

© Xephon plc 2002

October 2002

40

In this issue

MQ
�
�
�
�
��

3 MQSeries Publish/Subscribe
Service Pack MA0C

8 A server connection channel
security exit

10 Very large queues with WebSphere
MQSeries V5.3

14 A tale of two queues
32 Multiple CKTI trigger monitor

transactions in CICS
37 A better MQSeries batch trigger

monitor
39 WebSphere Financial Network

Integrator: technical preview
47 Natural – MQSeries interface
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

MQSeries Publish/Subscribe Service Pack MA0C

In typical publish/subscribe implementations there is often a need for
persistent queues to store publications if the subscribing applications
are not alive. Organizations where applications are subscribers may
typically have not more than 30 subscribers and 100 events. In these
cases, although software jurisprudence may direct you towards an
established product such as Tibco or MQSI, the MQSeries Publish/
Subscribe service pack provides a no-licence-cost, sturdy publish/
subscribe mechanism. It’s also a good springboard to MQSI.

The MQSeries Publish/Subscribe service pack supports both events
and states. Events are independent of each other while state publications
contain information, which is regularly updated. If missed, event
publications cannot be retrieved, while state publications – even if
missed – will be updated in the next publication. State publications are
implemented typically through retained publications stored by the
broker. The service pack also supports broker-to-broker networks,
where publications have to be sent across queue managers on the same
or multiple hosts.

For a publish/subscribe mechanism where the subscribers are users this
service pack may not provide the performance required. When users are
subscribers the number of subscriptions is typically in the thousands.
But if the number of user subscribers is less than 100 it might make good
business sense to use service pack MA0C: Figure 1 shows a typical
implementation.

THE BROKER

The broker is the engine for any publish/subscribe architecture and it
is installed with the service pack. It has to be started separately when the
queue manager is started. Each queue manager will have a corresponding
broker. Publishing and subscribing applications send messages to the
broker in MQRFH format, which contains a NameValueString. Using
the NameValueString applications can specify the command they want
the broker to perform.

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TOPICS

Topics are events that the publisher will publish and subscribers
subscribe to. They are typically of the form XXX/YYYY/ZZZZ. For
example, a stock ticker subscription to Microsoft stock might look like
"STOCK/MSFT". You can use wild card characters to receive one or
more events. So, using the previous example, "STOCK/*" will give all
stock events while "STOCK/M*" will give all events where the stock
name starts with ‘M’.

Figure 1: A typical architecture where MA0C is installed

Database

Event
Publisher

Register
Publisher

�

�

Subscribe

Broker

Publish

�

�

�

�

�

�

Subscriber 3
MQSeries
client

Subscriber 2
MQSeries
server

Subscriber 1
JMS

�

� � �

�

Key

Local Q Remote Q Application Process

��

Trigger

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

PUBLISHER

The EventPublisher will feed the stream queues that are part of the
broker infrastructure in pseudo real-time. The EventPublisher will poll
the queue to which triggered messages are sent. It will parse the data and
identify the topic and put the message on the appropriate stream.

The RegisterPublisher will allow administrators to register a publisher
before it starts publishing events. This allows the broker to recognize a
stream and pick events from it to be published. You may choose to send
all published events to one stream queue.

RegisterPublisher

A stream queue to which messages are published has to be registered
with the broker. The RegisterPublisher process will send a Register
Publisher command message to the broker’s control queue to indicate
that a process has been defined, which is capable of publishing data on
one or more specified topics. The RegisterPublisher will use the
following NameValueStrings for the commands:

• MQPSCommand: RegPub.

• MQPSRegOpts: Local.

• MQPSStreamName: <Passed as parameter to the process>.

• MQPSTopic: <Passed as parameter to the process>.

This process will be used by an administrator to register publishers as
required.

EventPublisher

The EventPublisher will put messages into the stream defined above for
a particular topic. For each event identified by the trigger the
EventPublisher will collect the required data and identify the topic
name.

To get replies back from the broker all stream queues and queues should
be defined by an administrator before the EventPublisher starts
publishing messages.

This process will build the MQRFH header, the NameValueString

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

defined below, and the related data as part of the message. It will put
these messages in the appropriate stream, depending on the topic name.
The stream to which the message is being put should have been
registered with the broker, using the RegisterPublisher process.

• MQPSCommand: Publish.

• MQPSTopic: <Set by EventPublisher>.

• MQPSSeqNum: <Set by EventPublisher>.

• MQPSTimeStamp: <Set by EventPublisher>.

The queue name to get replies from the broker or to get update requests
from subscribers directly will have to be defined. This should be set as
the ReplyToQ in the MQMD. The ReplyToQMgr in the MQMD should
be set to the same as the one on which the broker resides.

SUBSCRIBER

There are three ways of subscribing to published information:

• MQSeries subscribers can subscribe dynamically, by sending a
subscription message to the control queue on the ODS host queue
manager.

• Subscribers who have MQSeries server software installed can send
a subscribe message through a remote definition of the control
queue.

• Subscribers who have MQSeries client software installed can send
a subscribe message through a channel to the host queue manager
control queue.

Subscribers build a NameValueString as below, and send it to the
control queue of the broker to subscribe to topic(s).

• MQPSCommand: RegSub.

• MQPSTopic: <Provided by Subscriber>.

• MQPSStreamName: <Provided by Subscriber>.

• MQPSRegOpts: InclStreamName.

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

MQSeries Server Subscriber

The broker will publish all events to which the subscriber has subscribed
into a stream queue (specified during subscription). This queue will be
defined as a remote queue to a local queue on the MQSeries Server at
the remote host. The subscriber should send subscription messages to
a remote queue defined for the Host Broker Control queue. Subscription
messages should contain one of the topic names mentioned above and
the stream name.

MQSeries Client Subscriber

MQSeries client does not support queue managers. The client software
only allows applications to access queues defined as part of an
MQSeries server on a different host. The ODS MQSeries server will
provide a local queue as a resource for applications which will use the
MQSeries client software. It can pick publications from this local queue
if the channel is running.

The subscriber application can access the Host Broker Control queue
if the channel is running, to send subscription messages. Subscription
messages should contain one of the topic names mentioned above and
the stream name.

J2EE applications

J2EE applications residing on application servers such as WebSphere
or WebLogic can use JMS to subscribe directly to the broker. These
applications can have local stream queues defined on the same host as
the broker; the Java application can pick up messages from these local
queues or the J2EE application can subscribe on-the-fly and receive
events that are of interest.

INTEGRATION WITH OTHER MIDDLEWARE

MQSeries can be easily integrated with other middleware, such as
Tuxedo and Tibco. In these situations you will have application-
specific code, including MQI and API calls. During compilation/build
of the code you may have to set some specific options to compile your
code.

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PERFORMANCE

The performance of the broker is proportionate to the number of
subscribers in a single-broker network. The publish/subscribe
architecture should be able to handle up to 128 subscribers for multiple
topics and still provide reasonable response times.

These performance rates are projected from the MQSeries – Publish/
Subscribe Performance report (see below).

REFERENCES

• Service pack MA0D: a quick-start guide to the MQSeries Publish/
Subscribe service pack. (http://www-4.ibm.com/software/ts/
mqseries/txppacs/ma0d.html.)

• Service pack MA0C: software and user guide. (http://www-
4.ibm.com/software/ts/mqseries/txppacs/ma0c.html.)

• Performance metrics of service pack MA0C. (http://www-
4.ibm.com/software/ts/mqseries/txppacs/supportpacs/mp03.pdf.)

Ramnath Cidambi, Engineer
United Airlines (USA) © Xephon 2002

A server connection channel security exit

Channel security exits normally come in pairs – one at each end of the
channel. However, in our organization we have a security exit that runs
only on the server connection channel (not on the client end). Two
problems in our setup resulted in the development of this exit: an
authentication problem and a concurrent connection problem.

THE AUTHENTICATION PROBLEM

We have several hundred Windows MQSeries clients connecting to one
of two Windows NT queue managers, which in turn communicate with
queue managers on other platforms. User authentication is carried out
by an NT domain controller with a trust relationship with the domain
containing the MQSeries servers. The authentication service security

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

policy on MQSeries is set to NTSIDsRequired to ensure that the user-
ID being sent to the MQSeries server is the same user-ID that has been
validated by the domain controller.

However, when the MQSeries client code was at V5.0 authentication
did not happen as we hoped. We found that no user-ID was being sent
in the MQCD structure with the connect request. As a result the
connected client assumed the user-ID and authority of the MQSeries
listener on the queue manager. Being part of the mqm group this user-
ID effectively gave them universal access.

We found that upgrading the clients to V5.1 resulted in the logged-on
user-ID being sent to the queue manager and the OAM did the necessary
verification as expected. However, if no user was logged on to the client
machine a blank user-ID was still sent to the server. Also, how were we
to be sure that all clients were using MQSeries 5.1 (or later) code?

These issues were solved with the first version of this security exit,
which simply checks the user-ID length field in the MQCD structure.
If the length is zero the connect request is rejected by returning
MQXCC_SUPPRESS_FUNCTION in the ExitResponse field. An
error message is also written to a log file stating why the connection was
rejected.

THE CONCURRENT CONNECTION PROBLEM

Some client applications were failing to issue an MQDISC call before
terminating. When this happens the IP connection is not terminated and
as far as the queue manager is concerned the channel is still active. If
this happens repeatedly, the number of active channels may soon reach
the MaxActiveChannels setting. Increasing this parameter is not the
answer because resources on the queue manager are being held
unnecessarily. We tried to find a way of killing a particular instance of
a server connection channel but only managed to stop all channel
occurrences with the same name.

In order to track down the offending applications we included some
code in the channel security exit to run on a connect request and check
the number of concurrent connections already active for the incoming
IP address. If this exceeds a specified limit the MQCONN request is
rejected and a message is written to the log file.

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

REJECTED CONNECTIONS

When the channel security exit rejects a connect request for one of the
above reasons, MQSeries writes an error message to AMQERR01.LOG
“AMQ9536 Channel ended by an exit”. The log messages generated by
the channel security exit have a similar format to the explanation of the
AMQ9536 message as well as additional information explaining the
reason for rejection.

CONCLUSION

It is unlikely that your own requirements will dictate an identical
channel security exit to ours, but perhaps some of the ideas can be used.
In particular, the function ConnectionCount shows how to use PCF
messages to invoke the command server – in this case to inquire on the
status of channels. It is interesting to note that most MQSeries calls are
supported in channel exits. Comments at the beginning of the Channel
Security Exit program, which can be found at www.xephon.com/
extras/channelsecurity.txt, explain what it does and how to specify
parameters for the exit program. For instructions on how to compile
channel exit programs see the MQSeries Intercommunication Manual.

Eric Judd, Technical Consultant
T-Systems (South Africa) © Xephon 2002

Very large queues with WebSphere MQSeries V5.3

It is often said that the best queue is an empty queue, but for those times
when a queue isn’t empty the following information might prove useful.

The total amount of data that can be stored on a queue has notionally
always been controlled by two attributes – the maximum size of a
message (MAXMSGL) and the maximum depth of a queue
(MAXDEPTH). In practice, however, another limit was normally
reached before either of these formal values. This article shows how the
latest version of MQ for the distributed platforms (Windows NT, Unix,
Linux, OS/400) has removed that limit and dramatically extended the
storage available for messages.

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The key point to understand is that files on disk in the local filesystem
are used to represent each queue defined to MQ. All queues, including
alias and remote definitions, are stored this way. You can see them in
subdirectories under the /var/mqm/qmgrs/<qmgr>/queues tree on
Unix and in similar places on other operating systems. We call these the
qfiles and there is always a single qfile for each defined queue.

All qfiles contain information about an object’s attributes, which is why
alias and remote queues require files, and those qfiles that represent
local queues (of which transmission queues are a subset) also hold
message data.

One hidden attribute of a queue is a 32-bit number that says how large
the qfile is allowed to get. This is the MaxQFileSize attribute. It cannot
be viewed as an MQSC attribute but it is automatically set and read by
the queue manager, exactly like external attributes such as the creation
time of the object. Whenever a message is put to a queue the queue
manager will check that the data does not cause this attribute to be
exceeded; if it does, it will reject the MQPUT.

The earliest version of MQSeries (V2.x) for the distributed platforms
had a limit of 320MB for message data. The reasons for this number are
lost in the mists of time but, essentially, it was derived from the size of
various internal data structures and how many of them could fit into a
particular type of OS/400 file. With a maximum file size of 320MB to
hold all persistent and non-persistent messages, including their MQMD,
a limit of 640,000 messages per queue was chosen. This was a suitable
limit, matching the available space and based on a minimum message
size of approximately 512 bytes, but should be compared to the
definable maximum depth of 999,999,999 messages on a queue held on
MQSeries for OS/390.

The OS/390 depth can never actually be reached as queues there also
have a physical architectural limit – in this case 4GB – but that was
chosen as the MQSC attribute as it is the same as many of the maximum
values for other integer attributes.

Very quickly, a number of customers found the 320MB size restrictive
and so SupportPac MP01 was released, which documented how to tune
the queue managers so that newly created queues could reach 1GB. This
was the real limit that the queue manager could cope with at the time;

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

to make the qfiles larger required internal code changes.

When MQSeries V5.0 was released the default maximum size of a
queue was changed to 2GB. This was also the maximum size of a file
on most operating systems of the time and was a reasonably sensible
choice. However, when existing queue managers were upgraded by
running the newer version of the product, the MaxQFileSize for those
existing queues was not changed. Only new queues got the larger space
for data. There were some internal algorithm changes to manage the
qfiles better, but nothing too radical. The advice in MP01 about tuning
the qfile sizes now became irrelevant, although other parts of that
SupportPac are still useful.

Over the last few years changes to other parts of MQ have made both
the 640,000 and 2GB limits more of a concern to customers. The
introduction of MQ clustering, with its use of a single transmission
queue and the enormous performance boosts started in V5.2 and
extended in V5.3, have combined to mean that it is now possible to fill
a 2GB queue in well under a minute.

A network failure can mean that applications start to get bad return
codes as a transmission queue fills up before any monitoring tool has
had much of a chance to react to the failure.

With V5.3 these concerns have now been addressed. The only directly
visible change is that queues can now be set to have the same
MAXDEPTH value as MQSeries for OS/390. Internally there have
been major changes to the storage of queues and messages. There is still
a one-to-one mapping of a logical queue to the physical qfile. However,
the availability of filesystems that support larger files is now near-
universal and the 2GB limit can be discarded while maintaining the
single qfile design. The queue manager has been changed to handle
efficiently qfiles that get to nearly 2TB in size – that’s about 1,000 times
larger than previously.

Many internal algorithms have been enhanced to make sure that
messages can still be found quickly and that the disk space is reclaimed
in a timely way when it is no longer needed, but none of these changes
can be seen directly.

No migration is needed for queue manager data as far as MQ is
concerned. Unlike the change from V2 to V5 you do not need to

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

redefine queues to reset the MaxQFileSize. As this was never a public
attribute of a queue, V5.3 simply re-interprets the existing 32-bit value
stored in the qfile by multiplying it by 1024! This immediately gets the
larger qfiles available for all queues. However, a migration step might
still be needed for your filesystems before the larger size can be used.

On some operating systems, such as Windows 2000, large files (ie files
bigger than 2GB) are always available in the filesystem. On most of the
Unix platforms, however, large files are only available as a non-default
option on the filesystems and filesystems cannot be modified after their
creation to permit large files.

If you have used the normal design for Unix filesystems you will have
a /var/mqm and a /var/mqm/log filesystem and it is likely that you have
not created these filesystems with the large file option. To enable large
files you will have to take action along the following lines:

• Stop all queue managers and listeners.

• Unmount the /var/mqm/log filesystem.

• Create a new filesystem the same size as /var/mqm but using the
options that allow large files.

• On AIX use the crfs command with the option "-a bf=true". (Other
operating systems have similar commands and options.)

• Mount this new filesystem in a temporary place, such as /tmp/mqm.

• Copy all data from /var/mqm to /tmp/mqm, being careful to
preserve permissions.

• Unmount /tmp/mqm and /var/mqm.

• Remount the new filesystem in its correct, final position of /var/
mqm.

• Remount /var/mqm/log.

• Use the ipcrm command to remove all IPC elements owned by the
mqm user as they may be anchored from the original /var/mqm
filesystem.

• Start the queue managers.

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Delete the original /var/mqm filesystem (delay this step until
you’re happy that the queue managers are running successfully).

Note that this procedure does not modify the log directories. Although
the qfiles have changed, the log files still do not exceed 64MB each and
so do not need any change to the filesystem configuration.

If a filesystem does not support large files the queue manager will get
an appropriate return code when trying to extend the qfile. This will be
exactly the same as running out of space on the filesystem when a
message is put.

It is still recommended that you do not allow queues to get too deep and
do not expect magnificent performance if you do lots of msg-ID or
correl-ID retrieval on very deep queues. The 999,999,999 depth limit
is still an unreachable number. However, for those times when temporary
storage of lots of messages becomes unavoidable, this new capability
should find a few friends.

Mark E Taylor
MQSeries Technical Strategy
IBM Hursley (UK) © IBM 2002

A tale of two queues

There is a philosophical difference between IBM’s Message Queueing
(MQ) and Oracle’s Advanced Queueing System (AQS) that can cause
some interesting and challenging headaches when you are handling
messages that are being relayed between these two queue types.

MQ assumes that all the message content will be transmitted as a
payload and that a single payload or message will have a set of fixed
attributes that are provided by the queueing system. These attributes
include Enqueue Time, Dequeue Time, Queue Name, Reply To Queue,
Message-ID, Correlation-ID, and others.

The AQS system provides similar attributes for a message but views a
message as a collection of columns in an Oracle table. In fact at the
simplest high level, an AQS message is a row in a table that the user has

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

defined. Enqueueing consists of inserting a row and dequeueing
involves retrieving a row (and deleting it to remove it from the queue).

In truth, IBM does the same thing and a message in MQ is actually a row
in a DB2 database. But this fact is well hidden under the MQ
application and the API layer. The difference is that MQ predefines the
columns in the database and the programmer/user never sees them as
columns. Oracle allows the user to define the columns of the ‘message’
and provides a collection of Oracle database procedures – called a
package – for enqueueing and dequeueing.

From a structural perspective an MQ message is a bunch of predefined
attribute columns, one of which happens to be a large column/attribute
for holding the message payload. An AQS message is a bunch of
predefined attributes columns plus a bunch of user-defined attributes.
If a user decided to define a single payload column as the meat of a
message an AQS message would be almost identical to an MQ message.

Of course it never works out that way. Usually you have to collect a
message from an Oracle AQS that has numerous user-defined attributes
and drop it off in an MQ queue that has only one truly usable attribute,
the payload.

In this real world example for an insurance company I had to collect
such a message from an AQS queue. The message had one large
payload column but certain key pieces of information were made to
stand out by creating separate columns for them. These columns were
ClaimNo, PolicyNo, and Application-ID; respectively, the insurance
claim number, the policy number, and a unique ID generated by the
initiating application. This ID had to travel up the mainframe for
logging and be returned by the mainframe so that the response could be
tied to the initiating request back at the application. This was similar in
concept to the MQ correlation-ID but had been generated by the
application.

If it weren’t for these three additional attributes the message could have
been picked up at AQS, dropped off at MQ, and then moved merrily on
its way.

There were various solutions available: keep a temporary table of these
three attributes, generate a correlation-ID, send the message off to the
MQ with the correlation ID, and then, on the way back, use the returning

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

correlation-ID to look up the three attributes, put them back into the
outbound Oracle message columns and oh, yuk.

The best solution was to come up with a way of embedding the extra
attributes in the message itself so that when it got placed into the MQ
payload the message carried its extra attributes with it, but these
attributes could still be identified as separate from the payload itself.

XML is a data format that allows multiple attributes to appear within
a set of data.

Some thought is needed to convert a message and any associated
attributes into XML but it is surprisingly easier than you would imagine
thanks to Open Source XML packages such as Xerces (http://
xml.apache.org/).

Assume for a moment that you have a message in an Oracle AQS table
as described in Listing 1. When retrieving it you need to extract each of
the four attributes.

LISTING 1: THE ORIGINAL MESSAGE

������������	
���		�	���������������������������������

����������		�
		

����� �����!!"
#�$

�%%&'�������(�(�

To pass it on to MQ you need to wrap the message up so that the
attributes travel within the body of the message. The scheme I used is
shown in Listing 2.

LISTING 2: THE MESSAGE WRAPPED IN XML

)*+�,-.�%%�',�������/

��)�������/��	
��00�		�	��������������������������������)1�������/

��)�������/		�
		
)1�������/

��)����� ��/!!"
#�$)1����� ��/

��)�%%&'/����(�(�)1�%%&'/

)1*+�,-.�%%�',�������/

All characters from <The_Wrapped_Message> through to
</The_Wrapped_Message> are included as the payload in the MQ
message.

At the mainframe an XML utility or even a COBOL program using the

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

UNSTRING verb can be used to break out the pieces, as shown in
Listing 3.

LISTING 3: USING UNSTRING TO EXTRACT XML DATA

2��*�&�3�&��2*�!��

����4��&�&*�4��5�6)�������/6�7��6)1�������/6

����&�*7�82���(9

������������&���79

���������82�����

2��*�&�3�&��2*�!��

����4��&�&*�4��5�6)�������/6�7��6)1�������/6

����&�*7�82���(9

���������*��������3�9

���������82�����

The turnaround from the mainframe creates an XML return value by
reassembling all the tags (Listing 4).

LISTING 4: A COBOL RESPONSE IN XML

�7:��6;��	
��00����7:�4;6�*7�*��������3�

�*�&�3

��6)*+�,-.�%%�',�������/6�4��&�&*�4��5��&<�

��6)�������/6�4��&�&*�4��5��&<�

��*��������3��4��&�&*�4��5�6;6

��6)1*+�,�������/6�4��&�&*�4��5��&<�

��6)�������/6�4��&�&*�4��5��&<�

�����&���7�4��&�&*�4��5������

��6)1�������/6�4��&�&*�4��5��&<�

=�.����>�>��?���'�

��6)�*+�,-.�%%�',�������/6�4��&�&*�4��5��&<�

��&�*7�72*�2*�!���

@=��>'�'.�%�����>��+���%%.�%.�����AB�B��C

The message arriving from MQ when picked up by the middleware
looks like that shown in Listing 5.

LISTING 5: THE RETURN MESSAGE WRAPPED IN XML

)*+�,-.�%%�',�������/

��)�������/��	
��00����7:�4)1�������/

��)�������/		�
		
)1�������/

��)����� ��/!!"
#�$)1����� ��/

��)�%%&'/����(�(�)1�%%&'/

)1*+�,-.�%%�',�������/

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

It must be converted to the one shown in Listing 6 to be dropped off at
the AQS.

LISTING 6: THE ORIGINAL MESSAGE UNWRAPPED

������������	
��00����7:�4

����������		�
		

����� �����!!"
#�$

�%%&'�������(�(�

The key to this is the middleware piece I had to write that wraps and
unwraps the message.

I implemented mine in C++ because of very high volume requirements
that caused Java to break down. However, if you do not have this high
volume the similarity between C++ and Java would make the conversion
simple enough.

The base class for the system is a qMsg class that is derived from a
Standard Template Library map class. In the examples below I have also
created simple aqs and mq objects for reading from and writing to these
two queue types.

A simplified example of how the objects are used in practice is shown
in Listing 7. Listing 8 shows the output of AQS2MQ on an 80-character
screen.

LISTING 7: SAMPLE CODE USING WRAPPED MESSAGES

11��D���D��%%

11����B��.����>��?�B��>��E.�%%�'��>'�B>E.�%%�'���������

11�����������'�����+���F�.�����.�GB�����>��>��D���������

H�>��B'�)����.���/

H�>��B'�)���.���/

B��>� ��'II��B�J

B��>� ��'II�>'�J

B��>� ��'II��.�>���.���J

H�>��B'� 6�A��+6

H�>��B'� 6�A�+6

H�>��B'� 6A����+6

11�?�.�����>���.�E�

��.�>��A���,.�E�@A���K�AC

L

����.�>���.������.-�.MJ

��A���II���.���.�%��J

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��?�.@%�����A�G���>@CJ�%���N��A��>'@CJ�OO%��C

��L

������.-�.M�))�%���/?�.���))��6�6�))�%���/����>'�))��>'�J

��P

��.��B.>���.-�.M���.@CJ

P

�>�����>@�>���.��9��+�.=��.�QRSC

L

���A��A,AJ 11��>��D�%.������>���GT���

���A���A�,AJ 11��>��D��%.������>���GT���

��A�����(9��J 11��+�����B�����������

��11���>>����>������A���>'��A������+�.�

��11�@>����+�E>C

��11�%��M�B%�����������?.����D�

���A�,A�������@�(CJ

����B��))�6����?.����A��///U>6))�A���,.�E�@�(C��))��>'�J

��11�E.�%��+��������������+������������>����%%��.��>��+��%� ���'����!��

���(��''-.�%%�.@CJ

����B��))�6�?��.�E.�%���///U>6))�A���,.�E�@�(C��))��>'�J

��11��B�%B������D

���A,A�%B����@�(CJ

��11�E����?�.��+��.�%�

���A,A�������@��CJ

����B��))�6����?.����A��///U>6))�A���,.�E�@��C��))��>'�J

��11�.���Q���+��!���E.�%%�.

�����.���Q�-.�%%�.@CJ

����B��))�6�?��.�B>E.�%�///U>6))�A���,.�E�@��C��))��>'�J

��11�%B��.��B����>��+���D��AB�B�

���A�,A�%B����@��CJ

��11�'����>>����>��?.����A���>'��A�+�.�

��11�@>����+�E>C

��.��B.>�	J

P

LISTING 8: AQS2MQ OUTPUT ON AN 80-CHARACTER SCREEN

����?.����A��///

�%%&'�����(�(�

��������		�
		

����������	
��00�		�	�(�������������������

����� ���!!"
#�$

�?��.�E.�%���///

��������)*+�,-.�%%�',�������/)�%%&'/����(�(�)1�%%&'/)�������/		�
		
)1

�������/)�

������/��	
��00�		�	�(��������������������)1

�������/)����� ��/!!"
#�$)1����� �

�/)1*+�,-.�%%�',�������/

����?.����A��///

��������)*+�,-.�%%�',�������/)�������/��	
��00����7:�4)1

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�������/)�������/		�
		

)1�������/)����� ��/!!"
#�$)1����� ��/)�%%&'/����(�(�)1�%%&'/)1

*+�,-.�%%�',�������/

�?��.�B>E.�%�///

�%%&'�����(�(�

��������		�
		

����������	
��00����7:�4

����� ���!!"
#�$

In practice the qMsg class would probably be itself a base class from
which specific messages derive, but I am trying to illustrate how to
make AQS and MQ interoperable so I will keep the derivation chain
short.

The qMsg class shown in Listing 9 has two public methods for
wrapping and unwrapping, a couple of private assistance methods for
placing XML tags around a string, and the private ‘isWrapper()’
method for determining whether or not a message has arrived with a
wrapper.

LISTING 9: QMSG.H

H�?>'�? ,D��3,�

H'�?�>� ,D��3,�

H�>��B'�����)��%/

B��>������'II��%J

H�>��B'�����)��.�>�/

B��>������'II��.�>�J

11�*+����'�?�>��M� �1�����B��'�?�.��+��?�B.�%�.����?��+���������

�F��.> ��>�����.�>�������5�7�4,��5J

�F��.> ��>�����.�>��������&�,�7,��5J

�F��.> ��>�����.�>������7�&�5,�7,��5J

�F��.> ��>�����.�>��������,&4,��5J

11�*+��!�.�������G���!������?�.��2��������������

H�>��B'��)B���1����?�.�2�����+%%/

������A������I���%BG���������%)��.�>�9��.�>�/

L

%BG���I

������>���''-.�%%�.@CJ

������>��.���Q�-.�%%�.@CJ

%.�Q���I

����G������-.�%%�'@CJ

������.�>�K����7%�>@��.�>�K�'���9��>�����.�>�K����CJ

������.�>�K���������@��.�>�K�'���9��>�����.�>�K����CJ

������.�>�K����-.�%@��.�>�K�'���9���>�����.�>�K����9���>�����.�>�K�Q��CJ

PJ

11�*+���������E����G��B��'�����>�. �����>�B.���+��

11�!������?�.�2����II*�.��>���@C���������'�E+�>

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

11�*+�����+�'�B��>��!������?�.�2����@C����%�����

������!������?�.����B%

L

%BG���I

����!������?�.����B%@C�LP

����Q��'��>������V�@C����L!������?�.�2����II&>������V�@CJP

����W!������?�.����B%@C�L!������?�.�2����II*�.��>���@CJP

PJ

H�>'�? 11 ,D��3,�

Starting at the first step of Listing Seven, the call to retrieve the message
from AQS uses aqs_q.getMsg(m1). This method is shown in Listing
10.

The elements or keys of a map can be accessed directly, using the []
operator so the qMsg object can be loaded directly. In Listing ten the
getMsg() method of the aqs class calls a lower level getAqsMsg()
method and passes in receivers for the four pieces of data that are to be
retrieved from an AQS message.

Assume that upon return from getAqsMsg(), the sMsg, sClaimNo,
sPolicyNo, and sAppId variables have been filled in. Upon return, the
four pieces are used to populate the qMsg object.

I am not providing the details of getAqsMsg(). The API to the AQS
looks nothing like the MQ API that you might be familiar with and is
fairly complex and beyond the scope of this article.

LISTING 10: THE GETMSG() MEMBER OF AQSMSG

11����������+��?�B.�%�.�����������>'�%������+����>��+��A������%

��>���A����II������@A���K��C

L

������.�>������9����������9������� ��9����%%&'J

����11�������>����+���D�����?�����>��+��
���.�>��

��������A����@����9��������9������ ��9���%%&'CJ

����������.@CJ��������������11�����.��+����%�G�?�.�����'�>�

�����R��5�7�4,��5S�������J

�����R���&�,�7,��5S�����������J

�����R�7�&�5,�7,��5S��������� ��J

�����R���,&4,��5S�����%%&'J

����.��B.>�	J

P

The next step in the process calls the m1.addWrapper() method shown
in Listing 11. This method functions by taking each element of the map,

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

adding a beginning and ending tag, and then appending that to a string
that is being built.

LISTING 11: THE ADDWRAPPER() METHOD

11��''�>����E.�%%�.���>�G��'�>���>���F����'�

11�*�M�����+����.�GB����?��+�����������>'�E.�%�����>������.���>'��>'����

11�B��>���+�����.�GB���>��������+������>���

11��+�>�E.�%��+��E+���������>������.���>'��>'�E.�%%�'�������������

��>��A���II�''-.�%%�.@C

L

������.�>����.-.M9���.7B�%B�J

����A���II���.���.�%��J

������.-.M���66J

����11�?�.����+������>���>��+����%

����?�.@%�����G���>@CJ�%���N���>'@CJOO%��C

����L

��������11�E.�%��+��Q��B��E��+��+�������>��M� ���������

����������.-.M�O�����-.�%@��.7B�%B�9@%���/?�.��C��,��.@C9%���/����>'CJ

����P

������.-.M������-.�%@��.7B�%B�9-�����4,�����3�,��59��.-.MCJ

����11�����.��B���+���B..�>����%

�����@=�+��C�����.@CJ

����11��>'��>��.���+��>�E� �GB������.�>������+���>� �%� ���'

�����@=�+��CR��5�7�4,��5S�����.-.MJ

����.��B.>�	J

P

Since map elements are in alphabetical order the first element to be
located will be AppId. Using the example previously illustrated this
element will have a value of APP 1212. This will be wrapped up as
<AppId>APP 1212</AppId>. The next element is ClaimNo which
becomes <ClaimNo>00 4004</ClaimNo> and is added to the output
string to become <AppId>APP 1212</AppId><ClaimNo>00 4004</
ClaimNo> and so on until all elements are wrapped up as shown here
in Example 1:

��)�%%&'/����(�(�)1�%%&'/)�������/		�
		
)1�������/)�������/

��)��	
��00�		�	�(��������������)1�������/)����� ��/!!"
#�$)1����� ��/

The final step puts a beginning and ending tag around the whole
assembly and then makes this the payload of the qMsg object, as shown
here in Example 2:

��)*+�,-.�%%�',�������/)�%%&'/����(�(�)1�%%&'/)�������/		�
		
)1�������/

��)�������/��	
��00�		�	�(���������������)1�������/

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��)����� ��/!!"
#�$)1����� ��/)1*+�,-.�%%�',�������/

Listing 12 shows the private tagging methods called by addWrapper().

LISTING 12: METHODS FOR ADDING TAGS TO TEXT

11��+�������+�'��%������.�>��.�?�.�>�����>

11��>'��B������Q��'�GB��'�>�����%���.�>����>��+��.��B.>

11��.������>��%�>����

��.�>�K�A���II���7%�>@��.�>�K���.4���9��>�����.�>�K���.*��C

L

������.4��������.�>�@6)6C�O���.�>�@��.*��C�O���.�>�@6/6CJ

����.��B.>���.4���J

P

11��.����������������

��.�>�K�A���II��������@��.�>�K���.4���9��>�����.�>�K���.*��C

L

������.4��������.�>�@6)16C�O���.�>�@��.*��C�O���.�>�@6/6CJ

����.��B.>���.4���J

P

11�E.�%���Q��B��E��+������.��>���>'��>'�>�����

��.�>�K�A���II���-.�%@��.�>�K���.4���9���>�����.�>�K���.*��9���>��

��.�>�K���.:��C

L

������.�>����.7B�%B�(9��.7B�%B��J

������.4������@���7%�>@��.7B�%B�(9��.*��C�O���.:���O

��������@��.7B�%B��9��.*��CCJ

����.��B.>���.4���J

P

We then return to Listing 7, where the wrapped message is sent off to
an MQ queue using mq_q.putMsg(m1). That completes one side of the
transaction.

Now we await the return from the mainframe. In this instance the
mainframe returns XML. There is no restriction on XML requiring
children elements to be in alphabetical order so the return message
children can be in any order as long as they are within a well-formed
XML message, as shown here in Example 3:

��)*+�,-.�%%�',�������/)�������/��	
��00����7:�4)1�������/�)�������/		�

��
		
)1�������/)����� ��/!!"
#�$)1����� ��/�)�%%&'/����(�(�)1�%%&'/)1

��*+�,-.�%%�',������/

The returned message calls its public removeWrapper() method to
unwrap the message into map elements and values.

Before you explore Listing 13 it is important to understand that the

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

information in a Document Object Model (DOM) tree is arranged
slightly differently from the information in an XML document.

In an XML document a tag, a value, and an end tag make up a complete
unit, eg <ClaimNo>00-4004</ClaimNo>.

In a document object an additional layer is placed between the tag and
the value called #text. The natural arrangement would be a node named
ClaimNo with a value of 00-4004 but the DOM arranges these as a node
named ClaimNo with no value. This node has a child named ‘#text’
with a value of 00 4004, as shown here in Example 4. (Remember this
when reviewing the code.)

�������������������������;

��;��'�I�����������������;

��;����������������������;

��;����:��B����@>�>�C����;

��;����������������������;

�������������������;

�������������������;

������������������������������������;

�������������;��'�I�����������������;

�������������;�����������H��F�������;

�������������;����:��B����		�
		����;

�������������;����������������������;

Example five, which is shown in Figure 1, is the complete document
object created by loading the XML message from Example 3 above.

The removeWrapper() function starts by checking whether the payload
portion of the message is wrapped. A wrapped message is one in which
the first part of the string matches the wrapper tag
<The_Wrapped_Message>. If there is no match the message is not
wrapped and is returned without further processing. Listing 13 includes
the isWrapped() method.

LISTING 13: REMOVEWRAPPER() AND THE ISWRAPPED() HELPER
METHOD

11�.���Q�>����E.�%%�.���>�G��'�>���>���F����'�9

11�GB����������.���>��.B���Q���>'���.���??����>����

11�'�����B��>���>�!���%�.��.��>'���47���.��

��>��A���II.���Q�-.�%%�.@C

L

����11��?��+�������������B>E.�%%�'��+�>�E����>�G�����B�

�����?@��-.�%%�'@C����?����C

��������.��B.>�	J

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��'�I

����* %����47�2���*

�����������H'��B��>�

����:��B����@>�>�C

������'�I

��������* %������*&*5

���������������*+�,-.�%%�',�������

��������:��B����@>�>�C

����������'�I

������������* %������*&*5

��������������������������

������������:��B����@>�>�C

��������������'�I

����������������* %����*�!*

�����������������������H��F�

����������������:��B������	
��00����7:�4

�����������'�I

������������* %������*&*5

��������������������������

������������:��B����@>�>�C

��������������'�I

����������������* %����*�!*

�����������������������H��F�

����������������:��B����		�
		

����������'�I

������������* %������*&*5

������������������������ ��

������������:��B����@>�>�C

��������������'�I

����������������* %����*�!*

�����������������������H��F�

����������������:��B����!!"
#�$

����������'�I

������������* %������*&*5

��������������������%%&'

������������:��B����@>�>�C

��������������'�I

����������������* %����*�!*

�����������������������H��F�

����������������:��B��������(�(�

Figure 1: The document object (Example 5) created from
Example 3.

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����11�����B%�����>�. �����+���E�

����11���>��F���?.����> E+�.���>'��+����>�. �E��������

����11�!������?�.�2����II*�.��>���@C�?�.�B��

����!������?�.����B%�!�����B%J

����11�&>������V���+��!�.����!���� ����

����11��+.�B�+��+����>�.

����11��>'�G����B���?��+���?����

�����.

����L

��������!�����B%��>������V�@CJ

����P

��������+�@��>���!���F��%���>K�������+C

����L

�����������..�))�6�..�.�'B.�>���>������V����>N6�))��>'�J

���������.��B.>��(J

����P

����11��+��%�.��.�>��'��Q��B���'B.�>������B%

����47���.��.II:����+���������Q����+������47���.��.II:��,��Q�.J��11�>�>�

Q���'���>�

����G����'������%�������?����J�����������������������������������11

E��+�B��>�����%����

����11��>'��>��..�.�+�>'��.

����47��..�.�'�..�.J

����47�,��'��E.�%%�.��'�J

����47�,��'��%��'�J

����47�,��'���+��'��'�J

������.�>����.��'�:��B�9���.��'�����9���.�+��'��'�����J

����11��+������%�.�. ������������%�%B����'�E+����%�.��>���+���>%B�

����A���E.M���J

������.�>�K�E.�%%�'������@=�+��CR��5�7�4,��5SJ

����11�&>���>�������+��47��%�.��.�

����47���.��.�%�.��.J

����11��>'��������B%

����%�.��.����:���'����>��+���@Q����+���CJ

����%�.��.����4������%����@'������%����CJ

����11�&>�������+���..�.�+�>'��.

����%�.��.�����..�.��>'��.@K'�..�.CJ

����11�&>��+���>���'�����. �GB??�.9��+��>�������TB�������>Q�>��>��

����11��+����+��%�.��.���>�B���E+�>�%.�>��>���..�.����������

����11�*+��%�.���B������>���'�����. �GB??�.�E+�>�������%�.��>���>'

����11��>'�!�����.�>���>�����. �

�����+�.=������B?&'�6����'�B??6J

����11�����B%��>��>%B��GB??�.���B.����+���B�����+���+�.����.���>��+�

����11�E.�%%�'�����������.�>�

��������B?&>%B���B.���F���B?@@!��� ��=C�E.�%%�'�����,��.@C9

��E.�%%�'������V�@C9

���B?&'9?����CJ

����11�����M��??��+��%�.����?���E.�%%�'�����������.�>�

����11��?���������+��> ��F��%���>���+������+��%.�%�������B���?����

�����.

����L

��������%�.��.�%�.��@F���B?CJ

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����P

��������+�@��>���!���F��%���>K�������+C

����L

��������47���.�>���@������+�����������@CCJ

����������..�))�6U>�..�.�'B.�>��%�.��>�I�X6�))������B?&'�))�6XU>6

�������������))�6�F��%���>�����������I��U>6

�������������))����.�>���'�@C�))�6U>6�))��>'�J

��������.��B.>��(J

����P

����11���F�.�����+��47���.��

����47�,4��B��>��'�����%�.��.����4��B��>�@CJ

����11�'�E>��>���� �.�����+��+��+������Q���E.�%%�.�E+��+��+�B�'�G�

����11��+��E.�%%�'������������

����E.�%%�.��'����'������Y�.���+��'@CJ

�����?@E.�%%�.��'������2��C

����L

����������..�))�6��B�'�>���?�>'�E.�%%�.�M� 6�))��>'�J

��������.��B.>�(J

����P

�11��F�.�����+��>�'��>�����>'��.�>������������&&

�11������'�����@C�.��B.>����47���.�>��@2>���'��(#�G���E�'���+�.����.�C

�11��+��47���.�>��%.�Q�'������.�>���'�@C����+�'����.��.��Q���+��Q��B����

����11�$�G����+�.����.��E+��+��.���>��.��'��>�������.�>���GT���

������.��'��������@E.�%%�.��'�������'�����@CC��.�>���'�@CJ

����11�..�.��?�>����+��E.�%%�.��������

�����?�@��.��'������N��-�����4,�����3�,��5C

����L

����������..�))�6��B�'�>���?�>'�E.�%%�.�M� 6�))��>'�J

��������.��B.>�(J

����P

����11�-���F�.�������������'�%�������>��'���+��E.�%%�'��������

����11�-��M��+��47���.���B��>�

����11����Y�.���+��'@C�.��B.>���+��?�.����+��'�>�'���?���%�.�>��>�'�

����11������G��>�@C�.��B.>���+��>�'��>�F������+�����+��'�>�'�

����?�.@%��'����E.�%%�.��'�����Y�.���+��'@CJ

��������%��'��N���2��J

��������%��'����%��'�������F���G��>�@CC

����L

��������11������+��>�'��>���

����������.��'��������@%��'�������'�����@CC��.�>���'�@CJ

��������11��+���+��'��?����+�>�'��+�.���+�B�'�G����H��F��>�'�

��������11������+��'�>�'���>'��+���+��'�>�'���>���

���������+��'��'����%��'�����Y�.���+��'@CJ

����������.�+��'��'��������@�+��'��'�������'�����@CC��.�>���'�@CJ

�����������11�?�.��+��%� ����'����

���������?�@��.�+��'��'������N��6H��F�6C

��������L

��������������..�))�6��>��>����?�6�))���.��'������))�6������.��>��

��F��6�))��>'�J

������������.��B.>�(J

��������P

������������

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

��������L

������������11�-��B����+��>�����?��+��>�'������+����%�M� ��>'

������������11�E��B����+��Q��B���?��+���+��'�H��F��>�'������+��Q��B�

��������������.��'�:��B����@�+��'��'�������'�:��B�@CC��.�>���'�@CJ

������������E.M���R��.��'�����S�����.��'�:��B�J

��������P����P

����11�����.��+������������>'

����@=�+��C�����.@CJ

����11����.���+��.��B���>��E�.M����������>���

����@=�+��C���E.M���J

����.��B.>�	J

P

11����B.>��.B���?��+��������E.�%%�'��������

G����A���II��-.�%%�'@C

L

������.�>����.�� ���'J

������.�>����.-.�%%�'J

����11��������������E.�%%�'��?��+��Q��B���?��+��?�.���%������?

����11��>?�.�����>��>�@?�.���%�.���?C��+��%� ���'���.�>�

����11�����+����+��-�����4,�����3�,��5

������.�� ���'���@=�+��CR��5�7�4,��5SJ

�����?@��.�� ���'���V�@C�)�-�����4,�����3�,*�3���V�@CC

��������.��B.>�?����J

������.-.�%%�'�����.�� ���'��BG��.@	9-�����4,�����3�,*�3���V�@CCJ

�����?@��.-.�%%�'����-�����4,�����3�,*�3C

��������.��B.>��.B�J

����.��B.>�?����J

P

A call to XMLPlatformUtils::Initialize() initializes the Xerces XML
processing environment. This is done inside the XMLPlatformSetup
sentry that is used to ensure that XMLPlatformUtils::Terminate() is
correctly called when removeWrapper exits.

The next steps set up the XML parser. Most of Xerces’ tools need to be
instantiated with options and the parse is no exception. Here it is set up
without validation or name spaces.

The Xerces DOM parser parses from any source that is derived from the
XML base class InputSource. The Xerces package provides a number
of classes derived from this base. These sources include
LocalFileInputSource, MemBufInputSource, StdInInputSource, and
URLInputSource. They are each set up differently, but ultimately
handed to the parser. It would have been possible to derive a
StringInputSource and use it directly, but it was just as easy to specify
MemBufInputSource that pointed to the buffer inside a string object,
because the parser does not change the buffer.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The input is parsed and errors are trapped and displayed in detail by
wrapping the Unicode error message into a DOMString and using the
transcode() method to get into a displayable ASCII. The parser error
messages in the Exception object are provided in Unicode and the
DOMString provides this convenient method for translating.

Once parsing succeeds, DOM_Document doc = parser.getDocument()
provides the document object, which is the top of the DOM tree.

A DOM tree is made up of nodes (DOM_Node class). The document
object is a specialized example of the node class and has all of the
methods of that node class, which include, most importantly:

�������'�����@C ���.��Q���+��>�'��>���������47���.�>�

�������'�:��B�@C ���.��Q���+��>�'��Q��B�������47���.�>�

�����Y�.���+��'@C ���.��Q���+��?�.����+��'������47�,��'�

�������F���G��>�@C ���.��Q���+��>�F����G��>�������47�,��'�

Listing 14 and Example 6, which follows, show the uses of these key
functions.

LISTING 14: USING THE FOUR KEY METHODS OF A DOM NODE

11�������+���?B>����>�%����>���+��47�,4��B��>����

11�%.�������+���>��.��47���.��

Q��'��.��-��M@47�,��'��>C

L

������������>���>'�>�����	J

������.�>����.&>'�>��@�>'�>��9X�XCJ

����47�,��'����GJ

������B��))���.&>'�>���))�6>�'��6�))�@>������'�����@CC��.�>���'�@C

���������))�6�Q��B��6�))�@>������'�:��B�@CC��.�>���'�@C�))��>'�J

����?�.@��G���>����Y�.���+��'@CJ���G�N���2��J���G��

��G������F���G��>�@CC

����L

���������>'�>���O���J

���������.��-��M@��GCJ

���������>'�>�������J

����P

P

Example Six is the output of processing the document we have been
using in this article using the treeWalk function.

>�'��H'��B��>��Q��B��

��>�'��*+�,-.�%%�',��������Q��B��

����>�'����������Q��B��

������>�'��H��F��Q��B����	
��00����7:�4

����>�'����������Q��B��

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

������>�'��H��F��Q��B��		�
		

����>�'������� ���Q��B��

������>�'��H��F��Q��B��!!"
#�$

����>�'���%%&'�Q��B��

������>�'��H��F��Q��B������(�(�

Review Figure 1 – the Document Object – and you will see that the
DOM_Document is the top node. The first child of this special node
must be The_Wrapped_Message node if this process is to work
correctly, so the method extracts the child of the document node and
verifies that a node exists and that it is named The_Wrapped_Message.
If either test fails we abort with an error.

The four elements that we want are all children of
The_Wrapped_Message node and, of course, siblings of each other.

The process of walking through these is handled with a for loop of
for(pNode = wrapperNode.getFirstChild(); pNode != NULL;pNode =
pNode.getNextSibling()) using the getFirstChild() and getNextSibling()
methods to walk the tree.

Inside the loop a test is made to ensure that the payload is #text.

POTENTIAL PROBLEMS

In practice there are several potential problem areas and they are not all
discussed in this article. I have handled many of them but the key ones
to be aware of are detailed below.

If the initial message is itself XML then the value of the <Message> tag
will not show up as text. An XML message that has been wrapped using
this method is just a larger XML document. The tags and text values in
the initial message become DOM nodes within the document and the
<Message> node will not have a #text child; consequently there will be
no value in that #text node. To extract such values it is necessary to
create an XML writer or formatter that takes all nodes below the
<Message> node and formats them back into XML. The formatAsXML()
method would have to be written using the tools provided in the Xerces
package. Listing 15 shows what that might look like.

LISTING 15: HANDLING A <MESSAGE> THAT IS XML RATHER THAN
#TEXT

�?�.@%��'����E.�%%�.��'�����Y�.���+��'@CJ

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��%��'��N���2��J

��%��'����%��'�������F���G��>�@CC

��L

������11������+��>�'��>���

��������.��'��������@%��'�������'�����@CC��.�>���'�@CJ

������11������+��'�>�'���>'��+��'�>�'��>���

�������+��'��'����%��'�����Y�.���+��'@CJ

��������.�+��'��'��������@�+��'��'�������'�����@CC��.�>���'�@CJ

������11�?�.��+��%� ����'����

�������?�@@��.��'�����������5�7�4,��5C�KK�@��.�+��'��'������N��6H��F�6CC

������L

��������������11�E���.�����!���?.����+���+��'

��������������11��>'�B����������+��%� ���'

����������������.�>�������?�.�����!��@�+��'��'�CJ

��������������E.M���R��5�7�4,��5S��������.@CJ

������P

����������

������L

��������������11�E��B����+��Q��B���?��+��H��F��>�'������+��Q��B�

����������������.��'�:��B����@�+��'��'�������'�:��B�@CC��.�>���'�@CJ

��������������E.M���R��.��'�����S�����.��'�:��B�J

������P

�P

The next big concern is that the mainframe does not usually return
XML. The output from the mainframe is more likely to be a flat string
of bytes containing all the information that is to be returned to the
application. Example 7 shows a flat record returned from a COBOL
application.

������	
��00����7:�4		�
		
!!"
#�$����(�(�

In this example bytes 1 to 15 form the message, 16 to 22 the ClaimNo,
23 to 30 the PolicyNo, and 31 to 38 the AppId.

We have just stepped off the edge here into the subject of data
transformation. You can write a message-specific handling programme
for this message or apply a more general approach. I ended up writing
a generic data translation package that was script-configurable and very
fast and that did most of the functions of the MQ Series Integrator. But
that is perhaps a subject for another article.

ONE FINAL NOTE ON XML PACKAGES

I have used both the Xerces package for XML/DOM processing and
Microsoft’s MSXML package. If you are so unlucky as to be forced to
use the MSXML package you can use the same approach, but getting

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

there is much more tedious and error prone. The MSXML package is
designed to be used as a COM object. Within the framework of COM
it does a pretty good job. When used directly from C/C++ it does not
automatically free allocated resources unless you use various mechanisms
that slow the package down. So if you want speed you spend a lot of time
hunting for memory leaks.

I recommend the Xerces package. It works well in C/C++, Java can be
compiled on a Windows environment, and it has a COM wrapper for
the Visual Basic and script users. IBM’s XML parser XML4C is based
on the Xerces package so it should be as easy to use.

Mo Budlong (Mobudlong@aol.com), Middleware Integration Specialist
King Computer Services (USA) © Mo Budlong 2002

Multiple CKTI trigger monitor transactions in CICS

The IBM-supplied MQSeries CICS adapter and CKTI trigger monitor
enables the triggering of CICS transactions when messages arrive on
queues. In most cases one CKTI trigger monitor and the proper
initqueue are sufficient for a single CICS system for triggering.

However, there are instances – when using shared queues for example
– where additional CKTI transactions within the same CICS system are
required. Figure 1 illustrates a possible scenario.

MQA and MQB are members of a queue-sharing group running on
different MVS images. CICSA and CICSB are connected to MQA,
CICSC is connected to MQB. Shared queue SQ1 uses INITQ1 for
triggering and is processed by CICSA and CICSC; shared queue SQ2
uses INITQ2 for triggering and is processed by CICSB and CICSC.

The CKTI transactions of CICSA and CICSC have to listen to INITQ1
and CKTI of CICSB and CICSC have to listen to INITQ2, so CICSC
needs two CKTI because it has to listen to two different initqueues.

The initqueue has to be of type QLOCAL; therefore, it is not possible
to use QALIAS definitions to point to a single initqueue.

The initqueues can also be defined as shared queues but this is irrelevant

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

and does not remove the requirement for two CKTI transactions in
CICSC (check with Concepts and Planing Guide, Chapter 2, Shared
queues and queue-sharing groups).

How to deal with multiple CKTI transactions in a single CICS system
is described in the System Administration Guide in the chapter entitled
Operating the CICS Adapter.

Your reason for multiple CKTI may differ from the shared-queue
example. No matter why, if multiple CKTI transactions are required
there are two problems that have to be solved:

• The transaction used to start the CKTI trigger monitor transactions
has to be a terminal-oriented task.

• There is no automatic CKTI restart.

Figure 1: Implementation requiring additional CKTI
transactions

Coupling Facility

TriggeringSQ1

SQ2

Triggering

MVSB

MQB

INITQ1

INITQ2

�

�

MVSA

MQA

INITQ1

INITQ2

CICSA

CICSB

�

�

�

�
CICSC
�

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

STARTING THE CKTI TRIGGER MONITOR TRANSACTIONS

The CKTI-starting transaction must run on a terminal (start transaction()
userid() is not an option). If done manually, CKTI will be assigned the
starter’s user-ID, and, therefore, all started application transactions will
run with this user-ID. This may result in security problems.

To solve this issue two transactions/programs and a special terminal
definition are needed. Transaction one, which is very small, is required
to start transaction two on a terminal (console) that has the proper user-
ID defined. Transaction two issues the CKQC STARTCKTI
commands. The started CKTI transactions will then get the terminal
user-ID assigned.

Transaction one can be started manually, or the related program can be
used in CICS PLTPI to launch the CKTI-starter two at CICS start-up
time.

In this example the terminal name is CNCK (typeterm, using device
console user-ID CICSDFLT), STC1 transaction (program STCKTI1)
starts transaction STC2 (program STCKTI2) on terminal CNCK.

STCKTI2 reads a namelist named sysid.INITQ.NAMELIST and issues
the CKQC STARTCKTI command for every initqueue to start the
proper CKTI transaction.

NO AUTOMATIC CKTI RESTART

If MQ is stopped and the adapter is in a pending state all CKTI
transactions are stopped. If MQ is restarted and the adapter reconnects
then only the ‘default’ CKTI is restarted, which is the CKTI that was
started automatically when the adapter became active the first time. The
CICS adapter does not restart all other previous running CKTI
transactions.

Instead of using automation tools to create a restart procedure it is
possible to make MQSeries restart these CKTI transactions by using
triggering.

When the CICS Adapter is started and the MQSeries connection is
established the ‘default’ CKTI is started, which opens the initqueue.
MQSeries now checks all QLOCAL to see if this queue is used as
initqueue and, if it is, whether the trigger conditions match; if they do

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

a trigger message is created for that specific local queue.

This mechanism can be used to trigger transaction STC1 within CICS.
STC1 will start STC2 on terminal CNCK and STC2 will start (or restart)
the CKTI transactions.

This solution provides a QLOCAL named sysid.INITQ.CONTROL
with the proper trigger attributes and a persistent message to make
MQSeries create the trigger at initqueue open time.

CONCLUSION

The advantage of this solution is that, at any time, all CKTI transactions
will be restarted automatically when the CICS adapter starts or reconnects
to MQSeries.

Besides that, if a manual restart is required it can be achieved by
triggering the control queue (eg alter no trigger/alter trigger) that starts
transaction STC1, or by starting the transaction STC1 manually.

All CKTI transactions will run with the user-ID defined in terminal
CNCK.

To add an initqueue to a running CICS system just add the name in the
sysid.INITQ.NAMELIST and trigger the sysid.INITQ.CONTROL
queue. This will also try to restart already running CKTI transactions;
this will only result in a CSQC383D (another CKTI already running for
that INITQ) console message, but no error.

To remove an initqueue just remove the name from the
sysid.INITQ.NAMELIST. Wait for CICS restart or stop the proper
CKTI manually by using the CKQC transaction.

Some organizations do not like the idea of having these kinds of
‘control-queues’ and ‘control messages’ within MQSeries because
MQSeries should be used for transportation only (and not be misused
as a database or for operational purposes).

In that case STC1 and STC2 transactions may still be used to start the
CKTI transactions but the start of STC1 has to be done in a different way
(eg by an automation tool that checks for proper adapter console
messages).

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SETTING UP

Check object names and adapt to your naming conventions if required.
Of course attributes like storageclasses or typeterms may differ in your
system. Do not forget to check security definitions.

If your CICS systems are designed to run on different MVS images and
if the appropriate MQSeries queue managers are members of a queue
sharing group then the MQ objects sysid.INITQ,
sysid.INITQ.NAMELIST, sysid.INITQ.CONTROL, and all other
initqueues used to trigger applications should be defined with
DISP(GROUP) so that they are the same on all queue managers.

MQSERIES DEFINITIONS

• Define QLOCAL(sysid.INITQ), which will be used as the default
initqueue when the CICS adapter is started.

• Define QLOCAL(sysid.INITQ.CONTROL), which will be used to
trigger transaction STC1 when the CICS adapter is started and
CKTI has become active. Use TRIGGER, TRIGTYPE(FIRST),
INITQ(sysid.INITQ), PROCESS(STC1), DEFPSIST(YES).

• Put a persistent message to sysid.INITQ.CONTROL. This is
required to fulfil all trigger conditions. If the message is not present
STC1 will not be triggered. If you use DISP(GROUP) a persistent
message has to be put to every instance of the queue.

• Define PROCESS(STC1), APPLTYPE(CICS), and
APPLICID(STC1).

• Define NAMELIST(sysid.INITQS.NAMELIST), holding the
names of the initqueues used to trigger applications, eg
NAMES('APP01.INITQ' 'APP02.INITQ'). Of course these have to
be defined too, perhaps as group entries.

• Check that the triggered application queues do not refer to
sysid.INITQ but to one of the application initqueues specified in
the namelist. Otherwise you may run into security problems when
restarting the default CKTI manually.

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

CICS DEFINITIONS

• Compile and link STCKTI1 and STCKTI2 programs and place the
load modules into CICS DFHRPL.

• Define transaction STC1 (program STCKTI1) and STC2 (program
STCKTI2) to CICS.

• Define terminal CNCK to CICS using a TYPETERM that has
device CONSOLE defined, NETNAME(CNCK),
USERID(CICSDFLT), or use whatever exists or fits into your
system.

• Specify sysid.INITQ in the CICS INITPARM for the CICS Adapter
and default CKTI trigger monitor.

• Install all definitions into the CICS system (or perform a cold
restart).

Your CICS log after restart should show something similar to this:

��O4Y��&$
"
&��	(�-�$(���>�.���.��B.>�'�?.�����*�%.��.����'B.�>���+�����

���O4Y��&((���	(�-�$(���>�.������G��>����Q�>�����&���

���O�*��*���*&���73�����*��*�4

���O�&��2����D���*��*��*&�Y7��&�&*D����	(�&�&*D

���O��D�"$#&��	(�-�$(���D���D��*��*��*&��>������'�?.���*���&4�����

������*���&4��*��

��2���&4��&��4Y�*��>'��������%��'

���O�&��2����D���*��*��*&�Y7��&�&*D����	��&�&*D

���O��D�"$#&��	(�-�$(���D���D��*��*��*&��>������'�?.���*���&4�����

������*���&4��*��

��2���&4��&��4Y�*��>'��������%��'

���O							����*&��*��*��7����4��&��2�4

���O�*��*���*&��7������7����*&7�

Stefan Raabe (stefan.raabe@t-online.de)
Independent Consultant (Germany) © Xephon 2002

A better MQSeries batch trigger monitor

At my company we have discovered a need to trigger batch jobs
from MQSeries queues. Through support pack MA12 IBM supplies
what it calls a sample batch trigger monitor. This program runs as a
started task and waits for a trigger message on an initiation queue and

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

then triggers a job pointed to by a DD card in its own JCL. The program
as implemented can only start one job for each batch trigger monitor
that is running. I found this to be a bit limiting so I set out to design a
more versatile replacement. What I came up with works as follows.

My monitor runs as a started task and awaits a trigger message on a
single initiation queue, as does IBM’s, but I do not rely on a DD card
to get the JOB card JCL to submit to the internal reader. Instead, I
decided to use the trigger message itself to supply the JCL.

To do this you first define a QLOCAL as trigger with its initiation queue
as the queue that the trigger monitor is monitoring. You then define a
PROCESS that has the JOB JCL coded in the APPLICID, ENVRDATA,
and the USERDATA fields. The APPLICID field allows 256 bytes and
the ENVRDATA and USERDATA fields allow for 128 bytes each. I
break these fields up into 64-byte records so you can code eight different
JCL cards that this program will deliver to the internal reader. That
should be enough to start most jobs.

Using this method you can define as many triggered QLOCALs as you
have jobs you want to start and point them all to a single initiation queue
that this program is watching. With all the JCL provided in the
PROCESS definition no DD cards are needed in the trigger monitor
started task and no modifications are needed in the program when a new
job needs to be started.

PROGRAM LOGIC

When the trigger monitor is started it first reads the Parm input to
determine the name of the initiation queue to listen on and the name of
the queue manager to connect to. It then connects to the queue manager
and opens the initiation queue. While it is doing this it is putting out
little informational messages to the SYSPRINT DD.

The program then goes into a GET wait on the initiation queue
until it is awakened by a trigger message. When a trigger message
arrives the monitor wakes up and parses the message for the JCL it is
to submit to the internal reader. After doing this it then goes back into
a GET wait on the initiation queue.

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

WebSphere Financial Network Integrator: technical
preview

INTRODUCTION

Early this year IBM announced a preview of WebSphere Financial
Network Integrator (WebSphere FNI). This is a product for the financial
market and consists of a messaging hub or base, an extension for
accessing the SWIFT financial network, and an extension for trusted e-
payments. Both extensions are implemented on top of WebSphere
MQSeries Integrator (MQI) as message processing middleware. They
both share a common customization, configuration, and security
model, and therefore use a common set of subflows and plug-ins. These
common functions are available separately in the messaging hub – the
WebSphere FNI base product. Even though the extensions are positioned
in the financial market the common functions are also useful for other
exploiters of MQI.

This article concentrates on the WebSphere FNI base product and
provides an overview of its concepts and functionality.

TERMINOLOGY

To understand WebSphere FNI you need to know some new terms that

Stopping the trigger monitor

To stop this trigger monitor you must put a message on the initiation
queue which is of type REPORT and feedback of MQFB-QUIT.
The sample program, CKTIEND, which is part of the MA12 support
pac, can be used to generate this message. I have included the source for
this program but you can also download it from the IBM Web site if you
find that easier. JCL to run CKTIEND follows the program source.

The batch trigger monitor program source can be found on the Web at
www.xephon.com/extras/batchtrigger.txt.

Bruce Borchardt, OS/390 Systems Coordinator
Kohls Department Stores (USA) © Xephon 2002

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

were introduced with the product and the ways in which they relate to
MQI and other terminology.

All message processing functions in WebSphere FNI are called services.
A service can be implemented as an MQI message flow or subflow or
both. A service implemented as a message flow can be accessed by non-
MQI programs using WebSphere Message Queueing (MQ) messages.
A service implemented as a subflow can be embedded by any WebSphere
FNI-enabled message flow just like any MQI delivered primitive.

In addition to message flows WebSphere FNI supports services
implemented as normal WebSphere MQ message processing programs,
but this will not be described in this article.

Figure 1illustrates the services and server in a WebSphere FNI instance.

Services can be provided either by WebSphere FNI itself or developed
with WebSphere FNI functionality. A service does not only require a
message processing implementation; usually it also requires a set of
resources or resource definitions, eg WebSphere MQ queues or database
tables or their equivalent. The naming of such resources must be
consistent with their reference in the message flow. Typically, you must
transfer resources from a development environment to some test
environments and to the production environment. These environments
usually have different naming standards or use different resource
managers, eg databases.

Figure 1: WebSphere FNI instance

Server 1 Server 2
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901

1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901
1234567890123456789012345678901212345678901

Service 1

Service 2

Service 3

Service 1

Service 4

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Each service runs in a WebSphere FNI server, which is implemented on
an MQI broker. As shown with Service 1 in Figure 1, a service can run
on multiple servers for availability or throughput reasons. All servers
that belong together form a WebSphere FNI instance. This instance is
maintained by one MQI broker domain (one MQI Configuration
Manager). You can have as many instances as you like. MQI itself
provides a graphical tool, the Control Centre, to maintain this set of
brokers with its message flows. They can also be administered as a set
for the publish/subscribe functionality. In addition, WebSphere FNI
provides a component called WebSphere FNI Customization to maintain
the message flows and their resources in a consistent manner.

WEBSPHERE FNI CUSTOMIZATION

The WebSphere FNI Customization program allows you to create your
instance, to introduce WebSphere FNI server, and to define organizational
units (OUs). In addition, it lets you import service bundles. A service
bundle is a set of services and their related resources. The customization
program does not handle single services. Many services, at least in the
WebSphere FNI extensions, share resources with other services.
Examples of shared resources include a status table or an error processing
queue.

A message flow usually references external resources. Bringing this
message flow to a new environment, say from a development environment
to a test environment, usually requires adaptations to the resource
definitions and the message flow. Resource definitions in development,
test, and production environments at most customer sites have different
naming conventions, eg different high-level qualifiers. This has to be
reflected in the message flow also. Adapting a message flow and the
resource definitions to a new environment is very time-consuming and
error-prone. This is especially true if you provide your message flow as
part of a service offering, solution, or product. In this case you must rely
on your customer to perform the adaptations correctly. Maintaining and
servicing such adapted message flows and resource definitions can be
a nightmare.

To solve the problem WebSphere FNI collects all the necessary
information about the instance and its servers during customization.
When loading a service bundle to a new server in a new instance the
customization program automatically adapts the resource definitions

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and the message flow according to the collected information. This
process is shown in Figure 2, where the imported message flow and
resource definition are referenced as templates because they will be
enriched with information fed into the customization program as
customization data. As a result of the customization process you get
personalized message flows and personalized resource definitions,
which you can deploy to your resource managers.

The personalized message flow has to be imported into the Control
Centre that manages the MQI domain in which the WebSphere FNI
instance resides. This message flow can then be assigned and deployed
to the broker running the WebSphere FNI server. It is a similar process
for personalized resource definitions, eg a WebSphere MQ queue
definition has to be processed with the WebSphere MQ program
runmqsc on distributed platforms for the queue manager that is used for
the broker. With this process you get message flows that are consistent
with the resource definitions required to run the message flow.

Service bundles are used by WebSphere FNI to adapt WebSphere FNI
services to the customer environment. But they can also be developed
by anyone else via a simple process.

An intermediate object in the customization is an organization unit
(OU). An OU is a logical construct used to restrict access to resources.
It can be used to represent a department in an enterprise, an entire
company, or any unit that, from a resource access point of view, is to be

Figure 2: WebSphere FNI customization process

WebSphere FNI
customization

Customization data

Personalized
message flow

Personalized
resource definitionResource definition template

Message flow template
�

�

�

�
�

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

considered distinct from other units. One WebSphere FNI instance can
handle requests for any number of OUs. Several OUs can share the same
implementation of a service, ie they can use the same message flow or
each can have its own implementations of a service. WebSphere FNI
uses a special OU called SYSOU for its administration and configuration
services.

WEBSPHERE FNI CONFIGURATION

If a message flow should be shared by different OUs that need different
resources, eg OU-specific destination queues or OU-specific databases,
static attributes as supported with WebSphere FNI customization
would lead to a set of very similar message flows. To avoid this
WebSphere FNI offers you dynamic attributes with a WebSphere FNI
configuration service.

With the configuration service you can define configuration types and
configuration objects, as shown in Figure 3. A configuration type is a
definition with a name and a collection of attribute names. The
configuration type is defined for the whole instance. For a configuration
type you can define configuration objects and assign values to each
attribute of the object. This can be done for each OU. These configuration

Organizational unit 2Organizational unit 1

WebSphere FNI
configuration type

Attribute 1
Attribute 2

Configuration object
1

Configuration object 1

Configuration object 3Configuration object 2

Attribute 1 = value 1
Attribute 2 = value 2

Attribute 1 = value 1
Attribute 2 = value 5

Attribute 1 = value 3
Attribute 2 = value 4

Attribute 1 = value 6
Attribute 2 = value 7

Figure 3: WebSphere FNI configuration types and
configuration objects

� �

��

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

objects can then be fed into message flow processing and be accessed
with the usual MQI compute or filter nodes, for example.

The configuration service is implemented as a message flow that can
process a set of commands. To access this message flow WebSphere
FNI provides the WebSphere FNI Command Line Interface (CLI). This
program formats user input, sends it as a WebSphere FNI request
message to the configuration message flow, and displays the results.

With the configuration service you have the option to set up dual
authorization. Dual authorization means that a change to configuration
definitions done by one administrator becomes active only after it is
approved by another administrator. Such approval processes are often
required by financial institutions. Dual authorization is enabled by
default but can be switched on or off using the configuration service.

WEBSPHERE FNI SECURITY

All services process messages. Each message has a user-ID associated
with it. For an application this is the user-ID of the person using the
program. In most cases the use of the service is either restricted to some
people or a message is only allowed to be processed by a user if certain
criteria are met, eg the addressee is allowed for this person. You can
protect the whole service by protecting its input queue using external
security managers, eg RACF on z/OS. For further security WebSphere
FNI provides the WebSphere FNI Security service.

WebSphere FNI provides a service that lets you create and maintain
security definitions. Like the configuration service, this service is
accessed via the CLI. The WebSphere FNI security model comprises the
following:

• Access rights, which define the operations that can be performed
on configuration types. Customers can define which operations on
a specific configuration type can be protected. The access right
definitions are carried out for a WebSphere FNI instance.

• Roles. A role is a set of access rights that are required to perform
a specific task. Roles are independent of OUs and they can be
defined by customers. WebSphere FNI already has some predefined
roles for configuration and security administration.

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Users. Users of WebSphere FNI are those user-IDs that are
transported by WebSphere MQ in the message descriptor (MQMD).
Users can be assigned to roles in an OU. A user can exercise
different roles in an OU or the same role in different OUs.

In a service message flow you can check whether a message is allowed
to be processed by the message flow. This check is done against
WebSphere FNI security definitions.

As with configuration, dual authorization can also be implemented for
security definitions.

WEBSPHERE FNI FUNCTIONS

In addition to the configuration and security services WebSphere FNI
provides a set of services that can be used in message flows. These
services are implemented as MQI subflows. Examples of these subflows
are detailed below.

• Configuration Provider. The Configuration Provider subflow
retrieves configuration information provided by the WebSphere
FNI configuration service. This subflow enriches the message
currently being processed with this information. This way, the
information is available to subsequent nodes. These nodes then can
use the information to make decisions or to use the values as
resource names. A decision in a message flow could be whether a
specific operation, eg auditing, should be performed for the OU.
When using the information as a resource name the values could
represent a queue name for an MQOutput node, a database or
database table name, or any other resource you need.

• Access Control. The Access Control subflow checks whether the
user-ID referenced in the MQMD is allowed to perform an
operation. This check is done against the definitions made using
the WebSphere FNI Security service.

• Message auditing. This subflow writes a part of a message to a
WebSphere FNI audit database. The audit data is separate for each
OU so that an administrator for the OU can view only those audit
records written by its own services.

• Timer. WebSphere FNI provides a timer service for processing

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

timer events. This service is implemented in a set of subflows and
a message flow. A timer event can be defined, updated, or cancelled,
using the appropriate subflow.

A WebSphere FNI timer message flow regularly checks timer
events and generates WebSphere FNI service request messages for
expired events.

This kind of timer is useful for timer events that are typically longer
than several minutes and where the probability that the time-out
occurs is low.

• Warehouse. The WebSphere FNI warehouse subflow is more
sophisticated than the warehouse function provided with MQI.
The warehouse entries written using the WebSphere FNI warehouse
subflow can be used for customer-defined queries based on fields
in the message body.

Some of the functions provided as subflows are also available as
services that can be accessed using WebSphere MQ messages.

Internally, WebSphere FNI uses additional services that are not
disclosed in the first release. One of these services is an event-
emitting service. The WebSphere FNI events emitted by this
service can be monitored centrally using a monitoring program
provided by WebSphere FNI.

WEBSPHERE FNI PROGRAMMING MODEL

Accessing WebSphere FNI services is simple. Services implemented as
message flows and that are accessible as WebSphere MQ messages
have to use standard WebSphere MQ messages with a WebSphere MQ
request and format header version 2 (RFH2). In this header WebSphere
FNI requires a specific folder; the use of such folders is a standard
technique when creating MQI messages.

Some of the WebSphere FNI subflows also require the information
contained in the WebSphere FNI-specific folder of the RFH2. Others do
not. Those that do not can be controlled using usual MQI properties if
required.

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Natural – MQSeries interface

Information resources are generally managed by key enterprise
applications that have been designed and developed using software
products from many different vendors, eg IBM and Software AG. In
order to integrate these information resources it is necessary to ensure
that these heterogeneous applications can interoperate seamlessly
across the enterprise.

The code provided (which can be found at www.xephon.com/extras/
natural.zip) illustrates how an interface can be built and used to support
such seamless interoperation. Specifically, the code illustrates how any
application built using Software AG products can interoperate with the
rest of the world by using MQSeries as the messaging mechanism.

Developers experienced with either Software AG’s Natural or IBM’s
Websphere MQ – or both – can use this code as a starting point for
building a more functionally rich interface between applications built
using Software AG’s product set and those from other vendors.

The code supplied illustrates an interface that will work on the Microsoft
Windows platform. However, IBM provides additional support packs
on its Web site (http://www-3.ibm.com/software/ts/mqseries/txppacs),
detailing interfaces that will work on the mainframe and on Unix
platforms as well. The support pack that provides details of the interface
for IBM’s mainframe platform and Unix platforms is md07.

Mohammed Ajab, Martin Howson, Michael Fabianski
IBM (UK) © IBM 2002

SUMMARY

WebSphere FNI is a general infrastructure based on MQI. It extends this
product so that you can base your service offering, solutions, or
products on it. WebSphere FNI lets you adapt message flows and
resource definitions required by these message flows to a customer
environment and provides a configuration and security model that
extends MQI functionality.

Michael Groetzner
IBM (Germany) © IBM 2002

MQ news

CommerceQuest has announced Version 7 of
its EnableNet Data Integrator, a bulk data/
file movement and integration application
that exploits WebSphereMQ. It provides
integration with CommerceQuest’s
integration software, a Web-based interface,
and the addition of a scripting integration
language.

Product improvements include a process-
centric, component-based, service-oriented
architecture, common scripting language
across operating systems, role-based
command and control centre access control,
and XML-based callable interfaces. It is
WebSphere cluster-enabled and exploits the
latest WebSphereMQ capabilities.

Version 7.1, planned for Q4, will feature
expanded platform support for the IBM 4690
point-of-sale system and additional Unix
platforms.

The software will also allow customizable file-
to-message and message-to-file components to
facilitate rapid integration with
WebSphereMQ-enabled applications,
including WebSphereMQ Integrator.

For more information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL, 33607, USA.
Tel: +1 813 639 6300.
Fax: +1 813 639 6900.
Web: http://www.commercequest.com

CommerceQuest (UK), Doncastle House,
Doncastle Road, Bracknell, Berkshire, RG12
8PE, UK.
Tel: +44 1344 861010.
Fax: +44 1344 861011.

* * *

MQSoftware has updated its WebSphere MQ
educational offerings to support IBM’s newest
release of WebSphere MQ.

MQSoftware’s WebSphere MQ courses will
cover IBM’s new features for version 5.3,
including IBM’s JMS applications, API exits,
new product functionality, and added
security features.

Announced separately, MQSoftware has
signed a distribution agreement to resell Europe-
based Primeur’s DataSecure product line in the
United States.

Primeur’s DataSecure is a security solution
for WebSphere MQ and the IBM OS/390
environment. It includes an application
developer’s toolkit for customization, an
MQ-based solution for transparent end-to-
end security, and a link solution that provides
link-oriented security for MQ channels.

DataSecure supports ICSF, HSM and MQ
clients and MQ clusters, and offers full PKI
compliance, PEA, encryption and
authentication, and integrated compression.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.
Fax: +1 952 345 8721.

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *

�
xephon

	MQSeries Publish/Subscribe Service Pack MA0C
	A server connection channel security exit
	Very large queues with WebSphere MQSeries V5.3
	A tale of two queues
	Multiple CKTI trigger monitor transactions in CICS
	A better MQSeries batch trigger monitor
	WebSphere Financial Network Integrator: technical preview
	Natural - MQSeries interface
	MQ news

