34

April 2002

|
In this issue

3 MQSeries and 64-bit applications

11 Dead letter queue handling:
MQSeries for OS390

23 Buying more hardware capacity for
MQSeries Integrator

29 Experiences with MQSeries
clustering

48 MQ news

© Xephon plc 2002

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38126

From USA: 01144 1635 38126
Fax: 01635 38345

E-mail: info@xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344

Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of codefor thefirst 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For moreinformation about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line

Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mg;
you will need to supply a word from the
printed issue.

Commissioning Editor

Peter Toogood
E-mail: Peter T @xephon.net

Managing Editor

M adel eine Hudson
E-mail: MadeleineH @xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’'s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
theprior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublicationfor useintheir owninstallations, but may not sell such code or incorporate
it in any commercia product. No part of this publication may be used for any form of
advertising, sales promation, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 |abelscosts $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

MQSeries and 64-bit applications

Most of today’s hardware and operating system vendors are able to
sell you a‘64-bit’ system. What does this mean? How does it affect
your applications? And how does it relate to the use of MQSeries?

The ssimplest definition of a 64-bit system is one where the memory
that aprocesscan addressdirectly isexpressed asa64-bit value. A 32-
bit program can addressat most 4GB; if aprogram needstowork with
more datathan that it needsto usetricks such as swapping portions of
the datato disk. With the 64-bit address range the theoretical limitis
enormous — approximately 18 exabytes (18x1018). It is sometimes
said that this is larger than the total amount of disk space ever
manufactured!

Claimsare sometimes made about the performance benefitsfor 64-bit
programs. In practice these benefits are limited or non-existent. Just
recompiling a 32-bit program is not guaranteed to makeit run faster;
indeed, the fact that the compiled binary is often larger might even
slow it down.

The biggest improvements are achieved for programs that can make
efficient use of the expanded memory. Oneclassof applicationinthis
category isadatabase server where compl eteindexesand even tables
can now bepre-loadedinto memory instead of needingtobereadfrom
disk. Some mathematical algorithms aso require large amounts of
working space and these too can take advantage of 64-bit addressing.

Machines might not today have sufficient real memory (RAM) to
match the addressing range but simplifying the application and
allowing the operating system’s virtual memory paging to handle it
will oftenimprove performance. Adding morereal memory asbigger
machinesarebuiltwill thenimmediately furtherimproveperformance
with no changes required to the application.

WRITING PROGRAMS

C programs can normally be easily recompiled in 64-bit mode,
providing you havetaken care over the datatypes used as the sizes of
some change. All current Unix systems have decided that the long

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 3

datatypeis64-bit withint remaining at 32-bit (thisisoften called the
P64 model). Microsoft hasdecided onceagainto bedifferent andthe
64-bit version of Windows keeps both long and int at 32-bits wide
(also known asa P64 model). In both cases pointersare 64-bits. This
means that conversion between pointers and an integer datatype
(which has never been recommended but has been common practice)
may no longer work; casting a pointer to an int will definitely not
work. You might like to look at some of the lesser-known ANSI C
datatypes(for exampleptrdiff tandsize t)for placeswhereprograms
need to use portable definitions.

A good compiler will be able to point out places where your code
makes assumptions about the sizes of objects. Some warnings can be
ignoredif you choose; otherswill needfixing. My own experiencehas
been that existing code has often been very loose in making the
distinction between int and long for ‘small’ values such as loop
counters. Thisleadsto alot of warnings about truncating long values
to 32-bit integersbut when thevariableonly holdsasmall number the
truncation doesn’t matter. Of course the best solutionisto have code
withnowarningsat all but thisissometimestoo expensiveto achieve,

Normal rules for writing portable code — don’t assume ordering of
bytes, use your own type definitions which can easily be changed in
oneplacetomatch system definitions—apply strongly here, especially
if you want 64-bit code to be portable between Unix and Windows
systems.

When you are building programsall of thelibrarieswhich youlink to
must be the same ‘size’ — either 32-bit or 64-bit. You cannot mix the
two typesof codeinthe same processbut thereisnothing to stop a32-
bit program communicating with a 64-bit one using an inter-process
communications mechanism such as a TCP/IP socket or a Unix
message queue. When Windows moved fromits 16-bit APIsto 32-bit
Microsoft had a‘thunking’ layer to allow the different types of code
to work together. This has not been done for any of the 64-bit
environments; any interoperability can only be done via separate
processes.

However, it isimportant to realize that you do not necessarily need a
64-bitversionof MQSeriesoritslibrariesinorder for your applications
to use other 64-bit productssuch as Oracle. Whileyou cannot mix 32-

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

bit librarieswith 64-bitinthesameprocess, productswhich havea64-
bit ‘engine’ may still include 32-bit application libraries that work
with it.

WHAT DOES MQSERIES PROVIDE?

Versions and platforms

The first 64-bit platform supported by MQSeries was Digital Unix,
with aclient-only SupportPac made availablein 1996. Now renamed
to Compaq Tru64, this operating system has only ever supported 64-
bit programs. There is no 32-bit toleration or compatibility in the
operating system so when the full qgueue manager was ported to this
systemit too wasbuilt asa64-bit program. Thisversion of MQSeries
IS presently at the V5.1 level.

Recently released are two further MQSeries clients with 64-bit
support — SupportPac MACR (for Solaris) and SupportPac MACS
(for AIX 4.3) based on MQSeries V5.2. These SupportPacs require
that you install at |east the base part of the corresponding 32-bit client
packagesin order to pick up some supporting componentssuch asthe
header files. Thisinturnmust beat CSDO02|evel or later sothat asingle
cmac.h can be used for devel oping both 32-bit and 64-bit programs.

It isimportant to remember that the Al1X SupportPac will not run on
AlIX V5 as there is no binary compatibility for 64-bit programs
between AIX V4 and AIX V5. The MQSeriesclient packages can all
be downloaded from http://www.software.ibm.com/ts/mqgseries/
txppacs.

These new SupportPacs include only TCP/IP connectivity to the
gueuemanager acrossCLNTCONN/SVRCONN channels. They also
haveonly MQI librariesfor C and C++ programs; other languagesare
not directly supported. Apart fromthese caveatsthey haveexactly the
same function as the 32-bit client SupportPacs. For example, the
MQCONNX verb is supported.

But in common with all MQSeries clients there is no support for
transacti on coordinationwith other resource managers. Soyou cannot
use these SupportPacs for applications that need to update both a
database and aqueue as part of the same unit of work. If you need that

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 5

function you will have to use other techniquesto keep the MQSeries
interactions within a 32-bit process.

Coexistence

Most operating systems that offer 64-bit environments also support
32-bit programs transparently. Such operating systemsinclude Al X,
Solaris, and HP-UX. There are plenty of existing applications for
these operating systems and it is essential that they continue to run
without change when a new version of the OS or hardwareisput in.
As most applications do not benefit from the 64-bit address space,
running MQSeries and its applications in 32-bit mode on these
operating systemsisnormally sufficient. MQSeriesissupported fully
on these 64-bit platforms even though it is a 32-bit program.

My description of this way of running MQSeries is ‘ coexistence':
while not itself 64-bit, MQSerieswill run alongside 64-bit programs
on 64-bit hardware and operating systems.

Toleration

Being ableto run as a 64-bit programiswhat | call ‘toleration’. This
is the first stage of making it possible to write 64-bit MQSeries
applications.

The client SupportPacs and the Tru64 queue manager fit in this
category of support. The application libraries — and in the case of
Trub4 the whole queue manager — have been compiled as 64-bit
programs without any major redesignsto take account of the fact that
they are now 64-hit.

Anextended form of toleration iswhere one queue manager isableto
accept connections from both 32-bit and 64-bit local applications
without aclient channel. Thiswill eventually be needed asthere will
be some applications that would benefit from being built in 64-bit
mode but al so need functions such asglobal transaction coordination.
However, doing this will need new design effort in some interna
components of the queue manager.

Having a queue manager that works only in 64-bit mode (like the
Tru64 product) isnot believed to be desirable on most other operating
systems as there will already exist 32-bit applications that must
continue to be supported on the same machine.

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Exploitation

Different people mean different things by 64-bit exploitation. In my
terminology this is where the programs — either applications or
middlewaresuch asadatabaseengineor theM QSeriesqueuemanager
itself — are able to make good use of the expanded address range.

When starting from a 32-bit implementation this will often mean
redesigning components such as memory management functions
within the programs. It may mean alarge amount of work but canin
turn lead to alarge payback for both raw performance and scalability.
Thiswork has not yet been done for the queue managers but is being
considered for the future.

Remember that most end-user applicationsdo not directly manipul ate
large amounts of data and will not, therefore, gain anything from
being compiledin64-bit mode. For theseapplicationsthe’ coexistence’
level of running is perfectly satisfactory.

APPLICATION PROGRAMMING WITH MQSERIES

The MQSeries datatypes have always been abstract with no explicit
size associated with them. Only the MQBYTE datatype can be
assumed to represent aknown quantity. Thismakesit easy to map the
M QSeries definitionsto appropriate valuesfor 64-bit systemsand to
keep application code clean.

If you study the header filesyou will seethat MQLONG isalways set
to bea32-bit quantity even on 64-bit systems. Apart from acouple of
definitions showing thelength of structures (and these definitionsare
rarely used by anyone), the 64-bit path through the header file is
identical to the 32-bit. Switching between the paths is done
automatically when you compileaprogram aseach compiler setspre-
processor flags to show whether it is generating a 32- or 64-hit
program.

It isimportant for MQSeriesto keep its core datatypes the same size
regardless of whether the application program is 32-bit or 64-bit, as
structuresmay needto beinterpreted by applicationson other machines
that have different sizes. The structures are also passed across client
channels and keeping the datatypes the same size means that the
channel protocols do not need to waste time manipulating the bytes.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 7

Any pointers that are contained in MQI parameters are always kept
local to the machine on which the application is running so the
difference in size does not matter.

On AlX, for example, cmqgc.h has

#if defined(_64BIT_)
#define MQ_64_BIT
#endif
#if defined(MQ_64_BIT)
typedef int MQLONG;
#else
typedef Tong MQLONG;
#endif

Any application programthat haskept tousingtypessuchasM QL ONG
or MQCHAR will be able to recompile in 64-bit mode easily.
Changing the typedef for MQLONG to an int for the 32-bit route
throughtheheader filecoul d havebeen doneand would haveremoved
#ifdef clauses, but might have introduced problems for applications
that had not followed portability rules and which relied on the real
representation of an MQLONG.

You might notice some differences in the printed appearance of an
hConn or hObj on some platforms. They can look like memory
addresses for 32-bit applications and small integers for 64-bit
applications. However, asthese correlators must never beinterpreted
directly by applications the differences are purely cosmetic.

Compiling programs
Thetwo client SupportPacsinstall new versions of the M QI libraries,
libmgic, and its dependencies. Theselibrarieshavethe samenameas
the 32-hbit librariesbut are put in new directories. Thelibrariesare not
symbolically linkedintothestandard directoriesasthe32-bit libraries
are already in there.

So when you compile and link applications you must specify the
directory name. For example, on Al X:

cc -g64 program.c -L/usr/mgm/T1ib64 -Tmgm

If you do not name the directory the linker will not be ableto resolve
the MQI symbols as there will not be a compatible version of the
library initsdefault search path. Thereisno need to name adirectory

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

for theincludefiles, asthe samefilesare used for both 32-bit and 64-
bit programs and these are aready symbolically linked into the
standard search path. The C++ librarieshavealso beeninstalledinthe
same way.

Java

The Java programming language was defined to be 64-bit capable
from its inception. However, most implementations of the runtime
environment — the VM — are currently 32-bit and emulate 64-bit
behaviour. This does not matter for programs that are pure Java but
any attempt to accessan external function may needto know about the
JVM implementation.

For MQSeries this will show up in the way that Java and IMS
programs connect to the queue manager. If the Java classes are
invoked inside a64-bit VM they should be expected to work with a
client connection, but ‘bindings mode’ involvescallsviaJNI toaC
library. If you try to start alocal connection to aqueue manager from
a64-bit VM an error will be generated. Thiswill probably show up
asan exception which pointsto not being ableto resolvean MQSeries
internal symbol or load a shared library.

CLIENT ADMINISTRATION

The MQSeries server does not know whether the client connecting to
it is 32-bit or 64-bit; this is completely transparent. All clients can
connect to all servers. However, an administrator might need to be
aware of the application requirements when configuring the channel
definitions as it could involve the naming and execution of channel
exits.

Channel exits

MQSeries client programs can have exits that are loaded at runtime
into the application program. The decision to use these exits can be
made either programmatically (using the MQCONNX verb) or by an
administrator defining CLNTCONN channels and then distributing
the AMQCLCHL.TAB file.

Because the same definition file can be used for all programs on a
machine the format is usable by both 32-bit and 64-bit programs.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 9

However, you will need to distinguish between channel sthat are used
by the two types of program asthey will not be able to use the same
exit modules. The MQSeries client code will attempt to load the exit
named in achannel definition and thisexit must be compiled to match
the size of the program loading it.

One choice for channel exitsis to have an exit compiled twice with
two channel definitions that point to the correct version, and the
program makes use of the appropriate name in the MQCONN call.

An aternative (which is not recommended) is to only use ‘base
names of the modules in a channel definition and then rely on
LIBPATH processing to pick up the correct one.

Because of the sengitivity of channel exits, which can manipulate the
security controls on a channel, | would always prefer to use fully-
qualified pathnamesinadefinitionsothatitisclear whichexitisbeing
loaded and run, even with theinconvenience of needing two channel
definitions.

SUMMARY

Thelatest SupportPacshave extended M QSeriesinto the 64-bit world
on two of the most popular Unix platforms. We have seen how and
where these can be used and administered.

If you are considering building your applications as 64-bit you need
to make sure you are doing it for the right reasons and that you have
structured your code in away which will actually take advantage of
the possibilities of the memory or system architecture. It should not
be done simply because it may be perceived as fashionable.

The SupportPacsshould not beseen astheend of the64-bit capabilities
in MQSeries. There are more things that could be done and I’'ve
alluded to some of them here. The now-shipping codeisjust a stage
on the path towards fuller support.

Mark E Taylor
Technical Strategist, IBM Hurdey (UK) © IBM 2002

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Dead letter queue handling: MQSeries for OS/390

INSTALLATION
Toinstall DLQ Handler follow the steps given below:

 SendtheREXX codeto your mainframe (ASCII modein FTPor
ASCII and CR/LF in Personal Communications file transfer).

o Storeit asalibrary member (RECFM=FB, LRECL=80) named
DLQHANDL.

Now you are ready to useit! To do so:
1) Read thisarticle.
2) Preparethe Rules Table.

3) Usethe supplied job (after tailoring to your site’s requirements)
to run DLQ Handler against your dead letter queue.

TheREXX sourcecodefor DL Q canbefound ontheXephonWebsite
at www.xephon.com/extras/DLQhandler.txt.

USE

The dead letter queue is an important element of MQSeries' design
because it helpsto achieve the assured delivery feature. If amessage
cannot bedeliveredto itsdestination, perhaps becausethe destination
queue does not exist or isfull, it will be put to the dead letter queue.
The MQSeries administrator can look at messages on the dead | etter
gueue at an appropriate time and decide what to do with them.

Thedead | etter queueisnot mandatory but itisstrongly recommended
that you have one. If you do use onedo not allow it to fill up because
this could, for example, cause communication problems with your
gueue manage.

The utility runmqdlqg provides assistance with managing the dead
|etter queue, but unfortunately it is not available on OS/390 prior to
MQSeries V5.2. My DLQ Handler fillsthis gap. | have writtenit in
the REXX programming language. Sincethe standard M QSeriesAPI

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 11

IS not available for REXX | used a support pack (MA18) which
implementsjustthat. REX X isrelatively simpleand sel f-commenting,
so | think that my DLQ Handler can be used as an example of
mani pul ating messages on the dead | etter queue. Feel freeto change
the code as you wish.

DL Q Handler behaves much like the runmqdlq utility known from
other platforms for which MQSeries is available (with a few minor
differences). It reads amessage from the dead | etter queue (in browse
mode) and tries to apply rules supplied in the Rules Table.

A ruleconsistsof pattern-matching keywordsand action keywords. If
a rule matches a message the required action is taken and the next
messageisread. If oneruledoesn’t match, DLQ Handler triesto apply
the next one. When none of the rules match the message it isleft on
the dead letter queue and the next message is processed. Having
finished processing all messages on the dead letter queue DLQ
Handler will, depending upon the selected options, quit or wait for a
new message to arrive. The wait time can be either a specified or an
unlimited interval.

Syntax
| use the following syntax to describe all keywords:

KEYWORD valuel | value2 | .. | valuen | default_value

Notethat string[n] meansauser-supplied string of up to n characters
and that numeric[n..m] means a user-supplied numeric in the range
from ntom.

All parameters written in capital lettersare DLQ Handler keywords,

RUNNING DLQ HANDLER

DL Q Handler can beinvoked either from the suppliedjob or runfrom
a TSO or ISPF line command. The last two options are not
recommended since, depending ontheoptionsselected, DLQHandler
can run for along time (even infinitely!).

Thejob to run DLQ Handler is shown and explained below.

//DLQHANDL JOB NOTIFY=&SYSUID

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//*
//*
//*
//*
//*

parameters in SYSTSIN:
QMgrName

DLQName

RetryInterval
WaitOption

//GETDLQ EXEC PGM=IKJEFTOIL,

//

PARM="%DLQHNADL”’

//STEPLIB DD DSN=MA18.LOAD,DISP=SHR

//

DD DSN=MQM.SCSQAUTH,DISP=SHR

//SYSEXEC DD DSN=YOQUR.DSN,DISP=SHR
//SYSTSPRT DD SYSQUT=*

//SYSIN DD DSN=YOUR.DSN(RULES),DISP=SHR
//SYSTSIN DD *

QmgrName

DLQName

RetryInterval

WaitOption

/*

Notes on the above code

Line 1. supply avalid job card.

Line 9: MA18 load library.

Line 10: MQSeries hlg.SCSQAUTH library.

Linell: library containing the DLQHANDL source.

Line12: aclassfor sysout (DLQ Handler reportswill be printed
there).

Line 13: Rules Table DSN (may be sequentia file or a PDS
member).

Lines 15,16,17,18: parameters for DLQ Handler:
— gueue manager name (required)

— dead letter queue name

— retry interval in seconds

— wait option (NO | YES | time.

The parameters for DLQ Handler must be given in the order
snhown; thelast three may be omitted (Ieave ablank lineinstead).

The queue manager name is required — it has no default.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 13

Parameters

The meaning of thefirst two parametersis self-explanatory; hereare
the other two:

 Retrylnterval time | 60. This is the time between subsequent
attempts to process a message that could not be processed at the
first attempt; it has meaning only for ACTION RETRY.

 WaitOption NO | YES | time. This indicates whether DLQ
Handler should wait for more messages to arrive on the dead
letter queue after processing all messages on the queue; timeis
given in seconds.

— NO: DLQHandlerwill quit after processing thelast message
— YES: DLQ Handler will wait indefinitely.
— time: DLQ Handler will wait a given number of seconds.

Default valuesfor DLQ Handler parameters
e QMgr: none.

 DLQName: none. If blank, DLQ Handler will query the queue
manager for it (itisstoredinaqueuemanager attribute DEADQ);
if it cannot be obtained DLQ Handler will quit.

* Retrylnterval: 60 seconds:
— WaitOption: ‘NO’.

Beware!

The default value of WaitOption for runmaqdlqg on other platformsis
‘YES'. | thought ‘NO’ would be more appropriate. You can till
changeit in the REXX code (line 16).

Another parameter which may require manual intervention is
MaxMsgLen. It is hard-coded with a value of 1000. Again, you can
change it in the code (line three). Using MA18 (REXX Interface to
MQSeries) it is quite awkward to get the actual message length so |
decided to work with truncation.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

THE RULESTABLE
Please observe the following when you prepare the Rules Table.

Keywords are coded one per line,
Keywords can occur in any order.

A keyword can beincluded only onceinany rule (if repeated the
last occurrence will overwrite the previous one).

Keywords are case senditive: everything should be coded in
capital | etters(except queue and queue manager namesif they are
mixed case).

User-supplied values (like queue names) are case sensitive (asis
MQSeries).

A parameter value for each keyword must be coded in the same
line separated by at |east one blank.

Eachrulemust endwithasingleasterisk (‘*’) inanew lineinthe
first column.

Eachrulemust havethe* ACTION’ keyword with aproper value
(see below); all other keywords are optional (default values are
given below).

Support of wildcards is limited (as opposed to the runmqdilq
utility; | may add processing of them in future versions of DLQ
Handler); you can use awildcard character of ‘*’ but it must be
the only character in the parameter.

If arule has morethan one pattern-matching keyword a message
to be processed must match all of them (logical AND isused); if
you needtoimplementlogical ORfor patterns, build several rules
with the same action but different patterns.

KEYWORDS

Patter n-matching keywords
Thepattern-matching keywordsare used to specify valuesthat will be

matched against messages to be processed. All pattern-matching
keywords are optional so if you don’t code any of them the rule will

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 15

match every message. An asterisk (‘*’) coded as a value for any
pattern-matching keyword means no checking. The same effect can
be achieved by specifying a blank or by omitting the keyword.

16

APPLIDAT string[16] | *

Matched against the value of the ApplldentityData field in the
message descriptor, MQMD, of the message on the dead |etter
queue.

APPLNAME string[28] | *

Matched against the value of the PutApplName field in the
message descriptor, MQMD, of the message on the dead |etter
queue.

APPLTY PE numeric | *

Matched against the value of the PutApplType field in the
message descriptor, MQMD, of the message on the dead |etter
gueue. You must use a numeric value, not MQSeries symbolic
names like MQAT_MVS!

DESTQ string[48] | *

Matched against the value of the DestQName field in the dead
|etter header, MQDLH, of the message on the dead | etter queue.

DESTQM string[48] | *

Matched against the value of the DestQMgrName field in the
dead letter header, MQDLH, of the message on the dead |etter
queue.

FEEDBACK numeric | *

Matched against the value of the Feedback field in the message
descriptor, MQMD, of the message on the dead | etter queue. You
must use a numeric value, not MQSeries symbolic names like
MQFB_COA!

FORMAT numeric | *

Matched against the value of the Format field in the message
descriptor, MQMD, of the message on the dead | etter queue. You
must use a numeric value, not MQSeries symbolic names like
MQFMT_STRING!

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

e MSGTYPE numeric | *

Matched against the value of the MsgType field in the message
descriptor, MQMD, of the message on the dead | etter queue. You
must use a numeric value, not MQSeries symbolic names like
MQMT_REPORT!

 PERSIST numeric | *

Matched against the value of the Persistencefield in the message
descriptor, MQMD, of the message on the dead | etter queue. You
must use a numeric value, not MQSeries symbolic names like
MQPER_PERSISTENT!

e REASON numeric | *

Matched against the value of Reason in the dead letter header,
MQDLH, of the message on the dead | etter queue. | recommend
using MQSeries symbolic names like MOQRC _Q FULL for
example. Thisoneisdifferent fromall theother pattern-matching
keywords!

« REPLYQ dtring[48] | *

Matched against theval ueof Reply ToQinthemessagedescriptor,
MQMD, of the message on the dead |etter queue.

« REPLYQM string[48] | *

Matched against the value of ReplyToQMgr in the message
descriptor, MQMD, of the message on the dead letter queue.

e« USERID string[12] | *

Matched against the value of the Userld field in the message
descriptor, MQMD, of the message on the dead letter queue.

Action keywords

The action keywords tell DLQ Handler what to do with a message
which matched the patterns.

There is one mandatory action keyword — ACTION — and five
optional ones. Depending onthevaueof the ACTION keyword some
optional keywords may be required as well.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 17

18

ACTION FWD | RETRY | DISCARD | IGNORE

Thisisthe action to be taken for messages matching a patternin
this rule. The components break down as follows:

FWD —themessagewill beforwarded to another queue (and
possi bly another queuemanager). Thisvaluerequirestheuse
of the FWDQ keyword. Other action keywords— FWDQM,
HEADER, and PUTAUT — also have an impact on the
behaviour of DLQ Handler if FWD is used. See details
below.

RETRY —the message will be put on the destination queue
after thetimeperiod specifiedintheRetrylnterval parameter.
Another action keyword related to the RETRY action is
RETRY (the namesareidentical but these are two different
parameters. oneisapossiblevalueof theACTION keyword;
another is a separate keyword). See details below.

DISCARD —the message will be unconditionally discarded
from the dead |etter queue.

|GNORE - the message will left on the dead letter queue.
DLQ Handler will start processing for the next message on
the queue.

FWDQ &DESTQ | & REPLY Q | string[48]

The above command specifies the name of the queue to which
DL Q Handler should forward current messages. It hasno default
value. It ismeaningful only when action FWD isrequested (and
requiredinthat case!). You can codeany queueor usetwo specia
values for this keyword:

& DESTQ — the current message will be forwarded to the
original destination queue (its name will be taken from the
DestQNamefield in the dead |l etter header, MQDLH, of the
current message).

& REPLY Q — the current message will be forwarded to the
reply queue specified in the ReplyToQ field in the message
descriptor, MQMD, of the current message.

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

« FWDQM &DESTQM | &REPLYQM |string[48] | '

The above command specifiesthe name of the qgueue manager to
which DLQ Handler should forward current messages. It is
meaningful only when action FWD is requested. You can code
any queue manager name (when left blank, which is the default
value, the local queue manager name will be used) or use two
special values for this keyword:

— &DESTQM —the current message will be forwarded to the
original destination queue manager (its name will be taken
from the DestQMgrName field in the dead letter header,
MQDLH, of the current message).

— &REPLYQ —the current message will be forwarded to the
reply queue manager specified inthe ReplyToQMgr field in
the message descriptor, MQMD, of the current message.

« HEADERYES|NO

The above command specifies whether the dead | etter header of
the current message should accompany it when the message is
forwarded to another queue. Meaningful only for action FWD.

« PUTAUT DEF | CTX

Theabovecommand definestheauthority withwhichthemessage
should be put by the DLQ Handler. Meaningful for actions FWD
and RETRY.

— DEF —the message will be put with the authority of DLQ
Handler. Effectively, it isthe authority of the user that runs
DLQ Handler.

— CTX —the message will be put with the authority of the user
namedintheUserldfield of themessagedescriptor, MQMD,
of themessagebeing processed. Using CT X requiresauthority
to use aternate user authority (seethe chapter on security in
the MQSeries System Management book).

« RETRY 1|numeric

This specifies the number of times DLQ Handler will try to put
the current messageto itsdestination queue. Itismeaningful only

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 19

for action RETRY. Standard runmqdlq usesit alsofor FWD and
DISCARD.

CONCEPTSAND HINTS

Beforeyou defineany rulesfor processing messagesonthedead | etter
gueue make sure you know when and why messages can be put to it.
| have outlined a few reasons bel ow.

Messages that are put to the dead |l etter queue have a special format,
namely anadditional header called MQDLH that isappendedinfront
of theapplication data. Theformat of amessage sent to thedead | etter
queueissettoMQFMT_DEAD LETTER HEADER.TheMQDLH
header includes the following information (for a full description
please refer to the MQSeries Application Programming Reference).

» Reason —reason the message arrived on the dead |etter queue.

 DestQName — the name of the origina destination queue the
message was meant to go to.

 DestQMgrName — the name of the original destination queue
manager the message was meant to go to.

Listed bel ow are some of the reasonswhy amessage can be put onthe
dead letter queue.

e Thedestination queueisfull.

* Thesizeof themessageisgreater than the MaxM sgL en attribute
of the destination queue.

 Putisdisabled for the destination queue.

« The User ID being used to open the destination queue is not
authorized to do so.

 The message on the transmission queue is not in the correct
format.

 Theformat of the trigger message is not correct.
* The program to be triggered cannot be found.
If youhaveagoodideaof thereasonswhy messagesareput to thedead

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

|etter queue at your site you can create a Rules Table and run DLQ
Handler. Initially, it isagood ideato run atest on the rules or use an
‘artificial’ dead|letter gueue. Bear inmindthat DL Q Handler, depending
on the options you select, can send a message from the dead |etter
gueue to another queue (or another queue manager) and can even
discard it completely.

Warning
Do not let the dead letter queue fill up!

DL Q Handler will process only messagesthat haveavalid MQDLH
header. Other messages will be reported to bein error but will be left
on the dead letter queue indefinitely. So if you find any messages on
your dead | etter queue after running DL Q Handler they might be such
invalid dead letter messages. You should process them manually.
Either discard them or get and put them to another queue.

To ensurethat any valid messagesare not |eft on the dead | etter queue
after DLQ Handler processing include in your Rules Table the
following rule (make it the last one):

ACTION FWD

FWDQ "ANOTHER.QUEUE'
FwbQM "

Thusany messagethat did not match any previousrulewill be sent by
thelast rule to aqueue called ‘ANOTHER.QUEUE'.

Another warning
Watch security!

To open the dead letter queue for input and to open other queues for
output (whenaction FWD or RETRY isrequested) DL Q Handler uses
by default the authority of the user that submitted the job or the user
giveninthejob card. Make surethat your user hasall theauthority he
needs. | will not discuss here specific RACF (or other security
products) profiles—refer toMQSeriesfor OS390 SystemManagement
for details. | will just outline the authorities DLQ Handler will need.

DLQ Handler needs authority to:
* Open the dead letter queue for browse — all actions.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 21

 Open the dead letter queue for input — FWD, RETRY, and
DISCARD actions.

e Opendestinationqueuefor output—FWD (for thequeuespecified
in the FWDQ keyword) and RETRY (for the queue specified in
the DestQNamefield of thedead | etter header, MQDLH) actions.

Bear in mind that DL Q Handler can send a message to another queue
manager. In that case authority for opening the proper transmission
gueue for output will be needed.

If you want to use context security (you do so by specifying PUTAUT
CTX) remember that additional authorities will be necessary.

To open the output queue with alternate user authority the context
user, which istaken from the Userld field of the message descriptor
MQMD, must be authorized to open the destination or forward queue
for output.

The use of context authority can be difficult to maintain if there are
numerous messages from different platforms generated by different
USers.

Forwarding messages to another queue manager

DLQ Handler can forward a message to aremote queue manager (if
the FWDQM keyword does not point to the local queue manager).
Remember that some administrative work will be needed to achieve
this. Normally, forwarding amessage to another queue manager will
require having a transmission queue with the name of the remote
gueue manager (and achannel that readsfrom that queue, needlessto

say).

The goal can be also achieved by a queue manager alias (you create
aqueue manager alias by defining aremote queue) or by configuring
acluster of queue managers. Pleaserefer to the MQSeriesfor OS/390
System Management manual for details.

Marcin Grabinski
System Engineer
SPIN (Poland) © PUP SPIN 2002

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Buying more hardware capacity for MQSeries
Integrator

OVERVIEW

Theideafor thisarticle started with astudy | made on how maximum
throughput varied across three different disk types:

e« A fast/wide SCSI disk.
e An SSA disk with non-volatile fast write cache.
e A Solid State disk.

| have broadened theidea alittle to include avery brief overview of
theother hardwareresourceswe buy to get ourselvesout of acapacity
problem, namely processors, memory, and network.

NETWORK CAPACITY

Thisfactor isthe least likely to be a problem. Make the assumption
that a network card will run well only if it stays under 50% of the
theoretical maximum capacity.

The rule of thumb, therefore, gives a 100 megabit Ethernet card a
maximum planned rate of 50 megabits/second. For example, a50K B
message (400 megabits) should have a planned message rate of 125
messages/second. Notethat it ispossibleto get more (even double) if
the card is configured ‘full duplex’ and the traffic each way is about

equal.

MEMORY

To adequately support MQSI brokersin a production environment |
recommend at least 1GB of memory. Each dataflowengine process
(equivalent to an execution group) islikely totake at least 50OMB (the
number and size of theflowscontributesto the size) and the minimum
needed to start with one execution group is 512MB.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 23

PROCESSOR

With one or more processors 100% busy the answer is simple: buy
more or faster. Difficulties occur when all the processors on the
machine are not 100% busy (or near enough) but the maximum
message rate has been reached.

Unless ‘additional instances has been specified on an execution
group a dataflowengine process can only use one processor.

The answer here may be to increase the number of execution groups
and/or the number of additional instances specified for each message
flow (as agenera rule, up to the number of available processors). |
said ‘may’ becauseif the bottleneck isfilewriting/reading the above
will not help at all. This leads me nicely on to the main topic.

DISK

If the messages driving MQSI are persistent the MQ log is a prime
candidatefor apotential bottleneck. It wasto investigatethisproblem
that | undertook a small study to see the effect on throughput of
replacing the standard SCSI disk with an SSA disk with non-volatile
fast write cache or a Solid State disk. The configuration for the study
was.

* A Netfinity 8500R withfour Intel 700M hz processorsand 3.2GB
RAM.

e MOQSeriesV5.2.
. MQSl V201

o The SSA disk was an Advanced Seria RAID/X Adapter (which
had 32K writecache, 64K read cache) connectedtoan |BM 7133-
D40 enclosure containing 8 IBM DMV C 9G drivesin asingle
loop.

 TheSolid Statedisk setup wasafast/widedifferential ultraSCS
Adaptec 2944W adapter and a SolidData Excellerator disk with
a2GB capacity.

SSD VERSUS SCSI MEASUREMENT
Singleexecution group lean and mean nodes (eg i nput —output nodes,

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

input —filter —output, and PubSub with asmall number of subscribers)
show large percentage benefits (in the 600-700% range).

As MQ V5.2 logging becomes more efficient given more parallel
units of work (more execution groups) the percentage benefits are
lower than above, although still in the 300-500% range.

Any node with a maximum non-persistent message rate of less than
50 messagesper secondwill belimited by processor power rather than
the SCSI disk so we expect much smaller benefits for these
measurements.

Putting the MQ log rather than the MQ queues on SSD had by far the
greatest benefit. The only measurements to improve by putting the
MQ queues on SSD were the multiple subscriber measurements that
had many MQPUTSs.

Results

Table 1 shows the maximum message rates attained with non-
persistent messages and then persistent messages. The first column
showsthe messageratefor different nodeswhen boththeMQlogand
the MQ queueswere placed on SCSI disks (marked SCSI). The next
column showsthe rates when the MQ log was moved to a Solid State

Non-persistent messages Persistent messages
MQ log on SCsSI SSD SSD SCsSI SSD SSD
MQ queues on SCSI SSD SSD SCSI SSD SSD
Node RUN msgs/ msgs/ msgs/ msgs/ msgs/ msgs/
sec sec sec sec sec sec
In/out 1 Exec grp 2946 3138 2913 59 438 435
In/out 3 Exec grps 3441 3400 3591 143 390 512
Pub/sub 1 Exec grp, 1 sub 1243 1362 1414 55 360 332
Pub/sub 1 Exec grp, 10 subs 489 488 478 32 102 127
Pub/sub 1 Exec grp, 100 subs 58 61 62 7 11 15
Pub/sub 2 Exec grps, 1sub 2631 2301 2295 91 431 448
Filter 1 Exec grp 1237 1261 1260 51 333 332
Compute 1 Exec grp, very 50 48 48 30 45 46
complex
Compute 4 Exec grps, very 214 207 209 94 158 160
complex
Table 1. SSD versus SCS — maximum message rates attained

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 25

disk (marked SSD), and the next column showstheratewhentheMQ
gueues are moved on to Solid State disks.

It shouldn’t be too much of a surprise to see that moving the log to
Solid State disks with persistent messages gave the most benefit.

| have provided a brief explanation of the Node and Run columns
below.

« Node

— IN/OUT: avery simpleflow with aninput node connected to
an output node

— PUB/SUB: an input node connected to a PubSub node

— FILTER: aninput node connected to afilter node connected
to an output node

— COMPUTE: an input node connected to a compute node
connected to an output node.

— nsubs: every published message has n subscribers’ queues
which will receive the message. The rates quoted are the
published rates, which are the same as the receive rate per
subscriber

— very complex: acompute node with ‘lots’ of ESQL.

SSA VERSUS SCSI MEASUREMENT

Table 2 shows the maximum message rates attained with non-
persistent messages and then persistent messages. The first column
showsthe messageratefor different nodeswhen boththeMQlogand
the MQ queues were placed on SCSI disks.

The next column shows the rates when the MQ log was moved to a
SSA Disk and the next column shows the rate when the MQ queues
are moved on to SSA Disks. As before, moving the log to SSA disk
with persistent messages gave the most benefit.

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Non-persistent messages Persistent messages
MQ log on SCsSI SSA SSA SCslI SSA SSA
MQ queues on SCslI SCsI SSA SCsI SCIS SSA
Node RUN msgs/ msgs/ msgs/ msgs/ msgs/ msgs/
sec sec sec sec sec sec
In/out 1 Exec grp 2946 2784 3148 59 397 384
In/out 3 Exec grps 3441 3351 3427 143 542 570
Pub/sub 1 Exec grp, 1 sub 1243 1407 14397 55 308 305
Pub/sub 1 Exec grp, 10 subs 489 478 468 32 101 121
Pub/sub 1 Exec grp, 100 subs 58 62 58 7 11 16
Pub/sub 2 Exec grps, 1sub 2631 2627 2366 91 451 458
Filter 1 Exec grp 1237 1140 1234 51 348 308
Compute 1 Exec grp, very 50 50 51 30 45 45
complex
Compute 4 Exec grps, very 214 215 210 94 164 165
complex
Table 2: SSA versus SCS — maximum message r ates attained

SSA OR SOLID STATE DISK?

Thiswasnot an exhaustive study but first glance showsthat therewas
very little to choose between them in pure performance terms (see
Table 3). | assume price and capacity will dictate the choice.

SUMMARY

Message flows that use non-persistent messages are unlikely to
benefit from these faster disks unless heavy use is made of PubSub.
If persistent messages are used and the combined rate of all the
execution groups is likely to be greater than 50 messages/second,
faster disks should be considered. | had abrief look at placingaDB2
log on fast disk and the performance improvement was very
encouraging

In summary, faster disks can improve maximum throughput
considerably but aknowledge of theflowsisneeded in order to make
the buying decision.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 27

Node
In/out
In/out
Pub/sub
Pub/sub
Pub/sub
Pub/sub
Filter
Compute
Compute

MQ log on

MQ queues on

RUN

1 Exec grp

3 Exec grps

1 Exec grp, 1 sub

1 Exec grp, 10 subs

1 Exec grp, 100 subs

2 Exec grps, 1 sub

1 Exec grp

1 Exec grp, very complex
4 Exec grps, very complex

Table 3: SSA or Solid Sate disk?

SSA
SSA
msgs/sec
2946
3441
1243
489
58
2631
1237
50
214

SSD
SSD
msgs/sec
2784
3351
1407
478
62
2627
1140
50
215

R E Branagan

Software Engineer
IBM Hursley (UK)

© IBM 2002

Maybe we can help:

Need help with an MQSeries problem or
project?

« If it's on a topic of interest to other subscribers, we'll
commission an article on the subject, which we'll publish
in MQ Update, and which we'll pay for —it won't cost you
anything.

o |If it'samore specialized, or more complex problem, you
canadvertiseyour requirements(including one-off projects,
freelance contracts, permanent jobs, etc) to the hundreds of
M QSeriesprofessionalswhovisit MQ Update’shomepage
every month. This serviceis also free of charge.

Visit the MQ Update Web site, http://www.xephon.com/
mqupdate.html, and follow the link to Suggest a topic for an
article or Opportunities for MQ specialists.

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Experiences with MQSeries clustering

INTRODUCTION

MQSeries V5.1 introduced the concept of clustering, where queue
managerscould beconnected together toformacluster. Therearetwo
significant benefits in using clusters:

o Simplified administration.Without clusters, setting up acomplex
distributed queueing network can be time-consuming and error-
prone because of the sheer number of objects which need to be
correctly defined (transmission queues, sender/receiver channels,
remote queues).

* Increased system availability and workload balancing. Instances
of the same gqueue can be placed on multiple queue managers
within a cluster and the work can be shared across these queue
managers automatically by MQSeries.

Thisarticledescribesour organi zation’ sexperienceswith clustersand
providesanumber of hints, tips, and recommendationsfor exploiting
this very powerful technology.

PAST EXPERIENCES AND LESSONS LEARNT

We have been using M QSerieswithin our organization for over three
years and have experimented with clusters since the concept was
originally introduced into the product about two years ago.

Early experiences with using clusters were mixed. When you set up
your clusters correctly without making any mistakes they function
perfectly and really do simplify administration as well as providing
the usua high availability and load-balancing features. However,
many timesin the early days, if aminor mistake was made in any of
the cluster definitions or commands were run out of sequence, the
cluster s mply would not work. Worsethanthat, it wasoftenimpossible
to rectify the mistake without deleting and recreating the queue
manager. These early bad experiences made us very wary about
implementing clusters across the organization.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 29

Our main concern was that, if something went wrong within the
cluster, how could we fix it? On the one hand clusters simplify
administration as the software builds definitions for objects
automatically and storesthem away internally withinitsrepositories;
however, whenthingsgowrongit ispractically impossibleto modify
the internal data held within the repository.

The simple answer is not to make a mistakein the configuration (and
this point has been voiced by anumber of people from IBM). | have
written a number of scripts to automate the tasks involved in getting
gueue managers to join clusters and this has made the probability of
making mistakesmuchlower. However, whenyou do makeamistake
(and you will) then MQ isjust too unforgiving.

Theimplementation of MQ Clustershasimproved significantly since
the original release and now the product functions well and is
reasonably robust. The problems which arise when errors are made
during configuration still hold true, however.

CURRENT USE OF CLUSTERING

Within our organization we have recently implemented a network of
integration hubs based on MQSeriesand M QSeries|ntegrator. These
hubs are located around the world in order to satisfy our global
business.

There were some requirements placed on the network of hubs and
these are listed below.

* Even though multiple hubs make up the integration network it
had to be viewed asasinglelogical entity. Applications always
connectedtotheir local hub and could bridgethroughto any other
gueue manager connected to the logical entity.

» Support for workload balancing within the context of a single
hub.

 Thenetwork had to offer a 24x7 service by utilizing other hubs
withinthelogical entity. If thelocal hub became unavailablethen
therewouldstill beother hubsavail ableto anexternal application
server.

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The above requirements were implemented using:

o standard MQSeries distributed queueing facilities, specifically
multi-hop capabilitiesimplemented using queue manager aliases
and clusters. The hubs which make up the single entity were
grouped together in a‘* Global Gateway Cluster’.

o acluster which includes the application server queue manager
along with the queue managers residing on the local hub.

e acluster to include the queue manager on the application server
along with the local hub queue manager and another ‘ standby’
gueue manager on another hub.

The last two types of cluster were merged into asingle Application
Availability Cluster. Figure 1 illustrates the implemented topology.

Before clusters were used intercommunication was implemented
using inetd. Once multiple overlapping clusters were required we
moved to using the MQ Listener program (runmglsr) asthis allowed
usto isolate clusters by having cluster receiver channelslistening on
different ports.

HINTS AND TIPS FOR PROBLEM SOLVING

Whilstwe' vebeen using clusterswehaveencountered many problems
and below isalist of useful hints and tips which may be of potential
use.

» |Ifyour clusterisnot working correctly (egthecluster queueisnot
visible) check to see if the cluster repository manager process
(amgrrmfa) isrunning. Ifitisnot runningit canbeeasily restarted
using the command amqrr mfa—m QmgrName.

 When you issue cluster commands such as ‘refresn’ they are
written to the system queue known as
SYSTEM.CLUSTER.COMMAND.QUEUE. If messages are not
moving from thisqueueit is sometimes useful to clear the queue
down.

MQ maintainstwo other system queues associated with clusters:

— SYSTEM.CLUSTER. TRANSMIT.QUEUE —whichisusedto
talk to the other queue managers within the cluster.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 31

App server App server App server
re
| |
| | |
| J
SDR/RCVR | SDR/RCVR SDR/RCVR
| l_ — r—-—-—---- |
r: 1 : UK hub Swiss hub'
[} |
. — |
! UK2 -
|| UK | CHEY— |[CH2
=| '
| = _ L1 = T
: 1! - :
; UK3 | CH3 | ,
[} [}
: r_ ____ T ____] !
| Application availability :
: cluster \
: US hub :
: :
E usil— [us2 .
: :
[} [}
[} [}
L----- us3 !
[}
i | Global Gateway Cluster
SDR/RCVR L o o o o o e e o e e e e e 2 4

-

L
App server

Legend

Ej Repository queue manager

AB3

Figure 1. Cluster topology

Back-up/standby manager

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

— SYSTEM.CLUSTER REPOS TORY.QUEUE—-whichisused
to actually storetherepository data, eg information on other
participating queue managers within the cluster and queues
shared within the cluster.

In desperate situations it is sometimes necessary to delete the
contents of these queues. This should only be performed if your
cluster redlly is broken and you cannot tolerate deleting and
recreating the queue manager. You cannot clear these queues
down whilst the repository queue manager processis running.

Often we have had to kill the repository manager process
(amgrrmfa), clear down these queues, and then stop/start the
gueue manager in order to refresh the cache. Again, | must stress
that this course of action is very much alast resort.

» | strongly recommendusing DNSnameswhendefining connection
namesfor cluster channels. Therepository storesthisconnection
name and, if you use explicit | P addresses and a queue manager
moves | P address, it is practically impossible to alter thiswithin
the cluster definitions.

When defining a cluster receiver channel be very careful when
using the DNS name in the connection definition as you cannot
guarantee that participating queue managers within the cluster
also have accessto that DNSdefinition. If you don’t have global
DNS do not use the DNS name in the connection.

o |facluster sender channel goesinto retry stateit may be because
it hasgot out of step with the cluster receiver channel at the other
end. Inthiscasereset thecluster channel at either end to message
number one. Failingthis, del eteand recreatethechannel definition
and restart it. If this still doesn’t work then restart the queue
manager (which isalast resort).

o |If acluster sender channel goesinto retry state check the queue
manager error log. If the error log indicates that another cluster
sender channel isin an ‘in-doubt’ state then even if that cluster
sender channel no longer exists you should recreate the channel,
resolvethein-doubt condition with acommit, and then del etethe
channel.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 33

Automatically-defined cluster sender channels are modelled on
thecluster receiver channel ‘ at theother end’ andhaveaDEFTY PE
of CLUSSDRA whenissuingaDISCLUSQMGR(*) DEFTY PE
command. Thisisuseful to know when diagnosing problems.

When setting up multi-hopping using clusters you may need to
create aremote queue definition to a clustered queue. However,
thisis not possible within the product!

For example, if queue A defined on queue manager CHO1DM 1
Is shared within a cluster so that queue manager UKO1DM 1 can
see it, you cannot create a remote queue definition on queue
manager NBO1, which points to queue A on gqueue manager
UKO1DM1.

For performance reasons cluster queue managers maintain a
repository cache which contains the clustering definitions (such
as cluster queues, cluster channels, etc).

The undocumented command amqgrfdm can be used to get
information from the repository and cache. This program can be
executed using the command amqrfdm —m Qmgr Name.

Theprogramisn’t terribly friendly to use and does not allow you
to amend the repository or the cache, but does provide useful
information on how it believes the cluster is configured. The
really useful optionis" 0" to output the entire cache.

THE WAY FORWARD AND OTHER RECOMMENDATIONS

Weareusing clustersnow acrossmultiple platformsand they perform
well. However, anumber of areasneed to beexamined, ideally aspart
of the core M QSeriesproduct, but perhapsthereisanopening for ISV
products. These areas include the following topics.

34

Thestructureand architecturerepository needsto bedocumented
and published so that users can understand what MQ believesto
be configured.

Someformof repository view/edit tool would allow therepository
tobedynamically inspected and, in casesof emergency, modified.

A Redbook aimed specifically at MQSeries clusters would be

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

much appreciated by all those users out there.

From personal experience, | advocate the following:

Use clusters when appropriate:

— for very large MQ networks with complex distributed
gueueing requirements

— whenhighavailability isrequired (although clustersontheir
own do not solve this problem)

— when load-balancing is required.

Ensurethat you are running the latest releases of MQ on all your
platforms with the latest CSDs and APARs applied. Invariably,
the PTF list for a CSD contains references to fixes to clustering
problems.

Use clusters with measured caution. They do simplify
administration but you need to know what you are doing.
Encourage your MQ administrators to experiment extensively
with clustersin alarge variety of configurations across all your
different platforms.

Try to get your administrators trained — IBM does not offer a
clustering course per se, but thereare M Q training partners, such
asAlphacourt inthe UK, who offer aspecific course on clusters.

Always follow the instructions in the clustering manual (MQ
Clusters SC34-5349-00) to the letter. There were a number of
major errors in the manual in early editions so ensure that you
have the latest version of the manual.

Where possible, build scripts to perform common tasks such as:
— adding a queue manager to an existing cluster

— removing a queue manager from acluster

— removing adueue from acluster.

Define naming standards for:

— cluster names

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 35

— namélists (useful when overlapping clusters are required)
— cluster sender channels
— cluster receiver channels.

APPENDIX A: THE PERL SCRIPT TO BUILD CLUSTER DEFINITIONS

This script was written in Perl and has been tested on AIX. Whilst it
may not be possibleto use‘as-is at another siteit formsagood basis
for your own script development.

The script refersto Global Gateway Clusters (GGC) and Application
Availability Clusters(AAC), whicharedescribedinthesectionearlier
entitled Current use of clustering.

Thescriptfilewill prompt for namesof queuemanagers, | Paddresses,
etc and will generate .mgsc files which can then be run against the
relevant queue managersin order to create the required definitions.

Inaddition, acluster.logfileiscreated with additional information (eg
instructionsonhowtostart listener programs). A cluster-schematic.log
fileisalsocreated, which containsagraphical view of theconfigurations
that were requested.

BUILDING CLUSTER DEFINITIONS
#!/usr/bin/perl -w

Filename : cluster.pl
Description : Used to generate definitions for clusters
Created : 07/02/01 Nick Breeds
Modified

$Version = "1.6.0.0";
use Time::Local;

use File::Find;

use I0::Handle;

some constants

$False = @;
$True = 1;
$Info = "[INFOI";
$Err = "[ERROR]";

define main menu
format STDOUT =

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

= Cluster Definitions = Vv B<<<<<<
$Version

(1) Add Hub queue manager into the Global Gateway Cluster (GGC)
(2) Bridge in to GGC from a Tocal queue manager
(3) Bridge out to a Tocal queue manager from the GGC
(4) Add a queue manager into Application Availability Cluster (AAC)
(@) Exit
Enter option [0-4]:
#i# START OF MAIN LOGIC ####
$LogFile = "cluster.log";
open (LOGFILE, "> $LogFile") or die "$Err: cannot open $LogFile: $!";
$SchematicFile = "cluster-schematic.log";
open (SCHEMATIC, "> $SchematicFile") or die "$Err: cannot open
$SchematicFile: $!";
SCHEMATIC->autoflush(1);
MainMenu();
close (SCHEMATIC) or die "$Err: cannot close $SchematicFile: $!";
close (LOGFILE) or die "$Err: cannot close $LogFile: $!";
exit 0;
END OF MAIN LOGIC #a#
sub MainMenu
{
my $option = "";
while ($option ne "@") {
run_cmd("clear");
write STDOUT;
$option = uc(<STDIN>);
chomp ($option);
if ($option eq "1") {
AddIntoGGC ();

elsif ($option eq "2") {
BridgeIntoGGC ();
}
elsif ($option eq "3") {
BridgeFromGGC ();
}
elsif ($option eq "4") {
AddIntoAAC ();
}
elsif ($option eq "0") {
printf "$Info: Remember to check contents of $LogFile and
$SchematicFile\n";}
else {
AnyKeyToContinue ("$Err: invalid option");
}

© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

37

sub run_cmd

{
local ($cmd) = @_;
my $rc = Oxffff & system ($cmd);
if ($rc & OxFfo0) {
$rc = $rc / 256;
system("echo $Err: failed to run *$cmd*, reason: $rc ");
return @;
}
return 1;
}
sub AnyKeyToContinue
{
local ($prompt) = @_;
print $prompt . ", press any key to continue";
$key = <STDIN>;
chomp ($key);
}
sub write_header
{

local ($filename) = @_;
printf OUTFILE
("***\n ") ;
printf OUTFILE ("* FILENAME : %s\n", $filename);
printf OQUTFILE ("* CREATED : %s\n", scalar localtime);
printf OUTFILE
("***\n ") ;
}
sub AddIntoGGC
{
run_cmd("clear");
PromptFor ("Cluster");
print "Specify details for this queue manager ANt
PromptFor ("ThisQmgr");
PromptFor ("ThisIPAddr");
PromptFor ("ThisPort");
PromptFor ("Repository");
print "Specify details for another queue manager holding a full
repository An';
PromptFor ("ReposQmgr");
PromptFor ("ReposIPAddr");
PromptFor ("ReposPort");
print "\n";
DisplaySchematic ("AddIntoGGC");
if (I(YToContinue ("Is this configuration 0K"))) {
return;
}
$ThisFile = $ThisQmgr . ".AddIntoGGC.mgsc";
open (OUTFILE, "> $ThisFile") or die "$Err: cannot open $ThisFile:

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

$1"y

run_cmd ("chmod 777 $ThisFile");

write_header ($ThisFile);

printf OUTFILE ("\n* Define cluster receiver channel for this
gmgr\n");

printf OUTFILE ("DEF CHL($Cluster.$ThisQmgr) -\n");
printf QUTFILE (" CHLTYPE(CLUSRCVR) -An");
printf OQUTFILE (" CONNAME("$ThisIPAddr($ThisPort)"') -\n");
printf OUTFILE (" CLUSTER(S$Cluster) \n");

printf OUTFILE ("\n* Define cluster sender channel for this agmgr\n");

printf OQUTFILE ("DEF CHL($Cluster.$ReposQmgr) -An");
printf QUTFILE (" CHLTYPE(CLUSSDR) -\n");
printf OUTFILE (" CONNAME("'$ReposIPAddr($ReposPort)') -\n");
printf OUTFILE (" CLUSTER(S$Cluster) \n");

if (uc($Repository) eq "Y") {
LogFileDivider ();
printf LOGFILE ("$Info: On queue manager '$ThisQmgr', a new
namelist\n");

printf LOGFILE ("$Info: called HUB.$ThisQmgr.NL@1 will be createdby\n");

printf LOGFILE ("$Info: the script file - check that one didn't

\n");

printf LOGFILE ("$Info: already exist; if it did then you need to \n");

printf LOGFILE ("$Info: manually add the cluster $Cluster to the
printf LOGFILE ("$Info: existing namelist.

printf LOGFILE ("$Info: Also, the script file alters the gmgr to
printf LOGFILE ("$Info: make it a repos gmgr referring to above
printf LOGFILE ("$Info: namelist.

printf OUTFILE ("\n* Define namelist for this gmgr\n");

printf OUTFILE ("DEF NL(HUB.$ThisQmgr.NL@1) -\n") s
printf OUTFILE (" NAMES($Cluster) \n");

printf QUTFILE ("\n* Make this a full repository\n");
printf OUTFILE ("ALTER QMGR REPOSNL(HUB.$ThisQmgr.NL@1) \n");
}
close (OUTFILE) or die "$Err: cannot close $ThisFile: $!";
LogFileDivider ();
printf LOGFILE ("$Info: You'll need to create a listener task for
printf LOGFILE ("$Info: queue manager '$ThisQmgr' as follows:
printf LOGFILE ("$Info: runmglsr -t tcp -p $ThisPort -m $ThisQmgr
LogFileDivider ();
printf LOGFILE ("$Info: $ThisFile created\n");
AnyKeyToContinue ("$ThisFile created");
}
sub BridgelIntoGGC
{
run_cmd("clear");
print "Specify details for this local queue manager
PromptFor ("ThisQmgr");
print "Specify details for the primary HUB queue manager
PromptFor ("ReposQmgr");
PromptFor ("ReposIPAddr");

© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

\n");
\n");
\n");
\n");
\n");

\n");
\n");
\n");

\n";

\n";

39

PromptFor ("ReposPort");
print "\n";
DisplaySchematic ("BridgelIntoGGC");

if

F
$Th

(!'(YToContinue ("Is this configuration 0K"))) {

return;
}
irst do the file for the local queue manager
isFile = $ThisQmgr . ".BridgelIntoGGC.mgsc";

open (OUTFILE, "> $ThisFile") or die "$Err: cannot open $ThisFile: $!";

run_cmd ("chmod 777 $ThisFile");

write_header ($ThisFile);
printf QUTFILE ("\n* Define sender channel for this gmgr\n");

printf OUTFILE ("DEF CHL($ThisQmgr.$ReposQmgr) -\n");
printf OUTFILE (" CHLTYPE(SDR) -\n");
printf OUTFILE (" CONNAME('$ReposIPAddr($ReposPort)') - \n");
printf OUTFILE (" XMITQ('$ReposQmgr') -\n");
printf OUTFILE (" DESCR('Sender channel') \n");
printf QUTFILE ("\n* Define xmitq to the HUB \n");
printf OQUTFILE ("DEF QL($ReposQmgr) -\n");
printf OUTFILE (" TRIGGER -\n");
printf OUTFILE (" TRIGTYPE(FIRST) -\n");
printf OUTFILE (" TRIGDATA($ThisQmgr.$ReposQmgr) -\n");
printf QUTFILE (" INITQ(SYSTEM.CHANNEL.INITQ) -\n");
printf QUTFILE (" DEFPSISTC(YES) -\n");
printf QUTFILE (" USAGE(XMITQ) \n");

close (OUTFILE) or die "$Err: cannot close $ThisFile: $!";
Now do the file for the repos queue manager

$Th

atFile = $ReposQmgr . ".BridgeIntoGGC.mgsc";

open (OUTFILE, "> $ThatFile") or die "$Err: cannot open $ThatFile: $!";

run_cmd ("chmod 777 $ThatFile");

write_header ($ThatFile);
printf QUTFILE ("\n* Define receiver channel for this gmgr\n");

printf OUTFILE ("DEF CHL($ThisQmgr.$ReposQmgr) -\n");
printf OUTFILE (" CHLTYPE(RCVR) -\n");
printf OUTFILE (" DESCR('Receiver channel') \n");

close (OUTFILE) or die "$Err: cannot close $ThatFile: $!";
LogFileDivider ();

printf LOGFILE ("$Info: You'll need to create a Tistener task for\n");

\n"

printf LOGFILE ("$Info: queue manager '$ReposQmgr' as follows:
)3
printf LOGFILE ("$Info: runmglsr -t tcp -p $ReposPort -m

$ReposQmgr \n");

LogFileDivider ();

printf LOGFILE ("$Info: $ThisFile and $ThatFile created\n");
AnyKeyToContinue ("$ThisFile and $ThatFile created");

}
sub

{

40

BridgeFromGGC

run_cmd("clear");

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PromptFor ("Cluster");

print "Specify details for this local queue manager ANt

PromptFor ("ThisQmgr");
PromptFor ("ThisIPAddr");
PromptFor ("ThisPort");

print "Specify details for the primary HUB queue manager

ANt
PromptFor ("ReposQmgr");
print "\n";

DisplaySchematic ("BridgeFromGGC");

if (!(YToContinue ("Is this configuration 0K")))

return;

}

Do the file for the Tocal queue manager
$ThisFile = $ThisQmgr . ".BridgeFromGGC.mgsc";

{

open (OUTFILE, "> $ThisFile") or die "$Err: cannot open $ThisFile:

$l”;
run_cmd ("chmod 777 $ThisFile");
write_header ($ThisFile);

printf OUTFILE ("\n* Define receiver channel for this gmgr\n");

printf OUTFILE ("DEF CHL($ReposQmgr.$ThisQmgr)

printf QUTFILE (" CHLTYPE(RCVR)

printf QUTFILE (" DESCR('Receiver channel')

-\n");
-\n");
\n");

close (OUTFILE) or die "$Err: cannot close $ThisFile: $!";

Now do the file for the repos queue manager
$ThatFile = $ReposQmgr . ".BridgeFromGGC.mgsc";

open (OUTFILE, "> $ThatFile") or die "$Err: cannot open $ThatFile:

$l||;
run_cmd ("chmod 777 $ThatFile");
write_header ($ThatFile);

printf OQUTFILE ("\n* Define sender channel to local gmgr\n");

printf OUTFILE ("DEF CHL($ReposQmgr.$ThisQmgr) -\n");
printf OUTFILE (" CHLTYPE(SDR) -\n");
printf OQUTFILE (" CONNAME("$ThisIPAddr($ThisPort)"') -\n");
printf OQUTFILE (" XMITQ(TO.$ThisQmgr) -\n");
printf OUTFILE (" DESCR('Sender channel') \n");
printf OUTFILE ("\n* Define xmitg to local gmgr\n");
printf OUTFILE ("DEF QL(TO.$ThisQmgr) -\n");
printf OUTFILE (" TRIGGER -\n");
printf OQUTFILE (" TRIGTYPE(FIRST) -\n");
printf QUTFILE (" TRIGDATA($ReposQmgr.$ThisQmgr) -\n");
printf OQUTFILE (" INITQ(SYSTEM.CHANNEL.INITQ) -\n");
printf OUTFILE (" DEFPSIST(YES) -\n");
printf OUTFILE (" USAGE(XMITQ) \n");
printf OUTFILE ("\n* Define queue manager alias\n");
printf OQUTFILE ("DEF QR($ThisQmgr) -\n");
printf QUTFILE (" DEFPSIST(YES) -An");

© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

41

}

printf QUTFILE (" RNAME(" ") -\n");

printf OUTFILE (" RQMNAME ($ThisQmgr) -An");
printf OUTFILE (" XMITQ(TO.$ThisQmgr) -\n");
printf OUTFILE (" CLUSTER($Cluster) \n");

close (OUTFILE) or die "$Err: cannot close $ThatFile: $!";
LogFileDivider ();

printf LOGFILE ("$Info: $ThisFile and $ThatFile created\n");
AnyKeyToContinue ("$ThisFile and $ThatFile created");

sub AddIntoAAC

{

run_cmd("clear");

PromptFor ("Cluster");

print "Specify details for this queue manager ANt
PromptFor ("ThisQmgr");

PromptFor ("ThisIPAddr");

PromptFor ("ThisPort");

PromptFor ("Repository");

print "Specify details for another queue manager holding the

repository \n";

PromptFor ("ReposQmgr");

PromptFor ("ReposIPAddr");

PromptFor ("ReposPort");

print "\n";

DisplaySchematic ("AddIntoAAC");

if (1(YToContinue ("Is this configuration 0K"))) {

return;
}
Do the file
$ThisFile = $ThisQmgr . ".AddIntoAAC.mqgsc";

open (QUTFILE, "> $ThisFile") or die "$Err: cannot open $ThisFile: §!";

run_cmd ("chmod 777 $ThisFile");

write_header ($ThisFile);

LogFileDivider ();

printf LOGFILE ("$Info: If there any existing sender/receiver

channels\n");
printf LOGFILE ("$Info: between $ThisQmgr and $ReposQmgr, then they

will\n");

printf LOGFILE ("$Info: need to be stopped and deleted. \n");
printf OUTFILE ("\n* Define cluster sender channel to the repos
gmgrin");

printf QUTFILE ("DEF CHL($Cluster.$ReposQmgr) -An");
printf OUTFILE (" CHLTYPECCLUSSDR) -\n");
printf OUTFILE (" CONNAME('$ReposIPAddr($ReposPort) ") -\n");
printf OUTFILE (" CLUSTER($Cluster) -\n");
printf OUTFILE (" DESCR('Cluster Sender channel to the repos') \n");

printf OUTFILE ("\n* Define cluster receiver channel\n");
printf OUTFILE ("DEF CHL($Cluster.$ThisQmgr) -\n");
printf QUTFILE (" CHLTYPE(CLUSRCVR) -\n");

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

printf OUTFILE (" CONNAME("$ThisIPAddr($ThisPort)"') -\n");
printf OUTFILE (" CLUSTER($Cluster) -\n");
printf OUTFILE (" DESCR('Cluster Receiver channel') \n");
if (uc($Repository) eq "Y") {
LogFileDivider ();
printf LOGFILE ("$Info: The script '$ThisFile' alters qgmgr
"$ThisQmgr'\n");
printf LOGFILE ("$Info: to make it a repos gmgr for the cluster
"$Cluster'.\n");
printf LOGFILE ("$Info: However, queue manager $This Qmgr may
already\n");
printf LOGFILE ("$Info: have a namelist set up, in which case this will
need\n");
printf LOGFILE ("$Info: to be manually extended to include the cluster
name '$Cluster'.\n");
printf LOGFILE ("$Info: In this case, edit the script to remove the
ALTER QMGR\n");
printf LOGFILE ("$Info: statement.\n");
printf QUTFILE ("\n* Make this a full repository\n");
printf OUTFILE ("ALTER QMGR REPQOS($Cluster) \n");
}
close (OUTFILE) or die "$Err: cannot close $ThisFile: $!";
LogFileDivider ();
printf LOGFILE ("$Info: $ThisFile created\n");
AnyKeyToContinue ("$ThisFile created");
}
sub LogFileDivider
{
printf LOGFILE ("=====Entry created %s =======>\n", scalar localtime);
}
sub PromptFor
{
local ($what) = @_;
if ($what eq "Cluster") {
print "Enter name of cluster :";
$Cluster = <STDIN>;
chomp ($Cluster);
elsif ($what eq "ThisQmgr") {
print "Enter name of queue manager :";
$ThisQmgr = <STDIN>;
chomp ($ThisQmgr);
}
elsif ($what eq "ThisIPAddr") {
print "Enter IP address :";
$ThisIPAddr = <STDIN>;
chomp ($ThisIPAddr);
}
elsif ($what eq "ThisPort") {

print "Enter port :";

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 43

}

$ThisPort = <STDIN>;
chomp ($ThisPort);
}
elsif ($what eq "Repository") {
print "Does it hold a full repository? (Y/N) :";
$Repository = <STDIN>;
chomp ($Repository);
}
elsif ($what eg "ReposQmgr") {
print "Enter name of queue manager :";
$ReposQmgr = <STDIN>;
chomp ($ReposQmgr);
}
elsif ($what eq "ReposIPAddr") {
print "Enter IP address :";
$ReposIPAddr = <STDIN>;
chomp ($ReposIPAddr);
}
elsif ($what eq "ReposPort") {
print "Enter port :";
$ReposPort = <STDIN>;
chomp ($ReposPort);
}
else {
AnyKeyToContinue ("$Err: invalid call >>$what");

}

sub DisplaySchematic

{

local ($what) = @_;

run_cmd ("clear");

printf SCHEMATIC "\n";

if ($what eq "AddIntoGGC") {
printf SCHEMATIC

! :!:!:!!!!!ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ::ZZZZZ\H”,
printf SCHEMATIC ": Global Gateway Cluster = %-8s \n",
$Cluster;
printf SCHEMATIC ": :\n";
printf SCHEMATIC ": +-------cnommnononn + e + :\n";
printf SCHEMATIC ": / /| / /1 :\n";
printf SCHEMATIC ": 4---------ommomn-- + + R R + + :\n";
my $IsItRepos =" "
if (uc($Repository) eq "Y") {
$I1sItRepos = "(Repos)";
}
printf SCHEMATIC ": [%-8s %-7s |/=====>|%-8s (Repos) [/] :\n",
$ThisQmgr, $IsItRepos, $ReposQmgr;
printf SCHEMATIC ": 4---------ommomm-- + | R R + | :\n";

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

printf SCHEMATIC ":
$ReposIPAddr;
printf SCHEMATIC ": |
$ThisPort, $ReposPort;
printf SCHEMATIC ":
printf SCHEMATIC ": I I

printf SCHEMATIC ": t=====+

printf SCHEMATIC
"II:I:I::2:2:::::::::::::::2II:::::::::::::::::::::ZZ\I’I”;

|%16s | | [%16s | + :\n",

(%5s) |<==+ | (%5s)

elsif ($what eq "BridgeIntoGGC") {
printf SCHEMATIC "

printf SCHEMATIC "

printf SCHEMATIC " R T + R

printf SCHEMATIC " / /o /

printf SCHEMATIC " 4---ocoooooooooon T

printf SCHEMATIC " |
$ThisQmgr, $ReposQmgr;

printf SCHEMATIC " +-------cmmomono-- e I e
| +\n", $ReposIPAddr;
| /\n",

printf SCHEMATIC " | | + %165
printf SCHEMATIC " | [/ I
$ReposPort;

printf
printf

(%5s)

SCHEMATIC "

SCHEMATIC " H-commmmmmmoom o T

$ThisIPAddr,

| / :\n",

:\n";
:\n";
:\n";

\nll;
\n";
/1 \n";
\nll;

\n";

printf
printf
printf
printf
printf
printf
printf
printf

SCHEMATIC "

SCHEMATIC
SCHEMATIC
SCHEMATIC
SCHEMATIC
SCHEMATIC
SCHEMATIC
SCHEMATIC

\n " ;
\n n ;
\n";
\n n ;

$ThisQmgr, $ReposQmgr;

Printf SCHEMATIC " A-cecooooooooooon- T

printf SCHEMATIC " | [+
$ReposIPAddr;

printf SCHEMATIC " | [/ I
$ReposPort;

[%16s | +\n",

(%5s)

printf SCHEMATIC " 4---c-oeooooooo- T

printf SCHEMATIC "
printf SCHEMATIC "
printf SCHEMATIC "
printf SCHEMATIC "

elsif ($what eq "BridgeFromGGC") {
printf SCHEMATIC ":::::iiccrrccsrrcsrroisriiii\n';
printf SCHEMATIC " GGC = %-8s :\n", $Cluster;

© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

\n";

| /\n",

printf SCHEMATIC " :A\n";
printf SCHEMATIC " B + B +\n";
printf SCHEMATIC " / /1 / /1\n";
printf SCHEMATIC " +--------mmooomo-- + + B + +\n";
printf SCHEMATIC " | %-8s | /=====>| %-8s [/1\n",
$ReposQmgr, $ThisQmgr;
printf SCHEMATIC " 4------ooooonnnn-- + | R + I\n";
printf SCHEMATIC " | | + [%16s | +\n", $ThisIPAddr;
printf SCHEMATIC " | |/ | (%5s) |/\n",
$ThisPort;
printf SCHEMATIC " 4------oooooonno-- + : R +\n";
printf SCHEMATIC " :A\n";
printf SCHEMATIC " :A\n";
printf SCHEMATIC "::coorrcccssrrrcrszzioi\n';

}

elsif ($what eq "AddIntoAAC") {

printf SCHEMATIC":::::osrosrrosrrosrrorrrorrrorrrorrrssrrsrrosrioso\n™y
printf SCHEMATIC " Application Availability Cluster = %-8s :\n",
$Cluster;
printf SCHEMATIC " :\n";
printf SCHEMATIC " B + B + :\n";
printf SCHEMATIC " / /| / /1 \n";
printf SCHEMATIC ": 4------ooooonnnno- + + I + + :\n";

my $IsItRepos =" "

if (uc($Repository) eq "Y") {

$IsItRepos = "(Repos)";
}

printf SCHEMATIC ": |%-8s %-7s |/=====>|%-8s (Repos) [/] :\n",
$ThisQmgr, $IsItRepos, $ReposQmgr;
printf SCHEMATIC ": 4---c-voooooonnnon + | I + | :\n";
printf SCHEMATIC ": [%16s | | [%16s | + :\n", $ThisIPAddr,
$ReposIPAddr;
printf SCHEMATIC ": | (%5s) |<==+ | (%5s) 1/ :\n",
$ThisPort, $ReposPort;
printf SCHEMATIC ": +--------------- +-+ | B + :\n";
printf SCHEMATIC ": I | \n";
printf SCHEMATIC ": t=====+ :\n";
printf SCHEMATIC "::::orccorrosrrssrrosrrorrrorrrorrrsrrsrosrosi\n™y

}
else {

AnyKeyToContinue ("$Err:

}

N.B. It is

invalid call >>$what");

very important that each schematic is 15 lines long!!!

printf SCHEMATIC "\n";

run_cmd("tail
}

-15 $SchematicFile");

HHHHHH R R

sub YToContinue
{

46

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 3: Sample schematic

e + e +
/ /| / /|
e + + o + +
QM1 (Repos) [|/=====>|QM2 (Repos)
e + o :
| 172.27.6.1 | | | 10.62.43.55 | + :
| (19100) |<==+ | (18100)
PR SR N
| |
f=====t

local ($prompt) = @_;
my $key = "";
print $prompt .
$key = uc(<STDIN>);
chomp ($key);
if ($key eq "Y") {
return $True;
}
else {
return $False;

}

}

, enter 'Y' to continue, any other key to quit: ";

I

Figure 3 shows a sample schematic generated by the Perl script.

Nick Breeds
IT Consultant
Zurich Financial Services (UK)

© Xephon 2002

© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

47

MQ news

IBM has recently released a number of
WebSphereM Q Family SupportPacs. These
are detailed below.

WDO02: MQSeries Workflow —
Considerations for production rollout. This
SupportPac describes production
architectures for MQSeries Workflow. It
also describes various tasks that have to be
performed to keep an MQSeries Workflow
system in a healthy state. IBM says that it
should beread by system administratorswho
are ready to deploy a production MQSeries
Workflow implementation aswell assystem
architects who are designing a new
MQSeries Workflow system.

MAQJ: MQSeries—Put message utility. IBM
says this SupportPac provides asimple and
convenient method for MQSeries V5.1 and
V5.2 usersto put messagesto aqueue. Using
the graphical user interface provided, users
can connect locally or remotely to an
MQSeries server, create message data from
afileor from manually entered text, modify
themessagedescriptor fields, and control the
context information associated with a
message. The installation instructions have
been updated to address MQSeries classes
for JavaVersion 5.2.

Thefollowing clients have all been updated
to incorporate CSD 3.

MACI: MQSeriesClient for Linux for Intel —
V5.2

MACJ: MQSeriesClient for Windows 95, 98
and Me—- V5.2

MACK: MQSeries Client for Windows NT
and Windows 2000 — V5.2

MACL: MQSeries Client for AIX —V5.2
MACM: MQSeries Client for HP-UX V10 —
V5.2

MACN: MQSeries Client for HP-UX V11 —
V5.2

MACO: MQSeries Client for Sun Solaris —
V5.2

MACP: MQSeries Client for Windows NT
and Windows 2000 — V5.2.1

WDO01: Business Process Modelling with
MQSeries Workflow. This SupportPac
provides an introduction to the creation of
business process modelling using 1BM
MQSeriesWorkflow. It givesastep-by-step
overview of how to implement simple
processes using MQSeries Workflow and
also covers more advanced process models.
IBM says this SupportPac is intended for
business analysts and process modellers
with a basic knowledge of MQSeries
Workflow. Two new examples have been
added and many descriptions have been
modified.

IBM MQSeries SupportPacs may be
accessed at http://www.ibm.convsoftwar e/
mgseries/txppacs.

For further information contact:
Your local IBM representative.

* * %

xephon

	MQSeries and 64-bit applications
	Dead letter queue handling: MQSeries for OS/390
	Buying more hardware capacity for MQSeries Integrator
	Experiences with MQSeries clustering
	MQ news

