

© Xephon plc 2002

November 2002

41

In this issue

MQ
u

p
d

ate

3 Backing up a Unix queue manager
that uses linear logging

11 WebSphere MQ V5.3 clustering:
hints and tips

21 Stand-alone MQSeries Workflow
client/server setup on Windows NT

36 Creating and using generic profiles
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Backing up a Unix queue manager that uses linear
logging

In common with all production IT systems one of the housekeeping
functions that you will need to do on a regular basis for your Unix queue
managers is to back up the file systems they use. If you’ve followed IBM’s
recommendations there will be two such file systems: one for the queue
manager’s data and one for its logs. It is vitally important that these two
are completely in sync when a backup is taken, and the mqbackup script and
those it calls will ensure this.
In order to prevent any new messages arriving whilst the backup is taken,
all channels are stopped and the queue manager is ended. Immediately prior
to its being brought down, the system ‘record media image’
command rcdmqimg is run to write an image of all the queues to the logs
(for use in media recovery).
The channels are stopped by routing the output of an MQSC DISPLAY
CHANNEL command, enhancing it with awk, and writing it to a temporary
file that will be piped back into MQSC. In these scripts three such files will
be created: one that issues a normal STOP CHANNEL command, one that
repeats this with MODE(FORCE) for any that are still up, and one that
issues START CHANNEL commands once the backup has completed and
the queue manager has been restarted.
Once the queue manager is back up and running, the linear logs can be
cleaned up using the cleanmqlogs script from the MS62 Support Pack.
This highlights any logs that the queue manager no longer needs by
compressing them. Any such compressed files that are more than seven
days old are automatically erased.
Here is the console output from running mqbackup.
MQBACKUP
$ mqbackup MYQMGR
Ø783889, 5765-B75 (C) Copyright IBM Corp. 1994, 2ØØØ. ALL RIGHTS
RESERVED.
Starting MQSeries Commands.
 1 : stop CHANNEL(BXLAR17_MYQMGR)
AMQ8Ø19: Stop MQSeries channel accepted.
 2 : stop CHANNEL(CREWLINK.SVRCONN)

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

AMQ8Ø19: Stop MQSeries channel accepted.
 3 : stop CHANNEL(MQS2_MYQMGR)
AMQ8Ø19: Stop MQSeries channel accepted.
 4 : stop CHANNEL(SMPD9_MYQMGR)
AMQ8Ø19: Stop MQSeries channel accepted.
 5 : stop CHANNEL(MYQMGR_BXLAR17)
AMQ8Ø19: Stop MQSeries channel accepted.
 6 : stop CHANNEL(MYQMGR_MQS2)
AMQ8Ø19: Stop MQSeries channel accepted.
 7 : stop CHANNEL(MYQMGR_SMPD9)
AMQ8Ø19: Stop MQSeries channel accepted.
 8 : stop CHANNEL(MYQMGR_SPLHRLØ6)
AMQ9533: Channel 'MYQMGR_SPLHRLØ6' is not currently active.
 9 : stop CHANNEL(SUNSMPD2_MYQMGR)
AMQ8Ø19: Stop MQSeries channel accepted.
 1Ø : stop CHANNEL(TO.MYQMGR)
AMQ8Ø19: Stop MQSeries channel accepted.
1Ø MQSC commands read.
No commands have a syntax error.
1 valid MQSC commands could not be processed.
Channels stopped with errors
Ø783889, 5765-B75 (C) Copyright IBM Corp. 1994, 2ØØØ. ALL RIGHTS
RESERVED.
Starting MQSeries Commands.
 1 : stop CHANNEL(BXLAR17_MYQMGR) mode(force)
AMQ9533: Channel 'BXLAR17_MYQMGR' is not currently active.
 2 : stop CHANNEL(CREWLINK.SVRCONN) mode(force)
AMQ9533: Channel 'CREWLINK.SVRCONN' is not currently active.
 3 : stop CHANNEL(MQS2_MYQMGR) mode(force)
AMQ9533: Channel 'MQS2_MYQMGR' is not currently active.
 4 : stop CHANNEL(SMPD9_MYQMGR) mode(force)
AMQ9533: Channel 'SMPD9_MYQMGR' is not currently active.
 5 : stop CHANNEL(MYQMGR_BXLAR17) mode(force)
AMQ9533: Channel 'MYQMGR_BXLAR17' is not currently active.
 6 : stop CHANNEL(MYQMGR_MQS2) mode(force)
AMQ9533: Channel 'MYQMGR_MQS2' is not currently active.
 7 : stop CHANNEL(MYQMGR_SMPD9) mode(force)
AMQ9533: Channel 'MYQMGR_SMPD9' is not currently active.
 8 : stop CHANNEL(MYQMGR_SPLHRLØ6) mode(force)
AMQ9533: Channel 'MYQMGR_SPLHRLØ6' is not currently active.
 9 : stop CHANNEL(SUNSMPD2_MYQMGR) mode(force)
AMQ9533: Channel 'SUNSMPD2_MYQMGR' is not currently active.
 1Ø : stop CHANNEL(TO.MYQMGR) mode(force)
AMQ9533: Channel 'TO.MYQMGR' is not currently active.
1Ø MQSC commands read.
No commands have a syntax error.
1Ø valid MQSC commands could not be processed.
Channels force stopped with errors
Media image for object MYQMGR, type catalogue recorded.
Media image for object MYQMGR, type qmgr recorded.
Media image for object SYSTEM.DEFAULT.PROCESS, type process recorded.
Media image for object SYSTEM.DEFAULT.NAMELIST, type namelist recorded.

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Media image for object BXLAR17, type queue recorded.
Media image for object CREWLINK.IMS.REPLY, type queue recorded.
Media image for object CREWLINK.MAGELLAN.QUEUE, type queue recorded.
Media image for object CREWLINK.TO.IMS, type queue recorded.
Media image for object FROM_MQS2, type queue recorded.
Media image for object FROM_SMPD9, type queue recorded.
Media image for object IMSATS.REPLY.QUEUE, type queue recorded.
Media image for object IMSDEV.REPLY.QUEUE, type queue recorded.
Media image for object JS.IMS.IN, type queue recorded.
Media image for object JS.IMS.OUT, type queue recorded.
Media image for object JS.IMSATS.IN, type queue recorded.
Media image for object JS.TESTIMSIN, type queue recorded.
Media image for object MAGELLAN.CREWLINK.QUEUE, type queue recorded.
Media image for object MQS2.XMITQ, type queue recorded.
Media image for object OW.CLUSTER.TEST, type queue recorded.
Media image for object OW.TEST, type queue recorded.
Media image for object SMPD9, type queue recorded.
Media image for object MYQMGR.DEADLQ, type queue recorded.
Media image for object MYQMGR.TO.IMSATS, type queue recorded.
Media image for object MYQMGR.TO.IMSDEV, type queue recorded.
Media image for object SPLHRLØ6, type queue recorded.
Media image for object SUNSMPD2, type queue recorded.
Media image for object SYSTEM.ADMIN.CHANNEL.EVENT, type queue recorded.
Media image for object SYSTEM.ADMIN.COMMAND.QUEUE, type queue recorded.
Media image for object SYSTEM.ADMIN.PERFM.EVENT, type queue recorded.
Media image for object SYSTEM.ADMIN.QMGR.EVENT, type queue recorded.
Media image for object SYSTEM.AUTH.DATA.QUEUE, type queue recorded.
Media image for object SYSTEM.CHANNEL.INITQ, type queue recorded.
Media image for object SYSTEM.CHANNEL.SYNCQ, type queue recorded.
Media image for object SYSTEM.CICS.INITIATION.QUEUE, type queue
recorded.
Media image for object SYSTEM.CLUSTER.COMMAND.QUEUE, type queue
recorded.
Media image for object SYSTEM.CLUSTER.REPOSITORY.QUEUE, type queue
recorded.
Media image for object SYSTEM.CLUSTER.TRANSMIT.QUEUE, type queue
recorded.
Media image for object SYSTEM.DEAD.LETTER.QUEUE, type queue recorded.
Media image for object SYSTEM.DEFAULT.ALIAS.QUEUE, type queue recorded.
Media image for object SYSTEM.DEFAULT.INITIATION.QUEUE, type queue
recorded.
Media image for object SYSTEM.DEFAULT.LOCAL.QUEUE, type queue recorded.
Media image for object SYSTEM.DEFAULT.MODEL.QUEUE, type queue recorded.
Media image for object SYSTEM.DEFAULT.REMOTE.QUEUE, type queue
recorded.
Media image for object SYSTEM.MQSC.REPLY.QUEUE, type queue recorded.
AMQ7467: The oldest log file required to start queue manager MYQMGR is
SØØØØØØ8.LOG
AMQ7468: The oldest log file required to perform media recovery of
queue manager is SØØØØØØ8.LOG
Media image recorded OK

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 stop.qmgr started at Fri Jul 19 Ø7:55:24 BST 2ØØ2
Fri Jul 19 Ø7:55:24 BST 2ØØ2 stop.qmgr Performing immediate shutdown on
MYQMGR.BW
 waiting for up to 3Ø seconds ...
MQSeries queue manager ending.
MQSeries queue manager ended.
Fri Jul 19 Ø7:55:34 BST 2ØØ2 stop.qmgr Queue Manager MYQMGR already
stopped
 stop.qmgr finished at Fri Jul 19 Ø7:55:35 BST 2ØØ2
The two filesystems were backed up here
MQSeries queue manager 'MYQMGR' started.
Ø783889, 5765-B75 (C) Copyright IBM 1994, 2ØØØ. ALL RIGHTS RESERVED.
Starting MQSeries Commands.
 1 : start CHANNEL(BXLAR17_MYQMGR)
AMQ8Ø18: Start MQSeries channel accepted.
 2 : start CHANNEL(CREWLINK.SVRCONN)
AMQ8Ø18: Start MQSeries channel accepted.
 3 : start CHANNEL(MQS2_MYQMGR)
AMQ8Ø18: Start MQSeries channel accepted.
 4 : start CHANNEL(SMPD9_MYQMGR)
AMQ8Ø18: Start MQSeries channel accepted.
 5 : start CHANNEL(MYQMGR_BXLAR17)
AMQ8Ø18: Start MQSeries channel accepted.
 6 : start CHANNEL(MYQMGR_MQS2)
AMQ8Ø18: Start MQSeries channel accepted.
 7 : start CHANNEL(MYQMGR_SMPD9)
AMQ8Ø18: Start MQSeries channel accepted.
 8 : start CHANNEL(MYQMGR_SPLHRLØ6)
AMQ8Ø18: Start MQSeries channel accepted.
 9 : start CHANNEL(SUNSMPD2_MYQMGR)
AMQ8Ø18: Start MQSeries channel accepted.
 1Ø : start CHANNEL(TO.MYQMGR)
AMQ8Ø18: Start MQSeries channel accepted.
1Ø MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.
Channels started OK
cleanmqlogs: MYQMGR: Needed for Media Recovery: SØØØØØØ8.LOG
cleanmqlogs: MYQMGR: Needed for Qmgr Restart: SØØØØØØ9.LOG
About to compress MYQMGR's SØØØØØØØ.LOG
About to compress MYQMGR's SØØØØØØ1.LOG
About to compress MYQMGR's SØØØØØØ2.LOG
About to compress MYQMGR's SØØØØØØ3.LOG
About to compress MYQMGR's SØØØØØØ4.LOG
About to compress MYQMGR's SØØØØØØ5.LOG
About to compress MYQMGR's SØØØØØØ6.LOG
About to compress MYQMGR's SØØØØØØ7.LOG
The four scripts that make up this utility are show below:
#!/bin/ksh
Script: mqbackup
Purpose: This is the controlling script to backup up a Queue

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Manager's #
file systems
It take the name of the Queue Manager as its only parameter
if [[$# -ne 1]]
then
 print "Usage is: mqbackup qmgrname"
 exit 1
fi
pre.backup $1
In here you should place the commands that will backup the Queue
Manager's #
two file systems:
These are usually /var/mqm and /var/mqm/log
print " "
print " "
print "##"
print "##"
print "##"
print "##"
print " "
print " "
post.backup $1
#!/bin/ksh
Script: pre.backup
Purpose: This script does a number of things before the queue manager
is run:
1 creates the file with the commands to stop all the channels
2 creates the file with the commands to start all the channels
3 stops all the channels
4 runs 'record media image' for the queuemanager ready for backup
5 stops the queue manager if [[$# -ne 1]]
then
 print "Usage is: pre.backup qmgrname"
 exit 1
fi
integer big_rc=Ø
Create a file with the command in
echo 'display channel(*)' > display.chan
Create a file to stop the channels nicely
/usr/bin/runmqsc $1 < display.chan | grep CHLTYPE | grep -v SYSTEM |
awk '{print "stop "$1}' > stop.channel
Create a file to stop the channels for sure using FORCE
/usr/bin/runmqsc $1 < display.chan | grep CHLTYPE | grep -v SYSTEM |
awk '{print "stop "$1" mode(force)"}' > force.channel
Create a file to start the channels
We need to do this now while the queue manager is still up!
/usr/bin/runmqsc $1 < display.chan | grep CHLTYPE | grep -v SYSTEM |
awk '{print "start "$1}' > start.channel
Stop the channels nicely
/usr/bin/runmqsc $1 < stop.channel
case $? in

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Ø) print 'Channels stopped OK' ;;
1Ø) print 'Channels stopped with errors' ;;
2Ø) print 'runmqsc for channel stop failed' ;;
*) print 'Error'
esac
Give them a chance
sleep 1Ø
Stop the channels, no question
/usr/bin/runmqsc $1 < force.channel
case $? in
Ø) print 'Channels force stopped OK' ;;
1Ø) print 'Channels force stopped with errors' ;;
2Ø) print 'runmqsc for channel force stop failed'; big_rc=big_rc+1Ø
;;
*) print 'Error'
esac
Give them a chance
sleep 1Ø
Record the media image of the queues and their contents
ready for the backup
/usr/bin/rcdmqimg -l -m $1 -t all *
case $? in
Ø) print 'Media image recorded OK' ;;
132) print 'Damaged object found' ;;
135) ;;
*) print 'Error recording media image'; big_rc=big_rc+1Ø ;;
esac
Stop the queue manager
#
stop.qmgr $1
exit $big_rc
#!/bin/ksh
Script: stop.qmgr
Purpose: This script will shutdown the Queue Manager ensuring all
processes have terminated before the backups can be run...
It takes just one parameter - the name of the Queue Manager
Check if we are in debug mode
[[${VERBOSE_LOGGING} = "true"]] && set -x
explicitly set our path to pick up our commands
PATH="/usr/bin:/bin:/usr/sbin:/etc:/usr/local/bin"
export PATH
PROGNAME="${Ø##*/}" # The name of this program
We expect a single parameter of a queue manager nam
if [$# != 1]
then
 echo "\nusage: ${PROGNAME} <queue manager>\n"
 exit 255
fi
echo echo "\t${PROGNAME} started at $(date)"
echo # Set any common variables here
As per MQSeries System Management guide:

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

PROGRAM_KILL_ORDER="amqhasmx amqharmx amqzllpØ amqzlaaØ amqzfuma
amqzxmaØ amqrrmfa"
QMGRS=$1
Function to check is a Queue Manager is still running
check_qmgr()
{
if [`ps -ef | egrep -v
"grep|amqcrsta|runmqsc|stop.qmgr|mqbackup|pre.backup" | grep -c $QMGR`
-ne Ø]
then return 1 # Still running
else return Ø # Stopped
fi
}
Function to stop Queue Manager
stop_qmgr()
{
immediate shutdown
check_qmgr
if [$? -ne Ø] ; then
 echo `date` $PROGNAME Performing immediate shutdown on $QMGR
 endmqm -i $QMGR &
 echo " waiting for up to 3Ø seconds ..."
 for i in 1 2 3
 do
 sleep 1Ø
 check_qmgr
 if [$? -eq Ø] ; then
 break
 fi
 done
else
 echo `date` $PROGNAME Queue Manager $QMGR already stopped
 return
fi
pre-emptive shutdown
check_qmgr
if [$? -ne Ø] ; then
 echo `date` $PROGNAME Performing pre-emptive shutdown on $QMGR
 endmqm -p $QMGR &
 echo " waiting for up to 6Ø seconds ..."
 for i in 1 2 3 4 5 6
 do
 sleep 1Ø
 check_qmgr
 if [$? -eq Ø] ; then
 break
 fi
 done
else
 echo `date` $PROGNAME Queue Manager $QMGR already stopped
 return

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

fi
Kill off any remaining tasks
check_qmgr
if [$? -ne Ø] ; then
 for PROGRAM in $PROGRAM_KILL_ORDER
 do
 PID=`ps -ef|grep $QMGR|grep $PROGRAM|awk -F" " '{print $2}'`
 if ["."$PID != "."] ; then
 echo `date` $PROGNAME "Killing (-9) PID $PID $PROGRAM"
 kill -9 $PID
 echo " waiting for 1Ø seconds ..."
 sleep 1Ø
 fi
 done
fi
}
Function to clean up Processes
function cleanup_processes
{
for PROC in DCSQMain runmqsc amqcrsta
do
 ps -ef|grep -i $PROC|egrep -v grep|awk '{print $2}'|while read PID
 do
 if [[$PROC = runmqsc]]
 then
 ps -fp $PID|grep -q $QMGR && kill -9 $PID
 else
 kill -9 $PID
 fi
 done
done
} # end of cleanup_processes
ascertain the OS and set any specific variables here
OS=$(uname -s)
case $OS in
 "AIX")
 # Set any IBM AIX specific parameters
 ;;
 "SunOS")
 # Set any SUN Solaris specific parameters
 ;;
 "*")
 # Not a recognised OS
 echo "ERROR: the operating system is not known"
 exit 255
 ;;
esac
Main code
for QMGR in $QMGRS
do
 stop_qmgr

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 cleanup_processes
done
echo echo "\t${PROGNAME} finished at $(date)"
#!/bin/ksh
Script: post.backup
Purpose: This script does a number of things after the queue manager
back-up is run:
1 restarts the queue manager
2 starts all the channels
3 runs cleanmqlogs to compress old log files
4 deletes compressed log files over 7 days old
5 deletes temporary files
if [[$# -ne 1]]
then
 print "Usage is: post.backup qmgrname"
 exit 1
fi
Start the queue manager
/usr/bin/strmqm $1
Start the channels
/usr/bin/runmqsc $1 < start.channel
case $? in
Ø) print 'Channels started OK' ;;
1Ø) print 'Channels started with errors' ;;
2Ø) print 'Channels start failed ' ;;
*) print 'Error' ;;
esac
Run IBM support pack MS62 (cleanmqlogs) to compress unneeded log
files cleanmqlogs -Z $1
Get rid of compressed logs over 7 days old
cd /var/mqm
find . -mtime +7 -name '*.LOG.Z' -exec rm -f {} \;
Get rid of the temporary files
rm display.chan
rm stop.channel
rm force.channel
rm start.channel

Chris Bell, Systems Consultant
British Airways (UK) © Xephon 2002

WebSphere MQ V5.3 clustering: hints and tips

INTRODUCTION
A number of changes to the MQSC commands have been made for the

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

WebSphere MQ (WSMQ) clustering support in V5.3 to make it easier to
recover a cluster after a problem. This articles provides some hints and tips
on how to use these commands effectively. Beginning with a look at the
key points that should be adhered to when creating a cluster,
we go on to focus on the channels that make up the backbone of the cluster
and on which everything else relies. Continuing with an examination of
some problems that have been encountered when using clustering, we shall
also discuss ways of fixing them. The aim is that by combining a better
understanding of how clusters work with the additional functions provided
in V5.3 users should find it simpler to maintain clusters.
I’m assuming that readers have a basic understanding of what MQ
clustering is. If not, I would recommend reading the first few chapters of
the WSMQ Queue Manager Clusters manual before proceeding.

TERMINOLOGY
From here on we talk about partial repository and full repository queue
managers. A full repository queue manager holds a complete view of a
cluster, ie it knows about all the queue managers in the cluster, the cluster
queues they host, and which other queue managers in the cluster are
interested in the queues. It is recommended that there are two full
repositories for a cluster in order to avoid a single point of failure.
All other queue managers within a cluster hold a partial view of the cluster.
This means that they know only about the cluster queue managers and
cluster queues that are required by applications on their queue managers.
If a partial repository needs to find out about a queue or queue manager
within the cluster, it will subscribe for the information from two full
repository queue managers and then add the information to its own partial
repository.

DEFINING CLUSTER CHANNELS
The key to using MQ clustering successfully is the correct definition and
maintenance of the manually defined cluster channels on queue managers
within the cluster. Let’s start by looking at the two different types of cluster
channel and what they are used for.

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Manually defined cluster sender channels
A manually defined cluster sender channel has a slightly different meaning
depending on whether it is defined on a partial repository queue manager
or a full repository queue manager.
On a partial repository queue manager it can be thought of as a bootstrap
to get a queue manager up and running in the cluster. The channel must
point at a full repository for the cluster. This is the full repository that the
new queue manager will use initially to subscribe for information about
other full repositories in the cluster.
Once the new queue manager has the information about all the full
repositories in the cluster it no longer requires the manually defined cluster
sender definition because it can automatically create channels to the full
repositories. However, when making a choice between which two full
repositories to use when publishing or subscribing for queues and queue
managers within the cluster, those full repositories that have manually
defined cluster sender channels to them are picked ahead of automatically
defined cluster sender channels. So if you want some control over which
full repositories a partial repository uses you should define manual cluster
sender channels to them.
(Note that this does not guarantee that subscriptions will only be made on
those full repositories to which you have defined the manual cluster
senders. The queue manager makes its choice of repository based on a
number of different criteria, such as the channel state, ie a running channel
is better than a retrying one. If the other criteria are all equal then manually
defined channels take precedence.)
On a full repository the manually defined cluster sender channels are used
to tell the queue manager which other full repositories for the cluster it
should send information to. This means that rather than have every full
repository talking to every other full repository for the cluster you can
decide on the best route for propagation of the information. It is vital that
the manually defined cluster sender channels on the full repositories form
a fully connected set, otherwise some of the full repositories will not
receive all of the updates about the cluster.
In the example shown in Figure 1 the arrows represent manually defined
cluster sender channels. P1 is a partial repository and F1, F2, and F3 are
full repositories.

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If P1 needs to subscribe for a queue it will preferentially choose F1 for one
of the subscriptions as it has a manually defined cluster sender channel to
F1. It will also choose between F2 and F3 to make its second subscription.
If F1 received information about a new queue in the cluster it would
publish that information to F2; F2 would publish it to F3 and F3 would
publish it back to F1, which would notice that it had already seen the
information and discard the second copy. Note that this example is only
meant to show how the manually defined cluster sender channels control
the flow of information between the full repositories. In practice it would
be useful to have some redundant connections as in this example a failure
of F2 would mean that when F1 receives new information it will not reach
F3.

Cluster receiver channels
By defining a cluster receiver channel we are stating how other queue
managers in the cluster can talk to our queue manager. The cluster receiver
channel also contains information such as a CONNAME. This is because
the information provided in the cluster receiver channel definition is used
by other queue managers within the cluster to create automatic sender
channels to our queue manager. When the cluster receiver is defined the
information within it is sent to the full repositories for the cluster and the
full repositories will pass the information on to any other queue managers
within the cluster that want to send data to our queue manager.
We can see that defining a cluster receiver channel has much further-
reaching effects than most MQSC commands, which only affect the local
queue manager. For this reason it is worth being especially careful when

P1

F1 F2

F3

!!!!!

"""""

"""""
"""""

Figure 1: Manually defined cluster sender channels

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

defining or modifying cluster receiver channel definitions. I would
recommend avoiding, for example, cutting and pasting of cluster receiver
definitions from one queue manager in the cluster to another because if you
forget to change some of the attributes this can adversely affect the cluster.

Example problem
Let’s take a look at what could go wrong when a cluster receiver is
incorrectly defined and how to fix the problem. For our example let’s say
that when defining/altering the cluster receiver channel definition the
wrong CONNAME is used.
• What happens?

The new channel information is sent to the full repositories and they
will pass it on to other queue managers that need to send data to our
queue manager. The new information takes effect the next time an
attempt is made to start the automatic sender channels to our queue
manager. At this time they will go into retry state because they will be
unable to connect. Note that if the channels are already running they
will continue to run with the old information until the next time they
restart so you may not notice the problem immediately.

• How do you fix the problem?
Alter the cluster receiver channel to contain the correct CONNAME.
Once again, the information will be sent to the full repositories and
they will forward it on to interested queue managers. If the channels
are in retry the next time they do retry they will pick up the new
CONNAME and use that. Alternatively the channels could be started
manually if the retry interval is quite long.

Channel definition summary
A lot of problems that we see in MQ clustering arise because the channels
have not been defined correctly. It is worth taking time to understand how
the two different types of channel are used. Let’s now look at what happens
when a partial repository queue manager is added to the cluster and how
to determine whether or not it has been added successfully.

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ADDING A PARTIAL REPOSITORY QUEUE MANAGER TO THE
CLUSTER
The initial communication between a partial repository and a full repository
takes place when both a cluster sender channel and a cluster receiver
channel are defined on the partial repository for the same cluster. The
partial repository takes the information from its cluster receiver channel
and sends it to the full repository down the cluster sender channel. The full
repository then stores the information as an automatically defined cluster
sender channel, which it then immediately uses to send the information
from its cluster receiver channel back to the partial repository.
If you want to check that this has taken place the easiest way is to issue the
command DISPLAY CLUSQMGR(*) ALL on the partial repository
queue manager and look at the cluster sender definitions as explained
below.
When you issue a DISPLAY CLUSQMGR command on a cluster queue
manager and look at the DEFTYPE attribute of the objects displayed there
are three different types of cluster sender channel that you may see:
• CLUSSDR. This is a manually defined cluster sender channel with

which we have not yet successfully completed our initial
communications with the cluster queue manager at the receiving end
of the channel. The CLUSQMGR attribute will show the name of the
queue manager as being SYSTEM.TEMPQMGR... This is because it
doesn’t yet know the real name of the queue manager at the receiving
end of the channel.

• CLUSSDRB. This is a manually defined cluster sender channel which
has successfully completed its initial communications with the
cluster queue manager at the receiving end of the channel. It will now
have a real queue manager name in the CLUSQMGR attribute and the
other attributes of the channel will reflect the attributes defined in the
CLUSRCVR at the receiving end of the channel. Note the QMTYPE
attribute should be REPOS. If it is not then the manually defined
channel does not point at a full repository for the cluster.

• CLUSSDRA. This is an automatically defined cluster sender channel.
So by displaying the CLUSQMGR information on the partial repository
what we should see is a cluster sender channel with

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

DEFTYPE(CLUSSDRB). If we see one with DEFTYPE(CLUSSDR) we
know that the initial communications have not completed. Here is a list of
things to check if this occurs.
1 Is a CLUSRCVR channel defined? Are the CLUSRCVR and CLUSSDR

channels defined in the same cluster? The initial communications will
not take place until both a cluster receiver and a cluster sender exist
for the same cluster.

2 Is the CLUSSDR channel started? If the channel is stopped then start
it. If it’s in retry check that the listener on the full repository is started
and that the CONNAME is correct in the CLUSSDR definition.

3 If you issue DISPLAY CLUSQMGR on the full repository do you see
your queue manager displayed? If no cluster sender channel for your
queue manager is displayed, check for any error messages issued on
the full repository. Check the CURDEPTH of the
SYSTEM.CLUSTER.COMMAND.QUEUE on the full repository.
This is the queue where the work for the repository manager is queued.
If the CURDEPTH is high but dropping, it could be that the request
from your queue manager has not been processed yet.

4 Is the automatically defined sender channel from the full repository
to the partial repository started? If the channel is stopped, start it. If
it’s in retry, check that the listener on the partial repository is started
and that the CONNAME is correct in the partial repositories
CLUSRCVR definition.

The remainder of this article looks at additions to the MQSC commands
in WSMQ V5.3.

HANDLING DUPLICATE QUEUE MANAGERS IN A CLUSTER
When a change occurs to an object in the cluster the change always
originates at the queue manager in the cluster on which the MQSC
command was issued that caused the change. That queue manager will then
inform two of the full repository queue managers about the change and they
in turn will inform any other full repositories and also any partial
repositories.
The same applies for deletes. If you want to remove a queue manager from
a cluster the correct way to do this is to delete any cluster resources that

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the queue manager owns, ie issue ALTER QL(<queuename>)
CLUSTER(' ') on each cluster queue that the queue manager owns. This
will inform two of the full repositories that the queues are no longer a part
of the cluster. Issue ALTER CLUSRCVR(<channelname>)
CLUSTER(' ') on each cluster receiver that the queue manager owns. This
will inform two of the full repositories that the automatically defined
sender channels to the queue manager should be deleted. This information
will then get propagated around the cluster via the full repositories so that
all the queue managers are aware of the deletion.
(See the WSMQ Queue Manager Clusters manual for the full procedure
for removing a queue manager from the cluster.)
A common problem that has been encountered in clustering occurs when
a queue manager is deleted without first being removed from the cluster.
This makes other queue managers in the cluster think it still exists and the
queue manager can no longer inform the cluster that it doesn’t. This can
be solved by issuing the reset cluster command on a full repository in the
cluster to remove the deleted queue manager’s definitions.
 RESET CLUSTER(<clusname>) ACTION(FORCEREMOVE) QMNAME(<qmgrname>)
 QUEUES(YES)

Note that the reset cluster command is available in all releases of MQ
clustering; however, the QUEUES keyword is new in 5.3 and allows any
cluster queues associated with the deleted queue manager to be removed
also.
The problem shown above is often made more complicated by deleting the
queue manager and then recreating it from a script, which has the effect of
adding it back into the cluster with the same queue manager name and the
same channel definitions. Because the queue manager was recreated it will
have a new unique identifier associated with it, called the QMID, and other
queue managers in the cluster will now see two instances of the channels,
one instance for the old QMID and one for the new QMID.
We cannot use the reset cluster command shown above as the queue
manager name is no longer unique so we must use a slightly different
version of the command.
 RESET CLUSTER(<clusname>) ACTION(FORCEREMOVE) QMID(<oldqmid>)
 QUEUES(YES)

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Note that the QMID keyword is new for 5.3.
This will force the full repository to delete any cluster queue and cluster
queue manager information for the QMID specified and propagate the
deletes around the cluster.

REFRESHING A QUEUE MANAGER’S VIEW OF THE CLUSTER
There may be times when a queue manager’s view of the cluster becomes
out of sync with the rest of the cluster. There is a command called
REFRESH CLUSTER, which causes the queue manager on which it is
run to discard the information it holds in its local repository and then
communicate with the full repositories again to get back in sync.
The version of this command that exists in the pre-5.3 releases will never
completely remove all of the information from the local repository as it
tries to leave enough information around to enable the queue manager to
join the cluster successfully again. For example, on a partial repository the
information regarding full repository queue managers is not removed so
that as part of the refresh the queue manager can talk to the full repositories
and request new information.
Situations may arise, however, when it is useful to be able to say “I want
to get my queue manager to start again in the cluster from the initial
manually defined channels”, so in V5.3 this has been added as an option.
If you specify REFRESH CLUSTER(<clusname>) REPOS(YES) all
of the information about the cluster in the queue manager’s local repository
is removed. In order to achieve this the sender channels for the cluster
should be stopped as the queue manager cannot remove information about
them if they are in use. If the sender channels are not stopped when the
command is run it will force them to stop so that the refresh can be
completed. There are several points to consider when using this command.
First, the REPOS(YES) option cannot be run on a full repository. This is
because it will delete all the channels and, therefore, cannot ensure that
other queue managers in the cluster know it is being refreshed and that they
should take some action. Therefore you must first alter the full repository
to be a partial repository. This will make the full repository inform the other
queue managers in the cluster that it is not a full repository any more and

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

they can then request information from another full repository if there is
one.
Having made the queue manager a partial repository it’s worth waiting for
the change to be propagated around the cluster before issuing the refresh
command, ie if there are a lot of channels that the full repository needs to
start to inform the partial repositories that it is no longer a full repository,
wait for them to start first. Once the partial repositories have been informed
about the change the channels can then be stopped and the refresh command
issued.
Secondly, if you have only one full repository for the cluster (which is not
recommended), then after the refresh has occurred and the queue manager
is altered to be a full repository again it cannot tell all the other queue
managers that it is a full repository because it’s just deleted all of the
information about them. Therefore, it will be necessary to refresh all the
other queue managers in the cluster to get them communicating correctly
with the full repository again. If you have two full repositories for the
cluster, temporarily making one of them a partial repository is fine because
once the refresh is complete and the queue manager is altered to be a full
repository again it will tell the other full repository, which will inform all
the partial repositories.
Thirdly, if your queue manager has channels that are in multiple clusters,
refreshing a single cluster will not completely remove all of the local
repository information because some of it is relevant to other clusters as
well. Another option that has been added to the REFRESH command is
the ability to say:
 REFRESH CLUSTER(*)

This will cause all the clusters to be refreshed on the local queue manager
at the same time.
The most important point to remember about the refresh cluster command
is that all it is doing is clearing the local repository state, which will then
get added again later when it is required. In a working cluster it should not
be necessary to run this command. If a queue manager appears to be out
of sync with the full repositories it would be more useful to check that the
channels are running and the definitions are correct, rather than hope that
a refresh will fix the problem.

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

TO CONCLUDE...
Clustering can be a very powerful tool, providing an easy way to connect
and share resources between a large number of queue managers. When we
look at implementing a cluster it is important to get right the initial
manually defined channels that provide the information the queue managers
require to cluster themselves. Therefore it’s worth having a good
understanding of what functions these channels perform and the effects
they have on the cluster.
The changes to the MQSC commands in WSMQ V5.3 focus on the two
main problems seen by users of clustering. First, being able to remove a
duplicate queue manager from the cluster when that actual queue manager
no longer exists and, second, to be able to cold start a queue manager in the
cluster from its original manually defined channels. For more information
on clustering I would strongly recommend reading the WSMQ Queue
Manager Clusters manual, which contains numerous examples of setting
up clusters.
My thanks go to Mike Horan and Andrew Banks of IBM for their
contributions to this article.
Dan Millwood, WSMQ Development
IBM Hursley (UK) © IBM 2002

Stand-alone MQSeries Workflow client/server setup
on Windows NT

The aim of this article is to assist developers who would like to set up
MQSeries workflow on Windows NT in stand-alone mode. It is based on
existing and informative guidelines by IBM but I have attempted to make
it more practical so that programmers jumping into MQSeries with little
or no background knowledge will benefit most.

TO BEGIN
Check that Windows NT Workstation Version 4.0 at Service Pack 6a is
installed on your workstation. The version and service level installed on

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

your system are displayed on the screen at boot-up. See the Microsoft
Network or the Microsoft Web site http://support.microsoft.com/support/
ntserver/content/servicepacks/ for Windows NT service packs.
• Click on Service Pack 6a, then on Download, then on High Encryption

Version.
• Click on Start SP6a Express Download (for single computer

installation only).
• Save the program sp6patch_i386.exe to disk.
• Open Windows Explorer, locate the downloaded file, and double-

click on it. This will prompt you with a licence agreement, which you
should accept. Click on Install to install the Service Pack. Once the
installation is successful you will be prompted to restart the machine
to make the software updates effective.

The next step is to create a new Windows user-ID with administration
rights. This user-ID is used later during the MQ Workflow configuration.
Note that this user-ID must conform to the naming rules for DB2. The
password must be no longer than eight characters and must not contain
accent characters.
• On the task bar click on the Windows Start menu and select Programs-

>Administrative Tools (Common)->User Manager. The User Manager
window appears.

• Within the User Manager window from the menu bar select User-
>New User.... ANew User dialog box appears.

• Within the New User dialog box:
– enter a user name that is a maximum of eight characters long

within the Username field. Make a note of your new user-ID, ie
ChandraU.

– enter a password within the password field and confirm the
password within the Confirm Password field. Make a note of the
password ‘Password’ and keep it in a safe place.

– Deselect the User Must Change Password at Next Logon check
box.

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

– Click on the Groups button. A Group Memberships dialog box
appears.

– Within the Group Memberships dialog box make your new user-
ID a member of the administrators’ group by selecting
Administrators and clicking on <-Add. Select OK. Control
passes back to the New User dialog box.

• Select OK and close the User Manager window.
Log off from Windows and log on again specifying the new user-ID and
password.

INSTALLING PREREQUISITE SOFTWARE
DB2 and MQSeries are prerequisites for MQ Workflow and must be
installed before running the MQ Workflow installation on your workstation.
The following steps are the minimum needed to install DB2 and MQSeries
for an MQ Workflow stand-alone system.

Installing DB2 on Windows
The following instructions describe how to install DB2 Universal Database
Version 7.1 on Windows NT for an MQ Workflow stand-alone system.
• You must be logged on with a user-ID that has administrative rights.
• Insert the CD-ROM labelled DB2 Universal Database Enterprise

Edition Version 7.1 for Windows Operating Environments into your
CD-ROM drive.

• If the installation does not start automatically, start it by clicking on
the Start menu on the task bar, selecting Run..., and entering
x:\Setup.exe in the Open field and click on OK, where x is the drive
letter for your CD-ROM drive.

• The installation window with the welcome text appears. Click on
Install to start the installation procedure. The Select Products window
is displayed.

• Select DB2 Enterprise Edition and then click on Next. The Select
Installation Type window is displayed.

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Select Custom and then click on Next. The Select Components
window is displayed.

• Select the following components:
– Application Development Interfaces
– Documentation
– Base DB2 UDB support
– Administration and Configuration Tools.

• Click on Next. If you get a message about installing Microsoft MDAC
click on OK. MQ Workflow will install this if it is required.

• When you see the Create DB2 Instance window click on Next.
• When you see the Configure DB2 Services window click on Next.
• Enter the user-ID and password that you created earlier and click on

Next.
• When you see the Start Copying Files window click on Next. The DB2

program files will now be copied to your workstation, DB2 will be
configured, and the DB2 services will be started.

• When you see the Setup Complete window, click on Finish.

Installing MQSeries on Windows
Now you need to install MQSeries for Windows NT and Windows 2000
V5.2 for an MQ Workflow stand-alone system.
• Insert the CD-ROM labelled MQSeries for Windows NT and Windows

2000, V5.2 into your CD-ROM drive.
• If the installation does not start automatically, start it by clicking on

the Start menu on the task bar, selecting Run..., and entering
x:\Setup.exe in the Open field, where x is the drive letter for your CD-
ROM drive, and click on OK.

• The Select Setup Language window appears. Select the language
English and click on OK. The Setup dialog appears as MQSeries
prepares the install shield, after which the Welcome window is
displayed.

• Click on Next. The Read Licence Conditions window is displayed.
Click on Yes to accept the terms of the licence agreement.

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Certain prerequisite software must exist on your workstation for MQSeries
to install correctly. If anything is missing, the Software Requirements
window appears displaying a list of items you will need to install. If you
have everything you need, the Choose Installation Folders window is
displayed.
• To accept the default MQSeries installation folders, click on Next. If

you do not want to use the defaults given, change them and then click
on Next. The Setup Type window is displayed.

• Select the Typical radio button and then click on Next.
• The Select Program Folder window is displayed.
• Click on Next. This causes a folder called IBM MQSeries to be added

to the Windows Start menu under Programs. The Ready to Copy Files
window is displayed.

• Click on Next. Program files are copied to the MQSeries installation
directory. This may take some time, after which the Setup Complete
window is displayed.

• MQSeries is now installed and is set to start automatically as a
Windows service. If necessary (depending on your current setup) your
workstation will be rebooted.

• The Setup Complete window allows you to launch the following:
– MQSeries Default Configuration Wizard
– MQSeries Information Centre
– MQSeries First Steps
– MQSeries Explorer
– Notepad to view the release notes.

• Uncheck all check boxes.
• Click on Finish. You have completed installing MQSeries. It has been

set to start automatically as a Windows service.

Installing MQ Workflow on Windows
Before installing the MQ Workflow stand-alone software several services
that may be running on your system must be stopped.

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• If IBM Antivirus is installed on your workstation, stop the service
AvService.

• If Norton Antivirus is installed on your workstation, stop the service
NAV Auto-protect.

• If Microsoft Outlook is installed on your workstation, close the
application and log off.

After stopping these services follow the instructions given next, which
describe how to install a stand-alone MQ Workflow system on a single
Windows NT workstation.
• Insert the CD-ROM labelled IBM MQSeries Workflow V.3 – Program

Code for Windows Platforms into the CD-ROM drive.
• If the installation program does not start automatically, start it by

opening a command prompt window and entering:
x:\WINDOWS\SETUP, where x is the drive letter for the CD-ROM
drive.

• Select the language that you want to use. This becomes the default for
your MQ Workflow stand-alone installation.

• The Software License Agreement window is displayed. You may
either accept or decline the licence. Note that the language of the
Software License Agreement dialog depends on the Regional Settings
specified in the Windows Control Panel, not on the language you
selected in the previous dialog.

• Click on Next. The Welcome window is displayed.
• Click on Next. The Choose Destination Location window is displayed

with the default directory C:\Program Files\MQSeries Workflow set
as the installation directory for MQ Workflow. If you do not want to
use this as your installation directory enter a new location.

• Click on Next. The Setup Type window is displayed. Select All
Components and click on Next.

• The Select Components window is displayed. If not all the components
are selected, click Select All.

• Click on Next. The Select Program Folder window is displayed.

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Click on Next. A folder for MQ Workflow is created and appears on
the Windows Start menu under Programs. The Start Copying Files
window is displayed.

• Confirm your selection by clicking on Next. Program files are copied
to the MQ Workflow installation directory.

• When the installation phase is complete remove the program code disk
from the CD-ROM drive.

• Click Finish to restart your workstation and activate the changes made
by the installation program. After rebooting, the MQ Workflow
configuration utility should start automatically.

CONFIGURING MQ WORKFLOW
Configuration must be performed directly after installing MQ Workflow
so that database and communication resources provided by the prerequisite
software, DB2 and MQSeries, can be used. This is done using the MQ
Workflow configuration utility, which starts automatically after the MQ
Workflow installation stage. If necessary you can start it manually by
selecting the MQSeries Workflow Configuration Utility icon found in the
IBM MQSeries Workflow folder.
It is recommended that you use the default values provided during the
configuration stage for a test and first-time MQ Workflow stand-alone
installation.
There follow the steps required to configure the Workflow System. The
screen shots can be found at www.xephon.com/extras/Appendix_A.doc.
• On the General tab (Figure 1):

– Click New. You will be prompted with default configuration
FMC as the configuration-ID (Figure 2). Click OK to confirm.

– Check all components you want to configure. It is common to
select all components.

• On the Runtime Database tab (Figures 3, 4, and 5):
– Select DB2 as the DB2 instance. You will also see other

instances, but ignore them.

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– Click New to the right of the second box to create a new database
in the selected DB2 instance.

– In the pop-up window that appears accept all the default values
by clicking OK.

– When the pop-up closes click on the button DB2 CONNECT
PARAMETERS, which will prompt you to enter a user-ID and
password. Enter the user-ID that has workflow admin-ID – in this
case it is ‘ChandraU’ and the password is ‘Password’.

– Click Next.
• On the Queue Manager tab (Figure 6):

– TCP/IP port configuration should be selected under the
communication protocol and the adjacent field should contain
either your computer’s host name or, if you’re not connected to
network, localhost. Then click Next.

• On the Cluster tab click Next to accept all defaults (Figure 7).
• On the Client Connections tab, click Next (Figure 8).
• On the Buildtime tab (Figure 9) click Next. By default, IBM DB2

Universal Database is selected.
• On the Buildtime Database tab (Figures 10 and 11), follow the same

procedure as for the Runtime Database tab above.
• On the Client tab (Figure 12), click Next.
• On the Java CORBA Agent tab (Figure 13), click Done.
• The configuration takes some time (15 to 20 minutes), during which

you will be shown its progress (Figure 14). On completion you will
be prompted with an acknowledgement that the configuration has
been successful (Figure 15). Click OK and Reboot the system.

CHECKING THE CONFIGURATION WITH FMCZCHK.
The MQ Workflow configuration-checking utility can be used to check the
configuration of an MQ Workflow server, client, or buildtime running on
any of the supported platforms in a standard MQ Workflow client/server
network or stand-alone system. To help you configure MQ Workflow the

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

configuration-checking utility can find and correct installation errors and
inconsistencies, eg you can check that:
• Environment variables are set correctly.
• Network drivers are installed properly.
• Network configuration files have been updated.
• The MQ Workflow profile contains consistent settings.
Start the utility immediately after each change to the MQ Workflow
configuration.

Starting the configuration checking utility
The configuration-checking utility is started and used in the same way for
all MQ Workflow components. It is a command-line utility in US English
only and is designed to be platform-independent. No additional installation
or configuration steps are required. It is a self-contained tool that is copied
to the MQ Workflow BIN directory during installation. To start the utility
type fmczchk at a command prompt.
Configuration checking is done in several phases. During each phase one
particular MQ Workflow component is checked. Even if the checks for a
component do not complete successfully the configuration-checking
utility proceeds with the checks for all other components. Problems are
displayed as soon as they are detected.
In addition, the configuration-checking utility creates a log file called
fmczchk.log, which contains all error or warning messages and other
important information.

Using command-line options
Although you can start the utility without any options, several are available
that can be specified directly after the fmczchk command.
The command-line options explained here are valid for MQ Workflow
V3.2 and later versions only. For earlier versions see the relevant MQ
Workflow Installation Guide or refer to the online documentation. Not all
options are described here; for a full description of the fmczchk command
see the MQSeries Workflow Administration Guide.

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Command-line options start with a slash (/) or minus (-) and can be
followed by an argument. Arguments to options can be separated from the
option letter by an empty string (....), a blank (' '), a colon (:), or an equals
sign (=). The options are not case-sensitive. Use the options listed below.
• -330 – specifies that you want to perform checks on MQ Workflow

Version 3.3.0. The default is the version with which the utility was
created.
Which checks are available depends on the MQ Workflow version that
you specify. When you start the utility only those checks which apply
to the defined version are displayed.

• -b – selects batch mode. Messages are not written to the console.
• -d – show debug messages. Debug messages are needed by support

personnel to help analyse problems. Since these messages are intended
for support personnel only they are not documented here.

• -e – show error messages only. The default is to show error and
warning messages and to suppress information messages.

• -i show – all messages, ie error, warning, and information messages.
• -htm,-html – write messages to the fmczchk0.htm file instead of the

fmczchk.log file. The fmczchk0.htm file provides links to online
documentation that contains further information describing the
configuration-checking utility. Error, warning, and information
messages written to the fmczchk0.htm file are written as links.
Clicking on each message takes you to an online description for that
message, which gives you information regarding the severity and user
action required for the message.
Note that the hyperlinks in the generated fmczchk0.htm file only work
in the InstallationDirectory /bin directory, because that is where the
message explanation file (.......htm) is located.

• -l filename – name of the log file. If this file already exists, the
messages will be appended to the file.

• -y configurationidentifier – allows you to specify a configuration-
ID other than the default. Specifying a different configuration-ID
allows you to perform checks on different systems. If this option is not

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

used, the value of the DefaultConfigurationID variable set in the
general configuration profile is used.

• -c command [;...] – performs a task specified by the command. The
following are valid commands:
– sca [:filemask;...] – specify this command to scan all MQ

Workflow executables for the version string. You can restrict the
scanning by specifying your own file mask as an optional
argument, ie

 fmczchk -c sca:dll \fmck*.dll;bin \fmce*.exe

– tcp:service,port – adds a port to the TCP/IP services file. For
example, to add port definitions for MQSeries to your services
file:

 fmczchk -c tcp:fmclFMCQMA5Ø1Ø,5Ø1Ø

Port definitions are automatically added to the services file
during configuration.

– trc:level [,filename][,split][,flipflop][,filesize] – can be used
to enable and disable tracing. The trace level can range from zero
for minimum information to three for maximum information.
You can optionally specify the name of the trace file. For
example, to enable a full trace of system Config001, using split
tracing and 5000 kilobyte flip-flop tracing files, you can enter:

 fmczchk -y ConfigØØ1 -c trc:3,/tmp/traces/my_trace,1,1,5ØØØ

– @cmdfile – alternatively, you can create a file containing several
commands that you wish to run. For example, if you create a file
fmczchk.cmd with the following lines in it:

 -c tcp:fmclFMCQM5Ø1Ø,5Ø1Ø
 -c sca:dll \fmck*.dll;bin \fmce*.exe

you can start the utility as follows:
 fmczchk @fmczchk.cmd

Note that you must prefix commands with the -c option. This allows you
to include other command options that previously could not be used in the
response file, for example: -y FMC1.

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The configuration checking log file and online documentation
The configuration checking utility writes a log file with the name
fmczchk.log in the current directory. This log file is intended to be used by
your support personnel. The message options you specify after the
fmczchk command determine what messages are displayed on the screen
during the configuration checking routine. These options are ignored when
writing to the log file, that is, all messages are recorded in the log file.
A list of all the messages that can be written in the log file is available in
the file fmczchk.htm. By specifying the html option after fmczchk an html
file is created instead of the log file. This html file contains links that give
you access to online documentation. The online documentation gives an
explanation, user response, and severity for each message. Each message
is made up of a message identifier code and message text. The last character
of the message identifier code denotes the message type or severity of the
message.
Note that the hyperlinks in the generated fmczchk0.htm file only work in
the InstallationDirectory /bin directory because that is where the message
explanation file (.......htm) is located.
The following shows the format for each type of message identifier code,
where nnn is a number used to identify each message.
• FMC34nnnI – informational message. No action is required.
• FMC34nnnW – warning message. Action may be required. Check the

user response in the on-line documentation.
• FMC34nnnE – error message. Action is required. Check the user

response in the on-line documentation.
The log file is not created if it cannot be opened, eg because of missing write
permission in the current directory. However, the configuration utility
continues to display important error and warning messages on the screen.
To display all messages on the screen use option i.

VERIFYING THE MQ WORKFLOW CONFIGURATION
To verify that components are communicating correctly you should check
your MQ Workflow installation. This is done by verifying that the MQ
Workflow Server on your workstation is running and that the MQ

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Workflow Client on your workstation can connect to it.
To verify that the MQ Workflow Server is running:
• Run the batch job START_MQ, which will generate:

– strmqm FMCQM
– start runmqlsr /t tcp /p 5010 /M FMCQM
– start runmqtrn /m FMCQM /q FMCTRIGGER
and start:
– queue manager for configuration FMC1
– MQSeries trigger monitor for configuration FMC1
– MQSeries command server for configuration FMC1: this will

start two DOS windows; do not close them.
• Select services.
• On Windows NT:

– on the task bar, click on the Windows Start menu and select
Settings
– select Control Panel
– select the Services icon. A dialog box appears.

• Within the Service window of the dialog box locate the line that reads
MQSeries Workflow Version 3.3.0 - FMC.

• If the status of this service is Started the MQ Workflow Server is
running.

• To verify that the client can connect to the server, start the following:
– the Administration Server
– the Administration Utility
– Standard Client
– Build Time.

Starting the administration utility
Start the Administration Server before starting the Administration Utility,
the procedure for which is as follows:
• On the Windows task bar click on the Start menu. Select Programs.
• Select the IBM MQSeries Workflow program folder.

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Select the MQSeries Workflow Administration Utility – Configuration-
ID, where Configuration-ID is the configuration identifier that
identifies the MQ Workflow configuration for the Administration
Utility. A command prompt will be opened, displaying the following:

 -FMC16ØØ6I Administration Utility started.
 System group name :[FMCGRP]FMCGRP
 System name :[FMCSYS]FMCSYS
 Userid :[ADMIN]ADMIN
 Password :[]

• Enter the password for the MQ Workflow user-ID ‘ADMIN’. The
password is initially set to ‘password’. For more details about the
administration utility refer to the IBM MQSeries Workflow:
Administration Guide.

Starting and stopping other MQ Workflow servers
If MQ Workflow server components are not started with the Administration
server you must use the MQ Workflow administration utility to start each
server component individually.

Starting the standard Client
Before starting the standard MQ Workflow Client, the Administration
server and all other MQ Workflow server components must already be
running. To start a standard MQ Workflow Client:
• On the Windows task bar click on the Start menu and select Programs.
• Select the IBM MQSeries Workflow program folder.
• Select the MQSeries Workflow Client - <ConfigID> icon, where

<ConfigID> is replaced by the configuration identifier that identifies
the MQ Workflow configuration for the standard MQ Workflow
Client.

In the window that appears enter the Client’s user-ID (ADMIN) and
password (password) and the name of the MQ Workflow system and
system group to which the Client should connect. If unified logon has been
set in the runtime database you are automatically logged on to the MQ
Workflow system without the need to specify the Client’s user-ID and
password. Unified logon means that when users have logged on to

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Windows 2000 or NT with their password there is no need to further log
on to individual applications. MQ Workflow supports unified logon when
it is specified in the system properties table during MQ Workflow
Buildtime.

Starting Buildtime
To start Buildtime installed on any of the supported Windows-based
operating platforms, perform the steps listed below.
• On the Windows task bar, click on the Start menu and select Programs.
• Select the IBM MQSeries Workflow program folder.
• Select the MQSeries Workflow Buildtime - <ConfigID> icon, where

<ConfigID> is replaced by the configuration identifier that identifies
the MQ Workflow configuration for MQ Workflow Buildtime.

In the window that appears enter the Buildtime’s user-ID (ADMIN) and
password (password). If unified logon has been set in the Buildtime
database you are automatically logged on without the need to specify the
Buildtime’s user-ID and password. Your stand-alone system is now fully
functional.

COMMON ERRORS
Here are some of the errors I have encountered while configuring workflow
in stand-alone mode.
• FMC34808W: Java could not be found in the defined PATH.
• FMC34023E: error 126 loading javai.dll.
• FMC34023E: error errorcode loading libname. The explanation

given was that the configuration checker could not load the library
libname. In response, you must make sure that the library is installed
and that the path is contained in the LIBPATH (AIX and OS/2),
LD_LIBRARY_PATH (Sun Solaris), SHLIB_PATH (HP-UX) or
PATH (Windows) statement.

• FMC34811E: the Java Version 1.1.8 is not supported by the MQWF
Java API.

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• FMC34811E The Java Version version is not supported by the
MQWF Java API. The explanation given was that the Java version
installed is currently not supported by MQSeries Workflow. In
response, make sure you are using Java Version 1.1.x where x is
greater than six. For MQSeries Workflow Version 3.3.0 and subsequent
release levels you must use Java Version 1.2.2 or later.

Chandra Upadhyayula
Programmer Analyst (USA) © Blue Cross Blue Shield of Tennessee 2002

Creating and using generic profiles

WebSphere MQ (WSMQ) V5.3 introduces the concept of generic profiles
with the aim of enabling easier administration of WSMQ object security.
Essentially, generic profiles allow the specification of several wildcard
types within object names when setting authorities. This allows an
administrator to set the individual or group access rights to many different
objects using just one command.
This article will examine the wildcard types and their use and explain how
profile management using the setmqaut and new dmpmqaut commands
works. It will assume some basic familiarity with WSMQ security, such
as setting and displaying authorities.

CREATING PROFILES
A profile is a set of information consisting of a profile name, an object type,
an entity name, and an authority. The entity name may be either a specific
user-ID or a group name. Each set of information specifies the authority
that the entity has to all objects of the specified type with names that match
the profile name. In this context ‘match’ means a wildcard character match
in accordance with a set of rules that will be outlined later in this article.
Profiles are created using the existing setmqaut command. This command
remains largely unaltered from the previous version of MQ; the only
difference is that the -n parameter is now used to indicate a profile name
instead of an object name. An outline syntax of the WSMQ 5.3 version of

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the command is as follows:
 setmqaut -m <queue manager name> -n <profile name> -t <object type>
-
 p/-g<principal/group> <authority specification>

A more detailed syntax example can be found in WSMQ publications.
The profile name may take one of two forms: fully specified, in which case
the profile name contains no wildcard characters, or generic, when
wildcard characters are used.
If the profile name is fully specified an object of the type indicated by the
-t parameter must already exist with an object name identical to the profile
name. In this way the administrator can specify the access rights that a user
has to a particular object and the behaviour of the setmqaut command is
unaltered from previous versions of WSMQ. If the profile name is not the
same as an existing object a relevant error message will be displayed when
issuing the setmqaut command.
If the profile name is generic, ie if it contains wildcard characters, clearly
it will not be identical to the names of any existing objects. Additionally,
it need not wildcard match any existing objects at the time of creation of
the profile.
All generic profiles are persistent. They apply to all existing objects of the
specified type that they wildcard match at the time of creation; additionally,
they apply to all objects of the specified type created in the future with
object names which wildcard match the profile name.
Once a profile has been created it remains in effect until explicitly removed.
It is possible for the authority that a user has to an object to be set to null
by giving an authority specification of -all. There will be, however, times
when it will be useful to remove the profile specifically. This is achieved
by giving an authority specification of +remove or if you prefer, -remove.
Having covered the creation of profiles using the setmqaut command it
will be useful to take a look at some examples. Before doing this there are
two further important concepts to consider – naming objects and the
wildcard matching rules.

OBJECT NAMES

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

It has long been the practice to use the period or full stop (.) to act as a
separator in object names, eg SYSTEM.AUTH.DATA.QUEUE. The
separators have previously been treated simply as part of the character
string forming the object name. The introduction of generic profiles,
however, brings functional significance to the way in which object names
are structured using these separators.
In the example queue name SYSTEM.AUTH.DATA.QUEUE the separators
split the object name into four parts: SYSTEM, AUTH, DATA, and
QUEUE. These parts are known as qualifiers. A qualifier can be defined
as a contiguous sequence of characters delimited by either the period or the
string boundary.
Generic profiles bring functional significance to qualifiers because as well
as the wildcards being capable of matching various combinations of
characters they may also be used to match qualifiers. This will become
clearer by examining the following wildcard matching rules and examples.

WILDCARD MATCHING RULES OVERVIEW
Wildcards are special characters that can be included within profile names
to match zero, one, or more characters or qualifiers within object names.
There are three types of qualifier:
• Specify a question mark (?) in a profile name to match any single

character in an object name.
• Specify an asterisk (*) as either:

– a qualifier in a profile name to match any one qualifier in an object
name

– a character within a qualifier in a profile name to match zero or
more characters within a qualifier in an object name.

• Specify a double asterisk (**) once in a profile name as either:
– the entire profile name to match all object names
– a beginning, middle, or ending qualifier to match zero or more

qualifiers in an object name.
These rules will be familiar to users with experience of RACF. They allow

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

an administrator to specify a variety of generic profiles that will match
various objects at the character level or, if preferred, at the higher structural
level of qualifiers.
Having examined the various structures and rules which make up the
functional behaviour of generic profiles let’s look at the creation of a
generic profile and how it controls access to various objects.

EXAMPLE PROFILE CREATION
For the purpose of illustration let’s assume that there exists a queue
manager called QMGR on which queues with the following names have
been defined:
• QUEUE.ADMIN.A.
• QUEUE.ADMIN.B.
• QUEUE.DEFAULT.A.
• QUEUE.DEFAULT.B.
Similarly, there exist operating system users with user-IDs USER1 and
USER2.
Consider the case where the system administrator wants to grant authority
to USER1 to be able to put to the two administration queues. In previous
versions of MQ it would have been necessary to use two setmqaut
commands but with generic profiles only one command is necessary:
 setmqaut -m QMGR -n "QUEUE.ADMIN.*" -t q -p USER1 +put

This command creates a generic profile allowing USER1 to put to all
queues with an object name that matches the profile name
QUEUE.ADMIN.*. Clearly, using the wildcard rules outlined previously,
the first two queues of our example match the profile name and, hence, after
issuing the setmqaut command USER1 is able to put to the two
administration queues as required. Note that profiles with the names
QUEUE.ADMIN.? or QUEUE.ADMIN.** would also have matched here
but in a more complicated example it may be necessary to choose carefully
which of the three is most appropriate.
In a similar way consider the case where the administrator wants to grant
full authority to USER2 to both the administration queues and the default

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

queues. Again, whereas four setmqaut commands would previously have
been necessary, this can now be accomplished by
creating one generic profile:
 setmqaut -m QMGR -n "QUEUE.**" -t q -p USER2 +all

Further points worth noting here include the fact that it is advisable to
enclose profile names in quotation marks (",") on Unix platforms, otherwise
the wildcard characters may be affected by the command line parser before
being passed to the administrative commands, such as setmqaut and
dmpmqaut, for processing. Also note that all profiles are case-sensitive
and that although QUEUE.** matches the four queues queue.** does not.
From these examples hopefully it is apparent how the naming of objects,
and the use of qualifiers in particular, takes on extra significance. It is
important when considering naming schemes for objects to anticipate
ways in which the administrator may wish to allocate access rights. It may,
for example, be useful to ensure that groups of objects that will require
similar access rights share a particular qualifier in their names.

WILDCARD MATCHING RULES IN DETAIL
Although the matching rules are quite simply stated it is worth considering
a few further example generic profiles to emphasize how the rules work
in practice. The following examples give a generic profile name along with
lists of object names, some of which match the profile and some which do
not.
 Profile name Matching objects Nonmatching objects
 QUEUE.?.DEFAULT QUEUE.A.DEFAULT (1) QUEUE.DEFAULT
(3)
 QUEUE.B.DEFAULT (2) QUEUE.AB.DEFAULT
(4)
 QUEUEX.A.DEFAULT
(5)

In the above example (1) and (2) match because the A and B characters
match ‘?’. (3) does not match as ‘?’ must match precisely one character –
it is not permitted to match no characters nor, as in example (4), more than
one character. (5) does not match as the rest of the profile name, excluding
the ‘?’ character, must match the object name exactly.
 Profile name Matching objects Nonmatching objects

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 QUEUE.*.DEFAULT QUEUE.A.DEFAULT (1) QUEUEX.ADMIN.DEFAULTY
(4)
 QUEUE.ADMIN.DEFAULT (2) QUEUE.ADMIN.X.DEFAULT
(5)
 QUEUE..DEFAULT (3) QUEUE.DEFAULT
(6)

The ‘*’ character may be specified, as in the above example, as a qualifier
to represent one or more qualifiers in the object name. Hence (1) and (2)
match; the length of the qualifier is irrelevant so (1) matches even though
the qualifier is only a single character.
Note that a qualifier of null length is also permitted and so (3) also matches.
As with the previous example (4) does not match because the remaining
qualifiers in the profile name, excluding that represented by the ‘*’
character, must match the qualifiers in the object name exactly. (5) does not
match because ‘*’ is only permitted to match precisely one qualifier and
ADMIN.X consists of two qualifiers. In a similar way (6) does not match
because ‘*’ is not permitted to match no qualifiers.
 Profile name Matching objects Nonmatching objects
 QUEUE.AD*N QUEUE.ADMIN (1) QUEUE.AD.N
(3)
 QUEUE.ADN (2) QUEUE.ADNX
(4)

The ‘*’ character is specified in this example as part of a qualifier, which
implies that it will match zero or more characters in an object name. So in
this example (1) matches because the ‘*’ matches the characters ‘MI’. (2)
also matches as * may match zero characters. (3) does not match as the
object name contains three qualifiers, whereas the profile name contains
only two. (4) does not match because the part of the qualifier following
the ‘*’ character in the profile name does not match the end of the last
qualifier in the object name.
 Profile name Matching objects Nonmatching objects
 QUEUE.**.DEFAULT QUEUE.ADMIN.DEFAULT (1) QUEUE.DEFAULT
(3)
 QUEUE.ADMIN.X.DEFAULT (2) QUEUEX.DEFAULTY
(4)

Specifying ‘**’ in a profile name as a qualifier matches any number of
qualifiers in the object name, hence (1) and (2) clearly match. (3) also
matches as it is permitted for ‘**’ to match zero qualifiers. Finally, (4) does

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

not match as qualifiers in the profile name other than ‘**’ must match
qualifiers in the object name exactly.

PRIORITY
The flexibility provided by the various wildcard characters means that it is
possible to create generic profiles such that more than one profile name
matches a particular object. Given that access rights are based also on users
and their group membership, the possibility of several profiles matching
an object name for each of the various users and groups involved in an
access check would lead to a degree of complexity. In order to prevent this,
a concept called profile priority is introduced.
Profile priority states that, in the case where two profiles match an object
name and type for a particular user or group, only the profile with the
most specific profile name applies. The most specific profile is determined
by comparing the two profile names from left to right. The profile with the
most specific character at the point where the two differ is deemed the most
specific. In comparing characters a non-generic character is deemed more
specific than a generic character. In comparing two generic characters a
question mark is more specific than an asterisk, which in turn is more
specific than a double asterisk.
To illustrate the concept of profile priority consider the following example.
Let’s assume we have a queue manager called QMGR on a queue called
QUEUE.ADMIN.A. Now let’s construct two generic profiles using the
following commands:
 setmqaut -m QMGR -n "QUEUE.ADMIN.?" -t q -p USER1 +put
 setmqaut -m QMGR -n "QUEUE.ADMIN.*" -t q -p USER1 +get

The first command creates a generic profile granting operating system
user-ID USER1 put access to all queues that match the profile
QUEUE.ADMIN.?. The second creates a generic profile granting the same
user-ID get access to all queues that match the profile QUEUE.ADMIN.*.
Now consider the case where an authority check is performed for USER1
to determine what access rights the user has to the queue QUEUE.ADMIN.A.
The key point to note in this example is that both of the generic profiles
match the queue name. In this case the concept of profile priority is relevant
and so only the most specific profile will apply. Comparing the two profile
names from left to right: the profile names differ at the point of the last

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

character. Both characters are generic, but following the definition outlined
earlier a question mark is deemed more specific than an asterisk. The
profile QUEUE.ADMIN.? is, therefore, deemed the most specific and will
be the only one that applies when performing the authority check. This
means that USER1 has put access only to the queue QUEUE.ADMIN.A.

DISPLAYING PROFILES
Profiles are displayed using the new dmpmqaut command. An outline
syntax diagram of the command is as follows:
 dmpmqaut -m <queue manager name> [-n <profile name>/ -l] -t <object
 type> -p/-g <principal/group>

Again, a more detailed syntax example can be found in WSMQ publications.
The parameters are similar to those used by the dspmqaut and setmqaut
commands, with notable differences being that all parameters are optional
and that a -l parameter may be specified in place of a profile name to produce
a terse list.
The dmpmqaut command dumps all authority profiles that match the
specified parameters. In this way the parameters are, in essence, acting as
a filter: only profiles with fields that match those of the specified
parameters are displayed. The use of the dmpmqaut command is, therefore,
varied. By specifying no parameters at all a complete list of all profiles may
be obtained. Conversely, by specifying all parameters, details of one
particular profile may be examined.
It is important to note the difference between the two administrative
commands dmpmqaut and dspmqaut. Dspmqaut is unchanged for this
release of WSMQ; it still performs the clearly defined function of
displaying the authority that a particular entity has to a specified object. In
doing so it takes account of all appropriate profiles and, in the case of the
entity being a user-ID, it also takes account of the user’s group membership
and any profiles that may be applicable to those groups.
Conversely, the dmpmqaut command displays the actual profiles, including
generic and non-generic profiles, which have been explicitly created by the
administrator, along with profiles that the system creates. The latter include
those which give the creator and the mqm group full access to objects.
Profiles displayed by the dmpmqaut command are used by the dspmqaut

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

command and the OAM when calculating the authority that an entity has
to a particular object.
When dumping authority records using the dmpmqaut command, the
profiles that are displayed match all specified parameters exactly, with the
one exception being that of the -n profile name parameter. When this
parameter is non-generic, profiles with generic names that match the
object name are also displayed. This allows the administrator to determine
which profiles have been defined on the system that match a particular
object.
Note that if the -n parameter specifies a generic profile the profiles that are
displayed must have a profile name that matches the parameter exactly.

Dmpmqaut examples
A few examples of the dmpmqaut command along with typical output
which the command may produce in each case show the different ways in
which the command may be used. The examples are based on a system
where the queues and profiles have been defined as in the previous section
on example profile creation.

Example
 dmpmqaut -m QMGR -n "QUEUE.ADMIN.*" -t q -p USER1

 profile: QUEUE.ADMIN.*
 object type: queue
 entity: USER1
 entity type: principal
 authority: get

In this example the -n parameter is generic and so only profiles with a
profile name that matches this parameter exactly are displayed. Displayed
profiles must also match the other parameters and so only profiles for
queues and user-ID USER1 are included.

Example
 dmpmqaut -m QMGR -n "QUEUE.ADMIN.A" -t q

 profile: QUEUE.ADMIN.*
 object type: queue
 entity: USER1
 entity type: principal
 authority: get

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 profile: QUEUE.**
 object type: queue
 entity: USER2
 entity type: principal
 authority: allmqi dlt chg dsp clr
 profile: QUEUE.ADMIN.A
 object type: queue
 entity: administrator
 entity type: principal
 authority: allmqi dlt chg dsp clr
 profile: QUEUE.ADMIN.A
 object type: queue
 entity: mqm
 entity type: principal
 authority: allmqi dlt chg dsp clr

In this example the -n parameter is non-generic and so all profiles for
queues with names which the object name matches are displayed. This
includes the generic profiles with profile names QUEUE.ADMIN.* and
QUEUE.ADMIN.** along with the non-generic profiles with profile
names matching the object name QUEUE.ADMIN.A exactly, which were
created when the object was created. Note that in this example no user-ID
or group name parameters are specified and so no filtering based on the
entity name occurs.

Example
 dmpmqaut -m QMGR -l

 profile: @CLASS, object type: authinfo
 profile: SYSTEM.MQSC.REPLY.QUEUE, object type: queue
 profile: SYSTEM.CLUSTER.COMMAND.QUEUE, object type: queue
 profile: SYSTEM.ADMIN.QMGR.EVENT, object type: queue
 profile: SYSTEM.DEFAULT.AUTHINFO.CRLLDAP, object type: authinfo
 profile: SYSTEM.DEFAULT.PROCESS, object type: process
 profile: SYSTEM.ADMIN.COMMAND.QUEUE, object type: queue
 profile: SYSTEM.CICS.INITIATION.QUEUE, object type: queue
 profile: SYSTEM.CHANNEL.INITQ, object type: queue
 profile: SYSTEM.DEFAULT.NAMELIST, object type: namelist
 profile: SYSTEM.DEFAULT.INITIATION.QUEUE, object type: queue
 profile: SYSTEM.CLUSTER.REPOSITORY.QUEUE, object type: queue
 profile: SYSTEM.DEFAULT.MODEL.QUEUE, object type: queue
 profile: SYSTEM.DEAD.LETTER.QUEUE, object type: queue
 profile: SYSTEM.PENDING.DATA.QUEUE, object type: queue
 profile: SYSTEM.DEFAULT.LOCAL.QUEUE, object type: queue
 profile: SYSTEM.CHANNEL.SYNCQ, object type: queue
 profile: SELF, object type: qmgr
 profile: SYSTEM.DEFAULT.REMOTE.QUEUE, object type: queue
 profile: SYSTEM.DEFAULT.ALIAS.QUEUE, object type: queue

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 profile: SYSTEM.CLUSTER.TRANSMIT.QUEUE, object type: queue
 profile: SYSTEM.ADMIN.PERFM.EVENT, object type: queue
 profile: @CLASS, object type: queue
 profile: @CLASS, object type: namelist
 profile: @CLASS, object type: process
 profile: @CLASS, object type: qmgr
 profile: SYSTEM.ADMIN.CHANNEL.EVENT, object type: queue

The -l parameter instructs the command to display a terse list in which only
the profile name and type of object to which the profile applies is displayed.
Note that in this example the only other parameter is the queue manager
name. In this case no filtering of the authority records occurs and so the
command generates a list of all defined profiles for the specified queue
manager.
The above output is a typical indication of the profiles that are generated
when a queue manager is created with the profiles listed being those
associated with the default queue manager objects. These profiles typically
give the creator and mqm group full access to the default objects.
In addition there are two special types of profile. Authorities for the queue
manager itself are stored in profiles with the name SELF. Authorities for
object classes are stored in profiles with the name @CLASS.

RECOVERY
The introduction of the dmpmqaut command enables users to take a
record of all authority profiles for a particular queue manager. WSMQ
V5.3 also stores entity type information within an authority profile and the
combination of these two new features enables users to store and then later
recreate all authorities associated with a queue manager.
Once a system administrator has defined all the profiles which they will
later wish to recover, running the dmpmqaut command and specifying
only the queue manager name will display all profiles for that queue
manager in verbose format. The output from the command may be piped
to a text file and stored until recovery is required.
To recover the authorities consider a typical profile entry in the stored text
file of the form:
 profile: <profile name>
 object type: <object type>
 entity: <user name>

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 entity type: <principal/group>
 authority: <authority>

To reconstruct a profile, issue a setmqaut command of the form:
 setmqaut -m <queue manager> -n "<profile name>" -t <object type> -p/-
g
 <user name> <authority>

The -p flag should be specified in the case where the entity type is a principal
or, alternatively, the -g flag if it is a group. So for example, if the profile
entry is:
 profile: QUEUE.ADMIN.*
 object type: queue
 entity: USER1
 entity type: principal
 authority: get

the setmqaut command required to reconstruct the profile on a queue
manager named QMGR is:
 setmqaut -m QMGR -n “QUEUE.ADMIN.*” -t queue -p USER1 +get

Note that in the special cases where the profile name is @CLASS or SELF
the setmqaut command must be issued against an object of the appropriate
type or the queue manager respectively.
Performing this process of issuing setmqaut commands for all profiles
listed in the previously saved dmpmqaut output will recreate exactly all
the authorities that existed at the point when the dmpmqaut command was
run.
David Postlethwaite, MQSeries Development
IBM Hursley (UK) © IBM 2002

Editor’s note:

In last month’s issue of MQ Update a Web URL for two files was
omitted from Stefan Raabe’s article entitled Multiple CKTI
trigger monitor transactions in CICS. The files (STCKTI1 and
STCKTI2, mentioned on page 36) can be found at
www.xephon.com/extras/stckti.txt.

MQ news

CommerceQuest has introduced its
CommerceQuest Suite for IBM WebSphere,
which is said to act as an enabling engine to
create additional connectivity to enhance
WebSphere software capabilities, enable
faster implementations, and complement
existing systems such as WebSphere and
WebSphere MQ.

This suite helps IBM and CommerceQuest
sites minimize the integration effort needed to
integrate existing data and applications as XML
Web services interfaces to support new
WebSphere-powered applications. It will
enable functional access and visibility to
distributed disparate data and applications.

The suite comprises applications, tools, and
expertise to support mainframe applications,
MQ Integration middleware, and
WebSphere. The specific elements include
Rapid CICS Enabler for WebSphere, Rapid
Web Services Enabler for WebSphere, Rapid
Application Enabler for WebSphere, and
Rapid Database Enabler for WebSphere.

Other tools and applications include Rapid
File Transfer Enabler for WebSphere, Rapid
MQ Enabler for WebSphere, Rapid MQ
Integrator Enabler for WebSphere, and
Rapid POS Enabler for WebSphere.

For more information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL, 33607, USA.
Tel: +1 813 639 6300.
Fax: +1 813 639 6900.
Web: http://www.commercequest.com

CommerceQuest (UK), Doncastle House,
Doncastle Road, Bracknell, Berkshire, RG12
8PE, UK.

Tel: +44 1344 861010.
Fax: +44 1344 861011.

* * *
MQSoftware has announced that its Q Pasa!
middleware management solution now
supports IBM WebSphere Business
Integration.

Q Pasa! Version 3.0 provides end-to-end
monitoring and administration capabilities
for WebSphere Business Integration, as well
as support for WebSphere Application
Server 4.0, WebSphere MQ Everyplace, and
z/OS.

The new version of Q Pasa! also offers a new
architecture designed to support larger
configurations, an enhanced Java-based
Management Console, and additional
security authorization and administration
functionality.

With the new release, MQSoftware is also
rolling out a training course on WebSphere
Business Integration Implementation.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.
Fax: +1 952 345 8721.

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *

x
xephon

	Backing up a Unix queue manager that uses linear logging
	WebSphere MQ V5.3 clustering: hints and tips
	Stand-alone MQSeries Workflow client/server setup on Windows NT
	Creating and using generic profiles
	MQ news

