
© Xephon plc 2002

February 2002

32

3 MQSeries channel events:
printing details

13 The mechanics of MQSeries
triggering

23 Connecting tightly coupled
legacy applications to loosely
coupled applications: part 1

33 MQSeries Workflow V3.3
with MQSeries and MQSI –
an introduction

48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor (temporary)
Harry Harris
E-mail: harrya.harris@virgin.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSeries channel events: printing details

The RPG ILE program included in this article is designed to print out
details of MQSeries channel events, of which there are seven in total.

The channel event program – EVENTCH – reads the system default
queue System.Admin.Channel.Event and prints event details to the
EVTPRTF printer file.

Included with the program are RPG ILE header constant files that will
need to be declared for use with MQSeries. These constant values do
not exist by default otherwise.

The CONST file contains the constant decimal values of each channel
event name and all event field names.

The MQCFH file defines the event message header, which contains
field data common to all event messages.

The MQCFST file defines the structure used to retrieve string data
from event messages.

The MQCFIN file defines the structure used to retrieve integer data
from event messages.

EVENTCH is the RPG ILE program; EVTPRTF is the printer output
file.

EVENTCH
 D** File name: CONST **
 D** Description: This file declares named constants for the **
 D** IBM Message Queue Interface (MQI) in the **
 D** OS/4ØØ environment. **
 D* MQ String Type
 D MQ_STR C CONST(4)
 D* MQ Integer Type
 D MQ_IN C CONST(3)
 D* Channel Started Event
 D CHSTRT C CONST(2282)
 D* Channel Stopped Event
 D CHSTOP C CONST(2283)
 D* Channel Activated
 D CHACT C CONST(2295)

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 D* Channel Not Activated
 D CHNACT C CONST(2296)
 D* Channel Conversion Error
 D CHCERR C CONST(2284)
 D* Channel Auto-Def OK
 D CHADOK C CONST(2233)
 D* Channel Auto-Def Error
 D CHADER C CONST(2234)
 D* Queue Manager Name
 D QMNAME C CONST(2Ø15)
 D* Channel Name
 D CHNAME C CONST(35Ø1)
 D* Transmission Queue Name
 D XQNAME C CONST(35Ø5)
 D* Connection Name
 D CNNAME C CONST(35Ø6)
 D* Aux Error Data String 1
 D AEDS1 C CONST(3Ø26)
 D* Aux Error Data String 2
 D AEDS2 C CONST(3Ø27)
 D* Aux Error Data String 3
 D AEDS3 C CONST(3Ø28)
 D* Reason Qualifier
 D RSQUAL C CONST(1Ø2Ø)
 D* Error Identifier
 D ERRIDR C CONST(1Ø13)
 D* Aux Error Data Int 1
 D AEDI1 C CONST(1Ø7Ø)
 D* Aux Error Data Int 2
 D AEDI2 C CONST(1Ø71)
 D* Conversion Reason Code
 D CHCRC C CONST(1Ø72)
 D* Format Name
 D FORNAM C CONST(3533)
 D* Channel Type
 D CHTYPE C CONST(1511)
 D**
 D** Program name: MQCFH **
 D** Description: MQSeries Header Structure **
 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQCFH Structure
 D* Structure type
 D HTYPE 1 4B Ø INZ(Ø)
 D* Structure length
 D HSLEN 5 8B Ø INZ(Ø)
 D* Structure version number
 D HVNO 9 12B Ø INZ(Ø)
 D* Command identifier
 D HCOM 13 16B Ø INZ(Ø)
 D* Message sequence number
 D HMSNO 17 2ØB Ø INZ(Ø)

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 5

 D* Control
 D HCON 21 24B Ø INZ(Ø)
 D* CompCode
 D HCCODE 25 28B Ø INZ(Ø)
 D* Reason
 D HREAS 29 32B Ø INZ(Ø)
 D* Parameter Count
 D HPCNT 33 36B Ø INZ(Ø)
 D**
 D** Program name: MQCFST **
 D** Description: MQSeries String Structure Definition **
 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQCFST Structure
 D* Structure type
 D STTYPE 1 4B Ø
 D* Structure length
 D STLENG 5 8B Ø
 D* Parameter
 D STPARM 9 12B Ø
 D* CodedCharSetID
 D STCCSID 13 16B Ø
 D* String Length
 D STLEN 17 2ØB Ø
 D* String
 D STSTR 21 284
 D**
 D** Program name: MQCFIN **
 D** Description: MQSeries Integer Structure Definition **
 D*..1....:....2....:....3....:....4....:....5....:....6....:....7..
 D* MQCFIN Structure
 D*
 D* Structure type
 D INTYPE 1 4B Ø
 D* Structure length
 D INSLEN 5 8B Ø
 D* Parameter identifier
 D INPARM 9 12B Ø
 D* Value
 D INVAL 13 16B Ø
 H
 **
 * Program name: EVENTCH *
 * Description: Get a single event message from *
 * System.Admin.Channel.Event Queue, parse the event message *
 * details into the appropriate integer/string stucture and *
 * print out the message details to a printer file to be read. *
 FEVTPRTF O E PRINTER
 ** Declare MQI structures needed
 D/COPY CONST
 * Message Header
 D BUFFER DS 1Ø24

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 D BUFCFH DS
 D/COPY MQCFH
 * MQCFST Parameter
 D MQCFST DS BASED(PS)
 D/COPY MQCFST
 D PS S *
 * MQCFIN Parameter
 D MQCFIN DS BASED(PI)
 D/COPY MQCFIN
 D PI S *
 * Char
 D CHAR DS
 D 1 1A
 * MQI named constants
 D/COPY CMQR
 * Object Descriptor
 D MQOD DS
 D/COPY CMQODR
 * Message Descriptor
 D MQMD DS
 D/COPY CMQMDR
 * Get message options
 D MQGMO DS
 I/COPY CMQGMOR
 C EXSR $INIT
 C EXSR $OPENQ
 C EXSR $GETMSG
 C EXSR $CLOSEQ
 C SETON LR
 * Initialize values where required. *
 C $INIT BEGSR
 C MOVEL *BLANKS DATA 26
 C EVAL DATA = 'SYSTEM.ADMIN.CHANNEL.EVENT'
 * Create object descriptor for source queue *
 C MOVEL DATA ODON 48
 * MQCONN is implicit on OS/4ØØ; *
 C Z-ADD HCDEFH HCONN
 *
 C Z-ADD Ø CNT 2 Ø
 C Z-ADD Ø AERDI1 4 Ø
 C Z-ADD Ø AERDI2 4 Ø
 C Z-ADD Ø ERIDR 8 Ø
 C Z-ADD Ø RQUAL 4 Ø
 C Z-ADD Ø CHCRSC 4 Ø
 C Z-ADD Ø CHLTYP 4 Ø
 C MOVEL *BLANKS RTQM 48
 C MOVEL *BLANKS PDAT 8
 C MOVEL *BLANKS PTIM 8
 C MOVEL *BLANKS QMNAM 48
 C MOVEL *BLANKS CHNAM 2Ø
 C MOVEL *BLANKS TQNAM 48

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 7

 C MOVEL *BLANKS CNNAM 264
 C MOVEL *BLANKS AERDS1 48
 C MOVEL *BLANKS AERDS2 48
 C MOVEL *BLANKS AERDS3 48
 C MOVEL *BLANKS FORMNM 8
 C ENDSR
 * Open the System.Admin.Channel.Event *
 C $OPENQ BEGSR
 * options are input-as-queue-def and fail-if-quiescing
 C OOINPQ ADD OOFIQ OPTS
 C Z-ADD MQOPEN CID
 C CALL 'QMQM'
 C PARM CID 9 Ø
 C PARM HCONN 9 Ø
 C PARM MQOD
 C PARM OPTS 9 Ø
 C PARM HOBJ 9 Ø
 C PARM OCODE 9 Ø
 C PARM REASON 9 Ø
 * report reason, if any; stop if failed
 C REASON IFNE RCNONE
 ** "MQOPEN ended with reason code"
 C MOVEL 'MQOPEN' CNAME 6
 C MOVE REASON RCODE 1Ø
 C ENDIF
 C ENDSR
 * Get messages from message queue *
 C $GETMSG BEGSR
 ** initial loop condition based on result of MQOPEN
 C MOVE OCODE CCODE
 * buffer length available ...
 C EVAL BUFLEN = %SIZE(BUFFER)
 * option is to wait up to 15 seconds for next message
 C Z-ADD GMWT GMOPT
 C ADD GMCONV GMOPT
 * Add ACCEPT TRUNCATED MSG to GetMessage Options
 C ADD GMATM GMOPT
 * Wait upto 15 seconds
 C Z-ADD 15ØØØ GMWI
 ** MsgId and CorrelId are selectors that must be cleared
 ** to get messages in sequence, and they are set each MQGET
 C MOVEL MINONE MDMID
 C MOVEL CINONE MDCID
 C CCODE IFNE CCFAIL
 C Z-ADD MQGET CID
 C CALL 'QMQM'
 C PARM CID 9 Ø
 C PARM HCONN 9 Ø
 C PARM HOBJ 9 Ø
 C PARM MQMD
 C PARM MQGMO

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 C PARM BUFLEN 9 Ø
 C PARM BUFFER
 C PARM MESLEN 9 Ø
 C PARM CCODE 9 Ø
 C PARM REASON 9 Ø
 C REASON IFEQ RCNONE
 C WRITE EVTPRTFH1
 C EVAL RTQM = MDRM
 C EVAL PDAT = MDPD
 C EVAL PTIM = MDPT
 C WRITE EVTPRTFD1
 C EVAL BUFCFH = BUFFER
 C EVAL PS = %ADDR(BUFFER)+%SIZE(BUFCFH)
 C Z-ADD Ø CNT
 * Loop to handle all fields of the event message
 C CNT DOWLT HPCNT
 * Parse string values
 C STTYPE IFEQ MQ_STR
 C SELECT
 C WHEN QMNAME = STPARM
 C EVAL QMNAM = %SUBST(STSTR:1:STLEN)
 C WHEN CHNAME = STPARM
 C EVAL CHNAM = %SUBST(STSTR:1:STLEN)
 C WHEN XQNAME = STPARM
 C EVAL TQNAM = %SUBST(STSTR:1:STLEN)
 C WHEN CNNAME = STPARM
 C EVAL CNNAM = %SUBST(STSTR:1:STLEN)
 C WHEN FORNAM = STPARM
 C EVAL FORMNM = %SUBST(STSTR:1:STLEN)
 C OTHER
 C EVAL STPARM = STPARM
 C ENDSL
 C ENDIF
 * Parse Integer values
 C STTYPE IFEQ MQ_IN
 C EVAL PI = PS
 C SELECT
 C WHEN RSQUAL = INPARM
 C EVAL RQUAL = INVAL
 C WHEN ERRIDR = INPARM
 C EVAL ERIDR = INVAL
 C WHEN AEDI1 = INPARM
 C EVAL AERDI1 = INVAL
 C WHEN AEDI2 = INPARM
 C EVAL AERDI2 = INVAL
 C WHEN CHCRC = INPARM
 C EVAL CHCRSC = INVAL
 C WHEN CHTYPE = INPARM
 C EVAL CHLTYP = INVAL
 C OTHER
 C EVAL INPARM = INPARM

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 9

 C ENDSL
 C ENDIF
 C EVAL PS = PS + STLENG
 C EVAL CNT = CNT + 1
 C ENDDO
 * For each channel event, print out the appropriate message
 C HREAS IFEQ CHSTRT
 C WRITE EVTPRTFH2
 C WRITE EVTPRTFD2
 C ENDIF
 C HREAS IFEQ CHSTOP
 C WRITE EVTPRTFH3
 C WRITE EVTPRTFD2
 C WRITE EVTPRTFD3
 C ENDIF
 C HREAS IFEQ CHACT
 C WRITE EVTPRTFH4
 C WRITE EVTPRTFD2
 C ENDIF
 C HREAS IFEQ CHNACT
 C WRITE EVTPRTFH5
 C WRITE EVTPRTFD2
 C ENDIF
 C HREAS IFEQ CHCERR
 C WRITE EVTPRTFH6
 C WRITE EVTPRTFD2
 C WRITE EVTPRTFD4
 C ENDIF
 C HREAS IFEQ CHADOK
 C WRITE EVTPRTFH7
 C WRITE EVTPRTFD2
 C WRITE EVTPRTFD5
 C ENDIF
 C HREAS IFEQ CHADER
 C WRITE EVTPRTFH8
 C WRITE EVTPRTFD2
 C WRITE EVTPRTFD6
 C ENDIF
 C ENDIF
 C ENDIF
 C ENDSR
 * Close the System.Admin.Channel.Event queue (if open) *
 C $CLOSEQ BEGSR
 * test if queue had been opened
 C OCODE IFNE CCFAIL
 * ... close queue (with no options) if it is open
 C Z-ADD MQCLOS CID
 C Z-ADD CONONE OPTS
 C CALL 'QMQM'
 C PARM CID 9 Ø
 C PARM HCONN 9 Ø

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 C PARM HOBJ 9 Ø
 C PARM OPTS 9 Ø
 C PARM CCODE 9 Ø
 C PARM REASON 9 Ø
 *
 C ENDIF
 C ENDSR
A**
A** Program name: EVTPRTF (Event Printer File) **
A** Description: Event message template **
A R EVTPRTFH1
A SKIPB(2)
A 2'MQSeries Event Monitor'
A 6Ø'Page:'
A 67PAGNBR
A EDTCDE(Z)
A SPACEA(2)
A 1DATE
A EDTCDE(Y)
A SPACEA(4)
A R EVTPRTFH2
A SKIPB(2)
A 3Ø'Event = Channel Started'
A SPACEA(2)
A R EVTPRTFH3
A SKIPB(2)
A 3Ø'Event = Channel Stopped'
A SPACEA(2)
A R EVTPRTFH4
A SKIPB(2)
A 3Ø'Event = Channel Activated'
A SPACEA(2)
A R EVTPRTFH5
A SKIPB(2)
A 3Ø'Event = Channel Not
Activated'
A SPACEA(2)
A R EVTPRTFH6
A SKIPB(2)
A 3Ø'Event = Channel Conversion
Error'
A SPACEA(2)
A R EVTPRTFH7
A SKIPB(2)
A 3Ø'Event = Channel Auto-Def
OK'
A SPACEA(2)
A R EVTPRTFH8
A SKIPB(2)
A 3Ø'Event = Channel Auto-Def
Error'

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 11

A SPACEA(2)
A R EVTPRTFD1
A 3Ø'*** Message Descriptor ***'
A SPACEA(3)
A 1'Reply-To-QMgr:'
A RTQM 48A 17
A SPACEA(2)
A 1'Put Date:'
A PDAT 8A 11
A SPACEA(2)
A 1'Put Time:'
A PTIM 8A 11
A SPACEA(3)
A R EVTPRTFD2
A 3Ø'*** Message Data ***'
A SPACEA(3)
A 1'Queue Manager:'
A QMNAM 48A 16
A SPACEA(2)
A 1'Channel Name:'
A CHNAM 2ØA 15
A SPACEA(2)
A 1'Transmission Queue:'
A TQNAM 48A 21
A SPACEA(2)
A 1'Connection Name:'
A CNNAM 264A 18
A SPACEA(2)
A R EVTPRTFD3
A SPACEA(3)
A 1'Reason Qualifier:'
A RQUAL 4S 19
A SPACEA(2)
A 1'Error Identifier:'
A ERIDR 8S 19
A SPACEA(2)
A 1'Aux Error Data Int1:'
A AERDI1 4S 22
A SPACEA(2)
A 1'Aux Error Data Int2:'
A AERDI2 4S 22
A SPACEA(2)
A R EVTPRTFD4
A SPACEA(3)
A 1'Conversion Reason Code:'
A CHCRSC 4S 25
A SPACEA(2)
A 1'Format:'
A FORMNM 8A 9
A SPACEA(2)
A R EVTPRTFD5

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A SPACEA(3)
A 1'Channel Type:'
A CHLTYP 4S 14
A SPACEA(2)
A R EVTPRTFD6
A SPACEA(3)
A 1'Channel Type:'
A CHLTYP 4S 14
A SPACEA(2)
A 1'Error Identifier:'
A ERIDR 8S 19
A SPACEA(2)
A 1'Aux Error Data Int1:'
A AERDI1 4S 22
A SPACEA(2)

Markian Jaworsky
Consultant (Australia) © Xephon

Free weekly Enterprise IS News

A weekly enterprise-oriented news service is available free from
Xephon. Each week, subscribers receive an e-mail listing around
40 news items, with links to the full articles on our Web site. The
articles are copyrighted by Xephon – they are not syndicated,
and are not available from other sources.

To subscribe to this newsletter, send an e-mail to news-list-
request@xephon.com, with the word subscribe in the body of
the message. You can also subscribe to this and other Xephon e-
mail newsletters by visiting Xephon’s home page, http://
www.xephon.com, which contains a simple subscription form.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 13

The mechanics of MQSeries triggering

TRIGGERING OVERVIEW

Triggering is a very powerful yet often misunderstood and misused
feature of MQSeries: it is a means of starting an application when a
message arrives on a queue.

The aim of this article is to break down triggering into its component
parts. It is by building this foundation of understanding that the reader
will be in a better position to understand when and how triggering
should be used in their environment.

MQSeries has a great deal of built-in functionality and sometimes we
are tempted to use a specific function or feature of the product simply
because it’s there. So let’s begin by taking a look at when using
triggering does and doesn’t make sense.

GOOD REASONS TO USE TRIGGERING

There are many good reasons to implement MQSeries application
triggering. Many installations have hundreds of queues that need to be
serviced by receiving applications. It would be impractical to have
hundreds of receiving programs running all the time, just waiting for
messages to process. This would be a terrific waste of system
resources as well as making it very difficult to gauge the real workload
on the system at any given time.

Applications that would be good candidates for triggering include the
following:

• Applications where messages arrive sporadically, throughout the
day. If the workload is not constant it doesn’t make sense to have
the server programs running all the time.

• Applications where there is no time-of-day dependence on when
the server program runs.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

GOOD REASONS FOR NOT USING TRIGGERING

Just as with any other function there is a time and a place to use
triggering. It is not the answer for every situation.

Applications that might not be the best candidates for triggering
include:

• Applications where the rate at which messages arrive on the
server queues is fairly constant throughout the day. In this case it
may be more efficient to leave the server program running instead
of repeatedly triggering it.

• Applications where the server application has to be started by
something other than just the arrival of a message on a queue. For
example, an end-of-day application that needs to start at a specific
time would need to use some type of operating system scheduling
software, such as CRON on Unix or CA-7 on OS/390.

THE COMPONENTS OF TRIGGERING

The sending application

First, there is an application from which the messages will originate.
This application will put messages on a triggered queue.

The target queue

This is the queue to which the sending application puts messages and
from which the server application gets messages. The trigger attributes
of this queue are set by the administrator.

The server application

This is the application program that we wish to trigger. The arrival of
messages on the target queue will cause the server application to start.

The process definition

In order for the queue manager to start an application when a message
arrives on a queue it needs to have some information about which
application to start and any startup parameters that might be necessary.
These values are stored in a process object in the queue manager. The

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 15

process object is associated with a particular queue via the queue’s
PROCESS attribute. There follows a sample process definition:

 DEFINE PROCESS (MyProcess) –
 APPLICID ('/var/mqm/utilities/QueueReader') -
 APPLTYPE (unix) –
 ENVDATA (char 128) –
 USERDATA (char 128)

• PROCESS is the name assigned to the process definition object.

• APPLICID is the name of the application program that you want
to trigger. In this example we are triggering a program called
QueueReader. For a CICS application this would be the CICS
transaction ID and for IMS it would be the IMS transaction code.

• APPLTYPE is the type of application to be triggered. Valid
application types are:

– CICS: representing a CICS transaction.

– DOS: representing a DOS application.

– IMS: representing an IMS transaction.

– MVS: representing an OS/390 application (batch or TSO).

– NOTESAGENT: representing a Lotus Notes agent.

– NSK: representing a Tandem NSK application.

– OS2: representing an OS/2 Warp application.

– OS400: representing an OS/400 application.

– Unix: representing a Unix application.

– VMS: representing a Digital OpenVMS application.

– WINDOWS: representing a Windows application.

– WINDOWSNT: representing a Windows NT application.

– DEF: this causes the default application type for the platform
on which the command is interpreted to be stored in the
process definition. This default cannot be changed by the
installation. If the platform supports clients, this is interpreted
as the default application type of the server.

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– ENVDATA is a character string that contains environment
information pertaining to the application to be started. The
maximum length is 128 characters.

The meaning of ENVDATA is determined by the trigger
monitor application. The trigger monitor provided by
MQSeries appends ENVDATA to the parameter list passed
to the started application. The parameter list consists of the
MQTMC2 structure, followed by one blank, followed by
ENVDATA with trailing blanks removed.

Notes

1 On OS/390, ENVDATA is not used by the trigger monitor
applications provided by MQSeries.

2 On Unix systems, ENVDATA can be set to the ampersand
character (&) to make the started application run in the background.

USERDATA is a character string that contains user information
pertaining to the application defined in the APPLICID that is to be
started. The maximum length is 128 characters.

The meaning of USERDATA is determined by the trigger monitor
application. The trigger monitor provided by MQSeries simply passes
USERDATA to the started application as part of the parameter list.
The parameter list consists of the MQTMC2 structure (containing
USERDATA), followed by one blank, followed by ENVRDATA with
trailing blanks removed.

The initiation queue
The initiation queue is simply a local queue onto which the queue
manager places trigger messages. The initiation queue is associated
with a particular target queue via the target queue’s INITQ attribute.

The trigger monitor
The trigger monitor program has just one role, which is to monitor the
initiation queue for trigger messages and start the application identified
in the trigger message. Generally, administrative procedures are put
in place that will start the trigger monitor automatically when the
queue manager is started. A single trigger monitor can easily handle

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 17

more than one application; however, it is common practice to have
separate trigger monitors for different environments or applications.
MQSeries provides a number of sample trigger monitors that you can
use ‘as is’, or you can use them as a guide to write your own.

The trigger message

When the trigger conditions are met, the queue manager reads
information from the queue definition and the process definition
pointed to by the PROCESS attribute of the queue. This information
is placed into a structure variable called the MQTM structure. This
structure then becomes the application data portion of the trigger
message when it is placed onto the initiation queue. The MQTM
structure is defined in the standard header files and copybooks.

The MQTM structure that is written to the initiation queue contains
the following information:

• Queue attributes
– queue name
– trigger data
– process name.

• Process attributes
– ApplType
– ApplID
– EnvData
– UserData.

The MQTM structure that is read from the trigger message by the
trigger monitor is converted to a single string (called the MQTMC2
structure). The command line that is put out is then of the following
form:

ApplID "TMC 2QName (padded with spaces to 48 characters)
ProcessName (padded with spaces to 48 characters) TriggerData
(padded with spaces to 64 characters) ApplID (padded with
spaces to 256 characters) EnvData (padded with spaces to 128
characters) UserData (padded with spaces to 128 characters)
QMgrName (padded with spaces to 48 characters)" EnvData

Note that the QMgrName is not contained in the MQTM structure.

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

123456
123456
123456
123456

12345
12345
12345
12345

123456
123456
123456

123456
123456
123456
123456 Trigger message

MQTM structure INITQ
Q1

Application 1 Application 2 Trigger
monitor

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

MQTMC2 ▲

▼ ▼12345
12345
12345
12345

123456
123456
123456
123456

123456
123456
123456

12345
12345
12345
12345

▲

Figure 1: Trigger elements

This is taken from the queue manager to which the trigger monitor is
connected.

PUTTING IT ALL TOGETHER

Now that we have an understanding of the basic parts of triggering
let’s refer to Figure 1 to see how all the pieces fit together.

To begin the process, application 1 puts a message on Q1. Note that
application 1 does not need to know about triggering and can MQPUT
the message onto Q1 in the normal way.

Q1 has been set up to be a triggered queue. This is done by the
administrator, by setting the queue’s TRIGGER and TRIGTYPE
attributes. When the trigger conditions of the queue are met, the queue
manager automatically generates a new message called a trigger
message and puts that message on INITQ (called the initiation queue).
It is very important to remember that the trigger message is an entirely
new and separate message. The original message containing the
business data remains on Q1.

The trigger monitor is a long-running background process. As I
mentioned earlier, the trigger monitor program’s only function is to
monitor the initiation queue for incoming trigger messages and then

Trigger
condition

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 19

start (or trigger) the intended application.

When the trigger monitor gets the trigger message it parses that
message and puts out the command line needed to start the triggered
application; in this case, application 2. In addition, the trigger monitor
passes several other parameters contained in the trigger message to
the started application.

Once the triggered application is started it can do whatever it wants,
but this typically includes getting the original message from Q1.

TRIGGER CONDITIONS AND TRIGGER TYPES

When a triggered queue is first defined the trigger attributes of the
queue are set. These attributes are:

• TRIGTYPE (first, depth, or every). This determines the trigger
condition. If the TRIGTYPE is FIRST, the application will be
started when the queue depth goes from 0 to 1. If TRIGTYPE
(EVERY), a new instance of the application will be started for
every new message that is put into the queue. If TRIGTYPE
(DEPTH), the application will be started when the queue depth
goes from X-1 to X. X is taken from the TRIGDPTH attribute.

• TRIGDPTH (X). This attribute is used only for TRIGTYPE
(DEPTH). It indicates the depth at which triggering will occur.

• TRIGMPRI (0-9). Messages of this priority and higher count
towards meeting the trigger conditions above.

• INITQ (Initiation Queue Name). This gives the name of the
initiation queue onto which the queue manager will put the
trigger message. It must be the same queue that is watched by the
trigger monitor.

• PROCESS (Process Name). This is the name of the MQSeries
process that defines how to start the application to be triggered.
The queue manager reads this process definition and uses it to
build the trigger message.

The trigger message is a normal MQSeries message with a
message descriptor and application data. The application data is
a structure variable called the MQTM structure. The MQTM

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

structure is part of the MQSeries Trigger Monitor Interface
(TMI), which is one of the MQSeries framework interfaces.

TRIGGER GENERATION

Providing the trigger conditions listed above are met, trigger messages
will be generated as follows:

• When a message is put onto an application queue – this is normal
operation.

• When an application queue is closed. By generating a trigger
message when the application queue is closed the application
does not have to worry about a message being put to the target
queue between its last MQGET call and issuing an MQCLOSE
call.

• When the initiation queue is opened for input. This ensures that
any outstanding messages will be processed when the trigger
monitor initially starts.

• When the application queue trigger attribute is changed. This
allows an operator to temporarily suspend triggering of an
application and subsequently restart it.

TRIGGERING AND LOGICAL UNITS OF WORK

By far the most common trigger type in use today is TRIGTYPE =
FIRST. This will trigger on the current depth of a queue going from
0 to 1. Since uncommitted messages are counted in the MQSeries
current depth attribute it follows that an application putting a message
inside a unit of work will prevent any other application putting to the
same queue from generating trigger messages. If the original application
backs out its unit of work then there may still be other messages on the
queue that need to be processed.

By always committing the trigger message we ensure that the worst
that will happen is that a trigger message will be generated even when
there are no messages on the queue. It is, therefore, necessary to code
triggered applications so that they do not mind if they are started even
when there are no messages for them to process.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 21

TRIGGERING AND UNITS OF EXECUTION

An important consideration in triggering an application is to decide
whether the application will run within or outside of the trigger
monitor unit of execution. If the triggered application runs within the
trigger monitor unit of execution then the MQCONN has already been
carried out by the trigger monitor program. Issuing an MQCONN will
result in the ALREADY CONNECTED return code and the current
connection handle. Applications should be careful not to issue the
MQDISC, which would result in the handle being terminated, causing
the trigger monitor to abend.

Configuring a program to run outside of the trigger monitor unit of
execution can be accomplished by the value in the ApplicId attribute
of the associated process definition. For example, on Windows NT,
the value ‘start program.exe’ could be used.

CODING TRIGGERED APPLICATIONS

The most important consideration in designing an application to be
triggered is avoiding shutdown while there are still messages on the
queue. If an application closes a queue while the depth is 1, for
example, the depth will increase to 2 the next time that application is
started. This will not meet the TRIGTYPE first condition. In fact, the
depth can continue to increase forever and the application will never
be started. In order to avoid this, the application should get messages
from the queue until it receives reason code 2033 –
MQRC_NO_MSG_AVAILABLE. In response to this reason code, it
should close the queue and shut down so that it can be started again
when a new message arrives.

Since starting an application creates considerable overhead, you want
to avoid repeated startup and shutdown. Thus, the WaitInterval on the
get should not be too short. Conversely, connected but idle applications
still use system resources, so you don’t want the WaitInterval to be too
long. Deciding on the proper balance point between these is an
important decision for your application. The proper value will depend
heavily on the purpose of the triggered application.

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TRIGGERING MESSAGE CHANNELS

One of the first ways shops generally implement triggering is to use
it to automatically start their message channels. This is a very good use
of triggering indeed, especially in configurations where there is an
inconsistent message flow throughout the day, rather sporadic bursts
of messages, and periods of inactivity. Because of the special processing
requirements of channels we use a special form of trigger monitor
called a channel initiator. As far as the queue manager is concerned
though, triggering a channel is no different from triggering an
application. In the case of channel triggering, the triggered queue is
the transmission queue.

As with all good triggered applications the channels allow the user to
customize the time of inactivity before they end or disconnect. This
is referred to as the Disconnect Interval. It allows you to customize the
starting of channels based on the arrival rate of messages on the
transmission queue.

Normally all channels are handled by a single channel initiator;
however, on non-OS/390 platforms it is possible to have multiple
channel initiators.

When a channel is manually stopped or is in RETRY mode it will set
the transmission queue to NOTRIGGER and GET (DISABLED).
This is done by MQSeries as a safety precaution to prevent unwanted
starts.

SUMMING UP

There is a correct time and place for everything and MQSeries
triggering is no exception. In this article I have tried to break down
triggering into its basic parts. Once an understanding of the parts is
gained then understanding the big picture of triggering is much easier.
I hope this article has made you better equipped to tackle your next
triggered MQSeries application.

Dale Eckert
Senior Consultant, MQSoftware (Canada) © Xephon

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 23

Connecting tightly coupled legacy applications to
loosely coupled applications: part 1

SCOPE

This is the first of two articles that explain how to connect two very
different paradigms together: synchronous, representing tightly
coupled environments, and asynchronous, representing loosely coupled
environments. In the first article we look at the issues associated with
using two-phase commit (2PC) protocols and soft locking, and in the
second article we consider an overall end-to-end design. We will
concentrate mainly on connecting a legacy application, as the initiator,
to a new business application, as this is likely to be the most common
scenario.

These articles will provide an overview; to address the subject in
detail would require the production of a weighty design specification.

Any audit issues, whether relating to security or performance, are
outside the scope of this article.

OVERVIEW

Within your own organizations many of you will have debated the
relative merits of introducing loosely or closely coupled applications
using 2PC protocols. In today’s world, many enterprises are favouring
loose coupling based on message queueing (MQ) protocols for their
business applications and associated data repositories. This avoids
such problems as:

• Time dependencies.

• System dependencies.

• Concurrent data locks.

However, there are many companies which still have their invaluable
business data locked into tightly coupled legacy applications.
Increasingly, companies are finding that there may be a need to make
this information available to a newly-acquired message queueing-

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

enabled SAP system on an HP-UX platform, for example.

In this article we will consider the issues that have to be addressed and
look at a solution to the problem of coupling together business
applications that have been built to use the two different paradigms.

THE PROBLEM

Many people find they have to integrate back-end applications in
order to support new business delivery channels and enhanced business
processes, such as the supply chain.

What do you do when the IT budget is constrained and targeted mainly
at new business opportunities, such as extending the delivery channels
to provide Internet capability and better quality customer data (eg
CRM)?

Having enhanced the IT architecture to encompass message queueing
you will have also invested in an off-the-shelf integration broker to:

• Assist in linking the diverse business applications together.

• Reduce the cost of the development effort.

• Provide agility in responding to further business demands.

• Begin removing business functions, if appropriate.

You probably won’t have the luxury of migrating all the legacy
applications to the new architecture – and you may not want to. Still,
they have to be integrated into the enterprise and in near real time, as
current business models demand.

So, the reality is that you are wrestling with the problem of integrating
legacy applications that currently use 2PC protocols with new business
applications or packages that use MQ protocols. Also, existing
functionality ported to the new message-based architecture may need
to connect to the remaining legacy applications – applications
continuing to use 2PC protocols.

Now you begin to appreciate that the legacy applications coordinate
distributed updates between them using 2PC, and that MQ applications
are not automatically part of this distributed unit of work.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 25

It is at this point that you discover that the integration broker you
purchased cannot assist you in this circumstance without the
introduction of additional software.

So how do you synchronize the transactional integrity of 2PC legacy
applications with ‘new world’ MQ applications when you can’t
integrate the legacy directly with the ‘new world’? You need a
gateway, but you need to be sure transactional integrity is maintained
over both systems.

Inevitably there will be some change for the legacy applications, but
you will strive to keep this to a minimum. No doubt there are
maintenance teams in place only for the legacy applications and
knowledge is probably very thin on how the application works,
particularly with regard to communications.

TECHNOLOGY BACKGROUND

Before proceeding, it is worth taking time to look at the technologies
that form the basis for the discussion within this article.

Peer-to-peer

Within the tightly coupled world, peer-to-peer communication is a
programming model found in larger transaction programs where
relatively large amounts of data or complicated interactions between
separate transaction programs are involved. It follows an ‘open, read/
write, close’ paradigm. There are two main models – SNA LU6.2 and
OSI/TP – the former being by far the most common.

Connections are made to the remote peer using ALLOCATE , data is
sent using SEND, and received using RECEIVE . As an alternative to
SEND followed by RECEIVE , CONVERSE can be used. The
application has to handle all communication errors.

The transaction manager/application will request either commitment
of the local resources that it needs to update or a roll-back to their
initial state. The transaction manager/application will also request, in
parallel and via the peer-to-peer support, that the remote transaction
manager/application updates or rolls back their own resources.

Under the covers, the peer-to-peer support will instigate a complex

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

protocol exchange (there are many weighty text books describing this
in all its detail) to ensure that the commit or roll-back takes place in
a controlled manner, thus ensuring the transaction manager/application
is informed of the outcome.

Messaging queueing

For the purpose of this article we will assume that the de facto standard
message queueing product, IBM’s MQSeries, will provide this
technology.

With message queueing technology the delivery is assured and time
independent, and communications error handling is handled on behalf
of the application. It provides a capability to send data using a
minimum number of verbs: CONNECT, OPEN, PUT/GET, and
CLOSE. The messages (ie the business data) will be written to queues
residing on disk. Best practice is that the data is stored on a different
disk – possibly using a different controller – from that used for the
recovery logs.

It has been demonstrated (MQseries is now in widespread use in a
number of industries, especially financial services) that the use of
MQSeries guarantees that a message will not be lost once it has been
placed on a queue by an application – this assumes that a persistent
state has been selected.

Predicate locking

Predicate locking works by selecting a record from a database (eg at
timestampA), changing it, but only updating the database with the
changed value if the record has not subsequently been updated by
another user since we took our copy at timestampA. The update
operation is predicated on a data item in the originally-selected record.
If the predicate is invalid (false) the update is discarded and the user
is informed with a view to making them do the update again. It can be
best thought of in terms of an artificial update count. The update is not
made if the update count has been incremented in the interim between
the selection and the update. At update time the update count is moved
on.

With predicate locking, several users can simultaneously be in the
process of updating a single record, but only one will be successful.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 27

The other updates will be discarded and not serialized as in other
database locking strategies. The use of predicate locking presumes
that the likelihood of a lock conflict is small and it is, therefore,
sometimes known as optimistic locking.

THE APPROACH

The direction of communications is important. In order for a tightly
coupled application to communicate successfully with a loosely
coupled application, a number of building blocks need to be in place:

• An intermediate gateway server.

• A transaction manager to act as a gateway and coordinate activities.

• An integration broker to provide transformation engine capabilities
(the assumption is that it will be used for other integration needs,
eg SAP access from the new business applications).

• Messaging technology that is XA-compliant.

• A communications protocol technology (eg LU6.2, OSI/TP) that
supports syncpoint coordination.

• A standard message header.

The basic building blocks are shown in Figure 1.

The transaction manager gateway is key to enabling a successful
connection of the two opposing worlds of synchronous and
asynchronous. It provides management of the resources represented
by the syncpoint protocol and messaging protocol.

The syncpoint protocol provides a conduit to the ‘real’ resource at the
remote end of a communication link, whilst messaging is a resource
in its own right that is directly manipulated.

The standard message header will be used to convey meta-data
between the MQ applications, enabling them to ensure that they have
a common view of the data being exchanged between the different
systems – the content can be debated for a lifetime, so this article will
assume it contains just what we need.

The transaction manager gateway (eg CICS, Tuxedo) will not be
capable of managing the communication between the two systems

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: Basic building-blocks for integrating loosely and
tightly coupled systems

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

Syncpoint
protocol

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

Syncpoint
protocol

12345678901234567890123456789012123456
12345678901234567890123456789012123456
12345678901234567890123456789012123456
12345678901234567890123456789012123456
12345678901234567890123456789012123456
12345678901234567890123456789012123456
12345678901234567890123456789012123456
12345678901234567890123456789012123456

Messaging

12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890
12345678901234567890

Integration
broker

1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123

XA-compliant
transaction
manager
gateway

Intermediate
gateway server

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

Transaction manager

12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123
12345678901234567890123456789012123

Business applications

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

Messaging
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

Transaction manager
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234
123456789012345678901234567890121234

Business applications

▲

▲

▼

▼

▼

▼

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 29

without the development of some bespoke middleware infrastructure
application, shown in Figure 2 as the gateway application.

Note

The term ‘transformation engine’ is used in preference to ‘integration
broker’ (eg IBM’s WebSphere MQSI V2 Integration Broker), because
this is the only feature of what is a multi-featured facility that is being
used.

Figure 2: Bespoke middleware infrastructure gateway
application

123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234
123456789012345678901234

1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123
1234567890123

12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012
12345678901234567890123456789012

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

Syncpoint
protocol

XA-compliant
transaction
manager
gateway

Gateway
application

12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567
12345678901234567

Messaging

Component
location
service

Transformation
engine

▲

▲

▲

▼

▼

▲

▲
▲

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This application will respond to:

• Triggers emanating from messages arriving on a queue.

• A conversation allocation request.

• ‘Create’ or ‘process standard message’ headers.

It will process the message, requesting transformation (eg a minimum
of EBCDIC to ASCII or vice versa).

A component location service is required, which enables mapping of
the queue manager/queues to transactions/target systems.

The application will request services from the transaction manager to
coordinate updates to resources.

SOFT LOCKING

Whilst 2PC and MQ can convey data between applications they
cannot ensure the integrity of the data after it has been delivered. An
additional mechanism is required to ensure that the data will not be
overwritten by a local application, for example, when a remote
conversational application is driving the update.

This section addresses soft locking from the viewpoint of the MQ-
driven application, although some of the issues will apply to the 2PC-
driven legacy application as well – for the latter they are assumed to
have already been addressed.

Assumptions are that:

• Concurrent attempts to update the same data will not be a
common occurrence.

• The locks are not going to be contested, which would otherwise
impede overall performance – an analysis of data accesses will
need to be undertaken to confirm this.

Based on predicate locking, the locking techniques discussed in this
article need to ensure that no two applications will perform a concurrent
update.

Basic soft locking is primarily used for enquiries to ensure a record is
locked whilst a business ‘decision’ is enacted on the data, which may

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 31

then result in an update. The state of the soft lock may be reflected
back to the legacy application or to the gateway application.

An extension of soft locking is ‘firm’ locking; it provides the means
to implement a ‘hardened’ form of this technique, which prevents
enquiries on the data as well as other attempts at updates.

A combination of soft and firm locking can be used if enquiries
precede the update phase of a multi-conversation interaction.

The soft and firm locks are freestanding tables in the database that
indicate whether a lock is set. The latter will consist of a number of
attributes, such as transaction-ID (ie that has been passed on from the
gateway application), User-ID, timestamp, etc.

The type of locking required will depend upon the business
requirements.

Any built-in timeouts need to account for the delays associated with
a network-related update.

When a conversational application requests multiple transactions
pertaining to the same business operation to be driven in a messaging
environment, there is a need to lock the data from the first message-
based transaction until the final message-based transaction has been
completed, as shown in Figure 3.

The key to enforcing this approach is to provide a shared library in the
form of a soft lock manager that application developers will use to
access the data rather than issue their own direct SQL. The option to
use the database locking facilities is unlikely to provide the level of
control required in these situations.

CONNECTING 2PC TO MQ

There is an initial phase, which we will term the ‘pseudo update’,
where the first thing that happens is the the soft lock is updated, as it
may need to be reflected back to the 2PC application (this may not be
necessary in all situations).

Then a firm lock record is created in the firm lock table, which is kept
for the duration of the entire business transaction. Once this lock is in
place no other transaction will be permitted.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The MQ application issues a sync point (begin) and performs the
update, then rolls back all the updates to the sync point. If any errors
occur, the lock is deleted and the record freed. If things have gone well,
the message is sent back to the 2PC legacy application and a two-
phase commit takes place – updating the 2PC legacy resources and
gateway application resources.

In the second phase, the gateway application indicates to the MQ
application that the legacy two-phase commit was successful –

Single-legacy
transaction

MQ-based
transaction

MQ-based
transaction

MQ-based
transaction

Transaction
gateway

Retrieve
data from

Retrieve
more data
from

Ready to
save
database
changes

Save context
data

Read context
data

Save context
data

Read
context data

Write away
changes

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

Figure 3: Soft locking

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 33

otherwise a failure is signalled to the MQ application, no update
action takes place and the firm lock is removed. On receiving the
success signal the MQ application again validates the firm lock table,
and this time a row is expected to be retrieved from the database. If it
is not (or if the lock TRANID does not match) an error is reported.
Otherwise, the update takes place, data consistency is now directly
controlled using the database management system’s internal locking
facilities, and, once the record is written successfully, the MQ
application deletes the firm lock.

SUMMARY

We now have an overview of the two-phase commit process and the
associated soft locking that must accompany it.

The scene has been set for a discussion in next month’s MQ Update
of an overall end-to-end design solution for connecting together
synchronous and asynchronous worlds.

We will also look at an alternative failure recovery strategy, the role
of a scavenger application, and exception handling. We will also
consider connecting an MQ-based application, as the initiator, to a
legacy application.

Mick Broderick
Solutions Architect (UK) © Xephon

MQSeries Workflow V3.3 with MQSeries and MQSI
– an introduction

MQSeries Workflow has supported a direct interface with MQSeries
since version 3.2.1. The latest release – 3.3.0 – introduces new
functionality for more advanced integration and automation. This
new functionality makes the interface more robust and easier to use.

There are two main categories of MQSeries/XML messages understood
by MQSeries Workflow:

• Starting/executing a new process instance from an XML message.

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Using XML messaging to implement an MQSeries Workflow
process activity.

The first is a way for any application/program to start a new workflow
process, for example, a call centre system may have the capability to
start workflow processes to deal with calls that cannot be dealt with
immediately.

This article concentrates on the second category, the interface between
MQSeries Workflow and base MQSeries. This allows an MQSeries-
enabled application (or MQSeries Integrator) to be invoked as part of
a workflow process.

The straightforward interface to implement a process activity is
explained first, and then the advanced functions are introduced. It is
important to understand all of these for complete integration between
MQSeries Workflow and MQSeries/MQSeries Integrator.

This article does not attempt to describe the background and business
drivers behind Workflow, or what Workflow technology is all about.

It is also worth noting that MQSeries Workflow itself makes extensive
use of MQSeries internally. This article concentrates on the standard
MQSeries Workflow interface functionality available to the developer
and should not be confused with the internal use of MQSeries by
workflow. For the purposes of this article, consider the internal
workings of MQSeries Workflow to be a ‘black box’.

IMPLEMENTING A WORKFLOW ACTIVITY VIA MQ AND XML

First impressions indicate that there is nothing too complicated in
making a process activity write an XML message onto an MQSeries
queue. Indeed, there are few problems in the development environment,
with super-user or administrator access rights, and the capability to
define queues and deploy and run workflows, etc. However, it quickly
becomes apparent that careful design is needed up-front before
attempting release into a production environment.

Simplistically, a workflow process activity can be implemented as a
User Program Execution Server (UPES), the properties of which
define the XML message format and the destination MQ queue
manager/queue. The MQ queue can be monitored by an application
that may respond to a ReplyTo queue.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 35

The following sections describe the workflow definitions for the
activity and the UPES.

Activity definition

From the MQSeries Workflow Buildtime environment, when defining
a process, the Execution tab in an activity properties window defines
how the activity is to be implemented. Writing to an MQSeries queue
is performed at the server level, so a UPES is used. The UPES is
effectively the vehicle for placing the message onto a queue (see
Figure 1).

Synchronous versus asynchronous

Note that the invocation mode of the UPES can be either synchronous
or asynchronous:

• Simplistically, ‘synchronous’ places the message on the queue
and workflow puts the activity into a ‘running’ state until a
completion XML message is received.

• ‘Asynchronous’ places the message on the queue and puts the
activity into a ‘finished’ state. No completion XML message is
expected and if one is received it is ignored. Note that this mode
does not allow any update of the container data.

Figure 1: Activity definition

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

For a UPES, one would normally expect the start (as defined in the
Start tab of the activity properties) to be ‘Automatic’. Otherwise a user
has to manually start the activity.

For the activity to be finished, the exit conditions must be met (as
defined in the Exit tab). Again, for a UPES, this would normally be
‘Automatic’ with no special conditions. Also important in the activity
properties are the General and Data tabs (see Figures 2 and 3).

In the General tab, a logical program name is defined that ultimately
identifies a program associated with the activity. When used with
XML messaging it can be used or ignored, depending on the interface
implementation design. See below for more discussion on the program
definition.

The Data tab defines the data structures that are passed to the activity
and ones that are passed onwards from it. These subsequently form
part of the XML message. See below for more discussion of the data
definitions.

In the example above, we have used a UPES called

Figure 2: General tab Figure 3: Data tab

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 37

Figure 4: UPES definition

QUOEMAIL.FMCSYS.FMCGRP. This has to be defined before we
can use it.

UPES definition

A UPES is defined in the ‘Network’ area of Buildtime, for a specific
Workflow system. The system effectively defines the server or ‘node’
where MQSeries Workflow will attempt to write the message (see
Figure 4).

The name of the UPES is only a logical name, but it is limited to eight
mixed-case alphanumeric characters; no special characters are allowed.
The fully qualified name of the UPES is this logical name with a suffix
of the Workflow System name and System Group name (FMCSYS
and FMCGRP in this example).

Note the UPES version number – this will be discussed later.

The message queueing tab in the UPES properties window is where
the MQSeries queue and queue manager names are defined. This is
also where the XML message format is set (see Figure 5).

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Remember that these are just definitions that form part of a process
model. MQSeries Workflow does not create the queue/queue manager
for you, and will not try to use the queue until an instance of the
process is running and the activity is reached and started in the runtime
environment. As with any MQSeries application, a careful release
process is needed to ensure that the queue is present as and when
expected.

Outgoing message

Previous versions of MQSeries Workflow (V3.2.1 and V3.2.2)
supported a single activity message:

• ‘ActivityImplInvoke’. This is the message that signifies that the
activity has been started. A response is required if the mode is
defined as synchronous.

The latest version – 3.3.0 – introduces the following new messages:

• ‘ActivityExpired’ if the activity has been started and the expiry
time reached. No response is expected.

• ‘TerminateProgram’ if the activity has been terminated. No
response is expected.

Figure 5: Message queueing tab

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 39

To maintain compatibility with MQSeries-enabled applications that
have been coded for previous releases, a version number can be
defined for each UPES:

• Setting the version number to 3.2.2 indicates that the application
only understands the ActivityImplInvoke message. MQSeries
Workflow will only send this message for an activity
implementation.

• 3.3.0 as the version number indicates that the ActivityExpired
and TerminateProgram messages are also understood. MQSeries
Workflow will send these messages if necessary.

Once the message has been placed on the queue it is the responsibility
of the application to get the message from the queue and respond if
required. Standard MQSeries transactional features can be used and
it is recommended that you do so.

A message placed onto a user-defined queue via a UPES has the
following general sections:

• The MQSeries message descriptor (MQMD).

• An MQ Workflow XML message header.

• An MQ Workflow message name.

• Message specific parameters, including activity-specific data.

Certain fields in the MQSeries message descriptor (MQMD) are used.
The following are key:

• CorrelID – XML requests sent by MQ Workflow contain a
correlation-ID supplied by workflow. Responses sent back by an
application should return the same correlation-ID.

• ReplyToQ/ReplyToQMgr – specifies the queue and queue
manager the response should be sent to.

• UserIdentifier – the user that started/terminated the activity or,
for the response message, the user that MQSeries Workflow
should use to check authorization.

• Format – MQSTR for workflow XML messages.

• Persistence – XML requests sent by MQ Workflow are persistent

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and responses sent by invoked activity implementations should
also be persistent.

An example of the ActivityImplInvoke workflow message is:

<?xml version="1.Ø" encoding="UTF-8" standalone="yes"?>
<!-- This document is generated by a MQSeries Workflow Version 3.3.Ø
server -->
<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>Yes</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvoke>
 <ActImplCorrelID>RUEAAAABAC4AAAAAAAAAA … AAAAAAAABF</
ActImplCorrelID>
 <Starter>MQWF</Starter>
 <ProgramID>
 <ProcTemplID>AAAAA … AAAAA</ProcTemplID>
 <ProgramName>x</ProgramName>
 </ProgramID>
 <ImplementationData>
 <ImplementationPlatform>WindowsNT</ImplementationPlatform>
 <ProgramParameters></ProgramParameters>
 <ExeOptions>
 <PathAndFileName>x.exe</PathAndFileName>
 <InheritEnvironment>true</InheritEnvironment>
 <StartInForeGround>true</StartInForeGround>
 <WindowStyle>Visible</WindowStyle>
 </ExeOptions>
 </ImplementationData>
 <ProgramInputData>
 <_ACTIVITY>Request confirmation</_ACTIVITY>
 <_PROCESS>SpecialQuote</_PROCESS>
 <_PROCESS_MODEL>SpecialQuote</_PROCESS_MODEL>
 <QuoteInfowithMessage>
 <QuoteInfo>
 <QuoteKey>
 <CustomerID>123</CustomerID>
 <CustomerName>NickWhittle</CustomerName>
 <CustomerEmail>nick@mqsolutions.co.uk</CustomerEmail>
 <QuoteID>ABC</QuoteID>
 </QuoteKey>
 <Status>Confirm</Status>
 </QuoteInfo>
 <Message>Customised message text </Message>
 </QuoteInfowithMessage>
 </ProgramInputData>
 <ProgramOutputDataDefaults>
 <_ACTIVITY>Request confirmation</_ACTIVITY>
 <_PROCESS>SpecialQuote</_PROCESS>

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 41

 <_PROCESS_MODEL>SpecialQuote</_PROCESS_MODEL>
 <DefaultDataStructure>
 </DefaultDataStructure>
 </ProgramOutputDataDefaults>
 </ActivityImplInvoke>
</WfMessage>

Items of interest are:

• The ResponseRequired field, which shows that a response is
expected – ie the execution mode is synchronous.

• The Correlation-ID, which is repeated from the MQMD, as is the
activity starter User-ID.

• The ProgramID and ImplementationData. Traditionally, a UPES
is expected to execute the program detailed. However, with XML
messaging and workflow definitions pointing to a specific queue,
this is not really needed. In fact there are many advantages to not
having program-specific information in the workflow. Hence,
the above example has dummy information for these properties.
A more common scenario is for the queue to be monitored by
MQSeries Integrator, and for that to perform format translations
and workflow correlation.

• After the ACTIVITY, PROCESS, and PROCESS_MODEL
information supplied by workflow, the ProgramInputData shows
the workflow input container data structure.

• The ProgramOutputDataDefaults show the initial values set in
the output container. The above example does not include any
output container data fields.

• It is up to the application how to handle the ActivityExpired and
TerminateProgram events. The Correlation ID is key information
conveyed in these messages.

Response message
A response message is only needed if the synchronous mode has been
selected. The response must be a well-formed workflow XML message,
and must be placed into the workflow XML input queue, as specified
in the MQMD.ReplyToQ and MQMD.ReplyToQMgr fields.

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The response may report successful execution and pass a return code
and output container data, or a failure, and pass an error code and
reason code. Workflow will read and process this response and change
the state of the activity accordingly.

The format of the standard response message will be something along
these lines:

<WfMessage>
 <WfMessageHeader>
 <ResponseRequired>No</ResponseRequired>
 </WfMessageHeader>
 <ActivityImplInvokeResponse>
 <ActImplCorrelID>RUEAAAABAC4AAAAAAAAAA … AAAAAAAABF</
ActImplCorrelID>
 <ProgramRC>Ø</ProgramRC>
 <ProgramOutputData>
 <DefaultDataStructure>
 </DefaultDataStructure>
 </ProgramOutputData>
 </ActivityImplInvokeResponse>
</WfMessage>

If a synchronous activity is expired or terminated by workflow the
response is no longer expected.

Input and output data

Customized workflow input and output data structures are defined in
the process activity Data tab. Although MQSeries Workflow supports
different data types for fields in data structures, the XML message is
in Unicode (UTF-8) and all fields will be output/input as text. A
Workflow data member name is represented as an XML element
name, but the data member type does not appear.

Nested data structures and arrays are supported by MQSeries Workflow
and will appear appropriately in XML: nested data structures as sub-
structures rather than ‘do notation’; array elements sequentially,
without any array index/number and as repeating fields.

For example:

<Customer>
 <Name>…</Name>
 <Address>
 <AddressLine>…</AddressLine>

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 43

 <AddressLine>…</AddressLine>
 <AddressLine>…</AddressLine>
 <PostalTown>…</PostalTown>
 <Postcode>…</Postcode>
 </Address>
</Customer>

Code page issues

MQSeries Workflow uses XML4C for parsing XML messages. This
conforms to the XML 1.0 specification and uses ICU (International
Components for Unicode) for code page conversion, supporting over
100 different code pages.

XML messages sent to MQSeries Workflow are converted from their
format (as specified in the MQMD.CodedCharSetId and
MQMD.Encoding fields) to the appropriate code page associated
with the workflow platform.

Programs

Even though a program is not necessarily used by whatever is
monitoring the MQ queue, it still has to be defined to Workflow.

If the target is not going to use the program information, then only the
‘Program can run unattended’ setting and data structures are important.
The data structures are already defined in the activity properties so it
is often easiest to specify that the program can handle any data
structures.

MAKING SENSE OF THE MESSAGE

As can be seen from the ActivityImplInvoke message, there is a lot of
information available for an application to use. Some of this is needed
for synchronous replies back to Workflow, but most is unlikely to be
understood by the application (unless it is specifically coded for
MQSeries Workflow). Often an application will only be concerned
with the input and output data, but possibly not in the same form as is
passed from/to MQSeries Workflow.

Hence, MQSeries Integrator (MQSI) is an ideal product to monitor
activity interface queues and pre-process messages before passing
them on to an application. Sometimes, the functionality within MQSI

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

is sufficient to implement the activity (eg simple database transactions),
but more often a line-of-business (LoB) application is the target and
must be used.

When MQSI is used to integrate LoB applications the context data
needed for replying to workflow has to be stored. If the application
doesn’t support context-specific data being passed in the transaction
(most don’t), then either an adapter and synchronous calling method
have to be used, or MQSI has to store the context information in a
temporary database table. Part of the interface design is then tying up
the reply application-specific message with the stored context data.
Usually, an application is using some of the context data as a key, so
this could be used. For example, a customer information lookup
function may pass and return a customer ID as the key.

USING MQSI PUB/SUB

Processes in MQSeries Workflow are often long-running, perhaps
taking days, weeks, or even months to complete. So far, we have
talked about fairly straightforward interfaces and MQSI message
flows – the customer database lookup is likely to take a relatively short
time.

The same MQ/XML interface method can, however, be used to
support a synchronous call that takes a long time to return. An example
might be a function that sends an e-mail and waits for a reply. Rather
than hard-code the e-mail send and reply function you’d expect
several steps to both construct/send the e-mail and identify the reply.
This would often involve using common e-mail composition and
sending modules and a generic incoming e-mail handler. A good
solution is to use MQSI publish and subscribe facilities.

It makes sense for an incoming mail handler to publish indexing
information for applications that may be interested. If so, then after
sending the initial e-mail the MQSI message flow simply has to
subscribe to wait for an appropriate reply, in addition to storing the
workflow context-specific data (see Figure 6).

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 45

ADVANCED WORKFLOW, MQSI, PUB/SUB, AND APPLICATION
CONSIDERATIONS

The ActivityExpired and TerminateProgram events clearly need
special processing from an application or MQSI perspective. If
publish/subscribe is being used, the subscribe registration needs to be
removed, as does any workflow context-specific data from any
database. Furthermore, if any data is being used by an application to
make changes, then the design has to consider how these can be
reversed. Remember that ‘changes’ may be more than just database
updates – what if some external correspondence has been dispatched?
Without getting into a business and technical architecture discussion,
the answer will probably involve catering for the situation from both
application and process design aspects. However, there are different
approaches and strategies available depending upon specific business
requirements.

Publishing
application
(send event)

MQSeries
Workflow server

Process

MQ/XML
activity

Figure 6: Workflow context-specific data

Event server:
MQSeries Integrator

Input queue
for
publication

▲

▲

▲

▼

▼

Publish

▲ ▲▲

Pub/
sub

Register
Subscriber

▲

▼

▲ ▲ ▲

WF
XML
input
queue

▲

▲

Transform
Publication

▲

▲
▲

▲

▲
▲

Correlation data

▲

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Expiry times

Although this article is not intended to address process design issues
there are some aspects that are relevant. Any workflow process
activity that is implemented using XML messages in a synchronous
execution mode has to protect itself from the possibility of not
receiving a response in a timely manner.

Good process design should consider specifying notification times for
processes and certain activities. Notifications, however, are really
aimed at highlighting to a senior person that something is stuck. This
is not always an appropriate mechanism for dealing with ‘business as
usual’ situations.

Following the e-mail example, a realistic business requirement would
be to send a chasing e-mail if no response is received within a certain
time. Instead of using notifications or writing custom code that
examines the audit log to detect activities that need chasing, or
designing an over-complicated process to deal with chases, a new
feature in Workflow V3.3 can be used.

An ‘expiry time’ can now be specified at the activity level. This does
not cause a notification; it is simply a different finishing state for
activities. This state information is available as part of the activity
output container data so it can be used in a transition condition, ie the
workflow process can take appropriate action if an activity has
expired. I would strongly recommend that expiry times are placed on
all synchronous activities implemented by the MQ interface.

Brokers and the MQ interface

Instead of approaching the interface from an application functional
perspective, using an individual queue for each application/function
required by the process design, one could consider the interface from
the workflow perspective.

A workflow process often uses the same or similar data containers
throughout. These have meaning to the process and usually have a few
key fields. The key fields may be understood and acted on by a
common module monitoring a single MQ queue that is used for all
activities implemented by the MQ interface in that process. This
module may then act as a broker and pass on a distilled message to

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 47

specific applications.

This, hopefully, gives an insight into the capability of the MQSeries
Workflow XML/MQ interface and some of the options available in
the design, together with a few of the issues to consider. Perhaps the
most important point to remember is that we are talking about an
interface between a business process and information systems.
Therefore, the people considering interface design solutions should
understand both business and technical aspects. Ideally, they will also
have solid experience of workflow design and implementation, so
have met the issues before.

CONCLUSION

The integration between MQSeries Workflow and MQSeries/MQSI
for activity implementations can be described as being ‘loose’. The
MQSeries Workflow activity does not know anything about queue
specifics (other than a queue and queue manager name), so the two are
not closely linked or dependent on one another. This allows the full
capabilities of MQSeries to be utilized without constraint. The use of
MQSeries and MQSI gives great flexibility and support for applications
on many platforms.

The transactional support and additional messages in V3.3 enable a
robust interface to be implemented with a minimum of fuss, whilst
ensuring business process and application data integrity. This is
important when considering workflow as a critical business system.

For more information and a quick-start, examine the IBM SupportPacs
and Redbooks for MQSeries Workflow. The following SupportPac
contains a simple integration example:

• WA06 – Event Server sample using MQSeries Integrator.

Always refer to the Programmers’ Guide for a definitive reference
specific to the level of the product.

Nick Whittle
MQSolutions (UK) © Xephon

MQ news

iWay Software, an Information Builders
company, has announced an expanded Plug-
in Suite for WebSphere MQ Integrator that
eliminates custom programming while
enabling the simplified integration of: EDI
e-business exchanges such as
CommerceOne and Covisint; HIPAA-
compliant application systems; packaged
application systems such as SAP,
PeopleSoft, Siebel Systems, and Oracle
Applications; existing transaction systems
such as CICS, IMS, and Tuxedo; programs
written in languages such as COBOL and
RPG; and diverse legacy information assets.

The company claims that the elimination of
custom programming over such a wide range
of information assets will dramatically
reduce the cost, time, and effort of
implementing integration solutions with
IBM application integration middleware
products.

The iWay v5.1 Plug-in Suite for WebSphere
MQ Integrator supplies a set of flow design
tools directly within the WebSphere MQ
Integrator Control Center. These tools allow

WebSphere MQ Integrator users to
incorporate widely diverse information
resources into message flows, hiding the
proprietary interfaces and message formats
they use.

The iWay Plug-in Suite is compatible with
existing WebSphere MQ Integrator
processing nodes, but also allows
WebSphere MQ Integrator to access iWay
Intelligent Adapters. It is availabile on
Windows NT/2000, AIX, Sun Solaris, and
HP/UX.

For further information contact:
Information Builders, Two Penn Plaza, New
York, NY 10121-2898, USA
Tel: +1 212 736 4433
Fax: +1 212 967 6406
Web: http://www.ibi.com

Information Builders, Wembley Point,
Harrow Road, Wembley, Middlesex,
HA9 6DE, UK
Tel: +44 20 8982 4700
Fax: +44 20 8903 2191

* * *

x xephon

	MQSeries channel events: printing details
	The mechanics of MQSeries triggering
	Connecting tightly coupled legacy applications to loosely coupled applications: part 1
	MQSeries Workflow V3.3 with MQSeries and MQSI – an introduction
	MQ news

