

© Xephon plc 2003

June 2003

48

In this issue

MQ
u

p
d

ate

3 Writing a plug-in output node
(WMQI V2.1)

9 WMQI: retrieving warehoused
messages

25 Preserving message order
31 MQSeries message persistence
39 The Extended Transactional Client
45 July 2002 – June 2003 index
47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Writing a plug-in output node (WMQI V2.1)

INTRODUCTION
This article is aimed at C programmers who need to implement
a WebSphere MQ Integrator (WMQI) C plug-in node that creates
a message tree using all, some, or none of the root element
children of the incoming message, and creates an output message
tree that can be written as a bitstream for passing to a party
external to the broker. The reader should be familiar with WMQI
V2.1 and the C plug-in interface to make best use of this article.
The simplest course of action to take in a broker output node is
to write the contents of the incoming message into a bitstream
that can be passed to a party outside the broker. This is
accomplished using the cniWriteBuffer function call:
 int rc;
 cniWriteBuffer(&rc, inMessage); /* inMessage is passed into the
 cniEvaluate function */

(Note: broker plug-in nodes should always check for non-zero (0
!= rc) return codes.)
However, this is only useful for a message tree that does not
need to be altered before being propagated or converted to a
bitstream. If the message passed into the plug-in node needs to
be altered before being converted the incoming message must
first be copied to a new message, altered as necessary, and
finalized before it can be propagated or converted to a bitstream,
as shown here.
int rc;
CciMessageContext* inMessageContext = cniGetMessageContext(&rc,
inMessage);
CciMessage* outMessage = cniCreateMessage(&rc, inMessageContext);
CciElement* inRootElement = cniRootElement(&rc, inMessage);
CciElement* outRootElement = cniRootElement(&rc, outMessage);
cniCopyElementTree(&rc, inRootElement, outRootElement);
cniFinalize(&rc, outMessage);
cniPropagate(&rc, outMessage); /* OR */ cniWriteBuffer(&rc, outMessage);

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Code block one
(Note: C compilers will normally predicate that all declarations
are finished before functions are called.)
If the programmer decides that only part of the incoming message
is to be represented in the output message or output bitstream
two approaches can be taken:
• The whole message can be copied (as in the previous

example) and the parts of the message tree not required in
the output message can be deleted.

• A new message can be created and only the required
children under the root element copied from the incoming
message into the output message. Once this has been
done, further element trees can be added into the output
message before it is finalized and then propagated or
converted to a bitstream.

Instead of copying the whole message tree only to then delete
parts of the new message tree, the programmer may wish to
copy the Properties and MQMD folders, for example, and create
a BLOB part of the message tree, as shown here:
int rc;
struct CciByteArray bytes;
CciMessageContext* inMessageContext = cniGetMessageContext(&rc,
inMessage);
CciMessage* outMessage = cniCreateMessage(&rc, inMessageContext);
CciElement* inRootElement = cniRootElement(&rc, inMessage);
CciElement* outRootElement = cniRootElement(&rc, outMessage);
CciElement* firstChild =
 cniSearchFirstChild(&rc, inRootElement, CCI_COMPARE_MODE_NAME,
L"Properties", Ø);
CciElement* lastChild =
 cniCreateElementAsLastChildUsingParser(&rc, outRootElement,
L"MQPROPERTYPARSER");
cniSetElementName(&rc, lastChild, L"Properties");
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);
cniCopyElementTree(&rc, firstChild, lastChild);
firstChild = cniSearchFirstChild(&rc, inRootElement,
CCI_COMPARE_MODE_NAME, Ø, L"MQMD");
lastChild = cniCreateElementAsLastChildUsingParser(&rc, outRootElement,
"MQHMD");
cniSetElementName(&rc, lastChild, L"MQMD");

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);
cniCopyElementTree(&rc, firstChild, lastChild);
lastChild = cniCreateElementAsLastChildUsingParser(&rc, outRootElement,
"NONE");
cniSetElementName(&rc, lastChild, L"BLOB");
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);
lastChild = cniCreateElementAsLastChild(&rc, lastChild);
cniSetElementName(&rc, lastChild, L"UnknownParserName");
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME_VALUE);
cniSetElementValue(&rc, lastChild, L"MQSTR", 5);
lastChild = cniCreateElementAsLastChild(&rc, lastChild);
cniSetElementName(&rc, lastChild, L"BLOB");
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME_VALUE);
bytes.pointer = (void*) { "Hello World!" };
bytes.size = strlen("Hello World!");
cniSetElementCharacterValue(&rc, lastChild, bytes.pointer);
cniSetElementCharacterLength(&rc, lastChild, bytes.size);
cniFinalize(&rc, outMessage);
cniPropagate(&rc, outMessage); /* OR */ cniWriteBuffer(&rc, outMessage);

Code block two
However, if the last child of the root element in the incoming
message is associated with the MRM, XML, or user-defined
parser, the previous example does not solve our problem. The
programmer may decide at this stage again to copy the entire
message tree and delete the children under root. However, if the
incoming message tree does not contain an MQMD or contains
message trees with user-defined parsers, either some special
processing of the incoming message is necessary to detect the
message trees (and their associated parsers) that are not
required in the output message or a more generic method can
be applied, as in the next example.
int rc;
CciChar parserName[256];
CciChar elementName[256];
CciMessageContext* inMessageContext = cniGetMessageContext(&rc,
inMessage);
CciMessage* outMessage = cniCreateMessage(&rc, inMessageContext);
CciElement* inRootElement = cniRootElement(&rc, inMessage);
CciElement* outRootElement = cniRootElement(&rc, outMessage);
CciElement* firstChild =
 cniSearchFirstChild(&rc, inRootElement, CCI_COMPARE_MODE_NAME,
L"Properties", Ø);
CciElement* lastChild =
 cniCreateElementAsLastChildUsingParser(&rc, outRootElement,

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

L"MQPROPERTYPARSER");
cniSetElementName(&rc, lastChild, L"Properties");
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);
cniCopyElementTree(&rc, firstChild, lastChild);
firstChild = cniSearchFirstChild(&rc, inRootElement,
CCI_COMPARE_MODE_NAME, Ø, L"MQMD");
lastChild = cniCreateElementAsLastChildUsingParser(&rc, outRootElement,
"MQHMD");
cniSetElementName(&rc, lastChild, L"MQMD");
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);
cniCopyElementTree(&rc, firstChild, lastChild);
CciElement* inLastChild = cniLastChild(&rc, inRootElement);
cniGetParserName(&rc, inLastChild, parserName);
cniElementName(&rc, inLastChild, elementName);
CciElementType type = cniElementType(&rc, inLastChild);
CciElement* outLastChild = cniCreateElementAsLastChildUsingParser(&rc,
outRootElement, parserName);
cniSetElementName(&rc, outLastChild, elementName);
cniSetElementType(&rc, outLastChild, elementType);
cniCopyElementTree(&rc, inLastChild, outLastChild);
cniFinalize(&rc, outMessage);
cniPropagate(&rc, outMessage); /* OR */ cniWriteBuffer(&rc, outMessage);

Code block three
An alternative method (illustrated in Code block four) would be
to iterate through a list of root element children names to copy
from the incoming message root to the new output message.
While this is possibly more complex it is nevertheless more
flexible and provides a fluent implementation. The complexity
arises when the programmer has the additional responsibility of
creating the root element children in the output message with the
correct parser, name (eg BLOB), and type (eg
CCI_ELEMENT_TYPE_NAME), if any. This is because
cniCopyElementTree only copies the children under the source
element to the target element. The target element must, therefore,
be created correctly if that part of the message tree is going to
be parsed correctly when it is propagated or converted to a
bitstream. The additional effort of code development is necessary
when the programmer needs to avoid taking the easy (but
inefficient) option of copying the entire message only to then
delete root element children not required in the output message.
The previous example (Code block three) can be rewritten to be

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

completely generic (without hard-coding for Properties or MQMD)
by providing a list of root element children and their parsers, as
shown in the next example. For a real implementation all calls
should be checked for bad return codes.
CciMessageContext* inMessageContext = cniGetMessageContext(&rc,
inMessage);
CciMessage* outMessage = cniCreateMessage(&rc, inMessageContext);
CciElement* inRootElement = cniRootElement(&rc, inMessage);
CciElement* outRootElement = cniRootElement(&rc, outMessage);
CciChar* list[4] = { L"Properties", L"Ø", L"MQMD", L"MQHMD" };
unsigned int i;
for (i = Ø; i < 4; i += 2) {
 copyChild(inRootElement, outRootElement, list[i*2], list[i*2+1]);
}
copyLastChildUsingParser(inRootElement, outRootElement);
cniFinalize(&rc, outMessage);
cniPropagate(&rc, outMessage); /* OR */ cniWriteBuffer(&rc, outMessage);
void copyChild(
 CciElement* inRootElement,
 CciElement* outRootElement,
 CciChar* elementName,
 CciChar* parserName;
)
{
 int rc;
 CciElement* firstChild = cniSearchFirstChild(
 &rc, inRootElement, CCI_COMPARE_MODE_NAME, elementName, Ø
);
 if ((CciCharCmp(parserName, L"Ø") == Ø) {
 CciElement* lastChild = cniCreateElementAsLastChild(&rc,
outRootElement);
 cniSetElementName(&rc, lastChild, elementName);
 cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);
 cniCopyElementTree(&rc, firstChild, lastChild);
 } else {
 cniElementName(&rc, firstChild, elementName);
 CciElementType type = cniElementType(&rc, firstChild);
 CciElement* lastChild = cniCreateElementAsLastChildUsingParser(&rc,
outRootElement, parserName);
 cniSetElementName(&rc, lastChild, elementName);
 cniSetElementType(&rc, lastChild, elementType);
 cniCopyElementTree(&rc, firstChild, lastChild);
 }
}
void copyLastChildUsingParser(
 CciElement* inRootElement,
 CciElement* outRootElement,
)

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

{
 int rc;
 CciElement* inLastChild = cniLastChild(&rc, inRootElement);
 CciChar parserName[256];
 cniParserName(&rc, inLastChild, parserName);
 CciElement* outLastChild = cniCreateElementAsLastChildUsingParser(&rc,
outRootElement, parserName);
 CciChar inElementName[256];
 cniElementName(&rc, inLastChild, inElementName);
 CciElementType inElementType;
 inElementType = cniElementType(&rc, inLastChild);
 cniSetElementName(&rc, outLastChild, inElementName);
 cniSetElementType(&rc, outLastChild, inElementType);
 cniCopyElementTree(&rc, inLastChild, outLastChild);
}

Code block four
(Note: if the last child of root is known to be BLOB, for example,
the values L"BLOB", L"0" can be added to the CciChar* list, the
index ‘4’ changed to ‘6’ and then the call to
copyLastChildUsingParser can be omitted.)

SUMMARY
The important points to note from this article are:
• An incoming message cannot be altered in any way.
• All new messages must be finalized (cniFinalize) before

issuing a call to cniPropagate or cniWriteBuffer.
• In other words the broker does not under any circumstances

finalize a message for you.
Note that, with reference to the third point above, it is useful to
know that, while the message buffer can be accessed at any time
for an incoming message, the message buffer for a new message
is not accessible until cniFinalize has been called. If this fails
(CCI_EXCEPTION == rc, for example) and the program does not
check for this return code a subsequent call to cniWriteBuffer
may not return a bad return code itself but the buffer pointer will
certainly not be valid. In the author’s experience the buffer
pointer is often null and the buffer size is often zero.

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This article has explained how to copy only the required root
element children from an incoming message into a new output
message, and the steps required to construct correctly the new
message for propagating or converting to a bitstream. This is a
general method for copying only the parts of the incoming
message required in the output message.
Alexander Russell, M Eng, IBM Certified. With thanks to John Hosie (IBM).
IBM Hursley (UK) © IBM 2003

WMQI: retrieving warehoused messages

INTRODUCTION
WMQI provides a warehouse node to save whole messages,
including header information, as BLOB into a relational table.
Saving messages into the table with a warehouse node is easy;
retrieving them is a little more complicated.
Since most people don’t know how to retrieve the whole message
from the warehouse table they usually take the shortcut of using
a database node, storing just the message body or part of the
message body with the message-ID as the key for retrieval. This
requires extra work, defining the table with a schema that
matches the content of the message to be saved.
With the warehouse node you don’t need to predefine a schema.
The biggest reward gained from using the warehouse node to
store messages is the consistency of the message header,
which includes the message context information. This may be a
particularly significant requirement for organizations with strict
auditing criteria.
The warehouse node provides a useful way of ‘parking’ messages
so that if a failure should occur, for example, the message can

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

be reprocessed in its original message context when the system
is running again.

WAREHOUSE/RETRIEVE SCENARIO
There are various reasons why users might like to warehouse or
park messages for subsequent reprocessing. In my particular
situation I have two messages; the business logic is written in
such a way that the second message depends on the successful
processing of the first message.
• The first message from the front end arrives at the hub. The

hub will add the front-end system key to the cross-reference
table.

• The hub forwards the message to the back end.
• Once the back end has finished processing the message it

sends a message to the hub to add the back-end key to the
cross-reference table.

• A UUID on the cross-reference table links together the keys
of the two systems.

• The second message from the front end arrives at the hub
at a later time. The front-end key has to be cross-referenced
to that of the back end or the destination system key by the
hub before the hub forwards the message to the destination
system.

Normally the time it takes for the front-end user to gather
information and submit the second message is long enough for
the first message to complete the trip of adding two system keys
to the hub. Yet there may still be occurrences (perhaps because
of network congestion) when the first message does not make
it back to the hub in time with the new key and so the second
message fails because the cross-referencing is not found. We
know that the first message will come back eventually though,
with the new key, so instead of ‘error out’ the message is
warehoused. Once the message from the back end arrives at the
hub it updates the cross-reference table; it also releases and

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

reprocesses the warehoused messages so this time the cross-
reference will be successful.
This method saves a lot of human intervention in resubmitting
messages.

SAVING TO THE WAREHOUSE TABLE
In simple terms, when the second message arrives at the hub the
message flow will use the front-end (source) system key and the
front-end (source) system-ID with the destination (target) system-
ID to look up the cross-reference table for the system key of the
destination (target) system, which is tied by the UUID. If the
target system key is not found the message will be warehoused,
using the UUID, the target system-ID, and also the put time, as
a composite key to the table.

THE WAREHOUSE TABLE
The warehouse table HUB_WH was defined as follows:
-- DDL Statements for table "ALEXAU "."HUB_WH"
 CREATE TABLE "ALEXAU "."HUB_WH" (
 "WH_UUID" INTEGER NOT NULL ,
 "WH_TARG_SYSID" CHAR(3) NOT NULL ,
 "WH_TS" TIMESTAMP NOT NULL ,
 "WH_BLOB" BLOB(32ØØØ) NOT LOGGED NOT COMPACT)

 IN "USERSPACE1" ;

WAREHOUSE THE MESSAGE
Figure 1 shows a sample message flow (no cross-reference
logic), which simulates a cross-reference failure; the message
will be warehoused with the UUID, target system-ID, and the put
timestamp.
The Compute1 node consists of ESQL that simulates, in case of
a cross-reference failure, the information required to warehouse
the message.
 -- SET the failing UUID and SYSID, this should be done from the
 cross-reference in the environment

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: Saving the message with the warehouse node

 SET Environment.Variables.WH.UUID =
 CAST(InputBody.Message.CrfActionGroup.KeyGroup.UUID AS INTEGER);
 SET Environment.Variables.WH.TARG_SYSID =
 InputBody.Message.CrfActionGroup.(XML.attr)destinationLogicalId;

Figure 2: The warehouse node

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The warehouse message is illustrated in Figure 2.

A SAMPLE FAILED MESSAGE
I use the RFHUtil utility to put a message to the message flow to
which I can add an MQHRF2 header with the Mcd and usr folders
populated with information.
Below is the output of the trace1 node.
*** trace generate after the compute node @ 2ØØ3-Ø2-Ø7 14:49:11.291
*** Environment is
(
 (Øx1ØØØØØØ)Variables = (
 (Øx1ØØØØØØ)WH = (
 (Øx3ØØØØØØ)UUID = 1
 (Øx3ØØØØØØ)TARG_SYSID = 'AAU'
)
)
)
*** Root is
(
 (Øx1ØØØØØØ)Properties = (
 (Øx3ØØØØØØ)MessageSet = 'Alex Au'
 (Øx3ØØØØØØ)MessageType = ''
 (Øx3ØØØØØØ)MessageFormat = 'XML'
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 12Ø8
 (Øx3ØØØØØØ)Transactional = TRUE
 (Øx3ØØØØØØ)Persistence = TRUE
 (Øx3ØØØØØØ)CreationTime = GMTTIMESTAMP '2ØØ3-Ø2-Ø7 19:49:1Ø.76Ø'
 (Øx3ØØØØØØ)ExpirationTime = -1
 (Øx3ØØØØØØ)Priority = Ø
 (Øx3ØØØØØØ)ReplyIdentifier =
X'ØØ'
 (Øx3ØØØØØØ)ReplyProtocol = 'MQ'
 (Øx3ØØØØØØ)Topic = NULL
)
 (Øx1ØØØØØØ)MQMD = (
 (Øx3ØØØØØØ)SourceQueue = 'ALEX_TEST_IN'
 (Øx3ØØØØØØ)Transactional = TRUE
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 12Ø8
 (Øx3ØØØØØØ)Format = 'MQHRF2 '
 (Øx3ØØØØØØ)Version = 2
 (Øx3ØØØØØØ)Report = Ø
 (Øx3ØØØØØØ)MsgType = 8
 (Øx3ØØØØØØ)Expiry = -1

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (Øx3ØØØØØØ)Feedback = Ø
 (Øx3ØØØØØØ)Priority = Ø
 (Øx3ØØØØØØ)Persistence = 1
 (Øx3ØØØØØØ)MsgId =
X'414d512Ø4d5153492Ø2Ø2Ø2Ø2Ø2Ø2Ø2Ø19Ø8443e12cØØØØØ'
 (Øx3ØØØØØØ)CorrelId =
X'ØØ'
 (Øx3ØØØØØØ)BackoutCount = Ø
 (Øx3ØØØØØØ)ReplyToQ = 'ALEX_TEST_OUT '
 (Øx3ØØØØØØ)ReplyToQMgr = 'MQSI '
 (Øx3ØØØØØØ)UserIdentifier = 'alexau '
 (Øx3ØØØØØØ)AccountingToken =
X'16Ø1Ø515ØØØØØØ495e9d7af7ØØba481f11393fefØ3ØØØØØØØØØØØØØØØØØØØØØb'
 (Øx3ØØØØØØ)ApplIdentityData = ' '
 (Øx3ØØØØØØ)PutApplType = 11
 (Øx3ØØØØØØ)PutApplName = 'QSI IHØ3\IHØ3 v3\rfhutil.exe'
 (Øx3ØØØØØØ)PutDate = DATE '2ØØ3-Ø2-Ø7'
 (Øx3ØØØØØØ)PutTime = GMTTIME '19:49:1Ø.76Ø'
 (Øx3ØØØØØØ)ApplOriginData = ' '
 (Øx3ØØØØØØ)GroupId =
X'ØØ'
 (Øx3ØØØØØØ)MsgSeqNumber = 1
 (Øx3ØØØØØØ)Offset = Ø
 (Øx3ØØØØØØ)MsgFlags = Ø
 (Øx3ØØØØØØ)OriginalLength = -1
)
 (Øx1ØØØØØØ)MQRFH2 = (
 (Øx3ØØØØØØ)Version = 2
 (Øx3ØØØØØØ)Format = 'MQSTR '
 (Øx3ØØØØØØ)Encoding = 546
 (Øx3ØØØØØØ)CodedCharSetId = 12Ø8
 (Øx3ØØØØØØ)Flags = Ø
 (Øx3ØØØØØØ)NameValueCCSID = 12Ø8
 (Øx1ØØØØØØ)mcd = (
 (Øx1ØØØØØØ)Msd = (
 (Øx2ØØØØØØ) = 'XML'
)
 (Øx1ØØØØØØ)Set = (
 (Øx2ØØØØØØ) = 'Alex Au'
)
 (Øx1ØØØØØØ)Fmt = (
 (Øx2ØØØØØØ) = 'XML'
)
)
 (Øx1ØØØØØØ)usr = (
 (Øx1ØØØØØØ)ReplyInfo = (
 (Øx2ØØØØØØ) = '
'
 (Øx1ØØØØØØ)ReplyToQ = (
 (Øx2ØØØØØØ) = 'ALEX_TEST_OUT1'

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

)
 (Øx1ØØØØØØ)ReplyToQMgr = (
 (Øx2ØØØØØØ) = 'MQSI'
)
)
)
)
 (Øx1ØØØØ1Ø)XML = (
 (Øx5ØØØØ18)XML = (
 (Øx6ØØØØ11) = '1.Ø'
)
 (Øx6ØØØØØ2) = '
'
 (Øx1ØØØØØØ)Message = (
 (Øx3ØØØØØØ)id = 'SIEBELØ1A2ØØ1-1Ø-
31T11:ØØ:ØØ:ØØØØØØ'
 (Øx3ØØØØØØ)version = '1.4'
 (Øx3ØØØØØØ)bodyType = 'IAA-XML'
 (Øx3ØØØØØØ)timeStampCreated = '2ØØ1-1Ø-31T11:ØØ:ØØ:ØØØØØØ'
 (Øx3ØØØØØØ)sourceLogicalId = 'SBL'
 (Øx3ØØØØØØ)destinationLogicalId = 'HUB'
 (Øx3ØØØØØØ)authenticationId = 'PADMØ39'
 (Øx3ØØØØØØ)crfPublish = 'true'
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)CrfActionGroup = (
 (Øx3ØØØØØØ)crfPublish = 'true'
 (Øx3ØØØØØØ)destinationLogicalId = 'AAU'
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)CommandReference = (
 (Øx3ØØØØØØ)refid = 'cmd1'
)
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)KeyGroup = (
 (Øx3ØØØØØØ)id = 'K2'
 (Øx3ØØØØØØ)keyGroupType = 'PARTY'
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)AlternateId = (
 (Øx3ØØØØØØ)value = 'A23456789'
 (Øx3ØØØØØØ)sourceLogicalId = 'AAU'
 (Øx3ØØØØØØ)state = 'exists'
)
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)UUID = (
 (Øx2ØØØØØØ) = '1'
)

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 (Øx2ØØØØØØ) = '
 '
)
 (Øx2ØØØØØØ) = '
 '
)
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)COMMAND = (
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)AddHouseholdRequest = (
 (Øx3ØØØØØØ)id = 'CMD1'
 (Øx3ØØØØØØ)cmdType = 'request'
 (Øx3ØØØØØØ)cmdMode = 'alwaysRespond'
 (Øx3ØØØØØØ)echoBack = 'false'
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)Household = (
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)KeyGroup = (
 (Øx3ØØØØØØ)refid = 'K1'
)
 (Øx2ØØØØØØ) = '
 '
)
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)Party = (
 (Øx2ØØØØØØ) = '
 '
 (Øx1ØØØØØØ)KeyGroup = (
 (Øx3ØØØØØØ)refid = 'K2'
)
 (Øx2ØØØØØØ) = '
 '
)
 (Øx2ØØØØØØ) = '
 '
)
 (Øx2ØØØØØØ) = '
 '
)
 (Øx2ØØØØØØ) = '
'
)
)
)

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

I also put a second message with just the MQMD header, not the
MQHRF2 header, to the warehouse table.

THE TABLE CONTENT
Figure 3 shows the screen shot that results from querying the

Figure 3: Warehouse table contents

contents of the warehouse table after two messages have been
warehoused. Note, I do not query on the BLOB field since it will
be too big to fit inside the window.

Figure 4: Message flow that retrieves and reconstructs the
warehoused messages

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FLOW TO RETRIEVE MESSAGES FROM THE WAREHOUSE TABLE
The message flow to retrieve the message from the warehouse
is shown in Figure 4.
In this message flow I simulate a message from the back end that
will add to the cross-reference table with its new key, according
to the UUID received earlier. With this UUID and target system-
ID the message flow will query the warehouse table and retrieve
all the messages parked according to these two entries.

SAMPLE OF THE RELEASE MESSAGE
The release message in my simulated case is as simple as that
shown below.
<Message>
<UUID>1</UUID>
<TID>AAU</TID>
</Message>

RETRIEVE MESSAGE FROM WAREHOUSE TABLE
The ESQL for the ‘Retrieve Message from Warehouse Table’
instruction is shown below. You can tailor the select statement to
suit your own requirements. The messages are retrieved in
ascending order so that once put to the input queue they will be
reprocessed according to their chronological sequence.
SET OutputRoot = InputRoot;
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
DECLARE selectStatment CHAR;
SET selectStatment = 'SELECT D.* FROM ALEXAU.HUB_WH AS D WHERE D.WH_UUID
= ? AND D.WH_TARG_SYSID = ? ORDER BY WH_TS ASC';
SET Environment.Variables.WH.Results[] = PASSTHRU(selectStatment,
InputBody.Message.UUID, InputBody.Message.TID);
SET Environment.Variables.Select.WH.SQLState1 = SQLSTATE;
SET Environment.Variables.Select.WH.SQLErrorText1 = SQLERRORTEXT;
SET Environment.Variables.Select.WH.SQLCode1 = SQLCODE;
SET Environment.Variables.Select.WH.SQLNativeError1 = SQLNATIVEERROR;
SET Environment.Variables.WH.maxCnt =
CARDINALITY(Environment.Variables.WH.Results[]);
SET Environment.Variables.WH.cnt = 1;

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

RECONSTRUCT MESSAGE
This is the key logic in the flow to reconstruct the parked
message. I do not check the box to Copy message header nor
Copy entire message because we want to reconstruct the
original message from the table read into the environment
variables.
-- Enter SQL below this line. SQL above this line might be regenerated,
causing any modifications to be lost.
DECLARE msgCnt INT;
DECLARE beginMsg INT;
DECLARE MQHRF2HeaderLength INT;
DECLARE bitHolder BLOB;
DECLARE BigEn BLOB;
DECLARE TempBLOB BLOB;
SET bitHolder = X'ØØØØØØØØ';
SET msgCnt = CAST(Environment.Variables.WH.cnt AS INT);
-- Set up the new message
-- note: we do not copy the message header, we want to restore the
message header stored
SET OutputRoot.Properties.MessageDomain = 'XML' ;
-- Clean up for multiple messages written out
SET Environment.Variables.MQMDOut = NULL;
SET Environment.Variables.MQRFH2Out = NULL;
SET Environment.Variables.XMLOut = NULL;
-- Get the MQMD portion, a fix 364 bytes long
SET TempBLOB =
SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM 1 FOR
364);
SET Environment.Variables.TempBLOB1 = TempBLOB;
-- use the MQMD parser to format these fields into the a new field in
the environment tree
CREATE LASTCHILD OF Environment.Variables.MQMDOut DOMAIN('MQMD')
PARSE(TempBLOB, 546, 437);
-- In order for the above restored message attributes to be effective,
including all the context information, the subsequent MQ output
-- node will have select 'Set All' on the message context box on the
advanced tab
SET beginMsg = 365;
-- check for MQHRF2 header presence, if yes, get the length of the
header, add to get the new beginMsg
SET MQHRF2HeaderLength = Ø;
-- Byte 32 onward is the MQMD_FORMAT field, this example only consider
the MQHRF2 header, not other
IF CAST(SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM
33 FOR 6) AS CHAR CCSID 437) = 'MQHRF2' THEN

-- Set up the MQHRF2 header
-- Total length of the MQHRf2 header is from the 8th bytes after

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the beginning of the MQHRF2 header, a 4 to 8 bytes fields
-- here we only consider 4 bytes length, our message now is not

that long
-- because this is a little endian deal, need to set the most

significant bytes to the least
SET BigEn =

SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM 373 FOR
4) || bitHolder;

SET MQHRF2HeaderLength = CAST(ConvertEndian(BigEn) AS INT CCSID
437);

-- with this length, we can parse the MQHRF2 header to the
environment tree

SET TempBLOB =
SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM 365 FOR
MQHRF2HeaderLength);

CREATE LASTCHILD OF Environment.Variables.MQRFH2Out
DOMAIN('MQRFH2') PARSE(TempBLOB, 546, 437);
END IF;
-- so message body begins either from 365 if no MQHRF2 header, or begin
from where MQHRF2 header ends
SET beginMsg = beginMsg + MQHRF2HeaderLength;
SET TempBLOB =
SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM
beginMsg) ;
CREATE LASTCHILD OF Environment.Variables.XMLOut DOMAIN('XML')
PARSE(TempBLOB, 546, 437);
-- Putting them back together
SET OutputRoot.MQMD = Environment.Variables.MQMDOut.MQMD;
SET OutputRoot.MQRFH2 = Environment.Variables.MQRFH2Out.MQRFH2;
SET OutputRoot.XML = Environment.Variables.XMLOut.XML;
-- Increment for next message
SET Environment.Variables.WH.cnt = Environment.Variables.WH.cnt + 1;
-- Function to convert the big endian
CREATE FUNCTION ConvertEndian (Value BLOB)
RETURNS BLOB BEGIN

DECLARE LittleEn BLOB;
DECLARE FieldLength INT;
SET FieldLength = LENGTH(Value);
SET LittleEn = substring(Value from FieldLength for 1);
SET FieldLength = FieldLength - 1;
WHILE FieldLength >= 1 DO

SET LittleEn = LittleEn || substring(Value from FieldLength
for 1);

SET FieldLength = FieldLength - 1;
END WHILE;
SET Value = LittleEn;

RETURN Value;
END;

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Figure 5: Output node

SEND THE MESSAGE
This is where you will put the reconstructed message. I put it into
a local queue so that I can examine the header information.
One important point to make clear is that in the Advanced tab of
the output node you should be sure to select ‘Set All’ for the
message context as Figure 5 illustrates, otherwise the message
context of the original message will be overridden by the message
flow.

Trace3
Trace3 shows the actual message put into the input queue of the
message flow that failed at the first attempt. Check the trace to
ensure that the content of the MQ header, MQHRF2 header, and
the message body are the same as in the original message.

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ALL ‘PARKED’ MESSAGES SENT?
This filter node controls the loop until all messages read from the
table that satisfied the selection criteria have been sent. The
ESQL statement is:
 CAST(Environment.Variables.WH.cnt AS INT) <=
 CAST(Environment.Variables.WH.maxCnt AS INT)

EXAMINING THE OUTPUT
Once the messages’ BLOB are read from the database they are
stored in Environment.Variables.WH.Results for parsing (see
Figure 6).
The BLOB was cut into two or three pieces, depending on the
presence of the MQHRF2 header. Each BLOB piece was then
parsed according to its DOMAIN by the CREATE statement.

The MQMD portion
 -- Get the MQMD portion, a fix 364 bytes long
 SET TempBLOB =
 SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM 1
 FOR 364);
 SET Environment.Variables.TempBLOB1 = TempBLOB;

Figure 6: Trace showing that the message BLOB has been read

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 -- use the MQMD parser to format these fields into the a new field
 in the environment tree
 CREATE LASTCHILD OF Environment.Variables.MQMDOut DOMAIN('MQMD')
 PARSE(TempBLOB, 546, 437);

The trace in Figure 7 shows the MQMD reconstructed.

The MQHRF2 portion
 -- with this length, we can parse the MQHRF2 header to the
 environment tree

 SET TempBLOB =
 SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM
 365 FOR MQHRF2HeaderLength);

 CREATE LASTCHILD OF Environment.Variables.MQRFH2Out
 DOMAIN('MQRFH2') PARSE(TempBLOB, 546, 437);

The trace in Figure 8 shows the reconstructed MQHRF2 header.

The message body
 -- so message body begins either from 365 if no MQHRF2 header, or
 begin from where MQHRF2 header ends
 SET beginMsg = beginMsg + MQHRF2HeaderLength;

Figure 7: Trace shows the MQMD reconstructed

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 SET TempBLOB =
 SUBSTRING(Environment.Variables.WH.Results[msgCnt].WH_BLOB FROM
 beginMsg) ;
 CREATE LASTCHILD OF Environment.Variables.XMLOut DOMAIN('XML')
 PARSE(TempBLOB, 546, 437);

The trace in Figure 9 shows the reconstructed message body.
Finally we put the two or three pieces of BLOB together to get the
output message.
-- Putting them back together
SET OutputRoot.MQMD = Environment.Variables.MQMDOut.MQMD;
SET OutputRoot.MQRFH2 = Environment.Variables.MQRFH2Out.MQRFH2;

CONCLUSION
As we can see, the CREATE statement with DOMAIN PARSE
can easily reconstruct the MQ headers and its message body.

Figure 8: trace shows the MQHRF2 header reconstructed

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This is especially useful for reconstructing the MQHRF2 header,
which consists of a variable portion of name value pair. Unlike the
fixed length MQMD header there is just no other way to reconstruct
the MQHRF2 header easily.
Alex Au
IT Architect
IBM Global Services (Australia) © IBM 2003

Figure 9: The trace shows the reconstructed message body

Preserving message order

The WebSphere MQ products provide a function called message
grouping, which can be used by a getting application to retrieve
a set of related messages in a specified logical order. This article
looks at the benefits that message grouping provides and

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: Logical ordering

Message three

Message two

Message one

A.XMIT.Q TARGET.Q

Network

!!!!! !!!!!

contains code extracts showing how a group of messages can
be constructed at MQPUT time and read back in logical order at
MQGET time.

WHAT FUNCTIONS DOES MESSAGE GROUPING PROVIDE?

Logical ordering
Consider an application that puts a set of three related messages
to a transmission queue destined for a target queue on another
queue manager. The messages are ordered and it is important
that the order in which they are read by the getting application
from the target queue is the same order as that in which they were
put (see Figure 1).
When the messages arrive at the target queue manager it is
possible that they cannot be put immediately to the target queue,
perhaps because it’s full or put-inhibited. The messages would
then be put to the dead letter queue if one was available. If some
of the messages were put to the target queue and some were
dead letter-queued it can affect the order in which the messages
are seen by a getting application. If, for example, message one
could not be put to the target queue because it was full but
messages two and three could be put to the target queue, when
message one is later processed by a dead letter queue handler
and put to the target queue it will be behind messages two and
three, as Figure 2 illustrates. The application getting the messages

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

from the target queue needs to get them in the order message
one, message two, message three.
This is one example of where message grouping can be a
benefit. The group of messages on the target queue can be
viewed in two ways: the physical order of the messages in the
group is now message two, message three, message one;
however, the logical order of the messages in the group is
message one, message two, message three. By requesting the
messages in logical order at MQGET time they will be returned
in the order message one, message two, message three,
regardless of their physical order on the queue.

Complete groups of messages
Another useful option is the ability to get only complete groups
of messages. Consider an application that needs to process
groups of three messages. The application issues an MQGET
request for the first message in the group, processes it
successfully, then goes to get the second message in the group
and finds that it is not yet available on the queue, perhaps
because of a communications problem with the channel receiving
the messages. The application now has two choices: it can either
back out the first message in the group or it can wait for the
second message to arrive. If the application backs out it has

Figure 2: Getting messages out of sequence

123456789012345678901234567
123456789012345678901234567
123456789012345678901234567
123456789012345678901234567
123456789012345678901234567
123456789012345678901234567
123456789012345678901234567

Message three

Message two

A.XMIT.Q TARGET.Q

Network

!!!!! !!!!!

Message one

Another message

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

wasted resources by unnecessarily processing the first message,
whilst if it enters an MQGET wait it is held up when it could be
processing other groups that have all three messages available.
What the application would like to be able to do is to MQGET the
first message of a group only if all the messages in that group are
available on the queue.

USING MESSAGE GROUPING

MQPUT time
To benefit from message grouping the messages must be put as
part of a group at MQPUT time. This is done by using a version
two message descriptor and setting one of the MsgFlags on, as
shown here:
 /* Indicate that this message is part of a group */
 MQMD myMqmd;
 MyMqmd.Version = MQMD_VERSION_2;
 MyMqmd.MsgFlags = MQMF_MSG_IN_GROUP;

There are two different approaches you can use when putting a
group of messages. These are explained below.

Using ‘logical mode’
In the earlier example we looked at an application that put three
messages in the same order that the getting application required
them. If this is the case we can inform the queue manager at
MQPUT time that we are putting the messages in the logical
order that we want to retrieve them. The benefit of this is that the
queue manager will take care of assigning a unique group
identifier to the group and will also assign each message in the
group a message sequence number starting from one. This
information is stored with the messages as part of their message
descriptors so that at MQGET time the queue manager can
return the messages in their logical order.
When we put the last message in the group we must tell the
queue manager that it is the last message. This indicator informs
the queue manager that the group is complete and is used at

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQGET time when the getting application requests complete
groups of messages only. The example code below shows a loop
that puts a group of three messages in logical order and tells the
queue manager when it is putting the last message.
 MQMD myMqmd;
 MQPMO PutOptions;
 /* Indicate that the MQPUT is in logical order */
 PutOptions.Options = MQPMO_LOGICAL_ORDER;
 i=1;
 while(i <= 3)
 {
 /* Indicate that this message is part of a group */
 MyMqmd.Version = MQMD_VERSION_2;
 MyMqmd.MsgFlags = MQMF_MSG_IN_GROUP;
 if (i==3)
 {
 /* Indicate that this is the last message in the group */
 MyMqmd.MsgFlags = MyMQMD.MsgFlags | MQMF_LAST_MSG_IN_GROUP;
 }
 /* Issue the actual MQPUT request */ MQPUT(...);
 i++;
 }

Using ‘physical mode’
There are times when the order in which the messages are
MQPUT may not match the logical order in which they are to be
retrieved. One example could be three different applications A,
B, and C, each of which puts one message to make up a group
of three messages for the getting application. If these applications
are not linked in any way the order in which they put the
messages to the queue will be random, but the getting application
may always need to process them in the order A, B, C.
In this case the putting applications cannot use
MQPMO_LOGICAL_ORDER when putting the messages but
they can fill in the required fields in the message descriptors so
that the getting application can use logical order to retrieve the
messages correctly. Each putting application would have to
assign the group identifier of the message and the message
sequence number. Group identifiers are required to be unique
and of course each putting application needs to know the group
identifier. (Perhaps if a request message was driving the three

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

applications the Correl-ID of the request message could be set
and used as the Group-ID.)
For the getting application to retrieve the messages in the correct
order we would assign message sequence numbers such that
application A uses one, B uses two, and C uses three. Application
C also specifies the last-message-in-group flag. Given that this
is the case, here is the complete set of fields from the message
descriptor that would need to be assigned for each of the three
messages.
 MQMD myMqmd;
 MyMqmd.Version = MQMD_VERSION_2;
 MyMqmd.MsgFlags = MQMF_MSG_IN_GROUP (+ MQMF_LAST_MSG_IN_GROUP for
 Application C);
 MyMqmd.GroupId = <24 byte unique group identifier>;
 MyMqmd.MsgSeqNumber = <message sequence number (in this example,
 either 1, 2 or 3);

It is important to note that when an application issues an MQGET
in logical order the queue manager will always be looking for a
message with sequence number one. If none is found the
application will receive MQRC_NO_MSG_AVAILABLE even if
there are other messages on the queue.

MQGET time
At MQGET time we must tell the queue manager that we want
to get the messages in logical order. As with MQPUT, we should
use a version two message descriptor to get the message.
 /* Indicate that the MQGET is in logical order */
 MQGMO GetOptions;
 GetOptions.Options = MQGMO_LOGICAL_ORDER;
 MQMD myMqmd;
 MyMqmd.Version = MQMD_VERSION_2;

If we want to get only complete groups of messages this must
also be specified:
 GetOptions.Options |= MQGMO_COMPLETE_GROUP;

This will get the first message of a group of messages in logical
order. Once the application has retrieved the first message in a
group it can only get the next message in the group whilst it is

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

getting in logical order. It will continue to get messages from the
same group until it gets the message with the last in group
indicator, at which point the next get will look for the first message
in a new group.

SUMMARY
Message grouping provides a way of ensuring that a group of
messages is available for processing and that individual messages
are processed in the correct order, regardless of their position on
the queue. It does this by providing a logical ordering for the
messages within a group and allowing them to be retrieved in that
logical order.
Dan Millwood
IBM Hursley (UK) © IBM 2003

MQSeries message persistence

Do you ever wonder whether the way in which the message
persistence property is set makes a difference to MQ message
throughput performance?
In a nutshell, MQSeries message persistence defines whether
or not a message will survive a restart of the queue manager.
Message persistence is defined in one of two ways:
• Explicitly, by setting the Persistence value in the MQMD

structure to MQPER_NOT_PERSISTENT or
MQPER_PERSISTENT.

• Implicitly, by setting MQMD Persistence to
MQPER_PERSISTENCE_AS_Q_DEF. When set implicitly
the DEFINE QUEUE attribute DEFPSIST = [YES | NO]
determines message persistence. The default is
DEFPSIST=NO.

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

One key point to begin with is that message persistence is a
property of the message itself. In fact MQSeries has a terrific
feature that permits persistent and non-persistent messages to
share the same queue. In my experience I’ve observed that
many people mistakenly associate the persistence property with
the queue. While it is true that the queue DEFPSIST parameter
will influence message persistence when the MQMD Persistence
setting equals MQPER_PERSISTENCE_AS_Q_DEF, the fact
remains that persistence is a property of the message.
It is a common practice for developers to simplify programming
by always setting the MD persistence value to
MQPER_PERSISTENCE_AS_Q_DEF and then leaving it up to
the MQ administrators to set the queue property to meet the
application requirements with respect to message persistence.
This is not a good practice, however, because, while you may
exploit this feature with impunity, you may get more than you
bargained for.
We examined six cases of message persistence using TGEN for
MQSeries, a traffic generation and performance measurement
solution (see Table 1). We’ve run this test for three versions of
MQ: V2.1, V5.1, and V5.2.1 – stay tuned for version 5.3 results
– where we have observed the relationship among the parameter
settings; the results have changed over the releases. First we
show the results in terms of transaction rates per second for
persistent messages and non-persistent messages. Then we
compare performance among the MQ releases.
In terms of performance it makes a difference whether
DEFPSIST=YES or NO. With MQ V5.2.1 performance is
significantly better when DEFPSIST=YES and the MQMD
persistence value is set explicitly. This is contrary to prior
releases where, with DEFPSIST=YES, performance was
substantially worse compared with where DEFPSIST=NO.
To maximize performance with MQ V5.2.1 always set the
DEFINE QUEUE attribute DEFPSIST = YES and set the
persistence property for each message in your WMQ program.

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The results are shown in Figures 1, 2, 3, and 4, and summarized
in the tables that follow, along with extracts from the actual TGEN
logs. Figures 1 and 2 show the message rates in messages per
second for persistent and non-persistent messages for WMQ
V5.2.1.
Turning to comparisons between WMQ releases, please refer to
Figures 3 and 4. The important conclusion from these results is
how the relationship among the six cases of message persistence
within a given release changes from release to release rather
than how a particular case has changed from release to release.
To maximize performance for each of the releases studied, note
the guidance given in Table 2. Many factors contribute to
performance; so your results may vary.

TGEN LOGS

DEFPSIST=NO

tgen_DP_N_NP.log: MQMD Persistence = MQPER_NOT_PERSISTENT
[**] Mon Mar 17 17:34:58 2ØØ3
 TGEN Response Time Report
[**] Last Put Time: Ø.ØØØ

Table 1: Six examples of message persistence (results for
MQ V5.2.1)

DEFINE QUEUE attribute: DEFPSIST=YES DEFPSIST=NO
MQMD Persistence value: Msg/sec Msg/sec

MQPER_PERSISTENCE_AS_Q_DEF 105 937

MQPER_PERSISTENT 108 104

MQPER_NOT_PERSISTENT 1836 1565

Note: Persistent messages
Non-persistent messages

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: MQ V5.2.1 persistent messages

DP_Y_QDEF DP_Y_P DP_N_P
102

103

104

105

106

107

108

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

Notes for Figures 1 and 2:

Y-axis is the message rate in messages/second

DP_Y_QDEF: DEFPSIST=YES MQMD Persistence= MQPER_PERSISTENCE_AS_Q_DEF

DP_Y_P: DEFPSIST=YES MQMD Persistence= MQPER_PERSISTENT

DP_N_P: DEFPSIST=NOMQMD Persistence= MQPER_PERSISTENT

DP_N_QDEF: DEFPSIST=NOMQMD Persistence= MQPER_PERSISTENCE_AS_Q_DEF

DP_Y_NP: DEFPSIST=YES MQMD Persistence= MQPER_NOT_PERSISTENT

DP_N_NP: DEFPSIST=NOMQMD Persistence= MQPER_NOT_PERSISTENT

Figure 2: MQ V5.2.1 non-persistent messages

0
200
400
600
800

1000
1200
1400
1600
1800
2000

DP_N_QDEF DP_Y_NP DP_N_NP

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789

123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678
123456789012345678

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

DP_Y_QDEF DP_Y_P DP_N_P

150

100

50

0

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456

123456
123456
123456
123456
123456
123456

 WMQ V2.1 WMQ V5.1 WMQ V5.2.1
1234
1234
1234

Figure 3: MQ persistent messages

1500

1000

500

0

123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012
123456789012

123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456123456789012123456789012

123456789012

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

123456789012
123456789012
123456789012
123456789012
123456789012

123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456

123456
123456
123456
123456
123456 WMQ V2.1 WMQ V5.1 WMQ V5.2.1

1234
1234
1234
1234

Figure 4: MQ non-persistent messages

DP_Y_QDEF DP_Y_P DP_N_P

2000

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

[**] Put Time Avg: Ø.ØØØ
[**] Put Time Min: Ø.ØØØ
[**] Put Time Max: Ø.Ø5Ø
[**] Last Get Time: Ø.ØØØ
[**] Get Time Avg: Ø.ØØØ
[**] Get Time Min: Ø.ØØØ
[**] Get Time Max: Ø.Ø2Ø
[**] Last Response Time: Ø.ØØØ
[**] Response Time Avg: Ø.ØØ1
[**] Response Time Min: Ø.ØØØ
[**] Response Time Max: Ø.Ø5Ø
[**] Mon Mar 17 17:34:58 2ØØ3
 TGEN Throughput Report
[**] Interval Traffic Summary: 5ØØ messages (15ØØØØ bytes) in Ø.36
secs (msg/sec: 1388.89, bytes/sec: 416666.66)
[**] Traffic Totals:5ØØØ messages (15ØØØØØ bytes) in 3.19 secs
(msg/sec: 1565.44, bytes/sec: 46963Ø.53)

tgen_DP_N_P.log: MQMD Persistence = MQPER_PERSISTENT
[**] Mon Mar 17 17:39:36 2ØØ3
 TGEN Response Time Report
[**] Last Put Time: Ø.ØØØ
[**] Put Time Avg: Ø.ØØ4
[**] Put Time Min: Ø.ØØØ
[**] Put Time Max: Ø.41Ø
[**] Last Get Time: Ø.Ø1Ø
[**] Get Time Avg: Ø.ØØ4
[**] Get Time Min: Ø.ØØØ
[**] Get Time Max: Ø.17Ø
[**] Last Response Time: Ø.Ø1Ø
[**] Response Time Avg: Ø.ØØ9
[**] Response Time Min: Ø.ØØØ
[**] Response Time Max: Ø.41Ø
[**] Mon Mar 17 17:39:36 2ØØ3
 TGEN Throughput Report

Table 2: Performance guidelines

Persistent messages Non-persistent messages

DEFPSISTMQMD Persistence DEFPSIST MQMD Persistence

V2.1 NO MQPER_PERSISTENT NO MQPER_PERSISTENCE_AS_Q_DEF

V5.1 NO MQPER_PERSISTENT NO MQPER_NOT_PERSISTENT

V5.2.1 YES MQPER_PERSISTENT YES MQPER_NOT_PERSISTENT

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

[**] Interval Traffic Summary: 5ØØ messages (15ØØØØ bytes) in 4.43
secs (msg/sec: 112.97, bytes/sec: 3389Ø.64)
[**] Traffic Totals:5ØØØ messages (15ØØØØØ bytes) in 48.21 secs
(msg/sec: 1Ø3.72, bytes/sec: 31114.52)

tgen_DP_N_QDEF.log: MQMD Persistence =
MQPER_PERSISTENCE_AS_Q_DEF
[**] Mon Mar 17 17:4Ø:32 2ØØ3
 TGEN Response Time Report
[**] Last Put Time: Ø.ØØØ
[**] Put Time Avg: Ø.ØØØ
[**] Put Time Min: Ø.ØØØ
[**] Put Time Max: Ø.Ø8Ø
[**] Last Get Time: Ø.ØØØ
[**] Get Time Avg: Ø.ØØØ
[**] Get Time Min: Ø.ØØØ
[**] Get Time Max: Ø.Ø7Ø
[**] Last Response Time: Ø.ØØØ
[**] Response Time Avg: Ø.ØØ1
[**] Response Time Min: Ø.ØØØ
[**] Response Time Max: Ø.Ø8Ø
[**] Mon Mar 17 17:4Ø:32 2ØØ3
 TGEN Throughput Report
[**] Interval Traffic Summary: 5ØØ messages (15ØØØØ bytes) in Ø.45
secs (msg/sec: 11Ø8.65, bytes/sec: 332594.22)
[**] Traffic Totals:5ØØØ messages (15ØØØØØ bytes) in 5.34 secs
(msg/sec: 936.68, bytes/sec: 281ØØ4.Ø9)

DEFPSIST=YES

tgen_DP_Y_NP.log: MQMD Persistence = MQPER_NOT_PERSISTENT
[**] Mon Mar 17 17:47:Ø9 2ØØ3
 TGEN Response Time Report
[**] Last Put Time: Ø.ØØØ
[**] Put Time Avg: Ø.ØØØ
[**] Put Time Min: Ø.ØØØ
[**] Put Time Max: Ø.Ø2Ø
[**] Last Get Time: Ø.Ø1Ø
[**] Get Time Avg: Ø.ØØØ
[**] Get Time Min: Ø.ØØØ
[**] Get Time Max: Ø.Ø2Ø
[**] Last Response Time: Ø.Ø1Ø
[**] Response Time Avg: Ø.ØØØ
[**] Response Time Min: Ø.ØØØ
[**] Response Time Max: Ø.Ø2Ø
[**] Mon Mar 17 17:47:Ø9 2ØØ3
 TGEN Throughput Report

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

[**] Interval Traffic Summary: 5ØØ messages (15ØØØØ bytes) in Ø.27
secs (msg/sec: 1845.Ø2, bytes/sec: 5535Ø5.5Ø)
[**] Traffic Totals:5ØØØ messages (15ØØØØØ bytes) in 2.72 secs
(msg/sec: 1835.54, bytes/sec: 55Ø66Ø.75)

tgen_DP_Y_P.log: MQMD Persistence = MQPER_PERSISTENT
[**] Mon Mar 17 17:49:43 2ØØ3
 TGEN Response Time Report
[**] Last Put Time: Ø.Ø1Ø
[**] Put Time Avg: Ø.ØØ5
[**] Put Time Min: Ø.ØØØ
[**] Put Time Max: Ø.12Ø
[**] Last Get Time: Ø.ØØØ
[**] Get Time Avg: Ø.ØØ4
[**] Get Time Min: Ø.ØØØ
[**] Get Time Max: Ø.191
[**] Last Response Time: Ø.Ø1Ø
[**] Response Time Avg: Ø.ØØ8
[**] Response Time Min: Ø.ØØØ
[**] Response Time Max: Ø.2Ø1
[**] Mon Mar 17 17:49:43 2ØØ3
 TGEN Throughput Report
[**] Interval Traffic Summary: 5ØØ messages (15ØØØØ bytes) in 4.27
secs (msg/sec: 117.21, bytes/sec: 35161.74)
[**] Traffic Totals:5ØØØ messages (15ØØØØØ bytes) in 46.1Ø secs
(msg/sec: 1Ø8.47, bytes/sec: 3254Ø.78)

tgen_DP_Y_QDEF.log: MQMD Persistence =
MQPER_PERSISTENCE_AS_Q_DEF
[**] Mon Mar 17 17:52:Ø9 2ØØ3
 TGEN Response Time Report
[**] Last Put Time: Ø.Ø1Ø
[**] Put Time Avg: Ø.ØØ5
[**] Put Time Min: Ø.ØØØ
[**] Put Time Max: Ø.35Ø
[**] Last Get Time: Ø.ØØØ
[**] Get Time Avg: Ø.ØØ4
[**] Get Time Min: Ø.ØØØ
[**] Get Time Max: Ø.Ø4Ø
[**] Last Response Time: Ø.Ø1Ø
[**] Response Time Avg: Ø.ØØ9
[**] Response Time Min: Ø.ØØØ
[**] Response Time Max: Ø.37Ø
[**] Mon Mar 17 17:52:Ø9 2ØØ3
 TGEN Throughput Report
[**] Interval Traffic Summary: 5ØØ messages (15ØØØØ bytes) in 4.78
secs (msg/sec: 1Ø4.67, bytes/sec: 314ØØ.46)

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The Extended Transactional Client

A new option has recently been added to WebSphere MQ
(WMQ), called the Extended Transactional Client. This article
describes the function that has been added and explains why
and where you would use it.
Applications have always had a number of ways in which they
can use transactions with WMQ. The simplest mechanism
involves only messages on queues, which can all be committed
simultaneously to their queues with the MQCMIT verb. This is
available with both bindings mode applications (where the
application is on the same machine as the queue manager) and
with client applications (using CLNTCONN and SVRCONN
channels).
Many applications, however, want to update database tables as
part of the same transaction and this can best be done with a
transaction manager coordinating the updates to both WMQ and
the database with a two-phase commit protocol.
WMQ can be used this way under the control of an external
product such as CICS, IMS, or Tuxedo. On distributed platforms
(eg Windows and Unix) WMQ can also operate as a transaction
manager, where the application uses the MQBEGIN verb. Until
now all of these functions have been available only when the
application is running on the same machine as the queue
manager.
The Extended Transactional Client (ETC) is a new licensed
feature, which adds a two-phase commit protocol to the MQI

[**] Traffic Totals:5ØØØ messages (15ØØØØØ bytes) in 47.77 secs
(msg/sec: 1Ø4.67, bytes/sec: 314Ø1.77)

Tom Krpta
Founder, President
Stellar Software (USA) © Stellar Software 2003

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

client. It has been designed to be an ‘add-on’ rather than a
replacement for the existing client libraries so that existing
programs that use the client channels in the usual way do not
need to change or be relinked.

WHAT DOES IT DO?
The Extended Transactional Client operates in conjunction with
an external product, such as WebSphere Application Server
(WAS) or Tuxedo, so that applications can be written using those
products’ transactional APIs while connecting to a queue manager
on a different machine. This allows a degree of concentration of
messaging activity with perhaps a smaller number of queue
managers and machines to administer.
Note that an external coordinator is required. The MQBEGIN
verb has not been added to the client so you cannot use WMQ
as a transaction manager. There are also no plans to support
MQBEGIN in any clients in the future.

!!!!!
Database
server

Node 2Node 1

Figure 1: Traditional WMQ XA configuration

Queue
manager

Database
client

Application
XA
TM

!!!!!

Figure 1 shows a configuration that has always been supported
with WMQ. Figure 2 shows how that has been extended, allowing
the queue manager to move to a separately-controlled machine.

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SUPPORTED INTERFACES
The XA interface, specified by the X/Open Group, is the main
standard for bridging between Transaction Managers (TMs) and
Resource Managers (RMs). This interface is defined using the C
language, with structures, constants, and function calls. All RMs
that support XA must document the name of a data structure,
which any XA-compliant TM can then access. These structures
are defined in the new libraries or DLLs shipped with the ETC so
that applications can be linked and configuration files for the TM
created.
Two other important interfaces are also supported, built on top of
the XA functions. In a Java environment the calls from a TM to
RM are defined by the JTA standard. The ETC also provides
libraries to allow Microsoft Transaction Server to communicate
with WMQ via the client protocols.
For programmers there should be no difference from what is
currently supported. The only change that a developer will see is
that different libraries need to be selected for the link phase.
Similarly administrators of a TM will be able to modify the
configuration so that client connections can be used instead of
bindings mode.

Figure 2: Extended Transactional Client

Database
server

Node 2Node 1

Extended MQ
client

Database
client

Application

XA
TM

!!!!!

!!!!!

Queue
manager

Node 3

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SUPPORTED VERSIONS OF WMQ
In order for the ETC to work, both the client and server components
of WMQ must understand the XA protocols, which are sent
across the CLNTCONN/SVRCONN channels.
For client machines this was added in V5.3 by CSD03, which
must be installed before the ETC feature can be added. All of the
V5.3 distributed server platforms (such as AIX, Solaris, and
Windows) support the XA client flows. Although the intention was
that no CSD would be required, some late-breaking fixes mean
that CSD03 is recommended there too. It will also be possible to
attach a client to WMQ for z/OS when version 5.3.1 of that
product is available; earlier versions reject attempts to send XA
flows.

SUPPORTED TRANSACTION MANAGERS
Several TMs have been tested for compatibility with this feature.
This includes WAS, Tuxedo, TXSeries, and MTS. While XA is a
defined standard we know that some products do not always
adhere to that standard and testing is essential to ensure the
reliability of the transactions.

Why use it?
Anyone considering using this feature already knows why they
want to use a TM: to keep updates to multiple RMs in a single
atomic transaction. It is most likely that the application is using
a combination of SQL and MQI calls.
Choosing whether to use the ETC or the original bindings mode
to a queue manager should be seen as a topology and ease-of-
management question. It is not a way to get cheaper access to
WMQ functions because the ETC has to be licensed; it is not free
in the way that the regular client libraries are. The first question
is whether you intend to use WMQ as the TM. If so, then you
cannot use the ETC as it requires an external TM. The next
question to ask is whether an MQI client connection would be
appropriate if you were to ignore the transactionality requirements
of the application.

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Will the connection between the client machine and the
server be reliable? If that connection is not reliable an MQI
client is probably not suitable.

• Do you have security requirements between a client and a
server? That might mean installation and management of
certificates or other security functions.

• Is your application performance-sensitive? A good rule-of-
thumb is that every MQI verb takes about 1ms longer when
going across a client channel when compared with running
the same operation locally.

• Do you have the ability to manage client channels and
machines?

Answers to these questions should guide whether you should be
looking at using the ETC or continuing to use server bindings for
your transactional applications.

APPLICATION AVAILABILITY
Some people consider that using the ETC will improve application
availability as they may now have fewer queue managers to
operate and monitor, while permitting a larger number of client
machines that can handle incoming work.
On the other hand, using the ETC may reduce application
availability if there is a long downtime when either the TM or the
queue manager is not running; transactions will be held in-doubt
and locks may be held. In the ‘classic’ configuration it is very likely
that both the TM and the RM would be simultaneously unavailable
as the machine broke down; recovery would be automatic when
the machine was restarted. There is no easy answer or rule for
this dilemma; the solution architect will have to consider what is
appropriate and acceptable.

SPECIAL CONSIDERATIONS FOR WAS
If you are using WAS V5, which includes the JMS classes and
a version of WMQ, then there is no need to install the ETC

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

feature; WAS 5 can drive the J2EE and JTA operations for JMS
directly. Earlier versions of WAS still require the ETC, as will any
use of the non-JMS interfaces.

Developing applications for the ETC
There is very little new that an application programmer needs to
know in order to use the ETC. It has been designed so that
existing applications that use bindings mode can be very simply
relinked to get access to the client mode. There are some new
libraries, and the XA switch structure is available through them.
In some cases the application program has to provide the
XAOpenString, a configuration parameter that shows how to
connect to the resource. For the ETC the XAOpenString has
been defined to allow specification of client channel definitions.
You can either define the equivalent of the MQSERVER
environment variable or point to the channel definition file.
This is required because the initial connection between a TM and
WMQ might be done through the xa_open verb, whose parameters
are standardized and cannot be modified. Because we need to
know, during xa_open, how to reach the queue manager and
because we need to use exactly the same route as the application’s
subsequent MQCONN call, the XAOpenString gives that
information.
Note that the queue manager field in the XAOpenString must
match the name of the queue manager you are connecting to.
This is to ensure that applications always connect to the same
place. Using wildcards or generic connections to select one from
a list of queue managers is permitted with non-transactional
clients but not allowed once you start using XA. This is so that,
after a failure, recovery operations know exactly where any in-
doubt transactions are held. An example XAOpenString is:
 channel=MARS.SVR,trptype=tcp,conname=MARS(1415),qmname=MARS

This tells the client the same information as would be picked from
the MQSERVER environment variable, along with the name of
the queue manager. You need to read the documentation for your

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

TM to determine how to configure the XAOpenString. For some
products it will be typed into an ini file, for others it might be coded
inside the application program. More information about the ETC
can be found at http://www.ibm.com/software/integration/wmq/
transclient.html.
Mark E Taylor
MQSeries Technical Strategist
IBM Hursley (UK) © IBM 2003

July 2002 – June 2003 index

There follows an index of all topics covered in MQ Update since
Issue 37, July 2002. The numbers in bold are issue numbers and
the ones in brackets are page numbers. Back issues of MQ
Update are available from Xephon – see page 2 for details.

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Topic Issue (page)
API Exits 37 (24-42)

Back-ups
 on AIX 37 (42-43)
 Unix queue manager 41 (14-22)

Channel
 Event Queue Viewer 44 (35-43)
 Heartbeat 39 (43-47)
 Security exit 40 (3-4)
Clusters: hints and tips 41 (23-32)
Configuring
 Termination of work instances 46 (9-29)
 Web client on Windows NT 38 (19-32)

39 (12-21)
Controlling resources 47 (3-12)

Data grouping 44 (30-35)

Error log analysis 37 (7-23)
Exception processing
 Request/reply messages 38 (3-12)
 Subflows 39 (32-42)
Extended Transactional Client 48 (37-42)

Firewalls 46 (3-9)

Generic profiles 41 (3-14)

Java MQMail 44 (9-17)
JMS
 To IMS via WMQ 45 (29-43)
 Authentication, authorization 43 (36-43)

Message
 Availability 39 (22-32)
 Availability update 44 (18)
 Expiry 44 (3-9)
 Persistence 48 (30-37)
 Preserving order 48 (25-29)
MQAI
 Creating objects 46 (45-51)
 Listing queues 44 (19-30)
MQJava for Notes 42 (36-43)
MQSC facilities 42 (3-8)
MQSeries First Steps 45 (3-11)
MQTelnet interface 46 (30-44)

Topic Issue (page)
Natural – MQ Interface 40 (32-32)
Nodes
 NEON 37 (3-7)
 Writing 48 (3-8)

Queue manager alias 42 (29-36)
Queues
 A tale of two queues 40 (9-26)
 Very large queues 40 (5-8)

Parameters: Solaris Kernel 38 (41-43)
Performance Event Queue Viewer
 MQ for OS/390 38 (12-18)
Publish/Subscribe
 Service Pack MA0C 40 (26-32)
 WMQI 42 (9-20)

Scripts 43 (3-9)
Security 38 (33-41)
Sending data 45 (12-19)
SSL
 Improving performance 47 (30-36)
 Support 47 (22-30)
 WMQ for Windows 42 (20-27)

Temporary files 43 (34-36)
Trigger monitor
 Another batch monitor 43 (27-34)
 Batch 40 (33-34)
 CKTI 40 (34-39)

Utilities
 CSQ4BVJ1 42 (28)
 dmpmqaut parser 47 (37-43)

WebSphere Financial Network
 Integrator: technical preview 40 (40-47)
WMQI
 Cross-reference 39 (3-12)
 Performance evaluation 47 (12-22)
 Plug-in nodes 43 (10-27)
 Procedures 45 (20-28)
 Retrieving messages 48 (9-24)
Workflow
 Client/server setup 41 (33-47)

MQ news

MQSoftware has signed an agreement with
Willow Technology that, claims the
company, will expand significantly
MQSoftware’s Q Pasa! platform support for
WebSphere MQ.

Willow specializes in operating system and
middleware support for heterogeneous
operating environments. Under the terms of
the agreement Willow will produce Q Pasa!
agents for all its WebSphere MQ server
platforms.

The agreement is also intended to accelerate
the use of Q Pasa! for international customers
who have legacy platforms and who require
real-time operational monitoring and
management information.

Willow Technology’s WebSphere MQ
Server support includes the following
platforms: BSD, Data General DG/UX,
Hewlett-Packard MPE/iX, IBM DYNIX/
ptx, Linux (Alpha and SPARC Editions),
NCR MP-RAS, SCO OpenServer, SGI
IRIX, UnixWare, and others.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.
Fax: +1 952 345 8721.
Web: http://www.mqsoftware.com

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *

Candle has introduced PathWAI Secure for
WebSphere MQ, which is said to expand the
protection of information across the
WebSphere MQ environment by combining
existing security and management
applications with encryption software from
RSA.

Increased authentication verifies the
identities of message senders and recipients,
PKI support strengthens security, and there’s
an expanded ability to validate that data
transmissions and message archives have not
been altered.

The software supplements the user
authorization capabilities of various external
security programs, such as RACF, ACF2,
and Top Secret on OS/390, as well as
operating system security tools for Unix and
Windows systems.

The software supports OS/390, z/OS,
AS/400, AIX, HP-UX, Solaris, and
Windows NT, 2000, and XP.

For more information contact:
Candle, 100 N Sepulveda Blvd, El Segundo,
CA, 90245, USA.
Tel: +1 310 535 3600.
Fax: +1 310 727 4287.
Web: http://www.candle.com

Candle, 1 Archipelago, Lyon Way, Frimley,
Camberley, Surrey, GU16 7ER, UK.
Tel: +44 1276 414 700.
Fax: +44 1276 414 777.

* * *

x
xephon

	Writing a plug-in output node (WMQI V2.1)
	WMQI: retrieving warehoused messages
	Preserving message order
	MQSeries message persistence
	The Extended Transactional Client
	July 2002 - June 2003 index
	MQ news

