

© Xephon plc 2003

February 2003

44

In this issue

MQ
u

p
d

ate

3 WMQ for z/OS V5.3: message
expiry enhancement

10 JavaMQMail: MQSeries as an e-
mail infrastructure

19 Maximizing messaging availability:
an update

20 Using MQAI to list queues
31 Data grouping in WebSphere

MQIntegrator using dynamic field
resolution

37 Channel Event Queue Viewer for
MQ for OS/390

46 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

WMQ for z/OS V5.3: message expiry enhancement

INTRODUCTION
The announcement letter for WebSphere MQ (WMQ) for z/OS
V5.3 at http://www.ibmlink.ibm.com/usalets&parms=H_202-075
states under the heading Queue manager performance, availability,
and usability, “More timely and efficient message expiry – currently,
obsolete messages are only expired when they are encountered
by an MQGET or MQGET browse. Obsolete messages can
remain on a queue for a long time, especially if the queue is
accessed by Msg-ID or Correl-ID. This item runs a periodic
background task to scan all queues for expired messages”.
This article explains this new “more timely and efficient message
expiry support”.
Let’s look at the problem that required this solution and at some of
the previous methods of dealing with it.
Consider an application that uses MQPUT to put a message on a
remote queue and then uses MQGET with a wait interval for the
message to arrive back on the reply-to queue. If the message
does not arrive back within this interval the application may
perform some other work. The reply message was created with an
expiry interval on it and the application assumes the message will
eventually be deleted.
However, if the message is not the target of a MQGET browse
request (first introduced with MQSeries for OS/390 V5.2) or a
destructive MQGET, it will remain on the reply-to queue forever.
The new facility can be used to delete these expired messages.
This problem has existed for a long time and several methods have
previously been used to solve it. Let’s look at some of them.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

RIDDING QUEUES OF EXPIRED MESSAGES: PREVIOUS METHODS
I’m assuming you are familiar with this subject so I will not go into
the full details of these methods.

Perform a destructive MQGET and specify a non-existent combination of Msg-
ID and Correl-ID

Advantages
• There is only one call across the application/queue manager

boundary.

Disadvantages
• It trashes the buffer pool.
• It doesn’t work on indexed queues.
• The queue may not contain any expired messages.
• It has to be run on every applicable queue.
• Such a message might exist and hence be deleted!

Browse a queue using WMQ for OS/390 V5.2

Advantages
• This method would never remove any unexpired message

from the queue.

Disadvantages
• It trashes the buffer pool.
• The queue might not contain any expired messages.
• It has to be run on every applicable queue.
• It needs to pass across the application/queue manager

boundary for each message on the queue.
Both these schemes require workload applications to be written
and maintained, distracting you from your principal business

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

objectives. Now this work can be left to the queue manager itself
or you can replace your own workload with a new queue manager
command.

WHAT IS THE ‘NEW METHOD’?
This new expiry ‘scanning’ is an internal queue manager process,
which knows the queues that contain messages that will expire
and accesses the queues without the use of the MQGET API. It
will cause message expiry reports to be created if required.

Advantages
• It does not involve repeated calls across the application/

queue manager boundary and so has a much reduced path
length when compared to an MQGET request.

• It uses only one buffer for private queues and, therefore, does
not trash the buffer pool.

• It is only performed when it believes that there is a worthwhile
number of expired messages to be deleted.

• It will not prevent access to unexpired messages by your
applications when it is running.

• It is run on every applicable queue.
• It is significantly more efficient than all previous methods.

WHAT NEW TOOLS ARE PROVIDED?
A new attribute, EXPRYINT, has been added to the QMGR object
so that expiry scans can be performed automatically at your
preferred intervals.
A new REFRESH QMGR command has been added so that you
can perform an expiry scan when you choose.

Queue manager EXPRYINT keyword
The queue manager object has a new EXPRYINT attribute. The

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

value will initially be OFF, as can be seen with a DIS QMGR
EXPRYINT command after the first restart of your queue manager
once V5.3 is installed. This value can also be determined with the
MQINQ call, using a selector of MQIA_EXPIRY_INTERVAL and
the value will be returned in seconds or as the constant
MQEXPI_OFF.
You can change this attribute with an ALTER MGR
EXPRYINT(value) command, where the value can be OFF or a
number of seconds between one and 99,999,999.

How is this queue manager EXPRYINT keyword used?
When this value is not OFF all private queues (actually just their
in-storage control blocks – no messages are read at this stage)
are examined every time this interval ends. Those private queues
that contain expired messages are considered for an internal
scan. Private queues will be scanned when there is a reasonable
chance of deleting ‘many’ expired messages. It would just be a
waste of CPU time if there were only a chance of deleting one or
two expired messages.
An internal queue manager task will perform the scan of the queue
using a very efficient process. This does not interfere with the
responsiveness of your applications when they are concurrently
adding or removing messages to or from the queue being scanned,
regardless of the depth of the queue.
For shared queues only one queue manager in a queue-sharing
group will take control of the scanning work, and only that queue
manager will run the queue-scanning task to search for and delete
the expired messages. If this queue manager is stopped or its
EXPRYINT value is set to OFF another queue manager in the
queue-sharing group will take responsibility for running the expiry
scans on all the shared queues. It therefore makes sense that all
the queue managers in a queue-sharing group should have the
same value in the QMGR object’s EXPRYINT attribute, since you
don’t know which one will actually perform this work.
You can only observe that this new process is at work by seeing
that the CURDEPTH of a queue has decreased. For shared

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

queues you may see (unexpected) connections to structures in
the Coupling Facility, caused by an expiry scan.
Note that this interval, when used, applies to all queues in your
queue manager so you cannot use it to have some queues
scanned hourly and others scanned every six hours.
If you require this type of support you can instead use the new
Refresh QMGR command described below.
Naturally the pre-existing function is unchanged, so an expired
message will continue to be deleted when it is the target of a
destructive MQGET request or it is browsed using MQGET (first
introduced in MQSeries for OS/390 V5.2).

What happens when I change the EXPRYINT value?
Changes to the EXPRYINT value take effect when the current
interval expires unless the new interval is less than the unexpired
portion of the current interval, in which case a scan will be
scheduled immediately and the new interval value will take effect.
For example, assume the EXPRYINT value was 86400 (86,400
seconds = 24 hours) and that it is changed to 7200 (2 hours):
• If the last scan was three hours ago the unexpired portion is

21 hours. Since two hours is less than 21 hours a scan is run
now, and then every two hours.

• If the last scan was 23 hours ago the unexpired portion is one
hour. Since two hours is not less than one hour a scan will take
place in an hour, and future scans will then take place every
two hours thereafter.

The REFRESH QMGR command
You can use the new REFRESH QMGR command to perform
manually an expiry scan on a queue at a time that suits you.
This command can be used even if EXPRYINT is set to OFF.
You can use this command instead of or in addition to the QMGR
EXPRYINT attribute, or as a direct replacement for any workload
that you currently perform to achieve the same purpose.

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The format of the new command is:
 REFRESH QMGR TYPE(EXPIRY) NAME(q-names*) CMDSCOPE()

Standard queue name matching is used if you specify a trailing
asterisk (*) at the end of the NAME field.
It does not make sense to run the command concurrently in more
than one queue manager in a queue sharing group. This applies to
both private queues and shared queues, since the queue-scanning
work need only be done by one task, so do not specify CMDSCOPE
and the command will be run on the queue manager on which it was
entered.
I said earlier that when you use EXPRYINT only one queue
manager in a queue-sharing group takes control of the scanning
work that will delete the expired messages; this new command can
be run against shared queues from any queue manager in a queue
sharing group.

Examples of the new command
• Example one: issue the command against a single queue:
 cpf REFRESH QMGR TYPE(EXPIRY) NAME(GEOFF.APPL)

You will see on the console:
 CSQM173I cpf CSQMRMMS EXPIRED MESSAGE SCAN REQUESTED FOR 1 QUEUES
 CSQ9Ø22I cpf CSQMRMMS ‘ REFRESH QMGR’ NORMAL COMPLETION

The CSQ9022I message tells you the command has completed
and not that the expiry scan itself is complete. The scan of the
queue will then start and no further console messages are
issued. You may display the CURDEPTH of the queue before
and after the scan to see how many messages, if any, have
been deleted.

• Example two: issue the command against a set of queues:
 cpf REFRESH QMGR TYPE(EXPIRY) NAME(GEOFF.*)

You will see on the console:
 CSQM173I cpf CSQMRMMS EXPIRED MESSAGE SCAN REQUESTED FOR xx QUEUES
 CSQ9Ø22I cpf CSQMRMMS ‘ REFRESH QMGR’ NORMAL COMPLETION

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Note that, since the CMDSCOPE keyword was not used, the
command runs on the system where it was entered.

SCANNING QUEUES AT SPECIFIC TIMES OF THE DAY/WEEK
After the first restart of your queue manager running V5.3,
EXPRYINT will be set to OFF.
If you want an expiry scan to start daily at 8pm, say, wait until 8pm
and then issue the command ALTER QMGR EXPRYINT(86400)
on the relevant queue managers. Thereafter, expiry scans will
start at 8pm every day without any further intervention.
If you have to stop and restart your queue manager, which most
likely will not happen at 8pm:
• Ensure the command ALTER QMGR EXPRYINT(OFF) is in a

data set in the CSQINP2 concatenation to prevent any
queues being scanned before your 8pm target time.

• At 8pm issue the command ALTER QMGR EXPRYINT(86400).
This procedure could also be managed by a job automation
system. Your job automation system can also be used to submit
the new command to be run against the selected subsets of your
queues.

SUMMARY
Queue manager-initiated expiry processing solves a long-standing
problem. Try it.
Geoffrey Belding
Senior Software Engineer
WMQ for z/OS Development
IBM Hursley (UK) © IBM 2003

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

JavaMQMail: MQSeries as an e-mail infrastructure

We had a great application that used MQSeries as a key
infrastructure tool that collected messages from various platforms
and e-mailed them to the outside world. This application was
written as a Lotus Notes agent. Our company is de-emphasizing
Notes, so I converted the application to Java.
The old Notes agent, of course, ran on the Notes server. The new
JavaMQMail application happens to reside on our queue manager
server, but it could be on any LAN-connected server in your
environment.
JavaMQMail picks up messages sent to it via MQSeries and uses
the JavaMail classes to send out the resulting e-mails. The original
requirement was to enable e-mails for programs running in CICS
on our OS/390 mainframe, but JavaMQMail enables all platforms
in our company to participate in a common, stable e-mail utility.
JavaMQMail also uses Sun’s Java Network Directory Interface
(JNDI) to issue LDAP calls that look up e-mail addresses on our
Exchange server.
MQSeries, Java, and LDAP: quite a mix, but together they make
for a powerful tool. This article also demonstrates a debugging
technique that can be turned on and off. It also describes a queue
browser utility that improves on AMQSBCGC. All of the Java
programs are commented heavily so that you can customize them
to suit your own installation.

INSTALLATION
Download the JNDI classes from Sun at http://java.sun.com/jndi.
To use JavaMail you also need the JavaBeans Activation
Framework (JAF) classes. Download these from Sun at:
• http://java.sun.com/products/javamail/index.html for the

JavaMail API.

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• http://java.sun.com/products/javabeans/glasgow/jaf.html for
the JavaBeans Activation Framework.

Sun provides an excellent tutorial that shows you how to use
JavaMail and explains how to download and install the components.
I highly recommend you review this at http://
developer.java.sun.com/developer/onlineTraining/JavaMail.
In the process of installing the JavaMail, JAF, and JNDI classes,
you will need to add the following to your CLASSPATH:
• activation.jar.
• mail.jar.
• jndi.jar.
• ldap.jar.
• providerutil.jar.
• ldapbp.jar.
Then create an MQ queue to handle the messages themselves.
In this example I called it JAVA.MAIL.QUEUE.
Notes provided a useful logging function but Notes is going away,
so I replaced the Notes log with another MQ queue –
JAVA.MAIL.LOG.QUEUE.
Don’t forget to set up the processes on the test and production MQ
servers. In our environment we have queue managers running on
the mainframe and on one of the Windows NT servers. The
relevant code is listed below.

SETTING UP THE PROCESSES
* Java-to-Mail Queue
* This side is for the mainframe.
* This also needs to be defined as a REMOTE queue on NTServer.
DEFINE QLOCAL('JAVA.MAIL.QUEUE') +
REPLACE +
LIKE('SYSTEM.DEFAULT.LOCAL.QUEUE') +
DESCR('Java-to-Mail Queue') +
INITQ('SYSTEM.DEFAULT.INITIATION.QUEUE') +
PROCESS('JAVA.MAIL.PROCESS') +

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TRIGGER +
TRIGTYPE(FIRST)
DEFINE PROCESS('JAVA.MAIL.PROCESS') +
REPLACE +
DESCR('Process Definition for Java-to-Mail Queue')
+
* appltype 11 is WindowsNT
APPLTYPE(11) +
APPLICID('D:\MQM\JavaMQMail.CMD')
* Java-to-Mail Logging Queue
DEFINE QLOCAL('JAVA.MAIL.LOG.QUEUE') +
REPLACE +
* Common queue attributes
DESCR('Java-to-Mail Logging Queue') +
* Trigger attributes
NOTRIGGER
*

The D:\MQM\JavaMQMail.CMD is a local file on the NT server and
contains the following single line:
 start c:\jdk1.3.1\bin\java.exe JavaMQMail NTQueueManagerName

This points out that the JDK needs to be installed locally on the
Windows queue manager server. The target directory – where
you move the classes to be run – is also on the NT server in
D:\MQM. This location is not critical but you do need to know it.
To use the MQJava classes you will need the MA88 SupportPac
from IBM. This is obtained from http://www-3.ibm.com/software/ts/
mqseries/txppacs/ma88.html.
MA88 provides the MQ-to-Java classes and has its own quirks for
installation, classpath, etc. Information on the MQJava classes
has appeared previously in these pages. See Appendix A for a
short summary of this information.
AMQSBCGC is a fine utility program supplied with MQSeries,
which browses queues. However, it cannot handle the log messages
produced by JavaMQMail in the JAVA.MAIL.LOG.QUEUE. I
wrote a crude but effective replacement for AMQSBCGC and the
source code is included here as ReadJavaLog. You invoke this
class by hand by typing either:
 java ReadJavaLog QueueManagerName JAVA.MAIL.LOG.QUEUE

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

or:
 java ReadJavaLog QueueManagerName QueueName

ReadJavaLog would work very nicely with a front-end GUI.
However, the GUI has not yet been implemented.
Mail will travel to all valid Internet addresses through the SMTP
gateway server you specify. Failures (non-delivery reports) will go
back to the sender from the Postmaster. That means that all
sender and recipient addresses must be valid Internet-style
addresses. In the Notes version of the agent the ‘From’ field was
mostly decorative although the ‘To’ field had to match something
in the Notes Address Book. Without the Notes server we don’t
have the Notes address book so the e-mail addresses must stand
on their own.
A valid Internet-style address includes an ‘@’ and a period (.) but
no blanks. When the address provided is not a valid Internet-style
e-mail address JavaMQMail will take whatever was sent and
issue an LDAP lookup into a nearby Exchange directory. If
Exchange recognizes the name it will return the correct SMTP e-
mail address. JavaMQMail sends the address it does have to
Exchange as a ‘UID’. UID in Exchange is the Alias and the ‘mail’
attribute is returned if anything is found. If Exchange finds something,
great. Use the new address from there on. But if nothing is in
Exchange that matches, JavaMQMail will attempt to use whatever
the originally-supplied address was.
JavaMQMail contains lots of notifications back to the original
senders of the messages. If bad addresses are sent down, the
senders will soon find out about it.
Finally, I created JavaMQMail.INI and altered the program to read
this INI file to obtain some parameters at start-up time. These are
meant to temporarily override settings in the QueueManagerDEFS
or in the JavaMQMail.CMD file. Parameters included are:
• DEBUG=YES or NO. Gather and report additional debugging

trace information for each message. The default is to not
collect additional information.

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• DEBUGDEST=Some.E-mail@destination.com. Temporarily
override the destination for debugging information.
The default is MailAgentFailureNotification@companye-
mail.com.

• QMGR=QManagerName. The program requires that you
provide the queue manager name as the only parameter – see
the JavaMQMail.CMD command above. If you want to override
the setting in the QueueManagerDEFS.TXT, you can do it
with this INI parameter.

So, in a nutshell:
• Add JavaMail, JAF, and JNDI to the MQ queue manager

server.
• Add Process to SHOESS11, set JAVA.MAIL.QUEUE to trigger.
• Compile and move JavaMQMail.class to the queue manager

server in D:\MQM, or wherever you want to put it.
• Define a trigger monitor for SYSTEM.DEFAULT.

INITIATION.QUEUE on the queue manager server.
To get a better idea of the structure and operation of JavaMQMail
I will describe the various methods and what they do.

public static void main(String[] args)
Every Java application needs a main() method. Because of the
way I am sharing variables and values among the methods, I need
to in essence create a new instance of the application from within
itself. That’s all that this main() method does.

public void mqMain()
The mqMain() method is the real start of the process. It reads the
INI file and sets up the queue manager name and the debugging
options and debug destination. Once it knows the queue manager
it sets up the host name and channel name. It invokes other
methods to read messages from the JAVA.MAIL.QUEUE and
sends the messages to get processed in the processMessage()

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

method. At the end it writes a message to the Java console and
to the logging queue, stating how many messages were processed.

public void processMessage()
processMessage() does the heavy lifting here. Three different
kinds of message format are supported in this application. They all
start with a two-digit code indicating what is to be done – the
‘doWhat’ code.
If ‘doWhat’ is ‘02’ the application will find a file on the local PC and
attach it to an e-mail. After the two-digit ‘doWhat’ the next fields in
the message must be the Send-To address for 48 characters, the
From address for another 48 characters, the Subject field for 40
characters, then the FileName for 48 characters. It’s not important
where the file is stored but it must match the name in the program.
If ‘doWhat’ is ‘03’ the application will take whatever text is supplied
in the message and append it to the message. After the two-digit
‘doWhat’ the next fields must be the Send-To for 48, From for 48,
and Subject for 40. Up to that point in fact, all the message formats
are identical. But after the subject now comes a variable length
text field; whatever is there will be mailed out as the message text.
If ‘doWhat’ is ‘06’ it is handled in almost the same way as ‘02’,
where a file on the local PC is attached to an e-mail. But ‘06’
supports reporting back to the original sender via an error queue.
The format for ‘06’ is the same as the others up through the
subject; that is, it starts with the ‘doWhat’ code, the Send-To,
From, and Subject. But after that it differs. The next field is the 48-
character name of an error queue to which to report results. After
that is an additional 52 characters of ‘key data’ to be returned to
the original caller. After that is the 48-character file name to be
attached to the message.
The original intent of ‘doWhat=06’ was for the mainframe program
to send along a queue name and some identifying information. It
would then listen for a message to appear back in that queue: this
message could indicate either success or failure and would
include the ‘key data’ to identify exactly where the problem or
success occurred.

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Messages are built using the JavaMail classes in multipart MIME
format.

public void sendError(String errMsg)
sendError() formats any error messages and decides where and
how to deliver them – via e-mail and/or via the supplied error queue
back to the requestor.

public void sendGood()
sendGood() notifies the requestor that things worked okay by
sending a success message to the indicated queue.

public void gatherDebug(String info)
There are many places in the program that generate debugging
information. They all funnel through here. Most of the time we don’t
want all this information, we just want to know how many messages
were handled and to whom they were addressed. But sometimes
we really need as much additional information about the JavaMQMail
process as we can get. gatherDebug() checks the debug switch
and, if it’s on, will accumulate the provided information. The log will
get e-mailed or put onto a queue for later review and debugging.

public MQMessage getNextMessage(MQQueue localQueue)
This method simply grabs the next message from the indicated
queue and handles any errors if there is nothing available.

public void attachFile()
As the name says, attachFile() is where any files are attached to
the outgoing e-mail message.

public void sendMsgOut()
Here is where the e-mail message is actually mailed out.

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

public void logAction(String logMsg)
This method writes the supplied text into a message on the logging
queue.

public String validateAddress(String addr)
Here is where we check the supplied addresses and verify that
they are valid Internet-style addresses. If an address is not valid
validateAddress() will consult with a nearby Exchange server via
the lookupLDAP() method.

public String lookupLDAP(String addr)
Here is the LDAP code that first binds to LDAP then queries
Exchange to get an SMTP e-mail address for the name that was
sent to it. If nothing was found in Exchange it returns the original
address.

public void sendFail(String myErrMsg)
If the e-mail send fails, this method informs the world.

INTERESTING DEVELOPMENTS
I first tried using the JRE instead of the full JDK. This gave me
problems with ‘UnsupportedEncodingException: Cp437’ after the
MQReadString() call. The errors went away when I installed the full
JDK 1.3.1 instead.
Another problem: my agent would not trigger. After some basic
debugging and suggestions from the MQSeries mailing list I finally
realized that there was no trigger monitor running on the queue
manager server. Well, of course. We’d never needed one before.
To fix this, add the following line to the queue manager start-up
commands:
 runmqtrm -m QueueManagerName -q SYSTEM.DEFAULT.INITIATION.QUEUE

The program code for JavaMQMail.INI, READJAVALOG.JAVA,
and JAVAMQMAIL.JAVA can be found at www.xephon.com/
extras/JavaMQMail.txt.

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

APPENDIX A: INSTALLING THE MQ JAVA CLASSES FROM MA88
Obtain the MQ Java classes from SupportPac MA88. The Web
site address is: http://www-4.ibm.com/software/ts/mqseries/
txppacs/ma88.html.
• You must install Java – either the JDK or the JRE – on any

server that will use the MQ Java classes and on any
developer’s PC.

• Unzip MA88 into a temporary directory. Use WinZip or some
other utility with the ability to keep the names and directory
structure intact.

• Run setup.exe. The classes will be installed into c:\program
files\IBM\MQSeries\Java. I could not see a way to install them
into a different directory.

• Update the CLASSPATH on the target PC to add the following:
– installdir\lib\com.ibm.mq.jar
– installdir\lib\com.ibm.mqiiop.jar
– installdir\lib\
– installdir\samples\base\
Note that installdir is c:\program files\IBM\MQSeries\Java.

• Update the PATH to add the following:
– installdir\lib
– installdir\bin.

• Set the NT environment variable MQ_JAVA_INSTALL_PATH
to the directory where JMS is installed.

MQ Java classes require JDK 1.2.2 or 1.3.1.
Joe Larson (USA) © Xephon 2003

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Maximizing messaging availability: an update

In the article entitled Maximizing message availability, which was
published in the September 2002 issue of MQ Update, Table 1:
Deciding which channel topology to use (page 28), which
summarized the use of generic channels, states that for messages
greater than 63 kBytes the answer is ‘no’!
However, there are circumstances when shared inbound channels
can be used. The wording in the box should read ‘No for outbound
channels; maybe for inbound channels’, with the following additional
information.
• The size limitation stopping messages greater than 63KB

being put onto a shared transmission queue makes the
sending of outbound messages from shared channels an
unavailable option.
However, shared inbound channels can be used as long as no
messages >63KB are destined for shared queues. Thus, if all
messages are put to cloned private local queues, shared
channels can be used.

• This option can enable a higher availability to be offered to a
remote queue manager without any change to the remote
queue manager.
This could be of benefit if the remote queue manager belonged
to another organization or if there were significant costs
involved in making changes to the set-up on this.

• The corresponding increase in outbound availability would
probably be achieved by clustering the outbound queue
managers and using queue manager aliases to route the
outbound messages through an available destination.

John B Jones, BSc, MSc, MIEE, CEng
IBM Hursley (UK) © IBM 2003

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Using MQAI to list queues

The MQSeries Administration Interface (MQAI) is an API that
works in tandem with the standard MQSeries API to accomplish
administrative functions, such as listing, creating, or destroying
queues and other MQSeries objects. This article explores how to
use this interface to generate a list of all queues on a queue
manager. The programming language used in this article is Visual
Basic 6.0, but the focus will be on the API and not the language so
you should be able to generalize this technique to other platforms.

APPLICATIONS FOR MQAI
The standard MQSeries API is designed to let you send and
receive messages but not to access processes, clusters, or
channels. Neither does it support creating, deleting, or listing
these objects. You can use tools such as MQExplorer to accomplish
these tasks manually but you must use a special API such as MQAI
to do these things programmatically. This article will walk you
through the process of creating a list of queue names, which is a
simple yet useful technique.

HOW MQAI WORKS
In a nutshell, MQSeries queue managers use a system queue
named SYSTEM.ADMIN.COMMAND.QUEUE for administrative
command input. The queue manager ‘listens’ to this queue and
when it gets a message it will process the command and send a
response back via a specified response queue.
Command messages must use Programmable Command Format
(PCF) in order for the queue manager to understand and act upon
them. PCF messages are organized into structures known as
‘bags’. There may be several different types of bag within a
message; the most important are administrative, response, and
system bags. The administrative bag contains your command and
supporting parameters. When the queue manager processes the
command it returns a response bag containing a collection of

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

system bags. Each system bag contains information about one of
the MQ objects acted upon. For instance, if you request a list of
all queues on the queue manager there will be a system bag
returned for each queue and that bag will contain the queue’s
name.

SECURITY REQUIREMENTS
MQAI won’t bypass MQSeries security so you must have the
proper authorization for the objects you wish to access. You need:
• Queue manager (connect, inq, dsp).
• SYSTEM.ADMIN.COMMAND.QUEUE (put).
• SYSTEM.DEFAULT.MODEL.QUEUE (get, inq, dsp).
• Every object you want to list (inq, dsp).
• Every object you want to modify or delete (all).

STEPS TO USING MQAI AND PCF
MQAI works by sending request messages and receiving reply
messages, but the API hides the underlying messaging from you.
Use the steps detailed below to work with it.
• Connect to your queue manager.
• Create your bag objects by using the mqCreateBag command

for the administrative and response bags. The system bags
will be created for you by executing the query.

• Add your parameters and queries to the administrative bag by
using the mqAddString, mqAddInteger, and mqAddInquiry
commands. You can store multiple related queries in this bag.

• Execute the PCF command with mqExecute.
• Extract your data from the system bags embedded within the

response bag with the mqInquireBag, mqInquireString,
and mqInquireInteger commands.

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

HOW TO LIST QUEUE NAMES IN VB
Before adding the procedural code you should first declare the API
commands, constants, structures, and variables. IBM provides a
set of VB modules with the MQSeries client installation that
defines all of this for you. You will want to add modules CMQB.BAS,
CMQBB.BAS, CMQFB.BAS to your project. They were written in
VB4 format and require a little tweaking in order for VB6 to use
them. In the API declarations, change all parameters that look like
‘ByVal QMgrName As String * 48’ to ‘ByVal QMgrName As String’.
Finally, open your project properties, select the Make tab, and
enter MqType = 2 in the conditional compilation arguments field.
You are now ready to start coding.
The first thing to do is to connect to your queue manager. If you are
more comfortable with the ActiveX API you can use that instead.
 Dim intConnectionHandle As Long, intCC As Long, intRC As Long
 ' Connect to the queue manager.
 MQCONN vData, intConnectionHandle, intCC, intRC

(Good programming requires you to check your completion code
after each MQSeries call. However, I am omitting error logic from
this sample for the sake of brevity.)
Next create your data bags. This involves declaring the bag
variables, initializing them, and finally creating them with the
mqCreateBag command. This command returns the standard
MQSeries completion code and reason code variables.
 Dim adminBag As Long ' Admin bag handle.
 Dim systemBag As Long ' System bag handle.
 Dim responseBag As Long ' Response bag handle.
 ' Initialize the bags.
 adminBag = MQHB_UNUSABLE_HBAG
 systemBag = MQHB_UNUSABLE_HBAG
 responseBag = MQHB_UNUSABLE_HBAG
 ' Create an admin bag.
 mqCreateBag MQCBO_ADMIN_BAG, adminBag, intCC, intRC
 ' Create a response bag.
 mqCreateBag MQCBO_ADMIN_BAG, responseBag, intCC, intRC

Set up your query in the administrative bag. This involves specifying
what type of object you want information on and what information
you want about it. You can get several pieces of information at

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

once but in this example we will start simply with just the queue
name. If the data you want is in string format use the mqAddString
command to request it. Otherwise, use mqAddInteger for numeric
data. Some pieces of data require the mqAddInquiry command
but we’ll get to that one later.
 ' Put generic local queue name into admin bag.
 mqAddString adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, "*", _
 intCC, intRC

Use mqExecute to execute the query. Notice that mqExecute
uses the connection handle that you obtained from connecting to
the queue manager. This example uses a default dynamic queue
for the response messages upon which the response bag is built.
To specify a static queue change the last MQHO_NONE parameter
to a string containing the name of the response queue you wish to
use.
 ' Send command to the queue manager.
 mqExecute intConnectionHandle, MQCMD_INQUIRE_Q, MQHB_NONE, adminBag,
_
 responseBag, MQHO_NONE, MQHO_NONE, intCC, intRC

Once you have executed the query you must access the data that
has been returned to you in the response bag. First, find out how
many system bags are in the response bag with the mqCountItems
command. Next, you access each system bag with the
mqInquireBag command. Finally, extract your information with
the mqInquireString or mqInquireInteger commands.
 ' Count how many system bags are embedded in the response bag.
 mqCountItems responseBag, MQHA_BAG_HANDLE, intQueueCount, _
 intCC, intRC
 For i = Ø To intQueueCount - 1
 ' Get the system bag handle.
 mqInquireBag responseBag, MQHA_BAG_HANDLE, i, systemBag, _
 intCC, intRC
 ' Get the queue name from the system bag.
 mqInquireString systemBag, MQCA_Q_NAME, Ø, MQ_Q_NAME_LENGTH,
 strQName, _
 intQNameLength, Ø, intCC, intRC
 ' Do something with the queue name.
 MsgBox "Queue Name: " & strQName
 Next

Once you have finished working with MQAI delete your data bags
with the mqDeleteBag command.

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ' Clean up
 If adminBag > Ø Then _
 mqDeleteBag adminBag, intCC, intRC
 If systemBag > Ø Then _
 mqDeleteBag systemBag, intCC, intRC
 If responseBag > Ø Then _
 mqDeleteBag responseBag, intCC, intRC
 ' Disconnect the queue manager.
 MQDISC intConnectionHandle, intCC, intRC

EMBELLISHING A THEME
While you are listing your queue names you may also want other
pieces of data, for example queue type or queue depth, or you may
wish to get only queue names of a certain type.
To add a filter for a specific queue type add this code, where
variable intTypeFilter is a number representing the type of queue
you want (see Table 1). This will limit the list to queues of the type
you specify.
 ' Put local queue type into admin bag.
 mqAddInteger adminBag, MQIA_Q_TYPE, intTypeFilter, _
 mvarCompletionCode, mvarReasonCode

If you want to get the queue depth along with each queue name add
this code when building the administrative bag:
 ' Add inquiry for current queue depths.
 mqAddInquiry adminBag, MQIA_CURRENT_Q_DEPTH, mvarCompletionCode,
 mvarReasonCode

Add this code to get the queue depth from the system bag. Note
that the command will fail if you try to get the queue depth from an
inappropriate queue type (ie remote).
 ' Get the queue depth from the system bag.

1 – Local 6 – Remote

2 – Model 7 – Cluster

3 – Alias

Table 1: Number codes for queue type

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 mqInquireInteger systemBag, MQIA_CURRENT_Q_DEPTH, MQIND_NONE,
 arDepth(i), _
 mvarCompletionCode, mvarReasonCode

You can get the queue type along with your other data by adding
this inquiry to the administrative bag.
 ' Add inquiry for queue types.
 mqAddInquiry adminBag, MQIA_Q_TYPE, mvarCompletionCode,
mvarReasonCode

To get it from the system bag, use the following command. It will
give you a numeric code corresponding to the queue type (see
Table 1).
 ' Get the queue type from the system bag.
 mqInquireInteger systemBag, MQIA_Q_TYPE, MQIND_NONE, QType, _
 mvarCompletionCode, mvarReasonCode

ADDITIONAL RESOURCES
The following MQSeries manuals can provide additional help with
the MQAI.
• MQSeries Administration Interface Programming Guide and

Reference: see Chapter 6 for more samples.
• MQSeries Programmable System Management: this manual

documents each PCF command.

CLSMQQUEUELIST.CLS
VERSION 1.Ø CLASS
BEGIN
 MultiUse = -1 'True
 Persistable = Ø 'NotPersistable
 DataBindingBehavior = Ø 'vbNone
 DataSourceBehavior = Ø 'vbNone
 MTSTransactionMode = Ø 'NotAnMTSObject
END
Attribute VB_Name = "clsMQQueueList"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False
Attribute VB_Description = "This class provides access to the list of
queue names for a specified queue manager."

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Attribute VB_Ext_KEY = "SavedWithClassBuilder6" ,"Yes"
Attribute VB_Ext_KEY = "Top_Level" ,"Yes"
Option Explicit
'local variable(s) to hold property value(s)
Private mvarConnectionHandle As Long
Private mvarCompletionCode As Long
Private mvarReasonCode As Long
Private mvarErrorMessage As String
Private mvarQueueCount As Long
Private mvarTypeFilter As enmQueueType
Private mvarQMgrName As String * 48
Public Enum enmQueueType
 qtAll = Ø
 qtLocal = 1
 qtModel = 2
 qtAlias = 3
 qtRemote = 6
 qtCluster = 7
End Enum
' Private variables.
Private arQueue() As String
Private arType() As String
Private arDepth() As Long
Private gbolDisconnect As Boolean
' MQSeries constants.
Const MQ_Q_MGR_NAME_LENGTH = 48
Const MQ_Q_NAME_LENGTH = 48
Const MQBL_NULL_TERMINATED = -1
Const MQCA_Q_NAME = 2Ø16
Const MQCA_REMOTE_Q_NAME = 2Ø18
Const MQCMD_INQUIRE_Q = 13
Const MQCBO_ADMIN_BAG = 1
Const MQCC_OK = Ø
Const MQCC_WARNING = 1
Const MQCC_FAILED = 2
Const MQHA_BAG_HANDLE = 4ØØ1
Const MQHB_NONE = -2
Const MQHB_UNUSABLE_HBAG = -1
Const MQHO_NONE = Ø
Const MQIA_Q_TYPE = 2Ø
Const MQIA_CURRENT_Q_DEPTH = 3
Const MQIND_NONE = -1
Const MQQT_LOCAL = 1
Const MQQT_REMOTE = 6
' API Declarations.
Private Declare Sub mqCountItems Lib "MQIC32.DLL" Alias
"mqCountItemsstd@2Ø" (ByVal Bag As Long, ByVal Selector As Long,
ItemCount As Long, CompCode As Long, Reason As Long)
Private Declare Sub mqCreateBag Lib "MQIC32.DLL" Alias
"mqCreateBagstd@16" (ByVal Options As Long, Bag As Long, CompCode As

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Long, Reason As Long)
Private Declare Sub mqDeleteBag Lib "MQIC32.DLL" Alias
"mqDeleteBagstd@12" (Bag As Long, CompCode As Long, Reason As Long)
Private Declare Sub mqAddInquiry Lib "MQIC32.DLL" Alias
"mqAddInquirystd@16" (ByVal Bag As Long, ByVal Selector As Long,
CompCode As Long, Reason As Long)
Private Declare Sub mqAddInteger Lib "MQIC32.DLL" Alias
"mqAddIntegerstd@2Ø" (ByVal Bag As Long, ByVal Selector As Long, ByVal
ItemValue As Long, CompCode As Long, Reason As Long)
Private Declare Sub mqAddString Lib "MQIC32.DLL" Alias
"mqAddStringstd@24" (ByVal Bag As Long, ByVal Selector As Long, ByVal
BufferLength As Long, ByVal Buffer As String, CompCode As Long, Reason
As Long)
Private Declare Sub mqExecute Lib "MQIC32.DLL" Alias "mqExecutestd@36"
(ByVal Hconn As Long, ByVal Command As Long, ByVal OptionsBag As Long,
ByVal CommandBag As Long, ByVal responseBag As Long, ByVal CommandQ As
Long, ByVal ResponseQ As Long, CompCode As Long, Reason As Long)
Private Declare Sub mqInquireBag Lib "MQIC32.DLL" Alias
"mqInquireBagstd@24" (ByVal Bag As Long, ByVal Selector As Long, ByVal
ItemIndex As Long, ItemValue As Long, CompCode As Long, Reason As Long)
Private Declare Sub mqInquireInteger Lib "MQIC32.DLL" Alias
"mqInquireIntegerstd@24" (ByVal Bag As Long, ByVal Selector As Long,
ByVal ItemIndex As Long, ItemValue As Long, CompCode As Long, Reason As
Long)
Private Declare Sub mqInquireString Lib "MQIC32.DLL" Alias
"mqInquireStringstd@36" (ByVal Bag As Long, ByVal Selector As Long,
ByVal ItemIndex As Long, ByVal BufferLength As Long, ByVal Buffer As
String, StringLength As Long, CodedCharSetId As Long, CompCode As Long,
Reason As Long)
Private Declare Sub MQCONN Lib "MQIC32.DLL" Alias "MQCONNstd@16" (ByVal
QMgrName As String, Hconn As Long, CompCode As Long, Reason As Long)
Private Declare Sub MQDISC Lib "MQIC32.DLL" Alias "MQDISCstd@12" (Hconn
As Long, CompCode As Long, Reason As Long)
Public Sub LoadListControl(ByRef ListControl As Control)
 Dim i As Long
 If TypeOf ListControl Is ListBox _
 Or TypeOf ListControl Is ComboBox Then
 ListControl.Clear
 For i = Ø To QueueCount - 1
 ListControl.AddItem Queue(i)
 Next i
 End If
End Sub
Public Property Get QueueType(ByVal intIndex As Long) As String
 QueueType = arType(intIndex)
End Property
Public Property Let TypeFilter(ByVal vData As enmQueueType)
 mvarTypeFilter = vData
End Property

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Public Property Get TypeFilter() As enmQueueType
 TypeFilter = mvarTypeFilter
End Property
Public Property Let QMgrName(ByVal vData As String)
 Dim intHandle As Long, intCC As Long, intRC As Long
 ' Connect to the queue manager.
 MQCONN vData, intHandle, intCC, intRC
 If intCC = MQCC_FAILED Then
 Err.Raise 1ØØØØ, "clsMQQueueList", "Error " & intRC & "
connecting to queue manager " & vData
 End If
 gbolDisconnect = True
 mvarQMgrName = vData
 ConnectionHandle = intHandle
End Property
Public Property Get QMgrName() As String
 QMgrName = mvarQMgrName
End Property
Public Property Get Depth(ByVal intIndex As Long) As Long
 Depth = arDepth(intIndex)
End Property
Public Property Let ConnectionHandle(ByVal vData As Long)
 Dim adminBag As Long ' Admin bag handle.
 Dim systemBag As Long ' System bag handle.
 Dim responseBag As Long ' Response bag handle.
 Dim intCompCode As Long, intReason As Long
 Dim i As Long, QType As enmQueueType
 Dim strQName As String * MQ_Q_NAME_LENGTH, intQNameLength As Long
 ' Update the property value.
 mvarConnectionHandle = vData
 ' Get the queue name list.
 adminBag = MQHB_UNUSABLE_HBAG
 systemBag = MQHB_UNUSABLE_HBAG
 responseBag = MQHB_UNUSABLE_HBAG
 ' Create an admin bag.
 mqCreateBag MQCBO_ADMIN_BAG, adminBag, mvarCompletionCode,
mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqCreateBag failure on admin bag."
 Exit Property
 End If
 ' Create a response bag.
 mqCreateBag MQCBO_ADMIN_BAG, responseBag, mvarCompletionCode,
mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqCreateBag failure on response bag."
 Exit Property
 End If
 ' Put generic local queue name into admin bag.
 mqAddString adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, "*",

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqAddString failure."
 Exit Property
 End If
 If mvarTypeFilter <> qtAll Then
 ' Put local queue type into admin bag.
 mqAddInteger adminBag, MQIA_Q_TYPE, mvarTypeFilter,
mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqAddInteger failure."
 Exit Property
 End If
 End If
 ' Add inquiry for current queue depths.
 mqAddInquiry adminBag, MQIA_CURRENT_Q_DEPTH, mvarCompletionCode,
mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqAddInquiry failure for queue depth."
 Exit Property
 End If
 ' Add inquiry for queue types.
 mqAddInquiry adminBag, MQIA_Q_TYPE, mvarCompletionCode,
mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 MsgBox "mqAddInquiry failure for queue type. RC=" &
mvarReasonCode
 End
 End If
 ' Send command to the queue manager.
 mqExecute mvarConnectionHandle, MQCMD_INQUIRE_Q, MQHB_NONE,
adminBag, responseBag, MQHO_NONE, MQHO_NONE, _
 mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqExecute failure."
 Exit Property
 End If
 ' Count number of system bags are embedded in the response bag.
 mqCountItems responseBag, MQHA_BAG_HANDLE, mvarQueueCount,
mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqCountItems failure."
 Exit Property
 End If
 ReDim arQueue(mvarQueueCount)
 ReDim arType(mvarQueueCount)
 ReDim arDepth(mvarQueueCount)
 For i = Ø To mvarQueueCount - 1
 ' Get the system bag handle.
 mqInquireBag responseBag, MQHA_BAG_HANDLE, i, systemBag,

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqInquireBag failure."
 Exit Property
 End If
 ' Get the queue name from the system bag.
 mqInquireString systemBag, MQCA_Q_NAME, Ø, MQ_Q_NAME_LENGTH,
strQName, _
 intQNameLength, Ø, mvarCompletionCode,
mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqInquireString failure."
 Exit Property
 End If
 ' Get the queue type from the system bag.
 mqInquireInteger systemBag, MQIA_Q_TYPE, MQIND_NONE, QType, _
 mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 MsgBox "mqInquireInteger failure on queue type. RC=" &
mvarReasonCode
 End
 End If
 Select Case QType
 Case qtLocal: arType(i) = "Local"
 Case qtModel: arType(i) = "Model"
 Case qtAlias: arType(i) = "Alias"
 Case qtRemote: arType(i) = "Remote"
 Case qtCluster: arType(i) = "Cluster"
 End Select
 If QType = qtLocal Then
 ' Get the queue depth from the system bag.
 mqInquireInteger systemBag, MQIA_CURRENT_Q_DEPTH,
MQIND_NONE, arDepth(i), _
 mvarCompletionCode, mvarReasonCode
 If mvarCompletionCode = MQCC_FAILED Then
 mvarErrorMessage = "mqInquireInteger failure."
 Exit Property
 End If
 Else
 arDepth(i) = Ø
 End If
 arQueue(i) = Trim(strQName)
 Next i
 ' Clean up
 If adminBag > Ø Then _
 mqDeleteBag adminBag, mvarCompletionCode, mvarReasonCode '
Delete the admin bag.
 If systemBag > Ø Then _
 mqDeleteBag systemBag, mvarCompletionCode, mvarReasonCode '
Delete the system bag.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 If responseBag > Ø Then _
 mqDeleteBag responseBag, mvarCompletionCode, mvarReasonCode '
Delete the response bag.
End Property
Public Property Get ConnectionHandle() As Long
 ConnectionHandle = mvarConnectionHandle
End Property
Public Property Get Queue(ByVal intIndex As Long) As String
 Queue = arQueue(intIndex)
End Property
Public Property Get QueueCount() As Long
 QueueCount = mvarQueueCount
End Property
Public Property Get ErrorMessage() As String
 ErrorMessage = mvarErrorMessage
End Property
Public Property Get ReasonCode() As Long
 ReasonCode = mvarReasonCode
End Property
Public Property Get CompletionCode() As Long
 CompletionCode = mvarCompletionCode
End Property
Private Sub Class_Initialize()
End Sub
Private Sub Class_Terminate()
 Dim intCC As Long, intRC As Long
 If gbolDisconnect Then MQDISC ConnectionHandle, intCC, intRC
End Sub

Mills Perry
IT Consultant/Instructor
ZyQuest (USA) © Xephon 2003

Data grouping in WebSphere MQIntegrator using
dynamic field resolution

INTRODUCTION
When manipulating data in WebSphere MQIntegrator (WMQI),
simple transformation and augmentation of a message is not
always sufficient.

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A single message may contain multiple records and it may be
necessary to reorder this data, summarize it, or perform grouping
operations on it.
WMQI presents a powerful model of a message to a user via the
SELECT statement: an incoming message can be treated as if it
were a relational database and the message can be transformed
arbitrarily by judicious use of SELECTs.
However, the WMQI implementation of SELECT does not include
the GROUP BY clause or allow the order of the resulting rows to
be controlled.
In this article we describe a typical scenario where this behaviour
may be required and show how the dynamic field resolution syntax
introduced in WMQI V2.1 can be used to solve the problem.

SAMPLE SCENARIO
Consider the common scenario outlined below.
An incoming message consists of several line items. Each line
item could represent a bank transfer, for example. Each bank
transfer item includes bank account number, branch-ID (sort
code), and payment amount.
The requirement is that multiple messages should be produced –
one for each sort code (ie there would be n output messages if
there were n unique sort codes in the input message).

Record structure
A sample input message would be:
 2Ø-ØØ-ØØ 12345678 ØØ1ØØ.ØØ
 15-13-11 11112222 ØØ543.23
 12-34-56 87654321 ØØØ11.ØØ
 15-13-11 44445555 ØØØØØ.99
 2Ø-ØØ-ØØ 33334444 1ØØØØ.ØØ

The three output messages would be:
 2Ø-ØØ-ØØ 12345678 ØØ1ØØ.ØØ

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 2Ø-ØØ-ØØ 33334444 1ØØØØ.ØØ

 15-13-11 11112222 ØØ543.23
 15-13-11 44445555 ØØØØØ.99

 12-34-56 87654321 ØØØ11.ØØ

Variations on this requirement would include ‘summary’ operations
(perhaps the total or average value for each group must be
calculated). It may also be necessary to place some order on the
output data (perhaps only one message should be produced but
the line items should be grouped by sort code and ordered within
these groups by account number).

DYNAMIC FIELD ADDRESSING
The solution outlined in this article relies on the dynamic field
addressing feature in WMQI V2.1. The feature is described briefly
in the ESQL Reference Manual.
Consider the sample tree illustrated in Figure 1. One could
reference the current IBM stock price through:

Change

Figure 1: Dynamic field addressing – example tree

Current CurrentChange

Change Current

IBM MSFT HPQ

Stocks

LocalEnvironment

!!!!!

!!!!!

!!!!!

!!!!!

!!!!! !!!!!

!!!!!

!!!!!

!!!!! !!!!!

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 LocalEnvironment.Stocks.IBM.Current

However, if one wants to choose the ticker symbol at runtime the
dynamic field addressing syntax is very useful.
Consider the following:
 DECLARE symbol CHAR;
 SET symbol='MSFT';

We can now use a reference of the form:
 LocalEnvironment.Stocks.{symbol}.Current

This portion of the path will be resolved at runtime. (Note that there
is no ‘$’ symbol – don’t confuse this syntax with Perl! The key point
here is that the value of the ‘symbol’ field could be obtained from
an incoming message or a database table, or computed in some
other way.
Furthermore, we can use this syntax to create tree elements. A
statement of the following form will cause the relevant tree
segments to be created.
 DECLARE symbol CHAR;
 SET symbol = 'FON';
 SET LocalEnvironment.Stocks.{ symbol }.Current=
 InputRoot.XML.Stocks.FON.Current;

Aside on Field Reference Variables
The Field Reference Variable feature in WMQI allows syntax of
the following form to be written.
 DECLARE treewalker REFERENCE TO LocalEnvironment.Stocks;
 MOVE treewalker FIRSTCHILD NAME 'IBM';

Combined with the CREATE FIELD syntax we can also use this
technique to create and navigate trees dynamically. However, this
syntax is not ideal for dynamic generation of new trees since it is
a little cumbersome.

SAMPLE SOLUTION
Presented here is a partial solution to the problem of producing
multiple output messages (one per sort code) based on one

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

incoming message. It is not intended to be an optimal solution. In
particular, the repeated use of the CARDINALITY function is not
recommended. A better solution would keep track of the size of the
arrays to avoid the repeated recalculations.
-- We assume the line items are in the Environment.Data.Body[] array
-- Obtain reference to the first line item
-- Note that we perform the operation in two stages:
-- we declare the reference to an element which may have no
-- children and then attempt to move to the first child.
-- Had we declared the reference to the child directly,
-- then failure would have been harder to detect.
DECLARE treewalker REFERENCE TO Environment.Data;
MOVE treewalker FIRSTCHILD NAME 'Body';
DECLARE sortcode CHAR;
-- This variable will be used to track how many
-- instances of this sort code we have already
-- seen
DECLARE card INTEGER;
-- The indexcount field is used to track how many
-- unique sort codes we have seen
DECLARE indexcount INTEGER;
SET indexcount=1;
WHILE(LASTMOVE(treewalker)) DO
 SET sortcode=treewalker.SortCode;
 -- How many instances of this sort
 -- sort code have we already seen?
 SET card = CARDINALITY(Environment.Group.{sortcode}[]);
 IF(card=Ø) THEN
 -- If this is the first instance, store the
 -- sort code in a separate array
 -- This allows us to sort on this field more easily
 -- should we choose to, for example
 SET Environment.Index[indexcount]=sortcode;
 SET indexcount=indexcount+1;
 END IF;
 -- Copy this line item into the next position in
 -- this sort-code's portion of the tree
 SET Environment.Group.{sortcode}[card+1] = treewalker;
 MOVE treewalker NEXTSIBLING;
END WHILE;
-- We have now grouped all the line items by sort code
-- We now generate a new output message for each sort
-- code
DECLARE I INTEGER;
-- This is redundant I guess :-)
SET indexcount = CARDINALITY(Environment.YKB.Index[]);
-- record count will store how many line items
-- there are for the current sort code

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

DECLARE recordcount INTEGER;
-- recorditeration tracks which item we are currently
-- working on
DECLARE recorditeration INTEGER;
-- Now create output messages
-- indexiter tracks which sort code (the first, second
-- or third, etc) we are dealing with
DECLARE indexiter INTEGER;
SET indexiter = 1;
WHILE(indexiter <= indexcount) DO
 -- Create output messages
 -- copy message header
 SET I = 1;
 WHILE I < CARDINALITY(InputRoot.*[]) DO
 SET OutputRoot.*[I] = InputRoot.*[I];
 SET I=I+1;
 END WHILE;
 -- we would specify the message set, etc., here
 SET sortcode=Environment.Index[indexiter];
 DECLARE bodywalker REFERENCE To Environment. Group.{sortcode}[1];
 -- We have now navigated to the portion
 -- of the tree which stores the records for
 -- this sort code
 SET recordcount = CARDINALITY(Environment.YKB.Group.{sortcode}[]);
 SET recorditeration=1;
 -- We now iterate over each line item for this branch id

 WHILE(recorditeration<=recordcount) DO
 SET "OutputRoot"."MRM"."DETAILS_ELEMENT"[recorditeration].SortCode
= bodywalker.SortCode;
 -- set the other fields here
 -- move to the next line item
 MOVE bodywalker NEXTSIBLING;
 SET recorditeration=recorditeration+1;
 END WHILE;
 SET indexiter=indexiter+1;
 PROPAGATE;
END WHILE;
-- PROPAGATE has been used to propagate each message
-- The default behaviour of the compute node is to
-- propagate the current tree in the OutputRoot
-- tree. Returning FALSE inhibits this behaviour
RETURN FALSE;

Richard G Brown
Technical Sales
IBM Hursley (UK) ©IBM 2003

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Channel Event Queue Viewer for MQ for OS/390

INSTALLATION
To install the Channel Event Queue Viewer follow the steps given
below:
• Send the REXX code to your mainframe (ASCII mode in FTP

or ASCII and CR/LF in Personal Communications file transfer).
• Store it as a library member (RECFM=FB, LRECL=80) with

the name MQEVNCHL.
Now you are ready to use it! To do so:
• Read this article.
• Use the supplied code (after tailoring to your site’s

requirements) to run the Channel Event Queue Viewer against
your SYSTEM.ADMIN.CHANNEL.EVENT queue.

USE

General information – MQSeries channel events
MQSeries has the facility to gather events that relate to its work.
There are three types of event (called ‘instrumentation events’)
and each category has its own event queue:
• Queue manager events (SYSTEM.ADMIN.QMGR.EVENT).
• Channel events (SYSTEM.ADMIN.CHANNEL.EVENT).
• Performance events (SYSTEM.ADMIN.PERFM.EVENT).
If a relevant queue is not available events are ignored.
I will describe channel events only briefly – I suggest you consult
the MQSeries manuals if you require more detailed information.
Channel events are basically notifications about the condition of

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

a channel during its operation, eg ‘channel stopped’, ‘conversion
error’, etc.
Channel events are generated:
• When a channel instance starts or stops.
• When a channel receives a conversion error warning when

getting a message.
• When an attempt is made to create a channel automatically;

the event is generated whether the attempt succeeds or fails.
Remember that client connections to MQSeries for OS/390 5.2 do
not cause ‘Channel Started’ or ‘Channel Stopped’ events.
There are several channel events (event descriptions are taken
from the manual on event monitoring):
• Channel activated – this condition is detected when a channel

that has been waiting to become active and for which a
‘Channel Not Activated’ event has been generated is now able
to become active because an active slot has been released
by another channel. This event is not generated for a channel
that is able to become active without waiting for an active slot
to be released.

• Channel auto-definition error – this condition is detected when
the automatic definition of a channel fails. Additional information
indicating the reason for the failure is returned in the event
message.
This does not apply to MQSeries for OS/390 V2.1 and earlier.
Channel Event Viewer does not support this event.

• Channel auto-definition OK – this condition is detected when
the automatic definition of a channel is successful.
This does not apply to MQSeries for OS/390 V2.1 and earlier.
Channel Event Viewer does not support this event.

• Channel conversion error – this condition is detected when a
channel is unable to carry out data conversion and the

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQGET call to get a message from the transmission queue
has resulted in a data conversion terror. Additional information
indicating the reason for the failure is returned in the event
message.

• Channel not activated – this condition is detected when a
channel is required to become active either because it is
starting or because it is about to make another attempt to
establish connection with its partner. However, it is unable to
do so because the limit on the number of active channels has
been reached.

• Channel started – this condition is detected when initial data
negotiation is complete and resynchronization has been
performed where necessary, such that message transfer can
proceed.

• Channel stopped – this condition is detected when a channel
has been stopped. Additional information indicating the reason
for the failure is returned in the event message.

Most channel events are enabled by default and there is no
command to disable them. The exceptions are the two automatic
channel definition events.
All messages that are put to event queues have a special format,
namely an additional header that is appended in the front of the
application data. The format of a message sent to an event queue
is set to MQFMT_EVENT.

RUNNING THE CHANNEL EVENT QUEUE VIEWER
The Channel Event Queue Viewer can be invoked either from the
supplied job or run from a TSO or ISPF line command. The last two
options are not recommended, since, depending on the number of
messages on the channel event queue, the Channel Event Queue
Viewer can produce a significant output.
The job to run the Channel Event Queue Viewer is shown and
explained below with line numbers in brackets for reference.

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//MQENVCHL JOB NOTIFY=&SYSUID (1)
//*
//* parameters in SYSTSIN:
//* QMgrName
//* ChannelEventQueueName
//*
//GETENV EXEC PGM=IKJEFT01,
// PARM='%MQENVCHL'
//STEPLIB DD DSN=MA18.LOAD,DISP=SHR (2)
// DD DSN=MQM.SCSQAUTH,DISP=SHR (3)
//SYSEXEC DD DSN=YOUR.DSN,DISP=SHR (4)
//SYSTSPRT DD SYSOUT=* (5)
//SYSTSIN DD *
QmgrName (6a)
ChannelEventQueueName (6b)
/*

Tailoring
• Line 1: supply a valid job card.
• Line 2: MA18 load library.
• Line 3: MQSeries hlq.SCSQAUTH library.
• Line 4: library containing the MQENVCHL source.
• Line 5: a class for sysout (the Channel Event Queue Viewer

reports will be printed there).
• Line 6: parameters for the Channel Event Queue Viewer:

– line 6 (a): queue manager name (required)
– line 6 (b): channel event queue Name (optional).

Parameters for the Channel Event Queue Viewer must come in the
order shown the last one may be omitted (leave blank line instead)
but the queue manager name is required as it has no default.

Default values for the Channel Event Queue Viewer parameters
• QMgr – none.
• ChannelEventQueueName – none; if blank it defaults to

SYSTEM.ADMIN.CHANNEL.EVENT.

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

OUTPUT
The Channel Event Queue Viewer will produce a report for every
message it finds on the channel event queue. The following
information will be given:
• The message descriptor, MQMD. I will not describe here the

full message descriptor (please refer to MQSeries Application
Programming Reference Manual), but a couple of fields need
a comment since they are subject to change when the
message is put to the dead letter queue.
– format – always set to MQFMT_EVENT
– type – always set to MQMT_DATAGRAM
– PutTime and PutDate – time and date when the message

was put to the channel event queue.
• The contents of the event header. The fields listed below will

always be present:
– type – always set to EVENT
– reason – reason of the event; it is one of the following:

• MQRC_CHANNEL_ACTIVATED
• MQRC_CHANNEL_AUTO_DEF_ERROR
• MQRC_CHANNEL_AUTO_DEF_OK
• MQRC_CHANNEL_CONV_ERROR
• MQRC_CHANNEL_NOT_ACTIVATED
• MQRC_CHANNEL_STARTED
• MQRC_CHANNEL_STOPPED
• queue manager name – name of the queue manager
• channel name – name of the channel for which the

event was generated.
There are also additional fields depending upon the event and/
or channel types:

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– Connection Name – if the channel has successfully
established a TCP connection this is the Internet address.
Otherwise it is the contents of the CONNAME field in the
channel definition.

– Transmission Queue Name – present for sender, server,
cluster-sender, and cluster-receiver channels only.

– Conversion Reason Code – reason for which the
conversion has failed; present in conversion error events
only.

– Format – format of the message for which the conversion
has failed; present in conversion error events only.

– Reason Qualifier – present for channel-stopped events
only.

– Error Identifier – present for channel-stopped events only.
The complete error identifier and/or message will be
presented in the following fields:
• Aux Error Data Int 1
• Aux Error Data Int 2
• Aux Error Data Str 1
• Aux Error Data Str 2
• Aux Error Data Str 3.

TAKE NOTE!
I originally wrote the Channel Event Viewer for MQSeries for OS/
390 V2.1. In this version the channel auto definitions events were
not supported. Although I now have V5.2 I still do not support those
two events. They will be read from the queue and almost all
information will be shown except for event-specific fields.
After reading all messages from the Channel event queue the
Channel Event Queue Viewer will print the total number and quit.

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

PROGRAMMING REMARKS
I have written the Channel Event Queue Viewer in REXX. Since
the standard MQSeries API is not available for REXX I used
SupportPac MA18.

MQEVNCHL.REX
/* REXX by Marcin Grabinski
*/

MaxMsgLen = 500 /* Channel event message lengths
*/
 /* differ, 500 is enough for all
*/
PARSE EXTERNAL QMgr
PARSE EXTERNAL EventQ

IF EventQ = '' THEN
 EventQ = 'SYSTEM.ADMIN.CHANNEL.EVENT'

SAY
SAY 'Channel Event Queue Viewer written by Marcin Grabinski'
SAY
/* Initialize the interface */
RXMQVTRACE = ''
rcc= RXMQV('INIT')
SAY rcc
/* Connect to Queue Manager */
RXMQVTRACE = ''
rcc = RXMQV('CONN', QMgr)
SAY rcc
IF WORD(rcc, 5) <> 'FAILED' THEN /* Connect OK */
DO
 /* Open Queue for Input */
 RXMQVTRACE = ''
 oo = MQOO_INPUT_AS_Q_DEF + MQOO_INQUIRE
 rcc = RXMQV('OPEN', EventQ, oo , 'h2', 'ood.')
 SAY rcc
 IF WORD(rcc, 5) <> 'FAILED' THEN /* Open OK */
 DO
 /* Get Current Queue Depth */
 RXMQVTRACE = ''
 rcc = RXMQV('INQ', h2, MQIA_CURRENT_Q_DEPTH, 'depth')
 SAY rcc
 /* Read messages */
 RXMQVTRACE = ''
 DO i = 1 TO depth

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 g.0 = MaxMsgLen
 g.1 = ''
 igmo.opt = MQGMO_ACCEPT_TRUNCATED_MSG
 rcc = RXMQV('GET', h2,'g.','igmd.','ogmd.','igmo.','ogmo.')
 SAY rcc
 IF (WORD(rcc,1) = 2033) THEN LEAVE
 SAY
 SAY 'Event message #'i':'
 SAY
 SAY ' The event header is 'g.0' bytes long'
 SAY ' Message Descriptor: '
 SAY ' MsgId: 'ogmd.msgid
 SAY ' CorelId: 'ogmd.cid
 SAY ' Report: 'ogmd.rep
 SAY ' MsgType: 'ogmd.msg
 SAY ' Expiry: 'ogmd.exp
 SAY ' Feedback: 'ogmd.fbk
 SAY ' Encoding: 'ogmd.enc
 SAY ' CodedCharSetId: 'ogmd.ccsi
 SAY ' Format: 'ogmd.form
 SAY ' Priority: 'ogmd.pri
 SAY ' Persistence: 'ogmd.per
 SAY ' BackoutCount: 'ogmd.bc
 SAY ' ReplyToQ: 'ogmd.rtoq
 SAY ' ReplyToQMgr: 'ogmd.rtoqm
 SAY ' UserId: 'ogmd.uid
 SAY ' AccountingToken: 'ogmd.at
 SAY ' ApplIdentityData: 'ogmd.aid
 SAY ' PutApplType: 'ogmd.pat
 SAY ' PutApplName: 'ogmd.pan
 SAY ' PutDate: 'ogmd.pd
 SAY ' PutTime: 'ogmd.pt
 SAY ' ApplOriginData: 'ogmd.aod
 SAY
 /* Extract the event header */
 rcc = RXMQV('EVENT', 'g.', 'x.')
 SAY rcc
 IF WORD(rcc, 1) = 0 THEN /* Event header ok */
 DO
 INTERPRET 'rtext = RXMQV.RCMAP.'x.REA
 SAY ' Event header:'
 SAY ' Type: 'x.TYPE
 SAY ' Reason: 'x.REA' ('rtext')'
 /* Fields common for all channel events */
 SAY ' Queue Manager Name: 'x.QM
 SAY ' Channel Name: 'x.CN
 /* Fields dependant on channel type */
 IF x.CONN <> 'X.CONN' THEN
 SAY ' Connection Name: 'x.CONN
 IF x.XQN <> 'X.XQN' THEN

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 SAY ' Transmission Queue: 'x.XQN
 /* Channel stop and conversion error events have some more */
 IF rtext = 'MQRC_CHANNEL_CONV_ERROR' THEN
 DO
 SAY ' Conversion Reason Code:'x.CONVRC
 SAY ' Format: 'x.FORMAT
 END
 IF rtext = 'MQRC_CHANNEL_STOPPED' THEN
 DO
 SAY ' Reason Qualifier: 'x.RQUAL
 SAY ' Error Identifier: 'x.EID
 SAY ' Aux Error Data Int 1: 'x.AED1
 SAY ' Aux Error Data Int 2: 'x.AED2
 SAY ' Aux Error Data Str 1: 'x.AEDS1
 SAY ' Aux Error Data Str 2: 'x.AEDS2
 SAY ' Aux Error Data Str 3: 'x.AEDS3
 SAY
 END
 SAY
 END /* Event header OK */
 END /* DO i=1 TO depth*/
 SAY 'There were 'depth' messages on the event queue 'EventQ
 SAY
 /* Stop access to a Queue */
 RXMQVTRACE = ''
 rcc = RXMQV('CLOSE', h2, mqco_none)
 SAY rcc
 END /* Open OK *
 /* Disconnect from the QM */
 RXMQVTRACE = ''
 rcc = RXMQV('DISC',)
 SAY rcc
END /* Connect OK */
/* Remove the Interface functions from the Rexx Workspace ... */
RXMQVTRACE = 'TERM'
rcc = RXMQV('TERM',)
SAY rcc
RETURN

Marcin Grabinski
Systems Engineer
SPIN (Poland) © SPIN 2003

MQ news

Cape Clear Software is now shipping Cape
Clear 4, the latest version of its Web Services
development, integration, deployment, and
management product suite.

Cape Clear 4 includes three integrated
products: Studio, Server, and Manager.
Studio is said to provide an environment for
designing and developing Web Services.
Server apparently provides the technology to
integrate and deploy large-scale Web
Services with diverse back-end systems and
technologies such as Java, J2EE, CORBA,
Microsoft .NET, IBM WebSphere MQ, as
well as packaged applications such as SAP.
Manager is claimed to provide tools to
control the configuration, deployment, and
security of large-scale Web Services
deployments.

The company says this latest version delivers
new features that include performance and
security enhancements, support for JMS and
MQ-based Web Services, and new Web
Services management capabilities.

For more information contact:
Cape Clear Software, 2929 Campus Drive,
Suite 400, San Mateo, CA 94403, USA.
Tel: (888) 227 3439.
Fax: (413) 622 4295.
Web: http://www.capeclear.com

Cape Clear Software, 61 Fitzwilliam Lane,
Dublin 2, Ireland.
Tel: +353 1 241 9900.
Fax: +353 1 241 9901.

* * *

Candle Corporation has recently introduced
PathWAI, a modular suite of solutions that,
claims the company, empowers businesses
rapidly to architect, develop, deploy and
manage their WebSphere infrastructures.

The PathWAI suite includes architecture,
development, and deployment modules,
including application performance testing
and tuning tools for WebSphere Application
Server or WebSphere MQ Integrator
(WMQI); and services and training to meet
required business performance metrics. The
management solutions for testing and
monitoring WMQI and WebSphere
Application Server are available on Windows
NT, Sun, AIX, and OS/390 platforms.

The PathWAI Dashboard module for
WebSphere MQ (WMQ) is claimed to
provide a single-pane-of-glass view of WMQ
systems management activity, including
enterprisewide configuration for WMQ. The
offering apparently allows users to map the
effect of WMQ performance and availability
on specific business objectives.

For more information contact:
Candle, 100 N Sepulveda Blvd, El Segundo,
CA, 90245, USA.
Tel: (310) 535 3600.
Fax: (310) 727 4287.
Web: http://www.candle.com

Candle, 1 Archipelago, Lyon Way, Frimley,
Camberley, Surrey, GU16 7ER, UK.
Tel: +44 1276 414 700.
Fax: +44 1276 414 777.

* * *

x
xephon

	WMQ for z/OS V5.3: message expiry enhancement
	JavaMQMail: MQSeries as an e-mail infrastructure
	Maximizing messaging availability: an update
	Using MQAI to list queues
	Data grouping in WebSphere MQIntegrator using dynamic field resolution
	Channel Event Queue Viewer for MQ for OS/390
	MQ news

