THE EXPIRED AND NON EXPIRED MESSAGES ON THE Q SEARCHING
 * FOR A MESSAGE THAT DOES NOT EXIST, ALL EXPIRED MESSAGES
 * WILL BE REMOVED FROM THE DEAD_LETTER_Q.
 MOVE TARGET-MSGID TO MQMD-MSGID.
 MOVE TARGET-CORRELID TO MQMD-CORRELID.
 CALL 'MQGET' USING WØ3-HCONN
 WØ3-HOBJ
 MQMD
 MQGMO
 WØ3-BUFFER-LENGTH
 WØ3-MESSAGE-BUFFER
 WØ3-DATA-LENGTH
 WØ3-COMPCODE
 WØ3-REASON.
 IF WØ3-REASON = MQRC-NONE
 DISPLAY 'MQREMEXP: FIND TARGET MESSAGE WITH '
 DISPLAY 'MQREMEXP: MSGID :' TARGET-MSGID
 DISPLAY 'MQREMEXP: CORRELID :' TARGET-CORRELID
 DISPLAY 'MQREMEXP: MESAJ :' WØ3-MESSAGE-BUFFER
 CALL 'MQBACK' USING WØ3-HCONN
 WØ3-COMPCODE
 WØ3-REASON
 IF WØ3-REASON = MQRC-NONE
 DISPLAY 'MQREMEXP: MQBACK ' WØ2-OBJECT ' ENDED '
 WØ3-REASON
 END-IF
 ELSE
 DISPLAY 'MQREMEXP: MQGET ' WØ2-OBJECT 'ENDED '
 WØ3-REASON
 END-IF.

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MOVE MQCO-NONE TO WØ3-OPTIONS.
 CALL 'MQCLOSE' USING WØ3-HCONN
 WØ3-HOBJ
 WØ3-OPTIONS
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQREMEXP: CLOSE ' WØ2-OBJECT 'ENDED ' WØ3-REASON
 END-IF.
 MAIN-WORK-EXIT.
 PERFORM A-MAIN-DISCONNECT.
 A-MAIN-DISCONNECT.
 CALL 'MQDISC' USING WØ3-HCONN
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQREMEXP: MQDISC ENDED WITH REASON' WØ3-REASON
 END-IF.
 STOP RUN.

RUNMQDLQ
CBL NODYNAM,LIB,OBJECT,RENT,RES,APOST
 IDENTIFICATION DIVISION.
 PROGRAM-ID. RUNMQDLQ.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE
 ORGANIZATION IS SEQUENTIAL
 FILE STATUS IS FS
 ASSIGN TO INFILE.
 I-O-CONTROL.
 DATA DIVISION.
 FILE SECTION.
 FD INFILE
 LABEL RECORDS ARE STANDARD
 RECORDING MODE IS F
 BLOCK CONTAINS Ø CHARACTERS
 RECORD CONTAINS 8Ø CHARACTERS
 DATA RECORD IS INFILE-REC.
 Ø1 INFILE-REC.
 Ø5 FILLER PICTURE X(8Ø).
 WORKING-STORAGE SECTION.
 Ø1 FS PICTURE XX.
 Ø1 INFILE-STATUS PICTURE X VALUE SPACE.
 88 INFILE-END VALUE 'E'.
 Ø1 INREC.
 Ø5 INREC-ARRAY OCCURS 5Ø TIMES.
 1Ø INREC-VALUE-FLD.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 13

 15 INREC-FIELD PICTURE X(2Ø) VALUE SPACES.
 15 INREC-VALUE PICTURE X(48) VALUE SPACES.
 1Ø INREC-ACTION-FLD.
 15 INREC-ACTION PICTURE X(1Ø) VALUE SPACES.
 15 INREC-FWDQUEUE PICTURE X(48) VALUE SPACES.
 15 INREC-FWDQMGR PICTURE X(48) VALUE SPACES.
 * THE PROCESS CAN BE DONE FOR GIVEN DESTINATION QUEUE NAMES,
 * FOR ALL DESTINATION QUEUES OR FOR GIVEN DESTINATION QMANAGER
 * NAME
 Ø1 INREC-FIELDS.
 Ø5 DESTQNAME PICTURE X(2Ø) VALUE 'DESTQNAME'.
 Ø5 ALLQUEUES PICTURE X(2Ø) VALUE 'ALLQUEUES'.
 Ø5 DESTQMGRNAME PICTURE X(2Ø) VALUE 'DESTQMGRNAME'.
 * 3 TYPES OF ACTION : RETRY, DISCARD, FORWARD
 Ø1 INREC-ACTIONS.
 Ø5 RETRY PICTURE X(1Ø) VALUE 'RETRY'.
 Ø5 DISCARD PICTURE X(1Ø) VALUE 'DISCARD'.
 Ø5 FORWARD PICTURE X(1Ø) VALUE 'FORWARD'.
 Ø1 COMPARE-VALUE PICTURE X(48).
 Ø1 MATCH-STATUS PICTURE X VALUE SPACE.
 88 MATCH-FOUND VALUE 'E'.
 Ø1 INDEKS PICTURE 99 VALUE Ø.
 Ø1 I PICTURE 99 VALUE Ø.
 Ø1 WØ1-MQM-NAME PIC X(48) VALUE SPACES.
 Ø1 WØ1-QUEUE-NAME PIC X(48) VALUE SPACES.
 Ø1 WØ2-MQM PIC X(48) VALUE SPACES.
 Ø1 WØ2-OBJECT PIC X(48) VALUE SPACES.
 Ø1 WØ3-BUFFER-LENGTH PIC S9(9) BINARY VALUE 5198.
 Ø1 WØ3-HCONN PIC S9(9) BINARY.
 Ø1 WØ3-OPTIONS PIC S9(9) BINARY.
 Ø1 WØ3-HOBJ PIC S9(9) BINARY.
 Ø1 WØ3-HOBJ-OUT PIC S9(9) BINARY.
 Ø1 WØ3-DATA-LENGTH PIC S9(9) BINARY.
 Ø1 WØ3-COMPCODE PIC S9(9) BINARY.
 Ø1 WØ3-PUTCODE PIC S9(9) BINARY.
 Ø1 WØ3-REASON PIC S9(9) BINARY.
 Ø1 WØ3-MESSAGE-BUFFER.
 Ø5 WØ3-DLQ-HEADER.
 COPY CMQDLHL.
 Ø5 WØ3-MESSAGE-DATA PIC X(5ØØØ).
 Ø1 WØ5-MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
 Ø1 WØ5-MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 Ø1 WØ5-MQM-GET-MESSAGE-OPTIONS.
 COPY CMQGMOV.
 Ø1 WØ5-MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
 Ø1 WØ5-MQM-CONSTANTS.
 COPY CMQV.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 Ø1 WØ6-CSQ4-OK PIC S9(4) VALUE Ø.
 Ø1 WØ6-CSQ4-WARNING PIC S9(4) VALUE 4.
 Ø1 WØ6-CSQ4-ERROR PIC S9(4) VALUE 8.
 LINKAGE SECTION.
 Ø1 PARMDATA.
 Ø5 PARM-LEN PIC S9(Ø3) BINARY.
 Ø5 PARM-STRING PIC X(1ØØ).
 PROCEDURE DIVISION USING PARMDATA.
 A-MAIN SECTION.
 PERFORM GET-PARAMETERS
 THRU GET-PARAMETERS-EXIT.
 PERFORM READ-INFILE
 THRU READ-INFILE-EXIT.
 PERFORM MAIN-WORK
 THRU MAIN-WORK-EXIT.
 GET-PARAMETERS.
 * QMANAGER NAME AND THE DEAD_LETTER_Q NAME SHOULB BE
 * BE GIVEN AS INPUT PARAMETERS FROM THE INVOKED JCL
 IF PARM-LEN = Ø THEN
 DISPLAY 'NO PARAMAETER SPECIFIED'
 DISPLAY 'GIVE QMGRNAME AND DLQNAME SEPARATED BY COMMA'
 STOP RUN
 END-IF.
 UNSTRING PARM-STRING DELIMITED BY ALL ','
 INTO WØ2-MQM
 WØ2-OBJECT.
 MOVE WØ2-MQM TO WØ1-MQM-NAME.
 MOVE WØ2-OBJECT TO WØ1-QUEUE-NAME.
 IF WØ2-MQM = SPACES OR WØ2-MQM = LOW-VALUES THEN
 DISPLAY 'DEFAULT QMGR USED'
 END-IF.
 IF WØ2-OBJECT = SPACES OR WØ2-OBJECT = LOW-VALUES THEN
 DISPLAY 'SPECIFY DLQ NAME'
 STOP RUN
 END-IF.
 GET-PARAMETERS-EXIT.
 EXIT.
 READ-INFILE.
 * WE READ THE INPUT FILE OF COMMANDS FOR PROCESSING THE DLQ
 OPEN INPUT INFILE.
 MOVE SPACE TO INFILE-STATUS.
 PERFORM SCAN-FILE
 THRU SCAN-FILE-EXIT
 UNTIL INFILE-END.
 CLOSE INFILE.
 READ-INFILE-EXIT.
 EXIT.
 SCAN-FILE.
 ADD 1 TO INDEKS.
 * WE READ THE INPUT FILE 2 LINES AT A TIME, FOR THE DESTINATION

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 15

 * OBJECT NAME AND THE ACTION REQUESTED AND WE PUT EACH COMMAND
 * ON AN ARRAY
 READ INFILE NEXT
 AT END MOVE 'E' TO INFILE-STATUS.
 UNSTRING INFILE-REC DELIMITED BY ALL ','
 INTO INREC-FIELD (INDEKS)
 INREC-VALUE (INDEKS).
 READ INFILE NEXT
 AT END MOVE 'E' TO INFILE-STATUS.
 UNSTRING INFILE-REC DELIMITED BY ALL ','
 INTO INREC-ACTION (INDEKS)
 INREC-FWDQUEUE (INDEKS)
 INREC-FWDQMGR (INDEKS).
 SCAN-FILE-EXIT.
 EXIT.
 MAIN-WORK.
 CALL 'MQCONN' USING WØ2-MQM
 WØ3-HCONN
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQCONN ENDED WITH REASON ' WØ3-REASON
 STOP RUN
 END-IF.
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE WØ2-OBJECT TO MQOD-OBJECTNAME.
 COMPUTE WØ3-OPTIONS = MQOO-BROWSE +
 MQOO-INPUT-SHARED.
 CALL 'MQOPEN' USING WØ3-HCONN
 MQOD
 WØ3-OPTIONS
 WØ3-HOBJ
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQOPEN ' WØ2-OBJECT 'ENDED WITH ' WØ3-REASON
 PERFORM A-MAIN-DISCONNECT
 END-IF.
 * MQGET BROWSE FIRST MESSAGE
 MOVE MQGMO-NO-WAIT TO MQGMO-OPTIONS.
 ADD MQGMO-BROWSE-FIRST TO MQGMO-OPTIONS.
 ADD MQGMO-ACCEPT-TRUNCATED-MSG TO MQGMO-OPTIONS.
 CALL 'MQGET' USING WØ3-HCONN
 WØ3-HOBJ
 MQMD
 MQGMO
 WØ3-BUFFER-LENGTH
 WØ3-MESSAGE-BUFFER
 WØ3-DATA-LENGTH
 WØ3-COMPCODE
 WØ3-REASON.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 * LOOP UNTIL END OF MESSAGES
 PERFORM WITH TEST BEFORE
 UNTIL ((WØ3-COMPCODE NOT = MQCC-OK) AND
 (WØ3-REASON NOT = MQRC-TRUNCATED-MSG-ACCEPTED))
 PERFORM PROCESS-MESSAGE
 THRU PROCESS-MESSAGE-EXIT
 MOVE MQMI-NONE TO MQMD-MSGID
 MOVE MQCI-NONE TO MQMD-CORRELID
 MOVE SPACES TO WØ3-MESSAGE-BUFFER
 MOVE MQGMO-NO-WAIT TO MQGMO-OPTIONS
 ADD MQGMO-BROWSE-NEXT TO MQGMO-OPTIONS
 ADD MQGMO-ACCEPT-TRUNCATED-MSG TO MQGMO-OPTIONS
 * MQGET BROWSE NEXT MESSAGE
 CALL 'MQGET' USING WØ3-HCONN
 WØ3-HOBJ
 MQMD
 MQGMO
 WØ3-BUFFER-LENGTH
 WØ3-MESSAGE-BUFFER
 WØ3-DATA-LENGTH
 WØ3-COMPCODE
 WØ3-REASON
 * END LOOP
 END-PERFORM.
 IF ((WØ3-COMPCODE NOT = MQCC-OK) AND
 (WØ3-REASON NOT = MQRC-TRUNCATED-MSG-ACCEPTED)) THEN
 DISPLAY 'MQGET ' WØ2-OBJECT 'ENDED ' WØ3-REASON
 END-IF.
 MOVE MQCO-NONE TO WØ3-OPTIONS.
 CALL 'MQCLOSE' USING WØ3-HCONN
 WØ3-HOBJ
 WØ3-OPTIONS
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'CLOSE ' WØ2-OBJECT 'ENDED ' WØ3-REASON
 END-IF.
 MAIN-WORK-EXIT.
 PERFORM A-MAIN-DISCONNECT.
 PROCESS-MESSAGE.
 MOVE Ø TO I.
 MOVE 'H' TO MATCH-STATUS.
 * FOR EACH MESSAGE BROWSED, LOOK IF IT IS SUBJECT TO THE
 * COMMANDS IN THE ARRAY
 PERFORM FIND-MATCH
 THRU FIND-MATCH-EXIT
 UNTIL I NOT < INDEKS OR MATCH-FOUND.
 IF MATCH-FOUND
 PERFORM TAKE-ACTION
 THRU TAKE-ACTION-EXIT.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 17

 PROCESS-MESSAGE-EXIT.
 EXIT.
 FIND-MATCH.
 ADD 1 TO I.
 EVALUATE INREC-FIELD (I)
 WHEN DESTQNAME
 MOVE MQDLH-DESTQNAME TO COMPARE-VALUE
 IF COMPARE-VALUE = INREC-VALUE (I)
 MOVE 'E' TO MATCH-STATUS
 END-IF
 WHEN ALLQUEUES
 MOVE 'E' TO MATCH-STATUS
 WHEN DESTQMGRNAME
 MOVE MQDLH-DESTQMGRNAME TO COMPARE-VALUE
 IF COMPARE-VALUE = INREC-VALUE (I)
 MOVE 'E' TO MATCH-STATUS
 END-IF
 END-EVALUATE.
 FIND-MATCH-EXIT.
 EXIT.
 TAKE-ACTION.
 EVALUATE INREC-ACTION (I)
 WHEN DISCARD
 PERFORM DISCARD-MESSAGE
 THRU DISCARD-MESSAGE-EXIT
 WHEN RETRY
 PERFORM RETRY-MESSAGE
 THRU RETRY-MESSAGE-EXIT
 WHEN FORWARD
 PERFORM FORWARD-MESSAGE
 THRU FORWARD-MESSAGE-EXIT
 END-EVALUATE.
 TAKE-ACTION-EXIT.
 EXIT.
 A-MAIN-DISCONNECT.
 CALL 'MQDISC' USING WØ3-HCONN
 WØ3-COMPCODE
 WØ3-REASON.
 IF (WØ3-COMPCODE NOT = MQCC-OK) THEN
 DISPLAY 'MQDISC ENDED WITH REASON' WØ3-REASON
 END-IF.
 STOP RUN.
 DISCARD-MESSAGE.
 MOVE MQMI-NONE TO MQMD-MSGID
 COMPUTE MQGMO-OPTIONS = MQGMO-NO-WAIT +
 MQGMO-MSG-UNDER-CURSOR.
 ADD MQGMO-ACCEPT-TRUNCATED-MSG TO MQGMO-OPTIONS.
 CALL 'MQGET' USING WØ3-HCONN
 WØ3-HOBJ
 MQMD

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MQGMO
 WØ3-BUFFER-LENGTH
 WØ3-MESSAGE-BUFFER
 WØ3-DATA-LENGTH
 WØ3-COMPCODE
 WØ3-REASON
 IF WØ3-COMPCODE = MQCC-OK THEN
 CALL 'MQCMIT' USING WØ3-HCONN
 WØ3-COMPCODE
 WØ3-REASON
 IF WØ3-COMPCODE NOT = MQCC-OK THEN
 DISPLAY 'CMIT' WØ2-OBJECT 'ENDED ' WØ3-REASON
 END-IF
 ELSE
 IF ((WØ3-COMPCODE NOT = MQCC-OK) AND
 (WØ3-REASON NOT = MQRC-TRUNCATED-MSG-ACCEPTED)) THEN
 DISPLAY 'GET ' WØ2-OBJECT 'ENDED ' WØ3-REASON
 END-IF
 END-IF.
 DISCARD-MESSAGE-EXIT.
 EXIT.
 RETRY-MESSAGE.
 MOVE MQCC-FAILED TO WØ3-PUTCODE.
 MOVE MQDLH-DESTQNAME TO MQOD-OBJECTNAME.
 MOVE MQDLH-DESTQMGRNAME TO MQOD-OBJECTQMGRNAME.
 PERFORM PUT-MESSAGE
 THRU PUT-MESSAGE-EXIT.
 RETRY-MESSAGE-EXIT.
 EXIT.
 FORWARD-MESSAGE.
 MOVE MQCC-FAILED TO WØ3-PUTCODE.
 MOVE INREC-FWDQUEUE (I) TO MQOD-OBJECTNAME.
 MOVE INREC-FWDQMGR (I) TO MQOD-OBJECTQMGRNAME.
 PERFORM PUT-MESSAGE
 THRU PUT-MESSAGE-EXIT.
 FORWARD-MESSAGE-EXIT.
 EXIT.
 PUT-MESSAGE.
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 COMPUTE WØ3-OPTIONS = MQOO-OUTPUT.
 CALL 'MQOPEN' USING WØ3-HCONN
 MQOD
 WØ3-OPTIONS
 WØ3-HOBJ-OUT
 WØ3-COMPCODE
 WØ3-REASON.
 IF WØ3-COMPCODE NOT = MQCC-OK
 DISPLAY 'OPEN ' MQOD-OBJECTNAME 'ENDED ' WØ3-REASON
 ELSE
 MOVE MQMT-DATAGRAM TO MQMD-MSGTYPE

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 19

 MOVE MQDLH-FORMAT TO MQMD-FORMAT
 SUBTRACT 172 FROM WØ3-DATA-LENGTH
 CALL 'MQPUT' USING WØ3-HCONN
 WØ3-HOBJ-OUT
 MQMD
 MQPMO
 WØ3-DATA-LENGTH
 WØ3-MESSAGE-DATA
 WØ3-PUTCODE
 WØ3-REASON
 IF WØ3-PUTCODE = MQCC-OK
 PERFORM DISCARD-MESSAGE
 THRU DISCARD-MESSAGE-EXIT
 ELSE
 DISPLAY 'PUT ' MQOD-OBJECTNAME 'ENDED ' WØ3-REASON
 END-IF
 CALL 'MQCLOSE' USING WØ3-HCONN
 WØ3-HOBJ-OUT
 MQCO-NONE
 WØ3-COMPCODE
 WØ3-REASON
 IF WØ3-COMPCODE NOT = MQCC-OK
 DISPLAY 'CLOSE ' MQOD-OBJECTNAME 'ENDED' WØ3-REASON
 END-IF
 END-IF.
 PUT-MESSAGE-EXIT.
 EXIT.

RUNMQDLJ

//RUNMQDLQ JOB (ACCT÷),CLASS=1,MSGLEVEL=(1,1),
// NOTIFY=&SYSUID,MSGCLASS=X
//* THIS STEP WILL REMOVE ALL EXPIRED MESSAGES ON THE DLQ
//RUNMQEXP EXEC PGM=MQREMEXP,PARM=('PMQ1','PMQ1.DEAD.QUEUE')
//STEPLIB DD DSN=USER.TIS.LOADLIB,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=PMQM.SCSQANLE,DISP=SHR
// DD DSN=PMQM.SCSQAUTH,DISP=SHR
// DD DSN=PMQM.SCSQCOBC,DISP=SHR
// DD DSN=PMQM.SCSQLOAD,DISP=SHR
//SYSDBOUT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//* THIS STEP WILL PROCESS UNEXPIRED MESSAGES
//RUNMQDLQ EXEC PGM=RUNMQDLQ,PARM=('PMQ1','PMQ1.DEAD.QUEUE')
//STEPLIB DD DSN=USER.TIS.LOADLIB,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=PMQM.SCSQANLE,DISP=SHR
// DD DSN=PMQM.SCSQAUTH,DISP=SHR

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// DD DSN=PMQM.SCSQCOBC,DISP=SHR
// DD DSN=PMQM.SCSQLOAD,DISP=SHR
//SYSDBOUT DD SYSOUT=*
//INFILE DD DSN=USER.TIS.JCL(MQDLQIN),DISP=SHR
//* SAMPLE INPUT FILE CONTENT :
//*EACH COMMAND LIES ON TWO CONSECUTIVE LINES
//*1ST LINE : DESTQNAME,destination_Q_name
//*2ND LINE : action[,forwardq,forwardqmgr]
//* or
//*1ST LINE : DESTQMGRNAME,destination_qmgr_name
//*2ND LINE : action[,forwardq,forwardqmgr]
//* or
//*1ST LINE : ALLQUEUES
//*2ND LINE : action[,forwardq,forwardqmgr]
//*DESTQNAME,YSP2CICS.INITQ
//*DISCARD
//*ALLQUEUES
//*RETRY
//*DESTQMGRNAME,MQ888
//*RETRY
//*DESTQNAME,CMON
//*FORWARD,BACKQ,MQ888
//SYSABOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

MQDLQIN

DESTQNAME,YSPCICS.INITQ
DISCARD
DESTQMGRNAME,MQ887
DISCARD
DESTQNAME,CMON
FORWARD,BACKQ,MQ887
ALLQUEUES
RETRY

Serkan Kocak
Transaction and Messaging Systems Specialist (Turkey) ©Xephon

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 21

MQSeries Wrappers

INTRODUCTION

This article briefly describes why MQSeries Wrappers are commonly
created. It then goes on to describe an example of an MQSeries
Wrapper, detailing the specification and how it is used. Finally, some
sample code is listed – including the key parts of the Wrapper itself
and extracts from programs that call it. The article does not supply a
‘ready-to-use’ Wrapper, but provides the basic ideas and specification
(backed by code) necessary to build one. The Wrapper was written to
run on OS/390 mainframes (CICS or IMS and DB2), but can easily be
ported to other platforms.

WHY CODE AN MQSERIES WRAPPER?

The IBM-supplied application programming interface to MQSeries
(the MQI) is sometimes considered excessively complex because of
the myriad of options that can be specified on the main calls. Most
business applications do not want to bother with the specification of
these options; however, these options are essential if MQSeries is to
remain the flexible product that it is today.

There are many implementations of the MQI. Most programming
languages (eg Java) have their own ‘MQ Client’ that allows the
developer to make calls to MQSeries. These MQ Clients allow the
developer access to MQSeries via their own set of calls (which do not
usually match those calls supplied in the MQI). Also, most MQ
Clients do not offer all of the available MQI options. These two
features of MQ Client software are also usually features of MQSeries
‘Wrappers’.

The two main aims of an MQSeries Wrapper are:

• To provide a simple interface for business application programs
that wish to use MQSeries. This is best achieved by minimizing:

– the number of calls that the business application must make

– the amount of information that the business application
needs to specify on each call.

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• To maintain the flexibility of the MQSeries product, ie not to
impose its own restrictions by assuming default values for
MQSeries options.

It is very easy for an MQSeries Wrapper (or MQ Client) to achieve one
of these objectives. It is more difficult to achieve both. For example,
a Wrapper could supply calls of SEND and RECEIVE and translate
these to the necessary MQCONN, MQOPEN, MQPUT, MQGET,
MQCLOSE, and MQDISC calls, assuming its chosen default values
for all the MQSeries options. This achieves the objective of simplicity,
but not flexibility.

Alternatively, a more flexible Wrapper could supply the same SEND
and RECEIVE calls, but allow the calling program to specify what the
Wrapper considers to be the ‘key’ MQSeries options. However, as
time passes, requirements usually arise for calling programs to
specify an increasing number of different MQSeries options. The
defaults assumed by the Wrapper are not sufficient. The Wrapper
allows the specification of more and more ‘key’ options, but the
further the Wrapper goes down this route, the more it loses sight of its
first objective; the Wrapper becomes flexible, but not simple.

AN MQSERIES WRAPPER SPECIFICATION

The remainder of this article describes a very simple MQSeries
Wrapper. It was developed to run on the mainframe (in batch or under
any version of CICS or IMS), but could very easily be ported to other
platforms. The Wrapper supplies a simple set of calls (SEND,
RECEIVE, etc) and maintains the flexibility of the IBM-defined
product. All MQI options are also available to users of the Wrapper.

It achieves the objectives described above by removing all the option-
setting from program code – either the calling program or the Wrapper
itself. All MQSeries options are defined in DB2 tables (these are very
basic tables that could easily be ported to another database product).

Because all the MQSeries options are held in DB2 tables there is the
additional benefit of being able to change any MQSeries option ‘on-
the-fly’ – without the need for program changes. Equally, it allows
MQSeries queue names to be changed dynamically.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 23

New MQSeries functionality (eg additional options supplied by IBM)
can also be exploited without the need for changes to code.

SPECIFYING THE MQSERIES OPTIONS

All main MQSeries options are specified within six IBM-defined
structures.

• Object Descriptor (OD).

• Open Options (OO).

• Message Descriptor (MQMD).

• Put Message Options (PMO).

• Get Message Options (GMO).

• Close Options (CO).

Note that further structures can easily be added as and when required;
for example, a Wrapper may be needed in order to format and add an
MQRFH2 header. This can be achieved easily, using default values
and a newly-created DB2 table to hold specific instances of MQRFH2
headers, should they need to be defined.

Each structure has its own DB2 table. For example, there is an
OD_TABLE containing all the different Object Descriptors that are
currently in use – each defined on a single row. Because the Object
Descriptor contains the "Queue Name" field, the OD_TABLE has
more rows than the other tables (there needs to be a row added to the
OD_TABLE for each MQSeries queue that is accessed via the
Wrapper).

Each row in the OD_Table, OO_Table, MD_Table, and CO_Table
actually has room for two entries (ie two Object Descriptors). This is
for use on the SEND RECEIVE function that will open and close two
queues (the request queue and the reply queue).

Each row in each table is given a unique name (key) that is passed by
the calling program to the Wrapper. The Wrapper is then able to
retrieve the required structure(s) from DB2 and perform the necessary
MQSeries calls.

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The calling program need not specify names for all structures. The
Wrapper contains default values for all MQSeries options – like many
other Wrappers. However, the calling program can override any of the
default values simply by specifying the name of a structure that has
been defined in one of the DB2 tables. The Wrapper attempts to
retrieve a row for each structure name that is not composed of spaces.

As mentioned previously, the most populous table will be the
OD_TABLE. Entries in this table can be created automatically
whenever a new MQSeries queue is defined. This can be achieved
very easily in a mainframe environment by submitting a single batch
job containing two steps, each of which executes an IBM-supplied
utility:

• CSQUTIL – this defines the MQSeries queue.

• DSNTEP2 – this executes the SQL required to add a row to the
OD_TABLE.

There are, of course, many ways to insert, update, or delete rows from
DB2 tables. Submitting OS/390 batch jobs is simple, but effective. It
would be relatively easy to develop a front-end to the DB2 tables. This
would allow easy (and dynamic) control over all of the MQSeries
options in use by any MQSeries program.

THE WRAPPER INTERFACE

As mentioned previously, the Wrapper being described is not restricted
to OS/390 operation. However, for ease of explanation, the following
describes an OS/390 MQSeries Wrapper.

The Wrapper exists as an individual load module. It may be dynamically
called in the CICS, IMS, or batch environments. The calling program
must specify three parameters to be passed to the Wrapper:

• Wrapper Control Data.

• MQSeries Structure Names.

• Message Data.

Each of these parameters is described below.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 25

Wrapper Control Data

This is an input/output area that must be passed to the Wrapper (see
Figure 1). Each field is described in more detail later in the article.

Field Length Format Description

Function 30 Character Input: must be specified by the calling
program.

Queue Manager 48 Character Input: must be specified by the calling
program in IMS and batch. Unused in CICS.

Message Length 4 Binary Input: must be specified by the calling
program (if sending).

Buffer Length 4 Binary Input: must be specified by the calling
program (if receiving data).

Connection Handle 4 Binary Output/input: returned by the Wrapper, but
must be passed on subsequent calls if
sending or receiving multiple messages.

Object Handle Out 4 Binary Output/input: returned by the Wrapper,
but must be passed on subsequent calls if
sending or receiving multiple messages.

Object Handle In 4 Binary Output/input: returned by the Wrapper,
but must be passed on subsequent calls if
sending or receiving multiple messages.

Return Code 4 Binary Output: set by the Wrapper.

MQSeries Error 78 Group Output: set by the Wrapper
Details Group
consisting of

..MQ Operation 12 Character Output: describes the failing MQSeries call
(if any).

..MQ Object Name 48 Character Output: describes the object name (eg
queue) relating to the failure (if any).

..Completion Code 9 Character Output: IBM MQSeries Completion Code.

..Reason Code 9 Character Output: IBM MQSeries Reason Code.

Figure 1: Wrapper Control Data

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries Structure Names

This is an input/output area that must be passed to the Wrapper (see
Figure 2). Structures not required must be specified as spaces. Further
structures can easily be added if required.

Field Length Format Description

Number of 2 Binary Input: specifies the number of structures
Structures that follow. Essential for allowing the easy

addition of new structures, whilst retaining
backwards integrity of the Wrapper code.

Object Descriptor 48 Character Input: may be specified by the calling
(OD) Name program. Unique name given to the Object

Descriptor structure to be used by the calling
program.

OD SQL Code 4 Binary Output: returned by the Wrapper.

Open Options 48 Character Input: may be specified by the calling
(OO) Name program. Unique name given to the Open

Options structure defined by the calling
program.

OO SQL Code 4 Binary Output: returned by the Wrapper.

Message Descriptor48 Character Input: may be specified by the calling
(MD) Name program. Unique name given to the Message

Descriptor structure defined by the calling
program.

MD SQL Code 4 Binary Output: returned by the Wrapper.

Put Message 48 Character Input: may be specified by the calling
Options (PMO) program. Unique name given to the Put
Name Message Options structure defined by the

calling program.

PMO SQL Code 4 Binary Output: returned by the Wrapper.

Get Message 48 Character Input: may be specified by the calling
Options (GMO) program. Unique name given to the Get
Name Message Options structure defined by the

calling program.

GMO SQL Code 4 Binary Output: returned by the Wrapper.

Close Options (CO) 48 Character Input: may be specified by the calling
Name program. Unique name given to the Close

Options structure defined by the calling
program.

CO SQL Code 4 Binary Output: returned by the Wrapper.

Figure 2: MQSeries Structure Names

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 27

Message buffer

This is an input area when data is being sent and an output area when
data is being received. The calling program must pass this area to the
Wrapper. If the Wrapper does not wish to impose any limits of its own
on MQSeries applications this buffer should be 4 megabytes in length
(the IBM limit for an MQSeries message size). However, there may
be performance reasons to make this buffer smaller.

Wrapper Control Data field descriptions

Function (input)

This field can take the following values:

• SEND – the Wrapper will open the appropriate MQSeries message
queue, put a single message onto the queue, and then close it.

• RECEIVE – the Wrapper will open the appropriate MQSeries
message queue, get a single message from the queue, and then
close it.

• SEND FIRST – the Wrapper will open the appropriate MQSeries
message queue, put a message onto it, but leave the queue open
– expecting another message to be specified by the calling
business application in a subsequent call (SEND AGAIN).

• SEND AGAIN – the Wrapper puts a message onto the already
opened MQSeries message queue (using the Object Handle Out
field returned to it by the calling business application). The
Wrapper does not close the MQSeries message queue.

• SEND LAST – the Wrapper puts a message onto the already
opened MQSeries message queue (using the Object Handle Out
field, returned to it by the calling business application). The
Wrapper then closes the MQSeries message queue.

• SEND RECEIVE – the Wrapper puts a message onto the
appropriate MQSeries message queue and then gets another
message (probably after waiting for a reply) from another
MQSeries message queue.

• RECEIVE FIRST – the Wrapper will open the appropriate
MQSeries message queue, get a message from it, but leave the

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

queue open – expecting a request to get another message from the
queue in a subsequent call (RECEIVE AGAIN).

• RECEIVE AGAIN – the Wrapper gets a message from the
already opened MQSeries message queue (using the Object
Handle In field returned to it by the calling business application).
The Wrapper does not close the MQSeries message queue.

• RECEIVE LAST – the Wrapper gets a message from the already
opened MQSeries message queue (using the Object Handle In
field returned to it by the calling business application). The
Wrapper then closes the MQSeries message queue.

• COMMIT – the Wrapper should commit all puts/gets.

Queue Manager (input)

This field contains the name of the queue manager to which the
Wrapper should connect. It must be specified in the IMS or batch
environments. It is ignored in the CICS environment since, under
CICS, there is an implicit connection to an MQSeries queue manager
that is determined by the definition of the CICS region.

Message Length (input)

This field is only required for SEND-type functions. It determines the
length of the MQSeries message that the Wrapper will put onto the
specified MQSeries queue. In the interests of performance this field
should be calculated accurately by the calling business application.

Buffer Length (input)

This field is only required for RECEIVE-type functions. It informs the
Wrapper of the length of the area in the business application program
(Message Data) into which the Wrapper should put the MQSeries
message. If the message is bigger than this buffer length the Wrapper
will report an error. In this case, the message will either be retrieved
truncated or the MQSeries get will fail, depending on the setting of
Get Message Options.

Connection Handle (output/input)

This field is only required if the calling business application wishes to

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 29

send or receive multiple messages. It is returned by the Wrapper after
the first successful SEND FIRST or RECEIVE FIRST request. The
calling business application must pass back this field unchanged on all
subsequent SEND AGAIN or RECEIVE AGAIN requests and also on
the final SEND LAST or RECEIVE LAST request, when the Wrapper
will disconnect from the MQSeries queue manager and so invalidate
this field.

Object Handle Out (output/input)

This field is only required if the calling business application wishes to
send multiple messages. It is returned by the Wrapper after the first
successful SEND FIRST request. The calling business application
must pass back this field unchanged on all subsequent SEND AGAIN
requests and also on the final SEND LAST request, when the Wrapper
will close the MQSeries output queue and so invalidate this field.

Object Handle In (output/input)

This field is only required if the calling business application wishes to
receive multiple messages. It is returned by the Wrapper after the first
successful RECEIVE FIRST request. The calling business application
must pass back this field unchanged on all subsequent RECEIVE
AGAIN requests and also on the final RECEIVE LAST request, when
the Wrapper will close the MQSeries input queue and so invalidate
this field.

Return Code (output)

This field is set by the Wrapper on all requests. It can contain the
following values:

• 0 – successful.

• +8 – MQSeries error (see Error Details, below).

• +12 – DB2 error.

• +16 – invalid function specified.

Error Details

The Wrapper should report all errors and also return the error details
to the calling program.

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SUMMARY

This Wrapper provides a simple, easy-to-maintain, easy-to-use,
powerful interface to MQSeries. A business application that simply
wishes to put messages onto a queue need specify only:

• SEND.

• Queue manager name (even this is not necessary if the queue is
on the default queue manager or if the calling program is
executing in CICS).

• A chosen name to identify the queue.

• The message length.

• The message data.

Defaults can be taken for most MQSeries options, remembering that
any can be overridden. Maintaining the MQSeries options in DB2
tables allows dynamic flexibility and also an element of control. If
access to the tables was restricted to MQSeries experts then developers
would need to consult with these experts to agree on the options most
suitable for their particular business application, rather than simply
adopt the options used in some sample code that happen to work.

It makes sense to define the IBM structures in DB2 (not structures
invented by the Wrapper) because this makes the Wrapper easy to
maintain/enhance as new releases of MQSeries arrive.

Each of the user-defined structure names provides the unique-key
index into the DB2 table. In usual DB2 terms, the tables are very small,
so there is minimal performance overhead.

SAMPLE CODE (COBOL)

The Wrapper (CICS, batch, or IMS)

I stress that this is not a complete ‘ready-to-use’ Wrapper. The pieces
of code that follow are extracts from a Wrapper and are intended to
illustrate the basic ideas. Wrappers can be easily built by extending
these extracts and by developing parts to suit individual needs (in
particular, error handling). To save space, I have only included the
DB2 declarations and the necessary fetch SQL for one of the six

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 31

MQSeries structures (the Put Message Options structure). The code
was originally written for MQSeries for OS/390 Version 1.2.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. WRAPPER.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL DECLARE PMO_TAB TABLE
 (UNIQUEKEY CHAR(3Ø),
 STRUCID CHAR(4),
 VERSION INTEGER,
 OPTIONS INTEGER,
 TIMEOUT INTEGER,
 CONTEXT INTEGER,
 KNOWNDESTCOUNT INTEGER,
 UNKNOWNDESTCOUNT INTEGER,
 INVALIDDESTCOUNT INTEGER,
 RESOLVEDQNAME CHAR(48),
 RESOLVEDQMGRNAME CHAR(48)
) END-EXEC.
* Example MQSeries Structure (MQPMO) *
 Ø1 MQPMO-ROW.
 Ø5 MQPMO-UNIQUE-KEY PIC X(48).
 Ø5 PUT-MESSAGE-OPTIONS.
 EXEC SQL
 INCLUDE CMQPMOV
 END-EXEC.
 Ø1 INITIALIZED-MQOD.
 COPY CMQODV.
 Ø1 INITIALIZED-MQMD.
 COPY CMQMDV.
 Ø1 MQSERIES-CONSTANTS.
 COPY CMQV.
 LINKAGE SECTION.
 Ø1 WRAPPER-CONTROL-DATA.
 Ø5 WRAPPER-FUNCTION PIC X(3Ø).
 Ø5 WRAPPER-QUEUE-MANAGER PIC X(48).
 Ø5 WRAPPER-MESSAGE-LENGTH PIC S9(9) BINARY.
 Ø5 WRAPPER-BUFFER-LENGTH PIC S9(9) BINARY.
 Ø5 WRAPPER-CONNECTION-HANDLE PIC S9(9) BINARY.
 Ø5 WRAPPER-OBJECT-HANDLE-OUT PIC S9(9) BINARY.
 Ø5 WRAPPER-OBJECT-HANDLE-IN PIC S9(9) BINARY.
 Ø5 WRAPPER-RETURN-CODE PIC S9(9) BINARY.
 Ø5 WRAPPER-MQSERIES-ERROR-DETAILS.
 1Ø WRAPPER-MQ-OPERATION PIC X(12).
 1Ø WRAPPER-MQ-OBJECTNAME PIC X(48).
 1Ø WRAPPER-MQ-COMPLETION-CODE PIC S9(9) BINARY.
 1Ø WRAPPER-MQ-REASON-CODE PIC S9(9) BINARY.
 Ø1 WRAPPER-MQSERIES-STRUCTURES.
 Ø5 NUMBER-OF-STRUCTURES VALUE 6 PIC 9(4) BINARY.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 Ø5 MQOD-NAME PIC X(48).
 Ø5 MQOD-SQL-CODE PIC S9(9) BINARY.
 Ø5 MQOO-NAME PIC X(48).
 Ø5 MQOO-SQL-CODE PIC S9(9) BINARY.
 Ø5 MQMD-NAME PIC X(48).
 Ø5 MQMD-SQL-CODE PIC S9(9) BINARY.
 Ø5 MQPMO-NAME PIC X(48).
 Ø5 MQPMO-SQL-CODE PIC S9(9) BINARY.
 Ø5 MQGMO-NAME PIC X(48).
 Ø5 MQGMO-SQL-CODE PIC S9(9) BINARY.
 Ø5 MQCO-NAME PIC X(48).
 Ø5 MQCO-SQL-CODE PIC S9(9) BINARY.
 Ø1 WRAPPER-MESSAGE-BUFFER PIC X(1Ø48576).
 PROCEDURE DIVISION USING WRAPPER-CONTROL-DATA
 WRAPPER-MQSERIES-STRUCTURES
 WRAPPER-MESSAGE-BUFFER.
 MAIN SECTION.
 PERFORM INITIALIZATION.
 PERFORM GET-MQSERIES-STRUCTURES.
 PERFORM PROCESS-REQUEST.
 GOBACK.
 INITIALIZATION SECTION.
* Set default values in MQSeries Structures. *
 INITIALIZE WRAPPER-MQSERIES-ERROR-DETAILS.
 MOVE INITIALIZED-MQOD TO MQOD-OUT
 MQOD-IN.
 MOVE INITIALIZED-MQMD TO MQMD-OUT
 MQMD-IN.
 MOVE MQOO-OUTPUT TO OPEN-OPTIONS-OUT.
 MOVE MQOO-INPUT-AS-Q-DEF TO OPEN-OPTIONS-IN.
 MOVE MQCO-NONE TO CLOSE-OPTIONS-OUT
 CLOSE-OPTIONS-IN.
 GET-MQSERIES-STRUCTURES SECTION.
* Retrieve named MQSeries Structures *
 IF MQOD-NAME NOT = SPACES
 PERFORM RETRIEVE-MQOD
 END-IF.
 IF MQOO-NAME NOT = SPACES
 PERFORM RETRIEVE-MQOO
 END-IF.
 IF MQMD-NAME NOT = SPACES
 PERFORM RETRIEVE-MQMD
 END-IF.
 IF MQPMO-NAME NOT = SPACES
 PERFORM RETRIEVE-MQPMO
 END-IF.
 IF MQGMO-NAME NOT = SPACES
 PERFORM RETRIEVE-MQGMO
 END-IF.
 IF MQCO-NAME NOT = SPACES
 PERFORM RETRIEVE-MQCO

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 33

 END-IF.
 RETRIEVE-MQPMO SECTION.
* Retrieve the named Put Message Options. *
 EXEC SQL
 SELECT * INTO :MQPMO-UNIQUE-KEY,
 :MQPMO-STRUCID,
 :MQPMO-VERSION,
 :MQPMO-OPTIONS,
 :MQPMO-TIMEOUT,
 :MQPMO-CONTEXT,
 :MQPMO-KNOWNDESTCOUNT,
 :MQPMO-UNKNOWNDESTCOUNT,
 :MQPMO-INVALIDDESTCOUNT,
 :MQPMO-RESOLVEDQNAME,
 :MQPMO-RESOLVEDQMGRNAME
 FROM MQPMO_TAB D
 WHERE D.UNIQUE-KEY = :MQPMO-NAME
 END-EXEC.
 MOVE SQLCODE TO MQPMO-SQL-CODE.
 PROCESS-REQUEST SECTION.
* Main logic *
 IF WRAPPER-FUNCTION = 'SEND'
 OR WRAPPER-FUNCTION = 'SEND FIRST'
 OR WRAPPER-FUNCTION = 'SEND RECEIVE'
 PERFORM CONNECT-QMGR
 PERFORM OPEN-QUEUE-OUT
 PERFORM PUT-MESSAGE
 END-IF.
 IF WRAPPER-FUNCTION = 'SEND AGAIN'
 OR WRAPPER-FUNCTION = 'SEND LAST'
 PERFORM PUT-MESSAGE
 END-IF.
 IF WRAPPER-FUNCTION = 'RECEIVE'
 OR WRAPPER-FUNCTION = 'RECEIVE FIRST'
 PERFORM CONNECT-QMGR
 PERFORM OPEN-QUEUE-IN
 PERFORM GET-MESSAGE
 END-IF.
 IF WRAPPER-FUNCTION = 'RECEIVE AGAIN'
 OR WRAPPER-FUNCTION = 'RECEIVE LAST'
 PERFORM GET-MESSAGE
 END-IF.
 IF WRAPPER-FUNCTION = 'SEND RECEIVE'
 PERFORM OPEN-QUEUE-IN
 PERFORM GET-MESSAGE
 END-IF.
 IF WRAPPER-FUNCTION = 'COMMIT'
 PERFORM COMMIT-MESSAGE
 END-IF.
 IF WRAPPER-FUNCTION = 'SEND'
 OR WRAPPER-FUNCTION = 'SEND LAST'

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 OR WRAPPER-FUNCTION = 'SEND RECEIVE'
 PERFORM CLOSE-QUEUE-OUT
 END-IF.
 IF WRAPPER-FUNCTION = 'RECEIVE'
 OR WRAPPER-FUNCTION = 'RECEIVE LAST'
 OR WRAPPER-FUNCTION = 'SEND RECEIVE'
 PERFORM CLOSE-QUEUE-IN
 END-IF.
 IF WRAPPER-FUNCTION = 'SEND'
 OR WRAPPER-FUNCTION = 'SEND LAST'
 OR WRAPPER-FUNCTION = 'SEND RECEIVE'
 OR WRAPPER-FUNCTION = 'RECEIVE'
 OR WRAPPER-FUNCTION = 'RECEIVE LAST'
 PERFORM DISCONNECT-QMGR
 END-IF.
 CONNECT-QMGR SECTION.
* Connect to Queue Manager *
 CALL 'MQCONN' USING WRAPPER-QUEUE-MANAGER
 WRAPPER-CONNECTION-HANDLE
 WRAPPER-MQ-COMPLETION-CODE
 WRAPPER-MQ-REASON-CODE
 END-CALL.
 IF WRAPPER-MQ-COMPLETION-CODE NOT = MQCC-OK
 MOVE +8 TO WRAPPER-RETURN-CODE
 MOVE 'CONNECT-QMGR' TO WRAPPER-MQ-OPERATION
 MOVE WRAPPER-QUEUE-MANAGER TO WRAPPER-MQ-OBJECTNAME
 GOBACK
 END-IF.
 OPEN-QUEUE-OUT SECTION.
* Open output queue *
 CALL 'MQOPEN' USING WRAPPER-CONNECTION-HANDLE
 MQOD-OUT
 OPEN-OPTIONS-OUT
 WRAPPER-OBJECT-HANDLE-OUT
 WRAPPER-MQ-COMPLETION-CODE
 WRAPPER-MQ-REASON-CODE
 END-CALL.
 IF WRAPPER-MQ-COMPLETION-CODE NOT = MQCC-OK
 MOVE +8 TO WRAPPER-RETURN-CODE
 MOVE 'OPEN-Q-OUT' TO WRAPPER-MQ-OPERATION
 MOVE MQOD-OUT.MQOD-OBJECTNAME TO
 WRAPPER-MQ-OBJECTNAME
 GOBACK
 END-IF.
 PUT-MESSAGE SECTION.
* Put message onto queue *
 CALL 'MQPUT' USING WRAPPER-CONNECTION-HANDLE
 WRAPPER-OBJECT-HANDLE-OUT
 MQMD-OUT
 PUT-MESSAGE-OPTIONS
 WRAPPER-MESSAGE-LENGTH

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 35

 WRAPPER-MESSAGE-BUFFER
 WRAPPER-MQ-COMPLETION-CODE
 WRAPPER-MQ-REASON-CODE
 END-CALL.
 IF WRAPPER-MQ-COMPLETION-CODE NOT = MQCC-OK
 MOVE +8 TO WRAPPER-RETURN-CODE
 MOVE 'PUT-MESSAGE' TO WRAPPER-MQ-OPERATION
 MOVE MQOD-OUT.MQOD-OBJECTNAME TO
 WRAPPER-MQ-OBJECTNAME
 GOBACK
 END-IF.
 OPEN-QUEUE-IN SECTION.
* Open input queue *
 CALL 'MQOPEN' USING WRAPPER-CONNECTION-HANDLE
 MQOD-IN
 OPEN-OPTIONS-IN
 WRAPPER-OBJECT-HANDLE-IN
 WRAPPER-MQ-COMPLETION-CODE
 WRAPPER-MQ-REASON-CODE
 END-CALL.
 IF WRAPPER-MQ-COMPLETION-CODE NOT = MQCC-OK
 MOVE +8 TO WRAPPER-RETURN-CODE
 MOVE 'OPEN-Q-IN' TO WRAPPER-MQ-OPERATION
 MOVE MQOD-IN.MQOD-OBJECTNAME TO
 WRAPPER-MQ-OBJECTNAME
 GOBACK
 END-IF.
 GET-MESSAGE SECTION.
* Get message *
 CALL 'MQGET' USING WRAPPER-CONNECTION-HANDLE
 WRAPPER-OBJECT-HANDLE-IN
 MQMD-IN
 GET-MESSAGE-OPTIONS
 WRAPPER-BUFFER-LENGTH
 WRAPPER-MESSAGE-BUFFER
 WRAPPER-MESSAGE-LENGTH
 WRAPPER-MQ-COMPLETION-CODE
 WRAPPER-MQ-REASON-CODE
 END-CALL.
 IF WRAPPER-MQ-COMPLETION-CODE NOT = MQCC-OK
 MOVE +8 TO WRAPPER-RETURN-CODE
 MOVE 'GET-MESSAGE' TO WRAPPER-MQ-OPERATION
 MOVE MQOD-IN.MQOD-OBJECTNAME TO
 WRAPPER-MQ-OBJECTNAME
 GOBACK
 END-IF.
 COMMIT-MESSAGE SECTION.
* Commit the put / got message *
 CALL 'MQCMIT' USING WRAPPER-CONNECTION-HANDLE
 WRAPPER-MQ-COMPLETION-CODE
 WRAPPER-MQ-REASON-CODE

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 END-CALL.
 IF WRAPPER-MQ-COMPLETION-CODE NOT = MQCC-OK
 MOVE +8 TO WRAPPER-RETURN-CODE
 MOVE 'CMIT-MESSAGE' TO WRAPPER-MQ-OPERATION
 MOVE WRAPPER-QUEUE-MANAGER TO WRAPPER-MQ-OBJECTNAME
 GOBACK
 END-IF.
 CLOSE-QUEUE-OUT SECTION.

MQSeries specialist (UK) © Xephon

Need help with an MQSeries problem or
project?

Maybe we can help:

• If it’s on a topic of interest to other subscribers, we’ll
commission an article on the subject, which we’ll publish
in MQ Update, and which we’ll pay for – it won’t cost you
anything.

• If it’s a more specialized, or more complex, problem, you
can advertise your requirements (including one-off projects,
freelance contracts, permanent jobs, etc) to the hundreds of
MQSeries professionals who visit MQ Update’s home page
every month. This service is also free of charge.

Visit the MQ Update Web site, http://www.xephon.com/index/
updates/MQu.html, and follow the link to Suggest a topic or
Opportunities for MQSeries specialists.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 37

End-to-end error handling

INTRODUCTION

Over the years, it has become accepted that MQSeries provides the
resilience and throughput capacity that is required of a business-
critical communication backbone system. The management tools
provided with the product have also been continuously improved to
provide the functionality that enables problems, when they arise, to
be identified and rectified within an acceptable timeframe. However,
this does not mean that everything in the garden is rosy and that we
have attained Nirvana.

It is common in many situations to find that the environment
implementation was developed from a single-application pilot, and
that it has inherited many of the limitations that were initially
acceptable but which can cause bottlenecks when in full production.

Much has been written about MQSeries naming, channel
configurations, logging recovery, etc so I do not propose to go
through a ‘best practices’ guide, but I will focus on aspects of the end-
to-end error handling, its design, and the place compensatory
transactions have in that design.

PROCESS FLOW

First and foremost, we must define what is meant by ‘end-to-end’
(E2E). In this article, E2E will refer to an end user generating a
request, and that request being fulfilled. Notice that I used the term
‘fulfilled’, not ‘responded to’; this is because we are considering an
asynchronous environment. To take full advantage of the functionality
provided, the user can and should be responded to before the process
has completed, thereby taking advantage of overlapping operations.
This means that the result of the process is not known when the user
receives the response and the user may not be available to handle
errors. So E2E in this context is the completion of the whole business
process.

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When this aspect is considered, many necessary functions take on a
different aspect because they have to span many different processes,
and transactions and must be capable of being correlated with the
different requests and responses. In this case, the handling of errors is
particularly relevant because an error is indicated in different ways on
different platforms and is complicated by the possibility that the user
is not available to handle the error.

Just look at the example of updating several databases in a single
process. This is typically the case in a change-of-address application,
where, for example, one database has been successfully updated but
a subsequent update to another database fails. After several re-tries the
failure persists.

What is the error recovery action? Does the failing process attempt to
back-out the change to the earlier database, does it notify an operator,
or does it just continue? These are really business issues and the
recovery process used will involve extra cost and a process delay.

This update is just an example of the relationship between message
queueing and transaction processing, which has been explored in
earlier issues of MQ Update. What we are going to explore in this
article is a possible approach to handling that error. This is where
compensatory transactions come into the overall process design.

We will consider an asynchronous process flow where none of the
processes has direct communications. The output may be reported
back to the user, but this is not essential. Figure 1 shows the type of
flow under discussion. It is important to note that this is an update
flow. The way errors are dealt with is very different in an inquiry
process, which is much simpler because there are no permanent
changes to handle. The only point that needs to be borne in mind is
that, if several applications are involved, do you want to re-run the
whole query again or restart from the failing process?

ERROR HANDLING AND THE USE OF COMPENSATORY
TRANSACTIONS

What we are looking at here is the handling of errors from an
asynchronous system. This is very different from handling errors in an
RPC environment. In this case, the error is generally reported as an

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 39

internal error to the end user and left at that. But with asynchronous
calls, errors need to handled with far more thought, as the end user is
generally not available when the error is encountered.

So if we can’t take the soft option of allowing the user to handle the
error, what do we do? The key here is to attempt to understand the error
and then try to use the facilities that the asynchronous process gives
us in order to handle it. These facilities can be built into the interface
layer that many enterprises have already developed to enforce standards
within their organizations. This then gives a controlled error-handling
mechanism.

Error sources
There are several sources of error.

System errors

System errors are related to the facilities that the applications are

Process A

Put request

Return user
response

Process B

Read msg

Process and
update data

Put
response

Process C

Read msg

Process and
update data

Put
response

Output
process

Q
End
user

QQ

▲▼ ▲ ▲ ▲ ▲ ▲ ▲

▲

Figure 1: Process flow

▲

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

using. Examples include: disks full, records locked, printer not
available, etc. The key here is not to lose the message while the
operators are being notified that corrective action is required.

There are several vendor tools available that enable system resources
to be monitored and operators alerted. The message must be retained
in addition to being correlated to the relevant resource, and operators
also need to know when the error condition has been rectified. This
can be done by the interface layer generating an error message and
putting it to the appropriate queue. This queue can then be processed
when the system error is rectified.

It should be noted here that there is no need to stop the server while
the error exists; however, it is important to monitor the message depth
of the error queue. This will then allow the error to be escalated to
‘serious’ if the message depth is exceeded and the server shuts down.

These system errors will not have a major effect on the overall process
flow. They will delay the completion but there are no logic problems
and so the end result will be consistent. However, we must also
consider application errors. In this case, an error may be in the process
step, for example where a message that contains corrupt data is
received or where the execution of a process may in itself cause an
error.

When this happens we need to produce a compensating transaction.
This requires the error handler to generate a message that contains
sufficient information to enable the compensatory transaction to
process the error. This error message is then put to the error queue
where it is processed by the compensatory transaction. This is a very
interesting approach to handling errors because the logic required in
the compensatory transaction would in any case have had to have been
provided in the application. So the result of using a compensatory
transaction actually simplifies applications by providing a common
external error handling process. It also gives a convenient location to
handle application or process errors from several process steps.

In the worst case, a compensatory transaction will need to route the
error message to a skilled operator who knows the application and
process structure that is required to handle the recovery actions. Once
again, the message must contain the necessary information to enable

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 41

recovery to be achieved. In many cases, handling manual recovery
will require additional information that can be built up by the
compensatory transaction. So what we see is that error information
held in the message being built up from the application experiencing
the error and the compensatory transaction.

This then raises an interesting question concerning compensatory
transactions. Because they simplify the application code by
concentrating the error handling in one place, they can be used by
multiple applications. But this then makes the compensatory transaction
much more complex, as each application produces a slightly different
error situation and so it needs to be able to identify the source of the
error. Therefore, some kind of grouping of compensatory transactions
should be considered.

There are several methods that can be used but here we consider only
two:

• Grouping by development teams.

• Grouping by data structures or database use.

Grouping by development teams will probably be the easiest to
implement because the teams are likely to agree amongst themselves
on how the errors should be handled and the interfaces that should be
used. However, the transaction that results may not be as generic as
required. By opting for coupling the compensatory transaction to the
data structure a general approach will be adopted. But now we need
to define the interfaces and action more clearly.

The logic used in these two types of compensatory transaction is very
different, so a standard needs to be established and adhered to.

ERROR MESSAGE FORMAT AND RECOVERY PROCEDURES

Compensatory transaction actions can be regarded as part of the
application, when you consider that the content of a message, the
application, and the process all determine the data that it carries. This
means that you may have to add data to the message content that is
handled by the compensatory transaction.

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Below is a suggested message format that includes some of the
information you may wish to include in the message.

<Flow_Message>
<Header>
<Target_process/>
</Header>
<DataSection>
<Application_Data/>
</DataSection>
<errorSection>
<errorService>ErrorServer1</errorService>
<error>Application or interface error </error>
<errorText>Meaningful Error Text</errorText>
<timeStamp>2ØØ1-1Ø-25T1Ø:Ø1:32.333Z</timeStamp>
<Host>DetectingHostName</Host>
<QueueMgrName>FailingQueueManagerName</QueueMgrName>
<Queue>FailingQueueName</Queue>
<Process>FailingProcessName</Process>
<ProcessData>Input Data</ProcessData>
<Requester>Originator of the Request</Requester>
<BusinessServiceRequestId>Original RequestorID</
BusinessServiceRequestId>
<Owner>Original Owner Id</Owner>
<OriginalData>Original Message Data</OriginalData>
</errorSection>
<BackoutDetails>
<BackoutData>Delete * from AAA Where XXX=????</BackoutData>
<BeforeImage>Data Content before Process step execution</BeforeImage>
</BackoutDetails>
</Flow_Message>

The content of this typical error message will vary according to the
nature of the process flow, but this shows some of the information that
will be required.

Some of the points considered in determining the content of the
message were:

• The processes and serious error handling routines might be held
on different systems, hence the need to store the queue manager
name.

• There may be a need to inform the originator of the request that
there was an error – hence the originator information. In many
cases, the originator may not be available and so alternative
routes to inform them of the error, eg e-mail, may be required. The

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 43

originator may not need to made aware of any errors if corrections
can be achieved.

• The back-out information is interesting: this is intended to help
operators clean the data. After due thought the automatic recovery
of data was considered to be too complex and so we reverted to
human intervention.

One option that was also considered was having each process build up
its own back-out sections, including the information in the message.
This was discarded though, because forward recovery was deemed to
be the best recovery process, requiring each of the subsequent
processing steps to be executed independently. This meant that the
initial request was fulfilled even though the process took considerably
longer. It was also much simpler.

CONCLUSIONS

Error handling in an asynchronous environment is very different from
error handling in a synchronous environment. The whole process
must be thoroughly assessed and cannot be passed to the application.
However, there are many functions provided with MQ that help with
error recovery while maintaining overall availability of the system.
One of these is the use of compensatory transactions driven by a
serious error queue.

Compensatory transactions should be considered as shared resources
that hold common error recovery. This means they need to be designed
for general use, but, for simplicity, you should consider grouping
them.

Also, information required for error recovery must be held within the
message and will need to be inserted by the application in error.

Finally, not all errors are recoverable. In the most complex cases,
recovery must be passed to the most powerful recovery mechanism
we have, the human operator.

Harry A Harris
Senior Consultant (UK) © Xephon

MQ news

IBM has announced WebSphere
MQIntegrator for z/OS V2.1, extending MQ
message broker availability to z/OS and
adding new capabilities to those previously
provided by the MQSeries Integrator for
OS/390 and DB2.

Previously known as MQSeries Integrator, it
helps create, deploy, and control message-
based business applications, integrates
existing applications within enterprises and
across the Internet, and connects
applications between enterprises and their
suppliers.

The company has also announced
WebSphere MQ Integrator V2.1 with
improved message, import, and plug-in node
support for all existing platforms and
databases.

The product comes with New Era of
Networks Rules and Formatter V5.6 from
Sybase, visual administration and
debugging tools, national language support,
improved Message Repository Manager
support for XML messages, and support for
plug-in input nodes.

Other features include the ability to author
plug-in nodes written in Java, improved
performance of the Message Repository
Manager, extensions to ESQL capability,
Oracle and Sybase XA support, MRM
tagged message support, DTD import
capability, MRM multi-part tagged message
support for formats such as EDI and SWIFT,
message aggregation capability, and a
revised table of tiered charges.

For further information, contact your local
IBM representative.
Web: http://www.software.ibm.com

* * *

CommerceQuest has announced general
availability of its Business Process
Integrator (BPI) version 3.1, said to exploit
IBM WebSphere Studio Workbench based
on the Eclipse Open Source Project to deliver
a comprehensive integrated development
environment and integrated software
version control, also based on an Open
Source project known as Concurrent
Versioning System (CVS).

BPI is described as a process-centric,
component-based development and
integration framework, with XML support,
exploitation of MQSeries, and a range of
cross-platform integration capabilities for
applications, databases, and files.

For further information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL, 33607, USA
Tel: +1 813 639 6300
Fax: +1 813 639 6900
Web: http://www.CommerceQuest.com

CommerceQuest (UK), Doncastle House,
Doncastle Road, Bracknell, Berkshire,
RG12 8PE, UK
Tel: +44 (0) 1344 861010
Fax: +44 (0) 1344 861011

* * *

x xephon

	Improving TCP/IP channel reliability
	Processing expired messages
	MQSeries Wrappers
	End-to-end error handling
	MQ news

