39

May 2002

]
In this issue

3 Dead letter queue browser:
MQSeries for OS/390

9 Global transactions with
MQSeries and Oracle, part 1.
specifications

19 Using the MQAI to administer
WebSphere MQ

35 Configuring MQSeries with
Microsoft Cluster Server, part 1.
planning

44 MQ news

© Xephon plc 2002

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38126

From USA: 01144 1635 38126
Fax: 01635 38345

E-mail: info@xephon.com

North American office

Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344

Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of codefor thefirst 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For moreinformation about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line

Code from MQ Update, and compl ete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mg;
you will need to supply a word from the
printed issue.

Commissioning Editor

Peter Toogood
E-mail: Peter T @xephon.net

Managing Editor

M adel eine Hudson
E-mail: MadeleineH @xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’'s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In al cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
the prior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercia product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 |abels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

Dead letter queue browser: MQSeries for OS/390

Therequirementsfor running theenclosed DL Q Browser are OS/390,
MQSeries, and MQSeries SupportPac MA 18 (available from http://
www-4.ibm.convsoftware/ts/mqgseries/txppacs/mal8.html). The
program has been tested with OS/390V 2.8 and M QSeriesfor OS/390
V2.1

INSTALLATION
Toinstall DLQ Browser follow the steps listed bel ow.

e SendtheREXX codeto your mainframe (ASCII modein FTPor
ASCII and CR/LF in Personal Communications file transfer).

o Storeit asalibrary member (RECFM=FB, LRECL=80) named
MQGETDLQ.

Now you are ready to useit! To do so:
* Readthisarticle.

 Usethesupplied job (after tailoring to your site’s requirements)
to run DLQ Browser against your dead |letter queue.

USE

DLQ Browser reads every message on the dead letter queue (in
browse mode) and printsinformation about why these messageswere
not delivered to their destination queues. The most common reasons
for non-delivery of messages were discussed in the April 2002 issue
of MQ Update.

| have written DLQ Browser in the REXX programming language.
Sincethe standard MQSeries APl isnot availablefor REXX | used a
support pack (MA18) whichimplementsjust that. REXX isrelatively
simpleand self-commenting. Feel freeto changethecodeasyouwish.,

M essages that are put to the dead letter queue have a special format,
namely anadditional header called MQDLH that isappendedinfront
of theapplication data. Theformat of amessage sent to thedead | etter
queue is set to MQFMT_DEAD LETTER HEADER.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 3

RUNNING DLQ BROWSER

DL Q Browser can beinvoked either fromthesupplied job or runfrom
the T SO or | SPFlinecommand. Thesecond optionisnot recommended
since, depending on the number of messages on the dead | etter queue,
the output from DL Q Browser can be huge.

Thejob to run DLQ Browser is shown and explained below.

//MQGETDLQ JOB NOTIFY=&SYSUID
//* parameters in SYSTSIN:

//* QMgrName

//* DLQName

//GETDLQ EXEC PGM=IKJEFT@1,

// PARM="%MQGETDLQ"
//STEPLIB DD DSN=MA18.LOAD,DISP=SHR
// DD DSN=MQM.SCSQAUTH,DISP=SHR

//SYSEXEC DD DSN=YOUR.DSN,DISP=SHR
//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

QmgrName

DLQName

/*

Tailoring the above code

 Linel: supply avalidjob card.

« Line7: MA18 load library.

 Line8: MQSeries hlq.SCSQAUTH library.
 Line9: library containing the MQGETDLQ source.

 Linel0: aclassfor sysout (DLQ Browser reportswill be printed
there).

 Lines 11 and 12: parameters for DLQ Browser:
— gueue manager name (required)
— dead letter queue name.

o The parameters for DLQ Browser must be given in the order
shown; the dead |l etter queue name may be omitted (leaveablank
line instead).

* The queue manager name s required — it has no default.

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Default valuesfor DLQ Browser parameters
e QMgr—none.

« DLQName —none. If it is blank, DLQ Browser will query the
gueue manager for it (it is stored in a queue manager attribute
‘DEADQ’); if it cannot be obtained DLQ Browser will quit.

OUTPUT

DLQ Browser will produce areport for every messageit finds on the
dead letter queue. The following information will be given.

* Theapplication data part of the message —thefirst 200 bytes. If
you think thisis too small an amount you can change it in the
code: go to line three and change the value of the MaxMsgLen
variable. Remember, however, that it must be at least 172 bytes
since thisisthe MQDLH header length.

e Themessage descriptor MQMD. | will not describe herethefull
message descriptor (please refer to MQSeries Application
Programming Reference) but severa fields need a comment
since they are subject to change when the message is put to the
dead letter queue.

— Format - this should always be set to
MQFMT DEAD LETTER HEADER. If the field has
another valueit isan error. It cannot be processed by adead
|etter queuehandler and may, therefore, stay inthedead | etter
gueue indefinitely.

— Encoding —thisisthe encoding used by the application that
put the message to the dead |etter queue.

— CodedCharSetld —thisisthe character set identifier used by
the application that put the message to the dead | etter queue.

« Message descriptor context fields (eg PutApplType,
PutApplName, PutDate, PutTime).

* The contents of the dead letter header MQDLH. The fields are
listed below.

— Reason — the reason why the message has been put to the
dead letter queue.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 5

DestQName — destination queue the message was meant to
go to.

DestQM grName — destination queue manager the message
was meant to go to.

Encoding —encoding of numeric datain the application data
part of the message.

CodedCharSetld — character set identifier of data in the
application data part of the message.

Format —format name of datain the application data part of
the message.

PutAppl Type — type of application that put the message on
the dead |etter queue.

PutA pplName—nameof theapplication that put themessage
on the dead letter queue.

PutDate — date when the message arrived on the dead | etter
gueue.

PutTime —time when the message arrived on the dead | etter
queue.

After browsing all messages on the dead letter queue DL Q Browser
will print their number and quit. You should now be aware of the
reasonswhy messagesarriveonyour dead | etter queue and how to use
atool such as DLQ Handler to get rid of them.

DLQ BROWSER

MaxMsgLlen

=200 + 172 /* 172 is the MQDLH length */

PARSE EXTERNAL qmgr

PARSE EXTERNAL inqueue

/* Initialize the interface */
RXMQVTRACE = "'

rcc= RXMQV("INIT")

SAY 'RC ="

rcc

/* Connect to Queue Manager */
RXMQVTRACE = "'
rcc = RXMQV('CONN', qmgr)

SAY 'RC ="

rcc

IF WORD(rcc, 5) <> '"FAILED' THEN /* Connect OK */

DO

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

IF inqueue = "' THEN
DO /* Ask the queue manager for DLQ name */
SAY 'DLQ name not supplied’
SAY 'Getting DLQ name from the queue manager'
RXMQVTRACE = "'
0od.0T = MQOT_Q_MGR
00 = MQOO_INQUIRE
rcc = RXMQV('OPEN', 'od.', oo , 'hl', 'ood."')
rcc = RXMQV('INQ', hl, MQCA_DEAD_LETTER_Q_NAME, 'InputQName')
INQrcc = rcc
rcc = RXMQV('CLOSE', hl, co)
IF WORD(INQrcc, 1) <= @ ! inqueue = '' THEN
DO
SAY 'DLQ name not known to the queue manager'
SAY 'Quitting DLQ Browser'
RXMQVTRACE = "'
rcc = RXMQV('DISC")
SAY 'RC = 'rcc
RETURN
END
END /* Ask the queue manager for DLQ name */
/* 0Open Queue for Input and Inquiry */
RXMQVTRACE = "'
00 = MQOO_BROWSE + MQOO_INQUIRE
rcc = RXMQV('OPEN', inqueue, oo , 'h2', 'ood.')
SAY 'RC = ' rcc
IF WORD(rcc, 5) <> 'FAILED' THEN /* Open OK */
DO
/* Get Current Queue Depth */
RXMQVTRACE = "'
rcc = RXMQV('INQ', h2, MQIA_CURRENT_Q_DEPTH, 'depth')
SAY 'RC = ' rcc
/* Browse messages */
RXMQVTRACE = "'
DO i=1 TO depth
g.o = MaxMsglen
g.l ="'
igmo.opt = MQGMO_ACCEPT_TRUNCATED_MSG + MQGMO_BROWSE_NEXT
rcc = RXMQV('GET', h2,'g.',"igmd."',"'ogmd."', " 'igmo."', 'ogmo.")
SAY 'RC = ' rcc
IF (WORD(rcc,1) = 2033) THEN LEAVE
SAY 'Data: <'x.1'>'

SAY ! Message Descriptor: '

SAY ! Msgld: "ogmd.msgid
SAY ' Corelld: ‘ogmd.cid
SAY ! Report: ‘ogmd.rep
SAY ! MsgType: "ogmd.msg
SAY ! Expiry: "ogmd.exp
SAY ! Feedback: "ogmd. fbk
SAY ! Encoding: "ogmd.enc
SAY ' CodedCharSetlId: ‘ogmd.ccsi
SAY ! Format: "ogmd.form

© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

SAY ! Priority: "ogmd.pri

SAY ! Persistence: ‘ogmd.per
SAY ! BackoutCount: "ogmd.bc
SAY ! ReplyToQ: ‘ogmd.rtoq
SAY ! ReplyToQMgr: "ogmd.rtogm
SAY ! Userld: "ogmd.uid
SAY ! AccountingToken: ‘'ogmd.at
SAY ! ApplldentityData: 'ogmd.aid
SAY ! PutApplType: ‘ogmd.pat
SAY ! PutAppTName: ‘ogmd.pan
SAY ! PutDate: "ogmd.pd
SAY ! PutTime: ‘ogmd.pt
SAY Appl0OriginData: "ogmd.aod
SAY
/* Extract the dead letter header */
rcc = RXMQV('HXT', 'g."', 'x."')
SAY 'RC = "' rcc
IF WORD(rcc, 1) = @ THEN /* Dead letter header ok */
DO

SAY 'Dead letter header:'

SAY 'Type: "x.TYPE

SAY 'Reason: "X.REA

SAY 'DestQ: "x.DQN

SAY 'DestQMgr: "x.DQM

SAY 'Format: "x.FORM

SAY 'Encodig: "X.ENC

SAY 'CCSId: "x.CCSI

SAY 'PutApplType: 'x.PAT

SAY 'PutAppIName: 'x.PAN

SAY 'PutDate: "x.PD

SAY 'PutTime: "X.PT
END /* Dead letter header 0K */
END /* DO i=1 TO depth*/
SAY 'There are 'depth' messages on the dead Tetter queue'
/* Stop access to a Queue */

RXMQVTRACE = "'
rcc = RXMQV('CLOSE', h2, mgco_none)
SAY 'RC = ' rcc

END /* Open 0K */
/* Disconnect from the QM */
RXMQVTRACE = "'
rcc = RXMQV('DISC',)
SAY 'RC = ' rcc
END /* Connect OK */
/* Remove the Interface functions from the Rexx Workspace ... */
RXMQVTRACE = 'TERM'
rcc = RXMQV('TERM',)
SAY 'RC = " rcc
RETURN

Marcin Grabinski
System Engineer, SPIN (Poland) © PUP SPIN 2002

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Global transactions with MQSeries and Oracle,
part 1. specifications

Inthisfirst part of an article on using MQSeries and Oraclein global
transactions we look at the X/Open DTP model and the XA and TX
specifications for global transactions. We also show how MQSeries
and Oracleimplement thesetwo specifications. Thearticleconcludes
In next month’s issue of MQ Update.

X/OPEN CAE XA AND TX SPECIFICATIONS

The importance of preserving the consistency of data in globa
transactions demanded an industry standard that would define the
mechani smswhichwould ensuretheatomicity, consistency, isolation,
and durability (knownasthe ACID qualitities) of global transactions.
Themost widely accepted model today wasintroduced by the X/Open
organization during the early 1990s. X/Open is an independent
organization that specializes in selecting and adopting open system
standards. It is supported by the world’s largest companies and
organizations operating in the software industry. The strategy of
X/Open isto merge the adopted standardsin what is called the CAE
or Common Application Environment. The CAE is an open-system
environment model that i sintendedto easethe processesof application
integration and portability.

X/Open defines a model for describing global transaction
environments. The model iscalled the DTP (Distributed Transaction
Processing) model and it consists of the following components:

o User Application.
* Resource Manager (one or more).
» Transaction Monitor.

The User Application (AP) is an application which accesses data
resources and defines boundaries for the global transactions. For
example, an AP can beaprogram that connectsto an M QSeriesqueue
manager and Oracle database manager, reads a message from an
M QSeries queue, and storesarecord in an Oracle databasetable. The
AP always specifies when a transaction starts and when and how it
ends.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 9

The Resource Manager (RM) isan application which providesaccess
to a shared data resource. This can, for example, be a file system
manager, a queue manager, or a database manager. RM s manage the
local transactions on their resources.

The Transaction Manager (TM) isthe central component of the DTP
model. It is an application that manages global transactions. It
communicates with other componentsin the model to enablethemto
participate in the global transactions. It assigns identifiers to the
global transactions and makes sure that all components in the DTP
model remain synchronized and aware of the progress of global
transactions and their outcome. The TM ensuresthe atomicity of the
global transactionsand providesthe mechanismsfor datarecovery in
the case of failure of any component in the model: the AP, any of the
RMs, or the TM itsalf.

X/Open adopted two specifications to describe two programming
interfacesintheDTPmodel. Thesespecificationsdeclarethefunctions
that need to be implemented by the RM and TM vendors. The
specifications a so describe how to use these functions to ensure the
ACID properties of the global transactions.

TheTX interfaceisauni-directional interface betweenthe APandthe
TM. The functionsin thisinterface are implemented by the TM and
invoked by the AP. Themagjor role of thisinterfaceisto enablethe AP
explicitly tostart and end aglobal transactioninthe DTPenvironment.
TheTX interfaceconsi stsof eight functions. Their namesand meanings
are listed here.

» tx_open() — connectsto the TM.

o tx_begin() —startsanew global transaction.

o tx_commit() — commits the global transaction.

e tx_rollback() — rolls back the global transaction.
o tx_close() —disconnects from the TM.

e tx_set transaction timeout() —setsthetimeout valuein seconds
for aglobal transaction: thisis the maximum time specification
(in seconds) between the tx_begin() and tx_commit() or
tx_rollback() during which the transaction is considered alive.

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

tx_set_commit_return() —definesthemoment whenthetx_commit
returns to the AP. This can be either after the transaction isfully
committed or after the decision about the commit was made but
not yet compl eted.

tx_set transaction _control() — specifies whether a new global
transactionisalwaysstartedexplicitly withtx_begin() orexplicitly
only thefirsttimeandthenimplicitly after every tx_commit() and
tx_rollback().

The XA interfaceisabi-directional interface betweenthe TM and an
RM. Themagjor role of thisinterfaceisto enablethe TM to inform an
RM how to actin aglobal transaction aswell asto get theinformation
about the internal RM status regarding a particular interrupted
transaction during the TM recovery process.

The XA interface consists of two functions implemented by the TM
and ten functionsimplemented by theRM. Their namesand meanings
are listed here.

Functions implemented by the TM and invoked by the RMs.

ax_reg() —dynamically register RM for a global transaction
ax_unreg() —dynamically deregister RM for aglobal transaction.

Functions implemented by the RMs and invoked by the TM:

xa_open() — connect to the RM
xa_start() —inform the RM of the start of a global transaction
xa_end() —inform the RM that the global transaction is ending

xa_prepare() — prepare to commit the data operations from a
global transaction that belong to the RM

xa_commit() — commit the data operations from a global
transaction that belong to the RM

xa rollback() — rollback the data operations from a global
transaction that belong to the RM

xa_close() — disconnect from the RM

xa_complete() —wait for the definite completion of apreviously
started asynchronous operation

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 11

e xa forget()—instructtheRM torevert theheuristically completed
operations on the RM. An RM can heuristically assume that the
global transactionwill eventually becommitted andit can commit
thedataoperationsonitsresourceupfront, but it must providethe
xa_forget() function to revert these operations.

» xa recover() —obtainsthelist of global transactionsfor whichthe
outcomewasstill not reported tothe RM (for example, during the
recovery processafter thesystem crashesinthemiddleof aglobal
transaction and restart).

The DTP model isdisplayed in Figure 1. Two RMs are displayed: a
gueue manager and a database manager. Both RM s participatein the
same global transaction.

The AP callstx_open() to connect to the TM [1]. In response to this
the TM connectsto the RMsthat participatein the global transaction.
The TM does this by sequentially calling xa open() on all the RMs
[2], [3]. Thefirst argument of the xa open() call isastring called XA
open string. Every RM defines the format of its XA open string and
the TM must be aware of thisformat prior to calling xa_open(). XA
open string defines parameters of a global transaction that the RM
needs in order to manage its data operations on behalf of the global
transaction.

The APthen startsanew global transaction by invoking tx_begin() on
theTM[4]. TheTM initializesanew global transaction and assignsan
identifier to it that is called the XID identifier. X1D isactually adata
structurethat uniquely identifiestheglobal transactionsinthesystem.
The TM then sequentially calls xa start() on every RM to inform it
that a new global transaction was started on behalf of the AP[5][6].
Importantly, xa_start() must be called from the same TOC (Thread Of
Control) fromwhichthe AP previously called tx_begin(). A thread of
control can be either a system process or a system thread. What is
important is that the TM and the RMs must interpret the TOC in the
same way and that the AP must be aware of what the agreed
interpretationfor the TOC is. The RM makes anote of the new global
transaction and stores the assigned XID identifier and the TOC
identifier (process|D or thread ID) inthe internal transaction tables,

After the global transaction has been started the AP uses the native
interfacesof the RM sto perform dataoperationson thecorresponding

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

™ < XA >
- [2] xa_open —4
(0
[5] xa_stat —4 RML1
@ [10] xa_end —m=«
® - [12] xa_prepare —4
® = [14] xa_commit —4
= [17] xa_close @~————
E
<II o > N
® = [3] xa_open —4
® - [6] xa_start —4 RM2
® = [11] xa_end ———
® = [13] xa_prepare ———
® = [15] xa_commit ——4
p—— [18] xa_close —
A 999 A)
c E @
gl
P
=29
| [1 |
Native interface of RM2
Application (AP) [7] Data operations

Native interface of RM1

[8] Data operations

Figure 1. The X/Open DTP model

resources[7],[8]. Theseoperationsarefor example: getting messages
fromand putting messagesto the queues, and inserting, updating, and
deleting datain the database tables. What isimportant isthat the AP
makes callsto the RMsfrom the same TOC from which it previously

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 13

called tx_begin(), that isfrom which the TM called xa_open() onthe
RMs. Thisenablesthe RMsto recognizethat the operationsare being
done on behalf of the previously started global transaction.

WhentheAPcallsanRM that RM checksthe TOC fromwhichthecall
was made and then looksin the internal transaction tablesto seeif a
global transaction was started on behalf of the AP from that same
TOC. Whenthe RM recognizesthat thishas happened it performsthe
required operations and associates them with the corresponding
global transaction.

When the AP decides to end the transaction it calls tx_commit() or
tx_rollback() onthe TM (depending on whether the transaction needs
to becommitted or rolled back[9]). The TM first informsthe RM sthat
the transaction is ending by sequentially calling xa end() on them
[10], [11].

If the transaction has to be rolled back the TM logs this decision and
then sequentially calls the RMsto inform them that they should roll
back all thework that was performed on them on behalf of the global
transaction.

If the AP requires that the transaction be committed the TM initiates
the2PC (two-phasecommit protocol) to ensurethat thedataoperations
inthetransactionareeither committedinall dataresourcesor that they
are rolled back in al of them. The protocol begins with the TM
sequentialy calling xa _prepare() on al the RMs[12], [13]. An RM
checks the system resources to ensure that its data operations can be
committed. If an RM returns success when called on xa_prepare() it
guarantees that it will be able to commit the transaction when later
askedtodoso. If any RM returnsanerror whencalledonxa_prepare()
the TM decidesto roll back the transaction. It storesthisdecisionin
thelog file and then sequentially callsxa rollback() on every RM to
instruct it toroll back all the operationsthat were doneonit on behalf
of the global transaction.

If al the RMsreturn successfully from xa prepare() the TM decides
to commit the transaction and stores this decision in the log files. It
then performsthe second 2PC phase and asksevery RM to committhe
local dataoperationsthat weredoneonbehalf of theglobal transaction
by sequentially calling xa commit() [14], [15].

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

When the tx_commit() call completes, the global transaction is also
complete and all the results are made permanent.

After this the AP may initiate a new global transaction. The new
transaction is started either implicitly or explicitly. Thisbehaviour is
controlled by the tx_set_transaction_control() function that sets the
TM in chained or unchained mode of operation. If the TM isin the
chained mode a new transaction automatically starts whenever the
previoustransaction completes. If the TM isworking intheunchained
mode anew transaction must be explicitly started every timewith the
tx_begin() call.

Before the AP completes and exits it calls tx_close() to disconnect
fromthe TM[16]. The TM disconnectsfrom the RMsby sequentially
calling xa close() on all of them [17], [18].

MQSERIES AND ORACLE IMPLEMENTATIONS OF THE XA AND TX
INTERFACES

An MQSeries queue manager may be configured to work asa TM
capable of managing global transactions. At the sametime it actsas
an RM that managesthe message operations performed onitsqueues.
The XA communication between the TX component and the RM
component of the MQSeries queue manager is done internaly in
MQSeries and is not made obvious to the outside world. What
happens behind the scenes is that the M QSeries queue manager still
managesitslocal transactionsexcept that thelocal transactionsarein
this case enhanced to include operationson other dataresources, such
as databases.

Figure 2 displaysthefunction callsthat are exchanged among the AR,
the MQSeries TM, and the Oracle RM when an MQSeries queue
manager serves as a TM that manages two RMs:. the local queue
manager and the Oracle database manager.

The MQSeriesRM isnot displayed as a separate component because
the MQSeries TM manages M QSeriesRM operationsinternally. The
Oracle RM isan independent component that may reside on the same
machine as MQSeries but can also run on a separate machinein the
network.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 15

TM + RM (MQSeries < XA (OCl) > RM (Oracle)

—

[3] xaoopen
[4] xaostart
w— [13] xaoend —Ln
[14] xaoprepare —°
[15] xaocommit —
[18] xaoclose —

JR—)]

o\

P
o
5

35 99S
T T 4%
zZ £ z L(})J =
Z L = Q
@) 8 aos 9 a g
OmO0O0O0Aa =
~ OO QCQ0QOC0C0 |
ol = =Z=Z=Z== =2 |<
S| ooz N oK |S
~ — (N O O
x| ====Dddd |x
= 2
5
z
— [7] xaoEnv —
AP — [8] xaoSvcCtx —
— [9] OCIAllocHandle ——
— [10] OCIStmtPrepare ————
— [11] OCIStmtExecute
Native RM API (OCI)

Figure 2: MQSeries and Oracle in the DTP model

The APfirst connectsto the MQSeries TM with the MQCONN() call
[1]. When MQCONN() completes, the AP obtains a connection
handleto thegueuemanager and anew | ocal transaction automatically
starts on that queue manager.

The AP then initiates aglobal transaction by invoking MQBEGIN()
[2]. This call changes the previously started local transaction to a

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

global transaction. The MQBEGIN() function plays the role of the
previousdly described tx_open() and tx_begin() TX functions. For the
first MQBEGIN() call that the AP makes to the TM the TM checks
whether there are any X A ResourceM anager stanzas specified on that
queue manager. If not, the TM returns a warning message,
MQRC_NO EXTERNAL_PARTICIPANTS, which means that the
global transaction that was started with MQBEGIN() remainsalocal
transaction on that particular queue manager. If there are
XAResourceManager stanzas specified, the TM loads the XA SLFs
that providethe addressesof the X A functionsthat the TM callsonthe
RMs. Inthisexampleonly one X AResourceM anager stanzaisspecified
for the Oracle RM. The TM loads the Oracle XA SLF and calls the
xa _open() function to connect to the RM. Oracle implements the
xa_open() as xaoopen() [3].

After the connection to the Oracle RM is established, the MQSeries
TM informsthe Oracle RM that anew transaction has been started. It
does this by calling the xa_start() function on the Oracle RM that
Oracle implements as xaostart() [4].

TheOracleRM acknowledgesthepresenceof anew global transaction
and remembers the TOC from which the xa_start() call was made. It
Isthe same TOC from which the AP called MQBEGIN() becausethe
xaostart() call ismadefromthe MQBEGIN() function (xa_start() call
is part of the MQBEGIN() implementation). The TOC can be either
aprocess ID or acombination of aprocess|D and athread ID. This
depends on what was chosen for a TOC for the Oracle RM. Thisis
described in more detail later, in the section on multi-threading.

The AP now opens a queue with MQOPEN() [5] and receives a
message from the queue with MQGET() [6]. The AP uses the
connection handle obtained in [1] when it opensthe queueto receive
the message. All MQSeries calls to the queue manager have to be
made from the same thread from which the connection to that queue
manager wasestablished. TheTM knowsthat theM QGET () operation
belongs to the global transaction that was started in [2] because the
gueuemanager handleisthesameonethat wasusedfor MQBEGIN().

The AP can also call the Oracle RM. Before the AP can perform any
operation on the Oracle database, it needs to obtain the environment
handle and the service context handle for the XA connection. The

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 17

Oracle XA library providestwo functionsthat are used to obtainthese
handles. These are xaoEnv() [7] and xaoSvcCtx() [8]. When the AP
calls these functions, Oracle checks the identifier of the TOC from
which these callswas made. It then searchesitsinternal systemtables
to seeif aglobal transaction was previoudly started from that same
TOC. If it was, the Oracle RM providesthe AP with the environment
handle (from xaoEnv()) and the service context handle (from
xaoSvcCtx()) of the X A connection—theconnectionthat theM QSeries
TM established to the Oracle RM. Later, when the AP invokes data
operationson the Oracle RM using thesetwo handles, the Oracle RM

will know that those operationsmust beassociated withthepreviously
started global transaction and not with alocal Oracletransaction. The
AP usesthese handlesto allocate SQL statement handles, to prepare
the statements, and finally to executethem [9][10][11]. For example,
the AP caninsert arecord inthe Oracledatabase asapart of theglobal

transaction.

The APcommitsthepreviously started global transactionby invoking
MQCMIT() onthe MQSeriesTM [12]. MQCMIT() isthe MQSeries
TM implementation of the tx_commit() TX function. The TM now
has to make sure that the atomicity of the global transaction is
preserved. It doesthisby tracing all the stepsin the global transaction
completion process.

The TM first informsthe Oracle RM that the transaction isending by
calling the xa end() function that Oracle implements as xaoend()
[13]. The xa_end() call is made from the same TOC from which the
xa_start() wasmade. The Oracle RM knowswhich global transaction
Isending and which local operations on the database were done up to
that moment on behalf of that global transaction.

The MQSeries TM initiates the 2PC protocol with the Oracle RM. It
first calls the xa prepare() XA function that Oracle implements as
xaoprepare() [14]. The Oracle RM makes sure that it has sufficient
system resourcesto commit the data operations performed on behal f
of the transaction. If it returns success to the MQSeries TM, it
guaranteesthat it will commit thedataoperations. TheM QSeriesTM/
RM also ensures internally that it can commit the operations on its
queues. TheTM thencallsxa_commit() (which Oracleimplementsas
xaocommit()) to inform the Oracle RM to commit the local data

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

operations that were performed on behalf of the global transaction
[15]. The MQSeries TM/RM also makes sure internaly that it
commits the message operations performed on the local queues.
When the MQCMIT() completes, the performed MQSeries and
Oracle operations are made permanent.

The AP may chooseto perform another transaction by issuing another
MQBEGIN() call. Note that the MQSeries TM does not implement
thetx_set_transaction_control() TX functionthat defineswhether the
transactions are chained or unchained. The MQSeries TM supports
only the unchained mode of work, which meansthat every new global
transaction must be explicitly started with anew MQBEGIN() call.

Whenthe AP callsMQDISC[17] it disconnectsfromthe TM. Thisis
equivalenttothetx_close() functionthatisdefinedinthe TX interface.
From the tx_close() call the TM closes the Oracle RM by calling
xa_close(). Oracle implements xa _close() as xaoclose() [18].

This article concludes in next month’s issue of MQ Update.

Predrag Maksimovic
Software Engineer, 2d3D Incorporated (USA) © Xephon 2002

Using the MQAI to administer WebSphere MQ

There are various ways to administer MQSeries using utilities that
either run in the background or are written for a human operator.
Traditionally, thefacilitiesof PCF (Programmable Command Formats)
have been used and thisis available on all platforms except OS/390
(2/0S).

An example of PCF can befound by downloading SupportPac M S02
fromhttp: //mwmww-4.ibm.convsoftware/ts'mgseries/txppacs/ms02.html.

The basic concept is based upon creating the appropriate MQSeries
message with the correct PCF header and sending it to the
SYSTEM.ADMIN.COMMAND.QUEUE. This queue is read by the
M QSeries command processor and any responses are written back to
the ‘reply-to-queue’ specified on the original PCF message.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 19

Additional SupportPacsusing PCF are M S03 (Savegmgr) and M S0B
(Java classes for PCF).

If you have never used PCF then at first sight it can appear to be quite
complicated. IBM has, therefore, created an interface that — in my
opinion — simplifies the process. It is called the MQSeries
Administration Interface (MQAI) and has been available since V5.1
of MQSeries. The following IBM manuals are a good source of
information:

 Administration Interface Programming Guide and Reference
C34-5390-01.

* Programmable System Management SC33-1482-08.

My personal experiencehasshownthat thebest way tolearn something
isto actually do it. A good starting place on the Windows NT/2000
platform for the MQAI can be found in the directory <install
directory>\tools\c\samples. There are three samples:

e amgsaicq — an example of how to create aloca queue.

e amqsaiem — demonstrates a way of getting messages from an
event queue.

« amgsailq —listsall local queues with their depth.

These samples — as well as the included program — can be easily
compiled and linked using MQ Visual C++ V6. make sureyou create
a Win32 console application and include file mgm.lib (it's a server
program) within the ‘link’ tab of the project settings. Oncelinked all
programs are immediately available for testing.

MQAI STRUCTURE

Instead of: creating messages with the PCF header, allocating and
deleting storage, dealing with the various PCF structures and arrays
as well as directly putting messages to the command server, and
dealing with its responses — the MQAI introduces the concepts of
‘data bags .

The application program calls the MQAI interface to create the data
bags and populates the bags with ‘data items’ . The items define the
object to be manipulated (inquiry, update, or deletion) as well asits

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

attributes. TheM QAI changesthe bagsinto PCF messagesand passes
them on to the command server. The response from the command
server ischanged from PCFinto ‘ bag’' format ready to beretrieved by
the application program. Figure 1 provides a conceptual view of the
way in which datais stored.

TYPES OF DATA BAG

A bag is created using the mgCreateBag program. At the end of
processing all bagsshould bedel eted usingthemgDel eteBag program.
The types of bag available are listed below.

» User—canbeusedtotransfer user typedatabetweenapplications:
— field name MQCBO_USER BAG.

e Admin—usedtoadminister MQSeriesby sending administration
messages in PCF format to the command server. Typically, an
application program createstwo bags, onefor therequest and one

for thereplies:
Data bag \

| D 'y
Data item] Legend
* = zero or more
| o = either/or
Selector Data value
0 0 0 o] o]
User System Integer ;:tr;i:;r;cter Bag handle

Figure 1. MQAI data bag structure

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 21

— field name: MQCBO_ADMIN_BAG.

 Command — contains commands for administering MQSeries
objects:

— field name: MQCBO_COMMAND _BAG.

o System — automatically created for a reply message whose
contents are placed into a user’s output bag. The user cannot
change a system bag:

— field name: MQCBO_SYSTEM BAG.

TYPES OF DATA ITEM

Itemsexistinsideadatabag. They arecreated usingthemgAddi nteger,
mMgAddString, or mgAddinquiry programs. Thetrick isto know which
one to use.

Oneof theparametersisthe* selector’, whichidentifiestheobject. For
example:

« To identify a queue name (a character string) use
MQCA Q NAME.

« Toidentify thetypeof queue(of typeinteger) useMQIA Q TYPE.

» For alist of selectors see the header files cmgc.h, cmgbce.h, and
cmacfc.h.

o Iftheselectorisof type‘character’ use mgAdd3ring; otherwise,
use mgAddi nteger.

Both mgAddSring and mgAddinteger alow the programmer to
further qualify (iefilter) the object(s) to be processed. For example,
to process all queues specify:

mgAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED,
"x" &compCode, &reason);

(Herethe generic value ‘*’ has been used. It is possibleto specify an
exact name or a partial name like ‘AB*’ for al queues starting with
AB; you cannot specify *AB.)

To ensure that only locally defined remote queues are processed
specify:

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

mgAddInteger(adminBag, MQIA_Q_TYPE, MQQT_REMOTE,
&compCode, &reason);

For those attributes which cannot be further qualified use the
mgAddInquiry program.

For example, to pick up the queue descriptions specify:

mgAddInquiry(adminBag, MQCA_Q_DESC, &compCode, &reason);

Process the message

Instead of writing to the command queue using MQPUT and getting
aresponse back using MQGET, use the mgExecute command. This
command automatically waitsfor upto 30 secondsfor aresponse. The
response itsealf is placed in the ‘response admin’ bag. Make sure the
correct command codeisused —alist of command codescan befound
in the cmqgcfc.h header file. For example, to list queues, use
MQCMD_INQUIRE_Q.

Retrieving the response

The response from the command server is automatically placed in a
special system response bag. If there were no errors the results are
copied to the user bags. First check the number of bags returned
(which can be zero) from the original request, eg:

mgCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags,
&compCode, &reason);

Now that the number of bags is known (numberOfBags) |oop round
and retrieve the objects and their attributes.

Programming example

The following program listing (listchl.c) contains numbered notes.
Explanationsfor eachnotefollow thecode. Theprogramwasoriginally
based on sampleamqsailq (list local queues) but hasbeen changed to
display channel informationwithrelatedfields; itisabletoadminister
aremote queue manager viaalocal (default) queue manager.

LISTCHL.C
/* Program name: Tistchl.C */
/* History: January 2002 - created by Ruud van Zundert */

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 23

/* Description: Example C program to inquire on the channel status */
/* attributes of a local queue manager using the */
/* MQSeries Administration Interface (MQAI): */
/* channel name, status, curmsgs, msgs, shortrts, */
/* indoubt, Tstmsgti. */
/* Caters for both Tocal and remote administration. */
/* Displays either all channel statuses, or only those */
/* with status 'running' or 'not running'. */
/* Parameters: Parml: the Tlocal queue manager name (optional) */
/* Parm2: the remote queue manager name (could be same */
/* as parml) */
/* Parm3: channel status filter: r (only running), */
*/ n (not running other (all) */
/* Includes */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <cmqgc.h> /* MQI */
#include <cmgcfc.h> /* PCF */
#include <cmgbc.h> /* MQAI */
/* Function prototypes */
void CheckCallResult(MQCHAR *, MQLONG , MQLONG);
/* Function: main */
int main(int argc, char *argv[])
{
Y LR for remote administration only ----------------- */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
R T R MQAT variables ------------mmmmmmmaa oo */
MQHCONN hConn; /* handle to MQ connection */
MQCHAR gmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default or supplied QMgr
name */
MQLONG reason; /* reason code */
MQLONG connReason; /* MQCONN reason code */
MQLONG compCode; /* completion code */
MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mgExecute */
MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mgExecute */
MQHBAG chlAttrsBag; /* bag containing q attributes */
MQHBAG errorBag; /* bag containing cmd server error*/
MQLONG mgExecuteCC; /* mgExecute completion code */
MQLONG mgExecuteRC; /* mgExecute reason code */
MQLONG actlLength; /* Actual length of parameter */
MQLONG i; /* loop counter */
MQLONG numberOfBags; /* number of bags in response bag */
MQLONG gHandle; /* either MQHO_NONE or real handle*/
MQCHAR staQuall[2]; /* chl status qualifier/filter */
MQLONG Ch1Type,CurMsgs, Msgs, ShortRts, InDoubt, ChStat;
MQCHAR Ch1Name[MQ_CHANNEL_NAME_LENGTH+1]1; /* channel name */
MQCHAR LastTime[MQ_CHANNEL_TIME_LENGTH+1]; /* Tast message time */

24

© 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQCHAR wCh1Stat[13]1, wCh1Typel9]; /* channel status and type */
printf("listchl - C program which uses the MQAI to display channel
status\n\n");
printf("%-20s %12s %8s %8s %8s %8s %12s %8s\n\n", "Channel Name", "ChT
Type",
"CurMsgs", "Msgs", "ShortRts", "InDoubt", "Chl Status", "LastMsg");
/x e Connect to the queue manager - Default or supplied ---- --- */
NOTE 1: if (argc > 1) /* Use gmgr if supplied */
strncpy(gmName, argv[l], (size_t)MQ_Q_MGR_NAME_LENGTH);
MQCONN(gmName, &hConn, &compCode, &connReason);
VAR Report the reason and stop if the connection failed. ---- -- */
if (compCode == MQCC_FAILED)
{
CheckCallResult("Queue Manager connection", compCode, connReason);
exit((int)connReason);
}
/* if a remote gmgr was supplied, set up the object descriptor, and open
it*/

NOTE 2: gHandle = MQHO_NONE; /* Default: use local cmd queue */
if (argc > 2) /* if rmt gmgr given, store it in */
{ /* the MQMD for remote admin */

strncpy(od.0ObjectQMgrName, argv[Z2],
(size_t)MQ_Q_MGR_NAME_LENGTH) ;

strncpy(od.ObjectName, "SYSTEM.ADMIN.COMMAND.QUEUE",
(size_t)MQ_Q_NAME_LENGTH) ;

O_options = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(hConn, /* connection handle */
&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&compCode, /* MQOPEN completion code */
&reason); /* reason code */
gHandTe = Hobj; /* store for mgkExecute use */

if (reason != MQRC_NONE)
printf ("MQOPEN ended with reason code %1d\n", reason);
if (compCode == MQCC_FAILED)
printf("unable to open queue for outputi\n");
}
NOTE 3: memset (staQual, '\@', sizeof(staQual)); /* Initialize status
qualifier */

if (argc > 3) /* if parm3 supplied, use it */
strncpy(staQual, argv[3] , sizeof(staQual));
/* e Create an admin request bag for the mgExecute call ------- */

NOTE 4: mgCreateBag(MQCBO_ADMIN_BAG, &adminBag, &compCode, &reason);
CheckCallResult("Create admin bag", compCode, reason);

Y Create an admin response bag for the mgkxecute call ------- */

NOTE 5: mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);
CheckCallResult("Create response bag", compCode, reason);

[* e Put the generic channel name into the admin bag ----------- */

NOTE 6: mgAddString(adminBag, MQCACH_CHANNEL_NAME, MQBL_NULL_TERMINATED,

"o n
’

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 25

&compCode, &reason);
CheckCallResult("Add clusgmgr name", compCode, reason);
/x e Add an inquiry for various channel attributes ------------ */
NOTE 7: mgAddInquiry(adminBag, MQIACH_CHANNEL_TYPE, &compCode, &reason);
CheckCallResult("Add chl type", compCode, reason);
mgAddInquiry(adminBag, MQIACH_CURRENT_MSGS, &compCode, &reason);
CheckCallResult("Add chl curmsgs", compCode, reason);
mgAddInquiry(adminBag, MQIACH_MSGS, &compCode, &reason);
CheckCallResult("Add chl msgs", compCode, reason);
mgAddInquiry(adminBag, MQIACH_SHORT_RETRIES_LEFT, &compCode, &reason);
CheckCallResult("Add chl short retries", compCode, reason);
mgAddInquiry(adminBag, MQIACH_INDOUBT_STATUS, &compCode, &reason);
CheckCallResult("Add chl indoubt", compCode, reason);
mgAddInquiry(adminBag, MQIACH_CHANNEL_STATUS, &compCode, &reason);
CheckCallResult("Add chl status", compCode, reason);
mgAddInquiry(adminBag, MQCACH_LAST_MSG_TIME, &compCode, &reason);
CheckCallResult("Add chl status", compCode, reason);
/* Send the command to find all local queue names and our attributes. */
/* The mgExecute call creates the PCF structure required, sends it to */
/* the command server, and receives the reply from the command server */
/* into the response bag. The attributes are contained in system bags */

/* embedded in the response bag, one set of attributes per bag. */
/* By default, mgExecute waits for up to 30 seconds for a response. */
NOTE 8: mgExecute(hConn, /* MQ connection handle */
MQCMD_INQUIRE_CHANNEL_STATUS, /* Command to be executed */
MQHB_NONE, /* No options bag */
adminBag, /* Handle to bag containing commands */
responseBag, /* Handle to bag to receive the response */
gHandle, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE */
MQHO_NONE, /* Create a dynamic g for the response */
&compCode, /* Completion code from the mgexecute */
&reason); /* Reason code from mgexecute call */
NOTE 9: /* -- Check the command server is started.Only true for local

gmgr admin --*/
if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)
{
printf("Please start the command server: <strmgcsv QMgrName>\n");
MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from Queue Manager", compCode, reason);
exit(98);

/* - Check the result from mgExecute call. If successful find all the */
/* - req'd attributes of all Tocal queues. If failed find the error. */

if (compCode == MQCC_OK) /* Successful mgExecute */
{

/* Count number of system bags embedded in the response bag from the */

/* mgExecute call. Attributes for each queue are in a separate bag. */

NOTE 1@0: mqgCountlItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags,
&compCode, &reason);

CheckCallResult("Count number of bag handles", compCode, reason);
for (i=@; i<number0fBags; i++)

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

{
/* Get the next system bag handle out of the mgExecute response bag. */
/* This bag contains the queue attributes */
NOTE 11: mglInquireBag(responseBag, MQHA_BAG_HANDLE, i, &chlAttrsBag,
&compCode, &reason);

CheckCallResult("Get the result bag handle", compCode, reason);
VA Get the various channel attributes out of the bag ------ */
NOTE 12: mglnquireString(chlAttrsBag, MQCACH_CHANNEL_NAME, @,
MQ_CHANNEL_NAME_LENGTH,

Ch1Name, &actlength, NULL, &compCode, &reason);
CheckCallResult("Get channel name", compCode, reason);
mglnquirelnteger(chlAttrsBag, MQIACH_CHANNEL_TYPE, MQIND_NONE, &ChlType,

&compCode, &reason);

CheckCallResult("Get chl type", compCode, reason);
mgInquirelnteger(chlAttrsBag, MQIACH_CURRENT_MSGS, MQIND_NONE, &CurMsgs,

&compCode, &reason);

CheckCallResult("Get chl curmsgs", compCode, reason);
mgInquirelnteger(chlAttrsBag, MQIACH_MSGS, MQIND_NONE, &Msgs,

&compCode, &reason);

CheckCallResult("Get chl msgs", compCode, reason);
mgInquirelnteger(chlAttrsBag, MQIACH_SHORT_RETRIES_LEFT, MQIND_NONE,

&ShortRts, &compCode, &reason);

CheckCallResult("Get chl shorrts", compCode, reason);
mgInquirelnteger(chlAttrsBag, MQIACH_INDOUBT_STATUS, MQIND_NONE,

&InDoubt, &compCode, &reason);

CheckCallResult("Get chl indoubt", compCode, reason);
mgInquirelnteger(chlAttrsBag, MQIACH_CHANNEL_STATUS, MQIND_NONE,

&ChStat, &compCode, &reason);

CheckCallResult("Get chl status", compCode, reason);
mglnquireString(chlAttrsBag, MQCACH_LAST_MSG_TIME, @,

MQ_CHANNEL_TIME_LENGTH, LastTime, &actlength, NULL, &compCode,

&reason);
CheckCallResult("Get Tast msg time", compCode, reason);
/* - Use mgTrim to prepare the queue name for printing. -------- */
/* - Print the result dependant upon the filtering required ---- */
NOTE 13: if (((strncmp (staQual, "r", 1) == @) && (ChStat == 3)) ||

((strncmp (staQual, "n", 1) == @) && (ChStat !=3)) ||
((strncmp (staQual, "r", 1) != @) && (strncmp (staQual, "n", 1) !=82)))

{
NOTE 14: switch (ChlType)

{
case 1: { strncpy(wChlType,"Sender ", 12); break; }
case 2: { strncpy(wCh1Type,"Server ", 12); break; }
case 3: { strncpy(wChlType,"Receiver ", 12); break; }
case 4: { strncpy(wCh1Type, "Requestor ", 12); break; }
case 5: { strncpy(wChlType,"AT] ", 12); break; }
case 6: { strncpy(wChlType,"CTientConn ", 12); break; }
case 7: { strncpy(wCh1Type,"ServerConn ", 12); break; }
case 8: { strncpy(wChlType,"Cluster Rcvr", 12); break; }
case 9: { strncpy(wCh1Type,"Cluster Sdr ", 12); break; }
default: {strncpy(wChlType,"Unknown "12);)

b

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 27

switch (ChStat)

{
case @: { strncpy(wChiStat,"Inactive ", 12); break;
case 1: { strncpy(wChlStat,"Binding ", 12); break;
case 2: { strncpy(wChlStat,"Starting ", 12); break;
case 3: { strncpy(wChlStat,"Running ", 12); break;
case 4: { strncpy(wChlStat,"Stopping ", 12); break;
case 5: { strncpy(wChlStat,"Retrying ", 12); break;
case 6: { strncpy(wChlStat,"Stopped ", 12); break;
case 7: { strncpy(wCh1Stat,"Requesting ", 12); break;
case 8: { strncpy(wChlStat,"Paused ", 12); break;
case 13: {strncpy(wCh1Stat,"Initialising", 12); break;
default: {strncpy(wChlStat,"Unknown ", 12);)
} .

mgTrim(MQ_CHANNEL_NAME_LENGTH, ChIName, ChIName, &compCode, &reason);
mqTrim(12, wCh1Type, wCh1Type, &compCode, &reason);

R e s el el e

maTrim(MQ_CHANNEL_TIME_LENGTH, LastTime, LastTime, &compCode, &reason);

mgTrim(12, wCh1Stat, wChi1Stat, &compCode, &reason);
printf("%-20s %12s %81d %81d %81d %81d %12s %8s\n", ChlName, wChl1Type,
CurMsgs, Msgs, ShortRts, InDoubt, wChi1Stat, LastTime);
}
}
}
NOTE 15: else /* Failed mgExecute
{
printf("Call to get queue attr failed: Completion Code = %1d :
Reason = %1d\n",
compCode, reason);
/* If the command fails to get the system bag handle out of the
/* mgexecute response bag. This bag contains the reason from the
/* command server why the command failed.
if (reason == MQRCCF_COMMAND_FATLED)
{
mgInquireBag(responseBag, MQHA_BAG_HANDLE, @, &errorBag, &compCode,
&reason);
CheckCallResult("Get the result bag handle", compCode, reason);
/* Get the completion code and reason code, returned by the command
/* server, from the embedded error bag.
mgInquirelnteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mgExecuteCC,
&compCode, &reason);

*/

*/
*/
*/

*/
*/

CheckCallResult("Get the completion code from the result bag", compCode,

reason);
mgInquirelnteger(errorBag, MQIASY_REASON, MQIND_NONE, &mgExecuteRC,
&compCode, &reason);
CheckCallResult("Get the reason code from the result bag", compCode,
reason);
printf("Error from the cmd server: Completion Code = %1d : Reason =
%1d\n", mgExecuteCC, mgExecuteRC);

e Delete the admin bag if successfully created. ---------
NOTE 16: if (adminBag != MQHB_UNUSABLE_HBAG)

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

mgDeleteBag(&adminBag, &compCode, &reason);
CheckCallResult("Delete the admin bag", compCode, reason);

[* e Delete the response bag if successfully created. -------- */
NOTE 17: if (responseBag != MQHB_UNUSABLE_HBAG)
{
mqDeleteBag(&responseBag, &compCode, &reason);
CheckCallResult("Delete the response bag", compCode, reason);
}
/* --- Disconnect from the queue manager if not already connected --- */
NOTE 18: if (connReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&hConn, &compCode, &reason);
CheckCallResult("Disconnect from Queue Manager", compCode,
reason);

}

return @;
}
/* Logic: Display the description of the call, completion code and */
/* reason code if the completion code is not successful */

NOTE 19: void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)
{
if (cc != MQCC_OK)
printf("%s failed: Completion Code = %1d : Reason = %1d\n",
callText, cc, rc);

Note 1

Itisnow agreed good practice to have no default queue manager so it
IS better to invoke the utility with this parameter.

Note 2

Theoriginal utility amqsailqg did not cater for remote administration
at all. By passing the remote queue manager nameit isthenasimple
case of opening the remote command queue. For example, to display
thelocal queues belonging to aremote queue manager typeinlistchl
QM1 JAV1 where QM 1isthelocal queue manager and JAV1isthe
remote queue manager:

C:\>Tistchl QM1 JAV1
listchl - example C program which uses the MQAI to display channel
status

Channel Ch1l Type CurMsgs Msgs ShortRts InDoubt Chl LastMsg
Name Status

HUBZ.JAV3 Sender @ @ @) Retrying
HUBZ2.JAVZ Sender @ @ 9 %) Retrying

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 29

HUBZ.HUB1 Sender @ 1 10 @ Running 15.35.06
HUB1.JAV1 Receiver @ @ 10) Running

Obviously, aswith all remote administration, ensure that the rel evant
channels (two-way!), transmission queues, and the listener and
command server are defined and active.

Note that the downside of using runmgsc for remote administration
Is that you are forced to make QM1 the default queue manager, eg
runmqgsc -w 30 JAV1 (QM1isnot specified at al).

You can also set this parameter to be the same as the local queue
manager, eg listchl QM1 QM 1.

Note 3

An extra parameter has been introduced to qualify further the list of
objectsreturned. For example, you cannot usethe standard M QSeries
facilitiesto list only those channelswhose statusis ‘running’ or ‘not
running’. This parameter actually allows you to do that:

 Vaues:
— r—only display those channels with status ‘ running’
— n-only show thosechannelswith statusother than‘ running’
— other —list al channel information.

C:\>Tistchl QM1 JAVI1 r
listchl - example C program which uses the MQAI to display channel
status

Channel Ch1l Type CurMsgs Msgs ShortRts InDoubt Chl LastMsg
Name Status

HUBZ2.HUB1 Sender @ 9) 10 %) Running 15.40.05
HUB1.JAV1 Receiver @ 1 10 %) Running 15.35.06
Note 4

Thisishow an administration bag is created. Note that after acall to
the MQAI the return code is checked.

Note 5
The response aso needs a bag.

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Note 6
Add an item to the bag to list all channel information.

Note 7

Add an item to pick up specific attributes (channel status, current
messages, messages sent so far, number of short retries, in doubt
status, and time of last message).

Note 8

Once the bags have been populated with items, call mgExecute to
change the data into PCF format and MQPUT it to the command
queue. It waits for 30 seconds (the default period, which can be
changed by setting the ‘options parameter) for a response.

Theresponseis actually obtained from atemporary dynamic queue,
eg MQAI.REPLY.3C43F4D700002012.

Note 9

Toadminister alocal queue manager, the command server needsto be
started. A nicefeatureisthat the program can pick up this status. For
remote admi nistration the remote command server needsto beactive;
this cannot be reported upon although a time-out will occur if it's
inactive.

Note 10

The original request can return zero or more bags (each channel isin
a separate bag). Obtain this number and loop round all available
response bags.

Note 11
Obtain the handle to the bag.

Note 12
Obtain the various attributes by using a combination of
mqgl nquireString and mqlnquirel nteger.

Note 13
Display the result, but further qualified by parameter three.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 31

Note 14
Convert the channel type and status into readable format.

Note 15
mqgExecute failed. Pick up the failure code from the bag.

Below are two examples of how errors are reported.

Exampleone: channel SY STEM.ADMIN.SVRCONN doesnot have
the curmsgs, shorts, and in doubt attributes. You can change the
program to cater for thisif you wish.

C:\>listchl QM1 JAV1
listchl - example C program which uses the MQAI to display channel
status

Channel Ch1l Type CurMsgs Msgs ShortRts InDoubt Chl LastMsg
Name Status

HUBZ.JAV3 Sender @ @ %) %) Retrying

HUBZ.JAVZ Sender @ @ %) %) Retrying

HUBZ.HUB1 Sender @ 13 10 %) Running 16.52.21
HUB1.JAV1 Receiver Y 3 10 @ Running 16.52.04
Get chl curmsgs failed: Completion Code = 2 : Reason = 2309

Get chl shorrts failed: Completion Code = 2 : Reason = 2309

Get chl indoubt failed: Completion Code = 2 : Reason = 2309
SYSTEM.ADMIN.SVRCONN @ 18 10 0 Running 16.52.14

ServerConn

Example two: run the program against a qgueue manager that has no
active channels. The output is correct. RC3008 means
MQRCCF_COMMAND_FAILED and RC3065 means
MQRCCF_CHL_STATUS NOT_FOUND.

C:\>Tlistchl QM2

listchl - example C program which uses the MQAI to display channel
status

Channel Ch1l Type CurMsgs Msgs ShortRts InDoubt Chl LastMsg
Name Status

Call to get queue attributes failed: Completion Code = 2 : Reason = 3008
Error returned by command server: Completion Code = 2 : Reason = 3065

Note 16

Tidy up by deleting theadministration request bag (which also del etes
the allocated storage).

Note 17
Tidy up by deleting the administration response bag.

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Note 18
Disconnect from the local queue manager.

Note 19
Procedure called after each call to MQAI to display any errors.

ADDITIONAL USE FOR THE MQAI

The MQAI isnot restricted to administration — it can also be used to
pass user data between applications. It isafairly smple exercise to
convert the sample programs amqsput0.c and amqgsget0.c to use the
MQALI. Instead of MQPUT usethe mgPutBag program and instead of
MQGET use the mgGetBag program.

| did not want to reuse the system or user selectors and so defined my
own.

Hereisaselection of the code (thereturn code checking has been left
out):

Changesrequired to amgsputO.c

#define MQCA_USER_1 5001L /* my own user selector code for numeric*/
#define MQCA_USER_? 5002L /* my own user selector code for string */
#define User_Datal 1L /* my numeric data */
MQHBAG userBag = MQHB_UNUSABLE_HBAG; /* user bag for mgPutBag */
memcpy (md.Format, MQFMT_PCF, (size_t)MQ_FORMAT_LENGTH); /* must be PCF*/
/* Note that this is a USER bag - different to the listchl.c program */
mqCreateBag(MQCBO_USER_BAG, &userBag, &CompCode, &Reason);

/* Add my first bit of data - numeric data */

mgAddInteger(userBag, MQCA_USER_1, User_Datal, &CompCode, &Reason);

/* Add my second bit of data - string (from keyboard) */
mgAddString(userBag, MQCA_USER_2, MQBL_NULL_TERMINATED, buffer,
&CompCode, &Reason);

mqPutBag(Hcon, Hobj, &md, &pmo, userBag, &CompCode, &Reason);
mgDeleteBag(&userBag, &CompCode, &Reason);

Changesrequired to amqgsgetO.c

#define MQCA_USER_1 5001L /* my own user selector code for numeric*/
#define MQCA_USER_? 5002L /* my own user selector code for string */
#define User_Datal 1L /* my numeric data */
MQHBAG userrespBag = MQHB_UNUSABLE_HBAG; /* user bag for mqgGetBag */
/* A user response bag needs to be created */
mqCreateBag(MQCBO_USER_BAG, &userrespBag, &CompCode, &Reason);

mqGetBag (Hcon, Hobj, &md, &gmo, userrespBag, &CompCode, &Reason);

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 33

mqCountItems(userrespBag, MQHA_BAG_HANDLE, &numberOfBags, &CompCode,
&Reason);
/* get my numeric data */
mgInquirelnteger(userrespBag, MQCA_USER_1, MQIND_NONE, &User_Datal,
&CompCode, &Reason);
/* get my string data */
mgInquireString(userrespBag, MQCA_USER_2, @, 10@, buffer,
&buflen, NULL, &CompCode, &Reason);
mgDeleteBag(&userrespBag, &CompCode, &Reason);

Testing output

C:\>mgaiput FRED QM1

mgaiput start (using the MQAI to put messages)

target queue is FRED

This is my test data ¢ ====== entered via keyboard as per amgsput
mgaiput end

C:\>mgaiget FRED QM1

mgaiget start (using the MQAI to get messages)

Data 1 (numeric) <1>

Data 2 (string) <This is my test data>

mgaiget end

Sowhy would you want to usethismethod if the standard way to pass
dataworkswell? One reason is that MQSeries has a built-in method
for converting PCF messages and, as the above example has shown,
you can mix numeric and text data without having to worry about
writing a conversion exit.

CONCLUSION

TheMQAI providesasimpler way than PCFto administer WebSphere
MQ.

The concept of databagsiseasy to understand and utilitieswrittento
use the MQAI are relatively easy to program.

Although the easiest way to transfer data between MQ-connected
systemsisas‘text’ data, someinstallationsthat decideto pass mixed
numeric and character data — and which do not want to write a
conversion exit —could usethe M QAI to pass user databetween their
programs as PCF messages.

Ruud van Zundert
Independent MQSeries Consultant (UK)
ruudvz@btclick.com © Xephon 2002

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Configuring MQSeries with Microsoft Cluster
Server, part 1. planning

The first part of this article covers the groundwork involved in
configuring M QSeriestowork with Microsoft Cluster Server (MSCS),
and includes an introduction to the two products and an overview of
theplanning stages. Innext month’sMQ Updatewelook at installation
and configuration.

INTRODUCTION

Before embarking on a project to integrate MQSeries and (MSCYS)
clustering it isimportant to understand the following:

* How to enable a queue manager to be run under MSCS control.

* Therelationship between M QSeriesclustersand M SCSclusters,
where the word ‘cluster’ has two very different meanings.

This article explains these concepts and describes how the two
different styles of cluster can be used separately or in combination to
achievedifferent degreesof availability for particular messagetypes.
It will then guidethereader through the planning process and present
step-by-stepinstructionson how toinstall and configurethenecessary
support.

MQSeries

The assured once-only delivery of messages provided by MQSeries
makesit possi bl eto configureamessaging network such that messages
are not lost even when systems fail. The fact that a message is
recoverablefollowingafailureisinsomecasessufficient butinothers
there may be a need to limit the time between the occurrence of the
failure and the message being accessible once again.

MQSeries includes a capability known as MQSeries clustering or
gueue manager clustering. An MQSeries cluster is a collection of
gueue managersthat use acommon set of definitions (for queuesand
channels) stored within one or more repositoriesthat are managed by
gueue managers within the collection. The advantages of MQSeries

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 35

clustersandtheir relationshipto M SCSclustersareexplainedin detall
later in this article.

InWindowsNT and Windows 2000, M QSeriescontainsacomponent
known as the IBM MQSeries Service, which is responsible for
starting and restarting queue managers that are configured to run on
acomputer. Thisservicecan detect thefailure of agueue manager and
restart it on the same computer provided that the computer remains
running throughout. It can also automatically start a queue manager
upon restart of the computer following a faillure or shutdown. The
servicetherefore provides automation and a degree of fault detection
and availability improvement compared to a system that has no
monitoring or restart capabilities. However, the serviceisnot able to
perform remote monitoring and is not able to move a queue manager
from one computer to another in the event of a system failure.

Microsoft Cluster Server

Microsoft Cluster Server is a high-availability cluster environment
which provides a cluster framework for control and monitoring of
business-critical applications. MSCSis supplied as part of Windows
NT 4.00 Enterprise Edition and as part of Windows 2000 Advanced
Server or Windows 2000 Datacentre. M SCS can be configured and
controlled through a graphical user interface known as the Cluster
Administrator.

M SCS monitors and controls resources. Resources can be anything
from disk drives or network addresses to application processes,
MSCS is able to start and stop resources on the computers in the
cluster and can move groups of resources from one computer to
another. Themovement of agroup of resourcesinresponsetoafailure
iscalled afailover. Each resource hasaresourcetypethat defineshow
instances of that type should be started and stopped and how to
monitor them. There are a number of built-in resource types which
come as standard with MSCS and which cater for a number of
commonly occurring resources. It is also possible to add further
resource types to manage resources that are not covered by the set of
built-in types. These are referred to as custom resource types and are
created by writing a custom resource DLL and an extension to the
Cluster Administrator graphical interface.

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

IBM MQSeries SupportPac MC74 contains a custom resource type
that can be used with M QSeries. The M C74 SupportPac can befound
at http://mwww.ibm.convsoftware/ts/magseries/txppacs/mc74.html.

MQSeries and M SCStogether

By using M QSeriesand M SCStogether itispossibleto greatly extend
the availability that can be achieved by using MQSeries alone. It is
possible to configure MSCS to detect a broader range of failure
conditions and to respond by either restarting aqueue manager onthe
same computer that it was previously running on or by failing it over
to a different computer.

Relationship between MSCS and M QSeries clusters

M QSeries clusters reduce administration and provide load balancing
of messagesacrossinstancesof cluster queues. They also offer higher
availability than asingle queue manager because, following afailure
of aqueue manager, messaging applicationscan still accesssurviving
instances of a cluster queue. However, unlike MSCS, MQSeries
clusterswill not provide automatic detection of queuemanager failure
and automatictriggering of queuemanager restart or failover. Thetwo
types of cluster can be used together to good effect and this is
described bel ow.

PLANNING

When touse MSCSwith MQSeries

It iscommon to hear people say that they want ‘24x7’ . But what are
they actually referring to? To achieve 24x7 isdifficult —it means zero
downtime. One hopes that most of these people would actually be
satisfied with something dlightly less than 24x7; this is commonly
measured as a percentage, ie 99.9%. A previous article published in
MQ Update in June 2000 describes thisin more detail.

Asimportant as the quantification of availability isthe qualification
of what isto be available. Isit the ability to access messagesthat are
already on queues or isit the ability to put messages onto queues? If
access needs to be rapidly restored for messages that are on queues
then a high-availability cluster solution, such as M SCS, is essential.

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 37

MSCS can restart a queue manager on a different computer if
necessary and hence much more quickly than would be the case
without M SCS.

Alternatively, if the ability to put new messages onto queues is
important then it may be acceptableto leave existing messagesonthe
gueues of aqueue manager that cannot berestarted until the computer
it ison has been fixed. New messagesto be put onto queues could be
handled by additional queue managers with equivalent queues. This
could be achieved using MQSeries clustering and creating multiple
instances of a cluster queue.

Another way of looking at thisisthat, by having aternativeinstances
of cluster queues, an MQSeries cluster can provide continuous
availability for new messages but requires manual intervention to
allow accessto existing messagesalready in queue managersaffected
by afailure. Contrasted withthat, M SCScan providehigh availability
for either type of message because a queue manager that holds
existing messages or to which new messages need to be put will be
restarted without manual intervention by alocal restart or failover
within as little as 30 seconds. This time does not include any
allowancefor log replay on restart, which will depend on the state of
the queue manager at thetime of thefailure and whether thereare any
long-running units of work.

MSCS Clustering basics

Almost all MSCSclustersconsist of two computerscalled nodes, both
of which have access to disks on a shared storage bus. Many people
refer to such acluster as a shared-disk cluster but the disks are never
simultaneously accessed by more than one node at atime so theterm
‘shared’ is a little mideading: MSCS is actually an example of a
shared-nothing cluster.

Theunit of failover inM SCSisaresourcegroup, whichisacollection
of resourcesthat are always kept together. When aresource group is
moved from one node to another all the resources it contains are
moved to that node. In order to makefailoversasefficient aspossible
each resource group shouldideally contain only theresourcesthat are
necessary for aparticular service. This maximizes the independence
of eachresourcegroup, providingflexibility and minimizingdisruption
during afailure or planned maintenance.

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Mapping queue managersto MSCS groups

In order to put an M QSeries queue manager under M SCS control you
need to create aresource of the custom resourcetype‘IBM MQSeries
MSCS' andputitontoaresourcegroup. Youdon't havetodoanything
welird like creating aqueue manager with the same name on the other
node or anything like that —each highly available queue manager just
needsto be created once on onenodeand then prepared for clustering.

The smallest unit of failover of MQSeries is a queue manager since
you cannot move part of aqueue manager without moving the whole
thing. It followsfrom the commentsaboveabout minimizing thesizes
of resource groups that the optimal configuration is to place each
gueuemanager in aseparate resourcegroup, which should containthe
shared drives used by the queue manager, the |P address used to
connect to the queue manager, and the queue manager resourceitself.

You could put multiple gueue managers into aresource group, but if
you did so they would all have to failover to another node together,
even if the problem causing the failover were confined to one queue
manager. Thiswould cause unnecessary disruptionto the other queue
managers so thisis not recommended.

Possible configurations

M SCS definestwo styles of cluster configuration, which arereferred
to asactive/passive (see Figure 1) and active/active (see Figure 2). In
an active/passive configuration one node is running production
workload and the other stands by in case of aproblem with the active
node. An active/active configuration is one in which both cluster
nodes are running production workload at the same time.

A queue manager cannot span morethan one node so the construction
of an active/active cluster configuration in which both nodes are
running M QSeries workload requires at |east one queue manager per
cluster node. If the queue managersin an MSCS cluster are members
of an MQSeries cluster then they can each run instances of clustered
queues and can thus present a symmetrical (location transparent)
messaging architecture to applications or clients.

Such a configuration can support workload balancing using the
mechanismsprovided in MQSeriesclustering. If the queue managers

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 39

————

/ AN
/ / \ .
[< t X | Active node
\ [IPaddrl]| [J: drive ||K: drive

N

\\\ - Passive node

Resource ™~ ——— "
group /

Shared disks

/
/
/
IPaddrl 8 8
e T dive]
- 18 O
" 3 drive |
, L4 |
QM1’s logs | |
.

=
OML's data—"_

Figure 1. Active/passive configuration

are not members of an MQSeries cluster they appear to applications
or clients as separate entities and the active/active configuration is
equivalent to a pair of active/passive configurations superimposed
one upon the other.

Applications

Applications running on the same machine as a queue manager to
whichthey arelocally bound can be started and stopped under cluster
control if they are represented by MSCS resources. Such resources
should be made dependent on the queue manager resource so that they
are started after the queue manager and stopped before it. MSCS

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

—_———— - — T —
- —~ — ~

P QM1 >~ P QM2 N

/7 / N
/ v \\| 1 .)

\ [IPaddrl| [J: drive K: drive / \ [IPaddr2| [L: drive M: drive /
AN / AN /
\\\ /// \\\ ///
Resource | T[T Resource

I rou
grotip | Shared disks : grotp
| "W dive | |
- [S5-
|
I L —_— e — —
| IIE%_
I 8 _)
|
T : R
IPaddrl i- J dnve I “
//“ L — -_I 8 8I IPaddr2
— I I
—: L e — — 4
- I _
I i_ K: drive -i
L |
I I
L — — —

Figure 2. Active/active configuration

providesbuilt-in resourcetypesthat can beused for this, or you could
introduce a custom resource type.

Portsand listeners

If the MSCS cluster contains multiple queue managers, two or more
gueue managers may need to run on the same node following a
failover even if they are normally on different nodes. To provide
correct routing of M Q channel trafficto thequeue managers, you must
use a different TCP/IP port number for each queue manager. The

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 41

standard M QSeriesport is 1414. It iscommon practice to use arange
of port numbers immediately above 1414 for additional queue
managers. Note that, whatever port number you assign to a queue
manager, that port needsto be available on al cluster nodesthat may
host the queue manager and all channelsto that queue manager need
to refer to the port.

The MQ listener can be started and stopped automatically when the
gueue manager is started and stopped. You don’t need to configure
MSCS to control the listener.

Channels

Remote queue managers or MQSeries clients which are exchanging
messageswith aqueue manager that isunder M SCScontrol needtheir
channels configured to use an IP address (and port) which is under
MSCS control in the same resource group as the MSCS-controlled
gueue manager. This IP address will be moved between nodes by
MSCS. Channels must not use an IP address or hostname that is
dedicated to either of the cluster nodes.

During afailover of an M SCS-controlled queue manager, MQSeries
clients or channels from remote queue managers will see a broken
TCP connection. Channels from remote queue managers will
automatically retry the connection. Such retries will fail until the IP
address has been failed over and brought online and the queue
manager has also been failed over and brought online; they will then
succeed. The time required for reconnection of the channels will
depend onthe number of channelsinvolved. Clientsshould bewritten
so that a broken connection isretried repeatedly.

It isagood ideato trigger channels.

The MQ channel initiator can be started and stopped automatically
when the queue manager is started and stopped. You don’t need to
configure MSCS to control the initiator.

Choosing hardware

Microsoft publishes alist of hardware configurations that have been
testedwithM SCSand certified. Itisagoodideato makesurethat your
hardware is on the list — or that you understand any differences

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

between your hardware configuration and the closest match from the
list. The hardware compatibility list can be found at http://
www.microsoft.convhcl. Searchusingtheterm* cluster’ and optionally,
include the name of your hardware manufacturer.

Choosing software

Make sure your configuration complies with the prerequisites listed
in the MC74 SupportPac and keep your software versions and
configuration symmetric across the MSCS cluster.

Choosing networks

M SCS supports the use of | P addresses and these can be configured
to run over various physical transports, including Ethernet or Token
Ring.

Capacity planning

Makesurethat you consider the peak |oad that might be placed on any
onemachineinthecluster asaresult of possiblefailoversof resources
from other machines.

User exits

It ispossibleto define optional user exitsthat areinvoked just after a
gueue manager is brought online (started) and just before a queue
manager is taken offline (ended). These allow you to start and stop
additional processesor provide notification of these cluster actionsto
other systems. This feature can be used to integrate an MSCS-
controlled queuemanager into existing system management framework
or operational procedures.

This article concludes in next month’s MQ Update.

Graham Wallis
Software Engineer
IBM Hursley (UK) © IBM 2002

© 2002. Reproduction prohibited. Please inform Xephon of any infringement. 43

MQ news

IWay Software, an Information Builders
company, has recently announced the
release of iWay Security Exchange, which,
so the company claims, is a complete
software and services solution that enables
government, law enforcement, and private
industry to effectively exchange and share
information easily in real time.

The Security Exchange provides the
components necessary to develop and
deploy collaborative environments while
protecting the resources owned by
individual participants.

Included with the Security Exchange is a
process flow engine, assured delivery, a
J2EE compliant Java application servers,
built-in auditing and logging, and iWay
intelligent adaptersthat enable customersto
interconnect widely disparate information
resources with little or no programming.
The iWay Security Exchangeis based upon
the WebSphere software platform (which
includes WebSphere MQ Integrator,
WebSphere MQ, and WebSphere
Application Server) the iWay Enterprise
Integration Suite, and Information Builder’s
WebFOCUS.

For further information contact:
Information Builders, Two Penn Plaza, New
York, NY 10121-2898, USA

Tel: +1 212 736 4433

Fax: +1 212 967 6406

URL.: http://www.ibi.com

Information Builders, Wembley Point,
Harrow Road, Wembley, Middlesex,
HA9 6DE, UK

Tel: +44 20 8982 4700

Fax: +44 20 8903 2191

* * %

IBM has announced enhancements to its
WebSphere Application Server Enterprise
Edition (AS EE) Version 4.1 with a host of
enterprise services, TXSeries support for
AlX, Solaris, and Windows NT/2000,
MQSeries support, and a business process
beans technology preview.

Theenterpriseservicesincludebusinessrule
beans, message beans and JMS listener,
internationalization, shared work areas,
bidirectional CORBA connectivity (AlX,
Solaris, and Windows NT/2000), a C++
CORBA software development kit, and an
ActiveX to Enterprise JavaBeansbridgefor
AlX, Solaris, and Windows NT/2000.

The new release runs on AlX, HP-UX,
Solaris, Windows NT, and Linux (Red Hat
and SUuSE). It consists of the WebSphere
Application Server Advanced Edition (AS
AE), Enterprise Services, TXSeries, and
MQSeries.

For further infomation contact your local
IBM representative.

URL: http://www.ibm.com/software/
webservers

xephon

	Dead letter queue browser: MQSeries for OS/390
	Global transactions with MQSeries and Oracle, part 1: specifications
	Using the MQAI to administer WebSphere MQ
	Configuring MQSeries with Microsoft Cluster Server, part 1: planning
	MQ news

