

© Xephon plc 2003

May 2003

47

In this issue

MQ
u

p
d

ate

3 Controlling WSMQ resources in a
Windows environment

12 WMQ Integrator Broker: a
performance evaluation

24 Setting up a client to server SSL
connection

33 Improving performance on SSL
channels running on WSMQ for
AIX

40 dmpmqaut parser
47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Controlling WSMQ resources in a Windows
environment

WebSphere MQSeries (WSMQ) historically has supplied a
robust set of identical cross-platform capabilities. Nonetheless,
this has not prevented IBM from offering platform-specific
capabilities where warranted, eg ISPF panels on S/390 platforms,
MQ-specific SMIT panels on AIX, and Microsoft Management
Console (MMC) facilities on Windows. First introduced with
MQSeries V5.0, MQServices and MQ Explorer represent two
related and independent uses of the MMC technology.
With WSMQ V5 R2 in a Windows environment IBM has introduced
amqmdain, a new command to control MQ resources
represented as services within a Windows Snap-in domain. The
amqmdain facility is the newest member of a set of MQ control
facilities previously consisting of Programmable Command
Format (PCF), MQSeries Command Interpreter (MQSC), Control
Commands (eg crtmqm or strmqm), and, in a Windows
environment only, MQ Explorer and MQServices.
Just what new capabilities does amqmdain provide and what
does it offer with respect to managing MQ resources? How does
it relate to the other MQ control facilities?
This article describes the scope of control and granularity with
which you can control MQSeries resources in a Windows NT and
2000 environment. In the absence of understanding how all of
these facilities relate to each other you can get yourself into quite
a tangled mess.
During a recent client engagement with a major global financial
institution based in the Boston, MA (USA) area, we examined the
pros and cons of implementing amqmdain in a production
environment. One of our goals was to take a set of Perl scripts
currently used in a production Unix environment and adapt them
to a Windows environment, exploiting any platform-specific
capabilities available to us. Initially, we thought that we might be
able to use amqmdain capabilities from within the Perl scripts

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

but we discovered that amqmdain did not control resources at
a suitable level of granularity.
It’s beneficial to view each of the various MQ resources as a
Service. Our aim is to exert control at a highly granular level in
order to maximize operational control over those Services. What
are the MQ resources that we wish to treat as Services and over
which we wish to exert such control?
• Queue Manager.
• Command server.
• Channel initiator.
• Trigger monitor.
• Channel listener.
• Dead letter handler.
• Channels (sender and receiver).
How can we control these resources? Six facilities are at our
disposal:
1 Native MQ commands (MQSC or MQSeries commands).
2 Services within an MQ Snap-in group.
3 amqmdain.
4 srvany.exe utility.
5 Custom-built SCM services.
6 Perl scripts that exercise any of the five facilities listed above.
Let’s now introduce each of these facilities. Please refer to Figure
1. This diagram shows a variety of mechanisms available to
control MQ resources. On the left-hand side just inside the box
is a list of several Windows Services. Next, note the box labelled
‘MQSeries Snap-in Services’. Two Snap-in groups are
represented – QM1 and QM2 – where QM1 shows greater detail
about the resources within its span of control.

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Inside the QM1 Snap-in services box you will see various MQ
resources at a granular level. And just outside the box on the
right-hand side, under Native MQ commands, is a list of native
MQ commands used to control the MQ resources at the most
granular level. At the far right is a list of Perl scripts, a set of
custom-built programs written in the Perl language. Let’s discuss
each of these mechanisms in greater detail.

Windows Services
A Windows Service is similar to a Unix daemon process.
Windows Services can be viewed through the Services window,
which you can access in one of the following ways:
• NT:

– My Computer => Control Panel => Services.
• Windows 2000:

– My Computer => Control Panel => Administrative Tools
=>Services.

System Boot

Windows Services

IBM MQSeries Service

Listener Service

QM1

QM auto | man

CS auto | man

CI auto | man

TM auto | man

CH auto | man

CL auto | man

CU auto | man

auto | man

auto | man

QM2

srvany runmqlsr.exe

amqmdain

MQSeries Snap-In Services

Legend:
QM Queue Manager
CS Command Server
CI Channel Initiator
TM Trigger Monitor
CL Channel Listener
CH Channel
CU Custom Service

net start | stop

srvany runmqtrm.exe

srvany runmqdlq.exe

srvany qamadm.exe

mq_monitor.exe

Trigger Monitor Service

Dead Letter Service

QPasa Monitor Service

Monitor Service

auto | man

auto | man

auto | man

auto | man

Native MQ
commands

strmqm

strmqcsv

runmqchi

runmqtrm

runmqlsr

runmqchl

Figure 1: Mechanisms available to control MQ resources

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The coarsest span of control for MQ resources is at the Windows
Service level. MQ provides the IBM MQSeries Service. This is
like the master MQ switch. Initially, at system-boot time, the
Windows operating system acts on Windows Services according
to the properties associated with each Service. One such
property is the auto | manual setting. When set to auto a system
boot starts the IBM MQSeries Service; when set to manual the
Service will not automatically start. Windows Services can be
started (or stopped) using the Services Window controls or by
using the net command.
Note that the Display Name is not the name you would use with
the net command. If you type net start IBM MQSeries you’ll get
an error. You need the actual Service name as specified in the
Windows Registry, typically MQSeriesServices. So to manually
start the MQSeries Service you’ll need to type net start
MQSeriesServices.
How do you determine the precise Service name to use? Using
the Registry Editor, look in the Windows Registry. Invoke the
Registry Editor from a command prompt by typing in regedit.
Once regedit is invoked look for the MQSeries entry in the
following location:
 HKEY_LOCALMACHINE => SYSTEM => CurrentControlSet => Services =>
 MQSeriesServices

Another way to discover the actual Service name property (as
opposed to the display name property) is by using the sc.exe
command from a command prompt. This method can be tedious
and a bit convoluted. Essentially, you would need to use the sc
query command with the ri= option to scroll through the Windows
Services until you find the MQSeries Service.
A key point to keep in mind is that when you manage MQ
resources using the MQ Windows Service the span of control is
at a global level but acting on each Snap-in group independently.
As Figure 1 shows, the IBM MQSeries Service acts on both the
QM1 and the QM2 Snap-in groups. So when you type net stop
MQSeriesServices it’s a global action that stops all of the
resources associated with QM1 and with QM2.

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Under the hood, amqsvc.exe and the amqmperf.dll are the
executables associated with the IBM MQSeries Service. Looking
at the Processes tab within the Windows Task Manager you’ll
see the amqsvc.exe process running when the IBM MQSeries
Service is active.
You’ll also observe in Figure 1 several other Windows Services
listed; we’ll get to those soon when we discuss the srvany.exe
utility and the SCM.

MQ Snap-in Services
MQ provides MQSeries Explorer and MQSeries Services, two
independent but related Windows programs based on MMC
facilities. The Microsoft Management Console (MMC) represents
a facility that enables the custom development of administration
tools that operate in a Windows environment. Modules that are
added to the basic MMC console are called Snap-ins. A
complete MMC solution is represented as an .msc file.
Figure 2 shows the MQSeries Services window. Note that three
queue managers are listed: QM1, QM2, and QM_H0T5Z, each
of which represents an independent Snap-in group.

Figure 2: The WSMQ Services window

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The item labelled MQ Snap-in Services shown in Figure 1
represents the set of services associated with each queue
manager domain or Snap-in group.
You may have noticed a folder labelled Custom Services inside
the MQServices MMC window. This is a new capability with MQ
V5.2 that enables you to establish Custom Services that operate
within the span of control of a Snap-in group. This facility is a
replacement for the scmmqm utility that was used to install
various MQ resources as a Windows Service.

amqmdain Capabilities
Configuring services
[auto | manual] QmgrName Configures a previously defined queue

manager within a Snap-in domain with either
the automatic or manual property.

Creating services
crtlsr QmgrName LsrParms Creates a listener service within a Snap-in

domain.
crttrm QmgrName InitQname Creates a trigger monitor service within a

Snap-in domain.
crtchi QmgrName ChInitQName Creates a channel initiator service within a

Snap-in domain.
Controlling services
start QmgrName Starts services within a Snap-in domain.
stop QmgrName Stops services within a Snap-in domain.
Status
status [QmgrName | all] Displays the status of:

• The IBM MQSeries Windows Service and
either:

• The MQ resources within the named
Snap-in domain or:

• The MQ resources within a domain for
each Snap-in group.

Table 1: Resource management capabilities of amqmdain

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

amqmdain
Essentially, amqmdain provides MQ resource management
capabilities in four areas – configuration, creation, control, and
display – as described in Table 1 below.
The table omits a couple of other capabilities that are not relevant
to this discussion. The complete and official description of the
amqmdain command can be found in the MQSeries Release
Guide for V5.2, (document number GC34-5761-00). Descriptions
for the other control facilities can be found in the MQSeries
System Administration manual.
The key point to understand is that the amqmdain facility
operates only on the MQ Snap-in domain level and not on any
other level of granularity. Resources are controlled as a group.
Thus, as shown in Figure 1, amqmdain operates on the QM1
Snap-in group domain of resources, the QM2 group, and so on.
One consequence of this is that you do not have the granularity
of control over MQ resources that you might otherwise expect or
desire. For example, the command amqmdain start QM1 starts
not only the QM resource but also the CS resource. In fact you
cannot directly control the CS resource at all with amqmdain as
you can with other facilities, such as the native MQ commands
strmqcsv and endmqcsv. Further, the QM and CS resources
share a box in Figure 1 because amqmdain always controls
these resources jointly, regardless of their auto | man property
setting.
In fact the amqmdain behaviour with respect to resources within
a Snap-in group is quite puzzling. For example, suppose I have
a Snap-in group with four resources defined: QM, CS, CI, and
CL. If all resources are defined with the auto property and I
execute the amqmdain start command, all four resources start
automatically – as expected. On the other hand, if all resources
are defined with the man property and I execute the amqmdain
start command then the QM and CS resources start while the CI
and CL resources remain inactive. In the case of the amqmdain
stop command all resources are halted regardless of the auto |

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

man property. I view this puzzling behaviour as a limitation of
amqmdain.

srvany utility
The NT Resource kit (and the Windows 2000 resource kit for that
matter) supplies a utility called srvany.exe that enables you to run
any Windows application as a Windows Service. This capability
is functionally similar to the Custom Services capability described
above under the MQ Snap-in Services section.
Figure 1 shows four such instances of services using srvany.exe:
• Listener Service (uses runmqlsr.exe).
• Trigger Monitor Service (uses runmqtrm.exe).
• Dead Letter Service (uses runmqdlq.exe).
• QPasa Monitor Service (uses qamadm.exe).
The first three Services use executables supplied with MQ, as
indicated. The fourth Service – QPasa Monitor – is a third-party
product from MQSoftware that uses the executable indicated.
Note that just as with any Windows Service you can control these
services via the Services window or with the net start | stop
command.

SCM Services
Yet another way to control MQ resources is with a program that
exploits the SCM facilities. In Figure 1, the Monitor Service is just
such an example.
The Microsoft Service Control Manager (SCM) API enables you
to write a program that directly interfaces with the SCM. Such a
program can install or remove itself as a Windows Service and
exert programmatic control via the sc.exe command. This
approach is also particularly useful if you want to write messages
to the system event log.

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SUMMARY
In this article we have reviewed a variety of available mechanisms
that can be used to control MQ resources. A key issue in using
any of these mechanisms is to understand the scope of control
and granularity at which these mechanisms operate. The list
below summarizes the methods for controlling MQ resources in
descending order of narrowing span of control and greater
granularity.
1 The IBM MQSeries Windows Service – the master MQ

switch.

MQ Native MQ MQ Explorer MQ amqmdain Windows Perl
Resource Control Command Services Service Script

Command Command
QM strmqm | Yes Yes Yes 2 mq_QM

endmqm

Command strmqcsv | No Yes No 2 3
server endmqcsv

Channel runmqchi | 1 No Yes No 2 3
initiator

Trigger runmqtrm | 1 No Yes No 2 mq_TM
monitor

Channel runmqlsr | No Yes No 2 mq_CL
listener endmqlsr

Dead letter runmqdlq | 1 No No No 2 mq_DLH
handler

Channels runmqchl | 1 Yes Yes No 2 3

Notes:
1 There is no stop or end command to complement the run command

although the endmqm command will have the same effect.
2 The Windows Service affects all MQ resources globally.
3 A Perl script could be devised to control these resources.

Table 2: Facilities for exerting control over the MQ resources
listed

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

2 The MQ Snap-in domain.
3 A custom Windows service using either the srvany.exe utility

or a program designed to exploit the SCM API.
4 A custom Perl script or a native MQ command.
Table 2 indicates the facilities for exerting control over the MQ
resources listed.
One note of caution: it’s possible to control a particular MQ
resource through a number of different facilities. The current
state of that resource is not always reflected uniformly throughout
all facilities. So you might take an action on a resource using one
facility and then get a false indication of its state when examining
that resource through another facility.
So as a general MQ administration principle, establish an MQ
management architecture that specifies what MQ resources you
need to control and the degree to which you need to control each
of these resources independently, and then map those
requirements to the available facilities. In some cases it may be
suitable to manage all of your MQ resources through the master
MQ switch – the IBM MQSeries Windows Service. In other cases
you may choose to use Perl scripts to exert control over MQ
resources in a highly granular fashion. Or perhaps it is sufficient
to manage MQ resources at a Snap-in group level.
Tom Krpata, Founder, President,
Stellar Software Corporation (USA) © Xephon 2003

WMQ Integrator Broker: a performance evaluation

INTRODUCTION
In October 2002 IBM announced WebSphere Business
Integration for Financial Networks (WBI for FN). (This was
originally announced as WebSphere Financial Network Integrator,

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

or WebSphere FNI.) Part of this announcement is the WBI for FN
Base product and the Extension for SWIFTNet (WBI for FN ESN
or just ESN) on z/OS. WBI for FN ESN offers access to the new
SWIFT Secure IP Network (SIPN). The SWIFT FIN protocol,
which forms part of ESN, allows applications to interchange
financial messages between different banks via SWIFT. An
existing application that is supported with the ESN FIN part is
IBM MERVA (Message Entry and Routing with Interfaces to
Various Applications).
Both WBI for FN and the FN ESN use WSMQ Integrator Broker
and run on z/OS. The functionality is delivered as a set of
message flows and a set of user-defined nodes (plug-ins). This
article describes the performance evaluation carried out on the
WBI for FN ESN FIN component on z/OS and the results of the
evaluation.
The performance evaluation was carried out to provide information
to prospective WBI for FN customers. Another reason was that
WBI for FN is the first product built by our development organization
to use WSMQ Integrator Broker as the underlying middleware.
We wanted to understand how much throughput we could
achieve in such an environment, where the bottlenecks might
appear, and where we had room to improve either WBI for FN or
WSMQ Integrator Broker.

STARTING POINT
WSMQ Integrator Broker is a relatively new product on z/OS and
before the evaluation was begun we had no firm idea of what we
could expect. There is a performance report available for WSMQ
Integrator on z/OS but it covers only the basic nodes delivered
by WSMQ Integrator Broker. It does not encompass a real
application scenario, such as that needed for the SWIFT FIN
processing. It was apparent from this performance report,
however, that our product would use a lot of CPU resources.
To get an idea of what we could expect we used a capacity
planning tool (CPT), which is provided as SupportPac IP03 for
WSMQ Integrator Broker. As input for this tool we checked our

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

processing and counted the nodes that are invoked for normal
processing. WBI for FN has its own plug-in nodes. We translated
them to be either compute or database nodes, depending on the
kind of operation they perform. Other nodes, eg try-catch nodes
provided with WSMQ Integrator Broker, are omitted because
there is no means of inserting information about the number of
such nodes into the CPT. Even without such nodes, many others
are involved in the necessary processing for WBI for FN ESN
FIN, which is an indication of the complexity of the processing
required.
The CPT allows you to enter only an average figure for the
complexity and proportion of the compute nodes. We made
some assumptions when entering values for these fields. When
sending SWIFT FIN messages and receiving an acknowledgment

Figure 1: Results from the Capacity Planning Tool

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

from the SWIFT network the CPT stated that it should be
possible to process 7,084 FIN messages per hour. This figure
included only the WBI for FN part of sending FIN messages.
For the processing in MERVA and access to the SWIFT SIPN we
expected some degradation. The results given by the CPT are
shown in Figure 1. Based on the number of input nodes it can be
seen that in the processing of one FIN message there are
multiple WSMQ messages involved. In this case there are nine
WSMQ messages for each FIN message processed.
We did a similar calculation for the scenario where the ESN
receives messages from the SIPN and acknowledges them.
This processing is a little more complex and the result was that
WBI for FN ESN is expected to process 4,966 FIN messages per
hour.
The prediction holds true for a defined hardware processor – a
9672-X27. The CPT provides no indication about CPU utilization
when processing these messages nor how the result will be
influenced when other programs are running in parallel. In the
case of WBI for FN ESN FIN processing at least two programs
are running in parallel. The first program is MERVA. We used

Figure 2: Test environment

SFNS

MERVA/ESA (CICS)

MERVA Bridge

Interface layer

Finite state machine

FIN InterAct
layer

SAG simulator

WebSphere BI for
FN
Extension for
SWIFTNet

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MERVA/ESA running in a CICS region to provide the ESN with
FIN messages and to perform some processing for FIN message
validation and FIN checksum calculations.
The real access to the SIPN is performed by a component
provided by SWIFT, the SWIFT Alliance Gateway (SAG). This
component does not run on the same machine but as a second
program it could influence the result because it accesses
messages in the queues remotely and requires the WSMQ client
attachment to run. So there was still a lot of uncertainty but at
least we had a number to start with.

TEST ENVIRONMENT
For the performance evaluation system we used dedicated
zSeries hardware; for the test we used a G7 (IBM zSeries 900
Model 216). On this system we allocated a logical partition
(LPAR) with four processors and 4 GB of storage. This is a much
faster machine than the one used as a reference machine for the
results of the CPT. The CPT documentation told us to use the
LSPR rate (IBM Large System Performance Reference, see
http://www.ibm.com/servers/eserver/zseries/lspr/) of the
hardware to scale the results from the CPT to the expected rate
on the test machine. The G7 with four processors has an LSPR
rate for a mixed workload of 4.29, whilst the reference machine
of the CPT has a rate of 1.28. Therefore we expected to be able
to process 7,084 FIN messages/hour * 4.29/1.28 = 23,742 FIN
messages/hour.
The environment for the performance evaluation is illustrated in
Figure 2. All processing was done on the test machine. MERVA/
ESA was running in a single CICS region. This is the same
MERVA that is accessed from within WBI for FN for security
processing.
FIN messages are issued in MERVA and copied using a MERVA
component, called MERVA Bridge, to a WSMQ queue. This
message travels through the Interface Layer (IL), which accepts
the message, the Finite State Machine, which implements the

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

FIN protocol as defined by SWIFT, and the FIN InterAct Layer to
the network accessing program, the SAG. InterAct is the new
protocol for the SIPN and is defined by SWIFT. Each FIN
message is acknowledged and the acknowledgment travels the
same way in the opposite direction until the bridge correlates the
acknowledgment with the original FIN message in MERVA.
SWIFT does not provide a network where performance
measurements can be carried out. The production network can’t
be used because this is used to process financial messages. A
test network is provided for functional tests but this is not suitable
for performance testing.
For these reasons we developed a simulator for the SAG and the
SWIFT network. This simulator will, from a performance
perspective, behave differently from the real SAG with SWIFT
network but we decided that we wanted to analyse our message
flows and plug-in nodes and not the SWIFT network, so this was
OK for us. The simulator itself is running on a distributed platform
like the SAG; in our case it’s running on an AIX machine.
WBI for FN ESN message flows and nodes are deployed to one
WSMQ Integrator Broker broker. This broker was at CSD3 level.
WBI for FN Base was at GA level and the ESN started with an
early development level and was upgraded during the evaluation
phase with a development level shortly preceding the GA
version.

TEST APPROACH
For the performance evaluation the main point of interest for us
was the message throughput that ESN FIN processing could
achieve, so we defined a configuration with specific settings. We
chose to start the test with one instance for each message flow.
WBI for FN ESN also has some tuning settings.
In this configuration we used a set of 15,000 FIN messages. The
FIN messages were selected so that they were representative of
the average length and complexity of messages found at most
customer sites. When starting the test all messages were copied

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

as a batch into a MERVA queue. The MERVA Bridge then took
the messages and put them into a WSMQ queue for processing
by WBI for FN ESN message flows.
The test ended when all the messages were processed and
acknowledged from the simulated SWIFT network. This is when
all messages are back in a MERVA queue. To get the message
throughput we measured the time from the initial copy to the end.
This, in relation to the number of messages issued, results in the
message throughput rate. We also measured the average
utilization of the z/OS system.

INITIAL RESULTS
The first tests showed a throughput of 12,000 FIN messages per
hour. At this time our message flows still had WSMQ Integrator
Broker trace nodes instead of WBI for FN trace nodes. To
determine where we spent the time we ran a small test with a few
messages. During this test we turned on the WSMQ Integrator
Broker user trace, with a level of ‘normal’. This has enabled us
to gain a deeper insight into which message flows take the most
time and where in the message flow most time is required.

MESSAGE FLOW ANALYSIS
The first factor we looked at was the time required for each step
in the message processing procedure. This is important because
the processing for one FIN message is carried out in a sequence
of message flows. The slowest of all these flows determines the
processing speed for all messages. The message flows that
have the longest elapsed processing time are the ones that we
concentrated on first. Using this method the Interface Layer
message flows have been identified as causing the initial
bottleneck.
When looking at the CPU time for such a test run it can be seen
that 60% of the processing time is spent in WSMQ Integrator
Broker code, the runtime library, and WBI for FN. The rest is in
CICS, MERVA, DB2, and other system components. I/O was not
found to be a constraint. That’s why we concentrated our

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

analysis on the message processing in the message flows rather
than in DB2, for example.

Analysing user-defined nodes
When looking into the message processing nodes that consumed
the most time we identified three different nodes, as detailed
below.
• Audit. WBI for FN provides a node that can be used to audit

processed messages. So it writes the message body and
part of the WBI for FN information in a WBI for FN folder in
the MQRFH2 into a database table. This node is composed
only of nodes provided by WMQ Integrator Broker.

• Configuration data provider node. The task of the configuration
provider node (CPN) is to provide dynamic configuration
information into the message flow. This is done in a plug-in
node provided by WebSphere BI for FN Base. This node
reads the configuration information from a database table,
caches the information, and inserts it into the message being
processed as required.

• Trace. WMQ Integrator Broker already provides a trace
node. Tracing is mandatory in order to provide service for
products, so the WBI for FN Base also provides a node with
the equivalent tracing function. The main difference is that
tracing can be switched on and off dynamically.

Audit
The audit function is mandatory for processing financial
messages. It is used four times during the processing of one
SWIFT FIN message. Message auditing, provided by WBI for
FN Base as a subflow, consists of a sequence of nodes provided
by WSMQ Integrator Broker.
To investigate why these nodes consume a relatively large
amount of time we used a WSMQ Integrator Broker debug trace.
From such a trace it’s possible to obtain information on which
nodes consume what quantity of elapsed time. The first thing we

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

looked at was the time needed for the SQL INSERT call to insert
data into the database table. We found that preparing the call
takes up to 100 times more elapsed time than the actual insert.
The DB2 insert takes less than 1 millisecond (ms) while the
overall audit processing took up to 80 ms.
When looking at the processing time we discovered that most of
the elapsed time is spent serializing parts of the MQRFH2. This
is so expensive because the message tree must be completely
navigated. Navigating messages using ESQL has been found to
be very CPU-intensive.
When analysing this kind of problem a ‘normal’ WSMQ Integrator
Broker trace is helpful. When looking for a better solution we
found that, with CSD 3, WSMQ Integrator Broker provides a new
functionality that serializes parts of a message in one ESQL call.
With this change we were able to reduce the elapsed time for this
node by 80%.

Configuration data provider node
Dynamic information is required in each ESN message flow. It
allows WebSphere BI for FN ESN to provide generic message
flows that are enriched with customer-specific information. Each
message flow requires different information. This configuration
information is stored in a database.
The configuration information is inserted into the message by the
configuration data provider node. Since DB access is expensive
in general, the node retrieves the information from the database
table and caches it so that database access is not required too
often. When looking at a user trace we have observed that this
node takes up to 70 ms. The WSMQ Integrator Broker trace
doesn’t provide enough information to enable us to determine
where this time is spent.
To analyse whether the time is spent in the WBI for FN code or
whether WSMQ Integrator Broker requires too much time we
made a comparison. We measured the time in our CPN that is
needed to insert the data elements and in addition we built a

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

message flow that substituted the CPN with a compute node. In
this compute node we hard-coded the statements to insert the
same data elements in ESQL. A comparison of the results
showed that inserting the elements using the WBI for FN CPN
consumed far more elapsed time than when using the compute
node. This shows that further investigation is required in this
area.

Trace
WSMQ Integrator Broker provides a trace node that can be used
during the development phase of a message flow to find functional
problems. The disadvantage of using this node is that it costs
much time when passed and it serializes processing when
writing the trace information to a file. In addition, writing the trace
information every time consumes a lot of disk space. This is why
the WSMQ Integrator Broker trace nodes should not be left in
messages flows when getting a message flow into production.
For a product, the trace function is mandatory in order to find
problems at customer sites. This is why WBI for FN Base
provides an internal node with similar functionality to that of the
WSMQ Integrator Broker trace node. The main difference is that
the actual tracing can be switched on or off dynamically.
For the performance evaluation we ran WSMQ Integrator Broker
user traces to get the elapsed time of nodes in our message
flows. We did this measurement for two WBI for FN ESN drivers,
the first one with WSMQ Integrator Broker trace nodes and a
second, which replaced the WSMQ Integrator Broker trace
nodes with WebSphere BI for FN trace nodes. For the second
driver we measured the elapsed time for the trace node when the
trace node was activated and when it was deactivated. We tried
to output a whole message tree (the root element) as a trace
statement.
Comparing the results of the WSMQ Integrator trace node with
the results for the WBI for FN trace node when tracing is enabled
we observed that the WebSphere BI for FN trace node was
nearly 20% slower than the WSMQ Integrator trace node. This

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

shows that the WSMQ Integrator Broker trace node is integrated
better than user-defined nodes.
Tracing, using the WBI for FN trace node when tracing is
disabled, requires less than 1 ms. This time is independent of
what part of the message is traced. For the test message that is
roughly 20 times faster than with tracing enabled. The test
message was not that large or complex. From this reason it can
be assumed that the relationship hardly depends on the actual
message or part of the message that is traced.
In general, when tracing is necessary, the extra time required in
the WBI for FN trace node is acceptable. It is outweighed by the
fact that tracing in normal processing is disabled but can be
enabled if necessary.
For problem analysis WBI for FN message flows usually needed
multiple trace points. So replacing WSMQ integrator Broke trace
nodes with WBI for FN trace node speeds up the processing
significantly for normal message processing. The increase for
the overall throughput was more than 80%.

FINAL RESULTS
Further investigations were prevented by the close of the test
period. Within the performance evaluation period a fix for the
audit subflow was received that uses the new WSMQ Integrator
Broker functionality, which was introduced with WSMQ Integrator
Broker CSD 3. As described, the WSMQ Integrator Broker trace
nodes were replaced with WBI for FN trace node. This increased
the initial throughput from 12,000 FIN messages per hour in
steps via 25,000 FIN messages to the final number of 45,000 FIN
messages per hour.
This illustrates that investigations into the message flows and
into the elapsed time for message processing nodes can identify
bottlenecks. Analysing where the time is spent can be a very
productive means of improving performance.
In the final results the average CPU utilization was still 67%. This

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

showed that, on average, one of the four processors was not
utilized. Running the message flows that were identified as the
bottleneck, the Interface Layer in multiple execution groups, it
was possible to increase the throughput, thereby having a higher
CPU utilization.
To get an understanding of the scaling behaviour we ran the
SWIFT FIN scenario on the same hardware with three, two, and
one processor(s) respectively. The measurements showed that
the product is CPU-bound and scales with an internal throughput
rate that is nearly linear with the CPU capabilities. Based on this
we developed a different scaling method from the one proposed
in the Capacity Planning Tool. The ESN scaling recommends the
use of the CBW2 LSPR rate to scale the throughput across
zSeries CPU families and the number of processors to scale the
throughput within one CPU family. The CBW2 workload is
recommended instead of the mixed workload LSPR rate because
it scales in an almost linear fashion with the number of processors.

OUTLOOK
For the configuration data provider node we have to do further
analysis. The processing time for this node needs to be reduced.
This is essential because at the end of the evaluation period this
node required a high percentage of the elapsed time of the ESN
message flows. Once this is resolved additional evaluation
periods will be scheduled.

SUMMARY
Overall the performance evaluation test proved very valuable in
understanding the performance behaviour of WSMQ Integrator
Broker and WBI for FN. This exercise has shown that the
prediction for the complex SWIFT FIN processing, based on the
WSMQ Integrator Capacity Planning Tool, was very conservative.
The actual throughput of 45,000 FIN messages per hour was
roughly two times better than the rate calculated using the tool.
The main reason could be that our application runs more parts
in parallel than is assumed by the tool.

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The test has also shown that WSMQ Integrator Broker-delivered
nodes are normally better integrated and therefore faster than
user-defined nodes. Nevertheless, any processing – especially
ESQL – is very CPU-intensive. To reduce this we used new
functionality from WSMQ Integrator Broker CSD3 and were able
to reduce the elapsed time for one of the WBI for FN nodes by
80%. For some other processing WBI for FN provides nodes with
similar functionality to WSMQ Integrator Broker. This is slower
that the WSMQ Integrator Broker node but compensates through
additional functionality.
Finally, the evaluation test has identified the problem areas in the
WBI for FN ESN message flows and plug-in nodes. This gives
us a baseline from which to improve message throughput in the
future.
Michael Groetzner and Christian Herrmann, IBM (Germany) © IBM 2003

Setting up a client to server SSL connection

This article explains the procedure required to test an MQ client
to MQ server SSL connection using WSMQ V5.3 CSD01.
Support for SSL connections is a new feature of V5.3 and both
the client and server must be at V5.3.
In this example the client was on a Windows NT SP6 platform
and the server was on a Windows 2000 platform. A different
certification authority was used for the client and server to avoid
confusion as to which certificates are required in the client and
queue manager stores.
If both certificates are from the same authority it is easy to think
–mistakenly – that the client and server need the intermediate
and roots from their own certificates; this is not the case.

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

PROCEDURE

Obtaining a certificate
The first step is to obtain a temporary certificate from a certification
authority for queue manager use. In this example the certificate
was obtained from DST digitalsignaturetrust at
www.digsigtrust.com. The Web link provides instructions for
obtaining and downloading the certificate. The certificate was
named SSL QRS1QMGR. The queue manager name in this test
was TEST1.
Next, use Internet Explorer (IE) to determine the certification
path by opening IE and selecting Tools/Internet options. Click on
the Content tab and select the Certificates… button. Double-
click on the SSL QRS1QMGR certificate and select the
Certification path tab. The certification path is displayed as
follows:
 DST RootCA X1 (this is the ROOT).
 DST Root CA X3 (this is an intermediate or CA).
 DEMO CA A6 (this is an intermediate or CA).
 SSL QRS1QMGR (this is your queue manager
certificate).
This certification path will be used later to determine which
certificates need to be exported and added to the MQ client’s
certificate store. The MQ client needs access to all the Root and
CA certificates in order to verify the MQ server’s certificate.
Add the SSL QRS1QMGR certificate to queue manager TEST1’s
SSL certificate store by doing the following:
• Using the MQSeries Explorer, right-click on the TEST1

queue manager, select Properties, and choose the SSL tab.
• Select the Manage SSL certificates button and add the

certificate to the queue manager store using the Add button.
Check that the certificate is added by looking at the list in the
window labelled Certificates in store for ‘TEST1’.

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Notice that in the window above, labelled ‘Certificate assigned
to this queue manager’, the following text appears: ‘No
certificate has been assigned. SSL connections requiring
authentication of this queue manager will fail.’ Follow the
instructions below to assign the certificate.

Assigning the certificate
Assign your certificate to the queue manager. Using the MQSeries
Explorer, right-click on the TEST1 queue manager, select
Properties, and choose the SSL tab. Select the Manage SSL
certificates button. Click the Assign button, select the queue
manager’s certificate (eg SSL QRS1QMGR), and select the
Assign button that appears.
Notice that in the window above, labelled ‘Certificate assigned to
this queue manager’, the following text appears: ‘Assigned
certificate: SSL QRS1QMGR Certification Authority: DEMO CA
A6’. Note that there is a minor bug in the MQ software (client and
server), which causes it not to recognize valid certificates on the
first day they are issued. This can be circumvented by waiting a
day or advancing the date on the computer.
Obtain a temporary certificate from a certification authority for
client use. In this example the certificate was obtained from
Global Sign at www.globalsign.com. The Web link provides
instructions for obtaining and downloading the certificate. The
certificate is named using the e-mail address supplied (eg
yourname@your.com).
Use IE to determine the certification path for this certificate by
opening IE and selecting Tools/Internet options. Click on the
Content tab and select the Certificates… button (see Figure 1).
Double-click on the yourname@your.com certificate and select
the Certification path tab. The certification path is displayed as
follows (see Figure 2):
 GlobalSign Root CA (this is the ROOT).
 GlobalSign Primary Class 1 CA (this is an intermediate or
CA).

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 GlobalSign Class 1 CA (this is an intermediate or CA).
 yourname@your.com (this is your client certicate).
This certification path will be used later to determine which
certificates need to be exported and added to the MQ server’s
certificate store. The MQ server needs access to all the Root and
CA certificates in order to verify the MQ client’s certificate.
Ensure the MQSSLKEYR environment variable is set to the
location where you want to locate the MQ client certificate store
(c:\mqm\key in this example – see Figure 3). You should not
include the extension .sto in the environment variable setting.
The key.sto file is created from the default store the first time
amqmcert is executed.
Add your client’s personal certificate to the MQ client certificate
store. Identify the handle number of the certificate in the personal

Figure 1: Determining the certification path

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

certificate store (called MY) by executing the command
Amqmcert -k MY -l. (The file MY.TXT in the Appendix lists the
output of this command.)
Check that the client certificate yourname@your.com is listed
and note the handle number (14001 in this example).
Now add the client certificate to the MQ client certificate store by
executing the command amqmcert -k MY -a 14001, which in
effect moves a copy of the certificate from the store of personal
certificates (MY) to the MQ client’s store in the file key.sto.
Check that the client certificate has been added by executing the
command amqmcert -l. (The file LIST.TXT in the Appendix lists
the output of this command.)

Figure 2: The certification path

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Check that the certificate is listed and note the handle number.
Notice that the handle number in the MQ client store is different
from the handle number in the MY store. Make a note of the
handle for the Client certificate (02014 in this example). Also,
notice that at the beginning of the listing there is text to indicate
that no certificate has been assigned to the MQ client.
Assign your personal client certificate (yourname@your.com in
this example, handle 02014) to the MQ client by executing the
command amqmcert -d 02014.
You can repeat the amqcert -l command to verify the certificate
is assigned.

Figure 3: Locating the MQ client certificate store

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Validating the certificates
Now it is necessary to ensure that the MQ server certificate store
has all the ROOT and intermediate (CA) certificates from the
client’s certificate chain in order to validate the client’s certificate.
Likewise, it is necessary for the client to have all the ROOT and
CA certificates that are in the server’s certificate chain in order
to validate the server’s certificate. These certificate chains have
been discussed above. These steps may not be necessary if the
certificates are among those pre-loaded for the MQ client and
MQ server but for the demo certificates used in this test this was
not the case.
To add the client root and intermediate certificates to the queue
manager’s store, first export all of the client’s ROOT and
intermediate certificates to separate files, using the Internet
Explorer on the client, by opening IE and selecting Tools/Internet
options. Click on the Content tab and select the Certificates…
button. Select the Intermediate certification authorities tab and
find the two intermediate certificates:
• GlobalSign Primary Class 1 CA.
• GlobalSign Class 1 CA.
Export each of these to separate files by highlighting the name
and selecting Export and Next. Three options are listed. The
default ‘DER encoded binary X509 (.CER)’ was chosen for this
test. Click Next and choose a file name
(c:\mqm\GlobPrimClass1.cer and c:\mqm\GlobClass1). Now
select the Trusted root certification authorities tab to list the
ROOT certificates. Select the GlobalSign Root CA certificate
and export it to a file (c:\mqm\GlobRoot.cer), as was
done for the two intermediate certificates.
Transfer these three files (GlobRoot.cer, GlobPrimClass1.cer,
and GlobClass1) to the MQ server and import them into the
TEST1 queue store by opening MQExplorer, right-clicking on
TEST1 queue manager, and selecting Properties and the SSL
tab. Select the Manage SSL certificates… button and select
Add.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Now select Add from a file radio button, specify the file, and select
the Add button that appears. Do this for each of the three files
(GlobRoot.cer, GlobPrimClass1.cer, and GlobClass1). If one of
these certificates is already in the store an error message will be
displayed. Check that all three certificates are listed in the
window for the queue manager’s certificate store.
To add the queue manager’s intermediate and root certificates
to the MQ client’s store, first export all of the queue manager’s
ROOT and intermediate certificates to separate files using the
Internet Explorer on the server by opening IE and selecting tools/
Internet options. Click on the Content tab and select the
Certificates… button. Select the Intermediate certification
authorities tab and find the two intermediate certificates:
• DST Root CA X3.
• DEMO CA A6.
Export each of these to separate files by highlighting the name,
selecting Export and Next. Three options are listed. The default
‘DER encoded binary X509 (.CER)’ was chosen for this test.
Click Next and choose a file name (c:\mqm\DSTX3.cer and
c:\mqm\DEMOA6.cer). Now select the Trusted root certification
authorities tab to list the ROOT certificates. Select the DST
RootCA X1 certificate and export it to a file
(c:\mqm\DSTROOT.cer), as was done for the two intermediate
certificates.
Transfer the three files from the MQ server (DSTX3.CER,
DEMOCA6.CER, DSTROOT.CER) to the client platform and
import them into the root and intermediate stores using Internet
Explorer. For each of the three files open IE and select Tools/
Internet options. Click on the Content tab and select the
Certificates… button. Select the Import button and then Next,
specify the file name and select Next again, choose the default
option ‘Automatically select the store based on the type of
certificate’ or specify the store (intermediate or trusted
root), and click on the Finish button.
Execute the command amqmcert -k ROOT -l to list the handle

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

number (14042 in this example) for the DST RootCA X1 certificate.
(The file ROOT.TXT in the Appendix lists the output of this
command.)
Add the queue manager’s root certificate to the MQ client
certificate store by executing the command amqmcert -k ROOT
-a 14042.
Execute the command amqmcert -k CA -l to list the handle
numbers (14002 and 14003 in this example) for the two
intermediate certificates (DST Root CA and X3DEMO CA A6).
(The file CA.TXT in the Appendix lists the output of this command.)
Add the queue manager’s two intermediate certificates to the
MQ client certificate store by executing the following commands
amqmcert -k CA -a 14002 and amqmcert -k CA -a 14003.
Define a svrconn channel on the MQ server TEST1 (TEST.CONN
in this example). Under the SSL tab select an option
‘RC4_MD5_US’.
Create a corresponding CLNTCONN channel on the server and
select the same SSL option for this channel (‘RC4_MD5_US’ in
this example). Export the chl table to the client machine and
activate it by ensuring the correct MQCHLLIB and MQCHLTAB
environment variables are set or that the channel is in the default
directory with the default name.
Create a test queue on the server (TESTQ in this example).
On the client machine execute the test amqsputc and amqsgetc
programs and put and get some messages to verify the
connection:
• amqsputc TESTQ TEST1.
• amqsgetc TESTQ TEST1.
Nick Dilauro, MQSeries Administrator
QRS Corporation (USA) © Xephon 2003

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Improving performance on SSL channels running
on WSMQ for AIX

WHAT IS THE PROBLEM?
At V5.3 WSMQ provides support for Secure Socket Layer (SSL)
security on its channels. SSL authentication involves the use of
very CPU-intensive algorithms, which increase channel start-up
times. The algorithms used to encrypt the user data also slow the
channels to a significant extent. A common way to counter the
performance impact of running SSL is to make use of hardware
that is specifically designed to perform cryptographic functions
very quickly. In this article I discuss the options for such hardware
that are currently supported on WSMQ for the AIX platform.

HOW MIGHT CRYPTOGRAPHIC HARDWARE HELP?
It is worth looking first at the ways in which such hardware may
be expected to improve performance. SSL communication can
be divided into two major phases:
• The initial authentication and key exchange (also known as

the SSL handshake). The algorithms used here involve large
keys and much computation. They are very CPU-intensive.
An SSL handshake is run every time a WSMQ SSL channel
starts. WSMQ channels always use the algorithms supplied
by the Rivest, Shamir, Adleman (RSA) company for
authentication and key exchange. The key size used can
vary, depending on the contents of the certificates and the
CipherSpec specified on the channel definitions.

• The transfer of user data. On a WSMQ SSL channel
messages are always signed digitally by applying a hashing
algorithm to the user data and then encrypting the hashed
value and appending it to the data. Generally the data itself
is also encrypted. The hashing and encryption algorithms
used are determined by the CipherSpec.

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The signing and encryption/decryption of an individual item
of data is not as intensive as the handshaking processing. As
a general rule more secure algorithms affect channel
performance more than less secure algorithms. However, it
is also true that certain SSL algorithms are more efficient
with regard to perfomance than others.

The relative importance of these two factors clearly depends on
the use to which a channel is put. The handshake overhead is
particularly important on channels that start and stop frequently;
the data transfer overhead is particularly important for long-
running channels.
Cryptographic hardware cards provide assistance with the CPU-
intensive algorithms involved in authentication and key exchange.
WSMQ makes use of this capability in the cards that it supports.
Some cryptographic hardware cards also have the potential to
provide assistance with some of the algorithms used to encrypt
data for data transfer. Many cards cannot be used to provide
encryption assistance for data transfer and those cards that do
provide this facility limit it to a restricted range of encryption
algorithms.
WSMQ doesn’t currently exploit this feature even if it is available
on a particular type of card. So in the WSMQ Unix environment
cryptographic hardware is particularly useful to improve
performance for short-lived channels.

CRYPTOGRAPHIC CARDS SUPPORTED BY WSMQ (ON AIX)
At the time of writing, WSMQ only provides support for two
cryptographic cards on the AIX platform:
• The IBM Cryptographic Coprocessor for IBM e-server

pSeries: feature code 4963.
• The IBM Cryptographic Accelerator for IBM e-server pSeries:

feature code 4960.
Both cards provide acceleration for authentication and key
exchange on a WSMQ channel.

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Note that both cards must be ordered separately from WSMQ.
Note also that, at the time of writing, support is restricted to
V4.3.3 of the AIX platform for the 4963 card and V5.1 of the AIX
platform for the 4960 card. Please check at time of deployment
as more versions of the AIX platform may be supported at that
time.

PKCS #11
PKCS #11 is an abbreviation of Public Key Cryptography Standard
11. It originates from RSA but is an open industry standard. It
defines an application programming interface (API) provided by
a cryptographic product so it may be controlled by an application
program.A specification of the interface is available by following
the PKCS #11: Cryptographic Token Interface Standard, version
2.0 link from the Web site http://developer.netscape.com/docs/
manuals/security/pkcs/index.htm.
WSMQ uses this interface to control both the 4963 and the 4960
cryptographic cards.
While the details of the API between WSMQ and the cryptographic
cards are clearly not of direct interest to the reader they are still
relevant. For instance, when using a PKCS #11 card the personal
certificate in use and generally also the CA certificates are stored
by the cryptographic product and not directly by WSMQ. How the
WSMQ user works with PKCS #11 cards is discussed below.
As mentioned, one particular feature of the PKCS #11 interface
is that it allows the application (in this case WSMQ) to pass
certificates through the PKCS #11 API so that they are stored
within the PKCS #11 environment. With some PKCS #11 cards
the certificates are physically stored on the card itself. This
applies in the case of the 4963; it gives extra security against
internal tampering with the certificates. With other PKCS #11
cards the certificates passed across the API are physically
stored on disk. This applies on the 4960; the focus of the 4960
is speeding up the cryptography (using parallel processing)
rather than providing extra certificate security.

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

INSTALLING AND CONFIGURING THE CARDS
When the cryptographic cards under discussion are received by
the user they must be installed and configured to provide the
PKCS #11 interface that WSMQ will use. For both the 4963 and
the 4960 the basic installation of the hardware and its device
driver is straightforward and is not discussed here. This should
be successfully completed before the PKCS #11 configuration
work described below.
The 4960 is rather simpler to set up than the 4963 because the
card does not need to be initialized to hold certificates. The
following instructions apply to both cards.
• The operating system must have basic PKCS #11 support.

You must ensure that you have the current version of
bos.pkcs11 installed and that you rebooted after it was
installed.

• Ensure that the operating system is at the current
maintenance level.

• The user should access the manual entitled IBM 4758 PCI
Cryptographic Coprocessor PKCS #11 Support Program
Installation Manual for IBM 4758 Models 002 and 023, which
can be found at ftp://www6.software.ibm.com/software/
cryptocards/PKCS11_INSTALL_241_Manual.pdf.
The 4758 runs in a Microsoft Windows environment and is
very similar to the 4963. The 4758 manual includes
instructions explicitly intended for setting up the 4963. Some
of these apply to the 4960 also.

• If you have a 4963 follow instructions for the AIX platform in
chapters three (Installing the support program), four (Loading
software into the Coprocesor), and five (Token Initialization)
of the manual referenced above. Note that the alphabetic
characters in the token must be entirely in lower case if it is
to be used by WSMQ.

• If you have a 4960 the setup necessary is described in the
manual referenced above, in the following subsections of
Chapter five, entitled Token Initialization:

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

– Initialization of PKCS #11
– Setting of the User PIN.

Unfortunately, on the AIX V5.1 platform, depending on the
system software installed, you may run into the following
misleading message when you select ‘Initialize a token’ in SMIT:
‘There are no items of this type’. If you get this message you
should run the commands from the command line as follows:
• Set the token label (the alphabetic characters in the token

must be entirely in lower case if it is to be used by WSMQ).
 /usr/lib/pkcs11/methods/pkcsconf -I -c ¯

• Enter the SO PIN: 87654321.
• Enter a unique token label: testtoken.
• Set the security officer PIN. It is sensible for the security

officer to change the security officer PIN directly after
initializing the token, otherwise an unauthorized user could
access the device and, for instance, reinitialize it or delete
certificates and keys. Make sure you remember the new
security officer PIN.

 /usr/lib/pkcs11/methods/pkcsconf -P -c ¯

• Enter the SO PIN: 87654321.
• Enter the new SO PIN: newsopin.
• Re-enter the new SO PIN: newsopin.
• The security officer sets the user PIN
 /usr/lib/pkcs11/methods/pkcsconf -u -c ¯

• Enter the SO PIN: newsopin.
• Enter the new user PIN: 12345678.
• Re-enter the new user PIN: 12345678.
These commands will have the desired effect but a spurious
‘Memory fault’ error message will be output. (Remember that
these commands were only executed because we were getting

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

an error from SMIT in the first place.) The following commands
are useful to confirm that the required changes have in fact taken
place:
• /usr/lib/pkcs11/methods/pkcsconf -?

– what parameters does pkcsconf have?.
• /usr/lib/pkcs11/methods/pkcsconf -s

– PKCS #11 slot information.
• /usr/lib/pkcs11/methods/pkcsconf -i

– general PKCS #11 information.
• /usr/lib/pkcs11/methods/pkcsconf -t -c 0

– PKCS #11 token information.
You have now completed the set-up of PKCS #11 on the AIX
platform for the cryptographic hardware. You will now need to set
up WSMQ to use it.

CONFIGURING CERTIFICATES AND KEYS ON THE PKCS #11
SYSTEM
The WSMQ iKeyMan GUI tool is used to set up keys and
certificates for WSMQ processing. This is activated by typing
gsk6ikm. WSMQ use of this tool is documented in detail in the
IBM manual WebSphere MQ Security (SC34- 6079). The section
that describes how to get the certificates and keys onto your
cryptographic cards is called Configuring for cryptographic
hardware, which is a subsection of Working with the Secure
Sockets Layer (SSL) on Unix systems. I will not repeat the
information here, however, the following notes will help you with
the specifics required for configuring the 4960 and 4963.
• The File Name field should contain PKCS11_API.so.
• The Location field should contain usr/lib/pkcs11.
• For normal use of the 4960 and 4963 you will not require a

secondary CMS key database to hold the signer certificates

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

(ie there is room for them in the PKCS #11 environment).
• Note also that you can create self-signed certificates in the

PKCS #11 environment.

CONFIGURING WSMQ RUNTIME FOR CRYPTOGRAPHIC
HARDWARE
On a queue manager running on AIX the SSLCryptoHardware
queue manager attribute contains the parameters that determine
whether cryptographic hardware is in use and if so what kind it
is and, if necessary, its parameters.
The form of the SSLCryptoHardware value for PKCS #11
hardware is defined in the IBM manual WebSphere MQ
Programmable Command Formats and Administration Interface
(SC34-6060) as:
 GSK_PKCS11=<the PKCS #11 driver path and filename>;<the PKCS #11
 token label>;<the PKCS #11 token password>;

The token password is the same as the user PIN.
So with the PKCS #11 software installed in the standard place on
AIX and, assuming the manual pkcsconf configuration steps
listed above, the SSLCryptoHardware parameter would be:
 GSK_PKCS11=/usr/lib/pkcs11/PKCS11_API.so;testtoken;12345678;

(Note the mandatory terminating semi-colon.)
This parameter can also be input using the SSLCRYP MQSC
parameter and the information can be entered from the WSMQ
Windows Explorer.
On a WSMQ client running on the AIX platform the GSK_PKCS11
parameter can be specified using the MQSSLCRYP environment
variable. The information can also be supplied on an MQCONNX
call.
You are now configured to make use of your cryptographic
hardware to reduce the start-up time on your SSL channels.
Mike Horan, WSMQ Base Development (distributed platforms)
IBM Hursley (UK) © IBM 2003

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

dmpmqaut parser

INTRODUCTION
In my previous article on generic profiles (MQ Update Issue 41,
November 2002) I explained how the dmpmqaut command
introduced in WebSphere MQ (WSMQ) V5.3 can be used to
recover all authority profiles for a particular queue manager. This
involves dumping all of the authority profiles to a text file and then,
when recovery is required, converting the profiles stored in the
file into setmqaut statements. This article presents a program
that will perform this conversion automatically, taking as input the
file created by dmpmqaut and producing as output a file
containing all setmqaut statements required to create exactly all
authority profiles that existed at the point when the dmpmqaut
command was issued. The program requires WSMQ V5.3 CSD
3.

USAGE
Once all of the authority profiles which will later require recovery
have been defined, run the WSMQ dmpmqaut command,
specifying only the queue manager name, and pipe the output to
a text file. This will produce a file containing all authority profiles
defined on the queue manager in verbose format. The file should
be safely stored until recovery is needed.
To recover the authority profiles first compile the C program
which accompanies this article. This will produce an executable
that accepts the following parameters:
 ParseDmp <input file> <output file> <queue manager name>

Next, run the parser, specifying as input the file stored earlier,
containing all the authority profiles. Choose a suitable output file
name and specify also the name of the queue manager being
recovered. The parser will generate an output file containing all
of the setmqaut statements required to recreate the authority

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

profiles. Finally, after recreating all of the queue manager
objects, ensure that the queue manager is running and pipe the
output file created by the parser to the current command shell.

Example
The example given here is for the Windows platform but the
parser should run on any suitable platform – simply replace the
pipe commands in this example with those appropriate to the
operating system.
To store the authority profiles on a queue manager named qmgr1
in a file named dmpmqaut.output:
 dmpmqaut -m qmgr1 2> dmpmqaut.output

To recreate the authority profiles:
 ParseDmp dmpmqaut.output setmqaut.txt qmgr1
 cmd.exe < setmqaut.txt

PARSER INTERNALS
The parser works by scanning the output from the dmpmqaut
command twice. The first iteration is used to recreate all of the
straightforward setmqaut statements pertaining to objects. Each
authority record is examined and the various field values are
used to construct a setmqaut statement that will exactly recreate
the authority record.
One special case concerns an authority’s records for queue
manager objects; such records require setmqaut statements
with no object type parameter. Also, during the first iteration an
object name for each of the different object types is stored. These
are required during the second iteration, which is used to
recreate all of the setmqaut statements pertaining to authority
class records. The syntax of the setmqaut command requires
that each authority for a class of objects is set against an object
of the appropriate type. Therefore, when reconstructing each
setmqaut statement for a class record, the name of an object of
the corresponding class that was stored during the first iteration
is specified as the object name parameter.

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PARSEDMP
/* ParseDmp.c #include <stdio.h>
#include <string.h>
#define BUFFER_SIZE 1Ø24
#define STRING_SIZE 128
int main(int argc, char *argv[])
{
 FILE *InputStream, *OutputStream;
 char *pChar;
 char *pSearch;
 char Buffer[BUFFER_SIZE];
 char Command[BUFFER_SIZE];
 char EntityName[STRING_SIZE];
 char CurrentObjectName[STRING_SIZE];
 char ObjectName[5][STRING_SIZE];
 char *pAuthBuffer;
 char *pAuthCommand;
 int Index;
 int Iteration;
 int ObjectClass;
 int Error;
 int ObjectStored[5];
 int i;
 char *ObjectType[] = { "queue ",
 "process ",
 "namelist ",
 "authinfo ",
 "qmgr " };
 /* check arguments */
 if(argc != 4)
 {
 printf("Usage:\n");
 printf("ParseDmp <input file> <output file> <queue manager name>\n");
 goto exit;
 }
 /* open input file in text mode */
 InputStream = fopen(argv[1], "r");
 if(InputStream == NULL)
 {
 printf("Error, unable to open input file\n");
 goto exit;
 }
 else
 printf("Input file %s opened\n", argv[1]);
 /* open output file */
 OutputStream = fopen(argv[2], "w");
 if(OutputStream == NULL)
 {
 printf("Error, unable to open output file\n");

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 goto exit;
 }
 else
 printf("Output file %s opened\n", argv[2]);
 /* initialize stored object array */
 memset(ObjectStored, Ø, sizeof(ObjectStored));
 /* parse the input file twice: */
 /* - on the first iteration, all object and queue manager records are
*/
 /* processed */
 /* - on the second iteration, all class records are processed */
 for(Iteration = Ø; Iteration <= 1; Iteration++)
 {
 while(!feof(InputStream))
 {
 /* construct setmqaut statement */
 sprintf(Command, "setmqaut -m %s ", argv[3]);
 Error = Ø;
 for(Index = Ø; Index < 5; Index++)
 {
 pChar = fgets(Buffer, BUFFER_SIZE, InputStream);
 if(pChar != NULL)
 {
 /* remove return character */
 pSearch = strchr(Buffer, '\r');
 if(pSearch)
 *pSearch = Ø;
 /* remove newline character */
 pSearch = strchr(Buffer, '\n');
 if(pSearch)
 *pSearch = Ø;
 switch(Index)
 {
 case Ø:
 /* process profile name, noting the following special cases: */
 /* - if the profile name is @SELF, the authority applies to */
 /* the queue manager */
 /* - if the profile name is @CLASS, the authority applies to */
 /* the object class */
 if(!strcmp(&Buffer[13], "@CLASS"))
 ObjectClass = 1;
 else
 ObjectClass = Ø;
 if(!Iteration && !ObjectClass)
 {
 /* the -n parameter is not required if the authority applies*/
 /* to the queue manager */
 if(strcmp(&Buffer[13], "SELF"))
 {
 strcat(Command, "-n ");

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 strcat(Command, &Buffer[13]);
 strcat(Command, " ");
 strcpy(CurrentObjectName, &Buffer[13]);
 }
 }
 break;
 case 1:
 /* process object type, convert object type to index number */
 for(i = Ø; i < 4; i++)
 {
 if(!strcmp(&Buffer[13], ObjectType[i]))
 break;
 }
 /* no object name processing required if the authority applies*/
 /* to the queue manager */
 if (i != 4)
 {
 if(Iteration && ObjectClass)
 {
 if(ObjectStored[i])
 {
 /* this profile applies to the object class, so specify */
 /* an object name of this object type */
 strcat(Command, "-n ");
 strcat(Command, &ObjectName[i][Ø]);
 strcat(Command, " ");
 }
 else
 {
 /* if there are no objects of this type then this */
 /* profile cannot be recreated */
 printf("Error, unable to recreate %sclass profile\n",
 ObjectType[i]);
 Error = 1;
 }
 }
 else
 {
 if(!ObjectClass && !ObjectStored[i])
 {
 /* store an object name of this type for use when */
 /* processing the object classes */
 strcpy(&ObjectName[i][Ø], CurrentObjectName);
 ObjectStored[i] = 1;
 }
 }
 }
 /* append the object type parameter */
 strcat(Command, "-t ");
 strcat(Command, &Buffer[13]);

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 break;
 case 2:
 /* process entity name */
 strcpy(EntityName, &Buffer[13]);
 break;
 case 3:
 /* process entity type */
 switch(Buffer[13])
 {
 case 'p':
 /* entity type principal */
 strcat(Command, "-p ");
 strcat(Command, EntityName);
 break;
 case 'g':
 /* entity type group */
 strcat(Command, "-g ");
 if(strchr(EntityName, '@'))
 memset(strchr(EntityName, '@'), Ø, 1);
 strcat(Command, EntityName);
 break;
 default:
 /* entity type unknown, this profile cannot be recreated */
 if(Iteration == ObjectClass)
 printf("Error, unknown entity type\n");
 Error = 1;
 break;
 }
 break;
 case 4:
 /* process authority */
 strcat(Command, " ");
 pAuthBuffer = Buffer + 13;
 pAuthCommand = Command + strlen(Command);
 while(pAuthBuffer < (Buffer + strlen(Buffer)))
 {
 *pAuthCommand++ = '+';
 while((*pAuthBuffer != Ø) && (*pAuthBuffer != ' '))
 *pAuthCommand++ = *pAuthBuffer++;
 *pAuthCommand++ = *pAuthBuffer++;
 }
 /* add line feed at end of command */
 strcat(Command, "\n");
 break;
 default:
 break;
 }
 }
 }
 /* write command to output file */

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 if((Iteration == ObjectClass) && !Error)
 fputs(Command, OutputStream);
 /* skip line of delimiters in input file */
 pChar = fgets(Buffer, BUFFER_SIZE, InputStream);
 }
 /* reposition file pointer to beginning of input file */
 if(fseek(InputStream, Ø, SEEK_SET))
 {
 printf("fseek() failed\n");
 goto close_files;
 }
 }
 printf("Parsing complete\n");
 /* close files */
close_files:
 fclose(InputStream);
 fclose(OutputStream);
exit:
 return Ø;
}

David Postlethwaite, MQSeries Development
IBM Hursley (UK) © IBM 2003

In addition to MQ Update, the Xephon family of Update
publications now includes CICS Update, MVS Update,
VSAM Update, DB2 Update, AIX Update, and RACF
Update. Although the articles published are of a very high
standard, the vast majority are not written by professional
writers, and we rely heavily on our readers themselves
taking the time and trouble to share their experiences with
others. Many have discovered that writing an article is not
the daunting task that it might appear to be at first glance.
If you have ever experienced any difficulties with MQ, or
made an interesting discovery, you could receive a cash
payment, a free subscription to any of our Updates, or a
credit against any of Xephon’s wide range of products and
services, simply by telling us all about it. For a copy of our
Notes for Contributors, which explains the terms and
conditions under which we publish articles, please point
your browser at www.xephon.com/nfc.

MQ news

Stellar Software has just announced the
availability of TGEN for MQSeries.

According to Stellar, TGEN is a traffic
generator and performance measurement
solution that enables MQ developers and
administrators to load test their MQSeries
network before it goes into production to
ensure that it will meet proposed application
traffic requirements.

TGEN Version 2.5 adds custom message
payload, XML report format, and licence key
protection to its capabilities.

The company claims that TGEN streamlines
the process of enterprise integration by
simulating application traffic profiles and
reporting on performance. The product is
said to provide a simple, user-configurable
application traffic generator and flexible
input/output options.

TGEN V2.5 is available now. The active
TGEN component is supported on Windows
(2000, XP, NT, and 95/98), IBM AIX, Sun
Solaris, Hewlett Packard HP-UX, and
Stratus VOS. TGEN can interact with all
other MQSeries platforms including OS/390
and AS/400.

For more information contact:
Stellar Software, 172 Mill Street, Holliston,
MA 01746, USA.
Tel: +1 508 429 4473.
Fax: +1 508 429 4556.
Web: http://www.stellar-corp.com

* * *

MQSoftware says it has expanded the
capabilities of its Q Pasa! middleware
management application significantly with
new features for Version 3. Apparently, in
addition to tighter integration with IBM
Tivoli, new features in Q Pasa! V3 include
support for WebSphere Application Server
5.0, giving users the ability to monitor the
WebSphere MQ family, databases, and
WebSphere Application Server with one
management tool.

The company claims that a new
communications encryption function
provides the ability to encrypt the
communications link carrying the message
traffic between Q Pasa! Configuration
Manager and clients and agents to protect
against unwanted viewers.

The addition of remote log and file viewing
for WebSphere Application Server and
WebSphere MQ is claimed to help
administrators research and analyse
WebSphere-related problems more quickly.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.
Fax: +1 952 345 8721.
Web: http://www.mqsoftware.com

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *

x
xephon

	Controlling WSMQ resources in a Windows environment
	WMQ Integrator Broker: a performance evaluation
	Setting up a client to server SSL connection
	Improving performance on SSL channels running on WSMQ for AIX
	dmpmqaut parser
	MQ news

