

© Xephon plc 2003

January 2003

43

In this issue

MQ
u

p
d

ate

3 Creating self-executing, self-
documenting scripts

9 Writing WMQI plug-in nodes in
Java

27 Another better MQSeries batch
trigger monitor

34 Clearing temporary files in WMQ
for AS/400 V5.x

37 Authentication and authorization
for JMS

46 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Creating self-executing, self-documenting scripts

Scripts are excellent tools for MQSeries administration but
managing large numbers of scripts presents its own set of
challenges. The output of configuration scripts is a valuable tool
for forensic analysis and diagnostics; however, the collection and
management of script output is frequently overlooked. It is,
therefore, often difficult to know when a script was last run,
whether it was successful, when it was last changed, or what the
changes were. These issues are usually addressed through
procedures that specify how the technician is to run the script,
where to capture the output, what to name the output, and so forth.
Even this leaves much to chance as it depends on the technician
to construct the command-line arguments correctly every time a
script is executed. A more reliable approach is to embed these
policies within the script so that nothing is left to chance. With a
few lines of code, runmqsc and setmqaut scripts can be self-
executing and self-documenting.

SAMPLE MQSC SCRIPT
The script in Listing One uses runmqsc to secure the
SYSTEM.DEF.SVRCONN channel by altering the MCAUSER
attribute to contain the value ‘nobody’. In addition to the commands
the script contains the usual comment lines and change log.

LISTING ONE: QMGR.MQSC
* qmgr.mqsc
* Setup QMgr per shop standards
* Ø2-1Ø-Ø2 T.Rob - New Script
* -------------------------------
ALTER CHL(SYSTEM.DEF.SVRCONN) +
 Chltype(svrconn) +

MCAUSER('nobody')

OUTPUT FROM LISTING ONE: QMGR.MQSC.OUT
Ø783889, 5765-B75 (C) Copyright IBM Corp. 1994, 2ØØØ. ALL RIGHTS
RESERVED.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Starting MQSeries Commands.
 : * qmgr.mqsc
 : * Setup QMgr per shop standards
 : * Ø2-1Ø-Ø2 T.Rob - New Script
 1 : ALTER CHL(SYSTEM.DEF.SVRCONN) +
 : chltype(svrconn) +
 : MCAUSER('nobody')
AMQ8Ø16: MQSeries channel changed.
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

The script is named ‘qmgr.mqsc’ and is executed with the command
runmqsc <qmgr.mqsc >qmgr.mqsc.05-30-02.out.
There are several problems with this script. When run, it is
possible that the output will overwrite some previous output or be
lost entirely, depending on what is entered on the command line.
This could be a problem if the previous output files provide the only
history of changes to the queue manager. Additionally, nothing in
the output file indicates which queue manager the script was run
on. Finally, there is nothing to prevent mistakes, such as accidentally
running this script through setmqaut rather than runmqsc. In
general, too many factors are left to chance. Although the risk is
small it is multiplied each time the script is executed. Given enough
executions of the script that small risk becomes a certainty.
The approach we will take in addressing these issues will be to
encapsulate our manual procedures into the script itself. This will
allow the configuration to be implemented up-front, subjected to
peer review, and then executed reliably and accurately any
number of times.

DISPLAYING RUN-TIME INFORMATION
One of the easiest tweaks we can apply here is one of the most
overlooked. Simply add the command dis qmgr qmname to the
beginning of all runmqsc scripts.
If you rely on comments in the script, the name of the script, or the
name of the output file to determine where it was run, you are never
really certain. When reviewing script output the only sure way to
tell where it was run is to have the script display the queue

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

manager name.
Similarly, when reviewing output it is often difficult to know whether
the entire file has been captured. To provide assurance that the
output has not been truncated add a final comment – * End of
script – to the end of the script.

MAKING THE SCRIPT SELF-EXECUTING
In order to make the script generate time-stamped output files it is
first necessary to set it up to be self-executing. The objective here
is that the command line used to execute the script is nothing more
than the script name. This is accomplished by making the script
executable (chmod +x qmgr.mqsc) and then placing the following
two lines of code at the top of the script:
 #!/usr/bin/ksh
 /opt/mqm/bin/runmqsc <<EOF

The first line invokes the Korn shell. The second line captures lines
three and onward and pipes them into runmqsc for processing.

MAKING THE SCRIPT SELF-DOCUMENTING
A self-documenting script is one which ensures any script comments
are displayed in the output and that the output is captured into time-
stamped multi-generation files. The file name will contain both the
script name and a time-stamp so that a simple directory listing will
reveal which scripts were executed and when. The change history
may be derived by comparing output from successive runs. We
previously set up line two of the sample script to capture STDIN.
We can modify it to manage STDOUT and STDERR as well. The
new line looks like this:
 /opt/mqm/bin/runmqsc >$Ø.`date "+%y%m%d-%H%M"`.out 2>&1 <<EOF

You will probably want to adapt this to your shop standards so let’s
break it down. Recall that the first fragment executes runmqsc for
us. The second fragment creates a unique file name to capture
redirection from STDOUT. The file name is composed of ‘$0’,
which substitutes the name of the script, a time-stamp, and the
constant ‘.out’.

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The example saves the output in the same directory as the script;
however, it is just as easy to save it somewhere else. Simply add
the path name ahead of $0. It is wise to keep scripts and logs out
of /opt/mqm and /var/mqm so that they are not lost if MQ ever
needs to be reinstalled.
Note that the time-stamp is in YYMMDD order so that the files sort
out chronologically. The time-stamp can be unique by day, hour,
minute, or second, as appropriate. In the example above, the time-
stamp is unique to the minute. Removing the ‘-%H%M’will create
a time-stamp that is unique to the day, but be aware that, if the
script is run more than once on a given calendar day, later
executions will overwrite the earlier ones.
The constant ‘.out’ at the end of the file allows for wildcard
matching of output files. Since the files tend to accumulate over
time the suffix is useful when writing scripts to prune the directory.
Typically, several scripts reside in the same directory and their
output logs will all have differing names. The suffix at the end will
be the only way to match all the logs as a group. If your output logs
are accessible via the Web you might want to use .txt or .htm as
the suffix.
The fragment ‘2>&1’ captures STDERR and redirects it to STDOUT.
It is important that this fragment comes after the redirection of
STDOUT because the shell evaluates the file handles in left-to-
right order on the command line.
The final fragment ‘<<EOF’ has already been covered. The new
version of the script is provided as Listing Two.

LISTING TWO: REVISED QMGR.MQSC
#!/usr/bin/ksh
/opt/mqm/bin/runmqsc >$Ø.`date "+%y%m%d-%H%M"`.out 2>&1 <<EOF
* qmgr.mqsc
* Setup QMgr per shop standards
* Ø2-1Ø-Ø2 T.Rob - New Script
* -------------------------------
dis qmgr qmname
ALTER CHL(SYSTEM.DEF.SVRCONN) +
 Chltype(svrconn) +

MCAUSER('nobody')

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

* End Of Script

OUTPUT FROM LISTING TWO: QMGR.MQSC.020530-1936.OUT
Ø783889, 5765-B75 (C) Copyright IBM Corp. 1994, 2ØØØ. ALL RIGHTS
RESERVED.
Starting MQSeries Commands.
 : * qmgr.mqsc
 : * Setup QMgr per shop standards
 : * Ø2-1Ø-Ø2 T.Rob - New Script
 1 : DIS QMGR QMNAME
AMQ84Ø8: Display Queue Manager details.
 QMNAME(QM1)
 2 : ALTER CHL(SYSTEM.DEF.SVRCONN) +
 : chltype(svrconn) +
 : MCAUSER('nobody')
AMQ8Ø16: MQSeries channel changed.
 : * End Of Script
2 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

ADVANCED USAGE
If you run more than one queue manager per server in your shop
you have probably realized that the examples used so far will run
only on the default queue manager. Solving this problem requires
a decision to either hard-code the queue manager as a parm to
runmqsc or to make an exception to our original design goals and
allow a command-line option. Hard-coding the name is rather
easy: simply add it to line two where appropriate:
 /opt/mqm/bin/runmqsc QM1 >QM1.$Ø.`date "+%y%m%d-%H%M"`.out 2>&1 <<EOF

Adding the queue manager name as a command-line option is a
little more involved. At the very least, we would like to do a reality
check on the command line and make sure that the specified
queue manager exists. If not, the script should print an error
message and exit with a non-zero return code. An example of one
way to do this is provided below. Note that the queue manager
name is now embedded in the output file name.

LISTING THREE: QMGR.MQSC WITH COMMAND-LINE PARM
#!/usr/bin/ksh

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

if [[-z $1]]
then
 Target=" "
 AbortMsg="default"
else
 Target=$1
 AbortMsg="$Target"
fi
runmqsc will tell us whether the requested QMgr is alive
QMgr=`echo "dis qmgr qmname" \
 | /opt/mqm/bin/runmqsc $Target \
 | tr ")" "\n" \
 | grep QMNAME \
 | tr "(" "\n" \
 | grep -v QMNAME`
if [[$QMgr = ""]] then
 echo "$Ø: Aborting! Could not find $AbortMsg QMgr"
 exit 255
fi
/opt/mqm/bin/runmqsc $QMgr >$Ø.$QMgr.`date "+%y%m%d-%H%M"`.out << EOF
* qmgr.mqsc
* Setup QMgr per shop standards
* Ø2-1Ø-Ø2 T.Rob - New Script
* -------------------------------
DIS QMGR QMNAME
ALTER CHL(SYSTEM.DEF.SVRCONN) +
 chltype(svrconn) +
 MCAUSER('nobody')
* End Of Script

EXTENDING THE CONCEPTS
Although the examples used runmqsc scripts the technique can
be applied to setmqaut or any other utility for which input is
normally prepared as a text file. Simply prepend any existing
scripts with the ksh lines from Listing Two or Listing Three.
We touched briefly on making the log files available through a Web
browser. In order for the Web server to recognize the files the
suffix must be a known MIME type. Most Web servers will
recognize .txt files with no modifications. If you create the files with
an .htm extension the server will expect to find HTML-formatted
documents. To make the output HTML compatible simply echo an
HTML header before executing runmqsc:
 #!/usr/bin/ksh
 echo "<html><body><pre>"

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 /opt/mqm/bin/runmqsc >$Ø.`date "+%y%m%d-%H%M"`.out 2>&1 <<EOF

The <pre> tag must be included because it tells the browser to
ignore HTML entities such as the < and > characters and to honour
line breaks.
Although beyond the scope of this article, it is not difficult to extend
the techniques presented here to include parameter substitution
within the script text itself. This allows setmqaut scripts (in which
the queue manager name is part of the command syntax) to be
portable across queue managers. With runmqsc, parameter
substitution allows for automatic generation of object names that
are derived in part from the queue manager name. For example,
many shops require channel names to contain the queue manager
name.
T Robert Wyatt (USA) © Xephon 2003

Writing WMQI plug-in nodes in Java

INTRODUCTION
With WMQI 2.1 you can now write plug-in nodes in Java. In earlier
versions of MQSI this support was restricted to C language only.
Since Java is a platform-independent language your plug-in can
be used across different platforms without modifying the source
code. Custom plug-in code written in Java is compiled and
packaged into jar files. The broker loads this jar file during start-up
and makes the functionality available to the message flows. The
jplugin.jar file contains important classes to write Java plug-ins,
which are packaged into the com.ibm.broker.plugin package.
There are two main interfaces provided to write two different types
of plug-in nodes in WMQI. They are:
• MbInputNodeInterface – use this interface if you are writing

a custom plug-in input node.

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• MbNodeInterface – use this interface if you are writing a
custom plug-in node.

Note that you cannot write a plug-in parser in Java; it can be written
only in C.
In this article I will try to explain how to write a simple Java plug-
in node with an example. We will name our example plug-in node
‘MsgFlowEnvInfo’.

MSGFLOWENVINFO PLUG-IN
There is no direct way of retrieving WMQI runtime information,
such as broker name, queue manager name, message flow name
etc, for a message flow. There are few plug-in utility functions
available which will return this information at runtime, but it is very
simple to write your own Java plug-in node to do this.
We will go through detailed steps on how to write and install a plug-
in node and its components.

Files related to the plug-in node
• Required files are:

– XML interface definition file
– WDP file.

• Optional files are:
– image files
– help file
– properties file
– properties editor
– a customizer.

You can use the Smart Guide in the WMQI Control Centre to
generate some of these files. In this article we will create these
files by hand; this will give us a chance to have a closer look at the

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

layout of different statements in these files.

Defining the plug-in node in the XML interface definition file
This file is in XML format and it is used to specify the configurable
attributes, input/output terminals, and the image files (in GIF
format) for the plug-in. The name of this file is ‘MsgFlowEnvInfo’
(without any extension). This file name is derived from our plug-in
name, which is returned by the getNodeName() utility function call,
without the suffix ‘Node’ text string.

Plug-in node definition
The following piece of code from the XML interface definition file
describes the type of new node in conjunction with mandatory
attributes and their values. There should be only one occurrence
of <MessageProcessingNodeType> tag in the interface definition
file.
The properties for these tags are shown in Table 1.
 <MessageProcessingNodeType icon="images/MsgFlowEnvInfo.gif"
 package="com.ingale.wmqi" creator="Kiran Ingale" version="1.Ø"
 useDefaults="true" collectionPath="" scaleableIcon=""
 versionTimestamp="" isPrimitive="true" longDescription=""
 versionCreator="" creationTimestamp="" shortDescription=""
 xmi.uuid="MsgFlowEnvInfo" xmi.id="MsgFlowEnvInfo"
 xmi.label="MsgFlowEnvInfo">

Note that you could provide a key value for the shortDescription
and longDescription attributes. The corresponding textual
description will be looked up in the node’s properties file while
displaying them in the Control Centre.

Attributes
This <Attribute> tag defines attributes of the plug-in node. Since
this plug-in is going to be very simple we will need only one attribute
to store retrieved runtime information. The retrieved information
will be stored in a Global Environment Tree under the name
specified in the envTreeEleName attribute/property of the plug-in.
A plug-in node can have zero or more attributes. For each attribute
we should define a single occurrence of the <Attribute> tag. We

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

could group these attributes using the <AttributeGroup> tag. If the
attributes are not grouped they will be displayed in the default
properties tab when the node properties are displayed.
The following piece of code determines what attribute our plug-in
knows, a default value, and whether or not it is mandatory to
specify a value. For our plug-in, if no value is specified for this
attribute, it will create a Group Element with the name
WMQIMsgFlowEnvInfo in the Environment Tree.
The properties for these tags are shown in Table 2.
 <Attribute value="" xmi.uuid="envTreeEleName" encoded="true"
 xmi.label="envTreeEleName" attributeOwner="" type="String"
 valueMandatory="false"/>

Attribute/ Description
tag name

Icon This field identifies the path of the icon file located in the
images directory. The directory name is relative to
the <mqsi_root>\tool directory. This icon is displayed in
the Control Centre after you add this plug-in node to your
workspace.

package This identifies the location of the resources (property file,
help file, customizer, property editor) for this plug-in node.

isPrimitive Should be set to true always.

longDescription This field provides textual description for the plug-in node.
This text is displayed in the Long Description tab when

you select properties for this plug-in node.

shortDescription This text is displayed in the lower left corner when you
click on the plug-in node in the Control Centre.

xmi.uuid This field must contain the full name of the plug-in node
without the suffix ‘Node’. This identifier must be unique.

Table 1: Tag properties

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1 illustrates a dialogue box for this plug-in, which is
displayed when you select ‘Properties’ in the Control Centre.

Defining OutTerminal and InTerminal
Here I will explain how to define terminals for this plug-in node. We
will need one input and two output terminals for this plug-in.
<OutTerminal> and <InTerminal> tags define out and in terminals
of the plug-in node. There should be an instance of InTerminal and
OutTerminal tag for each input and output terminal defined in a
plug-in node.
To define the input terminal we will create an instance of an
<InTerminal> XML tag, for which the following attributes should be
set:
• xmi.uuid – this value must be set to null ("").

Attribute/ Description
Tag Name

xmi.label This field defines the label of an attribute to be displayed
in the Control Centre. If a value is provided it extracts the
long description for this value from the plug-in node’s
properties file. If the properties file does not have a
matching value the value is displayed as it is.

type This is the type of value that is stored in this attribute.
For a list of possible values please refer to WMQI

manuals.

value This is the default value of the attribute.

xmi.uuid This value is used internally when this attribute is
promoted.

valueMandatory This indicates whether the attribute is mandatory or
optional.

encoded A value of true or false indicates whether the value of this
attribute needs to be encoded.

Table 2: Tag properties

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• xmi.label – this field specifies the displayed name of the
terminal. The value specified here should match the value
specified in the code for a createInputTerminal() call. This field
must be unique within this file.

 <InTerminal icon="images/InTerminal.gif" creator="" orientation="9"
 versionTimestamp="" longDescription="" y="" x="" versionCreator=""
 creationTimestamp="" shortDescription="" xmi.label="in" xmi.uuid="">
 <InTerminalTypeRef icon="images/InTerminal.gif" xml:link="simple"
 xmi.label="InTerminalType" type="InTerminalType"
 refType="InTerminalType" href="InTerminalType/InTerminalType"
 title="InTerminal"/>
 </InTerminal>

Similarly, to define two output terminals we will create an instance
of <OutTerminal> XML tags. The attributes set for the output
terminals are the same as those set for the input terminals.
 <OutTerminal icon="images/OutTerminal.gif" creator="" orientation="9"
 versionTimestamp="" longDescription="" y="" x="" versionCreator=""
 creationTimestamp="" shortDescription="" xmi.label="out"
xmi.uuid="">
 <OutTerminalTypeRef icon="images/OutTerminal.gif" xml:link="simple"
 xmi.label="OutTerminalType" type="OutTerminalType"
 refType="OutTerminalType" href="OutTerminalType/OutTerminalType"
 title="OutTerminal"/>
 </OutTerminal>

 <OutTerminal icon="images/OutTerminal.gif" creator="" orientation="9"
 versionTimestamp="" longDescription="" y="" x="" versionCreator=""
 creationTimestamp="" shortDescription="" xmi.label="failure"

Figure 1: Dialogue box displayed when ‘Properties’ is selected

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 xmi.uuid="">
 <OutTerminalTypeRef icon="images/OutTerminal.gif" xml:link="simple"
 xmi.label="OutTerminalType" type="OutTerminalType"
 refType="OutTerminalType" href="OutTerminalType/OutTerminalType"
 title="OutTerminal"/>
 </OutTerminal>

THE WEB DAV PROTOCOL (WDP) FILE
The WebDav protocol is used between the Control Centre and the
Configuration Manager. This file provides information required by
the protocol to send to the Configuration Manager. The file name
should be the same as the XML interface definition file, with the
extension .wdp.
The attributes shown in Table 3 must be set in the WDP file for this
plug-in node.
 <?xml version="1.Ø"?>
 <properties xmlns:D="DAV:">

<D:creationdate>2ØØ2-Ø8-15TØ9:52:32-Ø7:ØØ</D:creationdate>
<D:displayname>MsgFlowEnvInfo</D:displayname>
<D:xmi.label>MsgFlowEnvInfo</D:xmi.label>
<D:icon>images/MsgFlowEnvInfo.gif</D:icon>
<D:versionStatus>new</D:versionStatus>
<D:lockdiscovery xmlns:D="DAV:"/>

 </properties>

ICONS FOR THE NODE
We should supply at least one icon to be used in the Control Centre
tree view. We can also provide additional icon files to be displayed
in Message Flow view when used while viewing the message flow
in the Control Centre. If we don’t supply these icon files the default
icon will be used.
Optional Icon file names, with descriptions, with this plug-in node
are:
• MsgFlowEnvInfo.gif – used when the plug-in is displayed in

tree view.
• MsgFlowEnvInfo30.gif – used when the plug-in in the message

flow is displayed in 25% zoom.

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• MsgFlowEnvInfo42.gif – used when the plug-in in the message
flow is displayed in 50% zoom.

• MsgFlowEnvInfo58.gif – used when the plug-in in the message
flow is displayed in 75% zoom.

• MsgFlowEnvInfo84.gif – used when the plug-in in the message
flow is displayed in 100% zoom.

DEFINING THE HELP TEXT FOR THE NODE
This step is optional. This file can provide help information for this
plug-in node, which will be displayed when the user selects ‘Help’
from the plug-in properties dialogue box from the Control Centre.
The format of this file is HTML. In this help file you can make use
of the bipnt.css style sheet, which will make the appearance of the
help text identical to standard plug-in help text.
The name of our help file must be MessageProcessingNodeType_
MsgFlowEnvInfo.htm. As you can see here, the last part of the file
name is identical to the xmi.label in the
<MessageProcessingNodeType> tag in the XML interface
definition file.

Attribute/ Description
Tag Name

displayname This value is set to the name of the interface definition
file.

xmi.label This value will appear in the node tree in the Control
Centre (Message Flows view) to identify the type of
node. This value must be identical to the xmi.label
property of the <MessageProcessingNodeType> tag in
the XML interface definition file.

icon This field will contain the path and name of the icon
defined for this node relative to the <mqsi_root>\tool
directory. This value should identify the minimum size

icon.

Table 3: Attributes that must be set in the WDP file

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

We will not go into the details of this file because it is very simple
to understand the format, which is standard html.

EXPLORING JAVA SOURCE FOR THE PLUG-IN
Having decided attributes and terminals for this plug-in we will now
start writing plug-in source code in Java. As per the Java language
specifications the name of the source file should be the same as
the class name. I will name this class ‘MsgFlowEnvInfo’ so our
source file name will be ‘MsgFlowEnvInfo.java’.
Since we are creating a new package for this plug-in we should
declare the package name at the beginning of the source file:
 package com.ingale.wmqi;

All plug-in related classes are packaged into a
com.ibm.broker.plugin.* package, so we need to import this
package into our source code:
 import com.ibm.broker.plugin.*;

To define a plug-in node we should sub-class the standard
MbNode class and implement MbNodeInterface. Here, our plug-
in node’s class name is MsgFlowEnvInfo and it extends MbNode
class. Since this is not an input node we will have to implement the
MbNodeInterface interface.
The main class for this plug-in is declared as:
 public class MsgFlowEnvInfo extends MbNode implements MbNodeInterface

We will now declare local variables to store plug-in attribute
values, using the following code:
 private String envTreeEleName;

The attributes label, usertTraceLevel, traeLevel, userTraceFilter,
and traceFilter are already implemented as base configuration
attributes. We should never implement these attributes in our
code.
The getNodeName() method is called by the broker to retrieve the
name of the plug-in node. The value returned by this method should
be identical to the value specified in the xmi.uuid attribute in

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<MessageProcessingNodeType> tag, without the ‘Node’ suffix.
 public static String getNodeName() {

 return ("MsgFlowEnvInfoNode");
 }

The constructor of the plug-in node class is called when the broker
creates an instance of the plug-in node. This is when we should
create output and input terminals using the createOutputTerminal()
and createInputTerminal() methods respectively. The terminal
names should match the values specified in the XML Interface
definition file.
The following code extract shows how to do this:
 public MsgFlowEnvInfo()

 throws MbException {
 createInputTerminal("in");
 createOutputTerminal("failure");
 createOutputTerminal("out");

 }

For every attribute defined for this plug-in node we should have
get/set methods defined. We must use standard JavaBean naming
conventions for naming these methods. These attributes are
received as a character string in XML messages, regardless of
their data type.
 public String getEnvTreeEleName() {

 return envTreeEleName;
 }
 public void setEnvTreeEleName(

 String elename) {
 this.envTreeEleName = elename;

 }

Whenever a message is passed through a plug-in node its
evaluate() method is called. This method is responsible for
implementing the functionality of the plug-in node. The signature of
this method is as follows:
 public void evaluate(MbMessageAssembly messageAssembly,
 MbInputTerminal inTerminal) throws MbException

messageAssembly represents the input message passed to this
plug-in. An input message represents all four trees; you can call the
appropriate utility method to retrieve a copy of these trees from the

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

input message assembly:
• getMessage() – returns the Message Tree.
• getLocalEnvironment() – returns the LocalEnvironment Tree.
• getGlobalEnvironment() – returns the Environment Tree.
• getExceptionList() – returns the ExceptionList Tree.
Since we are going to store data in the Environment Tree, using
our plug-in, we should retrieve the Global Environment Tree from
the message assembly, using the getGlobalEnvironment() method.
 // Get Environment Tree from messageassembly
 MbMessage envtree = messageAssembly.getGlobalEnvironment();

The MbNode class provides utility functions to retrieve MbBroker,
MbExecutionGroup, and MbMessageFlow objects for this plug-in.
We will call utility methods in our code to get these objects in order
to extract runtime environment information.
 // Get Broker object
 MbBroker broker = getBroker();
 // Get MessageFlow object
 MbMessageFlow msgflow = getMessageFlow();
 // Get ExecutionGroup object
 MbExecutionGroup eg = getExecutionGroup();

Now we will call the utility methods of the above object to retrieve
information (eg broker name, queue manager name, etc) and store
it in local variables.
 // Get Broker Data Source User-id
 String dsuid = broker.getDataSourceUserId();
 // Get Broker Name
 String bkname = broker.getName();
 // Get Broker's Queue Manager Name
 String qmgrname = broker.getQueueManagerName();
 // Get Execution Group Name
 String egname = eg.getName();
 // Get Message Flow Name
 String mfname = msgflow.getName();
 // Get Coodinated Transaction Property for this message Flow
 boolean coordinated = msgflow.isCoordinatedTransaction();
 String tmode;
 if (coordinated)

 tmode = "True";
 else

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 tmode = "False";

After storing all the required information in local variables we will
now add this information to the Environment Tree. To do this we
need first to get the root element of the Environment Tree.
 // Get Root Element for Environment Tree
 MbElement EnvRootEle = envtree.getRootElement();

We will use the element name specified in the properties for this
plug-in node. If no value is specified for this plug-in attribute we will
create a group element with the name ‘WMQIMsgFlowEnvInfo’ in
the Environment Tree and store the above retrieved information
as its child elements.
 // An element will be created by this name, if no value is specified
 for this property
 String envinfo = "WMQIMsgFlowEnvInfo";
 // Create new element as Last Child into Environment Tree
 MbElement envinfoele;
 envinfoele =
 EnvRootEle.createElementAsLastChild(MbElement.TYPE_NAME);
 // Set Element name depending on the property value
 if (envTreeEleName != null) {

 envinfoele.setName(envTreeEleName);
 } else {

 envinfoele.setName(envinfo);
 }
 // Create other elements as Child element to store Runtime
 Environment Information
 envinfoele.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
 "BrokerName",bkname);
 envinfoele.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
 "QueueManagerName",qmgrname);
 envinfoele.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
 "ExecutionGroupName",egname);
 envinfoele.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
 "MessageFlowName",mfname);
 envinfoele.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
 "DataSourceUserId",dsuid);
 envinfoele.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
 "CoordinatedTransactionMode",tmode);

After we modify our Environment Tree we will propagate the
updated messageAssembly through the out terminal.
 // Propagate updated message to output terminal
 MbOutputTerminal outTerminal = getOutputTerminal("out");
 outTerminal.propagate(messageAssembly);

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The following piece of code is optional. In this code we will catch
MbException and log an error message in the event viewer.
Before propagating an input message to the failure terminal we will
first see if the terminal is connected or not. If the terminal is not
connected this will throw a UserException, which will be caught by
the framework.
If we don’t provide a catch block in our code, the framework will
catch the exception and perform a default action on it.
 catch (MbException ex)
 {

 // Log Error into Event Viewer
 MbService evtLog = new MbService();
 evtLog.logError(ex.getClassName(), ex.getMethodName(),

 "WMQIv21Ø","2951",
 ex.getTraceText(),ex.getInserts());

 // Get Failure Terminal
 MbOutputTerminal failureTerminal = getOutputTerminal("failure");
 // Propgate message to failure terminal if it is attached
 if (failureTerminal.isAttached())
 {

 failureTerminal.propagate(messageAssembly);
 }
 // else throw userException
 else
 {
 // Throw User Exception

 throw new MbUserException(ex.getClassName(),
 ex.getMethodName(),
 "WMQIv21Ø", "2951", ex.getTraceText(), ex.getInserts());

 }
 }

This concludes our plug-in source code in Java. Next I will explain
how to build and install this plug-in.

BUILDING A PLUG-IN
To build a plug-in jar file you should have JDK installed on your
machine. You can download JDK from http://java.sun.com.
In this section I will explain how to build your plug-in on a Windows
system. An equivalent command needs to be executed on other
platforms.

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Installing and configuring JDK
Please follow the installation instructions specified on the Web
site to install and configure JDK on your workstation. You should
also modify your CLASSPATH to include the jplugin.jar file. This
file is located in:
• <mqsi_root>\classes directory on Windows.
• <mqsi_root>/classes directory on Unix.
The following command shows how to set up this path in a
Windows environment:
 C:\>SET CLASSPATH=%CLASSPATH%;<mqsi_root>\classes

Creating a directory structure and building a jar file
First you should create a directory structure similar to the package
of the plug-in on your machine. Let’s say you want to store your
plug-in source in the C:\plugin directory. Now run the following
commands to create the directory and build the plug-in jar file.
 C:\>md plugin\com\ingale\wmqi
 C:\>cd plugin\com\ingale\wmqi
 C:\ plugin\com\ingale\wmqi>dir
 Volume in drive C is E866FD1Ø
 Volume Serial Number is 182D-44E1
 Directory of C:\java\com\ingale\wmqi
 Ø8/26/2ØØ2 1Ø:44a <DIR> .
 Ø8/26/2ØØ2 1Ø:44a <DIR> ..
 Ø8/23/2ØØ2 1Ø:Ø9a 4,Ø23 MsgFlowEnvInfo.java
 1 File(s) 4,Ø23 bytes
 2 Dir(s) 2,772,616,192 bytes free
 C:\plugin\com\ingale\wmqi>javac MsgFlowEnvInfo.java
 C:\plugin>jar -cvf MsgFlowEnvInfo.jar
 com\ingale\wmqi\MsgFlowEnvInfo.class
 added manifest
 adding: com/ingale/wmqi/MsgFlowEnvInfo.class(in = 3127) (out=
 146Ø)(deflated 53%)

Installing a plug-in – Defining the node in the configuration repository
Only user-IDs who are members of an mqbrdevt group can define
a plug-in node in the configuration repository. Alternatively, you
could use super-user IBMMQSI2. You will have to copy the two
files listed below into their respective locations. These steps need

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

to be performed only once.
• Copy MsgFlowEnvInfo to <mqsi_root>\tool\repository\private\

<hostname>\<queue_manager>\MessageProcessingNodeType.
• Copy MsgFlowEnvInfo.wdp to <mqsi_root>\tool\repository\

private\<hostname>\<queue_manager>\MessageProcessingNodeType.
<hostname> is the name of the server hosting the configuration
manager or IP address of the server and <queue_manager> is
your configuration manager’s queue manager name.
The following files need to be copied onto each user’s workstation:
• Copy MsgFlowEnvInfo.properties to <mqsi_root>\tool\com\

ingale\wmqi.
• Copy MsgFlowEnvInfo*.gif to <mqsi_root>\tool\images.
• Copy MessageProcessingNodeType_MsgFlowEnvInfo.htm

to <mqsi_root>\tool\help\en_US\com\ingale\wmqi.
Having copied the above files into their appropriate locations, the
next step is to define the node in the configuration repository by
executing the following steps:
• Step one: restart your Control Centre.
• Step two: under Message Flow view, right-click on IBM

Primitives and select Add To Workspace->Message Flows.
• Step three: select MsgFlowEnvInfo from the displayed dialogue

box and click on the Finish button. This will add the plug-in node
to your tree view with a ‘new’ icon in front of it.

• Step four: right-click on the plug-in node and select check-in.
This action will result in the removal of files stored in the
<mqsi_root>\tool\repository\private\<hostname>\<queue_
manager>\~MessageProcessingNodeType directory. These
files are now stored in the configuration repository.

• Step five: restart your broker service.
Now the plug-in node is available for our use.

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Sample output
The code listed immediately below details part of the Environment
Tree that is created by the MsgFlowEnvInfo plug-in with runtime
information for this message flow. Retrieved information is stored
in the compound element WMQIMsgFlowEnvInfo in the Global
Environment Tree. The structure of this information is as follows:
 (Øx1ØØØØØØ)WMQIMsgFlowEnvInfo = (
 (Øx3ØØØØØØ)BrokerName = 'QABKØ1'
 (Øx3ØØØØØØ)QueueManagerName = 'QABK1QM'
 (Øx3ØØØØØØ)ExecutionGroupName = 'default'
 (Øx3ØØØØØØ)MessageFlowName = 'RQST_Xform'
 (Øx3ØØØØØØ)DataSourceUserId = 'db2i1'
 (Øx3ØØØØØØ)CoordinatedTransactionMode = 'False'
)

CASE STUDY: USING MSGFLOWENVINFO PLUG-IN
With the help of an example I will try to explain how this plug-in can
be used in a typical reqeust/reply scenario to set the
MQMD.ReplyToQMgr field at runtime.

Business problem definition
Figure 2 illustrates a typical business scenario where a broker will
carry out the transformation of asynchronous request/reply
messages from XML to CWF and vice versa. Here, application A
is a requester application and application B is acting as a
responder.
There are channels defined between the NTQM^_BKQM^_MFQM
queue managers. The requesting application puts a request
message on a remote queue on the NTQM queue manager. Local
definition of this request queue (RQST.IN) exists on BKQM. The
request message flow will read the input message in XML format
from this queue. The message will be then transformed into CWF
format by Request Msg Flow. Since BKQM will also handle reply
messages we need to specify this queue manager name in the
MQMD.ReplyToQMgr field. Application B running on OS/390 will
redirect reply messages to the reply queue on BKQM. Using Reply
Message Flow, the broker will do the reverse transformation

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

(CWF to XML) for reply messages before presenting reply
messages to application A on the NTQM queue manager.
We will use the MsgFlowEnvInfo plug-in to retrieve the broker’s
queue manager’s name at runtime and assign this value to the
MQMD.ReplyToQMgr field.

Using the MsgFlowEnvInfo plug-in to solve the problem
The message flow illustrated in Figure 3 illustrates a simple
transformation request message flow. By using the MsgFlowEnvInfo
plug-in we are avoiding hard-coding of the broker’s queue manager
name. In Figure 3:
• The RQST.IN node reads the input message from the RQST.IN

queue in XML format.
• The MsgFlowEnvInfo1 node retrieves environment information

for this message flow and stores it in the Environment Tree.
• GetEnvFailed is a throw node, which throws an exception in

the case of errors.

NTQM

Application A

Requester

Win NT

Sets MQMD.ReplyToQMgr name

Request
Message
Flow

RQST.IN RQST.OUT
WMQI broker

!!!!! !!!!!

Reply
Message
Flow

RQST.OUT RQST.IN

!!!!! !!!!!

BKQM

"""""#####

MFQM

Application B

Responder

OS/390

"""""#####

Figure 2: Typical business scenario

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• XMLToCWF is a compute node that carries out transformation
of messages from XML to CWF format. This node will also set
MQMD.ReplyToQMgr and MQMD.ReplyToQ names using
the following ESQL:

 /* Mapping ESQL code goes here */
 ….
 /* Set Reply To Queue name */
 SET OutputRoot.MQMD.ReplyToQ = 'RPLY.IN';
 /* Set Reply To Queue Manager name */
 SET OutputRoot.MQMD.ReplyToQMgr =
 Environment.WMQIMsgFlowEnvInfo.QueueManagerName;

• LogMessage is a trace node to log request messages to the
Environment Tree.

 ${Environment}

• RQST.OUT is an MQOutput node to write transformed request
messages to the request queue on the MFQM queue manager.

• LogError is a trace node to log the ExceptionList.
• RQST.FAIL is an MQOutput node to write failed messages.

SOURCE CODE DOWNLOAD
The following files for this plug-in are available for download from
www.xephon.com/extras/wmqi.txt.

Figure 3: A simple transformation request message flow

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• MsgFlowEnvInfo.java – Java source code.
• MsgFlowEnvInfo.jar – plug-in jar file.
• MsgFlowEnvInfo.wdp – WebDav file.
• MsgFlowEnvInfo XML – configuration file.
• MsgFlowEnvInfo.gif – image file.
• MsgFlowEnvInfo.properties – properties file.
• MessageProcessingNodeType_MsgFlowEnvInfo.htm –

HTML help file.

REFERENCES
WMQI 2.1 Programming Guide.
Kiran Ingale, EAI Architect
Aviana Global Technologies (USA) © Xephon 2003

Another better MQSeries batch trigger monitor

INTRODUCTION
In the October 2002 issue of MQ Update (issue 40) there was an
article by Bruce Borchardt (OS/390 Systems Coordinator at Kohls
Department Stores, USA) about a better MQSeries batch trigger
monitor.
At our site, too, we had been struggling with the sample batch
trigger monitor that IBM supplies through SupportPac MA12 and
we had decided to develop a new and, hopefully, better and more
versatile replacement. However, we took quite a different approach
from that in Bruce’s organization, as this article will demonstrate.

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

OUR APPROACH
We identified the following requirements:
• For maximum flexibility we decided that we did not want to

store any JCL directly into our process definitions. Instead,
the process definitions should contain just a reference to the
JCL, with the JCL stored elsewhere.

• We also decided that we wanted to implement a JCL generation
process that would be as flexible as possible. For example, we
wanted to provide a way to include JCL statements, depending
on the project code assigned to the job.

• Finally, since we already had a number of batch jobs triggered
through the sample batch trigger monitor we wanted to ensure
that the original (‘old-format’) process definitions would still be
supported. In this way, we could immediately start using our
new batch trigger monitor and gradually replace the process
definitions as we saw fit.

IMPLEMENTATION DECISIONS
The above considerations led us to the following decisions:
• The process definitions should contain just the name of a JCL

INCLUDE member (which is taken from our standard JCL
INCLUDE library).

• The ISPF file-tailoring services were perfectly suited to
provide the flexibility that we needed for the JCL generation
process.

The result of these decisions was the program MQSCBTMA,
which can be found at www.xephon.com/extras/batchtrigger.txt.

MQSCBTMA
As any MQSeries batch trigger monitor will need to do, it will
connect to a given queue manager, open a given batch initiation
queue, and go into a GET wait loop on the queue. Whenever it is
woken up by a trigger message it will generate the JCL for a batch

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

job, which it subsequently submits to the internal reader.

THE PARM STRING
The PARM string for the program should have the following format:
 PARM='[qmgr],initq[,[skeleton][,[jobname][,[notify]]]]'

All parameter values except ‘initq’ are optional. The meanings of
the parameter values are detailed below.
• qmgr – this is the name of the queue manager to which the

program should connect. If this value is omitted the program
will connect to its default queue manager (if available).

• initq – this is the name of the batch initiation queue on which
the program will listen to trigger messages. This parameter is
required.

• skeleton – this is the name of the ISPF skeleton member from
which the program will generate the JCL for the batch jobs that
it will submit. The default ISPF skeleton name is MQSCBTMA.

• jobname – this is the job name that the program will use for the
batch jobs that it generates from ‘old-format’ process
definitions.
Just like the original sample program, the program will use only
the first six positions of the job name specified here; the
seventh and eighth positions will be replaced by a sequence
number (from 00 through 99 and then back to 00). The default
job name is MQSCBT00.
Note that the program will use this parameter value only for
‘old-format’ process definitions.

• notify – this is the default user name that the program will issue
on the NOTIFY parameter of the JOB cards that it generates.
By default, the program will not issue a NOTIFY parameter
except for process definitions that explicitly specify one.
Note that this parameter value can be overridden only on
‘new-format’ process definitions.

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

THE PROCESS DEFINITIONS
The program supports two formats for its process definitions:
• The ‘old’ format is compatible with the format that is used by

the sample batch trigger monitor:
– the Application-ID contains the EXEC card
– the user data contains up to four additional JCL cards,

limited to 32 characters each
– the environment data contains up to four final JCL cards,

also limited to 32 characters each
– any of these nine JCL cards may contain a ‘!’ character,

which will be replaced with the name of the queue that
caused the trigger message to be generated (ie the
MQTM-QNAME value).

• The ‘new’ format is much simpler:
– the Application-ID has the format:

 jclincl[,[jobname][,[notify]]]

– where jclincl is the name of the JCL INCLUDE member.
This value is required.

– jobname is the job name that the program will generate for
the batch jobs that it generates from the process definition.
By default, the job name will be equal to the JCL INCLUDE
member name.

– notify is the user name that the program will issue on the
NOTIFY parameter of the JOB card. By default, the
program will specify the user name that was passed to it
through its PARM string; if the user name was omitted on
the PARM string, too, then no NOTIFY parameter will be
generated.

• The user data and the environment data will not be used by the
program.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

JCLINCL JCL INCLUDE member name (new-format process definitions
only).

JCLLINE1 EXEC card, taken from the Application-ID of the process definition
and with the first occurrence of the ‘!’ character replaced with the
triggering queue name (for old-format process definitions only).

JCLLINE2 JCL card from positions 1 to 32 of the user data, after substitution
of the ‘!’ character, as above (for old-format process definitions

only). For new-format process definitions the variable will contain the text
from said positions without any substitution.
JCLLINE3 JCL card from positions 33 to 64 of the user data, after

substitution of the ‘!’ character as above.
JCLLINE4 JCL card from positions 65 to 96 of the user data, after

substitution of the ‘!’ character, as above.
JCLLINE5 JCL card from positions 97 to 128 of the user data, after

substitution of the ‘!’ character as above.
JCLLINE6 JCL card from positions 1 to 32 of the environment data, after
substitution of the ‘!’ character as above.
JCLLINE7 JCL card from positions 33 to 64 of the environment data after
substitution of the ‘!’ character as above.
JCLLINE8 JCL card from positions 65 to 96 of the environment data after
substitution of the ‘!’ character as above.
JCLLINE9 JCL card from positions 97 to 128 of the environment data after

substitution of the ‘!’ character as above.
JOBNAME The job name that must be assigned to the batch job.
MQPROC The name of the MQSeries process definition
NOTIFY The user name that must be generated on the NOTIFY parameter

of the JOB card. Blank if no NOTIFY parameter need be
generated.
PROGRAM The name of the program, ie MQSCBTMA.
PROJECT A three-character project code taken from positions 1 to 3 of the

INCLUDE member name (for new-format process definitions). For
old-format process definitions the project code will be taken from
positions 1 to 3 of the triggered queue name, provided that its

fourth position is a period; otherwise, the project code will not be filled in.
QMGR The local queue manager name.
QNAME The triggered queue name.
SKELETON The ISPF skeleton member name.

Table 1: ISPF dialogue variables

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ISPF DIALOGUE VARIABLES
The program defines the ISPF dialogue variables given in Table 1.

AN EXAMPLE ISPF SKELETON
Following Table 1 is a simple ISPF skeleton that the program may
use to generate the JCL for its batch jobs.
//&JOBNAME JOB +++jobcard parameters+++<,NOTIFY=&NOTIFY|>
// JCLLIB ORDER=+++jcllib libraries+++
//* Job generated from skeleton &SKELETON by program &PROGRAM..
//* Queue manager : &QMGR..
//* Process name : &MQPROC..
//* Triggering queue . . . : &QNAME..
// SET QMGR='&QMGR'
// SET MQPROC='&MQPROC'
// SET QNAME='&QNAME'
)SEL &JCLINCL = &Z
&JCLLINE1
&JCLLINE2
&JCLLINE3
&JCLLINE4
&JCLLINE5
&JCLLINE6
&JCLLINE7
&JCLLINE8
&JCLLINE9
)ENDSEL
)SEL &JCLINCL = &Z
// INCLUDE MEMBER=&JCLINCL
)ENDSEL

STOPPING THE PROGRAM
To stop the batch trigger monitor you will have to send a ‘REPORT’
message with a feedback code of MQFB-QUIT to its initiation
queue. You could use the CKTIEND sample program (from the
MA12 SupportPac) or, alternatively, the MQSCPBTM program
that I provided for this purpose.

A FEW NOTES ABOUT MQSCBTMA
• The program makes heavy use of nested COBOL subprograms.

Without them I find it virtually impossible to keep some form of

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

structure in a COBOL program.
• As required as per our production standards the program will

call the MQSeries API dynamically, instead of statically (which
is how all IBM’s sample programs seem to link to the MQSeries
API).
To support dynamic linking to MQSeries we provided a
COBOL COPY member, MQIBATCH, which defines all dynamic
MQSeries API entry points. (See the MQSeries Application
Programming Guide, Document Number SC33-0807-12,
§3.7.2: Dynamically calling the MQSeries stub, for information
about this feature.)

• If you do not specify the queue manager on the PARM string
that you pass to the program it will query the queue manager
for its name (through an MQINQ API call).

A suggested feature that we did not implement
A suggestion was made that we implement an (optional) sequence
number for the new-format process definitions (similar to the
global sequence number that is used for the job names of old-
format process definitions). This feature would work as follows:
• If the jobname parameter of a process definition was specified

and if its seventh and eighth positions were numeric, the last
two positions would be used for a sequence number.

• Whenever a batch job was submitted from such a process
definition the sequence number would be incremented and the
process definition (or at least its Application-ID) would be
rewritten, with the new sequence number in the last two
positions of the job name.

Note that there is no MQSeries API call available to modify a
process definition. Instead, an ALTER PROCESS command must
be issued to the system command input queue, after which the
reply must be retrieved from a suitably defined reply queue.
Even though in the end we decided against implementing this
feature I did write the ‘CBLTMQAP’ program as a proof of concept;

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

furthermore, the ‘CBLTMQOQ’ program can be used to create a
suitable (dynamic) command reply queue based on the standard
command input model queue. You can consult the comment blocks
at the start of the program sources to find out how these programs
work.
The included files, which can all be found at www.xephon.com/
extras/batchtrigger.txt, are as follows:
• MQSCBTMA.COB – the main program source file.
• MQSCPBTM.COB – the source of a program to send the

QUIT message.
• MQIBATCH.CPY – the COBOL COPY member that defines

the dynamic batch MQSeries entry points.
• MQSXCKTI.PROC – a sample JCL procedure for the batch

trigger monitor-started task.
• MQSCBTMA.SKEL – a very simple ISPF skeleton for the

program to use.
• CBLTMQAP.COB – a sample program that will issue an

ALTER PROCESS command and retrieve the reply.
• CBLTMQOQ.COB – a sample program that will open a queue

and that can be used to create a queue based on a model. (I
used this program to create a command reply queue for the
CBLTMQAP program to use, based on the standard command
reply model queue.)

Luc Van Rompaey, System Engineer
Telepolis Antwerpen (Belgium) © Xephon 2003

Clearing temporary files in WMQ for AS/400 V5.x

This Qshell script program will allow you to clear out temporary
files that are created during the normal operation of WMQ for AS/
400 versions 5.1 and later.

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

When an MQSeries channel runs, it creates an empty temporary
file (actually a named pipe) in the /tmp IFS directory. The pipe is
used to allow MQ commands to interact with the channel job. The
format of the file name is MQSeries.nnnnnn, where nnnnnn is the
Process-ID of the channel job in question.

CLEARING THE FILES
In the normal course of events these files are only deleted when
you issue the command which ends all queue managers and all
jobs connected to those queue managers:
 ENDMQM MQMNAME(*ALL) ENDCCTJOB(*YES)

At many MQ installations this command is run infrequently (if at all),
which can lead to a build up of these temporary files. Because the
files are empty they do not use significant disk space but they do
waste inodes in the IFS and so should be deleted periodically as
part of good system management.
The problem with deleting these files is that they must not be
deleted if they are in use by MQSeries. To guard against this the
provided script checks whether MQSeries is using the file before
it is deleted. The script works by listing all of the MQSeries.nnnnnn
files in /tmp and then checking whether the associated channel job
is still active by calling the iSeries specific getjobid QShell
command. If the channel job is no longer in the system the file can
be safely deleted.
To set up and run the script:
• Copy it into a file called ‘clrmqtmp.sh’ on your PC and ftp it to

an IFS directory on the iSeries or create the file directly on
iSeries using EDTF.

• Start the Qshell with the QSH command.
• Make the shell script executable with the command:
 chmod 755 /yourpath/clrmqtmp.sh

• Run the shell script:
 /yourpath/clrmqtmp.sh

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You will see the following output:
 = Clearing out unused MQ files in /tmp/ =
 Deleting file /tmp/MQSeries.2132
 Deleting file /tmp/MQSeries.2138
 Deleting file /tmp/MQSeries.3114
 Deleting file /tmp/MQSeries.3321
 Process identifier 5418 is 614792/M8PHILLI/RUNMQCHI -job alive -
file
 /tmp/MQSeries.5418 not deleted
 Process identifier 5613 is 615987/MJCAMP/RUNMQCHI -job alive - file
/
 tmp/MQSeries.5613 not deleted
 = Unused files have been deleted =

For an overview of the QShell please refer to http://www.ibm.com/
servers/eserver/iseries/whpapr/qshell_overview.html.
The script follows. Depending on the CCSID of the job you are
using when you view this file, the ‘$’ character (as in $i) may be
shown as ‘£’. This is normal.

CLRMQTMP.SH
#* Program: clrmqtmp.sh *
#* Author : Mark Phillips *
#* Function: Qshell script to clear out temporary files in *
#* /tmp. The files are first checked to ensure that *
#* they are no longer needed by MQSeries *
#* Parameters: None *
echo "==="
echo "= Clearing out unused MQ files in /tmp/ ="
echo "==="
 find /tmp -name "MQSeries.*" -print > /tmp/clrmq1.tmp 2>/dev/null
 cat /tmp/clrmq1.tmp | while read FILE ; do
 if getjobid `echo $FILE |cut -d. -f 2` > /tmp/clrmq2.tmp 2>&1 ;
 then
 echo `cat /tmp/clrmq2.tmp` -job alive - file $FILE not deleted ;
 else
 echo Deleting file $FILE; rm $FILE;
 fi
 done
rm clrmq1.tmp > /dev/null 2>&1
rm clrmq2.tmp > /dev/null 2>&1
echo "==="
echo "= Unused files have been deleted ="
echo "==="
#* End Program *

Mark Phillips, MQSeries Development
IBM Hursley (UK) © IBM 2003

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Authentication and authorization for JMS

INTRODUCTION
JMS is a programming interface defined by Sun as a vendor-
neutral way for Java programs to access point-to-point and
publish-subscribe messaging functions. While Sun has specified
the API, the underlying implementation is left to a JMS provider and
there are no requirements for interoperability between different
providers. JMS in turn is part of the J2EE set of standards, the
most recent level of which requires an application server to include
a fully-functioning JMS component.
This article describes how some of the security aspects of the
JMS programming interface are mapped to the services and APIs
provided by WMQ. Many of the security-related functions of a
queue manager are not influenced by the application program and
I do not intend to repeat information available elsewhere on those.
Here I will be writing about identification, authentication, and
authorization, as these are areas which are not yet truly fixed in
a Java standard but for which implementation decisions have
been made, based on the use of WMQ facilities.
There are other JMS providers but I am going to be concerned
here only with the WMQ-based service included in SupportPac
MA88 (and shipped as part of WMQ V5.3), and with the J2EE
environment implemented by the WebSphere Application Server
(WAS).

BASIC STRUCTURE
WMQ’s implementation of JMS is a layered approach, which
builds upon other components: the Java classes (which are an OO
form of the MQI), which in turn will use either a JNI interface to the
C libraries, which connect applications to the queue manager, or
a Java-only path for client connections.
Figure 1 shows the common routes for JMS applications connecting

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

userid=w1

Application server

JMSFactory (u,pw)

Java classes

JNIC

Env.u=u
Env.pw=pw

QMGR

MCAUSER=u

Security exit Check
u,pw

SVRCONN

$$$$$$$$$$

MCAUSER=default
or MCAUSER=U

"""""
USERID=W1

Bi
nd

in
gs

$$$$$
connect()
or connect(u,pw)

TC
P/

IP

Figure 1: Common routes for JMS applications connecting to a
queue manager

to a queue manager.
As Figure 1 illustrates, the JMS functions here are running inside
a copy of the WebSphere Application Server program (or an
alternative view might be the JVM that executes the WAS classes).
As we need to look at identification I’m going to say that this copy
of WAS is being executed by someone who has logged into the
operating system with user-ID ‘w1’. A JMS application does not
have to be running within an application server, but many do.

THE CREATEQUEUECONNECTION METHOD
A JMS application must connect to the messaging service provider.
Because each JMS provider might have its own format for defining

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the route to the service an abstraction is used, where the
configuration parameters are actually stored in a directory. A
ConnectionFactory object is then populated with the provider-
specific information and the application code then calls a method
to drive the real connection.
There is one method for each of the point-to-point
(createQueueConnection) and the publish/subscribe
(createTopicConnection) subsets of JMS, with additional methods
for the XA (global transaction) variants of these. As far as this
article is concerned all four methods can be considered equivalent,
so I’ll abbreviate them to connect() for now.
JMS defines two forms of these connect() methods, one with no
additional parameters and one where a user-ID and password can
be passed. These variants will behave differently depending on
whether bindings or client mode is used for the real connection to
a queue manager.

CONNECTING IN BINDINGS MODE
An application can connect to WMQ in two different ways. The first
of these is called bindings mode and is only available when the
application and the queue manager are on the same machine. A
local platform-specific inter-process communications mechanism
is used for the application and queue manager to interact. C or C++
applications that are linked with libmqm or mqm.dll will be using
bindings mode; for JMS applications the choice is made by setting
the TransportType for the ConnectionFactory. This can be set
programmatically to the value MQJMS_TP_BINDINGS_MQ or as
the attribute TRANSPORT(BIND) in the JMSAdmin interface.
If the application issues the form of the connect() method with no
parameters, the queue manager will automatically discover the
application program’s user-ID and use that for all future authorization
checks.
If the application issues the form of the connect() method with
user-ID and password parameters, the behaviour of the queue
manager depends on the version of the Java classes being used.

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Versions of the MA88 SupportPac prior to V5.2.1 will always throw
an exception if the user-ID is specified in a bindings mode
connection. In MA88 V5.2.1 and also in the code shipped with
WMQ V5.3 this was relaxed so that it will reject the connection
request only if the user-ID value is not the same as that under
which the application program is running. The password parameter
is always ignored and not passed through any additional processing.
The WMQ development organization is considering ways to allow
the user-ID and password to be validated even in a bindings mode
connection, but this is not currently available. Today’s behaviour,
with no real checking of user-IDs in bindings mode, is exactly the
same as that available for C applications, where authentication of
local users is assumed to have been already performed by the
operating system. In a WAS environment such as that shown in
Figure 1, the user-ID for a bindings connection will always,
therefore, be w1.
If you have sufficient authority an application using the MQI or the
base Java classes can override the default user-ID used for
authorization and for insertion in the MQMD. However, the
alternative user-ID and context manipulation facilities are not part
of the JMS specification and, therefore, cannot be used; in other
words, the JMSXUser-ID property cannot be set by an application.
If you want a message from a JMS application to have a different
user-ID from the default (w1 in the example) when received on
another queue manager, you should consider either writing a
simple C ‘server’ application, which takes the inbound message,
transforms it, and puts it to the real destination queue, or,
alternatively, using a channel message exit, which can directly
modify the contents of the MQMD.

CONNECTING AS A WMQ CLIENT
To connect as an WMQ client set the TransportType of the
ConnectionFactory in your program to be MQJMS_TP_CLIENT_
MQ_TCPIP or set the TRANSPORT(CLIENT) value in the
JMSAdmin tool. This is equivalent to C or C++ applications linking
with libmqic or mqic32.dll. Note that JMS applications can connect

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

only using the TCP/IP network protocol; access to LU6.2 and
other protocols is available only to C or C++ client programs.
If the application uses the form of the connect() method with user-
ID and password parameters, these are passed to the SVRCONN
channel and can be tested in a security exit. The security exit can
also set the MCAUSER attribute for the channel, which will be used
for all future authorization operations made for that connection. If
there is no security exit configured on the SVRCONN channel and
the MCAUSER attribute is blank, the asserted user-ID will be used,
but there is no authentication using the password.
If the application uses the form of the connect() method with no
parameters then no identification information is passed to the
SVRCONN channel. This is similar to the behaviour of the original
(version 2.x) MQSeries C clients, which used environment
variables for identification purposes.
It is important to realize that, unlike the current C clients, the Java
client does not automatically pass the user-ID of the running
application. The WMQ behaviour when there is no MCAUSER
defined on the SVRCONN and when no user-ID is passed from a
client application says that the authority given to the connection
is that of the user-ID running the SVRCONN process itself – and
this will normally be the mqm user-ID. This means that applications
which do not specify user-IDs and queue managers without
security exits will probably result in JMS programs having full
WMQ authority.
Some people consider that the difference in behaviour between C
and JMS clients, with one passing a local user-ID and the other
requiring it to be configured or programmed, is a difference in the
available security; some even consider the JMS behaviour to be
a security loophole. However, my belief is that all of the mechanisms,
whether configuration, program, environment variables, or
automatic discovery of a local user-ID, have equivalent strength,
as there is typically very little control over client machines and it
is easy to create new users with whatever name is desired.
The only way to be certain of who is connecting to a queue
manager, no matter what the language of the client program, is to

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

install security exits (or use the SSL facilities in V5.3) on the
SVRCONN channel.
The security exit point is available to JMS client programs with an
interface similar to the C definition. If an authentication check
more complex than user-ID/password validation is required, you
might need to write a client-side security exit in Java that can
communicate with a C exit running in the SVRCONN channel. An
example Java security exit is now available as SupportPac IC72.
One difference between the z/OS and distributed queue managers
is that on z/OS there is very limited (coarse-grained) authorization
checking for MQCONN calls. While you can restrict adapters, you
cannot restrict individual users of an adapter – if one batch
application can connect, all can. In contrast, on the distributed
platforms every MQCONN goes through an authorization check
for the user-ID.
This also shows up in SVRCONN processing. On z/OS, once a
security exit has permitted the connection through to the queue
manager, no further authorization check is made until the first
MQOPEN. On the distributed platforms, the user-ID passed from
the SVRCONN is subject to the same authorization check as if it
were a bindings mode application. (The implementation of the
MCA causes this pseudo-MQCONN, even though the MCA itself
has already passed its own private MQCONN check.) If
authorization events have been enabled for the queue manager,
then from V5.3 onwards a failed connection from a client will
generate an event message in the same way as bindings mode
applications have always done.

SSL CLIENTS
With WMQ V5.3 we have added SSL capabilities to all channel
types, including JMS clients. There are several properties
associated with the ConnectionFactory that define how the SSL
processing is to be carried out and which certificates are to be
used. When the connection is made from the client to the queue
manager the application program has the same connect() method

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

as previously and can choose either to send a user-ID and
password or not. However, at a lower level, the SSL protocol also
carries the Distinguished Name (DN) as part of the certificate.
WMQ can make a simple authorization decision as to whether or
not to allow that DN to establish the channel, but once that check
has been passed all the same flows happen for security exits and
other processing within the queue manager.
The DN cannot be used directly inside WMQ for any further
authorization checks. But it might be appropriate to map the DN to
a local user-ID instead of relying on an asserted identify coming
from the connect() method. This mapping can be done automatically
by RACF but all other environments will require a security exit to
be written to override the MCAUSER.
It is important to realize that the use of SSL does not guarantee
the validity of the user-ID passed from the client program in the
connect() method; all the server can be sure of is that the client
program has access to a suitable certificate. Other controls may
need to be in place to ascertain who can use that certificate.

AUTHORIZATION FOR CONNECTED APPLICATIONS
Once an application has connected, whether through bindings or
client mode, whether from JMS, the base Java classes, or any
other language, whether from a hardcoded MCAUSER or set
dynamically, the authorization steps are the same. The user-ID
associated with the hConn or any construct built on top of it, such
as a JMS session, is used for all calls to the authorization
component, which might be the WMQ OAM or z/OS SAF. How
authorization works on each platform is documented in the WMQ
books.

INTEGRATION WITH WAS SECURITY
Normally the user-ID will have to be an entity known to the
operating system because that is how both SAF and the OAM
work. The user-ID must also match WMQ’s naming rules (ie no
more than 12 characters, except in certain circumstances on

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Windows). However, these rules may not be appropriate inside an
application server such as WAS. If you wish to have a more tightly-
integrated authorization mechanism you might like to look at the
version of WMQ that has been integrated with WAS V5.
For this combination, some additional cooperating exits have
been written. One is installed as a SVRCONN security exit; given
a user-ID and password from the JMS connect(), it calls a WAS
security module for authentication; this user-ID need not conform
to WMQ rules as the exit then sets a ‘dummy’ MCAUSER on the
channel, which does conform to the rules. A second module is
configured in place of the normal OAM to provide authorization
services. When given the dummy user-ID it knows the real user-
ID from its cooperation with the channel exit and can then pass the
appropriate authorization request to WAS security.
While any messages generated by JMS in this environment will
include the dummy user-ID in the MQMD, another channel exit
could have been written to map this to something acceptable on
other machines as the message is transferred.

SUMMARY
There are some important differences between C and Java
application environments for how authentication and authorization
are configured and administered. The actual capabilities are
identical, however, with the same strength of protection. If you are
going to have Java or JMS applications you need to understand
these differences to maintain control over who can connect to
your queue manager and to restrict what they can do once
connected.
Mark Taylor
IBM Hursley (UK) © IBM 2003

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Contributing to MQ Update

In addition to MQ Update, the Xephon family of Update
publications now includes CICS Update, MVS Update,
TCP/SNA Update, DB2 Update, AIX Update, and
RACF Update. Although the articles published are of a
very high standard, the vast majority are not written by
professional writers, and we rely heavily on our readers
themselves taking the time and trouble to share their
experiences with others. Many have discovered that
writing an article is not the daunting task that it might
appear to be at first glance.
They have found that the effort needed to pass on
valuable information to others is more than offset by
our generous terms and conditions and the recognition
they gain from their fellow professionals. Often, just a
few hundred words are sufficient to describe a problem
and the steps taken to solve it.
If you have ever experienced any difficulties with MQ,
or made an interesting discovery, you could receive a
cash payment, a free subscription to any of our Updates,
or a credit against any of Xephon’s wide range of
products and services, simply by telling us all about it.
For a copy of our Notes for Contributors, which explains
the terms and conditions under which we publish
articles, please point your browser at www.xephon.com/
nfc.

MQ news

Reconda has recently launched the latest
version of its WebSphere MQ systems
management support product QN-
AppWatch. The company claims it provides
controlled centralized access to application
data and communications layers with
industrial-strength security, configuration,
change, and audit management functionality.

QN-AppWatch apparently combines a
common architecture with flexible
customization capabilities, standard
browser, and single server installation to
provide recordkeeping and detailing of an
enterprise’s MQ environment, promoting the
creation and enforcement of enterprise-wide
standards from one central environment.

Reconda states that V2.5 incorporates
advanced online message editing capability
as well as the ability to manipulate and
convert message headers.

For more information contact:
Reconda, 15 East Putnam Avenue, Suite
306, Greenwich, CT 06830, USA.
Tel: (203) 299 4000.
Fax: (203) 299 4095.
Web: www.reconda.com

* * *

Nastel Technologies has unveiled a JMX
(Java Management Extensions) API for
WebSphere MQ Everyplace Mobile
Messaging software. The new API, which
Nastel created in conjunction with IBM, will
ship with WMQ Everyplace.

Nastel claims its solution gives users a single
point for controlling, monitoring, and
automating WMQ Everyplace functions
across platforms, in both connected and
wireless networks. The new API component
is being designed in Java and utilizes JMX to
optimize efficiency.

For more information contact:
Nastel Technologies, 48 South Service
Road, Melville, New York 11747, USA.
Tel: (631) 761 9100.
Fax: (631) 761 9101.
Web: www.nastel.com

Nastel Technologies (UK), 3 Tannery House
Tannery Lane, Send, Surrey, GU23 7EF
UK.
Tel: + 44 207 872 5412.
Fax: + 44 207 753 2848.

* * *

x xephon

	Creating self-executing, self-documenting scripts
	Writing WMQI plug-in nodes in Java
	Another better MQSeries batch trigger monitor
	Clearing temporary files in WMQ for AS/400 V5.x
	Authentication and authorization for JMS
	MQ news

