

© Xephon plc 2003

March 2003

45

In this issue

MQ
u

p
d

ate

3 MQSeries First Steps for OS/390
12 Can WMQ really send non-text

data?
21 Procedures in WMQI
30 JMS to IMS via WMQ
46 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQSeries First Steps for OS/390

INTRODUCTION
MQSeries for WinNT/2000/XP has an extra tool called ‘First
Steps’. It allows the user to specify all fields of MQMD and other
MQSeries options when using MQPUT or MQGET to put/get a
message to/from a queue. It is a perfect tool for beginners.
Programmers can see the effects of various MQSeries options
without needing to write a program. It is also useful for testers or
administrators when there is a need quickly to generate a message
with specified values in MQMD.
This great tool is unfortunately available only for Windows users.
I needed something similar on our mainframe. In Poland we have
a saying – need is the mother of invention – so I have written a
program I’ve called ‘MQSeries First Steps for OS/390’. It is an
ISPF panel-based utility that has some of the features found in the
original First Steps.
My version is not as sophisticated as the original program. It
implements only two (extremely useful!) MQSeries functions –
MQPUT and MQGET. I have provided the facility to MQGET a
message and see its full contents and MQPUT a message with
specified MQMD fields.
I have chosen REXX as my programming tool. Since the MQSeries
API is not normally available for REXX I had to use Robert Harris’
SupportPac (MA18, available from http://www-4.ibm.com/software/
ts/mqseries/txppacs/ma18.html), which provides a comfortable
way of using MQSeries functions in REXX.

INSTALLATION
MQSeries First Steps for OS/390 is composed of several libraries:
• REXX (the REXX code).
• PANELS (panels definitions).

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• MSG (messages).
• TABLES (ISPF tables, they contain mainly commands and key

list definitions).
I prepared all of them as XMIT files. You will find them on the
Xephon Web site at www.xephon.com/extras/msgs.xmt,
panels.xmt, rexx.xmt, and tables.xmt. The REXX code is available
from www.xephon.com/extras/xmit.txt.
To install my utility, follow the steps detailed below.
• Send all four XMIT files to your host. Use binary transfer and

store them as sequential data sets (RECFM=FB, LRECL=80,
BLKSIZE=3120).

• Use the TSO command RECEIVE to unpack each of them. The
syntax is:

 RECEIVE INDSN('XMIT.FILE.NAME')

When prompted, enter the destination dataset name
‘DSN('hlq.type')’, where ‘type’ is REXX, PANELS, MSG, and
TABLES respectively, and ‘hlq’ is a high-level qualifier of your
choice.

• Edit ‘hlq.REXX(MAIN)’ and change the five variables you will
find in lines three to seven:
– panels – the name of the library where you have put the

panels (hlq.PANELS)
– tables – the name of the library where you have put the

tables (hlq.TABLES)
– msgs – the name of the library where you have put the

messages (hlq.MSGS)
– QMgr – the name of the default queue manager that will be

used by the utility (optional; if left blank you will need to
supply it when you run First Steps)

– QName – the name of the default queue that will be used
by the utility (optional; if left blank you will need to supply
it when you run First Steps).

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

I use LIBDEF so there is no need to add my panels, messages,
and tables to ISPF concatenations. Just change the first three
variables mentioned above and the utility is ready to use.

USE
To start MQSeries First Steps execute userid.REXX(MAIN). You
will see the panel shown in Figure 1.
If you have entered the values of the QMgr and QName variables,
they will be shown at the top of the panel as ‘Queue Manager
Name’ and ‘Queue Name’ accordingly. Otherwise they will be
blank and you need to enter them now.
There are two commands available, GET (PF5) - MQGET and
PUT (PF6) - MQPUT. Enter them at the command line or use the
appropriate PF key. To exit the panel press PF3 or PF12.
In all of my panels I use standard ISPF input types: normal input
field (you provide any value you want), multiple choice list (tick
each choice you want by inserting ‘/’ (slash) next to the desired
option), and single choice list (enter a number corresponding to the
desired option). Some fields will have default values – you can
change them of course.

Figure 1: Main panel

MQ Utils
Command ===> __

Queue Manager Name SPIN
Queue Name TEST__
Primary commands:

Get - MQGET a message from the specified queue
Put - MQPUT a message to the specified queue

 F2=Split F3=Exit F5=MQGET F6=MQPUT F9=Swap F12=Cancel

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQ Utils - Get Message (Open Options)
Command ===>

Queue Manager Name : SPIN
Queue Name : TEST__

Input Options Dynamic Queue Disposition
1 1. MQOO_INPUT_AS_Q_DEF 1 1. MQCO_NONE
 2. MQOO_INPUT_SHARED 2. MQCO_DELETE
 3. MQOO_INPUT_EXCLUSIVE 3. MQCO_DELETE_PURGE

Open Options
_ MQOO_SAVE_ALL_CONTEXT
_ MQOO_ALTERNATE_USER_AUTHORITY
/ MQOO_FAIL_IF_QUIESCING

AlternateUserId . . ________
DynamicQueueName . . __

Press ENTER to MQGET a message

 F2=Split F3=Exit F8=Next F9=Swap F12=Cancel

Figure 2: Before MQGET panel (one of two)

 MQ Utils - Get Message Options
Command ===>

Get Message Options Select to browse message
_ MQGMO_ACCEPT_TRUNCATED_MSG _ MQOO_BROWSE
_ MQGMO_CONVERT
/ MQGMO_FAIL_IF_QUIESCING Get Browse Options
 MQGMO_MARK_SKIP_BACKOUT _ 1. MQGMO_BROWSE_FIRST
 MQGMO_SYNCPOINT 2. MQGMO_BROWSE_NEXT
 MQGMO_SET_SIGNAL 3. MQGMO_MSG_UNDER_CURSOR
 MQGMO_WAIT

WaitInterval Ø____

Leave WaitInterval=Ø to set MQWI_UNLIMITED

Press ENTER to MQGET a message

 F2=Split F3=Exit F7=Prev F9=Swap F12=Cancel

Figure 3: Before MQGET panel (two of two)

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

GET
The GET panel is shown in Figure 2. Supply the options you wish
(the queue manager name and queue name cannot be changed at
this point) and press PF8 to go to the MQGMO options panel
(shown in Figure 3), or press ENTER to MQGET a message with
default ‘get message’ options.
You can press PF7 to review the previous panel or hit ENTER to
MQGET a message.
If there is a message on the specified queue you will see a panel
with application data (Figure 4). To see the MQMD of the message
read, press PF4 (Figure 5). If the queue is empty you will get an
appropriate ISPF message. To return to the main panel press PF3.

PUT
After entering the PUT command from the main panel you will be
presented with several panels that allow you to enter the message
(both application data part and MQMD). Those panels are shown
in Figures 6 to 10. You can move forwards and backwards
between them using the PF7 and PF8 keys. To MQPUT your
message hit ENTER on any of those panels.

MQ Utils - Get Message
Command ===> __

Queue Manager Name : SPIN
Queue Name :
TEST__

Message:
test

Primary commands:

MQMD - Message Descriptor
 |------------------|
 | MQGET successful |
 |------------------|
 F2=Split F3=Exit F4=MQMD F9=Swap F12=Cancel

Figure 4: After MQGET panel (application data part)

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQ Utils - Get Message (MQMD)
Command ===> __

Queue Manager Name : SPIN
Queue Name : TEST__

Report . . . : Ø MsgType . . : 8 Format . : MQSTR
Feedback . . : Ø Persistence : Ø Encoding : 785
Expiry . . . : -1 Priority . . : Ø CCSId . : 87Ø
BackoutCount : Ø

MsgId . . : CSQ SPIN ŽghOCc?? CorrelId . :

ReplyToQ . . :
ReplyToQMgr : SPIN

AccountToken . : .ACCT# UserId . . . :
MARCIN
AppIdentData . :
PutApplType . : 2 PutApplName . : MARCIN
PutDate . . : 2ØØ21114 PutTime . . : 15213358 AppOriginData :

 F2=Split F3=Exit F4=Message F5=MQGET F9=Swap F12=Cancel

Figure 5: After MQGET panel (MQMD part)

 MQ Utils - Put Message
Command ===> ___

Queue Manager Name : SPIN
Queue Name : TEST__

Message:
__
__
__
__
__

Primary commands:

MQMD - Message Descriptor
Press ENTER to MQPUT the message

 F2=Split F3=Exit F8=MQMD F9=Swap F12=Cancel

Figure 6: Before MQPUT panel (Application Data Part)

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 MQ Utils - Put Message (MQMD - 1 of 4)
Command ===>

Report
 MQRO_EXCEPTION MQRO_NEW_MSG_ID
 MQRO_EXCEPTION_WITH_DATA MQRO_PASS_MSG_ID
 MQRO_EXPIRATION MQRO_PASS_CORREL_ID
 MQRO_EXPIRATION_WITH_DATA
MQRO_COPY_MSG_ID_TO_CORREL_ID
 MQRO_COA MQRO_DEAD_LETTER_Q
 MQRO_COA_WITH_DATA MQRO_DISCARD_MSG
 MQRO_COD
 MQRO_COD_WITH_DATA If no Report Option is chosen,
 MQRO_NONE will be set

ReplyToQMgr . . SPIN
ReplyToQ . . . ___

Press ENTER to MQPUT the message

 F2=Split F3=Exit F7=Message F8=Next F9=Swap F12=Cancel

Figure 7: Before MQPUT panel (MQMD part – one of four)

 MQ Utils - Put Message (MQMD - 2 of 4)
Command ===>

Format MsgType
9 1. MQMFT_COMMAND_1 1 1. MQMT_DATAGRAM
 2. MQMFT_COMMAND_2 2. MQMT_REQUEST
 3. MQMFT_IMS 3. MQMT_REPLY
 4. MQMFT_IMS_VAR_STRING 4. MQMT_REPORT
 5. MQMFT_CHANNEL_COMPLETED
 6. MQMFT_DEAD_LETTER_HEADER Encoding
 7. MQMFT_NONE 1 1. MQENC_NATIVE
 8. MQMFT_PCF 2. MQENC_INTEGER_MASK
 9. MQMFT_STRING 3. MQENC_DECIMAL_MASK
 1Ø. MQMFT_XMITQ_Q_HEADER 4. MQENC_FLOAT_MASK
 11. MQMFT_ADMIN
 12. MQMFT_TRIGGER CodedCharSetId
 13. MQMFT_EVENT 1 1. MQCCSI_Q_MGR
 2. MQCCSI_EMBEDED

Press ENTER to MQPUT the message

 F2=Split F3=Exit F7=Prev F8=Next F9=Swap F12=Cancel

Figure 8: Before MQ PUT panel (MQMD part – two of four)

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

After you have MQPUT your message you will be returned to the
main panel.

NOTES
My utility has several limitations. The reason for this is that I
programmed only those features that were necessary for myself
and my colleagues. So to be honest I must admit that my MQSeries
First Steps for OS/390 is more of a beta version than a fully
functional utility. It is, however, a good start. Maybe I will release
an improved version in the future if there is sufficient interest.
The limitations are:
• Only MQGET and MQPUT are available.
• You cannot specify MQMD fields before MQGET (it means

that getting a message based on its MSg-ID or Correl-ID is not

MQ Utils - Put Message (MQMD - 3 of 4)
Command ===>

Priority MsgId . . .

 CorrelId . .

Persistence
3 1. MQPER_PERSISTENT Expiry . . . _____
 2. MQPER_NOT_PERSISTENT
 3. MQPER_PERSISTENCE_AS_Q_DEF

UserId MARCIN______
AccountingToken . . ________________________
ApplIdentityData . . ________________________

PutApplType . . . : MQAT_MVS
PutApplName MARCIN
PutDate Ø2/11/15 PutTime . . 15:15:Ø7
ApplOriginData . . . ____

Press ENTER to MQPUT the message

 F2=Split F3=Exit F7=Prev F8=Next F9=Swap F12=Cancel

Figure 9: Before MQ PUT panel (MQMD part – three of four)

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

supported).
• MQCMIT and MQBACK are handled internally (depending of

course on the values obtained from the panels).
• The message length is limited to 702 characters.
• No on-line help is available.
• Although I’ve handled most common errors there may still be

some bugs.
I recommend using MQSeries First Steps for OS/390 for learning
or testing purposes.
The XMIT files are meant to be copied to an OS/390 host and
opened there. If the panels and tables are ‘unpacked’ and viewed
as text, problems may occur when transferring them to the host.

MQ Utils - Put Message (MQMD - 4 of 4)
Command ===>

Feedback Press ENTER to MQPUT the message
1 1. MQFB_NONE
 2. MQFB_EXPIRATION
 3. MQFB_COA
 4. MQFB_COD
 5. MQFB_PAN
 6. MQFB_NAN
 7. MQFB_IMS_ERROR
 8. MQFB_IMS_FIRST
 9. MQFB_IMS_LAST
 1Ø. MQFB_QUIT
 11. MQFB_BUFFER_OVERFLOW
 12. MQFB_LENGTH_OFF_BY_ONE
 13. MQFB_IIH_ERROR
 14. MQFB_NOT_AUTHORIZED_FOR_IMS
 15. MQFB_DATA_LENGTH_ZERO
 16. MQFB_DATA_LENGTH_NEGATIVE
 17. MQFB_DATA_LENGTH_TOO_BIG

 F2=Split F3=Exit F7=Prev F8=Next F9=Swap F12=Cancel

Figure 10: Before MQ PUT panel (MQMD part – four of four)

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The source of panels differs slightly from the final look – there are
some special, non-printable characters that may be improperly
converted.
Marcin Grabinski
Systems Engineer, SPIN (Poland) © SPIN 2003

Can WMQ really send non-text data?

I was recently preparing a hands-on course and pondered this
question. More often then not, most of the data I’ve dealt with has
been of a simple text or XML nature. Of course MQSeries can
cope with non-text data, it’s just that I’d never seen it or proved it
for myself.
My self-imposed task was to ‘prove’ that MQSeries could be used
to send both PDF and JPG files from one machine to another
without them being corrupted along the way.
The task should successfully carry out the following:
• Read a PDF or JPG file.
• Store it as a message in a queue.
• Transfer the message to another queue manager on another

machine.
• Retrieve that message from the queue.
• Store it as a file.
• Open the file to ensure that it can be read and has not been

corrupted.

METHOD
First of all the supplied amqsput utility was tried:

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 amqsput RDEMO.Q MQDEMO1 < file1.pdf

Although this utility is limited to 100 bytes it’s easy to alter this and
recompile it. When this was tried, however, the 31 Kb file ended
up as 32 small separate messages. Whenever amqsput
encountered a carriage return/linefeed (hex characters ‘0D0A’) it
regarded it as the end of the message. In fact even if all 32
messages were to be reconstituted it would not contain the whole
message. When amqsput encountered the hex character ‘1A0D’
in the middle of the file it stopped scanning and finished.
The next utility I tried was the IBM SupportPac MA01. This very
nice utility can do a lot of things and so this command was tried:
 C:\>q -oRDEMO.Q -mMQDEMO1 -ffile1.pdf
 MQSeries Q Program Version 3.Ø (written by Paul Clarke)
 Connecting ...connected to 'MQDEMO1

Again, the result was very similar to amqsput. This time 30
messages were created but the program stopped at the same
point.
The last utility to be tried was the IBM SupportPac known as IH03,
which performed points one and two very efficiently. The utility
uses a parameter file – here called ih03pdf.txt – as input; the
important parameters are shown here.
For the header:
• qname="RDEMO.Q" – the name of the remote queue.
• qmgr="MQDEMO1" – the name of the local queue manager.
• msgcount="1" – write a single message.
• format= " " – ensure it’s not a text message.
• msgtype="8" – message is a datagram.
For the filelist:
• c:\file1.pdf – the name of the file to be transported.
The remote queue was set up as:
 DEF QR(RDEMO.Q) RQNAME(DEMO.Q) RQMNAME(MQDEMO2)

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 XMITQ(MQDEMO2)

As I already had some utilities which were named similarly to the
one supplied by IH03, I renamed mqput2 as ih03put. The syntax,
therefore, to invoke the utility was:
 IhØ3put ihØ3pdf.txt

This successfully added the message to the remote queue.
The IH03 command line utility is not written to read messages so
the hunt was on to find another utility.
The supplied utility amqsget was tried, which of course gave an
rc2080 message (MQRC_TRUNCATED_MSG_FAILED).
Changing the 100 byte I/O area to a larger value meant that more
of the binary message was read but as soon as a null (hex
character ‘00’) was found the utility stopped.
After a lot of searching I decided that the only way to read data that
contained ‘special’ characters was to read the whole lot as a ‘blob’
in one go.
A new utility called ‘mqgetbin’ was born, the code for which has
been supplied.
To invoke it:
C:\>mqgetbin DEMO.Q MQDEMO2 copy1.pdf
*** Start of mqgetbin.
*** Author: Ruud van Zundert, November 2ØØ2
*** Function: Get 1st message as a binary message and store as a file.
*** parms: (1)queue name, (2)queue manager, (3)Output file
*** optional parm(4) data conversion y/n (default y)
*** optional parm(5) mode browse (default descructive read)
About to open file copy1.pdf
Wrote 31Ø55 bytes to file
*** end of mqgetbin

To prove it worked, open up copy1.pdf.

WILL THIS METHOD WORK FOR A JPG FILE?
Decide for yourself whether to create a new remote and local
queue for this test. A copy of ih03pdf.txt was made and called

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ih03jpg.txt. Basically it contained the same data except for the last
section:
For the filelist:
• c:\file1.jpg – the name of the file to be transported.
Again, run ih03put:

IhØ3put ihØ3jpg.txt

Again, run mqgetbin:
C:\>mqgetbin DEMO.Q MQDEMO2 copy1.jpg
*** Start of mqgetbin.
*** Author: Ruud van Zundert, November 2ØØ2
*** Function: Get 1st message as a binary message and store as a file.
*** parms: (1)queue name, (2)queue manager, (3)Output file
*** optional parm(4) data conversion y/n (default y)
*** optional parm(5) mode browse (default descructive read)
About to open file copy1.jpg
Wrote 34Ø4Ø bytes to file
*** end of mqgetbin

Open file copy1.jpg to prove it worked.
Before using the ‘mqgetbin’ program please review two of the
parameters:
• The outFile, which is the length of the output file and is

currently set to 40.
• The buffer, which is the maximum length of the I/O buffer and

is currently set to 50,000.
My conclusion? Yes, MQSeries can transport PDF and JPG files
without any problems.

MQGETBIN
 /* Program name: mqgetbin (originally based on amqsget) */
 /* Author : Ruud van Zundert, November 2ØØ2. */
 /* Environment : Compiled under MS Visual C++ 6.Ø */
 /* MQSeries V5.2 CSD5 */
 /* Windows NT4 SP6A / Windows 2ØØØ SP3 */
 /* Warrenty : None, supplied ASIS */
 /* Get an MQSeries message off a queue and store it as a file. */
 /* The intention is to show that binary files like Adobe PDF or */

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 /* picture files like jpeg can be transported - unaltered - and */
 /* displayed. */
 /* The reason this program was written was existing utilities could */
 /* not cope with some of the 'special' characters found in binary */
 /* files - e.g. CRLF (x'ØAØD'), null (x'ØØ' or x'1AØD'. */
 /* 3 required parameters - */
 /* - the name of the message queue (required) */
 /* - the queue manager name (optional) */
 /* - output file */
 /* 2 optional parameters - */
 /* - data conversion y/n (default n) */
 /* - 'browse' (optional i.e. non-destructive) */
 /* Variables that may need reviewing : */
 /* outFile length of the output file */
 /* buffer maximum length of i/o buffer */
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <fcntl.h> /* Needed for _O_RDWR def */
 #include <io.h> /* Needed for _read function */
 /* includes for MQI */
 #include <cmqc.h>
 char outFile1[41]; /* length of output file */
 int fHandle1; /* file handle */
 unsigned byteswritten;
 void open_sesame (void); /* outine to open file */
 int main(int argc, char **argv)
 {
 /* Declare MQI structures needed */
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 MQHCONN Hcon; /* connection handle
*/
 MQHOBJ Hobj; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 MQBYTE buffer[5ØØØ1]; /* message buffer */
 MQLONG buflen; /* buffer length */
 MQLONG messlen; /* message length received */
 char QMName[5Ø]; /* queue manager name */
 char mode[6] = "nnnnn"; /* mode BROWSE
*/
 char Conv[2] = "n"; /* data conversion y/n */
 fprintf(stderr,"*** Start of mqgetbin.\n");
 fprintf(stderr,"*** Author: Ruud van Zundert, November 2ØØ2\n");

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 fprintf(stderr,"*** Function: Get 1st message as a binary message
and
 store as a file.\n\n");
 fprintf(stderr,"*** parms: (1)queue name, (2)queue manager,
(3)Output
 file\n");
 fprintf(stderr,"*** optional parm(4) data conversion y/n (default
 y)\n");
 fprintf(stderr,"*** optional parm(5) mode browse (default
descructive
 read)\n");
 if (argc < 4)
 {
 fprintf(stderr,"Required parameters missing.\n");
 exit(99);
 }
 /* Store various parameters. */
 /* */
 strcpy(od.ObjectName, argv[1]); /* pick up queue name */
 QMName[Ø] = Ø; /* default */
 if (argc > 2)
 strcpy(QMName, argv[2]); /* pick up qmgr name */
 if (argc > 3)
 strcpy(outFile1, argv[3]); /* pick up output file */
 if (argc > 4)
 strncpy(Conv, argv[4], 1); /* pick up conversion flag */
 if (argc > 5)
 strncpy(mode, argv[5], 5); /* pick up mode */
 open_sesame(); /* open output file */
 /* Connect to queue manager */
 MQCONN(QMName, /* queue manager */
 &Hcon, /* connection handle */
 &CompCode, /* completion code */
 &CReason); /* reason code */
 /* report reason and stop if it failed */
 if (CompCode == MQCC_FAILED)
 {
 fprintf(stderr,"MQCONN ended with reason code %ld\n", CReason);
 exit((int)CReason);
 }
 /* Open the named message queue for input; exclusive or shared */
 /* use of the queue is controlled by the queue definition here */
 O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
 if (memcmp(mode, "browse" , 5) == Ø)
 O_options = O_options + MQOO_BROWSE;
 MQOPEN(Hcon, /* connection handle */
 &od, /* object descriptor for queue */
 O_options, /* open options */
 &Hobj, /* object handle */

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 &OpenCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any; stop if failed */
 if (Reason != MQRC_NONE)
 fprintf(stderr,"MQOPEN ended with reason code %ld\n", Reason);
 if (OpenCode == MQCC_FAILED)
 fprintf(stderr,"unable to open queue for input\n");
 /* Get first message from the message queue and store as a file */
 CompCode = OpenCode; /* use MQOPEN result for initial test */
 gmo.Options = MQGMO_WAIT; /* wait for new messages */
 // + MQGMO_ACCEPT_TRUNCATED_MSG; decide if you want this
 if (strncmp(Conv, "y", 1) == Ø)
 gmo.Options = gmo.Options + MQGMO_CONVERT;
 if (memcmp(mode, "browse" , 5) == Ø)
 gmo.Options = gmo.Options + MQGMO_BROWSE_NEXT;
 gmo.WaitInterval = Ø; /* Ø second limit for waiting */
 buflen = sizeof(buffer) - 1; /* buffer size available for GET */
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;
 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
 &gmo, /* get message options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any */
 if (Reason != MQRC_NONE)
 {
 if (Reason == MQRC_NO_MSG_AVAILABLE)
 { /* special report for normal end */
 fprintf(stderr,"no messages on this queue.\n");
 }
 else /* general report for other reasons */
 {
 fprintf(stderr,"MQGET ended with reason code %ld\n", Reason);
 /* treat truncated message as a failure for this sample */
 if (Reason == MQRC_TRUNCATED_MSG_FAILED)
 {
 CompCode = MQCC_FAILED;
 }
 }
 }
 if (CompCode != MQCC_FAILED)
 {
 buffer[messlen] = '\Ø'; /* add terminator */

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 /* Write buffer as a 'blob' of data using _write */
 if((byteswritten = _write(fHandle1, buffer, messlen)) == -1)
 fprintf(stderr, "Write failed to file %s\n", outFile1);
 else
 fprintf(stderr, "Wrote %u bytes to file\n", byteswritten);
 }
 /* Close the source queue (if it was opened) */
 if (OpenCode != MQCC_FAILED)
 {
 C_options = Ø; /* no close options */
 MQCLOSE(Hcon, /* connection handle */
 &Hobj, /* object handle */
 C_options,
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any */
 if (Reason != MQRC_NONE)
 fprintf(stderr,"MQCLOSE ended with reason code %ld\n", Reason);
 }
 /* Disconnect from MQM if not already connected */
 if (CReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&Hcon, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* report reason, if any */
 if (Reason != MQRC_NONE)
 fprintf(stderr,"MQDISC ended with reason code %ld\n", Reason);
 }
 /* End of mqgetbin. Close file(s). */
 _close (fHandle1);
 fprintf(stderr,"*** end of mqgetbin\n");
 return(Ø);
 }
void open_sesame (void)
{
 /* Open data file for output: */
 fprintf(stderr, "About to open file %s\n", outFile1);
 if((fHandle1 = _open(outFile1, _O_CREAT | _O_WRONLY | _O_BINARY))
== -1)
 {
 fprintf(stderr, "open failed on output file=%s\n", outFile1);
 exit(1);
 }
}

Ruud van Zundert, Independent Consultant (UK)
ruudvz@btclick.com © Xephon 2003

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Contributing to MQ Update

In addition to MQ Update, the Xephon family of Update
publications now includes CICS Update, MVS Update,
DB2 Update, AIX Update, and RACF Update. Although
the articles published are of a very high standard, the
vast majority are not written by professional writers,
and we rely heavily on our readers themselves taking
the time and trouble to share their experiences with
others. Many have discovered that writing an article is
not the daunting task that it might appear to be at first
glance.
They have found that the effort needed to pass on
valuable information to others is more than offset by
our generous terms and conditions and the recognition
they gain from their fellow professionals. Often, just a
few hundred words are sufficient to describe a problem
and the steps taken to solve it.
If you have ever experienced any difficulties with MQ,
or made an interesting discovery, you could receive a
cash payment, a free subscription to any of our Updates,
or a credit against any of Xephon’s wide range of
products and services, simply by telling us all about it.
For a copy of our Notes for Contributors, which explains
the terms and conditions under which we publish
articles, please point your browser at www.xephon.com/
nfc.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Procedures in WMQI

INTRODUCTION
ESQL, which is derived from SQL V3, is a language with functions
and statements unique to WMQI.
A stored procedure is a set of SQL statements with an assigned
name that is stored in the database in compiled form so that it can
be shared by a number of programs. A stored procedure is
processed as a unit and it can be run with one call from an
application program.
Stored procedures can be used for any purpose for which you
would use SQL statements, with these advantages:
• They allow more flexibility, offering capabilities such as

conditional logic.
• A series of SQL statements can be executed in single stored

procedure.
• Another stored procedure can be referred to within your

stored procedure, which can simplify a series of complex
statements/logic. Since stored procedures are stored within
the DBMS, bandwidth and execution time are reduced.

• A stored procedure is compiled on the server when it is
created so it executes faster than individual SQL statements.
SQL Server pre-compiles stored procedures such that they
execute optimally.

• Client developers are abstracted from complex design. They
would simply know the stored procedure’s name, its function,
and the parameter list.

There are two different ways of calling a stored procedure in a
WMQI message flow using ESQL, PASSTHRU and CALL.

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PASSTHRU
You can call a stored procedure in WMQI by using the PASSTHRU
ESQL function. This support is limited to INPUT parameters only;
OUT and INOUT parameters are not supported. SqlMoreResults
cannot be used by WMQI to retrieve result sets.
A stored procedure can exist either:
• Individually – supported by both DB2 and Oracle.

– here is an example of calling an individual stored procedure
using a PASSTHRU ESQL statement:

 PASSTHRU('call myProc(?,?)',InputBody.Test.Param1,
 InputBody.Test.Param2);

• As a part of a collective that is accessed via a package
mechanism (supported by Oracle).
– here is an example of calling such a stored procedure:

 PASSTHRU('call myPkg.myProc(?,?)',InputBody.Test.Param1,
 InputBody.Test.Param2);

A stored procedure can be either ‘noncommittal’ or ‘committal’.
A stored procedure that does not take explicit commit or rollback
actions is known as a noncommittal stored procedure. Both DB2
and Oracle support this type of stored procedure.
Stored procedure database operations are either committed or
rolled back, depending on the message flow’s commit/roll back.
This behaviour is in line with that of database/warehouse nodes,
which have a transaction property of ‘automatic’.
To achieve these results you should run your message flows in
globally coordinated transaction mode, using XA technology. You
will find more information on transactional support in the WMQI:
Introduction and Planning manual (GC34-5599-04).
A stored procedure that contains explicit commit and rollback
actions is knows as a committal stored procedure, and this feature
is supported by Oracle Database.
In case of message flow rollback, stored procedure database

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

actions are committed. This behavior is in line with the behaviour
of database/warehouse nodes that have a transaction property of
‘commit’.

CALL
The latest versions of WMQI (WMQI V2.1 CSD02 and higher)
include support for calling a stored procedure with IN, OUT, and
INOUT parameters. CALL and CREATE PROCEDURE statements
support this.

PROCEDURE
A procedure is a section of a program that performs a specific
task. It is also known as a subroutine that does not return any
value. These procedures are local in scope to the current node
only. If you want to use the same procedure from more than one
node you must define it in each node.
In WMQI you can define a procedure using a CREATE
PROCEDURE statement, the syntax of which is:
 CREATE PROCEDURE ProcedureName (ParameterList) RoutineBody

Where:
• ProcedureName is the name of the procedure.
• ParameterList is the list of parameters to the procedure.
ESQL procedure supports IN, OUT, and INOUT types of parameter,
where:
• IN – parameters are input-only parameters.
• OUT – parameters are output-only parameters.
• INOUT – parameters are both input and output parameters.
When using OUT and INOUT parameters a procedure can return
a value to the caller, although it doesn’t have a RETURN value/
statement as such. A CREATE PROCEDURE statement must be
at the end of all the ESQL code within a node, otherwise you will
get a syntax error at deployment.

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A procedure always receives an OUT parameter with a NULL
value of the correct data type. This happens irrespective of its
value before the CALL statement. IN and INOUT parameters can
be NULL when received by the procedure.
WMQI has the following restrictions for stored procedures:
• A parameter cannot be of ESQL reference type.
• A parameter cannot map onto the database LOB types (for

example, BLOB and CLOB).
• Result sets cannot be returned or used as input or output

parameters.

Types of procedure
Internal and external procedures can be implemented in WMQI.

Internal procedure
This type of procedure acts like a subroutine. Its body is composed
of single or multiple (compound) statements.
The following compute node ESQL code shows an example of an
internal procedure within WMQI.
 DECLARE in1 INTEGER;
 DECLARE in2 INTEGER;
 -- Assign values to input parameters
 SET in1 = InputRoot.XML.Data.in1;
 SET in2 = InputRoot.XML.Data.in2;
 -- Call Procedure
 CALL SwapInt(in1, in2);
 -- Update output message with swapped values
 SET OutputRoot.XML.Data.in1 = in1;
 SET OutputRoot.XML.Data.in2 = in2;
 -- Define internal procedure
 CREATE PROCEDURE swapInt (INOUT param1 INTEGER, INOUT param2
INTEGER)
 BEGIN
 DECLARE param3 INTEGER;
 SET param3 = param1;
 SET param1 = param2;
 SET param2 = param3;
 END;

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

In the above code a procedure called swapInt is created using a
CREATE…PROCEDURE statement. This procedure accepts two
integer parameters, both of type INOUT. When called by the broker
this procedure will swap these parameters.
If you send the following input message to this compute node:
 <Data>
 <in1>1Ø</in1>
 <in2>2Ø</in2>
 </Data>

It will generate the following output message:
<Data>
 <in1>2Ø</in1>
 <in2>1Ø</in2>
</Data>

As you can see here, the numbers are swapped after calling the
internal procedure.

External procedure
You can define an external store procedure in the broker using a
CREATE ..PROCEDURE EXTERNAL ESQL statement. This
procedure calls the named routine as a stored procedure in the
database specified by the containing node’s data source.
The syntax of a CREATE PROCEDURE statement for an external
procedure is as follows:
 CREATE PROCEDURE ProcedureName (ParameterList) EXTERNAL NAME
 dbStoredProcName;

where DbStoredProcName is the name of the stored procedure
in the database.
The name specified in the CREATE PROCEDURE statement
need not match the actual name of the stored procedure in the
database but the name of the stored procedure must match with
the name specified in the EXTERNAL NAME clause of the
CREATE PROCEDURE ESQL statement.
You can specify either a qualified or unqualified procedure name
in the EXTERNAL NAME clause of the CREATE PROCEDURE
statement.

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Before calling a stored procedure using a CALL ESQL statement
it must be defined in the database as well as in the broker.
The following compute node ESQL code shows an example of an
external procedure within WMQI.
 DECLARE in1 INTEGER;
 DECLARE in2 INTEGER;
 SET in1 = InputRoot.XML.Data.in1;
 SET in2 = InputRoot.XML.Data.in2;
 CALL SwapInt(in1, in2);
 SET OutputRoot.XML.Data.in1 = in1;
 SET OutputRoot.XML.Data.in2 = in2;
 CREATE PROCEDURE swapInt(INOUT param1 INTEGER, INOUT param2 INTEGER)
 EXTERNAL NAME dbSwapInt;

In the above code we defined an external procedure – swapInt –
in the broker, which maps to the dbSwapInt stored procedure in the
DB2 database. This procedure will swap two input parameters
when executed.
Please note that the following commands are executed on the
Windows platform. The same or equivalent commands can be
executed on other platforms to create stored procedures. Please
make sure that support for SQL stored procedures is installed on
your database server in order to create the stored procedure.
To define this stored procedure in the database, first copy and
paste the following code into a text file and name the file swap.sql.
Save the file somewhere on your local drive, for example C:\sproc.
 --DB2 Example Stored Procedure
 DROP PROCEDURE dbSwapInt @
 CREATE PROCEDURE dbSwapInt
 (INOUT in1_param INT,
 INOUT in2_param INT)
 LANGUAGE SQL
 BEGIN
 DECLARE temp_param INT;
 SET temp_param = in1_param;
 SET in1_param = in2_param;
 SET in2_param = temp_param;
 END @

Start the DB2 command window and enter the commands listed
below.

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Creating a stored procedure in a DB2 database:
 C:\sproc>db2 connect to <dbname> user <userid> using <pwd>
 Database Connection Information
 Database server = DB2/NT 7.2.2
 SQL authorization ID = <userid>
 Local database alias = <dbname>
 C:\sproc>db2 -td@ -f swap.sql
 DB2ØØØØI The SQL command completed successfully.
 DB2ØØØØI The SQL command completed successfully.
 C:\sproc>db2 disconnect current

With WMQI 2.1 CSD3 there is a slight change in the mechanism
of calling a stored procedure using the CREATE PROCEDURE
command.
For DB2 and Oracle, if you don’t specify a schema name when
defining external stored procedures in WMQI the broker will use
a database connection user name as a default schema name. You
must specify a schema name explicitly in the EXTERNAL NAME
clause if the stored procedure lies in a different schema.
In Oracle, if the procedure belongs to an Oracle Package you must
specify the schema name and package name in the EXTERNAL
NAME clause, for example, mySchema.MyPkg.mySProc.

THE PROBLEM AND THE SOLUTION
WMQI ESQL doesn’t provide all the standard ESQL functions,
such as ASCII, HEX, EXP, LOG, DAYNAME, DAYOFWEEK, etc.
Since WMQI does not support the calling of stored functions using
ESQL we cannot call these database functions directly from our
message flows.
It would be a time-consuming job to write our own ESQL code to
implement such standard functionality. In addition, a lot of testing
would be required on that piece of code before we could use it in
our message flows.
To get around this problem you could write a stored procedure that
would call these database functions, with appropriate parameters.
Listed below are a few examples of calling such standard functions
using DB2 stored procedures.

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ASCII function

Compute Node ESQL code
 DECLARE a CHAR;
 SET a = 'K';
 DECLARE in1 INTEGER;
 CALL ASCIIDB(a, in1);
 SET OutputRoot.XML.Data.CharValue = a;
 SET OutputRoot.XML.Data.ASCII = in1;
 CREATE PROCEDURE ASCIIDB(IN param1 CHAR, OUT param2 INT) EXTERNAL
 NAME DBASCII;

Defining a stored procedure in DB2 (dbASCII.sql)
 --DB2 Example Stored Procedure
 DROP PROCEDURE DBASCII @
 CREATE PROCEDURE DBASCII (IN in_param CHAR, OUT out_param INT)
 LANGUAGE SQL
 BEGIN
 SET out_param = ASCII(in_param);
 END @

Creating a stored procedure in a DB2 database
 C:\sproc>db2 -td@ -f dbASCII.sql

DAYNAME function

Compute Node ESQL code
 DECLARE today DATE;
 DECLARE out1 CHAR;
 SET today = CURRENT_DATE;
 CALL DBDAYNAME(today, out1);
 SET OutputRoot.XML.Data.Today = today;
 SET OutputRoot.XML.Data.DayName = out1;
 CREATE PROCEDURE DBDAYNAME(IN param1 DATE, OUT param2 CHAR)
EXTERNAL
 NAME DBDAYNAME;

Defining a stored procedure in DB2 (dbDayName.sql)
 --DB2 Example Stored Procedure
 DROP PROCEDURE dbDAYNAME @
 CREATE PROCEDURE dbDAYNAME (IN in_param DATE, OUT out_param CHAR)
 LANGUAGE SQL
 BEGIN

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 SET out_param = DAYNAME(in_param);
 END @

Creating a stored procedure in a DB2 database
 C:\sproc>db2 -td@ -f dbDayName.sql

MONTHNAME function

Compute Node ESQL code
 DECLARE today DATE;
 DECLARE out1 CHAR;
 SET today = CURRENT_DATE;
 CALL DBMONTHNAME(today, out1);
 SET OutputRoot.XML.Data.Today = today;
 SET OutputRoot.XML.Data.MonthName = out1;
 CREATE PROCEDURE DBMONTHNAME(IN param1 DATE, OUT param2 CHAR)
 EXTERNAL NAME DBMONTHNAME;

Defining a stored procedure in DB2 (dbDayName.sql)
 --DB2 Example Stored Procedure
 DROP PROCEDURE dbMONTHNAME @
 CREATE PROCEDURE dbMONTHNAME (IN in_param DATE, OUT out_param
 VARCHAR(2Ø))
 LANGUAGE SQL
 BEGIN
 SET out_param = MONTHNAME(in_param);
 END @

Creating a stored procedure in a DB2 database
C:\sproc>db2 -td@ -f dbMonthName.sql

CONCLUSION
Stored procedures offer developers a lot of flexibility with many
features that are not available using standard ESQL. WMQI
allows us to use stored procedures in our message flows
seamlessly. The combination of these two factors allows us to
create very powerful WMQI applications rapidly.

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

REFERENCES
• WMQI 2.1 ESQL Reference manual (SC34-5923-02).
If you found this article useful or have any suggestions or
comments to make, please send me an e-mail at kiran@ingale.net.
Kiran Ingale, EAI Architect
Aviana Global Technologies (USA) © Xephon 2003

JMS to IMS via WMQ

INTRODUCTION
Even before the recent slowdown it was rare for a business to
replace all its key applications at the same time. A result of this is
that new technologies often have to interface with existing
applications, addressing them in terms and with data formats they
can understand.
When adding a JMS-based application to an existing business
system there can be a need to produce messages in a JMS
application which are to be processed in an existing non-JMS
application. The WebSphere MQ Using Java manual has a
section entitled Mapping JMS to a native WebSphere MQ
application, which describes how to send a message from a JMS
Client application to a traditional WebSphere MQ application that
has no knowledge of the WebSphere MQ Rules and Formatting
Header (MQRFH2).
This header, which can be used to send data that has been
encoded using an XML-like syntax, is used in the WebSphere MQ
JMS implementation to carry header information from one JMS
application to another. As this extract from a question indicates,
knowledge of how to do this is not universal, nor, as I found out,
is sample code to show this readily available:

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

“We currently use the MQ-IMS Bridge for all data inbound to IMS
scattered across roughly seven mainframes (test and production).
This is working very well – kudos to your group. We are working
with an application group that adamantly insists that they must use
the IMS Adapter because they can find no examples of coding
JMS to use the IIH Header, and have even stated that their
research indicates they cannot code JMS to use the IIH Header.
“I hope you can find some sample code for us.”

A SOLUTION
This example code builds a message using JMS in a Java
application, which can be sent via WebSphere MQ and the MQ-
IMS Bridge into IMS. The use of WebSphere MQ data conversion
and the output from IMS are also shown.
The message flow from which the examples are drawn is shown
in Figure 1. The message is put by the Java application
JMStoIMSviaWMQ, running using a WMQ for Windows V5.3
queue manager, onto a remote queue (1). This resolves to an MQ-
IMS Bridge queue on the WMQ for z/OS queue manager (2). From
the Bridge queue the message is sent by the MQ-IMS Bridge to
IMS, where the transaction, or, as in this case, command, is
processed by IMS. The response is then sent back to the reply-
to queue (3) specified on the initial message.
The sample code is listed in the appendices following this article.
The message format expected by IMS is:
 LLZZ<tcode><data>

To achieve this we build the message shown in Figure 2.
In the case of this simple example the <tcode> is replaced by the
IMS command /DIS and the data is ‘POOL LUMP’. All IMS systems
using the MQ-IMS Bridge have a LUMP pool, so valid output will
always be received when this command is processed in IMS.
When using the MQ-IMS Bridge to invoke an IMS transaction or
command an MQ-IMS Information Header (MQIIH) is normally

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

added to control the way in which the transaction is invoked and
the information the transaction or command is passed in its IMS
header. The MQIIH can also be used to control the WebSphere
MQ data conversion of the message and the response.
The MQ-IMS Bridge expects this message:
 ØØØØØØØØ: C9C9 C84Ø ØØØØ ØØØ1 ØØØØ ØØ54 ØØØØ Ø311 'IIH'
 ØØØØØØ1Ø: ØØØØ Ø1F4 D4D8 C9D4 E2E5 E24Ø ØØØØ ØØØØ '...4MQIMSVS'
 ØØØØØØ2Ø: 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø ' '
 ØØØØØØ3Ø: D4D8 C9D4 E2E5 E24Ø D4C1 E3E3 C8F3 E6E2 'MQIMSVS '
 ØØØØØØ4Ø: ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ '................'
 ØØØØØØ5Ø: 4ØFØ C34Ø ØØ12 ØØØØ 61C4 C9E2 4ØD7 D6D6 ' ØC/DIS POO'
 ØØØØØØ6Ø: D34Ø D3E4 D4D7 'L LUMP '

This message format, displayed using the WebSphere MQ sample
programs CSQ4BCG1 or amqsbcg, is the one needed to input the
command message /DIS POOL LUMP to IMS through the MQ-IMS
Bridge.
The sample code demonstrates the techniques necessary to get
messages from JMS into IMS. The MQIIH Format and

Figure 1: Message flow from which examples are drawn

IMS

OTMA

IMS
command
processor

OTMA

WMQ z/OS

MQ-
IMS
Bridge

XMITQ
amqsbcg

JMQItoIMSviaWMQ.java

WMQ Win2000

3

XMITQ

Network

!!!!!

"""""

"""""

"""""

"""""

"""""

"""""

!!!!! 21

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ReplyToFormat fields, together with normal MQ data conversion
routines, get the data into the correct character set and encoding.
The simple sample code produces this message:
 ØØØØØØØØ: 4949 482Ø Ø1ØØ ØØØØ 54ØØ ØØØØ 22Ø2 ØØØØ 'IIHT..."...'
 ØØØØØØ1Ø: B8Ø4 ØØØØ 4D51 494D 5356 532Ø ØØØØ ØØØØ '¸...MQIMSVS'
 ØØØØØØ2Ø: 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø ' '
 ØØØØØØ3Ø: 4D51 494D 5356 532Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 'MQIMSVS '
 ØØØØØØ4Ø: ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ '................'
 ØØØØØØ5Ø: 2Ø3Ø 432Ø 12ØØ ØØØØ 2F44 4953 2Ø5Ø 4F4F ' ØC/DIS POO'
 ØØØØØØ6Ø: 4C2Ø 4C55 4D5Ø 'L LUMP '

THE TECHNIQUES

Using MQ JMS extensions
MQQueueConnectionFactory and MQQueue classes are used
because some of the parameters needed to build the correct
format message are set with methods supported by these classes.

Connecting to MQ
The connection to the queue manager to be used is normally
defined externally to the program, using the JNDI interface to
enable application portability. It can also be coded into the
application as follows:
 // Set the Queue Manager and Queue names to be used
 // queue manager will be used
 private final String QUEUE_MANAGER = " ";

And used by the code as follows:

MQMD

IMS transaction dataIMS information
header

12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123
12345678901234567890123

1234567890123456
1234567890123456
1234567890123456
1234567890123456
1234567890123456

MQIH LLZZ<tcode><data>

Figure 2: Message structure required to deliver the format
expected by IMS

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 // Set bindings mode and define the queue manager to use
 factory.setTransportType(JMSC.MQJMS_TP_BINDINGS_MQ);
 factory.setQueueManager(QUEUE_MANAGER);

Building the message without an MQRFH2
Neither the MQ-IMS Bridge nor IMS is capable of handling the
MQRFH2 so it is necessary to build the message without it. The
JMS specification allows the target client to be set to non-JMS;
this suppresses the generation of the header information usually
carried in the MQRFH2 – the code extract below shows how this
is coded.
 // queue.targetClient must be set to JMSC.MQJMS_CLIENT_NONJMS_MQ
 // as the target client is WMQ and not a JMS application.
 // This causes the message to be produced without an MQRFH2
 // header and thus be suitable for use by a non-JMS program
 queue.setTargetClient(JMSC.MQJMS_CLIENT_NONJMS_MQ);

Building and writing the message
The message data required by the MQ-IMS Bridge is a mixture of
integers, strings, and byte arrays. To enable the output of these
types of data from a JMS program a BytesMessage must be built.
The string, as required by the target programs, is an array of
characters, not a string with a defining length indicator such as that
written by the WriteObject method. To accomplish this the string
is written as a byte array as shown in the method addChars.
In this example the values of the data required in the message are
set simply with constants and then written, in order, to the
message.

Using the MQMD and MQIIH Format fields to convert the data
The application sets the Encoding and CodedCharSetId in the
MQMD and MQIIH to values appropriate for the platform on which
the application is running.
Setting the MQMD.Format field to MQIMS allows WebSphere MQ
to convert the character and integer data in the MQIIH, and setting
the MQIIH.Format field allows WebSphere MQ to convert the
LLZZ<data>.

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This conversion is done when the receiver channel puts to a bridge
queue on WebSphere MQ for z/OS, not, as may have been
expected, when the MQ-IMS Bridge gets the message.
Setting the MQMD.ReplyToFormat field to MQIMSVS allows
WebSphere MQ to convert the LLZZ<data> of the reply message,
as this field is used as the MQIIH.Format field of the reply.
The MQ-IMS Bridge sets the Encoding and CodedCharSetId fields
of the MQMD and MQIIH when generating the reply message.
When the receiving application uses the MQGMO_CONVERT
option the data is returned in the format and encoding requested
by the application.

Handling exceptions
To aid debugging it is important to capture the linked exception.
The exception will indicate that a problem occurred with the JMS
transport layer; the linked exception will give the WebSphere MQ
return code, which is necessary to debug transport problems.
catch (JMSException je) {
 System.out.println("Exception in JMStoIMSviaWMQ: " +je);
 Exception e = je.getLinkedException();
 if (e != null) {
 System.out.println("linked exception: "+e);
 }

For example:
 Exception in JMStoIMSviaWMQ: javax.jms.JMSException: MQJMS2ØØ5:
 failed to create MQQueueManager for 'JOHNJ'
 linked exception: com.ibm.mq.MQException: MQJEØØ1: Completion Code
 2, Reason 2Ø59

APPENDICES
• JMStoIMSviaWMQ.java.
• MQIIH structure.
• The message produced by JMStoIMSviaWMQ.java.

The code shows the output from the WMQ sample program
amqsbcg.

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• The message on the z/OS Bridge queue (conversion by
WMQ).
The message produced by JMStoIMSviaWMQ.java has been
sent to WMQ on z/OS and data conversion was carried out
when the message was put onto the bridge queue. The code
shows the output from the WMQ sample program CSQ4BCG1.

• The response from IMS (on Windows, unconverted).
The code shows the output from the WMQ sample program
amqsbcg.

• Response from IMS (on Windows, converted by WMQ).
The code shows the output from a modified version of the
WMQ sample program amqsbcg. The program was changed
to specify MQGMO_CONVERT on the MQGET.

JMStoIMSviaWMQ.JAVA
//* Module Name : JMStoIMSviaWMQ
//* Environment : JMS with WebSphere MQ as transport layer
//* Description : This program shows how to construct a message
//* which will be used by a non-JMS consumer.
//* The consumer in this example is IMS accessed
//* through the MQ-IMS Bridge.
//* Alter the QUEUE_MANAGER and QUEUE attributes
//* before using. As written it will use the
//* default WebSphere MQ Queue Manager,
//* a queue "Q1", and a reply queue "Q1_REPLY"
//* Limitations : This program was tested with WebSphere MQ V5.3
//* Function : This program takes no parameters and produces
//* a message which if sent via WMQ to IMS
//* executes the IMS /DIS POOL LUMP command.
import java.util.*;
import java.lang.Exception;
import javax.jms.*;
import javax.naming.*;
import com.ibm.mq.jms.*;
public class JMStoIMSviaWMQ {
 private BytesMessage message = null;
 // Set the Queue Manager and Queue names to be used
 // If the lines below are unchanged, queues Q1 and Q1_REPLY
 // on the default queue manager will be used
 private final String QUEUE_MANAGER = "";
 private final String QUEUE = "Q1";
 private final String REPLY_TO = "Q1_REPLY";

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 // Define constants to hold the values to be used
 // in the fields of the MQMD and MQIIH in the message
 private String strucID = "IIH ";
 private int version = 1;
 private int strucLength = 84;
 private int encoding = 546;
 private int codedCharSetID = 12Ø8;
 private String format = "MQIMSVS ";
 private int flags = Ø;
 private String lTermOverride = " ";
 private String mfsMapName = " ";
 private String replyToFormat = "MQIMSVS ";
 private String authenticator = " ";
 private byte[] tranInstanceID = new byte[16];
 private String tranState = " ";
 private String commitMode = "Ø";
 private String securityScope = "C";
 private String reserved = " ";
 // Define the content of the message body
 public String content = "/DIS POOL LUMP";
 public static void main(String[] args) {
 JMStoIMSviaWMQ PutMessage = new JMStoIMSviaWMQ();
 PutMessage.go();
 }
 //*
 //* Constructor
 //*
 JMStoIMSviaWMQ() {
 super();
 }
 //*
 //* Set up the necessary JMS objects, build and send the message
 //*
 private void go() {
 try {
 MQQueueConnectionFactory factory = null;
 MQQueue queue = null;
 MQQueue replyToQueue = null;
 QueueConnection connection = null;
 QueueSession session = null;
 QueueSender sender = null;
 System.out.println("Creating a QueueConnectionFactory");
 factory = new MQQueueConnectionFactory();
 // Set bindings mode and define the queue manager to use
 factory.setTransportType(JMSC.MQJMS_TP_BINDINGS_MQ);
 factory.setQueueManager(QUEUE_MANAGER);
 System.out.println("Creating a QueueConnection");
 connection = factory.createQueueConnection();
 System.out.println("Starting the connection");
 connection.start();

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 System.out.println("Creating QueueSession");
 boolean transacted = false;
 int acknowledgeMode = Session.AUTO_ACKNOWLEDGE;
 session = connection.createQueueSession(transacted,
 acknowledgeMode);
 System.out.println("Creating ReplyTo Queue");
 replyToQueue = new MQQueue("",REPLY_TO);
 System.out.println("Creating Queue");
 queue = new MQQueue();
 queue.setBaseQueueName(QUEUE);
 queue.setPersistence(DeliveryMode.NON_PERSISTENT);
 // queue.targetClient must be set to JMSC.MQJMS_CLIENT_NONJMS_MQ
 // as the target client is WMQ and not a JMS application.
 // This causes the message to be produced without an MQRFH2
 header
 // and thus be suitable for use by a non-JMS program
 queue.setTargetClient(JMSC.MQJMS_CLIENT_NONJMS_MQ);
 // Set the Encoding and CodedCharSetId in the MQMD
 queue.setEncoding(encoding);
 queue.setCCSID(codedCharSetID);
 System.out.println("Creating QueueSender");
 sender = session.createSender(queue);
 System.out.println("Creating BytesMessage");
 message = session.createBytesMessage();
 // Set the Format and ReplyToQ in the MQMD
 message.setStringProperty("JMS_IBM_Format","MQIMS ");
 message.setJMSReplyTo(replyToQueue);
 // Write the output message
 // Data appears in the message in the order it is written.
 // buildMessage writes all the data into the message,
 // it assumes that the values have been set prior to it being
 // invoked - this is done using constants in this example
 System.out.println("Building BytesMessage");
 buildMessage();
 System.out.println("Sending BytesMessage");
 sender.send(message);
 System.out.println("Closing objects");
 sender.close();
 session.close();
 connection.close();
 System.out.println("Finished");
 }
 catch (JMSException je) {
 System.out.println("Exception in JMStoIMSviaWMQ: " +je);
 Exception e = je.getLinkedException();
 if (e != null) {
 System.out.println("linked exception: "+e);
 }
 }
 }
 //*

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 //* Build the message to put onto the queue
 //* - The message is built using BytesMessage; this message
 //* type is for encoding a body to match an existing message
 //* format. Fields are added to the message in the order in
 //* which they appear.
 //*
 private void buildMessage() {
 buildHeader();
 buildBody();
 }
 //*
 //* Build the MQIIH with the defined value
 //*
 //* The C declaration of the MQIIH structure is:
 //* typedef struct tagMQIIH MQIIH;
 //* struct tagMQIIH {
 //* MQCHAR4 StrucId; /* Structure identifier */
 //* MQLONG Version; /* Structure version number */
 //* MQLONG StrucLength; /* Length of MQIIH structure */
 //* MQLONG Encoding; /* Reserved */
 //* MQLONG CodedCharSetId; /* Reserved */
 //* MQCHAR8 Format; /* MQ format name of data that
 follows
 //* MQIIH */
 //* MQLONG Flags; /* Flags */
 //* MQCHAR8 LTermOverride; /* Logical terminal override */
 //* MQCHAR8 MFSMapName; /* Message format services map name
*/
 //* MQCHAR8 ReplyToFormat; /* MQ format name of reply message
*/
 //* MQCHAR8 Authenticator; /* RACF password or passticket */
 //* MQBYTE16 TranInstanceId; /* Transaction instance identifier
*/
 //* MQCHAR TranState; /* Transaction state */
 //* MQCHAR CommitMode; /* Commit mode */
 //* MQCHAR SecurityScope; /* Security scope */
 //* MQCHAR Reserved; /* Reserved */
 //* };
 //*
private void buildHeader() {
 try {
 addChars(strucID);
 message.writeInt(version);
 message.writeInt(strucLength);
 message.writeInt(encoding);
 message.writeInt(codedCharSetID);
 addChars(format);
 message.writeInt(flags);
 addChars(lTermOverride);
 addChars(mfsMapName);

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 addChars(replyToFormat);
 addChars(authenticator);
 message.writeBytes(tranInstanceID);
 addChars(tranState);
 addChars(commitMode);
 addChars(securityScope);
 addChars(reserved);
 } catch(JMSException je) {
 System.out.println("Exception in buildHeader: " +je);
 Exception e = je.getLinkedException();
 if (e != null) {
 System.out.println("linked exception: "+e);
 }
 }
 }
 //*
 //* Build up the body of the text using the content specified
 //* A message to be sent into IMS has a format LLZZ<data> where:
 //* - LL is a two byte integer defining the length of the message
 //* segment
 //* - ZZ is two flag bytes set to NULL
 //* - <data> is the application data structure being sent into IMS
 //* (in this case it is in variable 'content')
 //*
 private void buildBody() {
 try {
 // Find the length of the body section + LLZZ
 short bodyLength = (short)(content.length() + 4);
 // Two bytes to represent the length of the body
 message.writeShort(bodyLength);
 // Two null bytes
 message.writeShort((short)Ø);
 // Add the message content
 addChars(content);
 } catch(JMSException je) {
 System.out.println("Exception in buildBody: " +je);
 Exception e = je.getLinkedException();
 if (e != null) {
 System.out.println("linked exception: "+e);
 }
 }
 }
 //* Add a String to the message, character by character
 //*
 private void addChars(String chars) {
 try {
 byte[] b = chars.getBytes();
 message.writeBytes(b);
 } catch(JMSException je) {
 System.out.println("Exception in addChars: " +je);

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Exception e = je.getLinkedException();
 if (e != null) {
 System.out.println("linked exception: "+e);
 }
 }
 }
}

MQIIH structure
/* MQIIH Structure -- IMS Interface Header */
 typedef struct tagMQIIH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Length of MQIIH structure */
 MQLONG Encoding; /* Reserved */
 MQLONG CodedCharSetId; /* Reserved */
 MQCHAR8 Format; /* MQ Format name */
 MQLONG Flags; /* Reserved */
 MQCHAR8 LTermOverride; /* Logical terminal override */
 MQCHAR8 MFSMapName; /* Message format services map name */
 MQCHAR8 ReplyToFormat; /* MQ Format name of reply message */
 MQCHAR8 Authenticator; /* RACF password or pass ticket */
 MQBYTE16 TranInstanceId; /* Transaction instance id */
 MQCHAR TranState; /* Transaction state */
 MQCHAR CommitMode; /* Commit mode */
 MQCHAR SecurityScope; /* Security scope */
 MQCHAR Reserved; /* Reserved */
 } MQIIH;

Message produced by JMQtoIMSviaWMQ.JAVA
****Message descriptor****
 StrucId : 'MD ' Version : 2
 Report : Ø MsgType : 1
 Expiry : -1 Feedback : Ø
 Encoding : 546 CodedCharSetId : 12Ø8
 Format : 'MQIMS '
 Priority : 4 Persistence : Ø
 MsgId : X'414D512Ø514D5F6A6F686E2Ø2Ø2Ø2Ø2Ø2E63913D2ØØØØ2Ø1'
 CorrelId : X'ØØ'
 BackoutCount : Ø
 ReplyToQ : 'Q1_REPLY '
 ReplyToQMgr : 'JOHNJ '
 ** Identity Context
 UserIdentifier : 'johnj '
 AccountingToken :
 X'16Ø1Ø515ØØØØØØB72EEA1114Ø86F4A3A37Ø67FF4Ø1ØØØØØØØØØØØØØØØØØØØØØB'
 ApplIdentityData : ' '
 ** Origin Context

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 PutApplType : '11'
 PutApplName : 'C:\WINNT\SYSTEM32\java.exe '
 PutDate : '2ØØ2Ø925' PutTime : 'Ø8Ø3Ø555'
 ApplOriginData : ' '
 GroupId : X'ØØ'
 MsgSeqNumber : '1'
 Offset : 'Ø'
 MsgFlags : 'Ø'
 OriginalLength : '-1'
**** Message ****
 length - 1Ø2 bytes
ØØØØØØØØ: 4949 482Ø Ø1ØØ ØØØØ 54ØØ ØØØØ 22Ø2 ØØØØ 'IIHT..."...'
ØØØØØØ1Ø: B8Ø4 ØØØØ 4D51 494D 5356 532Ø ØØØØ ØØØØ '¸...MQIMSVS'
ØØØØØØ2Ø: 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø ' '
ØØØØØØ3Ø: 4D51 494D 5356 532Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 'MQIMSVS '
ØØØØØØ4Ø: ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ '................'
ØØØØØØ5Ø: 2Ø3Ø 432Ø 12ØØ ØØØØ 2F44 4953 2Ø5Ø 4F4F ' ØC/DIS POO'
ØØØØØØ6Ø: 4C2Ø 4C55 4D5Ø 'L LUMP '

Message on z/OS bridge queue (conversion by WMQ)
****Message descriptor****
 StrucId : 'MD ' Version : 1
 Report : Ø MsgType : 1
 Expiry : -1 Feedback : Ø
 Encoding : 785 CodedCharSetId : 5ØØ
 Format : 'MQIMS '
 Priority : 4 Persistence : Ø
 MsgId : X'414D512Ø4A4F484E4A2Ø2Ø2Ø2Ø2Ø2Ø2Ø3D6C9Ø3D2ØØØ12Ø1'
 CorrelId : X'ØØ'
 BackoutCount : Ø
 ReplyToQ : 'Q1_REPLY '
 ReplyToQMgr : 'JOHNJ '
 ** Identity Context
 UserIdentifier : 'JOHNJ '
 AccountingToken :
 X'16Ø1Ø515ØØØØØØB72EEA1114Ø86F4A3A37Ø67FF4Ø1ØØØØØØØØØØØØØØØØØØØØØB'
 ApplIdentityData : ' '
 ** Origin Context
 PutApplType : '11'
 PutApplName : 'C:\WINNT\SYSTEM32\java.exe '
 PutDate : '2ØØ2Ø924' PutTime : '15271673'
 ApplOriginData : ' '
**** Message ****
 length - 1Ø1 bytes
ØØØØØØØØ: C9C9 C84Ø ØØØØ ØØØ1 ØØØØ ØØ54 ØØØØ Ø311 'IIH'
ØØØØØØ1Ø: ØØØØ Ø1F4 D4D8 C9D4 E2E5 E24Ø ØØØØ ØØØØ '...4MQIMSVS'
ØØØØØØ2Ø: 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø ' '
ØØØØØØ3Ø: D4D8 C9D4 E2E5 E24Ø D4C1 E3E3 C8F3 E6E2 'MQIMSVS '
ØØØØØØ4Ø: ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ '................'

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ØØØØØØ5Ø: 4ØFØ C34Ø ØØ11 ØØØØ 61C4 C9E2 4ØD7 D6D6 ' ØC/DIS POO'
ØØØØØØ6Ø: D34Ø D3E4 D4D7 'L LUMP '

Response from IMS (on Windows, unconverted)
****Message descriptor****
 StrucId : 'MD ' Version : 2
 Report : Ø MsgType : 2
 Expiry : -1 Feedback : Ø
 Encoding : 785 CodedCharSetId : 5ØØ
 Format : 'MQIMS '
 Priority : 4 Persistence : 1
 MsgId : X'C3E2D84ØD4D8F3F54Ø4Ø4Ø4Ø4Ø4Ø4Ø4ØB8476ECØ63D71285'
 CorrelId : X'414D512Ø4A4F484E4A2Ø2Ø2Ø2Ø2Ø2Ø2Ø3D6C9Ø3D2ØØØ1AØ1'
 BackoutCount : Ø
 ReplyToQ : ' '
 ReplyToQMgr : 'MQ35 '
 ** Identity Context
 UserIdentifier : 'johnj '
 AccountingToken :
 X'16Ø1Ø515ØØØØØØB72EEA1114Ø86F4A3A37Ø67FF4Ø1ØØØØØØØØØØØØØØØØØØØØØB'
 ApplIdentityData : ' '
 ** Origin Context
 PutApplType : '2Ø'
 PutApplName : 'PROTOGRPIYEAZI6A '
 PutDate : '2ØØ2Ø924' PutTime : '1544Ø465'
 ApplOriginData : ' '
 GroupId : X'ØØ'
 MsgSeqNumber : '1'
 Offset : 'Ø'
 MsgFlags : 'Ø'
 OriginalLength : '-1'
**** Message ****
 length - 196 bytes
ØØØØØØØØ: C9C9 C84Ø ØØØØ ØØØ1 ØØØØ ØØ54 ØØØØ Ø311 'ÉÉÈ@.......T....'
ØØØØØØ1Ø: ØØØØ ØØØØ D4D8 C9D4 E2E5 E24Ø ØØØØ ØØØØ '....ÔØÉÔâåâ@....'
ØØØØØØ2Ø: 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø C4C6 E2C4 E2D7 D6F1 '@@@@@@@@ÄÆâÄâ×Öñ'
ØØØØØØ3Ø: 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø 4Ø4Ø '@@@@@@@@@@@@@@@@'
ØØØØØØ4Ø: ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ '................'
ØØØØØØ5Ø: 4ØFØ 4Ø4Ø ØØ17 1BØØ 15D3 E4D4 D74Ø C2E4 '@ð@@.....ÓäÔ×@Âä'
ØØØØØØ6Ø: C6C6 C5D9 4ØD7 D6D6 D37A 15ØØ 451B ØØ4Ø 'ÆÆÅÙ@×ÖÖÓz..E..@'
ØØØØØØ7Ø: E2C9 E9C5 4Ø4Ø 4Ø4Ø 4ØF1 F3F4 D24Ø 4ØC8 'âÉéÅ@@@@@ñóôÒ@@È'
ØØØØØØ8Ø: C9C7 C84Ø 4Ø4Ø 4Ø4Ø F2FØ F8D2 4Ø4Ø D3C9 'ÉÇÈ@@@@@òðøÒ@@ÓÉ'
ØØØØØØ9Ø: D4C9 E34Ø 4Ø4Ø 4Ø4Ø D5D6 D5C5 4Ø4Ø D6E5 'ÔÉã@@@@@ÕÖÕÅ@@Öå'
ØØØØØØAØ: C5D9 C6D3 D6E6 4Ø4Ø 4Ø4Ø 4Ø4Ø 4ØFØ D215 'ÅÙÆÓÖæ@@@@@@@ðÒ.'
ØØØØØØBØ: ØØ14 1BØØ 155C FØF2 F2F6 F761 F1F6 F4F3 '.....\ðòòö÷añöôó'
ØØØØØØCØ: F4F4 5C15 'ôô\. '

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Response from IMS (on Windows, converted by WMQ)
****Message descriptor****
 StrucId : 'MD ' Version : 2
 Report : Ø MsgType : 2
 Expiry : -1 Feedback : Ø
 Encoding : 546 CodedCharSetId : 437
 Format : 'MQIMS '
 Priority : 4 Persistence : 1
 MsgId : X'C3E2D84ØD4D8F3F54Ø4Ø4Ø4Ø4Ø4Ø4Ø4ØB8476ECØ63D71285'
 CorrelId : X'414D512Ø4A4F484E4A2Ø2Ø2Ø2Ø2Ø2Ø2Ø3D6C9Ø3D2ØØØ1AØ1'
 BackoutCount : Ø
 ReplyToQ : ' '
 ReplyToQMgr : 'MQ35 '
 ** Identity Context
 UserIdentifier : 'johnj '
 AccountingToken :
 X'16Ø1Ø515ØØØØØØB72EEA1114Ø86F4A3A37Ø67FF4Ø1ØØØØØØØØØØØØØØØØØØØØØB'
 ApplIdentityData : ' '
 ** Origin Context
 PutApplType : '2Ø'
 PutApplName : 'PROTOGRPIYEAZI6A '
 PutDate : '2ØØ2Ø924' PutTime : '1544Ø465'
 ApplOriginData : ' '
 GroupId : X'ØØ'
 MsgSeqNumber : '1'
 Offset : 'Ø'
 MsgFlags : 'Ø'
 OriginalLength : '-1'
**** Message ****
 length - 196 bytes
ØØØØØØØØ: 4949 482Ø Ø1ØØ ØØØØ 54ØØ ØØØØ 11Ø3 ØØØØ 'IIHT.......'
ØØØØØØ1Ø: ØØØØ ØØØØ 4D51 494D 5356 532Ø ØØØØ ØØØØ '....MQIMSVS'
ØØØØØØ2Ø: 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 4446 5344 535Ø 4F31 ' DFSDSPO1'
ØØØØØØ3Ø: 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø2Ø ' '
ØØØØØØ4Ø: ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ ØØØØ '................'
ØØØØØØ5Ø: 2Ø3Ø 2Ø2Ø 17ØØ 1BØØ ØA4C 554D 5Ø2Ø 4255 ' Ø LUMP BU'
ØØØØØØ6Ø: 4646 4552 2Ø5Ø 4F4F 4C3A ØA45 ØØ1B ØØ2Ø 'FFER POOL:.E... '
ØØØØØØ7Ø: 5349 5A45 2Ø2Ø 2Ø2Ø 2Ø31 3334 4B2Ø 2Ø48 'SIZE 134K H'
ØØØØØØ8Ø: 4947 482Ø 2Ø2Ø 2Ø2Ø 323Ø 384B 2Ø2Ø 4C49 'IGH 2Ø8K LI'
ØØØØØØ9Ø: 4D49 542Ø 2Ø2Ø 2Ø2Ø 4E4F 4E45 2Ø2Ø 4F56 'MIT NONE OV'
ØØØØØØAØ: 4552 464C 4F57 2Ø2Ø 2Ø2Ø 2Ø2Ø 2Ø3Ø 4BØA 'ERFLOW ØK.'
ØØØØØØBØ: 14ØØ 1BØØ ØA2A 3Ø32 3236 372F 3136 3433 '.....*Ø2267/1643'
ØØØØØØCØ: 3434 2AØA '44*. '

John B Jones, BSc, MSc, MIEE, CEng
IBM Hursley (UK) © IBM 2003

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Free weekly Enterprise IS News

A weekly enterprise-oriented news service is available
free from Xephon. Each week, subscribers receive an e-
mail listing around 40 news items, with links to the full
articles on our Web site. The articles are copyrighted by
Xephon – they are not syndicated, and are not available
from other sources.
To subscribe to this newsletter, send an e-mail to news-
list-request@xephon.com, with the word subscribe in the
body of the message. You can also subscribe to this and
other Xephon e-mail newsletters by visiting this page:

http://www.xephon.com/lists
which contains a simple subscription form.

MQ news

Systems integrator Promenix has recently
announced that it has enabled the INTEG
process group’s JNIOR process control
‘connectivity’ unit to support the latest group
of WebSphere MQ pervasive device
protocols.

The JNIOR is a programmable Java device
with a selection of available I/O resources
onboard. The new IBM protocols allow the
JNIOR devices to be utilized in a variety of
industrial control and data acquisition
applications.

Promenix claims that support for the new
protocols, which combine a small bandwidth
requirement with guaranteed message
delivery, will overcome the problems with
low bandwidth and unreliable connections
that are commonly associated with industrial
applications.

For more information contact:
Promenix, 130 Commons Court, Chadds
Ford, PA 19317, USA.
Tel: +1 610 361 1560.
Fax: +1 610 361 7549.
Web: http://www.promenix.com

* * *
IBM’s Transaction and Messaging
Conference, featuring the CICS and
MQSeries product families, takes place at
the Las Vegas Hilton, Las Vegas, Nevada,
USA, February 10-14, 2003.

Billed as the ‘ultimate update’, IBM claims
the conference will equip you with the

transaction and messaging technical skills
you need to excel and extend your e-business
applications.

For more information contact your local
IBM representative.

* * *
IBM and Camstar, a provider of enterprise
Manufacturing Execution Systems (MES),
have recently announced a strategic alliance
to deliver collaborative manufacturing
solutions to the electronics industry.

The joint IBM and Camstar solution is
claimed to improve manufacturing
operations and reduce operational costs by
integrating production information with
supply chain, procurement, and customer
support enterprise solutions.

Under the terms of the agreement the two
companies will jointly market the Camstar
InSite manufacturing execution software
optimized for the IBM WebSphere
infrastructure platform, including the
WebSphere Application Server, WebSphere
MQ, DB2, and eServer pSeries and xSeries
hardware.

For more information contact:
Camstar, 900 E Hamilton Ave, Suite 400,
Campbell, CA 95008, USA.
Tel: +1 408 559 5700.
Fax: +1 408 558 9350.
Web: http://www.camstar.com

* * *

x
xephon

	MQSeries First Steps for OS/390
	Can WMQ really send non-text data?
	Procedures in WMQI
	JMS to IMS via WMQ
	MQ news

