
© Xephon plc 2002

March 2002

33

3 Copying messages selectively
11 Connecting tightly coupled

legacy to loosely coupled
applications: part 2

25 MQ back-up and recovery on
open system platforms

33 Determining end-to-end
response time in a multi-tier
application environment

44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 3

Copying messages selectively

When testing, there is sometimes a requirement to select specific
messages from a stream of messages on an IBM MQSeries queue
manager and copy them to another queue in order to process only that
type of message. You might want to make a copy of the third, tenth,
and twenty-seventh messages, for example, or test a particular path
through a program, or examine a specific message flow with MQSeries
Integrator V2.

MessageCopy is a program which will allow you to copy a message
from an MQSeries queue manager queue to the same or another
queue, one or more times. It is invoked as follows:

MessageCopy <from_qname> <to_qname> <qmanager> #messages #times
skip_count.

Where:

• <from_qname> is the name of the MQSeries queue manager
queue from which you want to copy messages. This is the source
queue. (This parameter is compulsory.)

• <to_qname> is the name of the MQSeries queue manager queue
to which you want to copy messages. This is the destination
queue. It can be the same as the source queue. (This parameter is
compulsory.)

• <qmanager> is the name of the MQSeries queue manager on
which the source and destination queue are located. (This
parameter is compulsory.)

• #messages is the number of messages to be copied from the
starting point: the default is 50.

• #times is the number of times each selected message should be
copied: the default is one.

• Skip_count is the number of messages to skip before copying: the
default is zero.

The source for MessageCopy is given below. It was written for
MQSeries 5.2 to run on Windows 2000 but should run just as easily

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

on Windows NT. Porting to other platforms should be straightforward,
although I haven’t tried it.

MESSAGECOPY
 /*
*(c) Copyright IBM Corp. 2ØØ1
 * MessageCopy is a C program to copy messages from one
 * queue to the same or another queue
 * Stops if there is an MQI completion code or MQCC_FAILED
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <cmqc.h>
 #include <time.h>
 #include <windows.h>
 void reportCounts();
 void leave(int reason);
/* Some declarations. Things are Global and so easier to share */
 MQOD objDescInput = {MQOD_DEFAULT}; /* Object Descriptor for the
'from' queue */
 MQMD msgDescInput = {MQMD_DEFAULT}; /* Message Descriptor for the
'from' queue */
 MQOD objDescOuput = {MQOD_DEFAULT}; /* Object Descriptor for the 'to'
queue */
 MQMD msgDescOutput = {MQMD_DEFAULT}; /* Message Descriptor for the
'to' queue */
 MQGMO getMsgOptsOutput = {MQGMO_DEFAULT}; /* get message options */
 MQPMO putMsgOptsOutput = {MQPMO_DEFAULT}; * put message options */
 MQHCONN handleConnection; /* connection handle */
 MQHOBJ handleObjectInput; /* input object handle */
 MQLONG openOptionsInput; /* input MQOPEN options */
 MQHOBJ Hobjo; /* output object handle */
 MQLONG openOptionsOutput; /* output MQOPEN options */
 MQLONG closeOptions; /* MQCLOSE options */
 MQLONG compCode; /* completion code */
 MQLONG reason; /* reason code */
 MQLONG reasonCode; /* reason code for MQCONN */
 MQCHAR *buffer; /* message buffer */
 MQLONG buffLen; /* buffer length */
 MQLONG msgLen; /* message length received */
 MQCHAR QMName[4Ø]; /* queue manager name */
 MQLONG i; /* loop counter */
 MQLONG j; /* loop counter */
 MQLONG totalMsgsPut =Ø ; /* Number of messages read */
 MQLONG copyCount; /* Number of times message is to be repeated */
 MQLONG skipCount=Ø; /* Number of messages to skip before copying */
 MQLONG messagesToCopy=5Ø; /* Number of messages to be copied from the
'from' queue */

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 5

 MQLONG totalMsgsRead; /* Number of messages read in total on the
'from' queue */
 MQCHAR8 firstPutTime; /* Time of the first put */
 MQCHAR8 lastPutTime; /* Time of the last put */
 MQLONG connected=Ø; /* Used to indicate the MQCONN was OK */
 MQLONG openInput=Ø; /* Used to indicate the MQOPEN for the
'source' Q was OK */
 MQLONG openOutput=Ø; /* Used to indicate the MQOPEN for the
'destination' Q was OK */
 int main(int argc, char **argv)
 {
 printf("Start of MessageCopy\n\n");
 if (argc < 4)
 {
 printf("Format is: MessageCopy from_queue_name to_queue_name
queue_manager #messages #times skip_count\n");
 printf("from_queue_name - name of the source queue *\n");
 printf("to_queue_name - name of the target queue *\n");
 printf("queue_manager - name of the queue manager containing the
queues *\n");
 printf("#messages - the number of messages to be copied from
the starting point(default 5Ø)\n");
 printf("#times - number of times each selected message
should be copied(default 1)\n");
 printf("skip_count - number of messages to skip before copying
(default Ø)\n");
 printf("* marks a compulsory parameter\n");
 leave(99);
 }
 /* Create object descriptor for 'from' queue */
 strcpy(objDescInput.ObjectName, argv[1]);
 /* Create object descriptor for 'to' queue */
 strcpy(objDescOuput.ObjectName, argv[2]);
 /* Set Queue Manager name */
 if (argc > 3)
 strcpy(QMName, argv[3]);
 /* Determine the number of messages to copy from the source Q */
 if (argc > 4)
 messagesToCopy = atoi(argv[4]);
 /* Determine the number of times each message is to be copied */
 if (argc > 5)
 copyCount = atoi(argv[5]);
 /* Determine the number of messages to be skipped before copying */
 if (argc > 6)
 skipCount = atoi(argv[6]);
 printf("Run parameters are as follows:\n");
 printf("Copy %d messages\n",messagesToCopy);
 printf("Repeat each message %d times\n",copyCount);
 printf("Skip %d messages before starting to copy\n",skipCount);
 /* Time to connect */
 MQCONN(QMName,

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 &handleConnection,
 &compCode,
 &reasonCode);
 /* Check the outcome */
 if (compCode == MQCC_FAILED)
 {
 printf("MQCONN ended with reason code %ld\n", reasonCode);
 leave(reasonCode);
 }
 else
 connected = 1;
 /* Open the source queue for input and in shared mode */
 openOptionsInput = MQOO_INPUT_SHARED
 + MQOO_FAIL_IF_QUIESCING
 + MQOO_BROWSE;
 MQOPEN(handleConnection,
 &objDescInput,
 openOptionsInput,
 &handleObjectInput,
 &compCode,
 &reason);
 /* Check the outcome */
 if (compCode == MQCC_FAILED)
 {
 printf("MQOPEN for %s ended with reason code %ld\n",
objDescInput.ObjectName, reason);
 leave(reason);
 }
 else
 openInput = 1;
 /* Open the destination queue for output */
 openOptionsOutput = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;
 MQOPEN(handleConnection,
 &objDescOuput,
 openOptionsOutput,
 &Hobjo,
 &compCode,
 &reason);
 /* Check the outcome */
 if (compCode == MQCC_FAILED)
 {
 printf("MQOPEN for %s ended with reason code %ld\n",
objDescOuput.ObjectName, reason);
 leave(reason);
 }
 else
 openOutput = 1;
 /* Prepare to read a message from the source queue */
 getMsgOptsOutput.Version = MQGMO_VERSION_2;
 getMsgOptsOutput.MatchOptions = MQMO_NONE;
 getMsgOptsOutput.Options = MQGMO_WAIT;

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 7

 getMsgOptsOutput.WaitInterval = 1ØØ;
 getMsgOptsOutput.Options += MQGMO_BROWSE_NEXT ;
 /* Alternatively we could wait for ever by using
 * getMsgOptsOutput.WaitInterval = MQWI_UNLIMITED;
 */
 msgDescInput.Encoding = MQENC_NATIVE;
 msgDescInput.CodedCharSetId = MQCCSI_Q_MGR;
 /* Allocate a buffer to hold the message */
 buffLen = 41943Ø4;
 buffer = malloc(41943Ø4);
 if (buffer == Ø)
 {
 printf("Failure in malloc for message buffer\n");
 leave(99);
 }
 /* Skip over the first 'n' messages if required */
 for (i=Ø; i <skipCount ; i++)
 {
 MQGET(handleConnection,
 handleObjectInput,
 &msgDescInput,
 &getMsgOptsOutput,
 buffLen,
 buffer,
 &msgLen,
 &compCode,
 &reason);
 /* Check the outcome */
 if (compCode == MQCC_FAILED)
 {
 printf("MQGET for %s ended with reason code %ld\n",
objDescInput.ObjectName, reason);
 leave(reason);
 }
 totalMsgsRead += 1;
 /*
 * Set the MessageID and CorrelID to Ø in order
 * to ensure that we see all the messages
 memcpy(msgDescInput.MsgId, MQMI_NONE, sizeof(msgDescInput.MsgId));
 memcpy(msgDescInput.CorrelId, MQCI_NONE,
sizeof(msgDescInput.CorrelId));
 }
 i=Ø;
 while (i < messagesToCopy)
 {
 /* Get a message to copy */
 MQGET(handleConnection,
 handleObjectInput,
 &msgDescInput,
 &getMsgOptsOutput,
 buffLen,

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 buffer,
 &msgLen,
 &compCode,
 &reason);
 /* Check the outcome */
 if (reason == MQRC_NO_MSG_AVAILABLE)
 {
 printf("End of source queue reached, terminating...\n");
 leave(Ø);
 }
 else if (compCode == MQCC_FAILED)
 {
 printf("MQGET for %s ended with reason code %ld\n",
objDescInput.ObjectName, reason);
 leave(reason);
 }
 totalMsgsRead += 1;
 /* Write it the required number of times */
 for (j = Ø; j < copyCount; j++)
 {
 MQPUT(handleConnection,
 Hobjo,
 &msgDescInput,
 &putMsgOptsOutput,
 msgLen,
 buffer,
 &compCode,
 &reason);
 /* Check the outcome */
 if (compCode == MQCC_FAILED)
 {
 printf("MQPUT for %s ended with reason code %ld\n",
objDescOuput.ObjectName, reason);
 leave(reason);
 }
 /* Record the time of the first PUT if no messages put so far
 * otherwise save it as the last time to date.
 */
 if (totalMsgsPut == Ø)
 {
 memcpy(firstPutTime, msgDescInput.PutTime,
sizeof(msgDescInput.PutTime));
 memcpy(lastPutTime, msgDescInput.PutTime,
sizeof(msgDescInput.PutTime));
 }
 else
 memcpy(lastPutTime, msgDescInput.PutTime,
sizeof(msgDescInput.PutTime));
 totalMsgsPut++; /* Increment the count */
 }
 i++;

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 9

 }
 /* Time to leave */
 leave(Ø);
 }
 /* reportCounts is a function to report
 * the counts and times of the messages which were
 * read and written
 */
 void reportCounts()
 {
 char formattedTime[3Ø];
 printf("\nResults are as follows:\n");
 printf("Read a total of %i messages (including skipped
messages)\n",totalMsgsRead);
 printf("Wrote a total of %i messages\n",totalMsgsPut);
 if (totalMsgsPut)
 {
 sprintf(formattedTime,"%Ø.2s Hr %Ø.2s Min %Ø.2s.%Ø.2s Secs",
firstPutTime, firstPutTime+2, firstPutTime+4, firstPutTime+6);
 printf("First message written at %s\n", formattedTime);
 sprintf(formattedTime,"%Ø.2s Hr %Ø.2s Min %Ø.2s.%Ø.2s Secs",
lastPutTime, lastPutTime+2, lastPutTime+4, lastPutTime+6);
 printf("Last message written at %s\n", formattedTime);
 }
 }
 /* leave is a common exit point
 *
 * Function will close all queues and
 * disconnect from the queue manager
 */
 void leave(int rc)
 {
 reportCounts();
 if (rc)
 printf("MessageCopy exiting with return code %ld\n",rc);
 /* Close the source queue (if it was opened) */
 if (openInput)
 {
 closeOptions = Ø;
 MQCLOSE(handleConnection,
 &handleObjectInput,
 closeOptions,
 &compCode,
 &reason);
 /* Check the outcome */
 if (reason != MQRC_NONE)
 printf("MQCLOSE for %s ended with reason code %ld\n",
objDescInput.ObjectName, reason);
 }
 /* Close the destination queue (if it was opened) */
 if (openOutput)

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 {
 closeOptions = Ø;
 MQCLOSE(handleConnection,
 &Hobjo,
 closeOptions,
 &compCode,
 &reason);
 /* Check the outcome */
 if (reason != MQRC_NONE)
 printf("MQCLOSE for %s ended with reason code %ld\n",
objDescOuput.ObjectName, reason);
 }
 /* Disconnect if we connected in the first place */
 if(connected)
 {
 MQDISC(&handleConnection,
 &compCode,
 &reason);
 /* Check the outcome */
 if (reason != MQRC_NONE)
 printf("MQDISC ended with reason code %ld\n", reason);
 }
 /* If a reason code was returned from the close or disconnect
 * use that to exit the program with, otherwise use the value passed
 * into the function
 */
 if (reason)
 rc=reason;
 printf("\nEnd of MessageCopy\n");
 exit(rc);
}

A known limitation with MessageCopy is that it does not preserve the
context of the original message when copying to the destination
queue. This is because MessageCopy reads messages on the source
queue with ‘browse’ in order to preserve the original message. This
means that the following fields are not maintained from the original
message: Put date and time; UserID under which the message was put;
and the name of the application which put the original message. If
maintaining these fields is important then one approach would be to
modify the program to issue an MQGET without the browse option.
The problem in doing this is that the original message is lost and the
sequencing on the source queue is changed.

As coded, the maximum message size is 4MB. If you need to process
larger messages you will need to increase the size of the buffer.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 11

Here is an example of MessageCopy output:

MessageCopy QUEUE1 QUEUE2 BROKER1 12 1Ø 5Ø
Start of MessageCopy
Run parameters are as follows:
Copy 12 messages
Repeat each message 1Ø times
Skip 5Ø messages before starting to copy
Results are as follows:
Read a total of 62 messages (including skipped messages)
Copied a total of 12Ø messages
First message written at 14 Hr 43 Min 26.88 Secs
Last message written at 14 Hr 43 Min 26.91 Secs
End of MessageCopy

Tim Dunn, Software Engineer
IBM Hursley (UK) © IBM

Connecting tightly coupled legacy to loosely
coupled applications: part 2

THE END-TO-END DESIGN

Last month we discussed connecting an environment based on two-
phase commit (2PC) to one based on message queueing (MQ). In this
article we look at the end-to-end design of such a system.

Security considerations will not be included here; the scope is too
large.

To allow the connection of the synchronous and asynchronous worlds
we need a method which:

• Reduces the costs and timescales of integrating applications.

• Is generic enough to enable re-use across applications.

• Ensures minimal human intervention (business and IT support).

• Utilizes the integration broker service.

• Minimizes development effort in the legacy world.

• Is reliable and, if required, supports 24 hour operation.

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Is scalable to meet the demands of an expanding business.

• Supports both read and update processing.

Ideally, the design should be based on a service-oriented component
architecture and be event-driven so that any application can be
exploited to build a business process.

From the perspective of the initiator of a request for an application
service, there is a need to consider each direction of communication
separately.

DESIGN SCENARIOS

There are likely to be several permutations of the connectivity options
available for tightly coupled and loosely coupled environments. The
two we will focus on are:

• New message-based business applications connecting to the
synchronous legacy applications.

• Legacy applications connecting to business functions that have
been migrated to the new ‘infrastructure’ and now need to
connect via messaging.

Each of these scenarios poses challenges that can be surmounted with
good architectural design. The second option is the more difficult,
since the goal is to be non-invasive.

Infrastructure design

The basic building blocks we identified last month are:

• An intermediate gateway server.

• A transaction manager to act as a gateway and coordinate activities.

• An integration broker to provide transformation engine
capabilities. (The assumption is that it will be used for other
integration requirements, eg SAP access from the new business
applications.)

• Messaging technology that is XA-compliant.

• A communications protocol technology (eg LU6.2, OSI/TP)
which supports syncpoint coordination.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 13

• A standard message header.

It is assumed that the network underpinning the design will be robust
with alternative path strategies to cater for outages, and that invoking
the back-up alternatives takes a matter of minutes in the worst case.

For simplicity we will refer to an application rather than transactions,
of which there will be several making up the application.

Legacy to new business application update

The topology in Figure 1 is representative of the basic end-to-end
design that is required to support updates to the new business application
initiated by the legacy application. Note that the new business
application is deemed the ‘master database’ and needs to reflect the
true position of the business – even though the secondary database
may be up-to-date on the data it shares with the new business
application.

MQSeries provides a decoupled solution where messages can be
secured within an intermediate transaction manager gateway database
(a queue). In this scenario data for applications on transaction manager
A will be sent via MQSeries. The intermediate transaction manager
gateway will hold a logical unit of work (UOW) with the application
on transaction manager B.

Software locks will be retained by the new business application until
such time that transaction manager gateway B indicates they can be
removed. This will in fact be done at the application level, since the
gateway application intercepts system-level commit instructions and
signals an application-level alternative to the new business application.

The commit from transaction manager A and the response from the
intermediate gateway transaction manager will ensure the legacy
database is updated before the new business database.

The initial conversations will be over an MQSeries Client connection
(see Exception handling below) with a final commit message to
request removal of the soft locks issued over an MQSeries server to
the MQSeries server connection. This ensures the ‘unlock’ message
will be delivered and the master database updated even if the network
goes down for a short time.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The 2PC transaction identifier will flow between the legacy application
and the new business application for the duration of the conversation
– required for the soft lock mechanism previously described. This will
ensure only actions relevant to the transaction will take place, thereby
preserving its atomicity.

The gateway application will determine from the Component Location
Service (CLS) which queue manager/queue will receive the transaction.

The application running under transaction manager B will send an
update request to the gateway application on the intermediate
transaction manager gateway, and several conversations may need to

Figure 1: Update from legacy

Component
Location
Service

Transformation
engine

Transaction
manager A

Transaction
manager B

Status
queue

Legacy
application

New
business
application

Master
database

Gateway
application

▲

▲

▲

▲

▲

Intermediate transaction
manager gateway

▲

▼

▲

▼

▼▼

Secondary
database

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 15

flow within the UOW. The UOW cannot be committed straight away
because a response is needed from the new business application
running under transaction manager A.

If the message is produced within the UOW it will not be released to
transaction manager A. To release the message the MQ calls will be
issued outside the syncpoint of the main UOW. The response to the
request is read under the syncpoint of the main UOW.

The gateway application uses an MQSeries client (ie synchronous
connection) that provides an immediate response indicating success
or failure to write to a queue on transaction manager A. It will also
request the queue manager to create a permanent dynamic queue to
receive the response.

Any enquiry requirement from legacy to new business will also use
the topology detailed in Figure 1.

New business application update to legacy

In some situations the new business application may be required to
connect to a legacy application that has not been migrated to the new,
loosely coupled architecture. The business wants to see legacy
applications continuing to provide business services in an event-
driven manner.

The topology in Figure 2 is representative of the basic end-to-end
design that is required to support updates from the MQ-oriented new
business application, which is outwardly very similar to the legacy-to-
new-business-application scenario described above.

Updates from the new business application will use MQSeries Server
to MQSeries Server to communicate: MQ Client could be used
although it introduces a synchronous component that is not necessary
when the ‘master’ initiates the update request.

As transaction manager A is the master, the locks provided by the
database management will be removed on writing the message to the
queue and the response from legacy will be used solely as an audit trail
for reconciliation purposes.

The gateway application will hold the legacy transaction open, handle
all the conversation interactions, and map these to MQSeries messages

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 2: Update to legacy

Component
Location
Service

Transformation
engine

Transaction
manager A

Transaction
manager B

Legacy
application

New
business
application

Master
database

Gateway
application

▲

▲

▲

Intermediate transaction
manager gateway

▲

▼

▲

▼

▼

▲

request/replies using the correlation identifier. The CLS will contain
the appropriate message to UOW/conversation mappings.

If the new business application decides to abort the update then
transaction manager A will rollback the updates to the database and
queue. Any enquiry requirement from a new business application to
legacy will also use the topology detailed in Figure 2.

INFRASTRUCTURE CONSIDERATIONS

There are two key options to consider when interfacing with MQ:

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 17

• Persistent messages: normally used for updates – they survive
system restarts but response times are affected.

• Non-persistent messages: normally used for enquiries – they do
not survive system restarts.

If possible, the non-persistent option should be used for at least the
MQ client-related interactions.

Care needs to be taken to ensure that the application level protocol
details have been captured – these may be the most difficult to process.
A decision will need to be taken as to where to handle these protocols;
there are two options:

• Within the integration broker.

• Within the middleware infrastructure application (gateway).

A Component Location Service needs to be developed to map target
systems to physical routing attributes – LDAP is a possibility here if
the required look-up performance can be achieved.

It is also beneficial to develop a higher level MQ API (MQ Bridge)
for the new business applications to shield them from the complexities
of the underlying infrastructure APIs. The MQ Bridge will enable
services to be built-in and configured independently of the application
utilizing the bridge.

The gateway application will make the routing decisions by reference
to the Component Location Service. This will enable the scaling up of
the services as required – it is here that a form of workload management
can be introduced to spread the load across several hosts.

An MQ Bridge supporting the new business application running
under transaction manager A, as shown in Figure 2, can also make
routing decisions by referring to the Component Location Service (a
local version will be required). The MQ Bridge will consult the
Component Location Service using a token submitted by the
application, which provides an abstracted reference to the target
application. Additional information will flow in a standard message
header from the MQ Bridge to the gateway application to enable it to
consult the Component Location Service for additional routing
information (eg support for multiple-target platforms).

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The legacy applications will continue to have hard-coded configuration
data.

Just as with the tightly coupled model, the application may be
communicating success or failure in user mode, so the interactions
with MQ may not necessarily be fully transactional.

The transaction manager will have to provide the unique identifier of
the data sub-set on which the applications work to enable identification
of each data flow, which will in turn need to be conveyed over the
messaging infrastructure to the message-based application. It will
assist in reconciling message to conversation and for exception
handling purposes.

There will be large numbers of services running simultaneously and
all maintaining locks within the resource managers so care will be
required when sizing and configuring the hardware they will run on.

The key area of exception handling is discussed later in this article.

An alert should always be raised to the systems management sub-
system when exceptions occur.

The systems management sub-system will be aware of remote queue
manager outages through regular testing of queue manager link
availability; this will ensure detection when there is no application-
level activity.

BUSINESS APPLICATION DESIGN ISSUES

When delivering business functionality in the new system you need
to decide whether the design should comprise:

• several discrete transactions, or

• a single transaction which co-ordinates with other transactions:
this option gives the impression of a single transaction to the
caller.

It is also necessary to ensure that the applications are aware of
progress through the infrastructure to a point when they can be assured
messages are deemed as ‘committed’ and therefore delivered from the

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 19

sender’s viewpoint. As stated previously, to achieve this you need to
determine which is the master and which the secondary.

Depending upon which end initiated the transaction the following will
inform the application of a ‘good’ state.

• For the application driving the syncpoint protocol there will be:
– a ‘good’ return code to the two-phase commit request.

• For the application using queues there will be:
– a ‘good’ return code to the request to put a message on a

queue. Additionally, the application can request confirmation
of delivery and confirmation of arrival messages from the
remote queue manager.

Routing decisions will be made primarily by the infrastructure;
however, the application will have to provide some routing token to
enable mapping from an abstract relationship to a physical delivery
address held within the Component Location Service.

EXCEPTION HANDLING

Just as with the pure, tightly coupled model, the update transaction
program may be communicating success or failure in user mode, so
update interactions via MQ may not have to be fully transactional.

Unlike pure transactional communications, which may have rollback
initiated by either party, the asynchronous world has to have a
different strategy. A key design issue is the recovery strategy for which
there are three options:

• Compensating transactions.

• Manual unpicking.

• Forward recovery.

The first is difficult to achieve, as testified by industry consensus, and
is probably best avoided. The preference is for either the second
option, which is self-explanatory, or the third option, which forces the
transaction to be completed and will introduce additional middleware
infrastructure recovery and business recovery applications at the
target.

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

It is assumed that the applications will run on clustered systems and
that recovery to the alternative platform will be a matter of seconds for
the key components.

Recovery of update failures from new business applications

For recovery of update failures to a legacy environment, if a message
cannot be delivered the gateway application will put a message on a
recovery queue to trigger a scavenger application, as shown in Figure
3. For messages stuck in transit at the intermediate server because of
a network fault, for example, the scavenger application will attempt
to resend the data over a syncpoint connection to the legacy application
when the network has recovered.

Timeout values are required and they should be set to reflect:

• The business process needs – static values.

• System management failure notifications – dynamic values.

A review of the systems management and business processes will be
required to ensure they can cope with the changing circumstances.

A new application within the legacy system will process the message
issued by the scavenger according to the existing processing rules and
any enhancements to the business process.

There may be a need to enhance the existing legacy application to save
the ‘state’ at the time of the abort, so that the new legacy application
can determine what course of action to take in support of the business
process, which may be a request for human intervention.

Recovery of update failures from legacy
For recovery of failures to a new business application-related update,
failure to write to a queue will result in the legacy UOW being aborted
and all its potential updates being rolled back.

If this is not the first leg of the update the gateway application will
insert a failure status message on the local status queue, which will
signify to the new business application that the associated UOW was
aborted. The application will tidy up any outstanding locks and roll
back any data updates.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 21

Figure 3: Recovery of updates from a new business application

Component
Location
Service

Transformation
engine

Transaction
manager

Transaction
manager

Legacy
application

New
business
application

Master
database

Gateway
application

▲

▲

▲

Transaction manager

▲

▼

▲

▼
▼

▲

Scavenger

Status queue
State
data

Systems management

▼

▼

▲

▲

▲

▼

▲

If it is the last leg of the update, ie the update has been signalled as
successful by the legacy application, an update commit status message
is written to the local status queue. This is subsequently processed by
the new business application, which ensures the update takes place
and all locks are removed.

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In the event of a ‘final commit’ being delayed by the transaction,
which could be the last in a chain as shown in Figure 4, the locks are
left in place and a recovery message put on a queue to invoke a
scavenger application.

The scavenger application will wait for the arrival of the message
following reinstatement of the network and will attempt to update the
database and remove any outstanding locks. Again, timeout values
need to be set to reflect:

• The business process needs – static values.

• System management failure notifications – dynamic values.

Systems management and business processes must also be reviewed
again to ensure they can cope with the changing circumstances.

The gateway application will communicate with the new business
application using a synchronous connection. This will ensure that if
the legacy application aborts the UOW the gateway application will
delete the dynamic reply queue and put a failure message on the status
queue, as previously discussed.

Recovery of enquiry failures from legacy or new business applications

The ‘read’ capability need not be handled with anywhere near the
elegance required for updates. If the message or transaction cannot be
delivered the application will timeout and issue a failure alert,
probably to an end-user screen and to systems management.

Within the MQSeries world the ‘message expiry value’ will have to be
set to reflect the application timeout and the message will have
disappeared; this is necessary because of the resilience capabilities of
MQSeries.

MQ application rollbacks
If the new business application fails, a rollback will be issued for a
persistent message, which will result in the message being left on the
queue. The MQ application will handle this scenario by allowing only
a limited number of retries before moving the message to a ‘poison
message’ queue and returning an error code to the calling program.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 23

Figure 4: Recovery of update failures from legacy

Component
Location
Service

Transformation
engine

Transaction
manager

Transaction
manager

Legacy
application

New
business
application

Gateway
application

▲

Transaction manager

▲

▼

▲

▼

▲

Scavenger
application

Status queue

Systems management

▲

▲

Supporting systems

The systems management system will be monitoring for a number of
conditions:

• Messages stuck on a queues.

• Network failures.

Master
database

▼
▲

▲

State
data

▲

▲

▼

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Server failures.

• Transaction failures.

When it detects a failure state a ‘rule’ should process the ‘state’ and
issue an alert to both the new business application/user and the
scavenger program. These programs will adjust their behaviour
according to the message content.

SUMMARY

The task of linking tightly and loosely coupled systems whilst
ensuring the smooth adoption of new architecture is challenging, but
it can be done.

Business processes must be reviewed to determine the level of impact
exceptions will have and what course of action is required to handle
them. It is inevitable that human intervention will be required to
recover from exception conditions, but this can be minimized.

The two-phase protocol with syncpoint is complex and requires
specialist support, as do the application level protocols, where
knowledge has been lost over time.

Nothing can be introduced without some ‘pain’ and inevitably there
is development required both within the middleware infrastructure
and the existing legacy environment.

There are business benefits in moving towards the loosely coupled
environment and readers will no doubt be aware of them; this article
highlights an approach that goes some way to ensuring these benefits
are achieved.

Mick Broderick
Solutions Architect (UK) © Xephon

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 25

MQ back-up and recovery on open system
platforms

This article discusses back-up and recovery of MQSeries queue
managers on open systems platforms, ie Unix and NT. Most of the
points made also apply to MQSeries on platforms using a common
code base such as OpenVMS. Although MQSeries for
AS/400 has about 75% of its code in common with the Unix and NT
versions, its logging and recovery uses the AS/400’s transactional file
system, so most of what is said here does not apply to this platform.

We will look at how MQSeries logging works, the differences
between circular and linear logging, and how the logs are used for
restart and media recovery.

From the first ‘real’ version of MQSeries – V2.0 – transactional
integrity was a key feature. MQSeries provides the ability to recover
the state of its queues to a consistent point following a failure (of an
application, the queue manager, or the machine). The guarantee that
persistent messages would be delivered only once distinguished
MQSeries from other rival products and helped earn MQSeries its
reputation for reliability.

Transactional integrity requires that all updates to queues involving
persistent messages be recorded in non-volatile storage. This
transactional capability is very similar to that offered by database
management systems (DBMSs) and transaction monitors, such as
CICS, and the methods used to provide it are also very similar. Like
a DBMS, an MQSeries queue manager stores information about the
resources it controls (ie its queues) in two parts:

• A snapshot, which is periodically updated.

• A list of changes since the last snap-shot.

For a DBMS, the snapshots are known as table spaces and the list of
changes as the ‘redo’ log. For MQSeries they are known as object files
and log files.

The similarity between MQSeries logging and that performed by
DBMS products is more than coincidental. Version 2.0 of MQSeries

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

reused the transaction logging code developed for DB2. As a messaging
product MQSeries is designed to hold only transient data (eg messages
waiting delivery). Therefore, a number of facilities available on DB2
were seen as being unnecessary and were removed. These facilities
included point-of-time recovery and tools to examine logs to provide
activity audits.

The snapshot, known as the table space in a DBMS, is called the object
data in MQSeries. This is stored as a series of files, one for each queue
and process defined to the queue manager. The typical location for the
file for a queue named SYSTEM.DEFAULT.LOCAL.QUEUE on a
Unix system for a queue manager called qmgrA is: /var/mqm/qmgrs/
qmgrA/queues/SYSTEM!DEFAULT!LOCAL!QUEUE.

Notice the ‘character folding’, ie the substitution of certain characters
in the object name by other characters in the related file name. This is
required due to differences in the permitted character set in an
MQSeries object and a Unix or NT file name.

The equivalent location for the file for a process named
SYSTEM.DEFAULT.LOCAL.PROCESS would be: /var/mqm/qmgrs/
qmgrA/procdef/SYSTEM!DEFAULT!LOCAL!PROCESS.

The log files, known as the transactional log or redo log in a DBMS,
keep a record of changes to the objects.

Together, the object files and log files are used to store a record of
queue manager changes (ie configuration changes) and queue updates
(ie puts and gets). This information can then be used to bring the queue
manager back to a consistent state following a system crash. As part
of this recovery all persistent messages will be recovered, provided
the unit of work to which any operations belong is complete. As a
transactional product MQSeries provides options in its API which
allow the units of work to which queue operations belong to be
controlled.

CIRCULAR AND LINEAR LOGGING

One of the first choices to be made when creating a queue manager on
a Unix or NT system is that between circular and linear logging. Using
circular logging the log files are linked into a ring and old log files that
are no longer needed are reused automatically. If more log space is

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 27

needed than is available in the original ring of primary log files the
ring will be increased by creating more log files up to the secondary
log file limit defined when the queue manager was created.

For linear logging the log files form a continuous sequence with new
files created as they are needed. Thus, the number of log files
continuously increases unless files that are no longer needed for
recovery are deleted. To facilitate this house-keeping task, if linear
logging is used, messages appear in an error log to indicate which log
files are no longer needed for restart and media recovery. There is also
a support pack available which finds these messages and automatically
deletes or archives old log files.

Restart and media recovery

An important difference between the circular and linear logging is the
level of recovery that is provided. Circular logs provide only restart
recovery; linear logs provide both restart and media recovery.

Restart recovery

Restart recovery is the restoration of a queue manager to the state
before a crash using both log files and object files. This requires the
following log file entries (see Figure 1):

• Most recent checkpoint.

• All entries after the most recent checkpoint.

• All the records for any uncompleted transactions.

A checkpoint is a point in time when the object file data is up-to-date
(ie it matches the data in the log). Transactions are written first to the
log files and only later copied to the object files. Checkpoints are
created periodically by updating the object files from the transaction
logs. This reduces the number of records needed for recovery, thereby
saving log space and reducing the time to restart following a crash.

Checkpoints are generated automatically by the queue manager:

• When the queue manager starts.

• When logging space is running low.

• Every 1,000 operations logged.

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When a transaction is started a log record is created. Each new
operation relating to the same unit of work causes a new record to be
written to the log. Finally, when the transaction is completed a
completion record is written to the log. The transaction may be
completed by being committed, using MQCMIT, or backed-out using
MQBACK because of the failure of the program performing the
transaction.

Until the transaction is completed all the records relating to the
transaction are needed for restart recovery. There can be a long time
and many megabytes of log space between the start and completion of
a transaction. If an application were to perform an MQPUT (with
SYNC-POINT) then sleep for a month before doing the MQCMIT the
transaction will last for a month. Similarly, if a transaction performs
a large number of operations under a single UOW (eg copying the

Figure 1: Log records required for restart recovery

cp1 Put Put Get Put Get Put Get Put Get Get Put Put Get Put

Get Put Get Put Put Put Get Put Get Get Put Get Get Put

Get Put Get Put Put Get Put Get Put Put Get Get Cmt Put

cp1

LR1

cp2

cp3

LR2

Notes:

1 cp 1, 2, and 3 are checkpoints.

2 Until the transaction is completed (LR2) with an MQCMIT the record
LR1 is needed for restart recovery.

3 Without record LR1 the queue manager will not restart.

4 The first log record for a long-running transaction may be before the
most recent check-point.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 29

contents of a large file to a queue as part of a file transfer operation)
a large amount of log space will be used by the transaction. These are
examples of long-running transactions. In extreme cases a long-
running transaction can prevent the space being released, causing the
log files to fill up. New transactions will then fail and the error
message AMQ7465 will be generated.

The queue manager will not restart until all the records relating to all
uncompleted transactions are available. If a transaction that was
started a month ago has not completed, the original log record will be
in a log file that is a month old. This log file will be needed to restart
the queue manager. Although this outstanding transaction will be
backed out anyway (because it is not committed) it will prevent the
queue manager being restarted unless all the log files containing all its
records are available. There is no facility in MQSeries to ignore an
outstanding long-running transaction in order to recover other, more
recent transactions. This is particularly annoying because incomplete
transactions will be rolled back anyway.

On distributed platforms the queue manager will sometimes perform
an operation called ‘pull-up’. This involves finding old log files that
contain only a few active records and copying them to a new log file.
This saves log space by allowing the old, previously sparsely used log
files to be discarded (or reused in the case of circular logging). The
algorithm used for pull-up is not documented and should not be relied
upon to prevent problems occurring due to long-running transactions.

Media recovery

Media recovery is the restoration of a queue manager to the state
before a crash, using log files only. This is necessary to restart a queue
manager if the object files have been lost or damaged and involves
recreating the object files. This is done by restoring an old copy of the
object files from the media image stored in the log and then replaying
the contents of the log to bring the object files back up-to-date.

Media recovery requires the following log entries (see Figure 2):

• The most recent check-point.

• All entries after the most recent check-point.

• Records for any uncompleted transactions.

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678

1234567
1234567
1234567
1234567
1234567
1234567

1234567
1234567
1234567
1234567
1234567

1234567
1234567
1234567
1234567
1234567

Media records Checkpoint

Notes:

1 Media records are needed for all objects.

2 All transactions logged must be re-applied to return to state before the
failure – this requires all records after the media image.

3 The first log record required to recreate an object is known as its media
recover record; it is the start of the latest media image for the object.

Figure 2: Records required for media recovery

• The media image for all damaged objects.

A media image is a set of log records that saves the state of a queue
manager’s objects from the object files. They can be created manually
using the rcdmqimg command and are also are created automatically
in some circumstances. The MQSeries manuals give some information
about when media images are created, specifically:

• Images of all process objects and queues that are not local are
taken at each shutdown.

• Images of empty local queues are taken at each shutdown.

Media images are also created at other times, eg sometimes if a queue
goes empty; however, practical experience shows that the automatic
creation of media images cannot be relied on to prevent the number

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 31

of logs needed for media recovery getting very large. The experience
of a large bank illustrates this point. The bank uses 4MB linear log files
and runs rcdmqimg manually, once a week. Before running
rcdmqimg, typically, 20 log files are needed for recovery. After
rcdmqimg is run this number is reduced to just one.

A media image creation and media recovery can only be done using
linear logs. For queue managers with circular logging the rcdmqimg
command will fail with an error message ‘AMQ7044 - Media recovery
not allowed’.

The media image records the object’s state when the media image is
taken. Media recovery involves recreating the object files from the
media image and then re-applying all the operations performed since
then (using the records in the log). As well as using a large amount of
log space, recovery from an old media image also takes a long time,
which increases the amount of time needed to restart the queue
manager.

The space needed for a media image is clearly dependent on the depth
of the queues and size of the messages. Queues containing a lot of
large messages will require a large number of log records for the
media image and it will take a long time to create the media image.

This is one of the reasons for the generally accepted principle that
MQSeries queues should not be used as a database to store non-
transient data. However, this principle seems to have been forgotten
at IBM with both the cluster repository and the OAM authorization
data now being held in local queues.

MIRRORED DISKS

Any open systems installation that is serious about data integrity will
ensure that critical data is held on RAID or mirrored disks. This stores
multiple copies of data so that it can be recovered in the event of a disk
failure. Whether linear or circular logging is used the log files should
be stored on RAID or mirrored disks.

You have a choice to make about the object files. If the object files are
located on non-mirrored disks they may be lost because of a disk
failure and media recovery will needed. This in turn requires linear
logging.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Alternatively, the object files can also be stored on the mirrored disk.
They are then no more likely to be lost than the log files. This means
that media recovery will not be required and circular logging can be
used. This has several benefits: less log space is needed; it is not
necessary to force the creation of regular media images; and log files
do not need to be archived.

A word of warning about mirrored disks: whilst it is true that a failure
of the disk-drive hardware can be recovered relatively easily, it should
be remembered that mirrored disks work at a level below the operating
system and merely update two copies of the data as directed via
operating system commands. A software bug in the queue manager or
in the operating system (or an operator error) could lead to the log or
object files becoming corrupted. If this happens the mirrored disk will
duly keep two identical copies of the corrupted data.

Dual logging provides a better way of keeping multiple copies of the
queue manager data than mirrored disks. Using dual logging, the
queue manager performs a write to two separate logs for each update.
As far as the operating system is concerned these are two unrelated
files and a problem with the operating system is unlikely to corrupt
both copies of the log. Unfortunately dual logging is currently only
available on MQSeries for MVS.

NEW IN V5.2

IBM has realized that many MQSeries sites use automated scripts to
archive linear log files by searching the error log for AMQ7467 and
AMQ7468 messages. These messages give the name of the oldest log
files needed for restart and media recovery. They can be used to
identify which log files can be deleted or archived.

Unfortunately, before version 5.2 only the automatic creation of a
checkpoint caused these messages to be written to the log. When the
rcdmqimg command is run, many log files are no longer needed and
can be archived, but before version 5.2 this was not reflected by the
AMQ7467 and AMQ7468 messages until a checkpoint was created.

MQSeries version 5.2 has introduced a new flag, ‘-l’, for the rcdmqimg
command that causes AMQ7467 and AMQ7468 messages to be
issued when the rcdmqimg command has completed.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 33

Something else introduced by version 5.2 for Windows NT is less
welcome. There is a bug which causes the rcdmqimg command to fail
if it is attempted after the rcrmqobj command is run without the
queue being accessed by an application between the two commands.
Happily, there is a fix for this obscure problem on CSD01.

RECOMMENDATIONS

• Always locate log files on mirrored or RAID disks.

• To reduce the total file space needed by your queue manager and
simplify the task of log-file management, use circular logging
and locate object files on mirrored or RAID disks.

• If linear logging is used ensure that regular and frequent media
images are taken using the rcdmqimg command.

Michael Locke, Senior Solution Architect
Candle Service (UK) © Candle

Determining end-to-end response time in a multi-
tier application environment

Today, we are experiencing a proliferation of development and
production processing platforms. As Unix servers reach the power of
mainframes and the cost of IBM’s z/Series processors scales down to
client/server prices, operating systems are chosen for developmental
reasons.

This may sound like the realization of a Utopian dream – the flexibility
to create a customized enterprise IT environment based on market or
application requirements. However, flexibility always has a price,
which in this case is a lack of compatibility in both networking and
operating system application services. The differences in services and
communication infrastructures make it difficult to measure end-user
application response times.

THE INFRASTRUCTURE

Many companies have attempted to solve the communications

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

problems created by disparate processing platforms by implementing
tools such as IBM’s MQSeries. MQSeries masks the complicated
process of writing network-enabled applications by providing
connectivity across platforms with a simplified application interface.
Instead of training applications developers in SNA or TCP/IP protocols,
a simple get or put call to a local MQSeries queue manager or
MQSeries client allows applications developers to concentrate on
business models instead of network architectures.

Similarly, the decision to convert new application development to
portable languages such as Java (as well as migrating legacy
applications when maintenance is required), allows corporations to
decide where key production applications can be best supported.
More and more, processing platforms, regardless of operating system,
are seen as enterprise servers to be slotted into the overall enterprise
IT strategy. By encapsulating application modules into JavaBeans or
Java applets the requirement for specific operating services can be
removed as an execution consideration. This puts the choice of
execution platform into the hands of business managers instead of
technology support organizations.

As technicians we may not have been allowed to set up our
environments or networks but we are still expected to keep all the
pieces working. In the past decade we have become experts in
disparate platforms and operating systems: we have learned how to
support Unix servers; configure NT workstations; specify virtual
memory for Windows; and make RAID work on OS/390.

We have, however, avoided addressing one of the most confusing
issues: how do we combine processing across multiple platforms,
networks, and applications into a single unit of work? Without the
ability to connect processing on behalf of the end user through
multiple systems, databases, network connections, and operating
system environments we cannot truly define end-to-end response
times. Without the ability to track application module movement we
are back to the tried and tested method of the stopwatch to determine
end-user response times.

Some might say that the old ways are the best, but there has to be a
better one. Consider the end-user environment illustrated in Figure 1.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 35

Despite what happens in the background of this modern
implementation, the end-user’s perspective is remarkably similar to
that of a user in the old SNA/3270 environment. They start an
application, add their input, and when they hit ‘enter’ they wait for the
result to be produced. The routing of the application through various
pieces of the enterprise is not of the slightest interest to the end user.
They want an answer to a business question, not a lecture on how the
enterprise architecture supports their processing request.

FUTURE SOLUTIONS

As vendors develop new performance solutions the determination of
true end-to-end response times may be built into product suites or
application processing protocols. New networking paradigms may
result in applications being dispatched across multiple platforms and
multiple operating systems. The concept of the future is ‘the network
is the computer and the computer is the network’.

123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345
123456789012345

LAN

Traditional DASD

TCP/IP

SNA

RAID
DASD

TCP/IP

Figure 1: End-user environment

▲

▼

▲
▲ ▲

▼

▲
▲

▲

▲

▲

▼

▲

▼

▲

▲

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Middleware solutions such as MQSeries Workflow will enable IT
departments to define and monitor applications as they flow through
the enterprise and to define units of recovery for application recovery
purposes.

We expect to see this kind of progress at an ever-increasing rate over
the next few years. However, these solutions may require the re-
engineering of your business practices in order to fully implement the
potential benefits. In most cases it will still be necessary for the
business to define a unit of recovery which spans multiple platforms
and/or multiple applications.

Let’s consider...

Consider a client relations support centre for a financial planning firm.
A telephonist takes a customer call in a local branch office. Using a
workstation that supports either a browser or an X-Windows interface,
the telephonist enters the client identification information.Validation
of the customer account takes place at the local AIX server and
includes a list of investments that are currently in place.

The client has decided to diversify and wants a different basket of
investments based on personal investment goals. The telephonist
needs to identify a list of potential investments along with the
financial requirements and the rules of the particular funds involved.
Fund information is sourced in the corporate legacy systems which
have served the investment firm for more than a decade.

The customer profile starts in the workstation with the invocation of
a Java program which queries the local AIX server. After reviewing
the account with the customer the parameters of the new investment
funds are prompted by a second Java application.

When the parameters are finalized they are formatted into the terminal
input format of a CICS transaction, which is executed on the OS/390
environment. The transaction returns a result set, consisting of potential
funds that meet the customer’s specifications, along with links to the
rules and investment requirements for each particular fund. As each
fund is considered a new transaction is spawned, retrieving the fund
requirements for inclusion in the customer’s profile.

When the call is finished the customer’s local profile has been updated

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 37

and any trades or redemptions required for the transfer have been
scheduled for finalization at the end of the trading day.

Definition of the problem

Let’s first discuss what we are trying to achieve. In Figure 1, we have
several elements to consider:

• The end-user workstation and its connection to...

• ...the enterprise intranet/Internet and the routing to...

• ...the client/server platforms and the subsequent transaction
processing on...

• ...the OS/390 server.

• Network response times across the enterprise.

Reviewing the local performance from the workstation through the
AIX processing platform is fairly straightforward. We have an
application running in a single-server system and if there are problems
with response times we can deal with them in the same fashion that we
deal with performance issues in any single-tier application model.

Consider the processing profile of the new fund selection process:
workstation to AIX to OS/390 and the return.

Definition of application component response time in any of the given
platforms is as straightforward as was intimated in the single-tier
application example. However, how do we find the problems with the
whole application if the user has a problem in our hypothetical
application once the fund selection process starts?

The solution
In initial application design or in the re-engineering of legacy
applications we need to recognize that the application is going to be
multi-tiered. This means that we have to instrument each application
program to collect and publish the performance metrics, which are
essential to application response time management.

Creating the instrumentation within an application is relatively simple.
A routine that stores a time value at the start of application processing
and then subtracts the stored start time from the finishing time and

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

publishes the result is a basic reusable module. Inclusion of the
instrumentation module works as a planned part of new application
design as well as retrofitting legacy applications. We also need to
consider the fact that adding the timing module is only part of the
requirement for our methodology to work. Additionally, the application
must publish identification, authorization, the amount of data
transmitted between programs, plus any other instrumentation metrics
necessary to correlate the timing statistics with the associated platform
and module purpose.

Each program, along the application execution path, must also be
modified to accept performance instrumentation from its predecessor
and publish its performance, along with any additional performance
metrics previously generated. Finally, the performance metrics need
to be combined with the OS/390 performance data.

Product note

For sites that own Landmark’s TMON for CICS/ESA, the performance
information collected along the application path can be embedded in
the TMON for CICS transaction records by implementing the TMON
for CICS DCSUI exit. This guarantees that the collected performance
statistics are correlated and retrievable in the future for performance
analysis and capacity planning.

The TMON for CICS DCSUI exit allows application data to be
recorded by accessing the user exit from within the CICS transaction,
and inserting up to 256 bytes’ worth of data into the record that is
logged by TMON. This data can be viewed within the online portion
of TMON for CICS by accessing TMON option 6.TA. Select a set of
transactions from the collected data, and you will see the
TRANSACTION ACTIVITY screen. Select a transaction to be
reviewed and press ENTER. Cursor-select the MENU option, and you
will get the following display:

JOBNAME: EDU2ØC41*** DETAIL TRANSACTION DATA *****DATE: 11/12/Ø1**
* APPLID : EDU2ØC41 TIME: 4:43:32 *
* COMMAND: __ CYCLE: MMSS *
* LMRKØ1226I - COLOR OPTION DISABLED _NEXT? _GNXT? _MENU? *
* TRANID: CLS1 TERMID: SYSID: T2Ø4 START DATE: 11/11/Ø1 *
* ORIG TRN: CLS1 LUNAME: SMFSID: EDUC TIME: 19:26:52.2314 *
* BASE PGM: DFHZLS1 REMOTE: IMAGE: EDUC STOP DATE: 11/11/Ø1 *
* CTASK#: 32 USERID: ASID: ØØ47 TIME: 19:26:52.4383 *

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 39

* MTASK#: +------ HOT MENU SCREEN NAVIGATION ------+ EDU2ØC41 *
* ELAP: | A=DETAIL DATA E=WAIT EVENTS I=DISPATCH/TCBS |S:
* DISP: | B=TRANS FLAGS F=FILE/DB ACTV J=USER SEGMENTS |: 254 *
* WAIT: | C=TRANS TIMINGS G=MRO/ISC ACTV |
* | D=EIP REQUESTS H=USER TARGETS | *
PAGEIN: | |INS: Ø *
* PAGOUT: +- ENTER MENU LETTER + PRESS ENTER : PF3 TO EXIT -+HWM: Ø *
* TERMTYPE: ØØ INPUT CNT: Ø INPUT SIZE: Ø ABEND CODE: *
* 327Ø AID: ØØ OUTPUT CNT: Ø OUTPUT SIZE: Ø ABEND PGM:
* FLAGS: IBM ATI EIP EXHT BKG ISO C41Ø TM2Ø TØ1
* USERFLD:
* UOW: LANDMRK1.EDU2ØC41 : B9545FB947C9 : ØØØ1 LOC UOW:
B6B9545FB947C9A2 *
** HELP INFORMATION = PF1***NASTCE **** PF KEY ASSIGNMENTS = PA1***

Select option ‘J’ from the ‘HOT MENU SCREEN NAVIGATION’
roster and press enter to see the USER SEGMENTS screen. This
screen will allow you to review the data that has been passed to the
DCSUI for inclusion with the transaction data collected by TMON.

Other monitoring products may have similar interfaces that will allow
the inclusion of externally published data into the records collected
for performance analysis and capacity planning. If so, see the
documentation for your particular performance monitoring product
for details on how to include the collected data.

The solution (continued)

If you are going to be altering existing applications or changing the
design of new applications and you are a user of IBM’s MQSeries,
then you might want to consider the following data collection
methodology.

Instead of writing data collection modules and worrying about passing
growing strings of performance data from program to program along
the path of an application, you might want to collect the same
information as was described previously, and then incorporate that
information into MQSeries messages.

Each stage in the processing of an application can be instrumented by
a collection subroutine that formats the data into an MQSeries
message and puts it onto a queue defined for performance metric
collection. The benefit of using MQSeries for message management
is that, each time a message is put onto a queue, not only is the message
content saved but the message itself is time-stamped automatically.

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Consider the header for the following message placed on an MQSeries
queue:

* Queue Name: SYSTEM.CLUSTER.REPOSITORY.QUEUE _Prev *
* Description System clustering repository queue _ Move _ Delete *
* Msg Data : .qA.WDR ...@...QCQ2.B2ADØ8C17Ø3AEØØ5 _ Requeue *
+------------------------- Message Header -----------------------+ *
* PUT Time(GMT): 14:2Ø:33.Ø2 Report Option: ØØØØØØØØ
* PUT Date : 2ØØ1-Ø5-22 Feedback Code: Ø
* Message Type : DATAGRAM Message ID : CSQ QEQ1 ..$...o
* Format : Correl ID : CACHE_CHECKPOINT_RECORD
* Persistent : YES Userid : LSCSTC
* Expiry Time : UNLIMITED ACCT Token : ________________________ *
* Msg Length : 5192 APPL ID Data :
* Priority : 5 APPL Origin Data :
* Backout Count: Ø PUT APPL Type: MVS
* Data Encoding: 785 PUT APPL Name: QEQ1CHIN
* CodeCharSetID: 5ØØ
* Reply-To Queue :
* Reply-To QMGR : QEQ1
* Remote Queue (XMITQ) : ****** NO XMITQ HEADER *****
* Remote QMGR (XMITQ) :

Add to that information the actual data of the message itself:

* 12F4D2F4 ØØØØ Ø598C1ØØ E6C4D94Ø ØØØØØØØ1 ØØØØØØ7C * .qA.WDR ...@* *
* 12F4D3Ø4 ØØ1Ø ØØØØØ472 D8C3D8F2 4BC2F2C1 C4FØF8C3 *...QCQ2.B2ADØ8C*
* 12F4D314 ØØ2Ø F1F7FØF3 C1C5FØFØ F54Ø4Ø4Ø 4Ø4Ø4Ø4Ø *17Ø3AEØØ5 * *
* 12F4D324 ØØ3Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø * * *
* 12F4D334 ØØ4Ø 4Ø4Ø4Ø4Ø D8C3D8F2 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø * QCQ2 * *
* 12F4D344 ØØ5Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø * * *
* 12F4D354 ØØ6Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø * * *
* 12F4D364 ØØ7Ø 4Ø4Ø4Ø4Ø ØØØØØØØØ ØØØØØØØØ ØØØØØØA4 *u* *
* 12F4D374 ØØ8Ø ØØØØØØØØ ØØØØØ152 35CF28AF ØØØØØØØØ *.............* *
* 12F4D384 ØØ9Ø ØØØØØØØØ ØØØØØØØØ ØØØØØØØØ ØØØØØØØØ *.............* *
* 12F4D394 ØØAØ ØØØØØØØØ ØØØØØØØ1 E3D64BD8 C3D8F24Ø *.....TO.QCQ2 * *
* 12F4D3A4 ØØBØ 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø ØØØØØØØ5 * * *
* 12F4D3B4 ØØCØ ØØØØØØØ9 ØØØØØØØ2 C3888195 9585934Ø *.....Channel * *
* 12F4D3C4 ØØDØ 8184A585 99A389A2 8995874Ø D8C3D8F2 *advertising QCQ2*
* 12F4D3D4 ØØEØ 4ØA3964Ø D8C1C3D3 E4E2E3C5 D94Ø4Ø4Ø * to QACLUSTER * *
* 12F4D3E4 ØØFØ 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø4Ø4Ø4Ø 4Ø44Ø4Ø *

The series of messages sent as the application processing progresses
can then be read by the CICS transaction on the OS/390 platform,
processed, and the resulting performance data written for later analysis.

Adding the network transit times

In addition to the application processing times being captured by the
program performance modules, there is the time spent in transit across

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 41

the network to consider as well. In today’s enterprise, intranet paths
can be complex. Firewalls, routers, LANs, and gateways all add to the
complexity of the route between the end user and the servers providing
application data and services.

Consider the network connections involved in our hypothetical business
application:

* Sent Recv Sent Recv Rt TCP *
* Host-ID OpSys Status Pkts Pkts Segs Segs Segs Est *
* *
* MVSSYSE OS39Ø Active 282Ø14 1.65M 12Ø414 1.25M 1454 6 *
* gw-nb3-2-to Cisco Active 7.99M 1.484G 6747 9215 1 Ø *
* cisco2ch Cisco Active 458811 4.23M 3Ø38 3691 Ø Ø *
* zeus Win2k Active 41.84M Ø.1Ø9G 36.94M 32.23M Ø.35M 24 *
* mork HP-UX Active 92.74M Ø.183G 12.75M 24.2ØM 38Ø8 4 *
* selabØ3 SunOS Active Ø.17ØG Ø.1ØØG Ø.15ØG 22.2ØM 56572 1Ø *
* saturn SunOS Active Ø.297G Ø.417G Ø.148G 99.Ø3M 72275 8 *
* MVSSYSA OS39Ø Active 93223 277574 14236 18514 29 28 *
* mvssnac zOS Active 6571 76771 25Ø1 4131 1 5 *

End users run Win/32 workstations connected to a LAN. The gateway
from the LAN into the corporate backbone network is the Win/2000
server named ‘zeus’. Access to the Unix environment (systems
‘mork’, ‘selab03’, and ‘saturn’) is routed from ‘zeus’ through the
CISCO router named ‘cisco2ch’. Access to the OS/390 and z/OS
systems is controlled, along with access to the Internet, by the CISCO
router named ‘gw-nb3-2-to’. Both OS/390 systems, MVSSYSE and
MVSSYSA, are VTAM-connected as well as TCP/IP connected.
Access to the z/OS system ‘mvssnac’ is available only through
TCP/IP.

End users accessing the business application would use TCP/IP for
connections to their LAN and to the Unix box as well as the mainframe
servers.

To get a fair approximation of end-user network response times we
need to know two things: the route between the user workstation and
each of the server components; and the maximum data transmission
rate for each segment of the route. Matching this information with
each program’s data requirements will allow the calculation of expected
network response times.

Most framework products as well as network performance management
tools will allow the systems personnel to run the TCP/IP TRACERT

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

command from any given node in the corporate network. By tracing
the route selected by the network for data traffic between nodes you
can determine the number of hops expected each time the application
executes. Once you know the network routing you can review it with
your networking analysts and ensure that each leg of the path is
appropriate.

Using your framework or performance monitor you should then
create an automatic execution of the TRACERT command at specified
intervals to ensure that there are no failures of key network components
that will affect data transmission between nodes.

Once you know the path that will be taken by the application data and
the size of the program data being shared by those programs you can
get the bandwidth between nodes by using the TCP/IP DMTU
(Determine Maximum Transmission Unit) command. DMTU will
return the bandwidth specifications for each segment of the intranet
path between the various servers that support the application processing.
Once you know the path data will take, the amount of data that each
program within the application will transmit, and the bandwidth of
each segment of the path, simple mathematics will yield a best case
estimate of actual network response times for the application.

Determining the actual network response times would require
sophisticated network monitoring using existing tools. However, if
you are using the methodology suggested either through parameterized
or MQSeries message-based performance data collection, you can
calculate the delay between the end of each program’s processing and
the start of the subsequent program’s processing. This time will
include both network transit and any latency delays based on server
activity. If the calculated network/latency times are excessive you can
flag for performance review the appropriate network segments as well
as the servers involved.

CONCLUSIONS

If you are going to design and implement multi-tiered applications in
today’s corporate environment application end-to-end response time
calculation will remain problematical. As vendor products mature
point solutions may emerge that will solve the management problems.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 43

But for the moment, application design will need to include a
performance methodology as well as the data collection to support
your goals.

Frameworks and their server-based monitoring agents may yield parts
of a solution; however, specification of the components of an application
will still need to be completed for management purposes. That
specification will need to have in place the methodology outlined
above for it to be effective.

Advanced middleware solutions such as MQSeries Workflow or
OS/390 and z/OS Workload Manager may yield a more complete
solution as they mature, but specification of the application design
will still be required.

Performance management and user service level agreements are only
one of the corporate issues addressed by this methodology. If your
organization wants to be able to charge end users for usage of multi-
tiered applications and the network traffic involved in those
applications, you need the requisite information.

We have moved past the days when we could implement complex
applications that span the enterprise and allow users to consume
infrastructure resources without accountability. Expansion of network
and server resources will require the ability to calculate usage and
charge-back information at the end user level. As we move into the
next generation of processing, where the computer is the network and
the network is the computer, we will need more detail on hand to
support increasingly complicated applications and their end-user
communities.

Planning for application instrumentation now will eliminate the need
to retrofit applications as corporations grow.

J Bailie
PConsulting (UK) © PConsulting

MQ news

Mercator Software has recently completed
its suite of new product offerings, which
includes: Mercator Integration Broker
Version 6.5; a Java-class adapter; and a JMS
(Java Messaging Service) adapter. The
company has also added WebSphere MQ
messaging as an option available with
Mercator Integration Broker.

Mercator claims that the inclusion of a
WebSphere MQ messaging option along
with the introduction of Mercator
Integration Broker 6.5, Mercator Process
Integrator V1.0, and new standards-
supporting adapters, provides an enterprise-
wide integration solution.

For further information contact:
Mercator Software, USA
Tel: +1 800 234 5566
Web: http://www.mercator.com

Mercator Software, UK
Tel: +44 (0) 20 7314 9600

* * *

Peregrine Systems and IBM have announced
the expansion of their existing relationship.

Under the reseller agreement, IBM will add
a broad range of Peregrine Integration
adapters to its offerings.

The Peregrine Integration adapters are
designed to integrate WebSphere MQ
Integrator 2.1 and other WebSphere family
products with a variety of packaged
applications, legacy systems, databases, and
technologies. Additionally, IBM will
increase the number of Peregrine products
offered as WebSphere Partner Agreement
Manager.

For further information contact:
Your local IBM representative.

Peregrine Systems, 3611 Valley Center
Drive, San Diego, CA 92130, USA
Tel: +1 800 638 5231
Fax: +1 858 481 1751
Web: http://www.peregrine.com

Peregrine Systems, Ambassador House,
Paradise Road, Richmond, Surrey,
TW9 1SQ, UK
Tel: +44 (0) 20 8332 9666
Fax: +44 (0) 20 8332 9533

* * *

x xephon

	Copying messages selectively
	Connecting tightly coupled legacy to loosely coupled applications: part 2
	MQ back-up and recovery on open system platforms
	Determining end-to-end response time in a multi-tier application environment
	MQ news

