

© Xephon plc 2002

September 2002

39

In this issue

MQ
u

p
d

ate

3 Configuring a Web Client on
Windows NT using IIS PWS Web
Server: part two – testing

12 Heartbeat: channel monitoring tool
for MQ clusters

17 WebSphere MQSeries Integrator
cross-reference

27 MQSI exception processing:
request/reply messages: part two –
subflows

37 Maximizing message availability
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Configuring a Web Client on Windows NT using IIS
PWS Web Server: part two – testing

Continuing last month’s article on configuring a Web Client on Windows
NT using PWS Web Server, we conclude here with a test example.

TESTING WITH WEB CREDIT EXAMPLE
Please note that from here on, <MQWFDir> should be replaced with the
actual MQSeries Workflow root directory (eg C:\Program Files\MQSeries
Workflow).
If you are not using the default configuration (as in this case) you must
modify the FDL (<MQWFDir>\scenario\WebCredit\WebCredit.fdl) to
direct the user-defined Program Execution Server to the queue manager
and queue that you selected, and update the CustomerUPES.properties
file to reflect your environment.
Make sure your Web server (or the user ID that the Web server uses) has
connect authorization to DB2, otherwise the JSPs cannot read data from
DB2 (this includes adding the file db2java.zip to the Web server’s
CLASSPATH).
• Download the WebCredit example from http://www-4.ibm.com/

software/ts/mqseries/txppacs/wa82.html to a temporary folder, eg
TMP.

• Unzip the file wa82.zip and copy the contents under the directory
scenerio\WebCredit\… to C:\Program Files\MQSeries Workflow\
scenario directory.

• Create the customer database:
– open the DB2 Command Centre
– copy the contents of the file <MQWFDir>\scenario\

WebCredit\CreateDBx.sql into the Command Centre (where x
is ‘6’ for DB2 6.1 and ‘7’ for DB2 7.1)

– press Ctrl+Enter in the Command Centre. This executes all the

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

commands in the SQL file and creates the database as well as the
two tables in the database

– close the DB2 Command Centre.
• Copy the HTML/JSP files to the Web Client directories. From the

scenario directory copy the contents of the starter directory to the Web
Client’s webpages\starter directory and the contents of the program’s
directory to the Web Client’s webpages\programs directory.
If the Web Client that comes with MQSeries Workflow 3.3 is used the
destination root directory has to be changed to <MQWFDir>\
cfgs\fmc1\WebClient\webpages, where fmc1 is the configuration ID
under which the Web Client has been installed.

• Modify the external process start pages. If you are using the Web Client
that ships with MQSeries Workflow 3.3, the pages that start the
process have to be modified. The Web Client in MQSeries Workflow
3.3 is usually configured to include the workflow configuration ID
in its URL (eg /MQWFClient-FMC). This means that all occurrences
of /MQWFClient/ have to be replaced with
/MQWFClient-<CFGID>/, where <CFGID> is the ID under which
the Web Client has been configured, eg FMC1.
The following files in the starter directory have to be modified (look
for the <form> tag):
– WebCreditRequest.html
– WebCreditRequest_NewCustomer.html
– WebCreditRequest_IDDoesNotExist.html
– WebCreditRequest_ExistingCustomer.jsp
– all other JSPs in the folder.

• Set-up for the Java-based UPES.
In the following steps <FMCQM> is used as the name of Workflow’s
queue manager. Please substitute your actual name – FMCQM1 –
whenever you see this placeholder.
To create the queue for the user-defined PES:
– Open the MQSeries Explorer.

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

– Make sure your queue manager is running (default: <FMCQM>).
– Select Console Root\IBM MQSeries\Queue Managers\

<FMCQM>\Queues.
– In the tree on the left, right-click Queues and select New/Local

Queue.
– For queue name enter WEBCREDIT (in uppercase) and click

OK.
– In the dialog box that appears click Share in Cluster.
– In the dialog box that appears select FMCGRP in the Cluster

combo box and click OK.
– Optionally, setup triggering for the UPES (it starts the UPES

automatically when a new message arrives – see Triggering).
– Close the MQSeries Explorer.

• Update the batch files for the CustomerUPES.
– Find the batch files in <MQWFDir>\scenario\

WebCredit\CustomerUPES.
– Update the file env.bat to reflect your environment:

• JAVA_HOME – the top-level directory of the JDK
 REM **set JAVA_HOME=d:\Java\IBMJDK13
 set JAVA_HOME=c:\Jdk1.3.1

• XERCES_HOME – the directory where xerces.jar (XML
parser for Java) is stored

 REM **set XERCES_HOME=d:\fmcwinnt\smp\dpxml
 set XERCES_HOME=C:\Program Files\MQSeries
 Workflow\SMP\Dpxml

• DB2_HOME – the top-level directory of the DB2
installation

 REM **set DB2_HOME=d:\sqllib
 set DB2_HOME=C:\Sqllib

• MQ_HOME – the top-level directory of the MQSeries
installation

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 REM **set MQ_HOME=d:\Programs\MQSeries
 set MQ_HOME=C:\Progra~1\MQSeries

• JAMES_HOME – the top-level directory of the Java
Apache Mail Enterprise Server (this is optional).

• Make sure that you have already imported the FDL file that contains
the STARTER user ID (<MQWFDir>\scenario\
credit\starter\starter.fdl), which is contained in the MQSeries
Workflow Web Client.
fmcibie -uADMIN -ppassword -o -t -i
<MQWFDir>\scenario\credit\starter\starter.fdl -y FMC1

If you get any errors try the following:
cd <MQWFDir>\scenario\credit\starter\
fmcibie -uADMIN -ppassword -o -t -i starter.fdl -y FMC1

• Remember to mention the configuration ID – in this case FMC1– if
it is not set as the default.

• Make sure that you have configured the Web Client
<MQWFDir>\cfgs\<CFGID>\WebClient\WebClient.properties for
the MQWF 3.3 version of the Web Client, to allow anonymous
process starts using this STARTER user-ID.
Check the following corrections that need to be made to the
WebClient.Properties file.

 #Logfile=e:/fmcwinnt/cfgs/fmc/log/servlet.log
 Logfile=C:/Program Files/MQSeries Workflow/cfgs/fmc1/log/servlet.log
 Make JSP viewer as Default Viewer
 # JSPViewer uses JSPs instead of HTML template files
 #DefaultViewer=com.ibm.workflow.servlet.client.JSPViewer
 DefaultViewer=com.ibm.workflow.servlet.client.JSPViewer

Correct:
 #StarterUserID=STARTER
 #StarterPassword=password
 #StarterSystemGroup=FMCGRP
 #StarterSystem=FMCSYS
 StarterUserID=STARTER
 StarterPassword=password
 StarterSystemGroup=FMCGRP1
 StarterSystem=FMCSYS1

Uncomment:

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 #EnableTemplatelists=true
 #EnableInstancelists=true
 #EnableWorklists=true
 EnableTemplatelists=true
 EnableInstancelists=true
 EnableWorklists=true

Uncomment:
 #AutoRefresh=false
 AutoRefresh=false
 # MQWF runtime database name, user ID and password of the DB2
user.
 #Database = FMCDB
 #DB2User = db2admin
 #DB2Password= db2admin
 Database = FMCDB1
 DB2User = db2admin
 DB2Password= db2admin

• To modify C:\jakarta-tomcat-3.2.3\bin\tomcat.bat add the following
line at the beginning of the file:

 set JAVA_HOME=c:\jdk1.3.1

After:
 set CLASSPATH=%CP%
 echo Using CLASSPATH: %CP%
 echo

add:
 set
 CLASSPATH=%CP%;c:\Progra~1\MQSeri~1\bin\Java33ØØ\fmcojagt.jar;c:\
 Progra~1\MQSeri~1\bin\fmcohcli.jar

• To register the servlet with the servlet container for servlet API 2.2
and later, create a Web Application in your container with root URI/
MQWFClient and document root ConfigurationRootDirectory/cfgs/
ConfigurationID/webpages.
– create an alias with MQWFClient-FMC1 pointing to C:\Program

Files\MQSeries Workflow\cfgs\fmc1\WebClient\
webpages.

– in C:\jakarta-tomcat-3.2.3\bin\server.xml add <Context path=/
MQWFClient-FMC1 docBase=C:/Program Files/MQSeries

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Workflow/cfgs/fmc1/WebClient/Webpages crossContext=true,
debug=9, reloadable=false, trusted=false /> before </
ContextManager> </Server>. (Note that the leading forward
slash (/) and long names containing blanks have to be used.)

– in C:\Program Files\MQSeries Workflow\cfgs\fmc1\
WebClient\webpages\web.xml:

 @ enable if you want to use a configuration file
 <init-param>
 <param-name>ConfigurationFile</param-name>
 <param-value>c:/fmcwinnt/WebClient/WebClient.properties</
 param-value>
 </init-param>
 @
 -->
 <init-param>
 <param-name>ConfigurationFile</param-name>
 <param-value>C:/Program Files/MQSeries Workflow/cfgs/fmc1/
 WebClient/WebClient.properties</param-value>
 </init-param>
 </servlet>

• Import the process model into MQSeries Workflow
 fmcibie -uADMIN -ppassword -o -t -i
 <MQWFDir>\scenario\WebCredit\WebCredit_UPES.fdl -y FMC1

Running the scenario
• Run the batch job START_MQ_FMC1 to start the queue manager,

MQSeries trigger monitor, and MQSeries command server for
configuration FMC1. It will also start two DOS windows – do not
close them.

• Start the MQ Workflow Server as an NT service:
– go to Start>Settings>Control Panel>Services>; select MQ Series

Workflow 3.3- FMC1; click start; you will see a prompt saying
that the service has started.

• Start Tomcat. Go to C:\jakarta-tomcat-3.2.3\bin and click on
Startup.bat. This will pop up another window. Do not close it.

• Start the user-defined PES. This will pop up another window. Do not
close it. This step is only necessary if you use the Java-based UPES.
Locate the file CustomerUPES.bat in the the directory

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

<MQWFDir>\scenario\WebCredit\CustomerUPES.
Start the UPES using the CustomerUPES.bat batch file. To demonstrate
how MQSeries holds on to a message it’s possible to defer starting the
UPES until a message has arrived in the queue (eg after the first activity
in the process has been executed).
If you want to shut down the Customer UPES you can use the
shutdown script that is provided in <MQWFDir>\
scenario\WebCredit. Since this version of the UPES is implemented
with Synchpoint control it is also possible to kill just the UPES (it may
take a short while for MQSeries to clean up its resources, however).

• Use the Web browser to start a new process:
– Point your browser to http://Localhost/MQWFClient-FMC1/

starter/WebCreditRequest.html.
If you get a ‘Page not found error HTTP 404’ it could be possible
that the Workflow server is not running. Please check and start
the servers using the fmcamain utility.
If everything is fine the browser opens a window requesting a
customer ID or select New Customer. Click on New Customer.

– You will be prompted to enter your details. The example
WEBCREDIT is a very basic version so only enter valid
information. For example, do not put commas or currency
symbols in the amount field.

– Once the form is submitted you will receive a tracking-ID and
the system thanks you for your efforts.

– Now open another window and point your browser to http://
Localhost/MQWFClient-FMC1/RTC.html. This prompts for
user ID and password. Enter user-ID ‘ADMIN’, password
‘password’, and system group ‘FMCGRP1’.

– You can see the application you have sent in the work list of
ADMIN, but you cannot really start the work item.

– Log off (the button is located in the top right corner) and log on
again as WEBBANK_CLERK. Enter user-ID

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

‘WEBBANK_CLERK’, password ‘password’, and system group
‘FMCGRP1’.

– Now you can start the work item. Try using the various options
available.

– Sometimes, if the risk involved is large, you have to log on as
WEBBANK_LOANMANAGER to approve a loan. Enter user-
ID ‘WEBBANK_LOANMANAGER’, password ‘password’,
system group ‘FMCGRP1’.

REGISTERING THE UPES FOR AUTOMATIC START THROUGH
MQSERIES (TRIGGERING)
• Open the MQSeries Explorer.
• Open the object tree to Console Root\IBM MQSeries\Queue

Managers\<QMNAME>\Advanced\Process Definitions where
<QMNAME> is the name of your queue manager (the default is
FMCQM).

• Right-click Process Definitions and select New\Process Definition.
• Enter the following values (leave unspecified fields empty):

– Process Definition Name: WEBCREDIT.UPES
– description: UPES for the WebCredit Example Process
– application type: Windows NT
– application identifier: <MQWFDir>\scenario\WebCredit\

CustomerUPES\run_trigger.bat.
• Press OK.
• Open the object tree to Console Root\IBM MQSeries\Queue

Managers\<QMNAME>\Queues.
• Right-click the WEBCREDIT queue.
• Select the Triggering tab.
• Enter the following values (leave unspecified fields empty):

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

– trigger control: on
– trigger type: first
– trigger depth: one
– trigger message priority: 0
– initiation queue name: FMCTRIGGER
– process name: WEBCREDIT.UPES.

• Make sure the batch file <MQWFDIR>\scenario\WebCredit\
CustomerUPES\run_trigger.bat reflects your environment (adapt
the PATHs in the various variables).

• Next time a message arrives in the UPES queue the UPES will be
started automatically.

The Readme.html located in the WebCredit folder provides useful
information on how to configure the example.

APPENDIX A

How to add/create environment variables in Windows NT
• Start the control panel.
• Select system.
• Click the Environment tab.
• On the Environment tab in the list where you want to add the variable,

click any existing variable name and type, appending the value you
want to Add.

• If you want to create a new user variable, type the name of the new
variable in the variable box and type the value in the value box.

• Click Set.
• You have to restart the computer to make the new settings effective.

How to add virtual directory in IIS/PWS
• Click on the IIS/PWS icon.

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Click on Advanced Options.
• Click on Add.
• Type the full directory path, eg c:\jakarta-tomcat-3.2.3\bin\

win32\i386.
• Type an alias, eg ‘jakarta’.

How to edit the Registry
• On Windows NT click Start > Run.
• Type ‘regedit’.
Be very careful when editing it!
Chandra Upadhyayula
Programmer Analyst (USA) © Blue Cross Blue Shield of Tennessee 2002

Heartbeat: channel monitoring tool for MQ clusters

One of the most difficult aspects of monitoring an MQSeries cluster is the
fact that channels between queue managers in the cluster are dynamically
created. There is no static list of channels against which a monitoring tool
can check to make sure throughput is being maintained. Furthermore, it
would be inefficient for such a tool to test all possible pathways in a cluster.
From this point on, the sender/receiver channel pair that allows a message
to flow from one queue manager to another within the cluster will be
referred to as a pathway. Since any queue manager in the cluster can
communicate with any other queue manager also within the cluster, the
potential number of sender/receiver channel pairs is n^2-n. Most of these
potential pathways are never exploited by the cluster because the typical
MQSeries application sends messages to only a subset of a cluster’s queue
managers.
Heartbeat is a tool that will monitor the movement of messages throughout

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the cluster and report via e-mail whenever issues arise. To better understand
how Heartbeat decides which pathways to test, some subtle details about
clusters need to be explained. First, it is important to draw a distinction
between dynamically created channels and static channels. In a traditional,
non-clustered MQSeries environment messages are put to a remote queue
definition, which is associated with a transmission queue. Likewise a
sender channel on the queue manager is associated with this transmission
queue. This is how the queue manager knows which channel to send the
message across. This channel is considered static because it was manually
defined at some point. This definition will always exist within the queue
manager no matter what the state of the channel or how long it has remained
unused.
Another important characteristic about static channels is that while a static
channel may have no status its definition always exists. This can be
illustrated with two commands issued within runmqsc. Issuing display
channel(*) will list all static channels that have been defined for the queue
manager, regardless of their status. display chstatus(*), on the other hand,
displays only those channels which have some status. These states cover
varying conditions the channel may be in: initializing, binding, starting,
running, stopping, stopped, retrying, or requesting. However, if the channel
has no status whatsoever, it won’t appear in the list. A good example of this
is when a channel is first defined; because a start channel(channelname)
has never been issued, the queue manager has not yet evaluated the
condition of this channel.
Dynamic channels, as the name indicates, are created automatically by the
queue manager only when they are needed to send a message along a
pathway in the cluster for which no channel definition already exists. The
information necessary to create this channel is gathered from one of the full
repositories for the cluster. The queue managers at each end of the pathway
create a cluster sender channel and cluster receiver channel respectively.
While a channel definition is created it is important to note that dynamic
channels never appear in the list of channels generated by the display
channel(*) command. This is what makes it so difficult for a monitoring
tool directly to test channels in a cluster; there is no way to obtain a list of
all the channels a clustered queue manager has created dynamically. The
display chstatus(*) command, while it does give a list of dynamic
channels, only lists those which have a status. As it is possible for dynamic

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

channels to exist that have no state, this too is an unreliable method for
obtaining a list of dynamic channels.
Note that while cluster channels can only be created dynamically it is
possible for both clustered and non-clustered channels to be static. The
most obvious example of this is the cluster channels defined between any
member of the cluster and one or more full repositories. When adding a
new queue manager to a cluster, only a cluster sender and receiver channel
to one of the full repositories needs to be created. At this point, the
repository can provide the new queue manager with information about the
structure of the cluster along with channel definitions to all the other full
repositories. Whenever the new queue manager needs to communicate
with other members of the cluster it dynamically creates the necessary
channels. However, the cluster sender and cluster receiver channel between
the new queue manager and the full repository are static. These channels
will appear in the list from the display channel(*) command and their
definitions will remain even if the queue manager is removed from the
cluster (whereas all dynamic channel definitions will be erased).
Heartbeat will ensure that only useful pathways are tested by exploiting
another fact about MQSeries clusters: the definition for any dynamically
created cluster channel will be removed after 90 days of inactivity. Armed
with this fact it is possible to test only those channels for which messages
have travelled across in the last 90 days rather than all possible channels.
But, as explained before, obtaining this list cannot be done through
straightforward means. Instead, it will be done indirectly by making use of
another runmqsc command: display clusqmgr(*), which returns a list of
all queue managers in the current queue manager’s repository. If this
command is issued on a queue manager that is a full repository for the
cluster, it will contain a list of all queue managers in the cluster. If it isn’t
a full repository, this queue manager’s partial repository will only contain
those queue managers with which it has communicated in the last 90 days.
Accordingly, the pathways between this queue manager and any queue
managers not on its list of cluster queue managers shouldn’t be tested, as
these pathways will not have been used in the last 90 days. To determine
the names of the channels associated with these queue manager names, a
particular naming convention will be used throughout the cluster. To
illustrate, imagine queue managers called TEST1 and TEST2. These are
both full repositories for the cluster called CLUS1. The cluster channels

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

we statically define between the two will be named as follows:
• TEST1 cluster sender channel: TO.TEST2.
• TEST1 cluster receiver channel: TO.TEST1.
• TEST2 cluster sender channel: TO.TEST1.
• TEST2 cluster receiver channel: TO.TEST2.
Those who are familiar with setting up clusters will notice that this
convention actually follows the one described in the MQSeries Queue
Manager Clusters guide. As the name indicates, Heartbeat will be sending
messages across these channels to determine their condition. These
messages will contain a timestamp which allows Heartbeat to determine
a roundtrip time for the message. But these messages will need to be put
into a queue and picked up again from a reply queue. Keeping with the
above example, the following queues need to be defined:
• TEST1: queue called TO.TEST1, member of the CLUS1 cluster.
• TEST1: queue called TEST1_HB_REPLY, member of the CLUS1

cluster.
• TEST2: queue called TO.TEST2, member of the CLUS1 cluster
• TEST2: queue called TEST2_HB_REPLY, member of the CLUS1

cluster.
To generalize, the following objects need to be defined on all queue
managers in the cluster for Heartbeat to function:
• Cluster sender channel(s) defined as TO.remote_qmgrname, where

remote_qmgrname is the name of the queue manager that this sender
channel is pointing at.

• Cluster receiver channel(s) defined as TO.this_qmgrname, where
this_qmgrname is the name of the queue manager this channel is
defined on.

• A clustered local queue with the same name as the cluster receiver
channel(s), TO.this_qmgrname.

• A clustered local queue called this_qmgrname_HB_REPLY, where
this_qmgrname is the name of the queue manager this queue is
defined on.

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The flow of the Heartbeat program is relatively straightforward. When
started, Heartbeat queries the queue manager for the list of all clustered
queue managers it has communicated with in the last 90 days by issuing
the display clusqmgr(*) command. Because of the naming convention
Heartbeat is able to infer the name of the channel that is used to communicate
with each queue manager in the list. The naming convention also ensures
that a clustered queue exists on each remote queue manager by the same
name as the channel used to deliver the message to that queue. In other
words, if queue manager TEST1 sees queue manager TEST2 we know the
cluster sender channel that TEST1 uses to send messages to TEST2 is
called TO.TEST2, and there exists a clustered queue on TEST2 also called
TO.TEST2. By putting a message in the TO.TEST2 queue from queue
manager TEST1 Heartbeat ensures that the message will travel over the
TO.TEST2 channel. A second program, HBreply.pl, is triggered when the
message lands on the TO.TEST2 queue. This program simply puts the
message to the queue specified in its ReplyToQ parameter. In this case it
would be TEST1_HB_REPLY, as the message originated from queue
manager TEST1. Heartbeat, meanwhile, is waiting for the message to
return, and when it does, the timestamp in the message is compared with
the current system time. This yields an accurate measure of the roundtrip
time that the message took to travel through the cluster. Heartbeat will only
wait a predetermined amount of time for a given message to return, at
which time Heartbeat will send out a detailed e-mail indicating that there
is a problem with the cluster and which channels are affected.
To start Heartbeat from the command line the following parameters must
be specified:
 perl heartbeat.pl qmgrname mailto timeout wait_between_tests
logfile

• qmgrname – the name of the queue manager that Heartbeat should
connect to. Note, this parameter must be specified even if the queue
manager to which Heartbeat should connect is the default queue
manager.

• mailto – the e-mail address of the person who should receive all status
messages from Heartbeat.

• timeout – the amount of time in seconds that Heartbeat should wait
for a message it sends out to be returned. When this time expires, an
e-mail message will be sent out.

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• wait_between_tests – the amount of time in seconds that Heartbeat
should wait before testing all the channels again. If this value is very
small you may experience slowdown in the cluster’s message
throughput because of the load that Heartbeat will be putting on the
channels.

• Logfile – the fully qualified path and filename that Heartbeat’s log will
be written to. This log is in addition to the e-mail notifications.

Ideally hbreply.pl should be triggered when a message arrives on each of
the TO.qmgrname queues in the cluster. It only takes a single parameter:
the name of the queue manager it should connect to – perl hbreply.pl
qmgrname.
The code for Heartbeat and Hbreply can be found on the Web at
www.xephon.extras/heartbeat.txt.
Brandon Duncan
Founder, MQSeries.net (USA) © Xephon 2002

WebSphere MQSeries Integrator cross-reference

THE PROBLEM
When I’ve visited clients who have a large number of WebSphere MQSeries
Integrator (WMQSI) flows and nodes it’s often been very difficult to see
the wood for the trees. A simple request to find and change a flow can take
– and indeed has taken – many hours.

SUGGESTED SOLUTION
What was needed was some sort of cross-reference listing of all the flows
with their respective nodes, and here is one way to do just that.
Unfortunately there is no official IBM documentation that tells us how and
where this sort of data is kept. A look at the databases used by WMQSI did
not reveal what was required.
Instead I looked at the Control Centre and the option that allows you to

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

export your workspace (eg click File and select ‘export all in workspace’).
This creates an XML file with the structure shown below.

WMQSI-EXPORTED XML FILE
<?xml version="1.Ø" encoding="UTF-8"?>
<!DOCTYPE XMI SYSTEM "mqsi.dtd" >
<XMI xmi.version="1.Ø">
 <XMI.header>
 <XMI.documentation>
 <XMI.owner>ruud</XMI.owner>
 </XMI.documentation>
 </XMI.header>
 <XMI.content>
 <MessageProcessingNodeType xmi.label="FFFFFFFF">
 <MessageProcessingNode xmi.label="NNNNNNNN">

 <AttributeGroup[1]>
 <Attribute value="QQQQQQQQ"/>
 </AttributeGroup[1]>
 <AttributeGroup[2]>
 <Attribute value="DDDDDDDD"/>
 </AttributeGroup[2]>
 <Attribute>
 <XMI.extension>
 <ComputeMetadata>
 <TableDescriptor dataSource="DSDSDSDS"
 tableName="TBTBTBTB"/>
 </ComputeMetadata>
 </XMI.extension>
 </Attribute>
 </MessageProcessingNode>

 </MessageProcessingNodeType>
 </XMI.content>
</XMI>

Where:
• FFFFFFFF represents the flow name.
• NNNNNNNN represents the node name.
• QQQQQQQQ represents the queue name.
• DDDDDDDD represents the domain name.
• DSDSDSDS represents the data source name.
• TBTBTBTB represents the table name.
This is obviously a subset of all the various tags and attributes that are

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

available. The next task was to find an XML parser in order to analyse the
export file. I decided to use WMQSI itself!

MQ AND MQSI REQUIREMENTS
Define four local queues on the broker’s queue manager.
• Error queue: MQSIXREF_ERR.
• Input queue: MQSIXREF_IN with backout queue MQSIXREF_ERR.
• Output queue: MQSIXREF_SIM, which is for a ‘simple’ xref.
• Output Queue: MQSIXREF_DTL, which is for a ‘detailed’ xref.
A simple message flow was created, as shown in Figure 1, with the
following attributes:
• The MQInput node MQSIXREF_IN has DOMAIN=BLOB and queue

MQSIXREF_IN.
• ‘Strip’ is a compute node that strips off the first two lines, which

contain the XML version number and DTD details. This is required
to enable the later compute nodes to work.

• ‘Change to XML’ is a ResetContentDescriptor node to change the
domain back to XML.

• ‘Do 2 things’ is a FlowOrder node.
• ‘SimpleXref’ is a compute node which analyses the export data and

Figure 1: A simple message flow

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

produces a simple cross-reference of flows and nodes.
• ‘DetailedXref’ is like SimpleXref but also outputs details of the

message domain, queue name, data source, and table name.

Compute node Strip
This is simply a one-line statement to remove the two unwanted lines:
 SET OutputRoot."BLOB"."BLOB" = SUBSTRING(InputRoot."BLOB"."BLOB"
 FROM 74);

Ensure you tick the ‘Copy message headers’ radio button.

Compute node SimpleXref
The compute node used to analyse the export file looks is detailed below.
Ensure that you tick the ‘Copy message headers’ radio button – this
generates some ESQL (which has been omitted).
• Enter SQL below this line. SQL above this line might be regenerated,

causing any modifications to be lost:
 DECLARE MPN INTEGER;
 DECLARE NODES INTEGER;
 DECLARE J INTEGER;
 DECLARE K INTEGER;

• Calculate the total number of flows:
 SET MPN =
 CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[]);
 SET OutputRoot."XML".XREF.Flows.TotalNumber = MPN;

• Loop round and pick up the flow name:
 SET J = 1;
 WHILE J <= MPN DO
 SET OutputRoot.XML.XREF.Flow[J].Name =
 InputBody."XMI"."XMI.content".MessageProcessingNodeType[J]
 .(XML.attr)"xmi.label";
 SET K = 1;

• Calculate the total number of nodes in this flow:
 SET NODES =
 CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J]

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 .MessageProcessingNode[]);

• Loop round and pick up the node names:
 WHILE K <= NODES DO
 SET OutputRoot.XML.XREF.Flow[J].Node[K] = CAST(K AS CHARACTER)
||

 InputBody."XMI"."XMI.content".MessageProcessingNodeType[J].
 MessageProcessingNode[K].(XML.attr)"xmi.label";
 SET K = K + 1;
 END WHILE;
 SET J = J + 1;
 END WHILE;

Compute node DetailedXref
If additional information is required the above compute node can easily be
changed. For example, you might want to extract the domain name and the
name of the input queue as well as the name of any databases and tables
being accessed.
• Enter SQL below this line. SQL above this line might be regenerated,

causing any modifications to be lost.
 DECLARE MPN INTEGER;
 DECLARE NODES INTEGER;
 DECLARE J INTEGER;
 DECLARE K INTEGER;
 DECLARE QS INTEGER;
 DECLARE DM INTEGER;
 DECLARE DB INTEGER;
 DECLARE QNAME CHARACTER;
 DECLARE DOMAIN CHARACTER;
 DECLARE DSOURCE CHARACTER;
 DECLARE TBNAME CHARACTER;

• Calculate the total number of flows:
 SET MPN =
 CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[]);
 SET OutputRoot."XML".XREF.Flows.TotalNumber = MPN;

• Loop round and pick up the flow name:
 SET J = 1;
 WHILE J <= MPN DO
 SET OutputRoot.XML.XREF.Flow[J].Name =
 InputBody."XMI"."XMI.content".MessageProcessingNodeType[J].
 (XML.attr)"xmi.label";

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 SET K = 1;

• Calculate the total number of nodes in this flow:
 SET NODES =
 CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].
 MessageProcessingNode[]);

• Loop round and pick up the node names:
 WHILE K <= NODES DO
 SET OutputRoot.XML.XREF.Flow[J].Node[K] = CAST(K AS CHARACTER) ||
 InputBody."XMI"."XMI.content".MessageProcessingNodeType[J].
 MessageProcessingNode[K].(XML.attr)"xmi.label";

• Attempt to pick up the queue name:
 SET QS = CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].
 MessageProcessingNode[K].AttributeGroup[1].Attribute[]);
 IF QS > Ø THEN
 SET QNAME = InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].

 MessageProcessingNode[K].AttributeGroup[1].
 Attribute[1].(XML.attr)"value";
 SET OutputRoot.XML.XREF.Flow[J].Node[K].QName = QNAME;

• Attempt to pick up the domain name:
 SET DM = CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].
 MessageProcessingNode[K].AttributeGroup[2].Attribute[]);
 IF DM > Ø THEN
 SET DOMAIN = InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].
 MessageProcessingNode[K].AttributeGroup[2].
 Attribute[1].(XML.attr)"value";
 SET OutputRoot.XML.XREF.Flow[J].Node[K].Domain = DOMAIN;
 END IF;
 END IF;

• Attempt to pick up the datasource name:
 SET DB = CARDINALITY(InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].

 MessageProcessingNode[K].Attribute."XMI.extension".
 ComputeMetadata.TableDescriptor[]);
 IF DB > Ø THEN
 SET DSOURCE = InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].
 MessageProcessingNode[K].Attribute."XMI.extension".

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 ComputeMetadata.TableDescriptor[1].(XML.attr)"dataSource";
 SET OutputRoot.XML.XREF.Flow[J].Node[K].DataSource = DSOURCE;

• Attempt to pick up the table name:
 SET TBNAME = InputBody."XMI"."XMI.content".
 MessageProcessingNodeType[J].
 MessageProcessingNode[K].Attribute."XMI.extension".
 ComputeMetadata.TableDescriptor[1].(XML.attr)"tableName";
 SET OutputRoot.XML.XREF.Flow[J].Node[K].TableName = TBNAME;
 END IF;
 SET K = K + 1;
 END WHILE;
 SET J = J + 1;
 END WHILE;

Result from compute node SimpleXref
When the message has been placed on the output queue run a utility to read
the message and output it to an XML file.
Here, the total number of flows is 11. The first four have been shown.
Note that ‘CatchTrace’ is a sub-flow within ‘MyException’ and a flow in
its own right. ‘MQSIXREF’ is the flow used to create the export file.
Note also that each of the node names has been preceded with a number to
help show the number of nodes within a flow, but (unexpectedly) it has been
displayed in reverse order.
- <XREF>
- <Flows>
 <TotalNumber>11</TotalNumber>
 </Flows>
- <Flow Name="MyException">
 <Node>1CatchTrace1</Node>
 <Node>2Throw2</Node>
 <Node>3Filter1</Node>
 <Node>4MQOutput1</Node>
 <Node>5Compute1</Node>
 <Node>6MQInput1</Node>
 </Flow>
- <Flow Name="CatchTrace">
 <Node>1Throw1</Node>
 <Node>2Trace1</Node>
 <Node>3TryCatch1</Node>
 </Flow>
- <Flow Name="MQSIXREF">
 <Node>1MQSIXREF_DTL</Node>

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 <Node>2MQSIXREF_SIM</Node>
 <Node>3DetailedXref</Node>
 <Node>4SimpleXref</Node>
 <Node>5Do 2 things</Node>
 <Node>6Change to XML</Node>
 <Node>7Strip</Node>
 <Node>8MQSIXREF_IN</Node>
 </Flow>
- <Flow Name="EX12">
 <Node>1AddOrder</Node>
 <Node>2AddCustomer</Node>
 <Node>3Throw1</Node>
 <Node>4Trace1</Node>
 <Node>5TryCatch1</Node>
 <Node>6E1Øout</Node>
 <Node>7E12in</Node>
 </Flow>

Result from compute node DetailedXref
The same four flows have been shown here, but this time with more detail.
Look out for the queue name, domain, DataSource, and TableName.
- <XREF>
- <Flows>
 <TotalNumber>11</TotalNumber>
 </Flows>
- <Flow Name="MyException">
 <Node>1CatchTrace1</Node>
 <Node>2Throw2</Node>
 <Node>3Filter1</Node>
- <Node>
 4MQOutput1
 <QName>E1Øout</QName>
 </Node>
 <Node>5Compute1</Node>
- <Node>
 6MQInput1
 <QName>TESTEXCEP</QName>
 <Domain>XML</Domain>
 </Node>
 </Flow>
- <Flow Name="CatchTrace">
 <Node>1Throw1</Node>
 <Node>2Trace1</Node>
 <Node>3TryCatch1</Node>
 </Flow>
- <Flow Name="MQSIXREF">
- <Node>
 1MQSIXREF_DTL

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 <QName>MQSIXREF_DTL</QName>
 </Node>
- <Node>
 2MQSIXREF_SIM
 <QName>MQSIXREF_SIM</QName>
 </Node>
 <Node>3DetailedXref</Node>
 <Node>4SimpleXref</Node>
 <Node>5Do 2 things</Node>
 <Node>6Change to XML</Node>
 <Node>7Strip</Node>
- <Node>
 8MQSIXREF_IN
 <QName>MQSIXREF_IN</QName>
 <Domain>BLOB</Domain>
 </Node>
 </Flow>
- <Flow Name="EX12">
- <Node>
 1AddOrder
 <DataSource>TEST</DataSource>
 <TableName>ORDER</TableName>
 </Node>
- <Node>
 2AddCustomer
 <DataSource>TEST</DataSource>
 <TableName>CUSTOMER</TableName>
 </Node>
 <Node>3Throw1</Node>
 <Node>4Trace1</Node>
 <Node>5TryCatch1</Node>
- <Node>
 6E1Øout
 <QName>E1Øout</QName>
 </Node>
- <Node>
 7E12in
 <QName>E12in</QName>
 <Domain>XML</Domain>
 </Node>
 </Flow>

CREATING A CROSS-REFERENCE: SUMMARY
All the steps required to produce the cross-reference are listed here:
• Start the Control Centre and create an empty workspace.
• Add all message flows to the workspace.

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Export all – this will export all flows that have been deployed as well
as those in your workspace.

• Use the IH03 Supportpac utility MQPUT2 to place the XML export
file on a queue, and feed the message through the WMQSI flow.

• Extract the message from the queues and save it as an XML file.
I used the amqsget sample as a model, and just added the write to a file.
• Click on the XML file to view the results in a browser window.

Known issues
The XML export file’s first two lines stop the compute node from working.
To overcome this problem an extra compute node was added (called Strip)
to strip them off.
WMQSI stores the code and comments of a compute node as XML
attributes.
If you use the ‘>’ or ‘<’ characters in your comments the XML parser gets
confused and produces an error. Ideally, WMQSI ought to store these as
‘>’ and ‘<’ strings.

CONCLUSION
The method I’ve used has been tested on both WMQSI V2.0.2 and V2.1
and has worked without any problems. The largest export file used was
1.7Mb in size with about 120 message flows.
To find out where a node is used all you do is open up the XML file in your
favourite browser and do a ‘find’. This file can be stored on the network
to allow everyone access to it or a local copy created by the developer.
Ideally, this sort of function should be available within the base product
itself.
If you found this article useful, or have suggestions for improving the
solution, then please let me know via e-mail: ruudvz@btclick.com.
Ruud van Zundert,
Independent Consultant (UK) © Xephon 2002

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

MQSI exception processing: request/reply
messages: part two – subflows

Last month we looked at the options for dealing with request/reply
messages. We continue here with specific reference to subflows.

USING THE MQRFH2 HEADER
The SupportPacs work well but some shops aren’t comfortable deploying
them into production systems because they’re not supported. Another way
of storing the reply information is to make use of the <usr> folder in the
MQRFH2 header. (Please refer to the MQ manual for a detailed description
of the MQRFH2 header.)
The theory is the same – save the reply information during the request flow
and retrieve the reply information during the reply flow, as shown in Figure
1. The ESQL of the compute node ‘Save ReplyInfo’ will save the reply
information into the usr folder on the MQRFH2, as below. Just in case
RFH2 header is not there:
SET OutputRoot.MQMD.MsgType = MQMT_REQUEST;
SET OutputRoot.MQMD.Format = MQFMT_RF_HEADER_2;

Set the RFH2 header:
SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = 'MQSTR ';

Figure 1: Saving and retrieving information

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Save the reply information:
SET OutputRoot.MQRFH2.usr.ReplyToQ = InputRoot.MQMD.ReplyToQ;
SET OutputRoot.MQRFH2.usr.ReplyToQMgr = InputRoot.MQMD.ReplyToQMgr;

Note that there is a bug in setting the RFH2 header if the incoming message
does not already have an RFH2 header appended. It does not work properly
when you choose to ‘Copy entire message’. In order for the above code to
work you need to select ‘Copy message headers’, not ‘Copy entire
message’. Then, in the ESQL, add the following to copy the body of the
incoming message:
SET OutputRoot.XML = InputRoot.XML;

On the reply flow, since the header is passed along with the message, the
compute node ‘Restore Reply Info’ simply needs to move the fields back
to the MQMD. Restore the reply information:
SET OutputRoot.MQMD.ReplyToQ = InputRoot.MQRFH2.usr.ReplyToQ;
SET OutputRoot.MQMD.ReplyToQMgr = InputRoot.MQRFH2.usr.ReplyToQMgr;

The trace file produced in this flow can be found at www.xephon.com/
extras/save.txt.
The beauty of using the <usr> folder is that there is no need to add a
SupportPac; additionally, the reply information always follows the message.
The message flow is simpler than when utilizing a SupportPac.
One thing to remember when using this method is to make sure all the queue
managers running on different tiers are at the version that supports this
MQRFH2 header – especially those shops running MQ for OS/390.

EXCEPTION HANDLING SUBFLOW
In this section we will begin to construct the exception handling subflow.
This subflow is built according to the specifications laid out previously.
Figure 2 illustrates the flow.
When an exception is caught it will follow this flow. The flow order node
‘Write Error before throw’ is there to make sure the error message and the
request message (or reply message) with error information inserted is
written out first. The MQOutput nodes will both write messages outside
the syncpoint such that the messages will be committed even if the
‘ReThrowError’ node throws an error later and rolls the message back to

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the input queue, for which we set a backout threshold of 1 with a
corresponding backout queue assigned. In this way the message will only
go through the message flow once.
The ESQL of the ‘WriteErrorMessage’ compute node is the same as the
one we used in the datagram message. The ESQL of the ‘Write Reply
Message with Error Info’ compute node is very similar. The only difference
is that the error information is inserted as part of the original message itself.
SET OutputRoot = InputRoot;

Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
/* Error number extracted from exception list */
DECLARE Error INTEGER;
/* Current path within the exception list */
DECLARE Path CHARACTER;
DECLARE ErrorType CHARACTER;
DECLARE ErrorTrans CHARACTER;
DECLARE ErrorText CHARACTER;
DECLARE SQLCode CHARACTER;
SET ErrorType = '';
SET ErrorTrans = '';
SET ErrorText = '';
/* First copy the MessageID to CorrelId for the Error Message if it is
a request */
IF InputRoot.MQMD.MsgType = MQMT_REQUEST THEN

SET OutputRoot.MQMD.CorrelId = InputRoot.MQMD.MsgId;
END IF;
/* Start at first child of exception list */

Figure 2: Exception handling subflow

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SET Path ='InputExceptionList.*[1]';
/* Loop until no more children */
WHILE EVAL('FIELDNAME(' || Path || ') IS NOT NULL') DO
 /* Check if error number is available */
 IF EVAL('FIELDNAME(' || Path || '.Number) IS NOT NULL') THEN
 /* Remember only the deepest error number */
 SET Error = EVAL(Path || '.Number');
 SET ErrorType = EVAL('FIELDNAME('||Path||')');

IF ErrorType = 'DatabaseException' THEN
 SET SQLCode = COALESCE(EVAL(Path || '.Insert[2].Text'),'');
END IF;

 SET ErrorTrans = EVAL(Path || '.Label');
 SET ErrorText = EVAL(Path || '.Text');
 IF ErrorType = 'UserException' THEN
 SET ErrorText = ErrorText || ' (' || (EVAL(Path ||
'.Insert.Text')) || ')';
 END IF;
 END IF;
 /* Step to last child of current element (usually a nested exception
list) */
 SET Path = Path || '.*[LAST]';
END WHILE; /* End loop */
SET OutputRoot.XML.Message.Exception.Type = ErrorType;
IF ErrorType = 'DatabaseException' THEN
 SET OutputRoot.XML.Message.Exception.SQLCode = SQLCode;
END IF;
SET OutputRoot.XML.Message.Exception.Number = CAST(Error AS
CHAR);
SET OutputRoot.XML.Message.Exception.SuspenseTimestamp =
CAST(CURRENT_TIMESTAMP AS CHAR);
SET OutputRoot.XML.Message.Exception.InboundQueue =

Figure 3:MQOutput node ‘To Requester’

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

InputRoot.MQMD.SourceQueue;
SET OutputRoot.XML.Message.Exception.Transaction = ErrorTrans;
SET OutputRoot.XML.Message.Exception.Reason = ErrorText;
--SET OutputRoot.XML.Message.Exception.DetailException =
InputExceptionList;

Since this message will be sent to the requester the detail of the exception
may not be needed, so I commented out the last part to make the message
shorter. But you can always copy it if you think it is required.
There is something sleek in the MQOutput node ‘To Requester’ shown in
Figure 3. On the Advanced tab we select from the drop-down list of
Destination Mode to Reply to Queue without specifying the queue
manager and queue name in the Basic tab, which we usually do. The
MQOutput node will then put the message to the queue specified in the
MQMD. This is similar to using DestinationList, which can provide some
dynamic values, depending on the MQMD of the message.

USING THE EXCEPTION SUBFLOW
The main difference in exception handling between a datagram and the
request/reply type of message is in where to attach the exception handling
subflow. For request messages the exception subflow is attached to the
catch terminal of the input node, which is the same for datagrams. Figure
4 provides an example.
For reply messages, as explained earlier, it is necessary for the reply
message to retrieve the reply information on the reply message flow first,

Figure 4: Exception subflow

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

before we pass on the message to the rest of the message flow. This will
ensure that, when the exception is caught, the reply message will be
forwarded with the error information populated, to the correct reply queue
where the requester is waiting for it. So the exception handling subflow for
the reply message will be appended not to the catch terminal of the input
node but to the catch terminal of a try-catch node that we wired right after
the compute node that restored the reply information on the reply message
flow. Figure 5 illustrates the setup.
Here the ‘Restore Reply Info’ compute node will restore the reply
information as described previously. In this example we are making use of
the MQRFH2 header to store and restore the reply information. The ESQL
consists of just two statements:
• Restore the reply information:
 SET OutputRoot.MQMD.ReplyToQ = InputRoot.MQRFH2.usr.ReplyToQ;
 SET OutputRoot.MQMD.ReplyToQMgr = InputRoot.MQRFH2.usr.ReplyToQMgr;

• Set the MsgType equal to reply just in case:
SET OutputRoot.MQMD.MsgType = MQMT_REPLY;

We also set the message type to reply (in case it is not set up properly by
the server program that processed the request) because we will check this
field in the exception logic. We only need to copy the Msg-ID into the
Correl-ID if the message type is a request. For a reply message the server
program should have already copied this field when it constructed the reply
message.

Figure 5: ‘Restore Reply Info’ node

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

A try catch node is connected right after this so that when an exception
happens later in the flow the message will roll back to the try catch node;
it will be caught by the catch terminal of this node and the reply information
will be preserved.
In the exception subflow, when it has written out both the error message
and the reply message populated with error information, it will do a throw
and the message will then be rolled back to the input queue of the input node
and subsequently to the backout queue.
The rest of the flow in this example will simulate a bogus user exception
– the same as the one used in the datagram example. When a reply message
encounters an error, messages are written out. The sample reply message
is like this:
<Message>
<MsgBody>a sample reply message</MsgBody>
</Message>

Here is a trace output from the exception handling subflow.
*** Exception Trace generated at 2ØØ1-Ø9-2Ø 18:34:15.961
(
 (Øx1ØØØØØØ)UserException = (
 (Øx3ØØØØØØ)File = 'F:/build/S2Ø2_P/src/DataFlowEngine/
BasicNodes/ImbThrowNode.cpp'
 (Øx3ØØØØØØ)Line = 229
 (Øx3ØØØØØØ)Function = 'ImbThrowNode::evaluate'
 (Øx3ØØØØØØ)Type = 'ComIbmThrowNode'
 (Øx3ØØØØØØ)Name = 'eØd5f1f2-e8ØØ-ØØØØ-ØØ8Ø-a1Ø328c4362e'
 (Øx3ØØØØØØ)Label = 'Alex Test2.Throw1'
 (Øx3ØØØØØØ)Text = 'User exception thrown by throw node'
 (Øx3ØØØØØØ)Catalog = 'MQSIV2Ø1'
 (Øx3ØØØØØØ)Severity = 1
 (Øx3ØØØØØØ)Number = 3ØØ1
 (Øx1ØØØØØØ)Insert = (
 (Øx3ØØØØØØ)Type = 5
 (Øx3ØØØØØØ)Text = 'The mandatory field of AddOrder.xml is
missing!!'
)
)
)

An error message is written out to the error queue as shown here:
<Exception>
<Type>UserException</Type>
<Number>3ØØ1</Number>

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<SuspenseTimestamp>TIMESTAMP '2ØØ1-Ø9-2Ø 18:34:15.991'</
SuspenseTimestamp>
<InboundQueue>ALEX_REPLY_IN</InboundQueue>
<Transaction>Alex Test2.Throw1</Transaction>
<Reason>User exception thrown by throw node (The mandatory field of
AddOrder.xml is missing!!)</Reason>
<DetailException>
 <UserException>
 <File>F:/build/S2Ø2_P/src/DataFlowEngine/BasicNodes/ImbThrowNode.cpp</
File>
 <Line>229</Line><Function>ImbThrowNode::evaluate</Function>
 <Type>ComIbmThrowNode</Type><Name>eØd5f1f2-e8ØØ-ØØØØ-ØØ8Ø-
a1Ø328c4362e</Name>
 <Label>Alex Test2.Throw1</Label><Text>User exception thrown by throw
node</Text>
 <Catalog>MQSIV2Ø1</Catalog><Severity>1</Severity><Number>3ØØ1</Number>
 <Insert><Type>5</Type>
 <Text>The mandatory field of AddOrder.xml is missing!!</Text>
 </Insert></UserException>
</DetailException>
</Exception>

The reply message, with the error information populated, is sent back to
the queue specified in the MQMD:
<Message>
 <MsgBody>a sample reply message</MsgBody>
 <Exception>
 <Type>UserException</Type>
 <Number>3ØØ1</Number>
 <SuspenseTimestamp>TIMESTAMP '2ØØ1-Ø9-2Ø 18:34:16.281999'</
SuspenseTimestamp>
 <InboundQueue>ALEX_REPLY_IN</InboundQueue>
 <Transaction>Alex Test2.Throw1</Transaction>
 <DetailException>
 <UserException>
 <File>F:/build/S2Ø2_P/src/DataFlowEngine/BasicNodes/
ImbThrowNode.cpp</File>
 <Line>229</Line>
 <Function>ImbThrowNode::evaluate</Function>
 <Type>ComIbmThrowNode</Type>
 <Name>eØd5f1f2-e8ØØ-ØØØØ-ØØ8Ø-a1Ø328c4362e</Name>
 <Label>Alex Test2.Throw1</Label>
 <Text>User exception thrown by throw node</Text>
 <Catalog>MQSIV2Ø1</Catalog>
 <Severity>1</Severity>
 <Number>3ØØ1</Number>
 <Insert>
 <Type>5</Type>
 <Text>The mandatory field of AddOrder.xml is missing!!</Text>

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 </Insert>
 </UserException>
 </DetailException>
 </Exception>
 <xception>
 <Reason>User exception thrown by throw node (The mandatory field of
AddOrder.xml is missing!!)</Reason>
 </xception>
</Message>

The original message is rolled back to the backout queue.

COMBINED EXCEPTION HANDLING SUBFLOW
Combining the two subflows we created for the datagram message and
request/reply message we have a general purpose exception handling
subflow, which is shown in Figure 6.
After testing the above flow a problem arose with the MQOutput node ‘To
Requester’. It seems that, when Reply To Queue was selected from the
Advanced tab Destination Mode drop-down list, the MQOutput node tried
to set the context information, even though we selected ‘Pass All’ on the
Advanced tab Message Context.
Worst of all, it altered the MsgType field on the MQMD. It altered the
request message to a reply message, and the reply message to a datagram.
If this is acceptable within your organization you can leave it as it is. But
this is not really desirable since our strategy of exception handling depends

Figure 6: General purpose exception handling subflow

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

on this MsgType field and we would like this field to be accurate, reflecting
the true message type.
So the ‘Write Reply with Error Info’ compute node is modified and adds
ESQL to populate the reply information to the DestinationList, as shown
here.
• Set MQ DestinationList if you want to use the DestinationList instead

of Reply To Queue:
 SET OutputDestinationList.Destination.MQDestinationList.
 DestinationData.queueName = InputRoot.MQMD.ReplyToQ;
 SET OutputDestinationList.Destination.MQDestinationList.
 DestinationData.queueManagerName = InputRoot.MQMD.ReplyToQMgr;

Also in the Advanced tab, select Destination and Message and the ‘To
Requester MQOutput’ node is altered, as shown in Figure 7.

CONCLUSION
Once again, this article serves only as a reference or as a framework upon
which to build your requirements. One challenge with the request/reply
scenario is the need to send the request or reply message populated with
error information back to the requester. In the exception subflow this

Figure 7: Altering the Requester MQOutput node

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

would mean that it requires the message parser to insert the error information
in the original message. If the exception caught was a parser error in the first
place, the exception subflow will throw a parser exception in the ‘Write
Reply with Error Info’ compute node. In this case, the subflow will not be
able to send the reply message with error information to the requester and
the requester will still time out, not receiving the reply, since the write from
the hub will fail.
Alex Au
IT Architect, IBM Global Services (USA) © IBM 2002

Maximizing message availability

Now that MQSeries on OS/390 supports shared queues and queue sharing
groups, when should shared channels and generic ports be used instead of,
or in conjunction with, either MQSeries clustering or point-to-point
channels? This article outlines the available MQSeries technologies,
discusses the application and environmental considerations influencing
the use of each, and offers recommendations.

MESSAGING AND PARALLEL PROCESSING
There is a ‘good fit’ between messaging and parallel processing. That’s
because it’s easy to imagine work requests as messages originating from
various client nodes and being distributed to server nodes, where they are
processed. In the case of an MQSeries network, messages arrive from the
network and are placed on queues to be processed by server applications.
As part of the server processing a completion message is often returned to
the originating client, though this is not a requirement of the MQSeries
architecture.
The beauty of parallel message processing from a business perspective (the
only one we care about!) is that it allows you to deliver high throughput
and high availability applications. These processing characteristics allow
us to meet volume, response time, and availability goals.
In an MQSeries parallel message processing system, if we want to increase
the processing rate of messages on the server queues to meet new demand

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

or improve response time, for example, we simply add a new server
processing node (more later on exactly what this means). Moreover, an
MQSeries parallel message processing system, as Figure 1 illustrates, is
highly resilient to failure, since the ability to process messages is shared
throughout the system and there is no single point of failure.
It’s worth pointing out that, in many cases, the availability of such resilient
message processing systems is more important than the ability to add
capacity dynamically.

MQSERIES CLUSTERING
Different parallel processing architectures contain differing amounts of
symmetry between the processing nodes. We know that MQSeries’ core
strengths include its support for a huge range of operating system platforms
and network protocols. This means that when we consider a cluster of
MQSeries queue managers we’re considering the most generalized of
parallel architectures, involving queue managers running on different
processors types and different operating systems connected together using
different network protocols.
MQSeries clustering is often referred to as a ‘shared nothing’ architecture.
This is because the messages processed by an application connected to a
server queue manager are localized to that server queue manager; messages
are not shared between server queue managers. In the case of clustering,
applications connected to client queue managers choose one of the set of
queue managers hosting a clustered local queue and the message is sent
over a channel to that queue manager. The message is typically processed
by the server application and a response message indicating that processing
is complete is returned to the client (the ReplyToQueue on the
ReplyToQueueManager). MQSeries clustering therefore allows an
application to locate any clustered queue or clustered queue manager
within an MQSeries network and contains a significant amount of dynamic
resource discovery to support these operations.
The shared nothing architecture has advantages and disadvantages. In its
favour, applications in a shared nothing architecture behave exactly as they
would in a simple one-to-one architecture, except that now there are many
more application instances available to process messages. Also, because

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

nothing is shared between the server application processing engines the
performance scales almost perfectly – so you’ll see a 100-server node
cluster process messages ten times as fast as an application in an existing
MQSeries application architecture.
There’s less chance you’ll have to change your applications because, as
nothing is shared, they can behave exactly as they did when they were the
only application server in town. The downside of clustering is also a direct
consequence of the shared nothing architecture, which is that, if a server
queue manager fails – because of a power failure, for example – messages
are trapped (not lost!) within the failed queue manager’s datasets until the
queue manager is restarted. And for a certain class of users, message
availability, representing business availability, can be just as important as
scalability of processing. For example, it may represent liquidity of assets
in the case of a funds transfer, or response time in the case of human
interaction.

12
123
123

12
1234
1234

MQput

MQput

MQSeries/ESA
!!!!!

MQSeries/ESA
!!!!!

MQSeries/ESA
!!!!!

MQSeries/ESA
!!!!!

!!!!!

!!!!!

HP-UX

HP-UX

Divide
Consolidate

Shared
queue

Figure 1: MQSeries parallel message processing system

!!!!!

!!!!!

!!!!!

!!!!!

!!!!!

!!!!!

!!!!! """""

"""""

"""""

""""""""""

"""""

"""""

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSERIES SHARED QUEUES
MQSeries shared queues address many of the same issues associated with
parallel processing through use of the z/OS Coupling Facility (CF) and
associated networking technologies. In direct contrast to clustering,
messages on shared local queues are accessible by all queue managers in
a queue sharing group (QSG). This group is intimately associated with the
z/OS Coupling Facility. The Coupling Facility provides list structure
objects and an associated set of programming interfaces which MQSeries
for z/OS uses to store messages and support the MQI for these shared
messages (see Figure 2).
When we want to add application processing capacity we can now share
the message processing of a queue throughout the QSG by making a local
queue shared between all the QSG’s queue managers. A message put to a
shared queue by one queue manager in the QSG is available to be consumed
by any of the other queue managers within the QSG. Multiple instances of
server applications can connect to many different queue managers to
enable increased processing of messages.

Mover

Local pagesets

Local logs

SQM3

Mover

SQM2Mover

SQM1

MQ
DB2

Local
pagesets

Local
pagesetsLocal logs

Local
logs

!!!!!
!!!!!

!!!!!

!!!!!

!!!!!

!!!!! !!!!!

!!!!!

!!!!!

#####

$$$$$

!!!!!

"""""
"""""

"""""

"""""

"""""
"""""

Figure 2: Storing messages and supporting the MQI for shared
messages

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Shared queues have many of the advantages of clustering in that they
provide increased processing capacity. However, they also have the advantage
of recovering a message in failure scenarios. This comes directly from the
fact that the message is shared, which allows queue managers to recover
and make available immediately messages that are in-flight on a failing
queue manager. When a queue manager fails, the operating system notifies
all other queue managers in the queue-sharing group, enabling them to
recover messages that were part of current transactions. This message-
level availability can be very significant in any message processing
scenarios, as mentioned earlier.
To support this processing at the server there is also a complementary set
of network technologies to enable client queue managers (usually non-z/
OS) to connect to any member of the QSG. This is necessary because,
although messages are highly recoverable, once they are on queues we need
to ensure that the queue-sharing group is highly visible and available from
a network perspective. Channels on remote queue managers specify the
network address of the queue-sharing group in the CONNAME attribute.
This CONNAME is mapped using an appropriate technology (Sysplex

CF

SP

LP

Target Q
QM3

SYNCQ

SP

LP

Target Q
QM2

SYNCQ

SP

LP

Target Q
QM1

SYNCQ

Client Qmgr

123
123
1234
1234

Define CHL

1 (TO.QM3.LOCAL)
 CONNAME('QM3(LP)')

2 (TO.QSG)
 CONNAME('MVS(GP)')

3 (TO.QM3.SHARED)
 CONNAME('QM3(SP)')

Target Q

SYNCQ

!!!!!

!!!!!

!!!!!

!!!!!

!!!!!

!!!!!

3

1

2

Figure 3: Inbound architecture

G
en

er
ic

GP

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Distributor, Virtual IP addressing (VIPA), or Workload Manager/Domain
Name System (WLM/DNS)), and a channel session from a network queue
manager is established with a particular shared listener (new for V5.2) on
a particular queue manager, as the inbound architecture illustrated in
Figure 3 shows. In this way, if one network path isn’t available to the queue
sharing group, and hence to the server application, a path can be made
through a different listener and queue manager.
Message processing responses are returned to the MQSeries network via
a shared transmission queue (see Figure 4). With outbound responses it is
important that failure of any one channel initiator does not inhibit return
of the response message and that peer channel recovery allows the same
sender (or server channel) to automatically start on a different queue
manager and take over message delivery to the same client queue manager
as the previously failed channel.
Resynchronization is the cornerstone of once-only message delivery and
channel resynchronization messages for inbound and outbound channels
are now stored in shared sync queues. This means that channels in each
direction can resynchronize with any member of the QSG. In summary,

CF

XMITQ
QM3

SYNCQ
Client Qmgr

12
123
123

XMITQ
QM2

SYNCQ

XMITQ
QM1

SYNCQ

Figure 4: Outbound architecture

XMITQ SYNCQ

"""""

Local channel

Shared channel

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

when combined, shared queues, shared listeners, and peer channel recovery
provide a high-performance, highly scalable, and high-availability message
processing system.

MQSERIES DESIGN CONSIDERATIONS
Table 1 summarizes the main considerations for deciding which channel
topology to use, depending upon application, business, and environmental
criteria.
Application criteria encompass cases where the nature of the application
(ie whether it holds state or not) or the size of the message it receives or
generates affects the infrastructure design.
Business criteria encompass the balance between the cost of application
downtime and/or the cost of delayed (or trapped) messages against the cost
of the overall installation.
Environmental criteria address the skills needed to support a particular
implementation topology and those that are available within the organization.

APPLICATION CONSIDERATIONS
We can see that MQSeries now offers a variety of ways to implement MQI
applications on OS/390; the one you choose will depend upon the
application considerations detailed below.
• The shared queue (messages in the Coupling Facility) support in MQ/

390 V5.2 is only for non-persistent messages; V5.3 adds persistent
message support. In both cases the message size is limited to 63
Kbytes.
– As non-persistent messages on shared queues are not lost when

the queue manager(s) using them are stopped, an application that
is starting may process long-lived non-persistent messages. In
some cases it may be inappropriate to use shared queues for an
application because the messages do not ‘go away’ and an
existing application rebuilds all transactions after a failure.

• Where affinities exist between the requester of a service and the
service provider the implementation must be able to ensure that the

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Consideration Clustering Generic Pt-to-pt
channels channels

Application

Persistent Yes Yes with V5.3 Yes
messages

Messages >63K Yes No Yes
(including replies)

Affinities Yes (Bind_on_open) Only under Yes
(state retained by application control
application)

Large messages Yes but... Response problems may No Yes
(say >1MB) occur if these are mixed with short

messages. Plus impact of running
multiple ‘large message’ channels
on sending box must be considered.
Plus, do I want to clone applications
which handle large messages?

Application style Real-time and batch-oriented Real-time Real-time or
batch-oriented

Business

V high availability Yes but... Messages may be Yes No
app req’d (inc trapped
failure tolerance)

Cloned application Required Required Not required

Environmental

Generic access n/a Skills already n/a
used elsewhere in developed
Sysplex

Clustering used Skills already developed n/a n/a
elsewhere

Number inbound High number of message sources Workload may not
channels may use resources inefficiently or be balanced if there

require use of workload exit in all is a low number of
message sources message sources n/a

Scope Multi-platform implementation; Shared queues reside Normal
system-wide architecture on OS/390 only, but MQSeries

are accessed using channel
normal MQSeries definitions
channel definitions

Table 1: Deciding which channel topology to use

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

requester’s messages are always received by a server that has the state
available. This is the case if point-to-point channels are used, all
messages from the requester being routed to the same server.
– Clustering can handle application affinities without application

changes by use of the Bind_on_Open options.
– A shared queue implementation may require application changes

to handle affinities and take advantage of parallel processing.
– Though a shared queue solution can support a failover mode of

working by having the application queue opened for exclusive
use, it is important to remember that at the point of failover other
application states may need to be maintainted to provide
application-level peer recovery.

• Processing of large messages in an MQSeries network often necessitates
special design considerations (eg separate channels) that should be
reviewed before simply transferring an application architecture to a
parallel implementation. For example, in an image archiving system,
immediate message availability may not be of prime importance.

• As Coupling Facility storage is a comparatively expensive resource
of limited maximum size the total amount of storage that may be
occupied by messages on shared queues must be considered. The CF
is shared between the operating system components and the application
subsystems using data sharing, eg DB2, CICS, IMS.
MQSeries applications designed to gather messages for later processing
(ie batch-oriented applications) can store large amounts of message
data before the batch processing is started. As this type of application
is not response-time critical, delivering the messages via point-to-
point channels or via clustered channels is appropriate.
For real-time applications the amount of message data that may arrive
during an application outage, say for update or because of failure,
needs to be considered. This may lead to choosing a solution that
requires additional CF storage or one which uses clustering and can
manage trapped messages.

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

BUSINESS CONSIDERATIONS
If very high availability (say >99.99%) is needed considerable effort will
be required to ensure that overall implementation will allow redundancy
of all components of the system. This activity is expensive in design,
hardware, and software and should only be undertaken for business-critical
applications. The MQSeries aspects of this design will certainly be
secondary to the application design considerations and probably secondary
to the server program, whether it be in CICS, IMS, or any other OS/390
environment.

ENVIRONMENTAL CONSIDERATIONS
The items in this section highlight cases where an MQSeries solution can
be achieved by exploiting different MQSeries features, using the specific
solution which uses skills already available in the enterprise or which
might be acquired for other reasons. In a design where the business
consequences of trapped messages mandate the use of shared queues the
channel implementation chosen may be either clustering or generic
channels; this decision may be based on the technical skills available within
the IT department. For instance, if clustering is used for an existing
application, a bias towards a clustering solution is to be expected. Whereas
if a virtual IP addressing technique is in use in another application a
solution based on generic channels would be the first approach.
The multiplicity of choices allows MQSeries to support various server
application architectures, which are often the driving force of the overall
system design.

RECOMMENDATIONS
The authors believe that any large-scale MQSeries user will exploit varying
quantities of these three technologies according to the requirements of the
enterprise and specific business applications. Specifically:
• The solution will not be implemented as a ‘big bang’ but as a phased

migration of existing applications to the new environment, which will
be shaped by the major application provider (eg CICS or IMS) rather
than by the middleware (MQSeries).

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Solutions which are running successfully as far as response, availability,
and reliability are concerned should have a lower priority for migration.
If significant application changes may be required to remove affinities
it may be appropriate to leave these unchanged.

• In general, large messages and the applications that consume them are
better run in a controlled environment (single designated machine and
separate MQSeries channels). MQSeries Source IP Addressing
function (introduced in V5.3) and Sysplex services such as Dynamic
VIPA or Sysplex Distributor could be used to facilitate automated
switch-over of this type of application in the event of failure.

• Clustering can handle larger messages than Shared Queues/Generic
Channels; if the maximum size of a reply message from a legacy
application cannot be guaranteed to be less than 63K it may be better
to use clustering than to redesign the application.

• Only a shared queue solution can assure that no messages are trapped
by being held on a queue that cannot be served until an environment
is restarted.

• With only a few message sources, for example where branch office
clients are supported on a box which communicates with the OS/390
application or where a Unix application and an OS/390 application are
exchanging messages, the use of generic ports may not give workload
balancing of messsages; rather, it is the communications sessions that
are balanced across the members of the QSG. However, as it is
generally true that the cost of message delivery is much less than the
work that they generate, this may not be a significant issue.

CONCLUSION
With the introduction of clustering and shared queues MQSeries has the
flexibility to underpin successfully most application topologies required
to support business applications in an OS/390 environment.
John B Jones, BSc, MSc, MIEE, CEng
Anthony J O’Dowd, BSc, Dip Phys, PhD.
IBM Hursley (UK) © IBM 2002

MQ news

IBM has begun selling a business integration
package from New Era of Networks that
includes adapters for MQSeries Integrator and
WebSphere MQ Integrator. It features a new
price structure and reduced prices, an extended
range of adapters and platform support, and
withdrawal of obsolete adapters.

New Era’s adapters connect WebSphere
MQIntegrator with specific off-the-shelf
applications using industry standards, including
SAP R/3 applications to DB/2, Oracle, and
SQLServer OLTP environments, and
complement those already available from IBM.

The NEON Adapter for EDI adds EDI
capabilities into electronic application
integration architectures and, when used with
WebSphere MQ Integrator or MQSeries
Integrator, allows sites to exchange EDI
business documents with trading partners from
an EAI server.

For more information contact your local
IBM representative.
URL: http://www-4.ibm.com/software/ts/
mqseries

* * *

Dirig Software has released a Specific
Application Manager (SAM) for IBM
WebSphere MQ. Dirig’s WebSphere MQ
SAM provides preconfigured rules, policies,
thresholds, and performance-activated alerts to
help administrators manage WebSphere MQ
transactions, messages, and queues.

WebSphere MQ SAM works in conjunction
with Dirig agents to provide data statistics that
can help IT personnel maintain optimal
performance levels of WebSphere MQ

environments. Dirig offers additional
management capabilities for managing
WebSphere applications, DB2 databases, and
other e-business applications.

For more information contact:
Dirig Software, One Indian Head Plaza, 6th
Floor, Nashua, NH 03060, USA.
Tel: +1 603 889 2777.
Fax: +1 603 889 2471.
URL: http://www.dirig.com

* * *

MQSoftware has released a new version of its
Q Pasa! middleware management software.
Version 3 includes a Java-based management
console that provides better integration,
enhanced usability, and easier management of
event and history rules. It also provides reusable
templates to help users automate routine
administration.

Q Pasa! 3.0 monitors WebSphere Application
Server 4.0 and 5.0 and supports CrossWorlds,
WebSphere Business Integrator, and
WebSphere MQEveryplace.

For more information contact:
MQSoftware,1660 South Highway 100, Suite
400, Minneapolis, Minnesota 55416, USA.
Tel: +1 952 3458720.
Fax: +1 952 345 8721.

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *

xephonx

	Configuring a Web Client on Windows NT using IIS PWS Web Server: part two - testing
	Heartbeat: channel monitoring tool for MQ clusters
	WebSphere MQSeries Integrator cross-reference
	MQSI exception processing: request/reply messages: part two - subflows
	Maximizing message availability
	MQ news

