

© Xephon plc 2002

June 2002

36

In this issue

MQ
�
�
�
�
��

3 Triggering batch jobs on OS/390
12 Global transactions with MQSeries

and Oracle, part 2: set-up and
configuration

22 Configuring MQSeries with
Microsoft Cluster Server, part 2:
installation and configuration

33 Enhancing MQSeries set authorities
scripts

37 PUT/GET using Correl-ID
42 MQSI V2 database administration

tips
46 July 2000 – June 2002 index
48 CICS news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor
Peter Toogood
E-mail: PeterT@xephon.net

Managing Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Triggering batch jobs on OS/390

Triggering is a mechanism supported by MQSeries that allows you to run
a program when it is needed, namely when there is a message to be read.
The mechanism involves triggering and initiation queues, a process
definition, and a trigger monitor. (I will not go into detail here on triggering;
please refer to the MQSeries System Management book.)

On almost every platform for which MQSeries is available IBM delivers
a trigger monitor, runmqtrm. On OS/390 there is a trigger monitor only
for CICS (CKTI transaction). To use the feature in batch you need to install
SupportPac MA12. The use of the batch trigger monitor is not
straightforward so I decided to write this article (along with some REXX
code) with the aim of assisting other users.

The supplied REXX program will help you to work with the batch trigger
monitor. It is meant to be triggered upon arrival of a message to a named
local queue. It will then read the message (it should contain a valid job
name) and submit the given job. In this way you do not have to define
separate processes for every program you want to trigger. It works as a kind
of dispatcher.

The program is written using MQSeries SupportPac MA18 (REXX
interface to MQSeries).

INSTALLATION

To install the supplied code follow the steps given below:

1 Send the REXX code to your mainframe (ASCII mode in FTP or ASCII
and CR/LF in Personal Communications file transfer).

2 Store it as a library member (RECFM=FB, LRECL=80) named
TRIG.

To use it, you need to create some MQSeries object definitions along with
some batch trigger monitor configuration. I will guide you through these
steps.

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQTRIG

�����������	�
������������������������������

���	������

������� !�"#����$�%&

�	������ !�"#����$�'&

��(�)���������*����+�������,����)�	���

��(

�����������-�����������,�.����

����/���0����))

�..������/#1�	��2&

��(�)�0�)��..

���0����.���������������������

����/���0����))

�..�������/#)0!)$�����&

��(�)�0�)��..

���!���������,����������

����/���0����))

�������!!3�	�4�3�5���"

�..�������/#)!��)$��	���$����$�)�%)$�)���6)�&

��(�)�0�)��..

���7���������������

����8

�68��������9:������������������;�������<�+��������

�6%��������))

����6�������7�!3�00���3��4	0���"3��7

����/���0����))

�..�������/#)7��)$���%$)�6)$)����6)$)����6)$)����6)$)����62&

"!� 5�
�� !�"#�..$�%&�=>�)'8??)���������������������@�������

���������A�%

�����(�)�0�)��..

���.���������)#�,������+�B���������.�������C'8DE� ������C$�)

���.���������.������)����<�+������.�������������������9:�.����.����6�)

���.���������.������)�������.��.F6&�)

�����(�.������

�����(

�����(�)G�+�)�)H�)�6%

����""�������!

���G�+	������ !�"#�6%$�%&���������������+���F����

�����������)C�4I����)C)CG�+	���C)C)C)��������������;�������<�+��������

����	�������������

������7�����;������������

����68��������9:

����6%��������))

�������6�������7�!3�00���3��4	0���"3��7

����..�������/#)7��)$���%$)�6)$)����6)$)����6)$)����6)$)����62&

�	"����"!� 5�
�� !�"#�..$�%&�=>�)J��
�")��

��(

��(��)������������B��+��������)

��(

��������..�����������������

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����/���0����))

�..�������/#)0
!��)$��%$��@.�3����&

��(�)�0�)��..

���"��.����.��,�������������

����/���0����))

�..�������/#)"��0)$�&

��(�)�0�)��..

�������B�����������,�.��,��.������,����������;;� ��F��.��666���

����/���0����)����)

�..�������/#)����2$�&

��(�)�0�)��..

���4�	

BATCH TRIGGER MONITOR (SUPPORTPAC MA12 SET-UP)

You need to compile the COBOL program and place the load module in
a suitable library, then start the monitor. You can use following job:

���!	��!���G!I�0
�����$�����%::8

��0K��I�8%����0��7��0K��I��'$

����������������)��7�$I��056�	���)

������
�I��""��"�	����6�0���4�5$"�����5�

�����������""��"�	�4���6
!�"

���(����	��""���(�!4���

���	��"����""���(�!4��#�$�	��"�&

��G!I0��"��""��"�	����0�	6G0
6���#G!I0��"&$"�����5�

Tailoring the above code

• Line one: supply a valid job card. The batch trigger monitor is a long-
running job so make sure it will be run in a suitable class. To avoid
abending the job, set TIME to unlimited (1440 will do that).

• Line three: batch monitor parameters

– queue manager name

– initiation queue name (the queue is opened by the monitor for
exclusive use, so make sure no other job uses it).

• Line four: MQSeries hlq.SCSQAUTH library.

• Line five: library where the CKTIBAT2 load module is located.

• Line six: sysout class for output.

• Line seven: JES2 internal reader.

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Line eight: a data set (sequential or PDS member) containing a job card
for jobs that will be triggered by the monitor.

MQSERIES OBJECT DEFINITIONS

Implementing triggering requires three object definitions: a triggering
queue, an initiation queue (both defined as local queues), and a process.
In the definitions given below I show only attributes related to triggering
(the rest may have default values) and I assume TRIGTYPE(FIRST) will
be used (for a description of triggering types please refer to the MQSeries
System Management manual).

All names in apostrophes are subject to change: supply your own, but be
careful, because some names appear in several places and should be
repeated as in the examples given below. Do not put apostrophes where I
have not put them!

Triggering and initiation queue definitions are pretty simple (provided you
are familiar with triggering concepts); the process definition is strange –
an explanation is given later.

In the process definitions there are some blanks. They are not a mistake!
What’s more, there needs to be a certain number of them! I explain it below.
The best way to define it is to use the MQSeries ISPF panels. To make it
as simple as possible I show here the panel contents, not the commands.

The triggered job can be submitted as either a procedure or a normal job.
I show process definitions for both cases (triggering and initiation queues
definitions are the same). It is up to you to decide which option to use (but
you may be not authorized to start procedures at your site).

• Triggering a queue definition:

�����"�J�	���
!0�
#)L���6�����6@����)&�A

��������77���A

��������7�(��#J����&�A

�������!0���#)L���6��.���)&�A

������	���#)L���6����@)&

• Process definitions (these are MQSeries ISPF panel contents, not
commands):

– Process definition for triggering a JCL procedure

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�������������.����������6�6�6�6�6�6�6�6�������!06�4I���

����������"��.�������6�6�6�6�6�6�6�6�H

�������������.�������L���6�6�6�6�6�H��/�

�������������.�������"��6�6�6�6�6�6�H���������!0����0�������!0

����������4���������6�6�6�6�6�6�6�6�6�H����(����	��""��

��M���7

��N

������������B���������������6�6�6�6�6�H

The process name REXXPROC.SUBMIT is mine; supply your
own here.

– Process definition for triggering a job:

������������.����������6�6�6�6�6�6�6�6�����G!I6�4I���

���������"��.�������6�6�6�6�6�6�6�6�H

������������.�������L���6�6�6�6�6�H��/�

������������.�������"��6�6�6�6�6�6�H�����������0��7���KG�J�8%

���������4���������6�6�6�6�6�6�6�6�6�H�������
�I�""�"�����5�$

��"�	����6�0���4�5

��(����0�""�"�	����0�	6����$

���"�����5�

�����������B���������������6�6�6�6�6�H����(��������""��(�!4���

��(����	���""��

���������������������������������������M���7

���������������������������������������N

The process name REXXJOB.SUBMIT is mine; supply your
own here.

– Initiation queue definition:

���������"�J�	���
!0�
#)L���6����@)&

PROCESS DEFINITION EXPLAINED

The following indented text is taken from CKTIBAT2 comments and was
contributed by Wayne M Schutz.

“The job that runs batch trigger monitor (CKTIBAT2) has a DD
statement JOBCARD. It points to a data set containing the JOB card
of the triggered job. Here is the JOB card I used:

�����7�����G!I

The JOB name must be exactly six characters long and have at least
three blanks between the name and the JOB keyword. The batch trigger
will append the job name with a two character numeric (‘00’ for the
first triggered job, ‘01’ for the second and so on).

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Actually the batch trigger monitor will alter the ninth and tenth bytes
of the JCL card. So if your JOB card is //TRG JOB the trigger monitor
will change it to //TRG 00JOB and that will cause a JCL error. The
best idea is to code a name of six characters and then have at least three
blanks before the JOB keyword.

The process definition must contain the remaining JCL. The application
identifier (ApplicId) contains the // EXEC card. It may either execute
a single program or call a procedure to be executed.

Up to four additional JCL cards may be included in the stream by
specifying them in the UserData field. Cards are limited to 32-bytes
in length. The cards are taken out of the field at offsets 0, 32, 64, and
96.

Four additional JCL cards may be included in the stream by specifying
them in the EnvironmentData field. Cards are limited to 32-bytes in
length. The cards are taken out of the field at offsets 0, 32, 64, and 96.

Any of the nine JCL cards may contain a single exclamation mark (!),
which will be replaced by the name of the queue causing the trigger
message (MQTM-QNAME).”

TRIGGERING A PROCEDURE

Earlier, I gave the JCL needed to trigger a procedure. Since there is no place
to code the JCLLIB statement (it must come before the EXEC statement)
the procedure must be stored in SYS1.PROCLIB (or its equivalent at your
site). The procedure will be started using the authority of the user that
submitted the batch trigger monitor, so make sure it is an appropriate user.

JES will receive first part of the procedure JCL from the process definition.
Let us see the details:

��������!0����0�������!0

���(����	��""��

M���7

����	����N

Tailoring the above code

• Line one: name of the procedure (you can use your own).

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Line two: JCL does not allow DD * statements in procedure ‘body’,
so we must code it here.

• Line three: name of my REXX program.

• Line four: parameters for my program. QmgrName is your queue
manager name. The exclamation mark (!) will be substituted by the
batch trigger monitor for the name of the triggering queue. There
should be at least one blank between the queue manager name and the
exclamation mark. My program will accept this line as a parameter. It
is required!

Beware!

In some systems (depending on national character coding) the exclamation
mark can be shown as ‘]’ (right bracket). Its hex code should be ‘5A’.

The body of the procedure is shown below:

��������!0���!0

��������������0��7���KG�J�8%

������
�I��""�"�����5�$"�	����6�0���4�5

�� ������""�"�����5�$"�	���%O6
!�"

���(����0��""�"�����5�$"�	����0�	6����

���(�������""��(�!4���

Tailoring the above code

• Line three: MQSeries hlq.SCSQAUTH library.

• Line four: SupportPac MA18 (REXX interface to MQSeries) load
library.

• Line five: library containing my REXX code.

• Line six: a sysout class (I print some reports there).

TRIGGERING A JOB

Triggering a ‘plain’ job is more difficult but if you are not authorized to
use procedures it is your only choice.

The whole JCL must be coded in the nine lines (APPLICID, USERDATA,
ENVDATA); each 32 bytes long. If you want to span JCL statements over

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

several lines you must use JCL syntax.

The JCL is explained below:

����������0��7���KG�J�8%

������
�I�""�"�����5�$

���"�	����6�0���4�5

���(����0�""�"�	����0�	6����$

����������"�����5�

���(��������""��(�!4���

���(����	���""��

M���7

����	����N

Tailoring the above code

• Line two: the STEPLIB must contain both MQSeries hlq.SCSQAUTH
modules and SupportPac MA18 (REXX interface to MQSeries) load
module. There is no place to have separate lines for both so I decided
to copy the MA18 load module to MQSeries hlq.SCSQAUTH library.

• Line four: library containing my REXX code.

• Line six: a sysout class (I print some reports there).

• Line eight: name of my program.

• Line nine: parameters for my program. QmgrName is your queue
manager name. The exclamation mark (!) will be substituted by the
batch trigger monitor for the name of the triggering queue. There
should be at least one blank between the queue manager name and the
exclamation mark. My program will accept this line as a parameter. It
is required!

Beware!

In some systems (depending on national character coding) the exclamation
mark can be shown as ‘]’ (right bracket). Its hex code should be ‘5A’.

Output

The output of the program will show all submitted job names along with
some tracking information (I print the reason code after each MQSeries
call).

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

If the reason code returned by MQGET operation is

�����)'8DE�����%��������'8DE���������/7������ ��	�	7)$

it means that the job name has been truncated. Please check it! I read only
54 bytes from each message (the maximum DSN name is 44 characters,
eight characters for the member name, and two parentheses), so if this
warning occurs it may mean that the job name was not valid. I present it
as a warning, not a failure, because the truncated characters might be just
blanks.

ENDING THE BATCH TRIGGER MONITOR

To end the trigger monitor do not cancel the job. Do it by sending a message
of type REPORT and feedback of MQFB_QUIT (both are coded in the
message descriptor, MQMD) to the initiation queue. There is a program
that does just that. It is supplied within the MA12 SupportPac; its name is
CKTIEND. To run it, use the following job:

���	"�!	���G!I

��0K���	"�����0��7��0K���	"$�����)��7�$I��056�	���)

������
�I��""��"�	����6�0���4�5$"�����5�

�����������""��"�	�4���6
!�"

���(����	��""���(�!4���$

���������������"0I�#"�!�7���$��0J��/I�$
��0
�%??$I
K��P��%?D&

Tailoring the above code

• Line one: supply a valid job card

• Line two: CKTIEND parameters (both must be the same as you
supplied for CKTIBAT2)

– queue manager name

– initiation queue name.

• Line three: MQSeries hlq.SCSQAUTH library.

• Line four: library where CKTIEND is located.

• Line five: sysout class for output.

SOME NOTES ON MY CODE

My program connects to a queue manager (a user-supplied parameter) and

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

opens a queue that caused the trigger to happen (its name is passed from
the trigger monitor) and reads messages (in get mode) from it. Each
message should be a valid job name (in the library member) format that will
be submitted. I do no checking of the job name validity; the check is left
to the TSO command SUBMIT.

SECURITY

The following authorizations are required:

• The batch trigger monitor needs authority to open the initiation queue
for input (it does so in exclusive mode).

• My program needs authority to open the triggering queue for input
(shared); it also needs authority to use the TSO command SUBMIT.

Marcin Grabinski
System Engineer, SPIN (Poland) © PUP SPIN 2002

Global transactions with MQSeries and Oracle, part
2: set-up and configuration

This is the second (and concluding) article on using MQSeries and Oracle
in global transactions. MQSeries and Oracle may be configured to act as
components in the X/Open Distributed Transaction Processing (DTP)
model. This article explains how to set up MQSeries to work as a
Transaction Manager (TM) and as a Resource Manager (RM), and how to
set up Oracle to work as an RM so that the atomicity, consistency, isolation,
and durability (ACID) properties of the global transactions are preserved.
Various configuration scenarios are explained that include multiple
databases, remote databases, dynamic Oracle registration, tracing facilities,
and multi-threaded applications.

ORACLE XA SWITCH LOAD FILE

While the XA communication between the MQSeries TM and MQSeries
RM is performed internally in the DTP model, the Oracle RM runs as a

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

separate entity that may even reside on a separate machine from MQSeries.
The MQSeries TM explicitly invokes XA functions on the Oracle RM.

Before the user application (AP) starts the first global transaction, the
MQSeries TM must be provided with the information that instructs it how
to invoke the XA functions on the Oracle RM. Providing the MQSeries TM
with this information is a part of the DTP setup process and is implemented
by the SLF (Switch Load File). The SLF is implemented as a dynamic shared
library (.dll on WinNT and .so or .sl on Unix platforms).

In order for the Oracle RM to participate in a global transaction managed
by the MQSeries TM it needs to have the SLF associated with it. The Oracle
SLF for MQSeries exports a single function called MQStart(). MQStart()
returns the address of a special structure implemented in the Oracle RM
libraries that conforms to the xa_switch_t type defined in the xa.h header
file. The xa.h file is part of the XA specification. This data structure
contains pointers to the XA functions implemented in the Oracle RM. Once
the MQSeries TM loads the Oracle SLF it gains access to the XA functions
in the Oracle RM through the switch structure.

Building the Oracle SLF is a straightforward procedure and MQSeries
Server installation comes with the files necessary to do it. These files,
which are located in the xatm subdirectory of the samp directory in the
MQSeries installation, are:

• xa.h – the XA header file that defines the xa_switch_t structure type.
The declarations of all XA functions can be found in this structure.

• oraswit.c – the C file that is used to build the SLF. This C file defines
and exports the MQStart() function that returns a pointer to the Oracle
xa_switch_t structure implementation. The actual name of the Oracle
implementation of the xa_switch_t structure is xaosw. It is
implemented in the Oracle client library.

• xaswit.mak – makefile for the SLF.

• oraswit.def – (WinNT/2000 only) a definition file for the SLF.

MQSeries documentation and comments in the makefiles provide enough
information to build the Oracle SLF for a particular platform. Note that
the makefiles contain hard-coded paths to the Oracle XA library. This value
needs to be checked and manually modified to match the underlying Oracle

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

installation. Since the Oracle xa_switch_t structure is implemented in the
Oracle client library the most important thing to ensure is that the SLF
contains a valid path reference to this library so that the address of the xaosw
structure may be resolved when the MQSeries TM loads the SLF and
invokes the MQStart() function.

XARESOURCEMANAGER STANZA FOR ORACLE

Once the Oracle SLF is built it is necessary to inform the MQSeries TM
of the location of the file so that the Oracle RM may become a participant
in the global transactions.

The location of the Oracle SLF, as well as some other relevant information
about the Oracle RM, is stored in a special stanza in the qm.ini file of the
queue manager selected to serve as a TM. This stanza is called the
XAResourceManager stanza.

On WinNT/2000 this stanza is implicitly specified to the queue manager
through the MQSeries Services GUI by selecting the Resources tab in the
Properties dialogue of the queue manager. The information entered in this
dialogue is stored in the Windows Registry. On Unix systems it is necessary
to edit the qm.ini file manually and explicitly add the XAResourceManager
stanzas.

Every RM that participates in global transactions requires its own
XAResourceManager stanza. The format of the XAResourceManager
stanza is:

XAResourceManager:

Name=RMName

SwitchFile=FullPathToTheSwitchLoadFile

XAOpenString=XAOpenString

XACloseString=XACloseString

ThreadOfControl=MQSThreadOfControl.

Where:

• RMName is a name that the user selects for the RM. The MQSeries

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

TM uses this name when it creates the entries that are related to the
particular RM in the error log files.

• FullPathToTheSwitchLoadFile is a fully qualified name of the SLF.
For an Oracle RM this is the path to the Oracle SLF. The MQSeries
TM uses the value of this parameter to obtain the addresses of the XA
functions implemented by the Oracle RM.

• XAOpenString is a string that the MQSeries TM passes to the RM in
the xa_open() function call. The format of this string is defined by the
RM vendor. The complete Oracle XA open string format is described
in the MQSeries documentation as well as in the Oracle documentation.
A simple example of the Oracle XA open string is:

!��.��3��A�..����.���������A������?9

The components of the Oracle XA open string are always separated with
the ‘+’ character. In the example above, the following components can be
distinguished:

• Oracle_XA – an Oracle XA open string always starts with this
identifying token.

• Acc=P/username/password is a mandatory Oracle XA open string
component that specifies the Oracle user-ID and password that the
MQSeries TM uses to connect to the RM in the xa_open() call. In this
example the user-ID is ‘scott’ and the password is ‘tiger’.

• SesTm= is another mandatory component that defines the maximum
amount of time in seconds for which a transaction can be inactive
before it gets automatically destroyed and rolled back. In this example
a time limit of 35 seconds is specified.

• XACloseString is a string that the MQSeries TM passes to the RM in
the xa_close() function call. For the Oracle RM this value should
always be set to:

����3��30����3������

The Oracle RM does not require the XA close string and it always treats
it as if it were NULL. But the XACloseString still needs to be specified
in the XAResourceManager stanza for Oracle in order for the MQSeries
TM to issue the xa_close() calls on the Oracle RM.

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If the XACloseString is set to some other value than the one described
above or if it is not set at all, the MQSeries TM will not call xa_close()
on the Oracle RM and will report an error in the log file that will
indicate the failure of the xa_close() call.

• MQSThreadOfControl defines the TOC for the MQSeries. It can be
set to PROCESS or THREAD. The default value is PROCESS. This
parameter is described later, in the section on multi-threading.

DBA_PENDING_TRANSACTIONS VIEW

An Oracle database contains in the sys schema a view called
DBA_PENDING_TRANSACTIONS, which shows the transaction
identifiers for the pending Oracle transactions. This view is based on the
system tables gv$global_transaction, sys.pending_trans$, and
sys.pending_sessions$.

The pending transactions are the transactions that are prepared but are still
not committed or rolled back, in addition to the transactions that were
heuristically committed or rolled back. The MQSeries TM must obtain the
list of pending transactions in all RMs every time it performs the recovery
procedure. These lists help the MQSeries TM to recognize the state of a
particular RM regarding the previously interrupted global transactions.

Every time the MQSeries TM (the queue manager) starts, it calls the
xa_recover() function on the Oracle RM. The Oracle implementation of
this function is called xaorecover(). xaorecover() internally calls the
Oracle function xaofetch(), which accesses the
DBA_PENDING_TRANSACTIONS view to collect the identifiers of the
pending transactions. If xaofetch() fails to access this view for security
reasons, xaorecover() returns with the error code XAER_RMFAIL [-3]
and this prevents the successful completion of the recovery process. It is,
therefore, extremely important to grant the SELECT privileges on this
view to the user that was specified in the Oracle XA open string.

The system administrator may issue the following SQL statement to grant
the required select privileges to the user with the username scott:

���������������.�����"I�3��	"�	73���	��0��!	������.���Q

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

DYNAMIC ORACLE RM REGISTRATION ON WinNT/2000

In addition to the previously described static Oracle SLF, it is possible to
build a dynamic SLF for Oracle on the WinNT/2000 platform. WinNT/
2000 installation of MQSeries comes with two additional files in the xatm
subdirectory. These are oraswitd.c and oraswitd.def and they are used
instead of oraswit.c and oraswit.def to build the dynamic SLF.

Like the static SLF, the dynamic SLF exports the single MQStart() function
that returns a pointer to an internal instance of the xa_switch_t structure.
The difference in the latter instance is that a TMREGISTER flag is set in
the flags member of the structure. This informs the TM not to call xa_start()
on this RM when a new global transaction starts but to wait for the RM to
register itself in the transaction through the xa_reg() call that the TM must
implement. The internal Oracle implementation (variable) of the xa_switch_t
type that is returned by the MQStart() function in the dynamic SLF is called
xaoswd.

The difference between the default static SLF and the dynamic SLF is in
when and how the Oracle RM becomes a participant in a global transaction.
In the static SLF case, when the AP starts a new global transaction through
the MQBEGIN() call, the MQSeries TM immediately calls xa_start() on
the Oracle RM to inform it of the start of the new global transaction.
Conversely, when the dynamic SLF is used, the MQSeries TM never calls
xa_start() on the Oracle RM. It is only when the AP calls the Oracle RM
to perform a data operation (for example, insert a record in a table with the
OCIStmtExecute() call) that the Oracle RM contacts the TM to see whether
the AP previously started a global transaction in the same TOC. It needs
to know this in order to decide whether the requested data operation should
be made part of a global transaction.

The Oracle RM does this by invoking the ax_reg() function on the
MQSeries TM. The Oracle RM deregisters itself later from the global
transaction by invoking the ax_unreg() call on the MQSeries TM. The
ax_reg() and ax_unreg() functions are XA functions that the MQSeries TM
on WinNT/2000 implements in the mqmax.dll dynamic library.

When the MQSeries TM returns the confirming answer when called on
ax_reg(), it provides the Oracle RM with the XID of the previously started
global transaction. The Oracle data operation is then made part of the global
transaction and is committed only when the AP later invokes MQCMIT()

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

on the MQSeries TM.

The MQSeries TM is provided with the addresses of the Oracle RM XA
functions through the SwitchFile parameter in the XAResourceManager
stanza. In this case, it is also necessary to provide the Oracle RM with the
name of the DLL that implements the ax_reg() and ax_unreg() XA
functions called by the Oracle RM. This is done through the
ORA_XA_REG_DLL environment variable. The value of this variable
must represent the fully qualified name of the mqmax.dll library in the local
MQSeries installation. For example:

����!��3��3��73"

�.HR��������J����R��������R+��R�@��;6���

Note that, if this environment variable is not set correctly, the program may
still seem to work although the ax_reg() function will not be called. The
Oracle RM will not commit its changes during the MQCMIT() call, but
only later, when the MQSeries calls it on xa_close(). The Oracle changes
will not be committed during the MQCMIT() call because the Oracle RM
was never associated with the global transaction.

The MQSeries TM calls xa_close() on the Oracle RM when the AP calls
MQDISC(). This must be taken into consideration because, if the Oracle
RM fails to locate the ax_reg() function, it will not report an error, and if
the system crashes between the MQCMIT() and MQDISC() calls the
atomicity of the global transaction will not be preserved, since the
MQSeries operations will be committed and the Oracle operations will be
implicitly rolled back.

Tracing XA/TX function calls

To trace the XA calls that the MQSeries TM makes on the RMs, as well as
the TX calls that the AP makes to the MQSeries TM, it is enough to turn
on the regular MQSeries trace for the used queue manager. All the
operations that the TM performs are traced, from loading the SLFs to
closing the RMs.

To trace the XA calls made to the Oracle RM it is necessary to add an
optional parameter to the Oracle XA open string. This parameter is called
LogDir and its value defines the directory path where the XA trace
information is stored. For example, to define the c:\xalogs directory on
WinNT/2000 as a directory for the Oracle XA trace files the following line

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

needs to be appended to the existing Oracle XA Open String:

A
��"���.HR;�����

By default, the Oracle RM traces only the XA errors that occur. It is possible
to require additional information about the XA calls execution through the
DbgFl optional parameter in the Oracle XA open string. The following
hexadecimal values can be combined to form this parameter value.

• 0x01 – trace entry and exit points for every XA call made to the Oracle
RM.

• 0x02 – trace entry and exit points for the internal supplementary XA
functions invoked from within the XA functions (these functions also
have the xao prefix, just like regular Oracle XA functions).

• 0x04 – trace entry and exit points for the additional functions called
from within the XA functions (such as various OCI function calls).

For example, to specify the maximum trace level (which is very helpful for
tracing problems) the following line needs to be appended to the existing
Oracle XA open string:

A"+�J��8;8D

LOCAL AND REMOTE ORACLE DATABASES

The MQSeries queue manager and the AP must run on the same machine
but the Oracle database can run on a separate machine in the network. Of
course, the machine with the MQSeries queue manager and the AP must
have Oracle client facilities installed. The Oracle client library serves as a
proxy to the Oracle RM. The MQSeries TM treats the Oracle client library
as an XA-compliant RM.

Regardless of the location of the Oracle database, the ORACLE_HOME
environment variable on the machine with the queue manager and the AP
needs to point to the directory where the Oracle product (client or server)
is installed.

If the Oracle database resides on the same machine as the MQSeries queue
manager and the AP (local database), it is possible to set the ORACLE_SID
environment variable to point to the local Oracle service name that needs
to be used. But if the Oracle database resides on another machine in the

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

network (remote database) it is necessary to specify the service name of the
remote database in the Oracle XA open string. The name of the parameter
used for this is ‘SqlNe’ and it needs to contain the service name specified
in the Net8 string format (formerly called SqlNet string format).

For example, to specify the remote database BankDB the following string
needs to be appended to the existing Oracle XA open string:

A�@�	���I��F"I

MULTIPLE ORACLE DATABASES

It is possible to use more than one Oracle database in a global transaction
managed by the MQSeries TM. Every database is represented as a separate
RM and must be assigned a unique name in its XAResourceManager
stanza.

In cases where there are multiple Oracle XAResourceManager stanzas it
is necessary to use the DB parameter in the Oracle XA open string. The
value of this string needs to be unique for every Oracle RM. This value is
then passed to the xaoEnv() and xaoSvcCtx() calls to obtain the environment
handle and the service context handle for the particular Oracle XA
connection. The environment handle will then be common for all the RM
instances but the service context handles will be different. For example, to
specify an Oracle database with the user-assigned name ‘myDB’ the
following line needs to be appended to the Oracle XA Open String:

A"I��L"I%

When a single Oracle database is used the DB parameter is not needed in
the XA Open String and the xaoEnv() and xaoSvcCtx() function should be
called with the NULL argument.

When multiple Oracle databases are used, for every one used the
corresponding DB parameter value must be passed to the xaoEnv() and
xaoSvcCtx() functions to obtain the correct handles for that database.

Note that the DB value does not need to be the same as the corresponding
database service name (SID). It is only necessary to ensure that the DB value
is unique and that it matches the passed xaoEnv() and xaoSvcCtx()
arguments.

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

MULTI-THREADING

The parameter in the XAResourceManager stanza that defines the TOC for
the MQSeries TM is called ThreadOfControl, and its value can be
PROCESS (the default value) or THREAD.

The parameter that defines the TOC for the Oracle RM is called Threads
and it is specified in the Oracle XA open string. Its value can be true or false
(the default value). If the value is true the TOC is THREAD and if the value
is false the TOC is PROCESS.

If the AP runs in a single thread the default TOC interpretation works fine.
All the global transaction operations – its start, the data operations on the
RMs, and its end – are always performed in the same process (since they
are called from the same application instance).

If a global transaction is started in one thread and the Oracle RM data
operations are performed in another thread, the default TOC configuration
will still work. Since both threads belong to the same process and the TOC
is set to be a process the Oracle RM is able to associate the data operations
performed in one thread with the global transaction that was started from
another thread (same process ID).

Note, however, that it is never possible to start a global transaction in one
thread and perform the MQSeries operations in another because of the
MQSeries implementation that prohibits sharing the queue manager
connection handle among threads. That means that the MQBEGIN(),
MQGET(), MQPUT(), MQCMIT(), and MQDISC() calls must all be made
from the same thread from which the MQCONN() call was made.

However, it is often required to implement multi-threaded applications to
increase the data throughput. Such a multi-threaded AP would have
multiple threads running concurrently where every thread would run
global transactions on its own.

This is not possible to do with the default TOC configuration. If the first
thread starts a global transaction with MQBEGIN() and the second thread
independently tries to start another global transaction while the first one
is still active, the second MQBEGIN() call fails with the error reason code
MQRC_UOW_IN_PROGRESS. The MQSeries TM informs the AP that
another transaction (unit of work) is active within the same TOC.

To achieve concurrency with global transactions using the default TOC

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

configuration it would be necessary to run multiple application instances
at the same time (multiple processes).

To enable multiple threads to perform global transactions concurrently and
independently of each other, the TOC needs to be set to THREAD, for both
the MQSeries TM and the Oracle RM.

To set the TOC to THREAD for the MQSeries TM the following line needs
to be specified in the XAResourceManager stanza:

������!,0��������5���"

To set the TOC to THREAD for the Oracle RM the following line needs
to be appended to the existing Oracle XA open string:

A������������

It is extremely important to match these two parameters. If ThreadOfControl
is set to THREAD, the threads should be set to true; and if ThreadOfControl
is set to PROCESS, the threads should be set to false. This applies to
WinNT/2000 as well as Unix platforms.

Predrag Maksimovic
Software Engineer
2d3D Inc (USA) © Xephon 2002

Configuring MQSeries with Microsoft Cluster
Server, part 2: installation and configuration

Last month we discussed the groundwork required to enable MQSeries and
Microsoft Cluster Server (MSCS) to work together. In this concluding
article we look at the installation and configuration stages.

INSTALLATION OF MSCS AND MQSERIES

MSCS must already be installed and configured, including testing of
cluster operations such as the movement of the cluster group from one
node to another. When creating the cluster decide whether you wish to
make the cluster nodes the sole members of a ‘domainlet’ for which the

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

cluster nodes themselves are the domain controllers or directory servers.
This approach avoids creating a dependency on a potential single point of
failure outside the cluster and can also offer best performance. User groups
and ids can be created at the domain level and included in the local groups
on each of the cluster nodes. It can be useful to create a domain level user
account which not only owns the cluster but is also an administrator on
each of the cluster nodes.

MQSeries must also have been installed on both cluster nodes. It is
recommended that you install MQSeries (or other product code) onto
internal disks on each of the nodes rather than onto shared disks. The shared
disks should be used only for the state data required by the cluster and
highly-available applications. The location of the necessary state data for
MQSeries queue managers is discussed later in this article in Configuration:
step four.

It is important that under normal operating conditions you are running
identical versions of the operating system, including MSCS and MQSeries,
on each of the cluster nodes.

Configuration of shared disks

Configuration of shared disks can be performed before MC74 is installed.
The shared disk software must have been installed and configured as part
of installing MSCS and migrating the quorum to shared disk. It is also
possible – and a good idea – to configure the remaining shared disks into
disk arrays and logical drives ready to support the applications and services
that will be run in the MSCS cluster.

MSCS insists that the quorum drive is configured in a RAID-1 disk array,
which means that it will use two physical disks. You can divide the
remaining disks into arrays that contain the logical drives needed for queue
manager or application data. You are free to choose the RAID level you
want for these drives.

User/group principals

The installation of MQSeries creates various user-ids on each of the cluster
nodes, such as the MUSR_MQADMIN user account and the MQM group.
These are local ids and, therefore, have different SIDs on each node. Don’t

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

worry about this at this stage. Just install MQSeries as if the nodes were
not part of an MSCS cluster.

Installing MQSeries MSCS support

Log into the cluster nodes as a user with sufficient permission to alter the
MQSeries and MSCS configuration and download the mc74.exe from the
IBM SupportPac Web site into a directory of your choice.

Run the mc74.exe, which is a self-extracting file built with InstallShield.

The install program will register a new resource type called ‘IBM MQSeries
MSCS’.

Verifying installation

When the install program has finished open the Cluster Administrator and
click on Resource Types to check that the new resource type has been added.

CONFIGURING MQSERIES MSCS SUPPORT

Before performing any of the steps in this section ensure that you have
completed all the steps in the previous section on installation and that the
MSCS cluster is working as expected.

The following steps are described from the point of view of one queue
manager. For additional queue managers just repeat them.

Step one: create a resource group

A resource group is used as a container for all the resources related to the
queue manager. The resource group will contain the shared drives used by
the queue manager, the IP address which clients and channels will use to
connect to the queue manager, and the queue manager resource itself.

It is recommended that you consider disabling the failback option on the
resource group to avoid the interruption to the queue manager that would
be caused by restart of the default master node after a failure. Unless you
have a specific requirement that would make failback desirable in your
configuration, it is probably better manually to move the resource group
back to the preferred node, where it will cause minimum disruption.

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Actions

1 Create a resource group and ensure that failback is disabled.

2 Create an IP address resource (using the MSCS-provided resource
type) and include it in the group. The shared drives will be added in the
next step.

3 Test the operation of the resource group, ensuring that the IP address
is configured correctly onto whichever node hosts the group.

Step two: configure the shared drives

As stated previously, it is recommended that each queue manager is placed
in a separate resource group and has an exclusive drive or set of drives,
which are defined as resources in the same group. This allows each queue
manager to be moved from one node to another without disrupting any
other queue managers.

You will need only one drive per queue manager if you plan to keep its logs
and queue files on the same drive. For performance it is recommended that
a queue manager uses separate drives for logs and data, so you may want
to separate them, in which case, create two drives per queue manager. At
the physical level each logical drive can use a single physical disk, a
mirrored pair of disks, or a more sophisticated array of disks. You should
decide the degree of redundancy and fault protection that you require.

Actions

1 If you have not already done so you now need to create the drives for
the queue manager. The specific details of this step will vary depending
on the hardware and shared disk support that you are using. Follow
the documentation that came with your shared disk support to create
the necessary drives. The drive letters that you assign are arbitrary but
they must be the same across the nodes.

2 Create MSCS resources that manage the shared drives, adding them
to the group you created in step one. The resource type to use will
depend on the shared disk support that you are using. If, for example,
you are using IBM ServeRAID, the installation of the ServeRAID
cluster kit will have created a resource type called ‘IBM ServeRAID
Logical Disk’.

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3 Make sure that the drives can be moved from one node to another and
are visible and accessible on each node. Test this by moving the
resource group from one node to another. Check that they are visible
and accessible on each node.

Step three: create the queue manager

Select a node on which to create the queue manager.

Use MQSeries Explorer to create the queue manager in the normal manner,
mostly accepting the suggested default settings. This will create the queue
manager such that its logs and queue files are stored on drives which are
internal to the node, rather than on shared drives. Step five will move the
files onto shared drives and allows you to perform the same for an existing
queue manager that you hadn’t anticipated would be put under MSCS
control.

You do not need to create any other instances of the queue manager – just
create it once on one node.

Actions

1 Select a node on which to perform the actions detailed below.

2 Run MQSeries Explorer and create a new queue manager, accepting
all the defaults, but don’t configure it to be the default queue manager.

3 When the queue manager has been created, ensure that it works, ie start
and stop it. Create any queues and channels and test the queue manager.

4 Set the queue manager’s service startup property to manual – this is
important because you don’t want the IBM MQSeries service to try
to restart it on failure, you want MSCS to do it.

5 Leave the queue manager in the stopped state.

Step four: prepare the queue manager for MSCS

A queue manager that is to be used in an MSCS Cluster needs to have its
logs and data on shared disks so they can be accessed by a surviving node
following a node failure.

The queue manager is not set up this way currently. Whether it’s a new

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

queue manager that you have just created or an older one that you are now
preparing to put under MSCS control, you need to move its queue files and
log files to one or two shared drives. You can use the hamvmqm command
to do this. This is something you need to do only once, when the queue
manager is first placed under MSCS control. During normal operation the
queue manager will be able to move back and forth between the nodes
because the files it needs will be on the shared drives, which will be made
available by MSCS to whichever node has the queue manager.

When, one day, you decide to remove the queue manager from MSCS
control, you may want to run hamvmqm once more to move the files back
from shared drives to internal drives within one of the nodes. This is
explained in step seven.

Actions

1 On the node on which the queue manager exists perform the actions
detailed below.

2 Use the hamvmqm command to move the queue manager’s data and
log files to shared drives.

• hamvmqm

The hamvmqm command allows you to specify where you want
a queue manager’s data and log files to be stored. By default these
files will be stored in MQSeries\qmgrs\<qmgr name> and
MQSeries\log\<qmgr name>. The hamvmqm command
determines from the registry the current locations of the queue
manager’s files. It moves the files to the locations that you specify
and updates the registry to reflect the changes. The command
accepts each of the new paths as parameters. If you want to, you
can use the same path for both data files and logs.

You can use the hamvmqm command to move files from their
current locations to any paths you choose, but it is most useful
in moving files from internal drives to shared drives or from
shared drives to internal drives.

The syntax is:

���B�@�����=@���������>�����=��*�������>�����=��*������>

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The parameters are:

– qmgr name – the name of the queue manager to which the
command relates.

– newdatapath – the pathname of the directory to which you
want the queue manager’s data files to be moved. The path
you specify for the /dd option will be suffixed with
qmgrs\<qmgr name>. See the example below.

– newlogpath – the pathname of the directory to which you
want the log files to be moved. The path you specify for the
/ld option will be suffixed with <qmgr name>. See the
example below.

Take care with the parameters to this command because it is based
on the system of prefixes and directory structures that are typical
in MQSeries. For example:

���B�@�������%�����<HR�@�������FHR�@��R���

will move the queue files for QM1 to j:\mqha\qmgrs\QM1 and
the log files for QM1 to k:\mqha\log\QM1.

Step five: create a resource for the queue manager

For MSCS to monitor and control the queue manager you need to create
a resource of type IBM MQSeries MSCS. This is the custom resource type
provided in the MC74 SupportPac. When you create the resource you will
need to tell it the queue manager’s name.

All MSCS resources have a ‘restart threshold’ parameter, which is the
number of times MSCS will attempt locally to restart the resource within
a time period defined by the associated ‘restart interval’ parameter. For
MQSeries it is recommended that the threshold is set to 1 so that one restart
is attempted, and that the restart interval is set to a small multiple of the
expected start time for the queue manager. With these settings, if successive
restarts fail without a significant period of stability in between, the
resource group containing the queue manager will be failed over to a
different node. Attempting more restarts on a node on which a restart has
just failed is unlikely to succeed.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The IBM MQSeries MSCS resource type allows you the option of
specifying the name of a program to be invoked just after the queue
manager is brought online or just before it is taken offline. These events
are referred to as ‘postonline’ and ‘preoffline’ respectively. This is to allow
you to send a notification to an application, a monitoring system, or a
human administrator.

Don’t use the postonline or preoffline commands to start or stop a program
that uses the queue manager because there is a better way of doing this.
Consider using the generic application resource type to create a resource
for the program you wish to start and make it depend on the queue manager.
MSCS will then take care of sequencing the starting and stopping of the
application relative to the starting and stopping of the queue manager. This
is a better way of running such an application because if the queue manager
or any resource on which it depends experiences a failure the application
will be stopped and restarted by MSCS, locally or on the other node.

For the queue manager to run identically on both nodes MSCS keeps track
of the registry settings on whichever node the queue manager is on and logs
any changes to its quorum drive. When the queue manager is started on a
node MSCS replays the log into the registry of that node. This is known as
registry checkpointing. The custom resource type adds the checkpoints for
the registry subtrees used by the queue manager. The custom resource type
also allows you to configure registry checkpointing of custom services,
such as the publish/subscribe broker from the MA0C SupportPac.

Actions

1 Use the Cluster Administrator to locate the IBM MQSeries MSCS
resource type. Right-click it and press New.

2 The first few dialogue panels that appear are for the common
properties of the resource and these include the group name, the nodes
on which the resource can run, and whether it has any dependencies.
Set these so that the resource is in the group you created in step one
and make it depend on both the IP address resource (created in step
one) and any shared drives onto which you have moved queue manager
files (in step four).

3 You will then see the parameters dialogue panel – you can mostly

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

accept the defaults this offers as these parameters can easily be altered
later from the resource properties dialogue. One parameter you
should alter now is the restart threshold, which for MQSeries is best
set so that it is limited to one at most.

4 The last dialogue panel during resource creation is for the private
properties – these are the ones specific to this resource type. You must
enter the name of the queue manager and optionally, enter the names
of preoffline and/or postonline programs. On this panel you can also
add registry checkpointing for custom services by clicking on Advanced.

5 When you have completed the above dialogue panels click on Finish
to create the resource.

6 By right-clicking the resource, bring the queue manager resource
online and check that it starts the queue manager successfully. You can
see whether it starts by having MQSeries Explorer running at the same
time as the Cluster Administrator.

7 By right-clicking the resource, take the queue manager resource
offline and check that it stops the queue manager successfully.

Step six: test the queue manager

You have now completed all the steps needed to put an MQSeries queue
manager under MSCS control. It is recommended that you thoroughly test
the operation of the queue manager and ensure that the cluster configuration
behaves as you require.

You can test movement from one node to another simply by using the Move
Group menu item from within Cluster Administrator. You can introduce
failures by:

• Unexpectedly shutting down a node.

• Issuing an endmqm -i command from a command line.

• Killing queue manager processes from the Task Manager.

• Using the ‘Initiate Failure’ popup menu item from within the Cluster
Administrator.

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Step seven: removing the queue manager from the cluster

Should you decide to remove the queue manager from cluster control you
will need to take the queue manager resource offline first. The resource can
then be deleted from the resource group. This does not destroy the queue
manager, which should continue to function normally, but under manual
control.

Once the queue manager has been removed from the cluster configuration
it will not be highly available and will remain on one node. The queue
manager’s log and data filesystems will at this time still be in the shared
drives and will still be configured to use the movable IP address, so you
need to ensure that the queue manager’s node retains access to the drives
and IP address, or you will need to reconfigure the queue manager to
remove these dependencies, as explained below.

If you have no further use for it you could delete the resource group.

Other nodes will still remember the queue manager (they will have registry
entries for it) and you may wish to tidy up the other nodes. You can do this
by running the hadltmqm command, described below, on the standby
nodes – do not run it on the node with the queue manager unless you want
to delete the queue manager.

• hadltmqm

The hadltmqm command will delete the registry entries
associated with a queue manager.

Run this command only on nodes that were previously used as
stand-by nodes. Do not run it on the node that is currently hosting
the queue manager.

The syntax is:

������@��=@��������>

The parameter is:

qmgr name – the name of the queue manager to be deleted.

Actions

1 Choose which node you want the queue manager to end up on and

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

move the resource group to that node.

2 Take the queue manager resource offline. This will stop the real queue
manager.

3 Delete the queue manager resource. This does not destroy the real
queue manager.

4 If you wish to keep the queue manager but not run it under cluster
control you should ensure that its logs and data files stay on the same
node as the queue manager. You can choose one of the following
options:

• Move the queue manager’s logs and data files from shared drives
to internal drives, using the hamvmqm command described
earlier, passing it the paths on the internal drives to which you
want them moved. Or:

• Leave the queue manager’s logs and data files on shared drives,
but remove those drives from cluster control by deleting the
corresponding resources from the resource group.

5 If you wish to keep the queue manager but not run it under cluster
control, you also need to ensure that the IP address it uses stays on the
same node as the queue manager. You can choose one of the following
options:

• Reconfigure the queue manager and its clients and peers so that
the queue manager uses a fixed IP address. This will release the
movable IP address so that you can use it for another purpose. Or:

• Allow the queue manager to continue to use the configured IP
address, but remove the IP address from cluster control by
deleting the corresponding resource from the resource group.

6 To remove the registry entries for the queue manager from the standby
nodes use the hadltmqm command. Do not run this command on the
node with the queue manager – see step eight for details of how to
delete the queue manager.

Step eight: deleting the queue manager

If you decide to delete the queue manager you should first remove it from

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the cluster configuration, as described in step seven. Then, to delete the
queue manager, perform the actions detailed below.

Actions

1 On the node that has the queue manager on it make sure the queue
manager is stopped by issuing the endmqm command.

2 Use MQSeries Explorer to delete the queue manager.

The queue manager has now been completely removed from the cluster and
the nodes.

Graham Wallis
Software Engineer
IBM Hursley (UK) © IBM 2002

Enhancing MQSeries set authorities scripts

More often than not, scripts to set MQSeries authorities are simpy a list of
setmqaut commands requiring the authorization values to be set. While
this approach does do the job of setting the authorities, it fails to provide
adequate feedback. Even if the output is captured to a file the success
messages returned from setmqaut fail to distinguish one object from
another, so are of little use. In addition, simply setting the desired
authorizations may not be the best approach. It may be necessary to reset
the existing authorizations, and on a V5.2 queue manager the security
cache must be refreshed. This article will present techniques that can be
used to resolve all of these issues and more, using standard Unix shell
scripting tools.

A BASE-LEVEL AUTHORITIES SCRIPT

IBM MQSeries SupportPac MS63 provides a tool to save the authorities
of a V5.1 or earlier queue manager. The output is simply a list of setmqaut
commands necessary to recreate the existing authorities. To make this
script useful most administrators will add comments, the date command,
and a pointer to the Unix shell of their choice. Many also like to add the

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

dspmqaut command to provide visual confirmation of the object settings.
An example is given below (listing one: the reference script). For brevity,
all scripts in this article will be limited to a single queue.

LISTING ONE: REFERENCE SCRIPT

SN�+���F��

S�����������������,�����%

S�7���������J�+����L�%$�'88'

����

����@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T�����A��@

���@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T����

S�"���

CAPTURING STDERR AND SCRIPT COMMENTS

If the reference script is run with its STDOUT redirected to a file, the result
will contain the output of the date command and the dspmqaut command.
The comments are ignored and the output of the setmqaut command is sent
to STDERR instead of to the text file. We could rely on the operator to
construct the command line to capture both STDOUT and STDERR but
it would be much more reliable simply to add it to the script. This is set up
in the second line of listing two below. The << EOF tells the shell to read
its standard input from the remaining script lines.

The other display feature to add is to print the comments from the script
body itself. By their very nature these scripts are run only when the queue
manager configuration is being changed or restored – the most likely time
for errors to occur.

In the case of a problem occurring after running the script, capturing the
script comments is a great diagnostic tool. Again, this could be done at the
command line but is better placed inside the script. Setting this at the
command line would cause the contents of any .profile or .kshrc scripts to
be displayed, which would be confusing rather than helpful. Instead, the set
command is used in the third line of listing two below to turn on the shell’s
verbose mode.

LISTING TWO: CAPTURING STDERR AND COMMENTS

SN�+���F��

�+���F���'>U%�==��!J

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����TB

S�����������������,�����%

S�7���������J�+����L�%$�'88'

����

����@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T�����A��@

���@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T����

S�"���

ACTIVATE AND BACK-UP THE NEW CONFIGURATION

One of the most frequent errors made when setting authorities is forgetting
to activate them by recycling the queue manager, or, in the case of V5.2,
issuing the refresh security mqsc command. In an environment where there
are V5.2 queue managers, adding the command to the script will ensure
that this important task is completed. This is demonstrated near the end of
listing three below.

If linear logging is in use an extra measure of security may be obtained by
running the rcdmqimg command. MQSeries will record a media image of
a queue when it empties or when the queue manager is quiesced. Since the
SYSTEM.AUTH.DATA.QUEUE should never be empty, the only way to
know for sure that its contents have been saved is to run the rcdmqimg
command against it. An example of this also is near the end of listing three
below.

Note that if the refresh security or rcdmqimg commands are run in
environments where they do not apply they will generate warning messages
but will not cause any harm. It may be desirable to include the commands
in all authorities scripts for the sake of standardization.

On the other hand, if the scripts are automated in a scheduling tool, the
warning messages may be interpreted as failures. In general, it is better to
include the commands in an environment where V5.2 queue managers
exist.

LISTING THREE: ACTIVATING AND SAVING SECURITY UPDATES

SN�+���F��

�+���F���'>U%�==��!J

����TB

S�����������������,�����%

S�7���������J�+����L�%$�'88'

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����

����@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T�����A��@

���@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T����

�.���)��,�������.����L)�V�����@�.

�.��@����T����%�T��@������(����6�4�56"���6�4�4�

S�"���

TIGHTENING SECURITY

The setmqaut command as used so far will add authorizations for a
specific group and object but does not reset any existing settings. When
recreating a queue manager from scratch this method will restore the
authorities adequately. However, this may not work as expected if used to
update an existing configuration. For example, suppose that group ‘grp’
had already been granted ‘+all’ permissions against the
SYSTEM.DEFAULT.LOCAL.QUEUE. Running the script from listing
three would not remove any of the unwanted permissions.

To make sure that the object authorizations match the permissions granted
in the script, place ‘-all’ in the command line as the first authorization
parameter. This will remove all existing authorizations for group ‘grp’ and
then add inquiry rights. Make sure that ‘-all’ is the first parameter and not
simply added to the end or ‘grp’ will have no authorizations. The completed
script is provided as listing four below.

LISTING FOUR: ENHANCED SECURITY

SN�+���F��

�+���F���'>U%�==��!J

����TB

S�����������������,�����%

S�7���������J�+����L�%$�'88'

����

����@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T�����T����A��@

���@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T����

�.���)��,�������.����L)�V�����@�.

�.��@����T����%�T��@������(����6�4�56"���6�4�4�

S�"���

SAMPLE OUTPUT OF LISTING FOUR

S�����������������,�����%

S�7���������J�+����L�%$�'88'

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����

����J�+�%E�%:H99H9E�0���'88'

����@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T�����T����A��@

��������@����.�������.����������..���,���L6

���@����T����%�T���(����6"�J�4
�6
!0�
6�4�4��T��@�����T����

�����L������������,����*�����������-�������,����+<�.�

�(����6"�J�4
�6
!0�
6�4�4�H

���@

��.���)��,�������.����L)�V�����@�.

8DO?OOE$�9DW9TID9�#0&�0�L�������I��0��6�%EE:$�'8886��

���75��

�����/�"6

������������������0�������6

�%�H���,�������.����L

���O9W8H������������.����L�.�.�����,������6

!������0�.�����������6

	��.����������B�����L���;������6

����B��������0�.��������*������.�����6

�.��@����T����%�T��@������(����6�4�56"���6�4�4�

���D8::H���������.�B��L���������*��6

S�"���

T Robert Wyatt (USA) © Xephon 2002

PUT/GET using Correl-ID

INTRODUCTION

When starting to develop our MQSeries applications we were unable to
find sample source code for a program to PUT or GET messages with
Correl-ID so I would like to share my experiences of developing such a
program in Java.

Basically, there are two ways to get your message from the queue; either
you remove a message when you read it, or you copy the message, keeping
the original message on the queue, which is called browsing.

There are various options that you can set to determine how and when you
read messages, eg:

• Whether a call should wait for a message to arrive.

• Whether the call is part of a unit of work.

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Whether a non-persistent message is retrieved outside the syncpoint,
thereby allowing fast messaging.

• Whether the message is removed from the queue or merely browsed.

• Whether to select a message by using a browse cursor or by other
selection criteria.

You can also set ‘Match Options’ to match the message, which sets the
selection criteria.

There are various ways you can group your messages, for example, Group-
ID, Message-ID, and Correl-ID.

I am providing a sample PUT/GET using Correl-ID. This sample groups
your messages using Correl-ID and you can safely retrieve only those with
a specified Correl-ID.

Let’s say there are messages in a single queue, which are destined for
different applications. Let’s also say that, when application A1 browses
that queue, it should retrieve only messages which are destined for A1; all
other messages should remain where they are.

Similarly, when application A2 browses that queue it should retrieve
messages which are destined for A2 only. All other messages should remain
in the queue.

This sample uses Correl-ID to distinguish between messages.

HOW IT WORKS

The source code contains two Java programs: MQPutc.java and
MQGetc.java.

MQPutc connects to the queue manager and opens the destination queue
with an open option for putting the message. Here we assign the desired
Correl-ID to that message (passing it as a parameter with the application)
and then we close the queue and queue manager.

MQGetc connects to the same queue manager and queue. We first count
the number of messages in the queue. Now, with the supplied Correl-ID
(passed as a parameter with the application), we search for the message
employing the same Correl-ID (ie match option=

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

MQC.MQMO_MATCH_CORREL_ID) and retrieve it.

HOW TO USE IT

I tested the code on Win2000 and MQSeries5.1. It should support all
platforms that run MQSeries and Java.

1 Open the MQSeries Explorer.

– create queue manager QM

– create queue Q1.

2 Download the code in the same folder as the two files MQPutc.java
and MQGetc.java.

– compile the code from that folder, ie javac MQPutc.java

– compile the code from that folder, ie javac MQGetc.java.

3 First make sure that your queue manager is up and running. Run the
MQPutc application with a Correl-ID of your choice, eg app1.

– run the PUT code from that folder, ie java MQPutc app1

(You can put many messages with the above command, using
different Correl-IDs.)

– run the GET code from that folder, ie java MQGetc app1

The output will give the total number of messages in the queue
and the output of the messages with the Correl-ID app1.

When you have many messages with many Correl-IDs you may find that,
when retrieving with some Correl-IDs, you get the message ‘Unable to
load message catalog – mqji. There are no more messages available of
specified ID.’ Don’t worry about this; the message occurs because no more
messages are found with the same Correl-ID (reason code==2033).

MQPUTC.JAVA

������.��6�+�6�@6�Q

�+��.�.����������.

X

����B�����������@���������C��CQ

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����B�������������������@���Q

���+��.������.�B���������#�����������YZ&

��X

������,�#����6�������=�%&

�����X

������L����6���6������#C��@�����������������������T�0������������"C&Q

�����[

���������

�����X

���������*������.#����&Q

������[

�����[

���+��.������.#�����������YZ&

��X

������LX

��������@�������*���������������#@�������&Q

�����������������!���������06��!!3�	�4�3��3�3"�J�V��06��!!3!4��4��Q

�����������������L@�����@���6�..��������#C�%C$���!�����&Q

�����������������������3*��������*����������#&Q

�������������3*����6*����4�J#C5����� ����C&Q

��������������������!������������*�������������!�����#&Q

�����������������.�������������������Y8ZQ

��������������3*����6.���������������.������������6���IL���#&Q

���������L@��6��#�����3*����$��&Q

���������L����6���6������#C��������������@����C&Q

���������L@��6.����#&Q

����@���6���.����.�#&Q

����[���������,���L

����.��.��#���;.�������;&

����X��L����6���6������#C�������������������..������H0���������.����CA

���������;6.��������0����AC�������.����CA�;6������0���&Q

����[

����.��.��#<�B�6��6�!�;.�������;&

����X

�������L����6���6������#C����������..������*������*�������������

��������+�,,��H�C�A��;&Q

������[

������.��.��#�;.�������;&

������X

��������L����6���6������#C����������..������*������*�������������

��������+�,,��HCA�;&Q

������[

����[

[

MQGETC.JAVA

������.��6�+�6�@6�Q

�+��.�.�������7��.

X

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����B�����������@���������C��CQ

����B�������������������@���Q

���+��.������.�B��������#������YZ�����&

��X

�����,�#����6�������=�%&

���X

������L����6���6������#C��@�����������������������T�0������������"C&Q

���������[

�������������

���������X

�������������*���7��.#����&Q

����������[

��[

���+��.���7��.#�����������YZ&

���X

������LX

��@�������*���������������#@�������&Q

�����������!����������06��!!3�	�4�3�5���"�V���06��!!3I�! ���V

��06��!!3�	�4���Q

�����������L@�����@���6�..��������#C�%C$���!�����$�����$�����$�����&Q

����������������������B�������������*����������#&Q

����������.����%��L@��6���0������"���#&Q

�������L����6���6������#C������	��+����,�������������CA.����%&Q

����������<Q

������,��#<�%Q<=�.����%Q<AA&

������X

������L

����X

��������������3���0������"��������Y8ZQ

������������B���������6.����������������3���0������"6���IL���#&Q

��������7���������!�������������*���7���������!�����#&Q

���������6���.�!����������06���!3���0530!���
3�"Q

������������B���������6��������������06����3	!	�Q

�������L@��6���#������B���������$����&Q

������������������;���������B���������6����4�J#&Q

�������L����6���6������#C�������.��������������HCA�����;�&Q

������������B���������6.�����������#&Q

��������[

��������.��.��#���;.�������;&

��������X

�������������,�#�;6������0�����'8??&

����������X

��������L����6���6������#C����������������������������B����+����,

��.�,�����"C&Q

���������L����6�;��#8&Q

������[

����������

������X

������L����6���6������#C�������������������..������H0���������.����CA

���������;6.��������0����AC�������.����CA�;6������0���&Q

������[

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�����������[

������.��.��#<�B�6��6�!�;.�������;&

������X

���������L����6���6������#CG�B���;.�����H�C�A��;&Q

������[���[�������,������

������.����:��L@��6���0������"���#&Q

���L����6���6������#C	��+����,����������J�����L����������CA.����:&Q

���L@��6.����#&Q

��@���6���.����.�#&Q

��[���������,���L

��.��.��#���;.�������;&

��X

�����,�#�;6������0�����'8??&

����X

�������L����6���6������#C�����������������������B����+����,���.�,���

�L�C&Q

��������L����6�;��#8&Q

����[

��������

����X

�����L����6���6������#C�������������������..������H0���������.����CA

���������;6.��������0����AC�������.����CA�;6������0���&Q

��������[

������[

������.��.��#�;.�������;&�X

���������L����6���6������#C����������..������*������*�������������

��������+�,,��HCA�;&Q

������[��������,�.��.�6

��[

[

Jitendra M Mistry
Software Engineer, CSSL (India) © Xephon 2002

MQSI V2 database administration tips

This article is a compilation of database tips that may be useful when
supporting or establishing an MQSI V2 infrastructure.

UNABLE TO DEPLOY BECAUSE OF AN OUTSTANDING DEPLOY
REQUEST

When a deployment request is initiated from the MQSI Control Centre an
entry is added to the CBROKER table in the configuration manager’s

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

database (MQSICMDB). This entry indicates the broker that is being
deployed to and that it is in a deploying status (DPLING). When the deploy
completes, a message is returned from the broker to the configuration
manager, which then deletes the table entry, allowing further deploys to
take place.

However, in certain circumstances a response may not be received from the
broker and you will be unable to carry out further deploys. In such
exceptional circumstances you can delete the entry from the configuration
manager database and, assuming you have taken the necessary steps to
ensure that future deploys will work, carry on with further deploys without
incident. This is how you would delete the entry from the database for
broker BROKER1:

• Start a DB2 command line process.

• Connect to the configuration manager database (MQSICMDB) using
an appropriate DB2 administrator’s id:

– connect to MQSICMDB user brokerid using bkpaswrd.

• Display the columns containing the broker name and status:

– note that if you are connecting to the database using an id that is
different from the database owner you will need to prefix the table
name with the id of the owner, eg DB2ADMIN.CBROKER

– this will display entries for each of the brokers supported by the
configuration manager. Typically for each broker there will be
entries with csections of SHARED and DPLED

– if there is an outstanding deploy against the broker there will be
a DPLING entry.

• Delete the deploying entry from the table:

– delete from CBROKER where CNAME='BROKER1' and
CSECTION='DPLING'

– note that the quotation marks (') must be included.

DELETING A BROKER FROM A CONFIGURATION TOPOLOGY

When a broker is deleted from the topology of a configuration manager an

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

entry for that broker is added to the CBROKER table. The entry has a
csection value of GRAVEY, for graveyard. There may be instances when
you want to delete and recreate a broker within the same topology – for
instance, if you are migrating from one platform to another, or, in some
exceptional circumstances, where the broker has become corrupt.

While the GRAVEY entry remains you will not be able to add the broker
back into the topology of the configuration manager. It will also cause
errors when trying to deploy to other brokers in the topology. The example
below illustrates how you would resolve this for broker BROKER1.

• Start a DB2 command line process.

• Connect to the configuration manager database (MQSICMDB) using
an appropriate DB2 administrator’s id:

– connect to MQSICMDB user brokerid using bkpaswrd.

• Display the columns containing the broker name and status:

Select cname, csection from CBROKER where cname='BROKER1'

• This will display the following entries:

�����0	������������0��0��!	

�����TTTTT���������TTTTTTTT

�����I�!K��%��������5���"

�����I�!K��%�������"�
�"

�����I�!K��%�������7��/�(

• Delete all entries for the broker that has been deleted from the
configuration manager’s topology:

– delete from CBROKER where cname='BROKER1'

– note that the quotation marks (') must be included.

USE OF TABLE ALIASES

If you have a message flow that is performing database look-ups or updates
you will use a compute, database, or warehouse node. Typically you will
access the table using ESQL similar to the example below:

���������!��������6��
6�L6J����	�����

�������5��#��
�0��������6J�����J�!��"���+���604��!��������

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

������� 5�����6����������)�����)&Q

Access to the table is made under the id that the broker is running via an
ODBC connection to the database. If the table has been set up under a
schema that does not match the id of the broker, for example DB2USER,
then the ESQL above would have to be amended as follows:

���������!��������6��
6�L6J����	�����

�������5��#��
�0��������6J�����J�!��"���+���6"I'4���604��!��������

������� 5�����6����������)�����)&Q

This can present a number of problems. Firstly, it means the tables have to
be qualified, adding to the complexity of the statements. More importantly,
it means the MQSI developer has to know the schemas used for the tables,
requiring more knowledge of the database administration function than is
necessary and providing additional development overhead.

As you move from environment to environment, eg development through
integration to production, database administration may use different
schemas. Therefore the flows would have to be amended in each environment
to reflect this.

Even within a given environment there may be a number of releases of test
data to the tables. It is useful in this situation to have different schemas to
separate different releases of data. This would mean amending the flows
for every new release of data.

However, if table aliases are created for the schemas, this problem is
removed. Usually the database administrators would create the table
aliases. This method allows flows to use different table schemas within a
given environment as well as migration of flows from one environment to
another without change.

It also means that, if you have a number of brokers running under different
ids but accessing the same tables, setting up table aliases for both broker
ids can cater for this.

Mark Richards (UK) © Xephon 2002

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

July 2000 – June 2002 index

Below is an index of all topics covered in MQ Update since Issue 13, July
2000. The numbers in bold are issue numbers and the ones in brackets are
page numbers. Back issues of MQ Update are available from Xephon – see
page two for details.

Topic Issue (page)
64-bit applications 34 (3-10)

ActiveX 13 (21-31)
Administering WebSphere MQ
 MQSI 34 (19-34)
APPC
 SideInfo dataset 18 (35-41) 19 (3-6)
Application design 23 (39-43)
Architecture
 Unix 21 (27-39)
AS/400
 V5.1 and V5.2 22 (33-47)
 Journal management 27 (25-31)
Availability
 OS/390 26 (41-43)

Back-up
 Open system platforms 33 (25-33)
 Recovery 15 (3-24)
BMC Patrol
 Message rates 27 (22-24)

Channel events
 Printing details 32 (3-12)
Channel exits 28 (5-9)
 Security exits 21 (11-27)
Channel initiator 16 (43-43)
Clusters 15 (35-42) 18 (24-35)

24 (3-11) 34 (29-47)
 Communication buffers 26 (34-41)
 Configurations 23 (30-38)
 Hints and tips 25 (3-8)
 MQ Bridge 16 (26-39)
 Queue Managers 21 (39-43)
Configuration
 MQ and MSCS 35 (35-43) 36 (7-17)
Connecting applications 32 (23-33)

33 (11-24)
Copying messages 33 (3-11)

Topic Issue (page)
Copying queue contents
 MQSeries V1.2 to V2.1 24 (24-27)
Correl-ID 36 (37-42)
Coupling Facility and DB2
 OS/390 20 (5-20)
CSQUTIL 28 (26-27)
Customizing files
 CSQ4APPL 14 (34-43)
 CSQ4CHNL 25 (16-23)
 CSQ4INP2 14 (34-43)
 CSQ4MQxx 17 (39-42)
 CSQ4XPRM 25 (16-23)
 CSQ4ZPRM 16 (39-42)
 CSQXMQxx 24 (42-43)

DB2
 MQSI V2 on AIX 23 (3-9)
Dead letter queues
 Handler 34 (11-22)
 Browser 35 (3-8)
Distributed queueing
 CICS 13 (41-43)

eNDI 29 (6-27)
Error handling 31 (37-43)
Error logs
 Unix 24 (27-32)
Everyplace 13 (31-41)
Exception processing
 MQSI 28 (10-26)
 MQSI V2 27 (6-21)
Expired messages 31 (8-20)

Filter and list MQ objects
 OS/390 24 (33-41)
Firewalls 26 (27-33)

Global transactions
 MQ and Oracle 35 (9-19) 36 (18-27)

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Topic Issue (page)
Installable services 16 (3-25)
JMS Publish-and-subscribe 13 (3-20)

14 (3-11)

Logging
 AIX 20 (3-5)
 OS/390 25 (8-13)

Message length 25 (40-43)
Message throughput
 MQSI V2 24 (11-23)
 Drivers 25 (32-39)
 Reporting on AIX 29 (27-36)
Messages
 Deleting 25 (13-15)
 Processing 30 (6-22)
Messaging models
 IP multicasting 26 (3-8)
Microsoft Host Integration Server
 MQSeries Bridge 27 (31-45)
 Deployment, configuration 28 (27-47)
 Administration, performance 29 (3-6)
Microsoft MSMQ 17 (15-39)
 MSMQ and MQ Bridge 18 (7-23)
 Microsoft Transaction Server 15 (24-35)
MQSeries for NT
 Client/server security 22 (4-21)
MQSI 14 (18-33)
 Database administration tips 36 (42-45)
 Hardware capacity 34 (23-28)
 Message processing 21 (3-10)
 Migrating rules and formats 17 (43)
 Service Trace 28 (3-5)
 V2.0.2 29 (36-43)

Performance 30 (39-43)
Performance trace analysis
 MQSI V2 22 (28-33)

Queue Manager
 S/390 18 (3-7)

Topic Issue (page)
 Unix 22 (22-28)
Queue Names
 CICS 19 (6-10)
 MQSI V2 23 (9-10)
Queues
 OS/390 25 (24-31)
Quick Start 20 (25-43)

Response times 33 (33-43)

Set authorities scripts 36 (3-6)
Su 27 (46-47)
System management
 OS/390 23 (11-29)
System resources
 Unix 30 (3-6)

TCP/IP channels
 Reliability 31 (3-8)
Training 19 (33-43)
Transaction coordination 30 (22-38)
Transaction integrity 20 (21-24)
Transaction processing 14 (12-17)
Triggering 32 (13-22)
 Batch jobs on OS/390 36 (28-37)

Unix 17 (3-15)
Utilities 24 (41)

Wireless applications 19 (11-32)
Workflow
 Concepts and techniques 15 (42-43)
 MQSI 32 (33-47)
Workload balancing
 Cluster queue 27 (3-5)
Wrappers 31 (21-36)

XML messages
 MRM 22 (3-4)

CICS news

CommerceQuest has announced the
CommerceQuest CICS Process Integrator
which accesses, exposes, and re-integrates
CICS transactions and VSAM files via XML,
supporting existing applications and data
while creating new and more modern
interfaces without conversions or
migrations.

The software will let sites graphically
assemble existing CICS transactions and
distributed applications into new business
processes, access and expose VSAM data
stores using XML, and XML-enable CICS
and batch COBOL programs.

It will also integrate distributed systems with
CICS and VSAM via WebSphere MQ,
HTTP/S, and TCP/IP and provide end-to-
end visibility of all transactions.

For further information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL 33607, USA.
Tel: (813) 639 6300.
URL: http://www.commercequest.com/
business_process_integrator.asp.

* * *

Candle has announced immediate support for
z/OS 1.3 and reaffirmed its support of IBM’s
Workload Licence Charges software pricing
structure for CICS, DB2, and IMS.

Day-one support includes OMEGAMON II
for MVS, CICS, DB2, IMS, DBCTL, SMS
and mainframe networks; OMEGAMON XE
for Sysplex, CICSplex, DB2plex, IMSplex,
UNIX Systems Services, OS/390, CICS and
DB2; OMEGAMON DE; DB/EXPLAIN,

DB/DASD, DB/SMU, DB/WORKBENCH,
DB/QUICKCHANGE and DB/QUICK
COMPARE; OMEGAVIEW TN3270,
OMEGACENTER Gateway, AF/
OPERATOR and AF/REMOTE;
OMEGAMON XE Management Pac for
MQSeries; CL/SUPERSESSION and CL/
CONFERENCE; and PQEdit for MQSeries.

The company also supports new CICS
Transaction Service for z/OS Version 3,
covering OMEGAMON XE for CICS,
OMEGAMON XE for CICSplex, and
OMEGAMON II for CICS.

Meanwhile, the Candle Workload Licence
Charges pricing support extends to CICS,
DB2, and IMS solutions for sites using z/OS
1.3 and IBM’s reporting tools and can
provide an IBM invoice as proof of pricing.
For sites with ongoing maintenance, the
company will negotiate the maintenance level
based on the licensed subcapacity as shown
by the IBM invoice and subcapacity report.

Computer Associates has also announced
first-day support for z/OS Version 1 Release
3, coinciding with the general availability of
the operating systems, as well as with the new
zSeries 800 entry-level servers.

For further information contact:
Candle, 201 N Douglas St, El Segundo, CA
90245, USA.
Tel: (310) 535 3600.
URL: http://www.candle.com.
Computer Associates, One Computer
Associates Plaza, Islandia, NY 11749, USA.
Tel: (631) 342 6000.
URL: http://ca.com/products/zos_e.

� xephon

	Triggering batch jobs on OS/390
	Global transactions with MQSeries and Oracle, part 2: set-up and configuration
	Configuring MQSeries with Microsoft Cluster Server, part 2: installation and configuration
	Enhancing MQSeries set authorities scripts
	PUT/GET using Correl-ID
	MQSI V2 database administration tips
	July 2000 - June 2002 index
	CICS news

