

© Xephon plc 2003

April 2003

46

In this issue

MQ
u

p
d

ate

3 Hiding WebSphere MQ behind a
firewall

10 Configuring a Web Client to allow
termination of multiple work
instances

30 MQ Telnet interface for OS/390
45 Creating MQSeries objects with

MQAI
54 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Hiding WebSphere MQ behind a firewall

INTRODUCTION
The intention of this article is not to explain how a firewall works
but to give an overview of some of the services of a firewall. We
shall also look at how these services can be used to allow
connections between remote WMQ components, using WMQ
SupportPac MS81, or, to use its other name, WMQ Internet Pass-
Thru (MQIPT).
Using MQIPT a WMQ client or WMQ server can connect to a
remote WMQ server across the public network. MQIPT provides
a range of options for getting through suitably configured firewalls.
Obviously security is an important issue when traversing the
Internet and so MQIPT can be configured to utilize various
encryption methods. In the course of this article I will discuss the
various features of MQIPT and show how it can be configured.

FIREWALLS
A firewall comprises several different components or services,
each designed to control a different aspect of security for various
types of network traffic, for example, Telnet, HTTP, SOCKS, etc.
These services typically run within the Demilitarized Zone (DMZ).
When a customer installs a firewall they will select those
components that suit their own particular needs. A common setup
would include an HTTP proxy to allow HTTP traffic out through the
firewall and sometimes the firewall will allow incoming HTTP traffic
to access an HTTP server inside the firewall.
Most WMQ customers have their own intranets and use a firewall
to control access to the public network. The WMQ clients and
WMQ servers can easily share and access messages on their
local network, but accessing a WMQ server in another network
requires the cooperation of both the outgoing and incoming firewall
to allow WMQ traffic to flow to the remote location.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A particularly important function of a firewall is to hide the local
servers from the outside world to prevent unauthorized access to
critical data (see Figure 1).
An alternative solution to using MQIPT in a firewall is to place a
WebSphere MQ server in the DMZ of the firewall (see SupportPac
MA86 at http://ibm.com/webspheremq/txppacs/ma86.html for
more information on this subject) and use this as a ‘staging post’
for WMQ messages. The downside of using this approach is the
licensing and administration costs of running another WMQ
server and the potential security risk of storing data on disk drives
in a server in the DMZ. Another possible solution is the use of a
Virtual Private Network (VPN) between the intranets, but this can
require dedicated hardware and/or costly leased lines.

MQIPT
MQIPT is designed to be installed in the DMZ to act as a ‘tunnel’
specifically for WMQ traffic. It will accept a connection request
from an WMQ client or WMQ server and route it to the desired
destination based on predefined configuration data. Once MQIPT

Figure 1: Function and features of a firewall

123456789
123456789
123456789
123456789

WMQ server

WMQ client

Firewall

DMZ

Firewall

Intranet Intranet

HTTP

HTTPS

MQIPT

SOCKS

HTTP

MQIPT
HTTPS

Internet

Firewall Firewall

WMQ
server

DMZ

!!!!!
!!!!!

!!!!!

!!!!!
App server

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

has established the connection and the handshaking process has
completed, WMQ messages are sent and received as on any
other WMQ channel connection.
The only change required to WMQ is on the CONNAME of the
channel that’s being started. It should point to the IP address (or
hostname) and port address of the local MQIPT instead of the real
destination WMQ server. The local MQIPT is configured to
connect to the required destination WMQ server. The WMQ
channel (or WMQ client) will not be aware that it is using MQIPT.
To help decide which of the many features of MQIPT should be
used within your current WMQ structure it is worth considering the
following questions:
• What is the current firewall configuration? Is there:

– an HTTP proxy?
– a SOCKS proxy?
– an application server?

• What type of connections will be made?
– client to QM?
– QM to QM?

• For queue manager to queue manager connections, what
type of channels will be used?
– which end will initiate the connection?

• Is encryption required?
– MQIPT SSL?
– HTTPS?

• What version of MQ will be used?
• Which platform will MQIPT run on?

– Windows?
– AIX?
– Solaris?
– Linux?
– HP?

• Is there an open hole in the firewall just for MQIPT?

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

– should you limit the number of ports opened for outgoing
connections?

The MQIPT book contains many sample configurations and these
can be used as a reference when configuring your own MQIPT
servers. The MQIPT book can be downloaded from http://ibm.com/
webspheremq/txppacs/ms81.html.

ADVANTAGES OF USING MQIPT
Detailed below is a summary of the advantages of using MQIPT.
• It has a very small memory footprint; the executable code is

less than 1MB.
• MQIPT has minimal hardware requirements, eg Pentium II

processor, 128MG RAM, 20MG HDD, or equivalent setup.
• It does not write any user data to disk, thereby improving

security and performance.
• It can be configured to use existing firewall services, ie

SOCKS, HTTP, and HTTPS.
• It can encrypt data using SSL.
• It can be configured to use specific local port addresses for

making outgoing connections.
• It has a servlet version that can be deployed in an application

server.
• It’s free, has full service support for reporting any problems,

and can be downloaded from http://ibm.com/webspheremq/
txppacs/ms81.html.

• A log file is maintained, showing all connection attempts.
• The Java Security Manager can be used to control connections.
• There is no limit to the number of MQIPT servers that can be

chained together.
• One or more MQIPT servers can be administered from a

central point, using a GUI-based admin console.

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

DISADVANTAGES OF USING MQIPT
Detailed below is a summary of the disadvantages of using
MQIPT.
• It adds a point of failure in the WMQ channel connection.
• It may depend on the availability and response of an HTTP

proxy or SOCKS proxy, etc.
• It requires any HTTP proxy or server used along the connection

path to comply with HTTP 1.1 protocols in both directions, ie
from the caller and to the destination.

• It adds another component to be administered as part of your
messaging infrastructure.

• There must be a second MQIPT in the connection path when
using HTTP or SSL tunnelling. In this case, the first MQIPT
wraps the data in HTTP or encrypts the data and the second
MQIPT unwraps the WMQ data from the HTTP headers or
decrypts the data.

PERFORMANCE
Sending data across the Internet introduces certain restrictions
on performance and this is sometimes referred to as Network
Added Delay (NAD). A single end-to-end connection will involve at
least one network service and the availability and performance of
these services will be dependent on other network traffic. Sending
or receiving large amounts of data over a slow or busy link is likely
to highlight this degradation in throughput, just as when using a
browser.
Sample performance tests have been run with MQIPT V1.2 to
show the overhead of using MQIPT in a simple connection, without
using HTTP or SSL, ie no network services were used during the
test and all tests were run on an isolated network. Figure 2 shows
the network configuration used during the test.
A simple WMQ application was run on the test client to put a WMQ
message on a remote queue via a local queue manager (QM).
Another WMQ application running on the test server removed the

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

message from the queue and sent it back to the originator in order
to determine the roundtrip time.
A set of benchmark tests was run without using MQIPT in the
connection path and then the same tests were run again with two
MQIPT servers in the connection, as shown in Figure 2. The
overhead of using MQIPT was then calculated.
Most of the overhead of using MQIPT occurs during the initial
handshaking process to establish the connection to the target
QM. These results exclude this part of the process and show only
the overhead of sending WMQ messages of various sizes.
The test client was able to emulate many concurrent users and
each set of tests was run with a varying number of clients and
different message sizes. Figure 3 shows that when emulating 40
WMQ clients and sending non-persistent messages the overhead
of MQIPT is proportional to the size of the message. The figure
shows the overhead of a message flowing in one direction through
a single MQIPT.
The values given in Figure 3 provide a rough guide to the minimum
overhead of using MQIPT; most network services will add a further
increase to the overhead. Because every customer configuration
is different and the network services used will always vary it is
recommended that you perform your own tests to determine the
overhead of using MQIPT if this is a significant factor.

1234567890
1234567890
1234567890
1234567890

Test
client

WMQ
server

WMQ
Internet
pass-thru

WMQ
Internet
pass-thru

WMQ
server

Test
server

1234567890
1234567890
1234567890
1234567890

Figure 2: Network configuration used during the performance
tests

!!!!! !!!!! !!!!! !!!!! !!!!!
"""""""""""""""""""""""""

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SUMMARY
Using MQIPT in the DMZ will give your QM(s) access to the
outside world, enable a wide range of inter-enterprise connectivity
options, and help to hide your QM(s) from malicious attack.
The performance tests demonstrate that the size of the messages
does have an influence on performance and they should be kept
as small as possible. This should be an important factor when
designing WMQ applications that need to communicate across
the public network.
Phil Blake
WebSphere MQ New Technologies
IBM Hursley (UK) © IBM 2003

Figure 3: Overhead of a message flowing in one direction
through a single MQIPT

Message size (K)

1 2 4 8
0

10
20
30
40
50
60
70
80
90

Overhead

msecs

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Configuring a Web Client to allow termination of
multiple work instances

INTRODUCTION
Have you ever tried to terminate multiple work instances from
Workflow using Workflow Web Client? The general interface lets
you terminate instances one at a time by clicking the ‘Terminate
Process Instance’ button on the instance list. But suppose you
have a development environment comprising 2,000 work instances
and you want to delete them all to load new test data. What would
you do? With the IBM-supplied Web Client interface you have to
delete each instance individually. Let us consider another case.
Suppose you have 2,000 work instances and you need to select
and delete 100 of them. What would you do? With the given
interface you have to use the browser’s search option to locate
each work instance and delete them individually. You may not have
encountered such a situation, but we have. We needed a simple
interface so that users could:
• Delete all/multiple work instances with a single mouse-click.
• Select work instances using an input file and delete them with

a single mouse-click.

Figure 1: The IBM-supplied Web Client work instances scree

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

We came up with the solution that is detailed below. I should warn
readers, however, that although this may not necessarily be the
most efficient solution it is simple, involves minimal code changes,
and is user-friendly.
I would like to thank the IBM MQ Workflow team for providing useful
tips. The modifications I have made to ListViewer.jsp are intended
to help the MQ Workflow development community and it’s not my
intention to infringe any copyright issues.

SELECTING MULTIPLE WORK INSTANCES

Selecting multiple work instances for terminating
Figure 1 shows the IBM-supplied Web Client work instances
screen. This is created by ListViewer.jsp, which can be found at
\Program Files\MQSeries Workflow\cfgs\(Your webclient
configuration)\WebClient\webpages\forms. This is the only file
that needs to be changed to meet all the above requirements,
which is pretty amazing!
In our case, Name is a Document Control Number (DCN), which
is a unique ID we assign for each work instance. Figure 2 shows

Figure 2: Web Client work instances screen when the
LISTViewer.jsp is modified

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the Web Client work instances screen when the ListViewer.jsp is
modified.
To delete all the instances the user can check the box located at
the top left-hand corner, which in turn will select all the checkboxes
located beside the ‘Delete Process Instance’ icon. The checkboxes
are created by changing the JSP coding (see code segment #2
and code segment #3) in Appendix A.
To deselect the check boxes the user simply deselects the check

Figure 3: Prompt screen listing names of work instances

Figure 4: Using the ‘upload’ file feature

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

box located at the top left-hand corner. The functionality for doing
this is provided in the JavaScript function checkAllCheckBoxes()
(see code segment #1 in Appendix A). Alternatively, the user can
deselect some of the work instances if they choose not to delete
them.
After selecting the text boxes the user can terminate the work
instances by clicking the terminate button. A prompt screen
appears listing the ‘Names of the work instances’ as shown in
Figure 3. This is a prompt for confirmation from the user. If the user
doesn’t want to delete the instances they can press the ‘cancel’
button on the pop-up. The functionality for doing this is provided in
the JavaScript function checkAllCheckBoxes() (see code segment
#1).

Select work instances using an input file and terminate
Suppose we need to delete 100 process instances (not in order
or sequence) out of a total of 2,000. Instead of searching for and
selecting each process instance name, using the ‘upload’ file
feature we could put the process instance names in a text file and
programmatically select the matching instances. Figures 4 and 5
illustrate how this feature works.
The user needs to click on the ‘Upload File’ button to select the

Figure 5: Using the ‘upload’ file feature

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

process instances, using the file located on their local drive. A pop-
up window appears, as shown in Figure 4. The user should click
on the ‘Browse’ button and locate the file on the local drive and
click on ‘select’.
The input file is read and the ‘process instances’ matching ‘input
file records’ are checked out. A pop-up window appears, asking
the user to compare the process instances checked with the
records read from the file. There is no button provided to close the
window and the user needs to close this window by clicking the ‘X’

Figure 6: Four instances selected for termination

Figure 7: The instances that the user is about to terminate

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

located in the top right-hand corner.
The functionality for doing this is provided in the JavaScript
functions checkUsingFileInput() and processFile() (see code
segment #4 in Appendix A).

TERMINATING THE INSTANCES AFTER SELECTING
Figure 6 shows that four instances were selected for termination.

Figure 8: Instances that the user has deleted

Figure 9: Prompt to save names of terminated instances

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The four instances may be selected either by ‘checking out
individual instances’ or ‘using the input file’.
To terminate the selected instances the user should click on the
‘Terminate’ button. A pop-up window appears, as shown in Figure
7, indicating the instances that the user is about to terminate. At
this point the user can either cancel the attempt to terminate or
click on OK to confirm termination.
A pop-up window appears, as shown in Figure 8, indicating the
instances that the user has deleted. Upon acknowledging the
notification another pop-up window appears, asking the user
whether the names of the terminated instances need to be saved
(see Figure 9). This feature helps users keep track of terminated
instances. If they need to be saved the instance names will be
written to a text file (termnateList.mmddyy-hhmmss.txt) created
on local drive C:\ (see Figure 10).
The functionality for doing this is provided in JavaScript functions
terminateAllChecked() (see code segment #5 in Appendix A).

CODE
We have to modify ListViewer.jsp, which can be found at \Program

Figure 10: Writing the instance names to a text file

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Files\MQSeries Workflow\cfgs\(Your webclient configuration)
\WebClient\webpages\forms.
Add the code shown in Appendix A, which is italicized, into
ListViewer.jsp exactly as shown. For clarity I have started each
code modification with ‘code change #x begins’ and ended with
‘code change #x ends’. To explain the functionality I have followed
the convention of ‘code segments’. I have included the IBM-
supplied code to demarcate my code and used ellipses wherever
possible.

TROUBLESHOOTING
The easiest way to implement the above changes is to modify
ListViewer.jsp and restart the Web Client Web application if you
are using WebSphere. Taking a back-up of the original
ListViewer.jsp is strongly recommended. However, this can confuse
the ‘normal’ user, who is not used to the Workflow Web Client
screens, with their checkboxes and additional buttons for terminate
and delete.
I would suggest that you create an alias Web Client configuration
and modify the ListViewer.jsp under the alias configuration.
Appendix B details the steps required to create the alias Web
Client configuration FMCADMIN under WebSphere, using the
FMCZUTIL utility.

NOTE
The code is tested in an environment comprising IE, IIS, and
WebSphere, with MQSeries Web Client V3.3.0.3.

APPENDIX A
<%@ page language="java" contentType="text/html"
errorPage="ViewError.jsp"

 %>

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<html>
...
...
...
<head>
 <title>
 <%if (type == SessionContext.LISTS) {%>
 <%=context.get("ListViewer.Lists")%>
 <%} else {%>
 <%=context.get("ListViewer.Of", new String[] { distype, list.name()
})%>
 <%}%>
 </title>
 <link rel="stylesheet" type="text/css" href="../webclientstyle.css">
 <style type="text/css">
 <!--
 td
 {
 font-size :8pt;
 font-family :Arial, Helvetica, sans-serif;
 }
 th
 {
 font-size :1Øpt;
 font-weight :bold;
 }
 //-->
 </style>
 <script language='JavaScript'>
// Code change #Ø begins
 var termProp1 = new Array();
 var termProp2 = new Array();
 var termProp3 = new Array();
 var numOfTermInst=Ø;
 // boolean reLoad = false;
//Code change #Ø ends
 function fillForm(doc, name, owner, user, cmd, canEmail)
 {

 }
//code change #1 begins
//The following JavaScript function allows the user to check out the
//checkbox located at the left top corner, which in turn would select
//all the checkboxes located beside the "Delete Process Instance" icon.
//To deselect the check boxes, the user simply has to deselect the
check //box located at the left top corner.
// Code Segment #1 begins

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 function checkAllCheckBoxes(){
 //alert ("inst="+document.f2.inst);
 if(document.f2.inst==null){
 document.f1.checkAll.checked = false;
 }
 else{
 if (document.f1.checkAll.checked == true){
 if (document.f2.inst.length==1){
 document.f2.inst.checked=true;
 }
 else{
 for(var i=Ø;i<document.f2.inst.length;i++)
 {//alert(document.f2.inst[i]);
 document.f2.inst[i].checked=true;}
 }
 }
 else
 if (document.f2.inst.length==1){
 document.f2.inst.checked=true;
 }
 else{
 {
 for(var i=Ø;i<document.f2.inst.length;i++)
 {document.f2.inst[i].checked=false;}
 }
 }
 }
 }
// Code Segment #1 ends
// Code Segment #5 begins
/* The following function terminates the instances selected and is
executed when terminate button is clicked by the user. The selected
instances ID (generated by workflow) are passed as an array. Each id is
concatenated to another string /MQWFClient-FMCWEB/servlet/
Main?command=terminateInstance&id=ID,to form the URL. The URL so formed
is submitted using GET method using Microsoft.XMLHTTP ActivXObject. The
instance names are concatenated into a text string myalert1 and is used
to write to the local file and to prompt the user. Microsoft FileSystem
Object is used to write the text file. The variable fileName may be
modified by the user to suit his/her requirement.
*/
 function terminateAllChecked(){
 var myAlert1=null;
 var strform=null;
 var url;
 var urlText ;
 var http;
 var check1=true;
 if(document.f2.inst==null){

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 alert("There are NO instances");
 }
 else{
 if (document.f2.inst.length==1){
 if(document.f2.inst.checked==true){
 alert("document.f2.inst.checked "+document.f2.inst.checked);
 if (myAlert1==null){
 myAlert1="\n"+termProp3[Ø];
 }
 }
 if(confirm("You are about to terminate the following
instance \n"+myAlert1)){
 alert(document.f2.inst.checked);
 if(document.f2.inst.checked==true){
 url = fnSplit(termProp2[i],"this.href =");
 url= fnSplit(url,"'");
 // url ="/MQWFClient-FMCWEB/servlet/
Main?command=terminateInstance&id="+termProp2[Ø];
 //url="/MQWFClient-FMCWEB/servlet/
Main?command=terminateInstance&id=UAAAAAEACABiAAAAAAAAAAAAAAABAAdAAAAAAAAAAAAAUA%3D%3D"
;
 //alert("url"+url);
 http = new ActiveXObject('Microsoft.XMLHTTP');
 http.open('GET', url, false);
 http.send();
 strform=http.responseText;
 }
 document.write();
 //document.write(strform);
 alert("The following instance has been deleted \n"+myAlert1);
 }
 }
 else{
 for(var i=Ø;i<document.f2.inst.length;i++){
 if(document.f2.inst[i].checked==true){
 if (myAlert1==null){
 myAlert1="\n"+termProp3[i];
 }
 else{
 myAlert1=myAlert1+"\n"+termProp3[i];
 }
 }
 }
 if(confirm("You are about to terminate the following
instances \n"+myAlert1)){
 try{
 for(var
i=Ø;((i<document.f2.inst.length)&&(check1==true));i++){
//

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

alert("document.f2.inst[i].checked"+document.f2.inst[i].checked+"i="+i+"check1=
"+check1);
 if(document.f2.inst[i].checked==true){
 url = fnSplit(termProp2[i],"this.href =");
 url= fnSplit(url,"'");
 http = new ActiveXObject('Microsoft.XMLHTTP');
 //post has been replaced with get
 http.open('GET', url, false);
 http.send();
 //alert(http.statusText);
 if(http.statusText!="ok")
 { alert("resopnse"+http.statusText+"Could terminate
only : "+i);
 check1=false;}
 strform=http.responseText;
 }
 }
 document.open();
 document.write(strform);
 document.close();
 alert("The following instances have been deleted
\n"+myAlert1);
 if(confirm("Do u wanto save the list")){
 try{
 var myDate= new Date();
 var fileSuffix=
myDate.getDate()+(myDate.getMonth()+1)+ myDate.getYear()+"-
"+myDate.getHours()+myDate.getMinutes()+myDate.getSeconds();
 //If you want to save it diffrent file name or drive pleas
change the variable fileName
 var fileName = "C:\\terminateList"+fileSuffix+".txt";
 var fso = new
ActiveXObject("Scripting.FileSystemObject");
 var file = fso.CreateTextFile(fileName, true);
 file.WriteLine("The following Work Instances have been
deleted on "+ myDate);
 file.WriteLine(myAlert1);
 file.Close();
 alert("The list can be found at :"+fileName+ " on your
local machine");
 }
 catch(e){
 alert("The list could not be written to file"+e);
 }
 }
 }
 catch(e){
 alert("The following instances COULD NOT BE deleted
\n"+e);

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 }
 }
 }
 }
 }
 function fnSplit(string1,delimiter)
{
 var arr;
 var str;
 str = string1;
 arr = str.split(delimiter);
 return arr[1];
}
// Code Segment #5 ends
// Code Segment #4 begins
// Following function allows the user to input the names of the process
// instances using a file. User may browse the local file directories
to
// select the file and then click on the select button to pass the file
// to function processFile()
function checkUsingFileInput(){
 var selectedFileName="my file";
 var strHtml='<html>\n<head>';
 strHtml +='<script type="text/javascript" language="javascript">\n';
 strHtml +='function inputFileName(){\n';
 strHtml +='selectedFileName=document.FileInput.file.value;\n';
 // strHtml +='alert(\"hi\"+selectedFileName);\n';
 strHtml
+='window.opener.processFile(document.FileInput.file.value);\n'
 strHtml +='window.close();';
 strHtml +='}<\/script>\n';
 strHtml=strHtml+'<link rel=\"stylesheet\" type=\"text\/css\"
 href=\"..\/webclientstyle.css\"><\/head>\n<body>\n<form
 name=\'FileInput\' method=\'POST\'>\n';
 strHtml=strHtml+'<input type=\"file\" name=\"file\">\n<\/br><\/br>';
 strHtml=strHtml+'<input type=\"button\" value=\"Select\"';
 strHtml=strHtml+'onClick=\"inputFileName()\">';
 strHtml=strHtml+'\n<\/br><\/br>';
 strHtml=strHtml+'<\/form>\n';
 strHtml=strHtml+'<script type=\"text\/javascript\">\n';
 strHtml=strHtml+'document.FileInput.file.focus()\n';
 strHtml=strHtml+'<\/script>';
 strHtml=strHtml+'<\/body><\/html>';
 var newwindow=
window.open('','SelectFile','width=6ØØ,height=1ØØ,screenX=1ØØ,screenY=Ø,
toolbar=no,status=no,scrollbars=yes,location=no,menubar=no,directories=no');
 var newdoc=newwindow.document;
 newdoc.open();
 newdoc.write(strHtml);

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 newdoc.close();
 newwindow.focus();
 }
// Following function uses Scripting.FileSystemObject to read the file
// selected. Those of process instances that are matching are checked.
// The records readfrom file are written to a pop-up window to allow
the
// user to compare.Some business specific code that validates the file
// records has been commented out
 function processFile(fileName) {
 var xFile=fileName;
 // alert("xFile"+xFile);
 var instNameFromFile = new Array();
 try{
 var fso2= new ActiveXObject("Scripting.FileSystemObject");
 var f2= fso2.OpenTextFile(xFile, 1);
 var numOfFileRecords=Ø;
 var ctr1=1;
 var fileRecord;
 var pageTitle;
 var strHtml1='<html>\n<head>';
 strHtml1=strHtml1+'<link rel=\"stylesheet\" type=\"text\/css\"
href=\"..\/webclientstyle.css\"><\/head>\n<body>\n<form
name=\'FileInput\' method=\'POST\'>\n';
 strHtml1=strHtml1+'<\/body><\/html>';
 pageTitle=" Following records are read from the file: <i>
"+xFile+"<\/i><\/B>";
pageTitle=pageTitle+" <p> Please compare the process
instances checked with the records read from the file"+"<\/p>";
 var fileWindow=
window.open('','writeFile','width=6ØØ,height=4ØØ,screenX=1ØØ,screenY=Ø,toolbar=no,status=no,
scrollbars=yes,location=no,menubar=no,directories=no');
 var fileDoc=fileWindow.document;
 fileDoc.open();
 fileDoc.write (pageTitle);
 while(!f2.AtEndOfStream)
 {
 fileRecord=f2.ReadLine();
 instNameFromFile[numOfFileRecords]=fileRecord;
 // alert("instNameFromFile[numOfFileRecords]"+numOfFileRecords+"
"+instNameFromFile[numOfFileRecords]);
 fileRecord="Record No:
"+ctr1+" "+fileRecord+"<\/br>";
 fileRecord=strHtml1+fileRecord;
 fileDoc.write (fileRecord);
 ctr1 ++;
 numOfFileRecords ++;
 }
 fileDoc.close();

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 for(var i=Ø;i<numOfFileRecords;i++){
 // if(instNameFromFile[i].length == 14){
 for(var j=Ø;j<=numOfTermInst;j++){
 // alert("termProp3[j]"+termProp3[j]);
 if(termProp3[j]==instNameFromFile[i]){
 document.f2.inst[j].checked=true;
 }
 }
 // }
 // else{
 // alert(instNameFromFile[i]+" is of invalid length. It should be of
14 digits in length");
 // }
 }
 }
 catch(e){
 alert(" Failed to read");
 }
}
 // Code Segment #4 ends
 //code change #1 ends
 </script>
</head>
<body>
...
...
...
<!-- Create the heading for the list table ---------------------->
<div class="title">
 <%if (type == SessionContext.LISTS) {%>
 <%=context.get("ListViewer.ListsHeader", String.valueOf(count))%>

 <%} else {%>
 <%=context.get("ListViewer.Of", new String[] { distype, list.name()
})%> (<%=count%>)
 <%}%>

<!-- code change #2 begins -->
 <form name=f1>
<!--Code segment#2 begins-->
<!--Following code creates a checkbox at the top left corner of Work
Instances list screen, by selecting the check box user may select all
the work instances for deleting.-->
 <%if (type == SessionContext.INSTANCELIST){%>
 <input
type="checkbox" title="check All boxes or uncheck all boxes"
name="checkAll" onClick="checkAllCheckBoxes()">
<!--Code segment#2 ends -->
 <input type="button" name="terminate"

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

value="Terminate" title="terminates all checked instances"
onClick="terminateAllChecked()">
 <input type="button" name="uploadfile" value="Upload
File" title="check instances using file input"
onClick="checkUsingFileInput()">
 <%}%>
 </form>
<!-- code change #2 ends -->
</div>
<form name=f2>
<table border="2" bordercolordark="#ØØØØØØ" bordercolorlight="#FFFFFF"
cellspacing="Ø" cellpadding="5" width="1ØØ%" class="listtable">
<tr><td>
<table border="Ø" cellspacing="Ø" cellpadding="Ø" width="1ØØ%"
class="listtable">
<tr>
 <th align="left"
width="5%"><%=context.get("ListViewer.Action")%> </th>
 <%if (type != SessionContext.TEMPLATELIST && type !=
SessionContext.LISTS)
 {%>
 <th align="left" width="1%"
nowrap><%=context.get("ListViewer.State")%> </th>
 <%}%>
 <%if (type == SessionContext.LISTS)
 {%><th align="left"
width="1Ø%"><%=context.get("ListViewer.KindOfList")%> </
b></th>
 <%}%>
 <th align="left"
width="2Ø%"><%=context.get("ListViewer.Name")%> </th>
 <%if (type != SessionContext.LISTS)
 {%><th align="left" width="5%"> </th> <!-- Properties button --
><%}%>
 <%if (type == SessionContext.WORKLIST) {%>
 <th align="left"
width="3Ø%"> <%=context.get("ListViewer.Description")%> </
b></th>
 <th align="left"
width="15%"><%=context.get("ListViewer.ProcessInstance")%> </
b></th>
 <%} if (type == SessionContext.WORKLIST || type ==
SessionContext.LISTS) {%>
 <th align="left"
width="9%"><%=context.get("ListViewer.Owner")%> </th>
 <%} if (type == SessionContext.WORKLIST) {%>
 <th align="left"
width="15%"><%=context.get("ListViewer.Received")%> </
b></th>

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 <%}
 else
 {%>
 <th align="left"
width="3Ø%"> <%=context.get("ListViewer.Description")%> </
b></th>
 <%if (type == SessionContext.INSTANCELIST){%>
 <th align="left"
width="2Ø%"><%=context.get("ListViewer.LastModified")%> </
b></th>
 <% }
 }%>
</tr>
<!-- Define the Action Icons -->
...
...
...
<!-- Now create the list of instances ---------------------------->
<tr><td width="1ØØ%" colspan="8"><hr></td></tr>
<!-- code change -->
<% int cnt1=Ø;
if (type == SessionContext.INSTANCELIST)
 for (int i = Ø; i < count; ++i)
 {
 try
 {
 ProcessInstance instance = context.getInstances()[i];
 String oid = instance.persistentOid();
 String name = instance.name();
 Command[] cmds = Command.getActions(instance);
 %>
 <tr class="<%=row[i % row.length]%>">
 <td nowrap><%
 if (cmds.length == Ø)
 {%> <%}
 else for (int j = Ø; j < cmds.length; ++j)
 {%><%=cmds[j].getTriggerTag(context, oid, name)%>
 <!--code change #3 begins -->
 <%//=cmds[j].getCommand()%>
 <% if("terminateInstance".equals(cmds[j].getCommand())){%>
 <!--code change #3 begins -->
 <%String valTag="value=\""+cnt1+"\"";
 String myAlert="<script language='JavaScript'> \n termProp1[" +
cnt1 + "]=\""+context+"\";\n"+
 "termProp2[" + cnt1 + "]=\"" +cmds[j].getURL(context,oid,name,true)
+ "\";\n"+"termProp3[" + cnt1 + "]=\"" + name
+"\";\n"+"numOfTermInst="+cnt1+";\n </script>";
 %>
 <!-- <%=valTag%>-->

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

<!-- code segment#3 begins-->
 <input type="checkbox" name="inst" <%=valTag%> >
<!-- code segment#3 ends-->
 <script language='JavaScript'>
 if (document.f2.inst.value==Ø){
 document.f2.inst.length=1;
 }
 </script>
 <%=myAlert%> <% cnt1++; } %>
 <%}%>
 </td>
 <!--code change #3 ends -->
 <td nowrap align="center">
 <img src="../images/state/
<%=context.getPIImageForState(instance.state())%>"
 alt="<%=context.getPIStringForState(instance.state())%>"></
td>
 <td nowrap>
 <%=instance.name()%></td>
 <%context.setInstance(instance);%>
 <td nowrap>
 <a href="<%=context.getCommand("showInstanceProperties",
instance.persistentOid())%>"><%=propImage%></
a><%=context.getTriggerTagFor(SessionContext.INSTANCELIST, context)%></
td>
 <td nowrap>
 <%=context.null2Empty(instance.description())%>
 </td>
 <td nowrap>
 <%=context.toString(instance.lastModificationTime())%> </
td>
 </tr>
 <%}
 catch(FmcException xcpt) {
 if (xcpt.rc != FmcException.FMC_ERROR_DOES_NOT_EXIST) throw
xcpt;
 }
 } /* End of for ----------- Process Instances ----------- */
...
...
...
 <%} /* End of for ----------- Process Templates ----------- */
...
...
... } /* End of for ----------- Work Items ----------- */
 }
...
...
... } /* End of for ----------- List of Lists ----------- */

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 } %>
</table>
</form>
<!-- code change #5 -->
</td></tr></table>
</body></html>

APPENDIX B
Creating an alias Web Client configuration:
Microsoft Windows 2ØØØ [Version 5.ØØ.2195]
(C) Copyright 1985-2ØØØ Microsoft Corp.
C:\Documents and Settings\db2admin>cd \
C:\>fmczutil
 FMC332Ø1I Configuration Commands Menu:
 l ... List
 s ... Select
 c ... Create
 d ... Change default configuration
 x ... Exit Configuration Commands Menu
c
 Configuration identifier : [FMC] FMCWADMN
 FMC3321ØI Select Category Menu:
 s ... () Server
 i ... () Runtime Database Utilities
 b ... () Buildtime
 c ... () Client with queue manager
 j ... () Java Agent
 w ... () Web Client
 a ... all
 n ... none
 x ... Exit Select Category Menu
w
 FMC3321ØI Select Category Menu:
 s ... () Server
 i ... () Runtime Database Utilities
 b ... () Buildtime
 c ... () Client with queue manager
 j ... () Java Agent
 w ... (X) Web Client
 a ... all
 n ... none
 x ... Exit Select Category Menu
j
 FMC3321ØI Select Category Menu:
 s ... () Server
 i ... () Runtime Database Utilities

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 b ... () Buildtime
 c ... (A) Client with queue manager
 j ... (X) Java Agent
 w ... (X) Web Client
 a ... all
 n ... none
 x ... Exit Select Category Menu
x
- Configuration of queue manager ...
 System group name : [FMCGRP1] FMCGRP
 System name : [FMCSYS1] FMCSYS
 Queue manager name : [FMCCONQM] FMCCONQM
 Queue prefix : [FMC] FMC
- Configuration of client ...
 Channel definition table file : [d:\program files\mqseries
workflow
\chltabs\mqwfchl.tab]
- Configuration of Java Agent ...
- FMC33749I Selected Locator Policy : Local bindings

 FMC336Ø6I Specify information about garbage collection (reaper) ...:
 Agent cycle (in seconds) : [3ØØ]
 Client threshold (number of objects) : [1ØØØ]
 Client cycle (in % of agent cycle) : [9Ø]
- Configuration of Web Client ...
 FMC33942I Specify the root URI of the Web Client :
 Root URI : [MQWFClient-FMCWADMN]
 FMC33777I Select application server ...:
 w ... () WebSphere 3.x
 f ... (X) WebSphere 4.Ø (EAR)
 o ... () Other
 j ... () Other (Servlet 2.2 / J2EE 1.2)
w
 Code Version : [33Ø3]
 FMC336Ø7I Specify information about the WebSphere Application Server
...:
 Installation directory : [d:\WebSphere\AppServer]
 TCP/IP address of administration node : [slater]
 TCP/IP address of name service host : [slater]
 TCP/IP port number of name service : [9ØØ]
 XML configuration skeleton file name : [fmcoh354.skel]
 c ... Create configuration profile for 'FMCWADMN' now
 s ... Save input to file
 r ... Review/change input
 x ... Exit (input for configuration 'FMCWADMN' will be lost)
- FMC3368ØI The profile for the configuration 'FMCWADMN' was updated
successfully.
- Do you want to configure the Web Client within the WebSphere
Application Server now?
 y ... Yes

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 n ... No
y
[Ø2.12.1Ø 17:41:14:5ØØ EST] ce421533 NodeConfig A XMLCØØ53I:
Importing Node :
 slater
[Ø2.12.1Ø 17:41:14:671 EST] ce421533 ApplicationSe A XMLCØØ53I:
Importing ApplicationServer : MQWF Web Client - FMCWADMN
[Ø2.12.1Ø 17:41:15:671 EST] ce421533 ServletEngine A XMLCØØ53I:
Importing ServletEngine : Servlet Container
[Ø2.12.1Ø 17:41:17:Ø62 EST] ce421533 WebApplicatio A XMLCØØ53I:
Importing WebApplication : MQWFClient-FMCWADMN
[Ø2.12.1Ø 17:41:17:562 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servlet : ErrorReporter
[Ø2.12.1Ø 17:41:17:875 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servlet : file
[Ø2.12.1Ø 17:41:18:281 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servlet : jsp11
[Ø2.12.1Ø 17:41:18:546 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servlet : Main
[Ø2.12.1Ø 17:41:18:89Ø EST] ce421533 SessionManage A XMLCØØ53I:
Importing SessionManager : Session Manager
[Ø2.12.1Ø 17:41:19:281 EST] ce421533 ApplicationSe A XMLCØØ53I:
Importing ApplicationServer : MQWF Web Client - FMCWADMN
[Ø2.12.1Ø 17:41:19:687 EST] ce421533 ContainerConf A XMLCØØ53I:
Importing Container : Default Container
 FMC332Ø1I Configuration Commands Menu:
 l ... List
 s ... Select
 c ... Create
 d ... Change default configuration
 x ... Exit Configuration Commands Menu
x
C:\>

Chandra Upadhyayula
Programmer Analyst (USA) © Blue Cross Blue Shield of Tennessee 2003

MQ Telnet interface for OS/390

I was recently approached by someone in management and asked
to teach an MQ class to a bunch of Java programmers. While MQ
is a nice multi-platform tool the goal was to have Java applications
directly access queues on OS/390. Even though this is not a

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

problem for MQ our Java programmers had no prior experience
with OS/390. I was told I had to teach them how to be self-sufficient
in one day. As straightforward as MQ is, one day was still a
challenge! This meant I had to impart MQ concepts, MQ
configuration, queue administration, queue manipulation,
programming techniques, and testing techniques, as well as basic
TSO/ISPF and JCL concepts. Fortunately, these programmers
were seasoned and experienced – just lacking OS/390 experience.
Since we already had several Java applications using MQ this
was actually the least of my concerns since we had so many
working examples and access to the original programmers. My
biggest concern was removing the TSO/ISPF and JCL/JES2/
SDSF learning curve. All the programmers were well-versed in
multiple flavours of Unix and Microsoft and had extensive Telnet
experience. Since I had been doing a significant amount of work
with OS/390 Unix Systems Services (USS), it occurred to me that
it might be possible to write a Telnet interface to MQ similar to that
found on the other platforms (kind of like RUNMQSC).
With this idea in mind I proposed a small development project to
write this interface to minimize the learning curve and improve the
time to market. The idea was accepted and the resulting set of five
REXX EXECs allows anyone with authority and a Telnet session
to the USS side of OS/390 to work with the entire MQ command
set and directly manipulate queues.
This required REXX EXECs on the traditional MVS side and REXX
EXECs on the USS side (see Table 1). The interface allows for the
incorporation of homegrown GET and PUT utilities. The version
provided includes my MQGET and MQPUT routines, which use the
free MQ MA18 SupportPac (found at http://www-3.ibm.com/
software/ts/mqseries/txppacs/ma18.html).
The first REXX EXEC is called RUNMQSC. This runs from the USS
side. Place this routine in any USS directory and make the path
known to the users or place it in a directory in the users’ PATH. This
routine provides the basic menu of features. It will first prompt for
the QMGR to connect to, then it will present the menu in typical
Telnet ‘scroll and roll’ format. Maybe someday I’ll rewrite it to use

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

a Telnet screen formatter. Here is a quick view of what it looks like:
RZENUK:/u/cyclone/bin: >runmqsc
Unix Systems Services MQ Interface - brought to you by Banisco
Enter the QMGR name or press ENTER for the CSQ1 default
1) Display all queues
2) Display a specific queue and all details
3) Create a new queue
4) Empty an existing queue
5) Delete an existing queue
6) Enter any valid MQ command
7) Browse the contents of a queue
8) Manually enter a message into a queue
9) Load a single message into a queue from a file
Select a valid option 1 - 9 and press enter

The RUNMQSC REXX EXEC will format the appropriate commands
then call another REXX EXEC called MVSREXX to execute REXX
EXECs on the MVS side. The following portion on RUNMQSC will
need to be tailored for your environment.
/* Defaults */
EXITRC = Ø /* Default exit code */
defqmgr = 'CSQ1' /* Default QMGR */
mvsrexx = 'mvsrexx' /* USS EXEC to launch MVS EXEC's */
execdsn = 'sys1.local.exec' /* SYSEXEC DSN */
mqutil = 'MQUTIL' /* EXEC to execute CSQUTIL */
mqget = 'MQGET' /* EXEC to execute MQGET */
mqput = 'MQPUT' /* EXEC to execute MQPUT */
defqmodel = 'cyclone.model' /* MQ Queue Model for new queues */

The following values will most likely need to change in your
environment:

REXX EXEC Description Environment

RUNMQSC Menu driver USS

MVSREXX USS to MVS interface USS

MQUTIL CSQUTIL wrapper MVS

MQGET MQ browse tool (uses MA18) MVS

MQPUT MQ put tool (uses MA18) MVS

Table 1: Required REXX EXECs

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• DEFQMGR
– the default QMGR in your environment.

• EXECDSN
– the PDS you put MQUTIL, MQGET, and MQPUT into.

• DEFQMODEL
– the default queue to model after.

The MVSREXX REXX EXEC addresses the Shell, allocates a
SYSEXEC, and issues the USS TSO command to pass a TSO
request to the MVS side. Not all TSO commands are supported
using this technique but everything necessary for this interface
works. MVSREXX passes requests to MVS for three REXX
EXECs to support all nine options shown above. MQUTIL is a
REXX wrapper for CSQUTIL. MQGET provides a queue browse
function and MQPUT provides a single message put function.
MQUTIL supports options one to six (see Table 2). MQUTIL also
removes several messages from CSQUTIL output to make the
output easier to work with in a Telnet session. MQGET is option
seven and MQPUT options eight and nine.
MQGET is a simple MQ non-destructive browse REXX EXEC
based on MA18. This can be replaced easily in the defaults section
of RUNMQSC with a local alternative. Simply wrap the local
browse program in a REXX EXEC and identify it as the MQGET
EXEC. The parameters passed to MQGET are QMGR and
QNAME. The optional QOTRUNC is available to increase the
default output truncation from 2,000 bytes. MQGET also works
standalone on the MVS side.
MQPUT is a simple MQ PUT REXX EXEC also based on MA18.
This can also be replaced using the same technique described for
MQGET. MQPUT can be used to PUT any string as a message or
use any MVS sequential dataset or a file in an HFS directory as
input. MQPUT will only do a single put. The file option was created
since we have some fairly large message sizes that are tedious
to type (digital certificates too). All messages are PUT with the
MQFMT_STRING option to support cross-platform messaging.

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQPUT also works standalone on the MVS side.

RUNMQSC
/* REXX */
/* Purpose: Execute CSQUTIL from a telnet session */
/* Syntax: runmqsc qmgr mqcmd */
/* Parms: qmgr - The MVS QMGR to connect to (default CSQ1) */
/* mqcmd - MQ command to execute (prompts if missing) */
/* Change Log */
/* Author Date Reason */
/* R. Zenuk Oct 2ØØ2 Initial Creation */
/* R. Zenuk 11/Ø7/Ø2 Minor tweaks */
/* Welcome */
 say 'Unix Systems Services MQ Interface - brought to you by Banisco'
 say
/* Defaults */
 EXITRC = Ø /* Default exit code */
 defqmgr = 'CSQ1' /* Default QMGR */
 mvsrexx = 'mvsrexx' /* USS EXEC to launch MVS EXEC's */
 execdsn = 'sys1.local.exec' /* SYSEXEC DSN */
 mqutil = 'MQUTIL' /* EXEC to execute CSQUTIL */
 mqget = 'MQGET' /* EXEC to execute MQGET */

Option Command issued

1 DISPLAY QUEUE(*)

2 DISPLAY QUEUE('''qname''') ALL

3 DEFINE QLOCAL('''qname''') DESCR('''qdesc''') LIKE('''qmodel''')

4 EMPTY QUEUE('qname')

5 DELETE QLOCAL('''qname''')

6 Any valid CSQUTIL command i.e DISPLAY THREAD(*)

7 MQGET

8 MQPUT text from screen

9 MQPUT contents of a file/dataset

Table 2: List of options and commands

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 mqput = 'MQPUT' /* EXEC to execute MQPUT */
 defqmodel = 'cyclone.model' /* MQ Queue Model for new queues */
/* Accept QMGR and MQCMD */
 parse arg qmgr mqcmd
/* If QMGR is missing, prompt for it */
 if qmgr = '' then
 do
 say
 say 'Enter the QMGR name or press ENTER for the' defqmgr 'default'
 say
 pull qmgr
 if qmgr = '' then qmgr = defqmgr
 end
 else
 do
 qmgr = translate(qmgr)
 end
/* If MQCMD is included execute and get out */
 if mqcmd <> '' then
 do
 mvsrexx execdsn mqutil qmgr '"'mqcmd'"'
 exit(RC)
 end
/* If MQCMD is missing, display a menu */
 menu: nop
 do forever
 say
 say '1) Display all queues'
 say '2) Display a specific queue and all details'
 say '3) Create a new queue'
 say '4) Empty an existing queue'
 say '5) Delete an existing queue'
 say '6) Enter any valid MQ command'
 say '7) Browse the contents of a queue'
 say '8) Manually enter a message into a queue'
 say '9) Load a single message into a queue from a file'
 say
 say 'Select a valid option 1 - 9 and press enter'
 pull choice
 if pos(choice,'123456789') = choice then leave
 end
/* Procesing options */
 select
/* Display all Queues */
 when choice = 1 then
 do
 say
 mvsrexx execdsn mqutil qmgr '"DISPLAY QUEUE(*)"'
 end
/* Display a specific queue */
 when choice = 2 then

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 do
 say
 say 'Please enter the Queue to display (case is important)'
 say
 parse pull qname
 say
 qname = qname || '*'
 mvsrexx execdsn mqutil qmgr '"DISPLAY QUEUE('''qname''') ALL"'
 end
/* Create a new queue */
 when choice = 3 then
 do
 say
 say 'Please enter the Queue name to create (case is
important)'
 say
 parse pull qname
 say
 say 'Please enter a description for the queue'
 say
 parse pull qdesc
 say
 say 'Please enter a queue to clone or enter to use' defqmodel
 say
 parse pull qmodel
 if qmodel = '' then qmodel = defqmodel
 say
 mvsrexx execdsn mqutil qmgr '"DEFINE QLOCAL('''qname''')"',
 '"DESCR('''qdesc''') LIKE('''qmodel''')"'
 end
/* Empty a queue */
 when choice = 4 then
 do
 say
 say 'Please enter the Queue name to empty (case is important)'
 say
 parse pull qname
 say
 say 'Are you sure you want to clear' qname '(enter NO to
stop)'
 say
 pull qsure
 say
 if substr(qsure,1,1) = 'N' then
 do
 say qname 'will not be cleared'
 signal shutdown
 end
 say
 mvsrexx execdsn mqutil qmgr '"EMPTY QUEUE('qname')"'
 end

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

/* Delete a queue */
 when choice = 5 then
 do
 say
 say 'Please enter the Queue name to delete (case is
important)'
 say
 parse pull qname
 say
 say 'Are you sure you want to delete' qname '(enter NO to
stop)'
 say
 pull qsure
 say
 if substr(qsure,1,1) = 'N' then
 do
 say qname 'will not be deleted'
 signal shutdown
 end
 say
 mvsrexx execdsn mqutil qmgr '"DELETE QLOCAL('''qname''')"'
 end
/* Enter any MQ command */
 when choice = 6 then
 do
 say
 say 'Please enter any valid MQ command'
 say
 parse pull mqcmd
 mvsrexx execdsn mqutil qmgr '"'mqcmd'"'
 end
/* Run MQGET to display the contents of a Queue */
 when choice = 7 then
 do
 say
 say 'Please enter the Queue name to browse (case is
important)'
 say
 parse pull qname
 mvsrexx execdsn mqget qmgr qname
 end
/* Run MQPUT to insert new messages by hand */
 when choice = 8 then
 do
 say
 say 'Please enter the Queue name to load (case is important)'
 say
 parse pull qname
 say
 say 'Please enter the message text'
 say

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 parse pull message
 mvsrexx execdsn mqput qmgr qname message
 end
/* Run MQPUT to insert the contents of a file */
 when choice = 9 then
 do
 say
 say 'Please enter the Queue name to load (case is important)'
 say
 parse pull qname
 say
 say 'Please enter the MVS dataset or HFS file to load'
 say
 parse pull file
 mvsrexx execdsn mqput qmgr qname word(file,1)
 end
 otherwise say 'Unexpected option, please hang up and dial again'
 end
/* Shutdown */
 shutdown: say
 say "Enter 'Q' to quit, press ENTER to continue"
 pull stop
 if stop <> 'Q' then signal menu
 exit(EXITRC)

MVSREXX
/* REXX */
/* Purpose: Execute an MVS REXX EXEC from the USS side */
/* Syntax: mvsrexx dsn mem parms */
/* Parms: dsn - REXX EXEC PDS to allocate to SYSEXEC */
/* mem - The REXX EXEC to execute */
/* parms - Parms to pass to the EXEC */
/* Change Log */
/* Author Date Reason */
/* R. Zenuk Oct 2ØØ2 Initial Creation */
/* Accept DSN, MEM and PARMS */
 parse arg dsn mem parms
 dsn = translate(dsn)
 mem = translate(mem)
/* Display a startup message */
 say 'EXEC:' mem 'executing from:' dsn 'using parms:' parms
/* Address the SHELL to ALLOC SYSEXEC and execute the TSO command */
 address 'SH' 'TSOALLOC=SYSEXEC',
 'SYSEXEC="ALLOC DSN('''dsn''') SHR REUSE MSG(2)"',
 'tso "%'mem parms'"'
 EXITRC = RC
/* Display a shutdown message */
 shutdown: say 'EXEC:' mem 'executed from:' dsn 'RC='EXITRC
 exit(EXITRC)

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQUTIL
/* REXX */
/* Purpose: Run CSQUTIL */
/* Syntax: Run CSQUTIL and accept commands */
/* Parms: qmgr - Queue Manager to attach to */
/* cmd - Command to execute */
/* Change Log */
/* Author Date Reason */
/* R. Zenuk Oct 2ØØ2 Initial Creation */
/* R. Zenuk 11/Ø5/Ø2 Trimmed all blanks off incoming command */
/* R. Zenuk 11/Ø7/Ø2 Fixed parse problem and improved output */
/* Accept QMGR and CMD parms */
 parse arg qmgr cmd
 if qmgr = '' then
 do
 say 'QMGR is missing'
 exit(1Ø)
 end
 qmgr = translate(qmgr)
 if cmd = '' then
 do
 say 'MQ command is missing'
 exit(11)
 end
/* Allocate all required DD's */
"ALLOC F(SYSPRINT) UNIT(VIO) SPACE(1 5) CYLINDERS"
 EXITRC = RC
 if EXITRC <> Ø then say 'ALLOC SYSPRINT error RC='EXITRC
"ALLOC F(SYSIN) UNIT(VIO) SPACE(1 1) TRACKS LRECL(8Ø) BLKSIZE(Ø)"
 EXITRC = RC
 if EXITRC <> Ø then say 'ALLOC SYSIN error RC='EXITRC
"ALLOC F(CMDINPUT) UNIT(VIO) SPACE(1 1) TRACKS LRECL(8Ø) BLKSIZE(Ø)"
 EXITRC = RC
 if EXITRC <> Ø then say 'ALLOC CMDINPUT error RC='EXITRC
/* Prepare SYSIN for Command Input (redirect to CMDINPUT) unless */
/* this is a supported native CSQUTIL utility function */
 cmd = strip(cmd)
 if word(cmd,1) = 'EMPTY' then
 sysin.1 = cmd
 else
 sysin.1 = 'COMMAND DDNAME(CMDINPUT)'
"EXECIO * DISKW SYSIN (STEM SYSIN. FINIS"
 EXITRC = RC
 if EXITRC <> Ø then say 'EXECIO SYSIN error RC='EXITRC
/* Determine if clause parsing is required */
 if length(cmd) >= 75 then
 do c=1 to words(cmd)
 if c < words(cmd) then
 cmdinput.c = word(cmd,c) '+'
 else

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 cmdinput.c = word(cmd,c)
 end
 else
 cmdinput.1 = cmd
/* Load the MQ command (one clause at a time if cmd length >= 75) */
"EXECIO * DISKW CMDINPUT (STEM CMDINPUT. FINIS"
 EXITRC = RC
 if EXITRC <> Ø then say 'EXECIO CMDINPUT error RC='EXITRC
/* Call CSQUTIL */
 address ATTCHMVS "CSQUTIL" "QMGR"
 UTILRC = RC
 if UTILRC <> Ø then say 'CSQUTIL error RC='UTILRC
/* Read the output from SYSPRINT */
"EXECIO * DISKR SYSPRINT (STEM SYSPRINT. FINIS"
 EXITRC = RC
 if EXITRC <> Ø then say 'EXECIO SYSPRINT error RC='EXITRC
/* Filter out the extraneous lines from SYSPRINT */
 do i=1 to sysprint.Ø
 select
 when word(sysprint.i,1) = '1CSQM4Ø1I' then iterate
 when word(sysprint.i,1) = 'CSQM4Ø1I' then iterate
 when word(sysprint.i,1) = 'CSQM4Ø2I' then iterate
 when word(sysprint.i,1) = 'CSQM4Ø3I' then iterate
 when word(sysprint.i,1) = 'CSQM4Ø6I' then iterate
 when word(sysprint.i,1) = 'ØCSQN2Ø5I' then iterate
 when word(sysprint.i,2) = 'CSQUØØØI' then iterate
 when word(sysprint.i,2) = 'CSQUØØ1I' then iterate
 when word(sysprint.i,2) = 'CSQUØØ5I' then iterate
 when word(sysprint.i,2) = 'CSQUØ55I' then iterate
 when word(sysprint.i,2) = 'CSQUØ57I' then iterate
 when word(sysprint.i,2) = 'CSQUØ58I' then iterate
 when word(sysprint.i,2) = 'CSQU12ØI' then iterate
 when word(sysprint.i,2) = 'CSQU122I' then iterate
 when word(sysprint.i,2) = 'CSQU127I' then iterate
 when word(sysprint.i,2) = 'CSQU133I' then iterate
 when word(sysprint.i,2) = 'CSQU14ØI' then iterate
 when word(sysprint.i,2) = 'CSQU142I' then iterate
 when word(sysprint.i,2) = 'CSQU143I' then iterate
 when word(sysprint.i,2) = 'CSQU144I' then iterate
 when word(sysprint.i,2) = 'CSQU148I' then iterate
 when word(sysprint.i,1) = 'COMMAND ' then iterate
 when pos('QUEUE(SYSTEM.',sysprint.i) <> Ø then iterate
 when cmd = 'DISPLAY QUEUE(*)' & pos('TYPE',sysprint.i) <> Ø then
 iterate
 otherwise say strip(sysprint.i)
 end
 end
/* Free all files */
"FREE F(SYSIN)"
"FREE F(CMDINPUT)"

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

"FREE F(SYSPRINT)"
/* Shutdown */
 shutdown: if UTILRC > EXITRC then
 exit(UTILRC)
 else
 exit(EXITRC)

MQGET
/* REXX */
/* Purpose: Simple MQ GET program to print a Q */
/* Syntax: MQGET qmgr qname qotrunc */
/* Parms: qmgr - Q Manager to Connect to */
/* qname - Q Name */
/* qotrunc - Q Output truncation limit */
/* Change Log */
/* Author Date Reason */
/* R. Zenuk Feb 2ØØ1 Initial Creation */
/* R. Zenuk Ø5/31/Ø1 Fixed comment */
/* R. Zenuk 1Ø/1Ø/Ø2 Upgraded for USS Telnet support */
/* Accept message */
 parse arg qmgr qname qotrunc
 if length(qmgr) <> 4 then
 do
 say 'QMGR "'qmgr'" is not correct, try something like CSQ1'
 exit(1Ø)
 end
 if qname = '' then
 do
 say 'QNAME is missing (remember case is important)'
 exit(11)
 end
 if qotrunc = '' then qotrunc = 2ØØØ
/* Initialize the API */
 mqrc = RXMQV('INIT')
 if word(mqrc,1) <> Ø then say mqrc
/* Connect to a QMGR */
 mqrc = word(RXMQV('CONN', qmgr),1)
 if mqrc <> Ø then
 do
 say 'MQCONN to QMGR "'qmgr'" failed MQRC='mqrc
 exit(mqrc)
 end
/* Open the Queue */
 options = mqoo_inquire+mqoo_output+mqoo_browse+mqoo_set
 mqrc = word(RXMQV('OPEN', qname, options , 'h', 'ood.'),1)
 if mqrc <> Ø then
 do
 say 'MQOPEN for QUEUE "'qname'" failed MQRC='mqrc
 exit(mqrc)

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 end
/* Inquire on the number of messages on the Q */
 atrin = mqia_current_q_depth
 atrou = ''
 mqrc = RXMQV('INQ', h, atrin, 'atrou')
 if word(mqrc,1) <> Ø then say mqrc
 say 'QMGR:' qmgr 'Q Name:' qname 'Q Depth:' atrou
/* Get and print all the messages */
 do i=1 to atrou
 msg.Ø = qotrunc
 msg.1 = ''
 igmo.opt = MQGMO_WAIT+MQGMO_BROWSE_NEXT+MQGMO_CONVERT
 igmd.ENC = MQENC_NATIVE
 igmd.CCSI = MQCCSI_Q_MGR
 ogmd.ENC = MQENC_NATIVE
 ogmd.CCSI = MQCCSI_INHERIT
 mqrc = RXMQV('GET', h,'msg.','igmd.','ogmd.','igmo.','ogmo.')
 if word(mqrc,1) <> Ø then say mqrc
 say '===> MSG' i 'Length:' msg.Ø 'Msg Text:' msg.1
 end
/* Close the Q */
 mqrc = RXMQV('CLOSE', h, mqco_none)
 if word(mqrc,1) <> Ø then say mqrc
/* Disconnect from the QMGR */
 mqrc = RXMQV('DISC',)
 if word(mqrc,1) <> Ø then say mqrc
/* Terminate the API */
 mqrc = RXMQV('TERM',)
 if word(mqrc,1) <> Ø then say mqrc

MQPUT
/* REXX */
/* Purpose: Simple MQ PUT program */
/* Syntax: MQPUT qmgr qname file */
/* Parms: qmgr - Q Manager to Connect to */
/* qname - Q Name */
/* message - Any text or sequential filename */
/* Change Log */
/* Author Date Reason */
/* R. Zenuk Feb 2ØØ1 Initial Creation */
/* R. Zenuk Ø6/14/Ø1 Added file support */
/* R. Zenuk Ø6/19/Ø1 Added MQFMT_STRING support */
/* R. Zenuk Ø6/19/Ø1 Combined MQPUT and MQPUTF */
/* R. Zenuk Ø9/24/Ø2 Fixed the quoting problem for files */
/* R. Zenuk 1Ø/1Ø/Ø2 Upgraded for USS Telnet support */
/* R. Zenuk 1Ø/29/Ø2 Added HFS file support */
/* Accept message */
 parse upper source . . execname . execdsn . . execenv .
 parse arg qmgr qname message

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 if length(qmgr) <> 4 then
 do
 say 'QMGR' qmgr 'does not appear correct, try something like CSQ1'
 exit(1Ø)
 end
 if qname = '' then
 do
 say 'QNAME is missing (remember case is important)'
 exit(11)
 end
 if message = '' then
 do
 say 'The message or file to MQPUT is missing'
 exit(12)
 end
/* If the message is a single word wrap it in quotes for SYSDSN and */
/* set the text variable to NO */
 if words(message) = 1 then
 do
 text = 'NO'
 catcheck = "'"message"'"
 end
/* If the message is not a single word, assume this is the message */
/* set the text variable to YES */
 else
 do
 text = 'YES'
 end
/* If the message begins with '/', assume an HFS file. If it passes */
/* the SYSDSN check, assume MVS DSN */
 select
 when substr(message,1,1) = "/" then file = word(message,1)
 when sysdsn(catcheck) = 'OK' then file = word(message,1)
 when sysdsn(catcheck) <> 'OK' then text = 'YES'
 otherwise text = 'YES'
 end
/* If the text = NO this is a file to process */
 if text = 'NO' then
 do
/* Read the HFS file */
 if substr(file,1,1) = '/' then
 do
 tdate = date('j')
 ttime = space(translate(time(),' ',':'),Ø)
 tempds = userid()'.'execname'.D'tdate'.T'ttime
/* Copy the HFS file to an interim MVS dataset */
 "OGET '"file"' '"tempds"' TEXT"
 EXITRC = RC
 if EXITRC <> Ø then
 do

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 say 'OGET error' file 'to' tempds 'RC='EXITRC
 exit(EXITRC)
 end
/* Allocate the copy */
 "ALLOC F(INPUT) DA('"tempds"') SHR"
 EXITRC = RC
 if EXITRC <> Ø then
 do
 say 'ALLOC error on INPUT' tempds 'RC='EXITRC
 exit(EXITRC)
 end
 end
 else
/* Allocate as a DSN */
 do
 "ALLOC F(INPUT) DA('"file"') SHR"
 EXITRC = RC
 if EXITRC <> Ø then
 do
 say 'ALLOC error on DSN' file 'RC='EXITRC
 exit(EXITRC)
 end
 end
/* Read the DSN */
 "EXECIO * DISKR INPUT (STEM INPUT. FINIS"
 if RC <> Ø then say 'EXECIO error on' file
 "FREE F(INPUT)"
 if RC <> Ø then say 'FREE error on' file
/* Concatentate the records */
 text = ''
 do i=1 to input.Ø
 text = text || input.i
 end
 message = strip(text)
 end
/* Initialize the API */
 mqrc = RXMQV('INIT')
 if word(mqrc,1) <> Ø then say mqrc
/* Connect to a QMGR */
 mqrc = word(RXMQV('CONN', qmgr),1)
 if mqrc <> Ø then
 do
 say 'MQCONN to QMGR "'qmgr'" failed MQRC='mqrc
 exit(mqrc)
 end
/* Open the Queue */
 options = mqoo_inquire+mqoo_output+mqoo_browse+mqoo_set
 mqrc = word(RXMQV('OPEN', qname, options , 'h', 'ood.'),1)
 if mqrc <> Ø then
 do
 say 'MQOPEN of QUEUE "'qname'" failed MQRC='mqrc

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 exit(mqrc)
 end
/* Format and PUT the message */
 msg.Ø = length(message)
 msg.1 = message
 imd.PER = MQPER_PERSISTENT
 imd.FORM = MQFMT_STRING
 ipmo.opt = MQPMO_SYNCPOINT
 mqrc = word(RXMQV('PUT', h,'msg.','imd.','omd.','ipmo.','opmo.'),1)
 if mqrc <> Ø then
 do
 say 'MQPUT to QUEUE "'qname'" failed MQRC='mqrc
 exit(mqrc)
 end
 else
 say 'QMGR:' qmgr 'Q Name:' qname 'MSG:' message
/* Inquire on the number of messages on the Q */
 atrin = mqia_current_q_depth
 atrou = ''
 mqrc = word(RXMQV('INQ', h, atrin, 'atrou'),1)
 if mqrc <> Ø then
 do
 say 'MQINQ on QUEUE "'qname'" failed MQRC='mqrc
 exit(mqrc)
 end
 else
 say 'Q Depth:' atrou
/* Close the Q */
 mqrc = RXMQV('CLOSE', h, mqco_none)
 if word(mqrc,1) <> Ø then say mqrc
/* Disconnect from the QMGR */
 mqrc = RXMQV('DISC',)
 if word(mqrc,1) <> Ø then say mqrc
/* Terminate the API */
 mqrc = RXMQV('TERM',)
 if word(mqrc,1) <> Ø then say mqrc

Robert Zenuk
Systems Programmer (USA) © Xephon 2003

Creating MQSeries objects with MQAI

The MQSeries Administration Interface (MQAI) is an API that
performs administrative functions against MQSeries objects. This
article will explore the use of this interface to create a queue. I will

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

use Visual Basic 6.0 for the sample code but I will try to make the
logic clear enough for you to apply it to your own platform.

WHY NOT USE MQSERIES EXPLORER?
A GUI client, such as MQSeries Explorer, is usually the preferred
way to create and maintain MQSeries objects. However, there will
be times when you may need a higher degree of automation than
interactive applications can support. This is when you will want to
use MQAI in a custom-built application.

MQAI ARCHITECTURE
MQAI works by sending command messages to a reserved queue
named SYSTEM.ADMIN.COMMAND.QUEUE. The queue manager
processes the command and sends back a response via a
specified response queue. The API takes care of all these details
so you just have to tell it what to do.
MQAI organizes data into structures called ‘bags’. You put your
request in an administrative bag and the response is contained in
a response bag, which contains a system bag for each different
piece of response data.

SECURITY REQUIREMENTS
Aside from the obvious authorizations, such as connecting to the
queue manager and creating queues, you need specific access
to:
• SYSTEM.ADMIN.COMMAND.QUEUE (put).
• SYSTEM.DEFAULT.MODEL.QUEUE (get, inq, dsp).

CREATING THE PROGRAM
You will find it helpful to include three header files in your VB
project, which IBM supplies with the MQSeries Client for API
support.

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• CMQB.BAS – contains constants for defining queue properties.
• CMQBB.BAS – contains API declarations for the MQAI API.
• CMQCFB – contains command constants for the MQAI API.
These modules were originally supplied for VB 4.0 and some of the
syntax needs to change for later versions of VB. If you remove the
‘Global’ keyword on the constant declarations it should work fine.

Step 1
Connect to your queue manager. Either the ActiveX or Win32 API
will work. Most error handling is omitted from this sample for the
sake of brevity.
 Dim intCompCode As Long, intReason As Long
 Dim intConn As Long
 MQCONN "myQMgr", intConn, intCompCode, intReason

Step 2
Create your data bags with the mqCreateBag API call.
 Dim adminBag As Long ' Admin bag handle.
 Dim systemBag As Long ' System bag handle.
 Dim responseBag As Long ' Response bag handle.
 adminBag = MQHB_UNUSABLE_HBAG
 systemBag = MQHB_UNUSABLE_HBAG
 responseBag = MQHB_UNUSABLE_HBAG
 ' Create an admin bag.
 mqCreateBag MQCBO_ADMIN_BAG, adminBag, _
 intCompCode, intReason
 ' Create a response bag.
 mqCreateBag MQCBO_ADMIN_BAG, responseBag, _
 intCompCode, intReason
 ' No need to create the system bag.

Step 3
Create your request. The bare minimum for creating a queue is
that you supply the queue name and queue type. You add string
parameters to the administrative bag with the mqAddString API
call. For numeric parameters use mqAddInteger. The valid queue
type constants are defined in cmqb.bas as: MQQT_LOCAL,
MQQT_MODEL, MQQT_ALIAS, MQQT_REMOTE, and

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQQT_CLUSTER.
 ' Put queue name into admin bag.
 mqAddString adminBag, MQCA_Q_NAME, _
 MQBL_NULL_TERMINATED, _
 "MILLS.TEST.QUEUE", _
 intCompCode, intReason
 ' Make the queue type local.
 mqAddInteger adminBag, MQIA_Q_TYPE, MQQT_LOCAL, _
 intCompCode, intReason

Step 4
Execute your request with the mqExecute API command. The
constant MQCMD_CREATE_Q tells MQAI to use the parameters
in the administrative bag to create a queue. You can find other
useful command constants in cmqcfb.bas by searching for the
‘MQCMD_’ prefix. Notice that the handle for the response bag is
included with the command arguments. If the command executes
successfully it will fill that bag with response information.
 mqExecute intConn, MQCMD_CREATE_Q, _
 MQHB_NONE, adminBag, responseBag, _
 MQHO_NONE, MQHO_NONE, _
 intCompCode, intReason

Step 5
Evaluate the results. Usually, error checking with MQSeries is a
straightforward process. You check the completion code and if it
is greater than zero you get the cause of the error from the reason
code. It is more complex with MQAI because the reason code
usually just tells you nothing more than that the command failed.
You need to get the reason for the failure from the response bag
as shown below.
The mqInquireBag command gives you a handle to the system
bag, which you need to access the system bag values you want.
The command mqInquireInteger returns the data you need into
variables intMqExecuteCC and intMqExecuteRC. Now you have
the real completion and reason codes.
You can request other values from the response bag where
applicable. You can find these selector constants in cmqbb.bas.
Integer constants have the ‘MQIASY_’ prefix. Other system bag

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

selectors are in cmqb.bas. Look for the prefixes ‘MQCA_’ and
‘MQIA_’.
 Dim intMqExecuteCC As Long
 Dim intMqExecuteRC As Long
 If intCompCode = MQCC_OK Then
 MsgBox "Queue created successfully."
 Exit Sub
 ElseIf intReason = MQRCCF_COMMAND_FAILED Then
 mqInquireBag responseBag, MQHA_BAG_HANDLE, Ø, _
 systemBag, intCompCode, intReason
 mqInquireInteger systemBag, MQIASY_COMP_CODE, _
 MQIND_NONE, intMqExecuteCC, _
 intCompCode, intReason
 mqInquireInteger systemBag, MQIASY_REASON, _
 MQIND_NONE, intMqExecuteRC, _
 intCompCode, intReason
 MsgBox "Create attempt failed CC: " & _
 intMqExecuteCC & _
 " RC: " & intMqExecuteRC
 Else
 MsgBox "Create attempt failed CC: " & _
 intCompCode & " RC: " & intReason
 End If

CREATING A MORE COMPLEX QUEUE
Back in step 3 I showed you how to specify the queue name and
type to MQAI. You can specify additional properties in the same
way. Constants representing each property are defined in
cmqb.bas. The string parameters are prefixed with ‘MQCA_’ and
integers with ‘MQIA_’. Use the appropriate mqAddString/
mqAddInteger command. Here is an example of adding properties
for the backout threshold and backout re-queue name:
 ' Set the backout threshold to 1.
 mqAddInteger adminBag, MQIA_BACKOUT_THRESHOLD, 1, _
 intCompCode, intReason
 ' Set the backout requeue name.
 mqAddString adminBag, MQCA_BACKOUT_REQ_Q_NAME, _
 MQBL_NULL_TERMINATED, "MILLS.TEST.ERROR", _
 intCompCode, intReason

WORKING WITH OTHER OBJECTS
You can easily apply what we’ve covered in this article to other

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries objects. There are MQCMD_* command constants for
queues, queue managers, processes, channels, name lists, and
clusters. Simply choose the appropriate command constant for
the mqExecute call, and the right properties for the mqAddInteger
and mqAddString calls.

MQAI COMMAND SYNTAX
The MQAI API calls are documented in Chapter 5 of the MQSeries
Administration Interface Programming Guide and Reference in
your MQSeries manuals. Here is a brief description of the ones
used in this article:

mqCreateBag (Options, Bag, CompCode, Reason)
• Options – long: the type of bag to create. The recommended

value is MQCBO_ADMIN_BAG.
• Bag – long: this is the handle to the bag you are creating.
• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.

mqAddString (Bag, Selector, BufferLength, Buffer, CompCode, Reason)
• Bag – long: this is the handle for your administrative bag.
• Selector – long: selects the property you are adding to the

bag.
• Bufferlength – long: the length of the string you are adding.

Since VB strings are null terminated you can use the constant
MQBL_NULL_TERMINATED instead.

• Buffer – string: the text string you are adding to the bag.
• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.

mqAddInteger (Bag, Selector, ItemValue, CompCode, Reason)

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Bag – long: this is the handle for your administrative bag.
• Selector – long: selects the property you are adding to the

bag.
• ItemValue – long: the numeric value you are adding to the bag.
• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.

mqExecute (Hconn, Command, OptionsBag, AdminBag, ResponseBag,
AdminQ, ResponseQ, CompCode, Reason)
• Hconn – long: queue manager connection handle.
• Command – long: an MQCMD_* command constant.
• OptionsBag – long: use MQHB_NONE.
• AdminBag – long: your administrative bag handle.
• ResponseBag – long: your response bag handle.
• AdminQ – long: handle to an open command queue. Using

MQHO_NONE will default to SYSTEM.ADMIN.COMMAND
.QUEUE.

• ResponseQ – long: handle to an open response queue. Using
MQHO_NONE will default to a dynamic queue which is
automatically deleted on completion of the mqExecute call.

• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.

mqInquireBag (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)
• Bag – long: your response bag handle.
• Selector – long: a constant representing the item you want

from the bag. For example, MQHA_BAG_HANDLE.
• ItemIndex – long: index of the item you want to access.
• ItemValue – long: handle to the object you are accessing – in

 52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

our case, the system bag. This parameter is filled in by the call.
• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.

mqInquireInteger (Bag, Selector, ItemIndex, ItemValue, CompCode, Reason)
• Bag– long: your system bag handle. This was initialized with

an mqInquireBag call.
• Selector – long: a constant representing the item you want

from the bag. For example, MQIASY_REASON.
• ItemIndex – long: index of the item you want to access, or

MQIND_NONE if there is only one occurrence of the value.
• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.

mqInquireString (Bag, Selector, ItemIndex, Bufferlength, Buffer, StringLength,
CodedCharSetId, CompCode, Reason)
• Bag– long: your system bag handle. This was initialized with

an mqInquireBag call.
• Selector – long: a constant representing the item you want

from the bag. For example, MQIASY_REASON.
• ItemIndex – long: index of the item you want to access, or

MQIND_NONE if there is only one occurrence of the value.
• Bufferlength – long: the length of the string you are adding.
• Buffer – string: a string variable to receive the output from this

call. This string should be set to contain as many null characters
as you specified in BufferLength.

• StringLength – long: an output parameter indicating the
length of the string actually returned.

• CodedCharSetId – long: set it to zero if you don’t need to
convert your character set.

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• CompCode – long: MQSeries completion code.
• Reason – long: MQSeries reason code.
Mills Perry
IT Consultant/Instructor
ZyQuest (USA) © Xephon 2003

MQ news

Reconda International, providers of Web-
based software products that facilitate and
enhance WebSphere MQ messaging
application development, testing, and
support, showed off its newest software
solution, QN-StatWatch, at the 2003 IBM
Transaction and Messaging Conference in
Las Vegas, Nevada, which ran 9-12
February.

Designed to collect statistics at the channel,
queue, and message level, QN-StatWatch is
claimed to be the industry’s first browser-
based WebSphere MQ and WMQI support
solution that provides MQ administrators,
system architects, and managers with the data
they need to facilitate accurate charge-back
modelling, SLA compliance, and resource
capacity planning.

Reconda claims that the product delivers an
unprecedented level of security while
providing the statistical support, centralized
management, and reporting capabilities
today’s businesses need to analyse and
leverage application and business
performance on a global scale.

For more information contact:
Reconda, 15 East Putnam Avenue, Suite
306, Greenwich, CT 06830, USA.
Tel: (203) 299 4000.
Fax: (203) 299 4095.
Web: www.reconda.com

* * *

IBM has recently announced the release of
CICS Business Event Publisher for
MQSeries V1.1, which enables a rapid
extension of existing applications running in
CICS Transaction Server V1.3 or CICS
Transaction Server V2.2.

Business Event Publisher generates user-
defined MQSeries messages as a side effect
when certain EXEC CICS commands are
executed by a CICS application. This
message generation is transparent to the
application program, so these remain
unchanged when Business Event Publisher is
used.

Rules control the generation of the MQSeries
messages, which are defined using a
Microsoft Windows-based graphical utility.
These rules enable the content of the
MQSeries message to be customizable, as is
the queue to receive the message.

Business Event Publisher rules can match, for
example, VSAM file updates or temporary
storage activity and so notify another
application of a change to a record.

For more information contact your local
IBM representative.

* * *

x
xephon

	Hiding WebSphere MQ behind a firewall
	Configuring a Web Client to allow termination of multiple work instances
	MQ Telnet interface for OS/390
	Creating MQSeries objects with MQAI
	MQ news

