

© Xephon plc 2002

December 2002

42

In this issue

MQ
u

p
d

ate

3 Controlling access to MQSC
facilities

9 Using publish/subscribe in
WebSphere MQ Integrator

22 Getting started with SSL support in
WebSphere MQ for Windows

30 CSQ4BVJ1
31 Using queue manager alias
38 The MQLSX is dead: long live

MQJava for Notes
47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Controlling access to MQSC facilities

In many organizations where MQ is installed as part of the
corporate architecture there are often battles between application
developers and the central MQ support team over access rights.
On the one hand developers have a legitimate right to query what
is going on within their application, whilst, on the other, central
support people are usually reluctant to grant these developers
group mqm access. This caution is understandable because any
ID within that group becomes a super-user as far as MQ is
concerned and could even delete the entire queue manager!
In recognition of this problem, and in an attempt to overcome it,
IBM released SupportPac MS0E – The MQSeries Administration
Wrapper.
After extracting the downloaded tar file there will be three files: the
runmqadm executable, a configuration file, and an installation shell
script, which copies files into their correct locations and sets the
appropriate file permissions.
The config file is key to the utility because it sets appropriate
authority levels for each potential MQSC command. It also
assigns a security level to each designated user and a default for
those not explicitly catered for. The authority level is expressed as
a number from zero to nine with zero being the lowest and nine the
highest (although the sample file that ships with it only uses zero
to three). I find that the default config file that is part of the utility
is a little too cautious and so I make quite a few changes to it.
One thing that developers frequently want to do is display all of the
attributes of a queue (especially its current depth) or the status of
a particular channel. As this is a read-only function I always make
DISPLAY commands level zero – ie anyone can issue them.
This wrapper can also be used to allow users access to key
primary MQ commands and utilities such as strmqm or strmqcsv.

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TYPICAL CONFIG FILE
RUNMQADM Configuration File
#* Statement: Licensed Materials - Property of IBM *#
#* MSØE - MQSeries Administration Wrapper *#
#* (C) Copyright IBM Corp. 2ØØØ *#
Stanzas in here define
- some global settings
- authorities for all the known MQSC commands
- authorities for all the known MQSeries commands
- authorities for user-specified commands
- authority level for each user
GLOBAL:
 # Where's the log file to be put?
 LOGFILE = /var/mqm/config/runmqadm.log
 # For unknown users - what authority do they have? None by default.
 DEFAULTAUTHLEVEL = Ø
SCCOMMANDS:
 # What's the authority for unlisted MQSC commands?
 default = 3
 # Here are all the commmands known in MQSeries V5.1
 # Even OS/39Ø-specific commands are in here as we may be
 # doing remote administration.
 ALTER_CHANNEL = 3
 ALTER_NAMELIST = 3
 ALTER_PROCESS = 3
 ALTER_QALIAS = 3
 ALTER_QLOCAL = 3
 ALTER_QMGR = 3
 ALTER_QMODEL = 3
 ALTER_QREMOTE = 3
 ALTER_SECURITY = 3
 ALTER_STGCLASS = 3
 ALTER_TRACE = 3
 ARCHIVE_LOG = 3
 CLEAR_QLOCAL = 2
 DEFINE_BUFFPOOL = 3
 DEFINE_CHANNEL = 3
 DEFINE_MAXSMSGS = 3
 DEFINE_NAMELIST = 3
 DEFINE_PROCESS = 3
 DEFINE_PSID = 3
 DEFINE_QALIAS = 3
 DEFINE_QLOCAL = 3
 DEFINE_QMODEL = 3
 DEFINE_QREMOTE = 3
 DEFINE_STGCLASS = 3
 DELETE_CHANNEL = 3
 DELETE_NAMELIST = 3
 DELETE_PROCESS = 3
 DELETE_QALIAS = 3
 DELETE_QLOCAL = 3

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 DELETE_QMODEL = 3
 DELETE_QREMOTE = 3
 DELETE_STGCLASS = 3
 DISPLAY_CHANNEL = Ø
 DISPLAY_CHSTATUS = Ø
 DISPLAY_CLUSQMGR = Ø
 DISPLAY_CMDSERV = Ø
 DISPLAY_DQM = Ø
 DISPLAY_MAXSMSGS = Ø
 DISPLAY_NAMELIST = Ø
 DISPLAY_PROCESS = Ø
 DISPLAY_QALIAS = Ø
 DISPLAY_QCLUSTER = Ø
 DISPLAY_QLOCAL = Ø
 DISPLAY_QMGR = Ø
 DISPLAY_QMODEL = Ø
 DISPLAY_QREMOTE = Ø
 DISPLAY_QUEUE = Ø
 DISPLAY_SECURITY = Ø
 DISPLAY_STGCLASS = Ø
 DISPLAY_THREAD = Ø
 DISPLAY_TRACE = Ø
 DISPLAY_USAGE = Ø
 PING_CHANNEL = Ø
 PING_QMGR = Ø
 RECOVER_BSDS = 3
 REFRESH_CLUSTER = 3
 REFRESH_SECURITY = 3
 RESET_CHANNEL = 3
 RESET_CLUSTER = 3
 RESET_TPIPE = 3
 RESOLVE_CHANNEL = 3
 RESOLVE_INDOUBT = 3
 RESUME_QMGR = 3
 RVERIFY_SECURITY = 3
 START_CHANNEL = 3
 START_CHINIT = 3
 START_CMDSERV = 3
 START_LISTENER = 3
 START_QMGR = 3
 START_TRACE = 3
 STOP_CHANNEL = 3
 STOP_CHINIT = 3
 STOP_CMDSERV = 3
 STOP_LISTENER = 3
 STOP_QMGR = 3
 STOP_TRACE = 3
 SUSPEND_QMGR = 3
OSCOMMANDS:
 # What's the authority for unlisted MQSeries commands?
 default = 3

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 # Here are all the commmands known in MQSeries V5.1
 # Anyone can start runmqsc, as we check individual commands
later.
 runmqsc = Ø
 crtmqm = 3
 dltmqm = 3
 dmpmqlog = 3
 dspmqaut = 3
 dspmqcsv = 3
 dspmqfls = 3
 dspmqtrc = 3
 dspmqtrn = 3
 endmqcsv = 3
 endmqlsr = 3
 endmqm = 3
 endmqtrc = 3
 rcdmqimg = 3
 rcrmqobj = 3
 rsvmqtrn = 3
 runmqchi = 3
 runmqchl = 3
 runmqdlq = 3
 runmqlsr = 3
 runmqtmc = 3
 runmqtrm = 2
 setmqaut = 3
 strmqcsv = 3
 strmqm = 3
 strmqtrc = 3
 # Any extra locally-defined commands can be configured here.
 # Use a fully-qualified name unless it's in the same
directory
 # as the MQSeries commands (eg /opt/mqm/bin)
 /tmp/unknowncmd = 1
 /usr/lpp/mqm/samp/bin/amqsput= 1
 amqsput = 2
 /opt/mqm/samp/bin/amqsput = 2
 endmqtrm = 2
 crtmqcvx = Ø
USERS:
 mqm = 3
 # App 1
 u763362 = 1
 u832ØØ2 = 1
 u759556 = 1
 u834321 = 1
 # App 2
 u87845Ø = 1
 oramap = 1
 u834135 = 1
 n4324Ø = 1

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 # Test Group
 u6654ØØb=2
 u6654ØØc=3

You can see that the default authority for a user not designated in
the ‘USERS’ stanza is zero, so this gives any system user the
ability to DISPLAY the attributes of all objects within the queue
manager. It also allows them to PING both channels and queue
manager.
Once the utility has been correctly installed you can launch it by
issuing the command runmqadm. Once within this command
shell you can either use runmqsc or enter any other primary MQ
command that you are authorized for.
Here are some examples.
$ runmqadm
MSØE: MQSeries Administration Wrapper
(C) Copyright IBM Corp. 2ØØØ. ALL RIGHTS RESERVED
Username : u6654ØØd
Authorization Level: Ø
MQADM >

Here we see that this user is not specifically listed within the config
file and so has a default authority level of zero. They can runmqsc
and display the attributes of various objects – but not alter or
delete them.
MQADM >runmqsc SMPD9.BAW
Ø783889, 5765-B75 (C) Copyright IBM Corp. 1994, 2ØØØ. ALL RIGHTS
RESERVED.
Starting MQSeries Commands.
RMQSC >display process(*)
 4 : display process(*)
AMQ84Ø7: Display Process details.
 PROCESS(NJP.PROC)
AMQ84Ø7: Display Process details.
 PROCESS(OCD.CHANGE_TYPE)
AMQ84Ø7: Display Process details.
 PROCESS(OCDPDT.CHANGE_TYPE)
AMQ84Ø7: Display Process details.
 PROCESS(OCDPDT.PROCESS)
AMQ84Ø7: Display Process details.
 PROCESS(OW.PROCESS)
AMQ84Ø7: Display Process details.
 PROCESS(SYSTEM.DEFAULT.PROCESS)
RMQSC >
RMQSC >alter qlocal(SYSTEM.DEFAULT.LOCAL.QUEUE) defpsist(yes)

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RUNMQADM (E): Command is not authorized or not recognized
RMQSC >end
$

Another major benefit of running MQSC commands under this
wrapper is that all actions within it are captured and written to a log.
This can provide a useful audit trail for the queue manager. Here
are the log entries for the actions above:
[1868Ø] u6654ØØd Thu Jul 11 13:57:56 2ØØ2 1
** Started runmqadm session **
[1868Ø] u6654ØØd Thu Jul 11 13:58:Ø3 2ØØ2 1
runmqsc SMPD9.BAW
[1868Ø] Ø783889, 5765-B75 (C) Copyright IBM Corp. 1994, 2ØØØ. ALL
RIGHTS RESER.
Starting MQSeries Commands.
[1868Ø] u6654ØØd Thu Jul 11 13:58:Ø8 2ØØ2 1
display process(*)
[1868Ø] 1 : display process(*)
AMQ84Ø7: Display Process details.
 PROCESS(NJP.PROC)
AMQ84Ø7: Display Process details.
 PROCESS(OCD.CHANGE_TYPE)
AMQ84Ø7: Display Process details.
 PROCESS(OCDPDT.CHANGE_TYPE)
AMQ84Ø7: Display Process details.
 PROCESS(OCDPDT.PROCESS)
AMQ84Ø7: Display Process details.
 PROCESS(OW.PROCESS)
AMQ84Ø7: Display Process details.
 PROCESS(SYSTEM.DEFAULT.PROCESS)
[1868Ø] u6654ØØd Thu Jul 11 13:58:2Ø 2ØØ2 Ø
alter qlocal(SYSTEM.DEFAULT.LOCAL.QUEUE) defpsist(yes)
** NOT AUTHORIZED **
[1868Ø] u6654ØØd Thu Jul 11 13:58:23 2ØØ2 1
end
[1868Ø] 2 : end
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.
[1868Ø] u6654ØØd Thu Jul 11 13:58:26 2ØØ2 1
end
$

In conclusion, you can see that this admin wrapper allows you to
give controlled and audited access to objects within a queue
manager without giving group mqm or having to write utility PCF
programs to get the information.
Chris Bell, Systems Consultant
British Airways (UK) © Xephon 2002

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Using publish/subscribe in WebSphere MQ
Integrator

OVERVIEW
Publish/subscribe is a function of WebSphere MQ Integrator
(MQSI) V2 that allows a system to send a message to multiple
recipients without needing to know who those recipients are.
Thus, the sending application can publish a message to a pre-
defined topic and whoever needs that message can subscribe to
it. When new subscriptions are made to that topic the publishing
application doesn’t need to do anything to support it. Contrast this
with a distribution list or a message flow, which needs to be
modified each time a receiving queue is added or dropped.
MQSI directly supports the process of defining topics, and publishing
messages to a topic isn’t difficult once you know the process.
However, MQSI offers absolutely no support (as of release 2.02)
for subscribing to a topic and what documentation exists is
extremely piecemeal.
This article attempts to remedy the situation by taking the reader
by the hand and explaining each step of the process from
publishing to subscribing.
This article assumes that you are using MQSI V2.02 or that your
version supports RFH2 headers. It also assumes that your client
environment is Windows NT 4.0 or later. The sample code is Visual
Basic 6.0.
If you don’t meet these requirements you may still get some value
from the discussion of the underlying architecture, but I cannot
promise that the exact same techniques will work in your
environment.

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PUBLISHING MESSAGES

Defining topics
To publish a message you must first have a topic defined to which
you can publish. The process of creating a topic is well explained
in the MQSI documentation but I will summarize it here.
The MQSI Control Centre has a tab labelled ‘Topics’, where all the
topics are organized hierarchically as a tree structure. You can
add a new topic underneath TopicRoot or you can add it to an
existing topic. In the latter case it will act as a subset of the parent
topic. To add a new topic:
• Check out the parent topic. Right-click it, and then select

Check Out from the pop-up menu.
• Right-click the parent topic, and select Create/Topic… from

the pop-up menu.
• You will get a dialog box where you can name your flow, define

the access control list, and set permissions.

The MQSI message flow
Create a message flow in MQSI consisting of an input node, a
compute node, and a publication node. The input node is assigned
to the queue that you are publishing from and its Message Domain
property should be set to XML. The publish node needs no
property settings at all unless you wish to use subscription points.
Put the following code into the compute node but use your own
topic name.

Figure 1: A sample publishing message flow

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 SET OutputRoot = InputRoot;
 -- Enter SQL below this line. SQL above this line might be
 regenerated, causing any modifications to be lost.
 Set OutputRoot.Properties.Topic = 'FOO/BAR';

You might be wondering where the Properties node comes from in
this example. The properties block, in addition to the MQMD and
RFH2 blocks, specifies various pieces of header information
about the message.
Once you deploy this message flow (see Figure 1) all messages
put onto the input queue will be published to the topic you specify.

SUBSCRIBING TO TOPICS

Required information
When subscribing to a topic you must be prepared to supply
certain pieces of information. While most of this may seem self-
explanatory, too much MQSI documentation has lost value by
assuming too much.
• Topic – required. This may be either a fully qualified topic name

(ie Topic/Subtopic/Sub-subtopic) or else a wildcard expression
where the hash sign (#) means ‘give me all subtopics’ (ie
Topic/#).

• Subscription point – optional. When publishing, a message
may be further qualified by specifying a subscription point. To
get only those messages within a topic that have a particular
subscription point you must specify it in the subscription.

• Filter – optional. You can specify a content filter using a subset
of the filter node ESQL syntax.

• MQSI queue manager – this is the MQSeries Integrator
queue manager supplying the topics, where the subscription
will reside.

• Subscriber queue manager – this is the queue manager for
the queue that will receive the published messages. This does
not need to be the same as the MQSI queue manager.

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Subscriber queue – this is the name of the queue that the
subscription will send the messages to.

To subscribe to a topic you must send a specially formatted
message to the system queue
SYSTEM.BROKER.CONTROL.QUEUE. The message you send
contains a special data block in the MessageData buffer of the
MQMD object called an RFH2 header. Following this header is an
XML command message.
If you are used to using the MQSeries ActiveX interface (MQAX200)
I recommend that you switch to the MQSeries Win32 API functions
because they are more stable when handling binary data.
Specifically, the ActiveX interface modified long integers embedded
in the RFH2 header, causing the subscription message to fail; the
Win32 API has given me no such problem.

Variable name Data type Length Description

StrucId String 4 "RFH "

Version Long 4 2

StrucLength Long 4 36 + NameValueLength

Encoding Long 4 x'222'

CodedCharSetId Long 4 -2

Format String 8 Spaces

Flags Long 4 0

NameValueCCSID Long 4 1208 (UTF-8 or Unicode)

NameValueLength Long 4 Length of the command XML
padded to a multiple of four.

Command XML String An XML string containing the
subscribe command, plus
padding to make the length
evenly divisible by four.

Table 1: The RFH2 header

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The RFH2 header
No matter how large your RFH2 header is you must pad it so that
its total length is a multiple of four. The header is structured in Table
1 below. If you are trying to adapt this to a non-Windows
environment you will probably need different settings for the
Encoding and CCSID fields.
The Visual Basic version of the RFH2 header is shown here.
Public Type RFH2
 StrucId As String * 4 ' "RFH "
 Version As Long ' 2
 StrucLength As Long ' 36 + Len(xml command).
 Encoding As Long ' &H222
 CodedCharSetId As Long ' -2
 Format As String * 8 ' Blank
 Flags As Long ' Zero
 NameValueCCSID As Long ' 12Ø8 = UTF-8 (Unicode)
 NameValueLength As Long ' Length of XML command
 ' string (multiple of 4).
 End Type

IBM supplies in its sample code a C-include file called cmqc.h,
which defines the RFH2 header and its related constants. For a
more detailed description see the MQSeries Integrator
Programming Guide, Chapter 4 – MQRFH2 rules and formatting
header.

The PSC command structure
There are several PSC commands but let’s focus on the RegSub
command, which is used to create (register) a new subscription.
A sample RegSub command looks similar to this:
 <psc>
 <Command>RegSub</Command>
 <Topic>Sport/Soccer/State/LatestScore/#</Topic>
 <QMgrName>foo</QMgrName>
 <QName>bar</QName>
 <SubPoint/>
 <Filter/>
 <RegOpt>PubOnReqOnly</RegOpt>
 <RegOpt>CorrelAsId</RegOpt>
 </psc>

There doesn’t appear to be any DTD or schema associated with

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Tag Name Req’d Occurs Description

psc Y 1 This is the root element of the XML
structure.

Note that it is all lower case

Command Y 1 "RegSub"

Topic Y 1 - M The topic you are subscribing to. Wildcards
are supported. See subsequent discussion
on wildcard syntax

SubPoint N 1 Name of the subscription point. May be
omitted if not used

Filter N 1 Content filter written in a subset of the
Filter node ESQL. See subsequent

discussion on syntax differences

RegOpt N 0 - M Registration options. See the MQSeries
Programming Guide for details

QMgrName N 1 Name of the queue manager for the
subscribing queue. If not specified, defaults
to the ReplyToQMgr property of the

MQMD. If that is not specified, it defaults to
the MQSI queue manager

QName N 1 Name of the subscribing queue. If not
specified, the ReplyToQ property of the
MQMD must specify the subscribing queue

Table 2: RegSub tags

Property Value

Format MQFMT_RF_HEADER_2 ("MQHRF2 ")

MsgType MQMT_REQUEST (1)

ReplyToQ This is the queue that will receive a response from the
MQSI broker indicating the status of your request

Table 3: MQMD property settings

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

the command structure since the tags can appear in any order and
most are optional. The tags are described in Table 2.
The RegSub command, along with all other PSC commands, is
described in detail in the MQSeries Programming Guide, Chapter
5 – Publish/Subscribe Command Messages.

MQMD settings
The MQMD object must be set differently from a normal message
in order for an RFH2 command to process properly. The required
property changes are shown in Table 3.

Evaluating the results of a subscribe request
The MQSI broker puts a PSCR response message to each RFH2

Reason code Reason name

2336 MQRC_RFH_COMMAND_ERROR

2337 MQRC_RFH_PARM_ERROR

2338 MQRC_RFH_DUPLICATE_PARM

2339 MQRC_RFH_PARM_MISSING

3072 MQRCCF_TOPIC_ERROR

3074 MQRCCF_Q_MGR_NAME_ERROR

3076 MQRCCF_Q_NAME_ERROR

3079 MQRCCF_INCORRECT_Q

3080 MQRCCF_CORREL_ID_ERROR

3081 MQRCCF_NOT_AUTHORIZED

3083 MQRCCF_REG_OPTIONS_ERROR

3150 MQRCCF_FILTER_ERROR

3151 MQRCCF_WRONG_USER

Table 4: Reason codes applicable to the subscribe function

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

request that it processes into the queue specified in the MQMD
ReplyToQ property. This message is in XML format and is structured
as follows:
 <pscr>
 <Completion>ok</Completion>
 </pscr>
 <pscr>
 <Completion>error</Completion>
 <Response>
 <Reason>315Ø</Reason>
 </Reponse>
 </pscr>

In addition to the standard set of MQSeries reason codes the
reasons shown in Table 4 can also be used.

Viewing/deleting subscriptions
The MQSI Control Centre contains a Subscriptions tab. Whilst you
can’t create new subscriptions here you can view existing
subscriptions and delete the ones that belong to you.
To delete a subscription, right-click on it and select Delete from the
pop-up menu.

CONTENT FILTERING
When you subscribe to a topic you can also specify a content filter,
which will screen out messages in which you have no interest. An
example of this might be a message containing a system code. If
there are messages for multiple systems and you are only
interested in messages for your system you can specify a filter
that only accepts messages with your system code.

Differences from the filter node
If you have worked with the filter node in MQSI message flows you
will be familiar with filter syntax. However, subscription filters
operate on a subset of this syntax, so functions you may be used
to using may not apply here. Here is a summary of language
elements that are not supported by subscription filters:

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Path element ‘*’.
• Array element ‘LAST’.
• Explicit CAST operation.
• Only the Root, Body, and Properties correlation names are

supported.
For more information on content filtering, see the MQSeries
Programming Guide, Appendix A – Using filters in content-based
routing.

Issues
In my own testing I have found that if a filter is coded wrongly it may
affect not only your subscription but every other subscription to
the same topic. The test I used had a filter similar to this:
 FieldA <> ''

A subscription with a filter like this blocked all messages from the
topic I subscribed to for all subscriptions. When I removed that
subscription, the rest of the subscriptions worked normally again.
With this kind of sensitivity you should probably restrict the use of
content filtering to an ‘expert’ who knows how to do it correctly.

VISUAL BASIC CODE SAMPLE
I have included a sample program, which can be found at http://
www.xephon.com/extras/pub-sub.txt as a practical example of
how to write a subscribing application. The language I used is
Visual Basic 6.0. In general, VB6 is not an ideal language for
handling binary data blocks and I did have to jump through some
hoops to make it work, but you may not always have a C++ or Java
programmer available.
For the sake of space I have included just what is necessary to
create a subscription. Subscription options, form validation, and
error handling are excluded but a competent VB programmer can
add those features on their own.

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 2: Form layout for the subscription program

Object Property Value

Form Name frmMain

Caption MQSI Subscription Utility

Topic text box Name txtTopic

Subscription Point Name txtSubPoint

Filter text box Name txtFilter

MultiLine True

ScrollBars 2 - Vertical

Integrator QMgr Name txtMQSIQmgr

Subscriber QMgr Name txtQMgr

Subscriber Queue Name txtQueue

OK Button Name cmdOK

Cancel Button Name cmdCancel

Table 5: Property settings for the subscribe application

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Setup
1 Create a new standard EXE project and give it an appropriate

name.
2 In the Project/References… dialog window, select Microsoft

XML, V2.0. If you don’t have this parser version installed use
what you have, but you may have to adjust your class and
object names accordingly.

3 Include the module CMQB.BAS. This is supplied with the
MQSeries client and includes the API and constant declarations
you will need. (If you are tempted to use MQAX200 instead be
aware that I have seen it cause problems by corrupting the
RFH2 headers you are trying to build.)

4 In the project properties window, on the Make tab, add
‘MqType = 2’ to the conditional Compilation Arguments field if
you want this program to run on a client workstation. Use
‘MqType = 1’ if you want it to run on an MQ server.

5 Set up your form as shown in Figure 2.
Most fields on the form should be self-explanatory. The Topic,
Subscription Point, and Filter fields are just what they appear to
be. The Integrator System buttons select which Integrator server
the subscription will go to and will internally translate to the
appropriate queue manager names. The Queue Manager and
Queue fields refer to the subscribing queue that is to receive the
published messages. The Options fields refer to various options
you can select for your subscription.
Table 5 shows the property settings for the subscribe application.

Code discussion
The module CMQB.BAS is included ‘as-is’ from IBM and won’t be
discussed here for the sake of space.
Subroutine cmdOK_Click is where the subscribing takes place.

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 Declare all my data structures and variables.
2 Use the initialization routines supplied with CMQB.BAS to

initialize my structures.
3 Build my PSC command XML string. Note that much of my

XML manipulation logic is hidden in the BuildXML subroutine.
4 Transfer the finished XML from the XML object to the

strCommand string variable.
5 Set my RFH2 header fields and convert the RFH2 header from

a user-defined data type to a string. I used the CopyMemory
API command to copy the header to an array of ASCII byte
values. Then I converted each byte into a character and built
up the string. Finally I combined this RFH2 string, the PSC
XML command string, and any necessary padding to
accommodate word boundaries into a single buffer string.

6 Set up MQSeries and send the subscribe request:
• Connect to the user-specified MQSI queue manager.
• Open queue SYSTEM.BROKER.CONTROL.QUEUE.
• Set up the necessary MQMD fields. For the ReplyToQ

field, I chose to use a static queue created for the purpose
of replying to subscribe requests. You will either have to
create a queue with this name or change the code to
match one of your queues.

• Put onto the queue the message we so lovingly crafted.
7 Read and interpret the broker’s response.

• Open the queue that you specified as the ReplyToQ for
input.

• Set the MQMD and MQGMO fields to wait up to ten
seconds for the reply and to get only a message whose
correlation-ID matches the message ID of the request
message you just sent

• Get the reply message. This message will contain an

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

RFH2 header followed by a PSCR XML string containing
status information.

• Strip the RFH2 header from the message data and parse
the remaining XML.

• Extract the text value of the Completion element. If it is
OK, then you’re done.

• Extract the text value of the Reason element. It represents
the numeric reason code of the error.

• I created a function called ReasonName(), which looks up
the error message based on the reason code.

• Display the appropriate status message. If not OK,
include the reason code and reason name in the message.

Mills Perry, IT Consultant/Instructor
ZyQuest (USA) © Xephon 2002

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Getting started with SSL support in WebSphere
MQ for Windows

In this article we focus on how to set up a simple test environment
for the SSL functionality in WebSphere MQ (WSMQ) V5.3 on the
Microsoft Windows platforms.

WHY FOCUS ON THE WINDOWS PLATFORMS?
All WSMQ V5.3 platforms provide SSL support over their channels.
An important aspect of using SSL involves manipulating the
certificates and keys that are central to the SSL protocol. Some
of the operating systems supported by this version of the WSMQ
product include support for management of these keys and
certificates and, in general, WSMQ has used these tools where
they exist.
On the Windows platforms WSMQ’s key and certificate
management is used in combination with that provided by the
operating system. The ways in which the two components work
and how they interoperate are not simple and those new to the
area are likely to benefit from the detailed usage example provided
here.

WSMQ SSL SUPPORT ON WINDOWS PLATFORMS
The V5.3 Gold code released in June 2002 supports SSL channels
on WSMQ clients and queue managers running on Windows NT
and on Windows 2000 platforms. There is no support for SSL
channels on the Windows 98 platform, which is otherwise a
supported V5.3 client platform; also, there is no plan to include
such support in the future. Windows XP is not a supported V5.3
platform on the June release.

ENCRYPTION STRENGTH
There are two encryption strengths for which the Windows

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

platforms can be configured: 56 bit and 128 bit. You will probably
want the option to use high-strength encryption, at least on some
of your channels. If your system only has 56-bit encryption support
you cannot do this. The encryption level is handled differently
between Windows 2000 and Windows NT platforms.
On the Windows 2000 platform you can find out the current
encryption level for SSL support by going to
h k e y _ l o c a l _ m a c h i n e \ s y s t e m \
currentcontrolset\control\securityproviders\schannel\ciphers in
the registry. If some of the ciphers listed have the number 128 by
them you have 128-bit encryption. If you need to upgrade the
encryption level on the Windows 2000 platform, download the
Windows 2000 High Encryption Pack from Microsoft. Note that on
the Windows 2000 platform Internet Explorer can be at a different
encryption level from the base operating system; WSMQ uses the
base operating system to provide support.
On Windows NT you can find out your current encryption level by
selecting the Help button on Internet Explorer and then selecting
About Internet Explorer in the pull-down. The resulting display
contains a Cipher Strength field. If you find you have 56-bit
encryption you should upgrade Internet Explorer to V6 or greater
(alternatively, if you are on Internet Explorer V5.5 you can apply
Internet Explorer 5.5 Service Pack 2). These upgrades can be
downloaded from Microsoft.

CHANGING THE CHANNEL DEFINITION
We assume for the purposes of this article that you already have
a working single TCP/IP non-SSL sender/receiver channel from
one Windows queue manager to another on a single Windows
system. We also assume that you have an appropriate remote
queue definition on the sender end to allow you to use amqsput
to successfully put a message to a local queue on the receiving
queue manager.
We refer here to the receiving queue manager (the SSL server)
as QM2 and the sending queue manager (the SSL client) as QM1.

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

It is very simple to enable SSL on this existing channel definition:
• Using WSMQ Explorer, right-click on the sender channel

definition. Click on Properties. Click on the SSL tab.
• Click on the pull-down for CipherSpec (or Cipher Specification):

Standard Settings. Select a CipherSpec (in this case let’s use
RC4_MD5_US).

• Repeat this sequence exactly for the matching receiver
channel. But, additionally, for the receiver channel only, clear
the tick in the ‘Always authenticate parties initiating connections
to this channel definition’ field.
This implies that the SSL client (the sender end of the channel)
does not have to provide a certificate. We do this in this
example so we can simplify the certificate setup.

We now have the channel definitions the way we want them, but
if we attempt to start the channel it fails because we haven’t yet
provided the keys and certificates that are required.

KEYS AND CERTIFICATES
We have set up our channel so that it makes use of server
authentication only. It requires:
• A personal certificate (which contains a private key) in the key

repository at the SSL server end (QM2, the end with the
receiver channel definition).

• A root CA certificate at the client end (QM1, the end with the
sender channel definition).

• Possibly, intermediate certificates at the client end, which
form a full, valid chain from the CA that signed the personal
certificate to the root CA certificate.

The certificates described above are used to authenticate the
certificate that is received on the SSL client from the SSL server.

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

OBTAINING THE CERTIFICATES NEEDED FOR TESTING
There are several ways to obtain test certificates to work with; for
example, you can:
• Use the MakeCert tool, available as part of the Microsoft SDK.
• Create an internal Microsoft Certification Authority of your

own and generate test certificates from there.
• Use IBM’s iKeyman on the Unix platforms (or on the Windows

platforms if you have or download a version of it) to generate
self-signed certificates.

• Go to an external certification authority and request a free trial
certificate. Examples of Web sites you might try are
www.globalsign.com, www.thawte.com, and
www.digsigtrust.com.

I give precise instructions here for obtaining a free trial certificate
and the associated CA certificates from Digital SignatureTrust
(DST, digsigtrust.com). The process for obtaining a trial certificate
from DST is relatively simple and the certificates provided have a
relatively long currency.
1 Go to Web site: www.digsigtrust.com (using Internet Explorer).
2 Click on Products/Services.
3 Click on Get a TrustID Demo Certificate.
4 Fill in the identification form and click Continue.
5 Check your form contents and click Continue.
6 You are asked to select from the options below a mechanism

for storing your TrustID digital certificate. You should select
browser (not roaming) and click on Continue.

7 Click Accept on the certificate agreement.
8 Next panel: leave 1024 as the Key Bit Length and select

Microsoft Enhanced Cryptographic Provider. Click Continue.
9 Next panel: you don’t have to do anything (you will already

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

have the DST root certificate, the root of the CA certificate
chain, so you don’t need to download this).

10 You will receive a URL in your e-mail with an activation code.
11 Access the URL through Internet Explorer.
12 It will give you the activation code; just type in the passcode

you gave on the identification form at step 4 above. Click
Retrieve.

13 You now have your personal certificate; click Continue.
14 Go into Internet Explorer, Select Tools->Internet Options-

>Content->Certificates.
15 Select the Personal Tab and you will see a certificate with your

name in the Issued To column and DEMO CA A6 in the Issued
By column.

16 Double-click (left mouse button) on that certificate. This brings
up a display of certificate information.

17 Click on the Certification Path tab. This shows you the chain
of CA certificates that you need in order to validate this
personal certificate. In the Certificate status box at the bottom
of this panel the status is This certificate is OK, which
indicates that the CA certificate chain is complete and valid.

You now have, and can see that you have, the certificates you
need.
You next want to add your personal certificate to the queue
manager’s store and assign it to the queue manager so it is the
certificate the queue manager uses.

ADDING THE PERSONAL CERTIFICATE ON THE SSL SERVER
The simplest way to do this is detailed below.
1 Go into WSMQ Explorer.
2 Expand the Queue Managers folder.

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

3 If it is not currently running, start the SSL server queue
manager (QM2) to which you wish to assign the personal
certificate.

4 Right-click the QM2 queue manager; select Properties.
5 Click on the SSL tab.
5 Click on the Manage SSL Certificates button.
6 Click Add... on the Manage SSL Certificates panel.
7 Access the Certificate Store pull-down; select MY(Current

User).
8 Select the certificate in your name issued by DEMO CA A6

that you just received from DST. You will notice that it has a
picture of a key on its icon, which indicates that it has a private
key associated.

9 Click on the Add button.
If this works, you now have the personal certificate in your queue
manager store.
Unfortunately, if you are adding a certificate for the first time and
you are running a WSMQ version at a low service level and you
are running on Windows NT or on a low service level of Windows
2000, this Add will fail with the message AMQ9680 ‘a problem was
encountered with the specified certificate file’.
If you encounter this problem you have to use the amqmcert
command line tool to add in the personal certificate you have
obtained. This involves:
1 Listing the certificates in the Microsoft MY store: amqmcert

-k MY -l.
2 Adding the personal certificate you have obtained into your

queue manager store, eg amqmcert -a 14002 -m QM2, where
14002 is the handle for the certificate in the amqmcert list and
QM2 is the queue manager name for the SSL server queue
manager.

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Note that in all environments you can add further certificates using
the GUI once you have added this one using amqmcert.
We have now added the certificate but we still need to assign it as
the one our server queue manager will use.

ASSIGNING THE CERTIFICATE TO THE QUEUE MANAGER
This is achieved quite simply as follows:
1 If you are not already on the Manage SSL Certificates panel

for your SSL server queue manager, follow the previous
instructions to get there.

2 Click Assign.
3 You move on to the Assign Queue Manager Certificate panel.
3 Select your new personal certificate.
4 Click Assign.
5 You return to the Manage SSL Certificates panel with

confirmation that the Assigned Certificate is the one you
chose.

So we have the personal certificate in the SSL server queue
manager store and it is assigned to that queue manager. All we
need do now is to add the CA certificates to the SSL client queue
manager store so that the SSL client can authenticate this
personal certificate.

ADDING THE CA CERTIFICATES ON THE SSL CLIENT
Fortunately, in this scenario both queue managers are running on
the same machine so we already have the CA certificates in the
Microsoft system stores on the machine on which the SSL client
queue manager runs. (If the queue managers were running on
different machines you could export and ftp the CA certificates, or
get them again in a second request to DST.)
1 Use the WSMQ Explorer to access the Manage SSL

Certificates panel on QM1, the SSL client queue manager.

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

2 Click Add...
3 Access the Certificate Store pull-down; select ROOT.
4 Select the DST RootCA X1 certificate.
5 Click on the Add button.
6 You are back on the Manage SSL Certificates panel; click on

Add... again.
7 Access the Certificate Store pull-down; select Certification

Authorities (CA).
8 Select the DST Root CA X3 certificate.
9 Click on the Add button.
10 You are back on the Manage SSL Certificates panel; click on

Add... again.
11 Access the Certificate Store pull-down; select Certification

Authorities (CA) again.
12 Select the DEMO CA A6 certificate.
13 Click on the Add button.
You have now set up all the certificates you need.

RUN YOUR SSL CHANNEL
Start the channel as normal for a non-SSL channel. It starts up with
SSL authentication and key exchange using the DST certificates.
Because of this extra processing it takes somewhat longer to start
than it did when it was not an SSL channel. You may need to click
on the refresh icon to update the channel display to running. Once
it has started, use amqsput to transfer data over it. Data is
transferred using 128-bit RC4 encryption and MD5 hashing.
You now have a working SSL channel.
Mike Horan
WebSphere MQ Base Development, IBM Hursley (UK) © IBM 2002

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CSQ4BVJ1

CSQ4BVJ1 is a utility on z/OS that enables a Get on a queue
object. Messages are printed to DD sysprint.

CSQ4BVJ1
//userid jobcard,MSGCLASS=X
// CLASS=S,
// NOTIFY=userid,USER=userid
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//* YOU MUST DO GLOBAL CHANGES ON THESE PARAMETERS USING YOUR EDITOR
//* THIS JOB RUNS THE GET SAMPLE PROGRAMS, CSQ4BVK1/CSQ4BVJ1
//* Replace
//* SYS3.MQSERIES.TGT - The high level qualifier of the
 MQSeries target library data sets.
//* asl1.templib - User dataset qualifiers for CSQ4BVx1
 load module
//* ++HLQ.USERCOB2++ - User system dataset qualifiers for
VS
 COBOL II library
//* PROGRAM CSQ4BVJ1 ISSUES MQGET ON A QUEUE.
//* (EXEC and PARM statements are commented out as shipped)
//* - FIRST PARM (QMC) QUEUE MANAGER NAME
//* - SECOND PARM (QMC.TESTING.DEBLOCK.QUEUE) QUEUE NAME
//* - THIRD PARM (3Ø) THE NUMBER OF MESSAGES TO GET-(9999)
//* - FOURTH PARM (B) GET TYPE-(B)ROWSE/(D)ESTRUCTIVE
//* - FIFTH PARM (S) (S)YNCPOINT/(N)O SYNCPOINT
//GETMSGS EXEC PGM=CSQ4BVJ1,REGION=1Ø24K,
// PARM=('QMGRname,SYSTEM.ADMIN.CHANNEL.EVENT,ØØ2Ø,D,S')
//STEPLIB DD DSN=ASL1.TEMPLIB,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
// DD DSN=SYS1.SCSQLOAD,DISP=SHR
//SYSDBOUT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//* DD DSN=++HLQ.USERCOB2++.COB2LIB,DISP=SHR

Saida Davies
IBM (UK) © IBM 2002

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Using queue manager alias

HOW QUEUE MANAGER ALIAS WORKS
When a queue is opened using MQOPEN/MQPUT1, the queue
name resolution takes place; this determines the destination
queue name and queue manager (qmgr) name and the xmitq to be
used. If the message needs to be placed on the xmitq because the
message is for the remote queue manager, MQXQH (the
transmission queue header) is prefixed with MQMD, followed by
the message.
On the local queue manager, if there is a queue manager alias
definition with the same name as the destination queue manager
of the message, the fields from qmgr alias are copied to MQXQH
fields and the xmitq specified (if any) are used.
When the receiving channel receives the message, the information
in the remote queue manager field of MQXQH is checked. If there
is a queue manager alias definition with the same name as the
remote qmgr field of the MQXQH structure, the values from the
rqmname field from the qmgr alias are copied to the remote qmgr
field of the MQXQH.
If the remote qmgr field of MQXQH is the same as the local queue
manager to which the receiving channel is connected, the message
is put to the remote queue name present in the MQXQH header.
If the queue is not present, the message is put to the dead letter
queue (if specified).
If the remote qmgr field in MQXQH is not the same as the local
queue manager to which the receiving channel is connected, the
messages are placed on the xmitq. From here the messages are
transferred to the destination queue manager using appropriate
channels.

WHEN AND HOW TO USE QUEUE MANAGER ALIAS
Let’s look at four different scenarios:

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Without queue manager alias.
Using queue manager alias to:
• Redirect messages by specifying the xmit queue name.
• Redirect messages by changing the qmgr of the incoming

message so that it is the same as the local qmgr.
• Redirect messages by remapping the qmgr name of outgoing

messages.
Note that if the remote queue definition exists for a particular
queue, the queue manager alias definition will be ignored.

Scenario one: without queue manager alias
In Figure 1 messages from QM1 reach Q2 on QM2. The following
definitions are required at MQ1 and QM2 to enable this setup
(assuming that queue managers QM1 and QM2 and the requisite
listeners are running).
• QM1.mqsc:

– def ql(QM2) usage (xmitq)
– define chl(TO.QM2) chltype(sdr) trptype(tcp)

conname('QM2_IPaddr(port)') xmitq(QM2).
• QM2.mqsc:

Figure 1: Without queue manager alias

App

xmitq

QM1

To QM2

QM2

Q2

App
!!!!! !!!!! !!!!!

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

– def ql(Q2)
– def chl(TO.QM2) chltype(rcvr) trptype(tcp).

(Note that remote queue definition is not required here. The
application needs to specify both the object name and object
queue manager name fields of the MQOD structure before issuing
an MQOPEN call. If the object queue manager name is left blank
and you are using the remote queue definition, queue manager
alias will not work.)
• Put application connecting to QM1:

– OD.ObjectName = Q2
– OD.ObjectQmgrName = QM2.

Table 1 shows the MQXQH fields, ie the destination queue name
and destination queue manager name.

Scenario two: redirecting the messages by changing the xmit queue
In the first scenario, as depicted in Figure 1, if channel TO.QM2
terminates (because of network or other problems) and the
messages need to reach their destination because they are
mission-critical, we need to find an alternative way to ensure that
messages reach QM2, and without modifications to any
applications.
One way to achieve this is to use queue manager alias, as shown
in Figure 2. Queue manager aliases are defined as remote queue
definitions with a blank rname. Let us assume in this second
scenario that there is another queue manager – QMTRANS – and
we can set up a channel between QM1 and QMTRANS and

Qmgr name QM1 QM2

Object name Q2 Q2

Object queue manager name QM2 QM2

Table 1: MQXQH details on QM1 and QM2

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

between QMTRANS and QM2.
Since the direct communication between QM1 and QM2 is not
working we want the messages to reach QM2 through QMTRANS.
This implies that QM1 needs to send the messages to QMTRANS
and QMTRANS should in turn forward the messages to QM2.
To achieve this we need the following definitions at QM1, QMTRANS,
and QM2.
• QM1.mqsc:

– def ql(QM2) usage (xmitq)
– define chl(TO.QM2) chltype(sdr) trptype(tcp)

conname('QM2_IPaddr(port)') xmitq(QM2)
– del ql(QM2)
– def qr(QM2) rname(' ') rqmname(QM2) xmitq(QMTRANS)
– def ql(QMTRANS) usage(xmitq)
– def chl(TO.QMTRANS) chltype(sdr) trptype(tcp)

conname('QMTRANS_IPaddr(port)) xmitq(QMTRANS).
• QMTRANS.mqsc:

– def ql(QM2) usage(xmitq)
– def chl(TO.QM2) chltype(sdr) trptype(tcp)

conname('QM2_IPaddr(port)) xmitq(QM2)

App

xmitq

QM1

To QM2

QM2

Q2

!!!!! !!!!! !!!!!
sdr rcvr

TO.QMTRANS

App

qmgr
alias

QMTRANS

xmitq

!!!!!

sdr rcvr

Figure 2: Using queue manager alias to redirect messages

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

– def chl(TO.QMTRANS) chltype(rcvr) trptype(tcp).
• QM2.mqsc:

– def ql(Q2)
– def chl(TO.QM2) chltype(rcvr) trptype(tcp).

In QM1.mqsc "Def rq(QM2) rname(' ') rqmname(QM2)
xmitq(QMTRANS)" is the queue manager alias definition. This
definition will enable the queue manager QM1 to put the messages
for QM2 to xmitq QMTRANS. The channel TO.QMTRANS will
transfer this message to QMTRANS, QMTRANS qmgr will put this
message to xmitq QM2, and from there the message will be
transferred to the queue Q2 on QM2. Table 2 shows the MQXQH
details for this second scenario.
If the network problem is corrected and the channel between QM1
and QM2 is up, queue manager alias on QM1 can be deleted to
restore the original setup where the messages will go directly from
QM1 to QM2.

Scenario three: changing the incoming message qmgr so that it is the
same as the local qmgr
Figure 2 shows how messages from QM1 reach QM2 through
QMTRANS. If QM2 is down for some reason and you want the
messages to reach the queue on QMTRANS, Figure 3 illustrates
how to achieve this, using queue manager alias and the definitions
as detailed below.
• QM1.mqsc:

– def ql(QM2) usage (xmitq)

Qmgr name QM1 QMTRANS QM2

Object name Q2 Q2 Q2

Object queue manager name QM2 QM2 QM2

Table 2: MQXQH details for scenario two

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– define chl(TO.QM2) chltype(sdr) trptype(tcp)
conname('QM2_IPaddr(port)') xmitq(QM2)

– del ql(QM2)
– def qr(QM2) rname(' ') rqmname(QM2) xmitq(QMTRANS)
– def ql(QMTRANS) usage(xmitq)
– def chl(TO.QMTRANS) chltype(sdr) trptype(tcp)

conname('QMTRANS_IPaddr(port)) xmitq(QMTRANS).
• QMTRANS.mqsc:

– def ql(QM2) usage(xmitq)
– def chl(TO.QM2) chltype(sdr) trptype(tcp)

conname('QM2_IPaddr(port)) xmitq(QM2)
– def chl(TO.QMTRANS) chltype(rcvr) trptype(tcp)
– del ql(QM2)
– def qr(QM2) rname(' ') rqmname('QMTRANS)
– def ql(Q2).

The queue manager alias definition on QMTRANS will change the
destination queue manager name in the xmitq header to QMTRANS,
which is the same as the queue manager to which the receiving
channel is connected. This will make the receiving channel put the
messages to Q2 on QMTRANS. The MQXQH details are shown
in Table 3.

App

xmitq

QM1

To QM2

QM2

Q2

!!!!! !!!!!

!!!!!

sdr rcvr

TO.QMTRANS

App
qmgr
alias

QMTRANS

xmitq

!!!!!
sdr rcvr

Figure 3: Changing the incoming message qmgr

qmgr
alias

App
!!!!!

Q2!!!!!

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Qmgr name QM1 QMTRANS QM2

Object name Q2 Q2 –
Object queue manager name QM2 QMTRANS –

Table 3: MQXQH details for scenario three

Figure 4: Remapping the qmgr name of outgoing messages

App

xmitq

QM1

!!!!!

sdr rcvr

TO.QM2

qmgr
alias

QM2

App
!!!!!

Q2

App
!!!!!

Q2

QM3

!!!!!

sdr rcvr
!!!!!

Scenario four: remapping the qmgr name of outgoing messages
In the first scenario, if messages cannot be put to the queue on
QM2 (perhaps because the queue is full), we may need to redirect
messages to another queue manager. Again, this can be achieved
with queue manager aliases. For example, as Figure 4 illustrates,
we can redirect the outgoing messages at QM1 to QM3.
The following definitions are required:
• QM1.mqsc:

– def ql(QM2) usage (xmitq)

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– define chl(TO.QM2) chltype(sdr) trptype(tcp)
conname('QM2_IPaddr(port)') xmitq(QM2).

– def qr(QM2) rname(' ') rqmname(QM3)
– def ql(QM3) usage(xmitq)
– def chl(TO.QM3) chltype(sdr) trptype(tcp)

Qmgr name QM1 QM2 QM3

Object name Q2 – Q2

Object queue manager name QM3 – QM3

Table 4: MQXQH details for scenario four

conname('QM3m/cname(port)') xmitq('QM3).
• QM3.mqsc:

– def ql(Q2)
– def chl(TO.QM3) chltype(rcvr) trptype(tcp).

The MQXQH details are shown in Table 4.
Geetha Adinarayan, Software Engineer
IBM (India) © IBM 2002

The MQLSX is dead: long live MQJava for Notes

MQSeries is, of course, an excellent infrastructure tool that
enables simple, industrial-strength, guaranteed message delivery
between any combination of the AIX, iSeries, HP-UX, Linux, Sun
Solaris, z/OS and OS/390, and Windows platforms. The LotusScript

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Extensions for MQSeries (MQLSX) were provided as a useful and
free download from IBM’s SupportPac MA7D Web site (http://
www-3.ibm.com/software/ts/mqseries/txppacs/ma7d.html) and
extended the power of MQSeries to Notes agents.
In fact MQLSX was so useful that I was able to create a number
of production Notes applications using it, details of which were
published in several journals. These applications merged the ease
of use of the Notes and PC platforms with the raw power and huge
databases available on the mainframe.
However, IBM has pulled the plug on MQLSX and it is no longer
downloadable. IBM’s official statement from the MA7D Web site
is “The function provided in this SupportPac was withdrawn on 31
December 2001. If you are considering developing applications
involving Lotus Notes/WebSphere MQ interaction it is
recommended that you use MQSeries classes for Java provided
in SupportPac MA88 (http://www-3.ibm.com/software/ts/mqseries/
txppacs/ma88.html). Any service updates for the SupportPac will
be made available at the WebSphere MQ Support site (http://www-
3.ibm.com/software/ts/mqseries/support/summary).”
Apparently, IBM figures Java will be good for the longer term, while
the LotusScript Extensions are no longer strategic. How
disappointing. I put a lot of time and effort into Notes development
with the MQLSX.
Somewhat saddened, I began to convert our Notes MQLSX
agents to Notes Java agents. I quickly ran into a problem because
there were no sample programs that did what I needed. I found a
sample MQSeries Java application but it contained no Notes
coding. I also found a sample Notes Java agent with no MQSeries
calls.
This article is a description of how to combine all three – Notes,
Java, and MQSeries – with a list of the environment issues that
must be addressed and a sample demonstration program. You can
use this sample to get yourself started on your conversion from
MQLSX to MQJava or as a tool to learn more about MQSeries and
Java.

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

First, download the MQ Java classes from IBM SupportPac
MA88, The MQSeries Classes for Java and MQSeries Classes
for Java Message Service. The Web site address is http://www-
4.ibm.com/software/ts/mqseries/txppacs/ma88.html.
Release 1.1.4 was posted here on 5 April 2002 and it will be
supported until 31 December 2003.
You must install Java – either the JDK or JRE – on any Notes
server that will use the MQ Java classes and on any developer’s
PC. The MQ Java classes require JDK 1.3.0 or higher. I installed
JDK 1.3.1 onto a test server.
Here’s how to install the MA88 MQ Java classes on a Windows
NT server:
• Unzip MA88 into a temporary directory. Keep the name and

directory structure intact.
• Run setup.exe. The classes will be installed into C:\Program

Files\IBM\MQSeries\Java. I could not see a way to select a
different directory.

• Update the CLASSPATH on the target PC to add the following:
 C:\Program Files\IBM\MQSeries\Java\lib\com.ibm.mq.jar;
 C:\Program Files\IBM\MQSeries\Java\lib\com.ibm.mqiiop.jar;
 C:\Program Files\IBM\MQSeries\Java\lib\;
 C:\Program Files\IBM\MQSeries\Java\samples\base\;
 .;
 d:\notes\data\domino\java\NCSO.jar;
 d:\notes\Notes.jar

Make sure the ‘dot’ entry is in the CLASSPATH ahead of the
directory containing Notes.jar.

• Update the PATH environment variable on the target PC to add
the following:

 installdir\lib;
 installdir\bin

• If you are planning to use the Java Message Service, JMS,
set the NT environment variable MQ_JAVA_INSTALL_PATH
to the directory where JMS is installed. JMS is not needed to
connect MQSeries with Notes using Java so it plays no further

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

part in this article.
• Update NOTES.INI to include the following:
 ALLOW_NOTES_PACKAGE_APPLETS=1
 JavaUserClasses=c:\program
 files\IBM\MQSeries\Java\lib\com.ibm.mq.jar;c:\program
 files\IBM\MQSeries\Java\Lib

JavaUserClasses is Domino’s version of ClassPath for non-
Domino classes and is both important and poorly documented.
The second ‘\java\lib’ is needed to avoid getting the error message
‘Unable to load message catalog – mqji’ each time you run an MQ
Java agent.
The Notes Java Programmer’s Guide (javapg.nsf) is a great
source of ideas, references, samples, etc. Also, when you install
MA88 you get some sample Java source code, which is very
useful. You can get another excellent source of information, the
MQSeries Using Java reference manual, SC34-5456, from the
MA88 download Web page.
If you have a Notes agent that uses the MQLSX and you want to
convert it to MQJava, you will need to go to your MQ queue
manager server computer and change the MQServerDEFS.TXT
MQ definitions to alter the NOTES.AGENT.PROCESS to trigger
your ‘New Java Agent’ instead of the old ‘MQLSX Notes Agent’.
Then issue the runmqsc command to reset your MQSeries
definitions.
What about the trigger monitor? The MA7K Trigger Monitor for
Notes Agents is another key part of this puzzle. I wondered if it
would also be going away sometime soon so I e-mailed the author
at IBM to find out his thoughts. He said he was not aware of any
move afoot to drop MA7K; it was a separate entity from the
MQLSX.
The MA7K Trigger Monitor does not care what kind of Notes agent
it is triggering. In fact MA7K works really well and triggers both
MQLSX and MQJava Notes agents.
The MQJava agent given here is a sample and a proof of concept
demonstration application that should give you a base from which

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

you can build your own production Notes MQJava agents.
The sample code demonstrates how to start a Notes session
within a Java agent. It then connects to an MQSeries queue
manager and writes data, a message, onto a queue. It then reads
data back from that same queue. Then it creates a Notes
document inside the current database and mails that document to
a predefined address. It writes information to a Notes log database,
then closes down.
You could use this sample to read all kinds of messages from an
MQSeries queue and perform various Notes processes on them.
Or you could use this sample to write all kinds of Notes data onto
an MQSeries queue for pickup and processing elsewhere, for
example to send data to the mainframe. An MQSeries infrastructure
makes this kind of inter-platform communication easy to implement.
The application that inspired this work is a mainframe CICS
process that writes ‘To’ and ‘From’ addressing data, plus message
text, onto a queue for delivery to an agent on the Notes PC server.
The Notes agent picks up the addressing information and message
text and combines it with a server file, then e-mails the resulting
document to the indicated recipients.
The sample also writes information to a Notes log database. It
requires that you first create a javalog.nsf database, using the
standard Notes Log template. The System.out.println() method will
put data into your existing Notes log but I included the log code to
show another Java option for tracking the progress of the agent.
The agent is set to run ‘Manually from Action Menu’, and ‘Run once
(@Commands may be used)’.
Finally, some comments on garbage collection. Java has built-in
garbage collection, where storage occupied by objects that are no
longer in use will be recovered and freed by the system. MQJava
objects participate fully in this garbage collection process.
Unfortunately, Notes objects inside a Java application do not
participate in garbage collection. You must call the recycle()
method for Notes objects you create or the database where your
agent resides will gradually grow over time. However, you don’t

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

have to recycle absolutely everything since recycling a ‘parent’
object will remove the ‘child’ object(s).

SAMPLE MQ, JAVA, AND DOMINO AGENT
import lotus.domino.*; // standard Domino Java classes
import java.io.PrintWriter; // use for debug output writing
import com.ibm.mq.*; // use for MQ classes
// Sample program copyright 2ØØ2 by Joe Larson, proof of concept for
MQ, Java, and Notes.
// Write a message to an MQ queue, read back from that queue, then
create and send a Notes message containing the data read from the
queue.
// Log the results to a javalog.nsf database.
public class MQJDSamp extends AgentBase {
 // Set up MQ string values for later use.
 private String hostname = "MQQMGRNAME.FQDN.COM";
 private String channel = "CLIENT.MQQMGRNAME";
 private String qManager = "MQQMGRNAME";
 private MQQueueManager qMgr;
 // All Notes Java agents must start with a NotesMain() method.
 public void NotesMain() {
 try {
 // Session is the base NotesSession object. Everything starts here.
 Session s = getSession(); // establish a session object
 // All agent information comes from the AgentContext object.
 AgentContext agentContext = s.getAgentContext(); // Get the agent
context.
 // Pick up the current database, the one this agent resides in.
 Database db = agentContext.getCurrentDatabase();
 // Start by creating a new document in the current database.
 // Begin building the document here, then add to it as you go along.
 Document doc = db.createDocument(); // Create a new document in the
current database.
 // In this sample, we hard code the recipient.
 // Another way would be to read the recipient name from the MQ queue.
 // The recipient name must be in a format the Address Book
recognizes.
 // start creating fields, first the SendTo
 String sendto = "Joseph Larson";
 doc.replaceItemValue("SendTo", sendto); // put field into document
 // We do not want to actually save each document we mail out from
this
 // agent,so we set the "setSaveMessageOnSend" property to "false" to
prevent this from happening.
 doc.setSaveMessageOnSend(false); // do not save after sending
 // We need to set these other properties of the sendTo field as well:
 sendTo.setNames(true);
 sendTo.setSummary(true);

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 // We are creating a Memo form.
 String form = "Memo";
 doc.replaceItemValue("Form", form);
 // Start building the body field here.
 // Build onto it as you go along, so that it shows you the progress
of your agent.
 String body = "Results from MQ calls: \n";
 // Set up MQ environment variables here.
 MQEnvironment.hostname = hostname;
 MQEnvironment.channel = channel;
 // Connect to MQSeries queue manager.
 qMgr = new MQQueueManager(qManager);
 // Set up open options.
 int openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;
 // Specify the queue we want to open.
 MQQueue system_default_local_queue =
qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",
 openOptions,
 null, // default qmgr
 null, // no dynamic queue
 null); // no alternate user id
 // Define a simple MQ message.
 MQMessage hello_world = new MQMessage();
 // The writeString() method is how you add text to a message.
 // We have hard-coded some sample text here, but
 // you could, of course, get this information from a Notes database,
 // now that you know how to connect to Notes and MQ at the same time.
 hello_world.writeString("Hello Zaphod");
 // Specify put-message-options.
 // Here we simple take the defaults.
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 // Now put the message onto the queue.
 system_default_local_queue.put(hello_world, pmo);
 // Record your progress in the "body" text you are building.
 body = body + "Successful put to queue. \n";
 // Now read that message back from the queue.
 // First define a new MQ Message buffer to read into.
 MQMessage retrievedMessage = new MQMessage();
 // Set the message ID so you get the old message right back again.
 retrievedMessage.messageId = hello_world.messageId;
 // Now set the get-message-options.
 // Again we take the defaults.
 MQGetMessageOptions gmo = new MQGetMessageOptions();
 // Now get the message from the queue.
 // We will accept at most 1ØØ characters.
 system_default_local_queue.get(retrievedMessage,
 gmo,
 1ØØ); // max message size
 // Record your progress so far in the "body" text.
 body = body + "Successful get from queue. \n";

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

 // Now pull out a string of text from the message.
 // The readString() method is how you extract the string
 // contents of a message.
 // There are other read methods for other types of data.
 int msgLen = 11; // How long a string do I want
 String msgText = retrievedMessage.readString(msgLen);
 // Add the retrieved text to the "body" text.
 body = body + "Retrieved message = " + msgText;
 // Close the queue, you're done with it.
 system_default_local_queue.close();
 // Disconnect from queue manager.
 // This method also syncpoints and commits any messages written or
read so far.
 qMgr.disconnect();
 // Now finish building the soon-to-be-mailed Notes document.
 doc.replaceItemValue("Body", body);
 // Send out the document via email to those in SendTo field.
 doc.send(sendto);
 // Print out status messages.
 // First pick up the current time from Domino.
 DateTime now = s.createDateTime("Ø");
 now.setNow();
 // System.out.println() write information the Notes server log.
 System.out.println("Some Useful Information For The Log and the time:
" + now.getLocalTime());
 // If you want to log your own data, here's how:
 // create a Notes Log object and write data to it.
 Log log = s.createLog("Notes Java Agent");
 log.openNotesLog("", "javalog.nsf");
 log.logAction Some Useful Information For The Log And The Time: "
 + now.getLocalTime());
 log.close();
 // Free up objects.
 // Java does its own garbage collection. Notes does not. You must
recycle() anything you create.
 log.recycle();
 now.recycle();
 doc.recycle();
 db.recycle();
 s.recycle();
 } // End of method's try block
 // Capture MQ errors here.
 catch (MQException ex)
 {
 System.out.println("MQ error: comp code " +
 ex.completionCode +
 " Reason code: " + ex.reasonCode);
 }
 // Java IOException error.
 // The MQ readString() method will generate Java IOException errors

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

when you, for example,
 // try to read past the end of a message.
 // Not that you would ever goof up like that.
 catch (java.io.IOException ex)
 {
 System.out.println("Error occurred writing to message buffer: " +
ex);
 }
 // All other errors.
 catch (Exception e)
 {
 e.printStackTrace();
 }
} // end of NotesMain()
} // end of class

Joe Larsen (USA) © Xephon 2002

MQ news

Nastel Technologies has recently announced
AutoPilot for WebSphere/Transaction
Monitor, which automates the detection and
correction of problems in the message flow.
Used in conjunction with Nastel’s AutoPilot,
the Transaction Monitor module enables
users to monitor, record, track, and
troubleshoot WebSphere MQ messages
transmitted across integrated networks.

Nastel claims that AutoPilot for WebSphere/
Transaction Monitor performs all of the tasks
required for complete message flow
management. It automatically determines
message types and message formats and can
pinpoint any message anywhere in the
network.

Additionally, it provides a time stamp
between sender and receiver for each
message, gathers statistics about message
volume and traffic through the network’s
channels, calculates the performance of
message throughput, and stores all of this
message-related information in an SQL
database.

For more information contact:
Nastel Technologies, 48 South Service
Road, Melville, New York 11747, USA.
Tel: (631) 761 9100.
Fax: (631) 761 9101.
Web: www.nastel.com

Nastel Technologies (UK), 3 Tannery House
Tannery Lane, Send, Surrey, GU23 7EF
UK.
Tel: + 44 207 872 5412.
Fax: + 44 207 753 2848.

* * *

IBM has announced Version 2.0 of its
WebSphere MQ Everyplace, which extends
its facilities to small footprint and mobile
platforms and devices through its messaging
capabilities. It links directly to the
WebSphere integration brokers, including
MQ Event Broker and MQ Integrator
Broker, for managing the flow of information
routing and distributing information between
applications.

The software also enables robust pervasive
messaging for WebSphere Everyplace
Access.

It now has native support for Pocket PC and
the Java implementation supports point-to-
point messaging via JMS and also extends
Java programming to smaller devices that can
run Java Micro Edition.

A native C implementation is available on
Windows Pocket PC, including Compaq
iPAQ support. Other additions include
scalability and administration improvements.
Additional platforms, including Windows
XP, are also supported.

Separately, IBM has announced the release
of WebSphere Business Integration for
Financial Networks, which was previewed as
WebSphere Financial Network Integrator in
the October issue of MQ Update.

For more information contact your local
IBM representative.

* * *

x
xephon

	Controlling access to MQSC facilities
	Using publish/subscribe in WebSphere MQ Integrator
	Getting started with SSL support in WebSphere MQ for Windows
	CSQ4BVJ1
	Using queue manager alias
	The MQLSX is dead: long live MQJava for Notes
	MQ news

