

© Xephon plc 2003

July 2003

49

In this issue

MQ

3 WebSphere MQ and the IMS
Bridge

13 Quality-checking exported message
flows

26 WebSphere MQ high availability
options

36 WMQI Broker plug-in node:
performance analysis

51 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

WebSphere MQ and the IMS Bridge

The WebSphere MQ (WMQ) IMS Bridge is an IMS Open
Transaction Manager Access (OTMA) client. It is the component
of WMQ for z/OS that enables implicit MQI support and facilitates
access for WMQ applications to applications running under IMS
systems. This allows WMQ messages to control host applications
without having to rewrite, recompile, or relink them.

WHAT IS OTMA?
The IMS OTMA facility is a transaction-based connectionless
client/server protocol that runs on IMS V5.1 or later. It functions as
an interface for host-based communications servers accessing
IMS applications through the z/OS Cross Systems Coupling
Facility (XCF).
OTMA is implemented in a z/OS sysplex environment. It allows
clients to connect to IMS in a high-performance manner, enabling
the client to support interactions with IMS for a large network or a
large number of sessions.
A queue manager can connect to one or more IMS systems and
more than one queue manager can connect to one IMS system.
The only restrictions are that they must all belong to the same XCF
group and they must all be in the same sysplex.

THE IMS BRIDGE
Messages are put by applications on a WMQ queue as usual to
submit to an IMS transaction that uses the bridge. WMQ puts
messages to an IMS queue but it is first queued in WMQ to enable
the use of syncpoints (so that data integrity can be assured). The
messages that contain IMS transaction data can have an IMS
header (the MQIIH structure) or the WMQ IMS Bridge is enabled
to make assumptions about the data in them. They also have the
MQ Message Descriptor structure (MQMD).

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The storage class of the WMQ queue determines whether or not
the queue is an OTMA queue (ie a queue used to transmit
messages to the WMQ IMS Bridge) and the particular IMS partner
to which the message data is sent. Remote queue managers can
also start IMS transactions by writing to these OTMA queues on
WMQ for z/OS. Data returned from the IMS system is written
directly to the WebSphere replyto queue specified in the MQ
Message Descriptor structure (MQMD). This may be an XMIT
queue to the queue manager specified in the ReplyToQMgr field of
the MQMD. Figure 1 illustrates a typical WMQ and IMS Bridge
application in z/OS.
In bridge applications there are no WMQ calls within the IMS
application. The application gets its input using a GET UNIQUE
(GU) to the IOPCB and sends its output using an ISRT to the
IOPCB. WMQ applications use the IMS header (the MQIIH
structure) in the message data to ensure that the applications can
execute as they do when driven by non-programmable terminals.

Figure 1: WMQ and the IMS Bridge in z/OS

z/OS

WebSphere MQ

XCF group

IMS/ESA

Bridge
!!!!!

!!!!!

Storage class

O
T
M
A!!!!!"""""

IMS
TP!!!!!"""""

""""" """""
XCF

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

If you are using an IMS application that processes multi-segment
messages you should ensure that all segments are contained
within one WMQ message.
(Note that, when IMS on the z/OS has all messages passed via the
OTMA as persistent and the queues used to send messages from
a client to an IMS transaction are all defined as persistent by
default, this allows the application to use queue defaults when
putting messages, resulting in persistent messages.)

IMS BRIDGE SET UP
To use the WMQ IMS Bridge you should set up the WMQ queue
manager and the IMS system it will send messages to on the same
z/OS image. Both IMS and WMQ must also belong to the same
XCF group (xcfgname).

IMS CHANGES
For IMS this is achieved by adding the parameters given in Table

OTMA=Y Optional. If coded, OTMA is started automatically at
IMS start up.

If N is used OTMA can be started by a /START
OTMA IMS command.

GRNAME=groupname The XCF groupname (xcfgname) to be used by IMS
and WMQ.

This value matches the OTMACON keyword value of
the CSQ6SYSP macro in WMQ.

USERVAR=membername The XCF membername (xcfmname) for this member
of the group. This matches a value assigned to a
storage class in WMQ.

If there is no value specified the value of APPLID
is used.

Table 1: Additional IMS parameters

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

1 to the IMS parameter list or in member DFSPBxxx in the IMS
PROCLIB.

WMQ CHANGES
In WMQ various options need to be set up to enable IMS Bridge
communication.
• Put WMQ and IMS in the same XCF group by updating the

OTMACON parameters in CSQ6SYSP macro to match the
GRNAME value in the IMS parameters.

• Define the storage classes to be used by the queue manager’s
local queues that pass messages to IMS. A storage class will
be required for each of the IMS regions that the queue
manager will pass messages to. When defining the storage
class you should identify the associated IMS region by its
XCF group name and member name.

• Define the local queue(s) that will be used to hold messages
destined for the IMS region(s) by associating it with the
appropriate storage class.

SECURITY IMPLEMENTATION
The queue manager and the corresponding IMS system accessed
must be assigned an xcfmname in the same xcfgname. Then two
RACF profiles must be defined in the FACILITY class for both the
queue manager member name and the IMS member name, in the
following format:
• IMSXCF.xcfgname.mqxcfmname

– eg IMSXCF ITGRP.MQPA
• IMSXCF.xcfgname.imsxcfmname

– eg IMSXCF.ITGRP.IT2WA
 (ITGRP is the same XCF group name, MQPA is the queue
manager XCF member name, and IT2WA is the IMS member
name. Each IMS system will require a separate profile.)

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The queue manager connects to IMS via its address space user-
ID, normally the user-ID defined in the started-task group. This
started-task (STC) user-ID must have access to the OTMA group
name and this is done by granting, for example, QMGRSTC user-
ID, READ access to the first RACF profile (no security check is
done if /SECURE OTMA is set to NONE in IMS).
The second profile determines the level of access this user-ID (for
example QMGRSTC) is allowed when the IMS Bridge connects to
IMS and indicates the level of security that is required on subsequent
transactions. The options are listed below.
• None. RACF authentication is done for each of the messages

WMQ receives that is destined for the IMS Bridge. A check is
made to verify the user-ID specified in the UserIdentifier field
of the MQMD header and the password or PassTicket in the
Authenticator field of the MQIIH structure, and to ensure that
they are a valid combination. A Utoken is created with a
password or PassTicket and is passed to IMS but the Utoken
is not cached.
If switch profile NO.SUBSYS.SECURITY exists in the
MQADMIN class, this level of security overrides its definition.

• Read. The same checking is done as above when a specific
user-ID is encountered for the first time, or when the user-ID
has been encountered before but the cached Utoken was not
created with a password or PassTicket. WMQ requests a
Utoken if required and passes it to IMS.

• Update. As each message is received on the local queue the
value in the UserIdentifier field of the MQMD header is passed
to RACF to determine whether or not it has a profile. The value
in the UserIdentifier will need to have RACF access to
relevant IMS transactions. A Utoken is built and passed to IMS
and the Utoken is cached.

• Control/alter. These options indicate that no security Utokens
are required for any user-IDs for this IMS system. (These
options would probably be used for development and test
systems only.)

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Note that, to amend the security level, access to the security
profile must be changed and then the bridge stopped and restarted
(for example, using /STOP OTMA and /START OTMA commands).
The access is defined when WMQ connects to IMS and lasts for
the duration of the connection.
If you change the authorities in the FACILITY class you must issue
the RACF command SETROPTS RACLIST(FACILITY) REFRESH
to activate the changes. You can use a password or a PassTicket
but you must remember that the IMS Bridge does not encrypt data.
Refer for more explanation to the section on using RACF
PassTickets.
Some of the above setup is affected by the security settings in IMS
through use of the /SECURE OTMA command.
Cached Utoken information is held for the duration defined by the
INTERVAL and TIMEOUT parameters of the WMQ ALTER
SECURITY command.
A WMQ message that passes through the IMS Bridge contains
security information by way of a user-ID held in the UserIdentifier
field of the MQMD structure, the security scope contained in the
SecurityScope field of the MQIIH structure (if the MQIIH structure
is present), and a Utoken (unless the
IMSXCF.xcfgname.imsxcfmname profile has CONTROL or ALTER
values set up).
Security is checked by the /SECURE OTMA command in IMS. To
enable user-ID authentication the CHECK option must be the
minimal level selected. The options are:
• None. No transaction authentication is performed.
• Check. The user-ID in the UserIdentifier field is sent to IMS to

authenticate transaction access and command authority. An
Accessor Environment Element (ACEE) is built in the IMS
control region.

• Full. The user-ID in the UserIdentifier field is sent to IMS to
authenticate transaction access and command authority. An

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ACEE is built in the IMS dependent region as well as in the IMS
control region.

• Profile. The user-ID in the UserIdentifier field is sent to IMS to
authenticate transaction access and command authority. The
SecurityScope field in the MQIIH structure is used to determine
whether an ACEE is built in the IMS dependent region as well
as in the control region.

USER-ID AND SECURITY
These are two of the methods by which the user-ID and, if
necessary, the password may be forwarded to IMS on z/OS.
• The first option involves coding the z/OS user-ID and password

into the application or deriving it at runtime from a configuration
file, for example. In this case the user-ID is sent in the MQMD
UserIdentifier field and the password in the MQIIH IMS
header, which is positioned immediately before the data in the
buffer.
However, having plain text information on the network presents
a security exposure and is best avoided.
(Note: check whether Windows 16-bit and 32-bit WMQ
applications support the MQIIH IMS header.)

• The other option is to configure the channel by defining a
unique (non-expiry) user-ID and set The MCA User-ID field to
the appropriate user, for example, APPLTS1 on the test
system and APPLPS1 on the production system. If the profiles
are then set to match the security required by IMS, data
integrity is assured.
There is no need for the front-end application to know anything
about the z/OS security information. All validation is performed
by the z/OS and the MCA user-ID that is sent in the message
descriptor UserIdentifier field. This avoids the need for the
MQIIH IMS header and also the password to be coded in the
application.

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

(Note: if the IMS SECOPT security parameter is NONE no user
information will be forwarded to IMS even if it is fully specified by
WMQ.)

USING RACF PASSTICKETS
You can use a PassTicket instead of a password in the IMS header
(MQIIH). A PassTicket is created from a user-ID, the target
application name (APPL), and a secret key.
• The APPL field consists of an application name, which should

be of the form MVSxxxx, where xxxx is the SMFID of the z/OS
system on which the target queue manager runs.

• The secret key is an 8-byte value containing uppercase
alphabetic and numeric characters; it can be used only once
and is valid for a 20 minute period.

• The PassTicket information in IMS headers is passed to
RACF by WMQ.

Setting up RACF PassTickets
To start PassTickets validation you must:
• Activate the PTKTDATA class and issue the SETROPTS

CLASSACT(PTKTDATA) command.
The PTKTDATA class is where all profiles that hold PassTicket
information are defined.

• Define a secure sign-on application key for each application
in the PTKTDATA class profile.

• Issue the SETROPTS RACLIST(PTKTDATA) command.
(Note: you must issue the SETROPTS RACLIST (PTKTDATA)
REFRESH command if any changes are applied to profiles in the
PKTDATA class.)

The secured sign-on function
This function enables workstations and client machines to

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

communicate with a host system without using a RACF password.
It is an alternative that removes the need for the password to be
sent across the network in clear text. The user authentication of
a mainframe application user-ID is moved from RACF to another
authorized function executing on the host system or on a remote
environment.
The PassTicket is a one-time-only password that is generated by
a requesting product or function. It gives only one user access to
a specific application for approximately ten minutes. For most
applications, once a particular PassTicket is used the same user
cannot use it again for the same application during the same ten-
minute interval.
By keeping a copy of all used valid PassTickets for the duration of
the ten-minute interval, during which they might possibly be used
again, RACF provides a level of protection against reuse.
Use the RDEFINE command to define the profile as follows:
• RDEFINE PTKTDATA profile-name.
• SSIGNON(key-description).
• UACC(access-authority):

– PTKTDATA – specifies the PassTicket class.
– profile-name – is the name of the profile; each application

must have a unique profile, so you cannot have a generic
profile in the PTKTDATA class. If you define one it is
ignored during PassTicket processing for the application.

– key-description – defines the secured sign-on application
key and specifies the method RACF is to use to protect
it in the RACF database on the host. Encryption or
masking methods can be specified. Secured sign-on keys
are 64-bit Data Encryption Standard (DES) keys.

– access-authority – is the universal access authority
associated with the resource protected by this profile.
The UACC is defaulted to NONE for the PTKTDATA class.
After a profile has been created you can change it with the
RALTER command as follows:

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• RALTER PTKTDATA profile-name
• SSIGNON(key-description)
• UACC(access-authority).

Profile names
A PTKTDATA class profile name can consist of:
• Application name only.
• Application name appended by a RACF connect group name.
• Application name appended by a RACF user-ID.
• Application name appended by both a RACF connect group

name and a RACF user-ID.
For example, if the application name is MQIMS1, the connect
group is SYSA, and the user-ID is USERIMS1, the following are
the profile names as per the list above:
• MQIMS1.
• MQIMS1.SYSA.
• MQIMS1.USERIMS1.
• MQIMS1.SYSA.USERIMS1.
Depending on the application, for example, IMS, the secured sign-
on function uses a specific method for determining profile names
in the PTKTDATA class.
(Note: check whether your installation is using RACF exit ICHRIX01
to modify the application name used for user-verification processing.
If so, the application name used to determine the PTKTDATA class
profile name must match the application name ICHRIX01 selects.)
To define a profile for an IMS application for example, define the
profile to the PTKTDATA class with a left-most qualifier that
matches the standard naming conventions you use to define
these applications to the APPL class.
Saida Davies
IBM (UK) © IBM 2003

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Quality-checking exported message flows

PROBLEM: QA WALKTHROUGHS ON MESSAGE FLOWS
When moving WMQI message flows from a test environment to
production it is wise first to inspect the flow for any errors that might
create production problems. This is especially important because
flows that ran perfectly in test may require changes in order to work
in production. These changes may include ODBC DSNs, queue
manager names, environmentally sensitive data, etc.
However, the point and click GUI that WMQI Control Centre uses
can make it difficult to see the big picture and view the details in
their proper context, since it hides the details you need to see
behind the icons and multiple property pages. Add to this the fact
that you should also verify that the necessary queues are set up
in production and that they have the required properties. Compare
this with traditional programming, where everything is packaged
together in a source listing.

SOLUTION
Let’s consider a basic walkthrough of a message flow. At the very
least you would want to verify that all input and output queues exist
on the production WMQI server and that they all have valid
properties. For instance, to control looping you should verify that
the input queue has a backout threshold greater than zero and that
a backout queue is defined. If the output queues were remote you
would want to verify that they pointed to valid queues on the
remote queue managers. This requires a lot of manual work but
you can automate the process without too much effort.

THEORY
Message flows are exported into XML files and you can analyse
the XML with the Document Object Model (DOM) API. There are
several DOM implementations available, depending on your

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

platform. If you use Java the most popular DOM parser is Xerces,
which is available as a free download from Apache’s Web site
(http://www.apache.org). For Visual Basic, Active Server Pages,
or anything else that uses a COM interface, you can use Microsoft’s
MSXML parser, which should already be installed on most Windows
workstations (http://msdn.microsoft.com/xml). Finally, if you
program with any .Net languages, XML DOM support is built into
that framework.
To extract data from XML the DOM uses a filter format called
XPath. Once you understand the structure of the message flow
XML you can use XPath filters to extract information about the
various nodes and properties within a message flow, and that lays
our foundation for automated quality checking.
Let’s assume for this discussion that we just want to list the queue
names of the flow’s input and output nodes and verify that those
queues all exist and have valid properties. I will show you the steps
necessary to accomplish this.

APPLICATION
The structure, or schema, of a message flow export file is defined
in a text file called a Document Type Definition (DTD). In order to
work with export XML you must have a copy of file mqsi.dtd in the
directory as the export file. You can find this file in the \Bin directory
for WMQI.

XML STRUCTURE
The MessageProcessingNode element defines each node in a
message flow. It has an attribute called xmi.label, which defines
the name of the node. To get the node type, see the title attribute
of the MessageProcessingNodeTypeRef element, which is a child
of the first element. There is a child element AttributeGroup for
each property page for a node (ie Basic, Advanced, Request) and
this element has a child element named Attribute for each non-
default property you set for a node. Attribute xmi.label contains the
property name, and attribute value contains the property value. If
you take a good look at some export XML you should get the idea.

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

USEFUL XPATH EXPRESSIONS
The XPath filters can specify one particular XML element or
attribute or a set of similar elements or attributes, based on how
specific they are. There follow a few examples of XPath
expressions. (These XPath expressions work for message flows
exported from WMQI V2.1. Later product releases may alter the
export structure. Each of the XPath examples should be a single
line of code – they are broken here for clarity.)
• XPath expression that gets all MQInput node names:
 //MessageProcessingNode
 [MessageProcessingNodeTypeRef@title='MQInput']
 /@xmi.label

• XPath expression that gets all MQInput queue names:
 //MessageProcessingNode
 [MessageProcessingNodeTypeRef/@title='MQInput']
 //Attribute[@xmi.label='queueName']/@value

• XPath expression to get the MQInput node message domain:
 //MessageProcessingNode
 [MessageProcessingNodeTypeRef/@title='MQInput']
 //Attribute[@xmi.label='messageDomainProperty']
 /@value

The following expressions will extract information on the MQOutput
nodes.
• XPath expression to get all MQOutput node names.
 //MessageProcessingNode
 [MessageProcessingNodeTypeRef/@title='MQOutput']
 /@xmi.label

To get the MQOutput queue names:
• XPath expression to get all MQOutput queue names.
 //MessageProcessingNode
 [MessageProcessingNodeTypeRef/@title='MQOutput']
 //Attribute[@xmi.label='queueName']/@value

XPATH SYNTAX
By way of a brief explanation of XPath syntax: the expression is

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

a list of element names joined by slashes and filters. A single slash
(/) between two elements represents a direct parent/child
relationship. A double slash (//) at the start of the expression or
between elements represents an ancestor//descendent
relationship with any number of levels in between. Thus the
expression //ElementName means ‘search the entire document
until you find ElementName’. To specify attributes in XPath prefix
them with ‘@’. Filter expressions are placed between square
brackets ‘[]’.
Therefore, our first XPath example is requesting the contents of
every xmi.label attribute belonging to MessageProcessingNode
elements, where the child element
MessageProcessingNodeTypeRef has a title attribute of ‘MQInput’.

XPATH AND THE DOM
You use these XPath expressions with the XML DOM through a
pair of methods: SelectNodes() and SelectSingleNode(). The first
one will return a list of XML nodes that match your XPath
expression while the second returns only one specific node.

ADDITIONAL INFORMATION FROM MQSERIES
Now that you have a list of input and output queues you should be
able to open each queue with MQOO_INQUIRY for the rest of the
information you need, namely:
• Verify the queue exists.
• Does every input queue have a valid backout count and

backout queue?
• For remote queues, what queue and queue manager do they

point to, and do they exist?

PROGRAM OUTLINE
Put all this together into a program that produces a single report
summarizing your message flow and flagging all errors.

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

1 Get the location of the export file and load it into the XML
parser.

2 Using the first two XPath examples build a list of MQInput node
names and their associated queues.

3 Use the third XPath sample to get the message domain. If it is
not valid for your company’s standards flag it as an error (ie
Blob in an XML shop).

4 Use the last two XPath samples to build a list of MQOutput
node and queue names.

5 For each MQInput node, open the queue in MQOO_INQUIRE
mode. Get the backout requeue count and backout queue
name properties. If the count is zero, write an error message.
If the backout queue name is blank or the queue does not exist,
write an error message. If the backout queue type is remote,
try to verify the existence of the destination queue on the
remote queue manager. Otherwise, write the node type, node
name, and queue name to your analysis report.

6 For each MQOutput node, open the output queue as
MQOO_INQUIRE. If the queue does not exist, write an error
message. If the queue type is remote, try to access the
remote queue manager and verify that the destination queue
exists. Write the MQOutput node name and queue name to the
analysis report.

CONCLUSION
You may be interested in other types of information from your
extracted message flows and you should be able to get it by
extending the examples shown above. Some things you might
want to add to this process include: validating ODBC DSNs and
table names; validating the input message domain; and checking
the destination mode when the output queue name is blank.
A sample Visual Basic program is included with this article that
demonstrates these examples and produces a sample report.

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FORM1FRM
VERSION 5.ØØ
Object = "{F9Ø43C88-F6F2-1Ø1A-A3C9-Ø8ØØ2B2F49FB}#1.2#Ø"; "COMDLG32.OCX"
Object = "{3B7C8863-D78F-1Ø1B-B9B5-Ø4Ø21CØØ94Ø2}#1.2#Ø"; "RICHTX32.OCX"
Begin VB.Form Form1
 Caption = "Message Flow Analyzer"
 ClientHeight = 6285
 ClientLeft = 6Ø
 ClientTop = 345
 ClientWidth = 969Ø
 LinkTopic = "Form1"
 ScaleHeight = 6285
 ScaleWidth = 969Ø
 StartUpPosition = 3 'Windows Default
 Begin RichTextLib.RichTextBox rtbReport
 Height = 5Ø55
 Left = 12Ø
 TabIndex = 5
 Top = 6ØØ
 Width = 9495
 _ExtentX = 16748
 _ExtentY = 8916
 _Version = 393217
 ScrollBars = 2
 TextRTF = $"Form1.frx":ØØØØ
 End
 Begin VB.CommandButton cmdCancel
 Cancel = -1 'True
 Caption = "Cancel"
 Height = 495
 Left = 156Ø
 TabIndex = 4
 Top = 576Ø
 Width = 1215
 End
 Begin VB.CommandButton cmdAnalyze
 Caption = "Analyze"
 Default = -1 'True
 Height = 495
 Left = 12Ø
 TabIndex = 3
 Top = 576Ø
 Width = 1215
 End
 Begin MSComDlg.CommonDialog cdlFile
 Left = 912Ø
 Top = 576Ø
 _ExtentX = 847
 _ExtentY = 847

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 _Version = 393216
 End
 Begin VB.CommandButton cmdBrowse
 Caption = "Browse..."
 Height = 375
 Left = 852Ø
 TabIndex = 2
 Top = 9Ø
 Width = 1Ø95
 End
 Begin VB.TextBox txtFile
 Height = 285
 Left = 48Ø
 TabIndex = 1
 Top = 12Ø
 Width = 7935
 End
 Begin VB.Label Label1
 Caption = "File:"
 Height = 255
 Left = Ø
 TabIndex = Ø
 Top = 12Ø
 Width = 375
 End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit
Private xmlDoc As MSXML.DOMDocument
Private mqSession As MQAX2ØØ.mqSession
Private mqQMgr As MQAX2ØØ.MQQueueManager
Private mqQueue As MQAX2ØØ.mqQueue
Private Sub cmdAnalyze_Click()
' On Error GoTo ERROR_HANDLER
 Dim strXPath As String, strQueue As String, strQMgr As String, _
 strNodeName As String, strBoQueue As String, i As Long, _
 strRmtQMgr As String, strRmtQueue As String
 Dim xmlNode As MSXML.IXMLDOMNode
 Dim xmlInputNodes As MSXML.IXMLDOMNodeList
 Dim xmlOutputNodes As MSXML.IXMLDOMNodeList
 Dim xmlOutputNodes2 As MSXML.IXMLDOMNodeList
 Set xmlDoc = New MSXML.DOMDocument
 xmlDoc.Load txtFile.Text
 If xmlDoc.parseError <> Ø Then
 MsgBox xmlDoc.parseError.reason, vbCritical, "XML Parsing
Error"

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 Exit Sub
 End If
 MousePointer = vbHourglass
 ' Get information on the input queue.
 strXPath = "//MessageProcessingNode[MessageProcessingNodeTypeRef/
@title='MQInput']/@xmi.label"
 Set xmlNode = xmlDoc.selectSingleNode(strXPath)
 If Not xmlNode Is Nothing Then
 strNodeName = xmlNode.Text
 rtbReport.Text = "Input Node: " & strNodeName & vbCrLf
 Else
 rtbReport.Text = "No Input Nodes"
 End If
 strXPath = "//MessageProcessingNode[MessageProcessingNodeTypeRef/
@title='MQInput']//Attribute[@xmi.label='queueName']/@value "
 Set xmlInputNodes = xmlDoc.selectNodes(strXPath)
 If xmlInputNodes.length = Ø Then
 rtbReport.Text = rtbReport.Text & "No Input Nodes"
 ElseIf xmlInputNodes.length = 1 Then
 strQueue = xmlInputNodes(Ø).Text
 strQMgr = "QMMQSIP1"
 rtbReport.Text = rtbReport.Text & "Input Queue: " & strQueue &
vbCrLf
 Set mqQueue = GetQueue(strQMgr, strQueue)
 If Not mqQueue Is Nothing Then
 strBoQueue = mqQueue.BackoutRequeueName
 rtbReport.Text = rtbReport.Text & vbTab &
"BackoutThreshold: " & _
 mqQueue.BackoutThreshold & vbCrLf
 rtbReport.Text = rtbReport.Text & vbTab &
"BackoutRequeueName: " & _
 strBoQueue & vbCrLf
 If strBoQueue = "" Then
 rtbReport.Text = rtbReport.Text & vbTab & _
 "ERROR: No backout queue specified" & vbCrLf
 End If
 If mqQueue.BackoutThreshold = Ø Then
 rtbReport.Text = rtbReport.Text & vbTab & _
 "ERROR: No backout count specified" & vbCrLf
 End If
 ' Verify that the backout queue exists.
 mqQueue.Close
 Set mqQueue = GetQueue(strQMgr, strBoQueue)
 If Not mqQueue Is Nothing Then
 If mqQueue.QueueType = MQ.MQQT_LOCAL Then
 rtbReport.Text = rtbReport.Text & vbTab & _
 "WARNING: Specified backout queue
should not be local, unless it is read by another msg flow." & vbCrLf
 Else
 strRmtQMgr = mqQueue.RemoteQueueManagerName

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 strRmtQueue = mqQueue.RemoteQueueName
 Set mqQueue = GetQueue(strRmtQMgr, strRmtQueue)
 If mqQueue Is Nothing _
 And mqSession.ReasonCode = MQRC_NOT_AUTHORIZED Then
 rtbReport.Text = rtbReport.Text & vbTab & _
 "WARNING: Could not verify
existence of " & strRmtQMgr & "/" & strRmtQueue & vbCrLf
 ElseIf mqQueue Is Nothing Then
 rtbReport.Text = rtbReport.Text & vbTab & _
 "ERROR: Specified backout
queue does not exist on the remote queue manager." & vbCrLf
 Else
 rtbReport.Text = rtbReport.Text & vbTab & _
 "Remote QMgr: " & strRmtQMgr & vbCrLf
 rtbReport.Text = rtbReport.Text & vbTab & _
 "Remote Queue: " & mqQueue.Name & vbCrLf
 End If
 End If
 Else
 rtbReport.Text = rtbReport.Text & vbTab & _
 "ERROR: Specified backout queue does not exist." & vbCrLf
 End If
 Else
 rtbReport.Text = rtbReport.Text & vbTab & "ERROR: Input
queue not found!!!" & vbCrLf
 End If
 End If
 rtbReport.Text = rtbReport.Text & vbCrLf
 rtbReport.Text = rtbReport.Text & vbCrLf
 ' Process the output nodes.
 strXPath = "//MessageProcessingNode[MessageProcessingNodeTypeRef/
@title='MQOutput']/@xmi.label"
 Set xmlOutputNodes = xmlDoc.selectNodes(strXPath)
 strXPath = "//MessageProcessingNode[MessageProcessingNodeTypeRef/
@title='MQOutput']//Attribute[@xmi.label='queueName']/@value"
 Set xmlOutputNodes2 = xmlDoc.selectNodes(strXPath)
 If xmlOutputNodes.length = Ø Then
 rtbReport.Text = "No Output Nodes"
 Exit Sub
 End If
 For i = Ø To xmlOutputNodes.length - 1
 rtbReport.Text = rtbReport.Text & "Node Name: " &
xmlOutputNodes(i).Text & vbCrLf
 strXPath = ".//Attribute[@xmi.label='queueName']/@value"
 strQueue = xmlOutputNodes2(i).Text
 rtbReport.Text = rtbReport.Text & vbTab & "Output Queue: " &
strQueue & vbCrLf
 ' Verify that the queue exists.
 Set mqQueue = GetQueue("QMMQSIP1", strQueue)
 If mqQueue Is Nothing Then

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 rtbReport.Text = rtbReport.Text & vbTab & "ERROR: Output
queue does not exist!!!" & vbCrLf
 Else
 ' Verify that the queue is remote.
 If mqQueue.QueueType = MQ.MQQT_LOCAL Then
 rtbReport.Text = rtbReport.Text & vbTab & "WARNING:
Output queue should not be local unless it is read by another msg
flow." & vbCrLf
 Else
 rtbReport.Text = rtbReport.Text & vbTab & "Remote QMgr/
Queue:" & _
 mqQueue.RemoteQueueManagerName & " / " & _
 mqQueue.RemoteQueueName & vbCrLf
 ' Verify that the queue exists on the remote queue mgr.
 Set mqQueue = GetQueue(mqQueue.RemoteQueueManagerName, _
 mqQueue.RemoteQueueName)
 If mqSession.ReasonCode = MQRC_NOT_AUTHORIZED Then
 rtbReport.Text = rtbReport.Text & vbTab & _
 "WARNING: Could not verify
existence of " & strRmtQMgr & "/" & strRmtQueue & vbCrLf
 ElseIf mqQueue Is Nothing Then
 rtbReport.Text = rtbReport.Text & vbTab & "ERROR:
Output queue was not found on remote QMgr." & vbCrLf
 End If
 End If
 End If
 DoEvents
 Next
 MousePointer = vbNormal
 Exit Sub
ERROR_HANDLER:
End Sub
Private Sub cmdBrowse_Click()
 On Error GoTo CANCEL_EXIT
 cdlFile.DialogTitle = "Open Exported Message Flow"
 cdlFile.InitDir = App.Path
 cdlFile.CancelError = True
 cdlFile.Filter = "XML Files (*.xml)|*.xml|All Files (*.*)|*.*"
 cdlFile.ShowOpen
 txtFile.Text = cdlFile.FileName
CANCEL_EXIT:
End Sub
Private Sub cmdCancel_Click()
 Unload Me
 End
End Sub
Private Function GetQueue(ByVal strQMgr As String, _
 ByVal strQueue As String) As MQAX2ØØ.mqQueue
 Dim mqQueue As MQAX2ØØ.mqQueue
 Set mqQMgr = mqSession.AccessQueueManager(strQMgr)

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 If mqSession.CompletionCode = 2 Then
 Set mqQueue = Nothing
 Exit Function
 End If
 Set mqQueue = mqQMgr.AccessQueue(strQueue, MQ.MQOO_INQUIRE)
 If mqSession.CompletionCode = 2 Then
 Set mqQueue = Nothing
 Exit Function
 End If
 Set GetQueue = mqQueue
End Function
Private Sub Form_Load()
 Set mqSession = New MQAX2ØØ.mqSession
 mqSession.ExceptionThreshold = 3
End Sub
Private Sub Form_Resize()
 On Error GoTo BAIL_OUT
 Const MARGIN As Long = 6Ø
 cmdBrowse.Left = ScaleWidth _
 - cmdBrowse.Width _
 - MARGIN
 txtFile.Width = cmdBrowse.Left _
 - txtFile.Left _
 - MARGIN
 rtbReport.Left = MARGIN
 rtbReport.Width = ScaleWidth - (2 * MARGIN)
 rtbReport.Height = ScaleHeight _
 - rtbReport.Top _
 - cmdAnalyze.Height _
 - (2 * MARGIN)
 cmdAnalyze.Top = rtbReport.Top _
 + rtbReport.Height _
 + MARGIN
 cmdCancel.Top = cmdAnalyze.Top
BAIL_OUT:
End Sub

FORM1FRX
~
{\rtf1\ansi\ansicpg1252\deffØ\deflang1Ø33{\fonttbl{\fØ\fnil\fcharsetØ
MS Sans Serif;}}
\viewkind4\uc1\pard\fØ\fs17
\par }

PROJECT1VBP
Type=Exe
Reference=*\G{ØØØ2Ø43Ø-ØØØØ-ØØØØ-CØØØ-

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ØØØØØØØØØØ46}#2.Ø#Ø#..\..\..\WINNT\System32\stdole2.tlb#OLE Automation
Reference=*\G{D63EØCE2-AØA2-11DØ-9CØ2-
ØØCØ4FC99C8E}#2.Ø#Ø#..\..\..\WINNT\System32\msxml.dll#Microsoft XML,
version 2.Ø
Reference=*\G{B3927DD1-B888-11CF-A5F7-
44455354ØØØØ}#5.1#Ø#..\..\..\program files\mqseries\bin\mqax2ØØ.dll#IBM
MQSeries Automation Classes for ActiveX
Object={F9Ø43C88-F6F2-1Ø1A-A3C9-Ø8ØØ2B2F49FB}#1.2#Ø; COMDLG32.OCX
Object={3B7C8863-D78F-1Ø1B-B9B5-Ø4Ø21CØØ94Ø2}#1.2#Ø; RICHTX32.OCX
Form=Form1.frm
Startup="Form1"
ExeName32="Project1.exe"
Command32=""
Name="Project1"
HelpContextID="Ø"
CompatibleMode="Ø"
MajorVer=1
MinorVer=Ø
RevisionVer=Ø
AutoIncrementVer=Ø
ServerSupportFiles=Ø
VersionCompanyName="WPSC"
CompilationType=Ø
OptimizationType=Ø
FavorPentiumPro(tm)=Ø
CodeViewDebugInfo=Ø
NoAliasing=Ø
BoundsCheck=Ø
OverflowCheck=Ø
FlPointCheck=Ø
FDIVCheck=Ø
UnroundedFP=Ø
StartMode=Ø
Unattended=Ø
Retained=Ø
ThreadPerObject=Ø
MaxNumberOfThreads=1
[MS Transaction Server]
AutoRefresh=1

PROJECT1VBW
Form1 = 4, 44, 7Ø1, 542, Z, 22, 22, 742, 537, C

Mills Perry
IT Consultant/Instructor, ZyQuest (USA) © Xephon 2003

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Contributing to MQ Update

In addition to MQ Update, the Xephon family of
Update publications now includes CICS Update,
MVS Update, TCP/SNA Update, DB2 Update, AIX
Update, and RACF Update.
Although the articles published are of a very high
standard, the vast majority are not written by
professional writers, and we rely heavily on our
readers themselves taking the time and trouble to
share their experiences with others.
Many have discovered that writing an article is not
the daunting task that it might appear to be at first
glance.
They have found that the effort needed to pass on
valuable information to others is more than offset by
our generous terms and conditions and the recognition
they gain from their fellow professionals. Often, just
a few hundred words are sufficient to describe a
problem and the steps taken to solve it.
If you have ever experienced any difficulties with
MQ, or made an interesting discovery, you could
receive a cash payment, a free subscription to any
of our Updates, or a credit against any of Xephon’s
wide range of products and services, simply by telling
us all about it.
For a copy of our Notes for Contributors, which
explains the terms and conditions under which we
publish articles, please point your browser at
www.xephon.com/nfc.

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

WebSphere MQ high availability options

INTRODUCTION
With the recent explosion of the Internet and e-business today’s
organizations are increasingly finding themselves in the position
of having to operate on a round-the-clock basis. Because any
unplanned system outages could have a great financial impact on
the business, there is much more emphasis now on high availability
(HA) design and planning than ever before.
Enterprise architects and designers must now endeavour to
design systems so that business-critical applications and their
associated infrastructure are kept running 24 hours a day.
The concept of ‘high availability’ encompasses many things so I
want to establish that in this article I am talking only about the HA
options that are specifically available to WebSphere MQ (WMQ)
applications.

CONSIDERATIONS AND PLANNING
HA means different things to different people so it is important to
define up front exactly what it means to your organization. True
24x7 operation implies zero downtime. In reality this is a very
difficult thing to achieve. It is more common and more realistic for
the organization to decide that 99.9% availability, for example, will
meet its HA requirements. There will always be a need for at least
a small amount of downtime in order to perform planned
maintenance, system and application software upgrades, and
other routine tasks.
Another important question that must be addressed is what data
needs to be highly available and how it is to be accessed. For
example, if your applications always need to GET messages from
the target queues in your system, some type of hardware cluster
will become an essential requirement. If, however, you are only
concerned with having your applications PUT messages onto

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

queues, a WMQ Queue Manager cluster may be all that you
require in order to achieve your HA requirements.
WMQ is only one piece of the HA puzzle. When designing your
system you need to take into consideration all factors that, when
combined, make up the application. This could include such items
as databases, HTTP servers, application servers, DASD devices,
and so on. Often people will implement a WMQ HA solution of
some type but neglect to account for all the other complementary
pieces of the overall system.

WHAT ARE THE OPTIONS?
When we talk about WMQ there are basically three options
available to us. With those three options we can achieve varying
degrees of HA.
• The first option is to build a queue manager cluster. We know

that this functionality has been in the product for some time
now and has become a very popular way to address not only
HA but workload balancing as well, reducing the systems
administration burden.

• Taking it one step further, we can implement a hardware
cluster. Most vendors today have their own ‘brand’ of hardware
clustering. For example, Microsoft has Microsoft Cluster
Server, AIX has HACMP, HP-UX has Serviceguard, and so on.
Even though each vendor puts its own spin on products, the
principles of what makes up a hardware cluster and how it
operates are the same, regardless of the implementation.

• We can also set up an environment where we use option one,
the queue manager cluster, in conjunction with option two, the
hardware cluster. This type of hybrid setup affords us the best
of both worlds by giving us all of the advantages associated
with each option.

Now that we know what options are available to us I think it bears
repeating that an abundance of planning in advance is critical.
Don’t do any more than required in order to meet your specific
requirements because all that will do is add unnecessary cost and

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

complexity to your environment. In the simplest of terms, use the
right tools for the job at hand, nothing more, nothing less.

QUEUE MANAGER CLUSTERS
The way that we achieve high availability within a WMQ cluster is
to have multiple instances of the same queue hosted on more than
one queue manager in the cluster.
If the destination queue manager fails and the message is still on
the transmission queue, it will be rerouted to another instance of
the target queue elsewhere in the cluster. If, however, the message
is already on the target queue when the queue manager fails but
has not been processed, it will not be available until after the failing
queue manager has been restarted.
Figure 1 illustrates two clustered queue managers, QM1 and
QM2. Notice that Qb is hosted on both of these queue managers
so that if, for example, QM1 fails, the message traffic destined for
Qb can be rerouted to QM2.

Figure 1: Two clustered queue managers

IPaddr2IPaddr1

QM2

Qb

QM1

Qb12
12123
123123
123

123
12312
12123
123

12
12123
123123
123

Qa

!!!!!"""""
"""""

Local
disk

Local
disk

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

HARDWARE CLUSTERS
In a hardware-clustered environment the cluster software monitors
the resources on the node. In the event of some type of failure the
cluster software will initiate a failover process, whereby resources
from the failed node are moved to and started on another node in
the cluster. When the failing node is repaired, a failback will be
initiated to move the resources back to their original node. Most
cluster software gives you the ability to either manually or
automatically initiate the failback process. The two most common
types of hardware cluster configuration are active/passive and
active/active.

Active/passive
In an active/passive setup one of the two nodes is nominated to
be the primary or active node. Under normal operating conditions
the application runs on the active node. The passive node simply
sits and waits for a failure to occur, at which point in time a failover
occurs and it becomes the active node, running the application
and its resources.

Floating
IPaddr1

12
12123
123
12
12
12

Figure 2: WMQ running in an active/passive hardware cluster

"""""

Shared disks

Local
disk

Local
disk

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The two nodes both use a shared disk device but it is important to
understand that only one node is ever connected to the disk at any
time. There is also what is known as a virtual, or cluster, IP
address. This is a floating IP address that stays the same no
matter what side of the cluster happens to be active at any given
time. This is the IP address that applications outside of the cluster
use to communicate with applications inside the cluster.
In WMQ terms, the queue manager’s data and log files reside on
the shared disk and in the event of a failure on the active node the
queue manager processes are moved across to the passive node
and started.
Figures 2 and 3 illustrate WMQ running in an active/passive
hardware cluster.

Active/active
The second way to configure an HA hardware cluster is in an
active/active configuration. In this type of setup both machines

Floating
IPaddr1

Figure 3: The passive node becomes active after a failover

Shared disks

Local
disk

Local
disk

12
12
12

123
123
123
12
12

!!!!!

Qmgr
data

Qmgr
logs

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Floating
IPaddr2

Figure 4: WMQ running in an active/active hardware cluster

Local
disk

Local
disk

!!!!!

Figure 5: Queue manager migrates to surviving machine after a
failover

Four shared disks

Qmgr1
data/logs

Qmgr2
data/logs

Floating
IPaddr1

Qmgr2

12
12
123
123
123
12
12
12

Qmgr1 """""

123
123
12
12
12
123
123
123

Floating
IPaddr 2 and 1

Local
disk

Local
disk

Four shared disks

Qmgr1
data/logs

Qmgr2
data/logs

!!!!!
!!!!!

123
12312
12123
123

123
12312
1212
12Qmgr 1

Qmgr2

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Floating IPaddr2Floating IPaddr1

QM2

Qb

QM1

Qb 12
12
123
123
123
12
12
12

123
123
12
12
12
123
123
123

12
12
123
123
123
12
12
12

Qa

!!!!!"""""
"""""

Local
disk

Local
disk

Shared disks

Qmgr1
data

Qmgr1
logs

""""" !!!!!

Figure 6: A hybrid WMQ cluster/hardware cluster

""""" !!!!!

Local
disk

Local
disk

Shared disks

Qmgr2
data

Qmgr2
logs

are each concurrently running their own queue manager. In the
event of a failure on one machine its queue manager is migrated
to the surviving machine, which will now have two queue managers
running on it. To an outside application it will appear as though
nothing has changed.
It is important to remember, when provisioning the hardware for an
active/active cluster, that during the time of a failure the surviving
machine will have to handle basically double its workload (its own
plus that of the failed machine). With this in mind you need to
ensure that both machines are adequately resourced.
In an active/active setup we also have the concept of virtual or
floating IP address as well as shared disk devices. However, in
this case, each machine will have its own set of shared disks.
Figures 4 and 5 illustrate WMQ running in an active/active
hardware cluster.

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

QUEUE MANAGER CLUSTER PLUS HARDWARE CLUSTER
As I mentioned earlier, you can use a combination of a WMQ
cluster in conjunction with a hardware cluster. This will give you all
of the benefits of the MQ cluster, such as workload balancing and
reduced administration, along with the principal benefit of a
hardware cluster – failover support.
The use of an HA passive node to partner each node in the WMQ
cluster provides automatic recovery of any queue managers that
were running on the node should it fail. This minimizes the time that
messages are unavailable as a result of being stuck in a destination
queue hosted by the failed queue manager.
With an HA cluster that supports active/active operation all nodes
can be running queue managers that are participants in a WMQ
cluster and each node can be a standby for one of the other nodes.
Figure 6 illustrates a hybrid WMQ cluster/hardware cluster.

APPLICATION CONSIDERATIONS
Making your WMQ environment highly available is of little use if the
applications that make use of MQ services are not highly available.
So you will need to put in some thought and most likely some effort
to make your applications ‘cluster aware’.
In WMQ terms the unit of failover is the queue manager. You will
need to decide what constitutes a unit of failover for your
application. Most likely (but not necessarily) it would be an
instance of the running application. There follows a list of some
other factors you will need to consider when making your application
programs highly available.
• When the application fails over are there any configuration

files that need to move as well?
• Is any configuration data machine-specific?
• Is any synchronization between machines required?
• Are you going to monitor actively the health of your own

application? If so what method will you use?

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Are there any application/message affinities that you need to
consider?

• How will you test?
These are just a few questions to think about to help you get
started. The main point I want to make is that there will be factors
that need consideration at the application level.

HELPFUL SUPPORTPACS
As is usual in ‘MQ land’ IBM has provided some very helpful
SupportPacs to help us design and implement HA WMQ systems.
The following is a list of relevant SupportPacs that can be found
on the WMQ Web site.
• IC61 – Configuring WebSphere MQ Integrator for AIX with

HACMP.
• IC62 – Configuring WebSphere MQ Integrator for Sun Solaris

with Sun Cluster 2.x.
• IC63 – Configuring WebSphere MQ Integrator for Sun Solaris

with VERITAS Cluster Server.
• IC71 – Configuring WebSphere MQ Integrator for Windows

NT/2000 with Microsoft Cluster Server.
• MC63 – MQSeries for AIX, implementing with HACMP.
• MC68 – Configuring MQSeries with Compaq TruCluster for

high availability.
• MC69 – Configuring MQSeries with Sun Cluster 2.x.
• MC6A – Configuring MQSeries for Sun Solaris with VERITAS

Cluster Server.
• MC6B – WebSphere MQ for HP-UX, implementing with

Multicomputer/Serviceguard.
• MC74 – MQSeries for Windows NT/2000 Microsoft Cluster

Server support.

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• MD05 – MQSeries design considerations for large clusters.

SUMMARY
We all know that highly available systems are more important now
than ever before. Outages cost businesses money. It is, therefore,
important to make HA an important piece of your system architecture
and design.
This article has outlined the ways in which you can incorporate
WebSphere MQ into an HA environment. It’s not difficult; however,
it does take a good deal of planning. I would urge you to take a look
at the SupportPacs that apply to your situation, do some research
and some planning, and make your next WMQ project highly
available.
Dale Eckert
Middleware Architect (USA) © Xephon 2003

E-mail alerts

Our e-mail alert service will notify you when new issues of MQ
Update have been placed on our Web site. If you’d like to sign
up, go to http://www.xephon.com/mq and click the ‘Receive an
e-mail alert’ link.

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

WMQI Broker plug-in node: performance analysis

This article describes the performance analysis and optimization
for a WebSphere MQ Integrator (WMQI) Broker plug-in node. This
plug-in is part of the WebSphere Business Integration for Financial
Networks (WBI for FN) product.

INTRODUCTION
WBI for FN is structured into a base product and extensions. The
base product provides capabilities to deliver products on top of
WMQI Broker, including customization and common services,
such as auditing and timing.
The extensions provide real business value to customers; they
can be provided by IBM, ISVs, or customers themselves. An IBM
extension that was made available in December 2002 is the
Extension for SWIFTNet (ESN). This extension allows financial
applications to access the new Secure IP Network provided by
SWIFT.
At the end of 2002 a performance evaluation was performed on z/
OS for the FIN processing part of the SWIFTNet extension. One
outcome of the performance evaluation was that a plug-in node
provided as part of the WBI for FN product takes most of the
processing time of the Extension for SWIFTNet message flows.
This article describes the performance analysis for this node and
the optimizations carried out in order to reduce the processing
time it requires.

THE CONFIGURATION-DATA PROVIDER NODE
The node that was identified as using most of the processing time
was the configuration-data provider node (CPN). This node can be
used in message flows to get configuration information.
WMQI Broker allows you to develop message flows. A message
flow is composed of message processing nodes that perform

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

actions on a message. These nodes can be customized with
resource properties, such as a WMQ queue name or data source
name to access a database. These properties are statically
defined for the nodes.
WBI for FN provides a configuration service that enables the
provision of dynamic configuration information into a message
flow. This information is structured into organizational units,
configuration object types, and configuration objects.
Organizational units, eg different departments in an enterprise,
are used to separate the resources and security settings in a
message flow. A configuration object type describes possible
attributes of object types used in the message flow processing of,
for example, a printer. The configuration objects are instances of
the configuration object types in an organizational unit. They hold
the actual values for the attributes, as Figure 1 illustrates.
The organizational units, configuration object types, and
configuration object information can be defined in WBI for FN. This

Figure 1: WBI for FN configuration model

Organizational unit 2

Configuration object 1

Attribute 1 = value 1
Attribute 2 = value 5

Configuration object 3

Attribute 1 = value 6
Attribute 2 = value 7

Organizational unit 1

Configuration object 1

Attribute 1 = value 1
Attribute 2 = value 2

Attribute 1 = value 3
Attribute 2 = value 4

WBI for FN
Configuration
object type

Attribute 1

Attribute 2

!!!!!

!!!!!

!!!!!

!!!!!

Configuration object 2

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

information is stored in a database table and can be used to
augment a message while it is processed in WMQI Broker. Based
on this information the message flow can determine whether a
specific operation, eg auditing, needs to be performed or which
resources to use, for example, the name of a WMQ queue to
output a message.
Most message flows use many configuration objects, which can
be grouped into a Configuration Object Set (COS). Each COS has
a name, as does each configuration object.
The name of a COS can be used as a property for a WBI for FN
message processing node. This node is the configuration-data

Figure 2: WBI for FN configuration information structure

Organization unit Configuration object type 1

Configuration object 1
Attribute 1
Value 1
Attribute 2
Value 2
........

Configuration object 2
Attribute 1
Value 1
Attribute 2
Value 2
........

Configuration object type 2

Configuration object 1
Attribute 1
Value 1
........

........

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

provider node. It checks the message being processed and loads
all objects defined in the COS that belong to the organizational unit
referenced in the message. This data is then inserted at a defined
place into the message. A typical structure is shown in Figure 2.
Reading the information from the database table is very time-
consuming, which is why it’s not retrieved every time. Instead, the
CPN caches the information and regularly checks to see whether
the information has changed in the meantime. Checking for
changes is much cheaper (in time) than retrieving the configuration
information. This is the reason why a second message being
processed by the CPN needs much less time than the first.

PERFORMANCE MEASUREMENT METHOD
Based on the overall time spent by the CPN node our first
assumption was that the plug-in API functions needed too much
time, so we started an investigation into which plug-in API functions
were time-intensive and how often these functions were called.
WMQI Broker doesn’t provide any information on plug-in API calls
in its traces that can be used for performance analysis. To get
meaningful results our code could not be modified because this
would negate the results.
To monitor CPN processing time a Performance Library has been
developed as an interface library between the plug-in node and the
WMQI Broker plug-in node API library.
This Performance Library allows each WMQI plug-in API call to be
traced and the elapsed time of each API call to be measured.
Additionally, a summary statistic of the API calls is created at
defined API calls. The behaviour of the Performance Library can
be controlled by a profile.
The Performance Library can be used on distributed platforms
simply by renaming the Performance Library and the WMQI
Broker library. On z/OS the plug-in nodes must be relinked with the
Performance Library and the original WMQI Broker API is
dynamically loaded by the Performance Library. This structure is
shown in Figure 3. The main advantage of this structure is that the

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 3: How use of the Performance Library is structured

WebSphere MQ Integrator
Broker Library

Performance Library

CPN code

Figure 4: Time for CPN processing

1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345
1234567890123456789012345678901212345

Total of API call 1

Total of API call 2

Total of API call 3

......
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789
123456789012345678901234567890121234567890123456789

Total CPN
processing

CPN internal
processing

WMQI Broker
API processing

Performance library
processing

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

source code of the node does not need to be modified.
To determine the overall processing time of the configuration
provider plug-in node, from calling the plug-in node to propagating
the message to the out terminal, additional code has been added
that writes the elapsed time for the configuration provider processing
(including the Performance Library processing) into a trace file.
Figure 4 shows the CPN processing time. With the performance
statistics of the Performance Library trace and the values retrieved
from this additional trace the following CPN values were determined:
• Overall processing time of the CPN plug-in node.
• Overall processing time needed for WMQI Broker API calls in

total and as the sum of each call.
• The total number of each WMQI Broker API function called.
• Overall processing time needed for processing in the plug-in

node other than for the WMQI Broker API calls.
A test message flow was used to measure the processing time of
the CPN. This flow consisted of an MQInput node, the CPN, and
a WMQI Broker-provided trace node.

Figure 5: Elements of the test message

- MQMD
- MQRFH2 header with two NameValueData folders:
 <mcd>
 <Msd>xml<Msd>
 </mcd>
 <ComibmDni>
 <OU>SYSOU</OU>
 </ComibmDni>
-XML Payload:
 <Level1>
 <Level2>
 <Level3>Ay Data 1</Level3>
 <Level3>Any Data 2</Level3>
 <Level3p>Any Data 1p</Level3p>
 </Level2>
 <Level2p attr="Hello">Now the value</Level2p>
 </Level1>

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The CPN was configured to use a COS consisting of six simple
configuration objects. The configuration objects had between one
and three attributes. The CPN does not only provide the
configuration information itself, it also provides some other
environment information that can be retrieved from the broker
environment but is not available, for example, in ESQL. Such
information might be the name of the broker, for example. That’s
why 105 elements are inserted into the message.
A non-persistent WMQ message, as shown in Figure 5, was used
as a test message. A first message was put on the input queue
after starting the broker. The processing of this first message also

WMQI Broker API call Total execution Total number
time (µs) of calls

cniRootElement 674 118
cniCreateElementAsLastChild 1,080 105
cniSetElementType 726 209
cniSetElementName 635 122
cniSetElementcharacterValue 991 73
cniElementCharacterValue 3,320 448
cniCopyElementTree 348 1
cniSearchNextSibling 2,170 464
cniSearchFirstChild 4,992 963
cniFinalize 101 1
cniSqlCreateStatement 7,927 4
cniSqlSelect 402,509 4
cniSqlDeleteStatement 275 4
cciMbsToUcs 3,697 155

Total time 1,015,532
Performance library time consumption 957,981

WMQI Broker plug-in APIs 432,754
Other CPN functions 57,551

Table 1: Result of processing the first message

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

included the configuration data loading of the configuration
provider plug-in node.
The performance measurement was repeated with a COS
consisting of 35 configuration objects. The configuration objects
are a mix of different types, with one, two, or three attributes. Along
with the standard information the CPN had to insert 463 elements.

INITIAL RESULTS
The results for running the first message with the CPN are listed
in Table 1. This table (and also all following tables) contains only
the information on calls that used a significant amount of time. All
measurements were done on z/OS. Similar information could be
measured on other platforms but did not form part of this exercise.
These results show a ratio of 1:7 between the CPN and WMQI
Broker API l .
As Table 1 illustrates, the Performance Library utilizes a
considerable amount of time. This time includes that required for
WMQI Broker plug-in APIs; since it has already been measured it
can, therefore, be omitted when comparing the results.
The results show that the time in the CPN is mainly due to the SQL
calls retrieving information from the database tables, which takes
a long time. This amounts to nearly 95% of the total WMQI Broker
plug-in API functions. As this was expected we ran the second
message.
The configuration information was already available for processing
this second message, so this part of the processing is omitted.
The processing results are shown in Table 2. These results show
a ratio of 8:3 between the CPN and WMQI Broker API l.
Running the same message flow without loading the data but
having the COS with 35 configuration objects shows results as
listed in Table 3. Many more elements are inserted into the
message with this scenario. These results show a ratio of 8:3
between the CPN and WMQI Broker API l .

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

WMQI Broker API call Total execution Total number
time (µs) of calls

cniRootElement 608 110
cniCreateElementAsLastChild 893 105
cniSetElementType 766 209
cniSetElementName 661 122
cniSetElementcharacterValue 957 73
cniCopyElementTree 193 1
cniSearchNextSibling 2136 464
cniSearchFirstChild 4803 926
cniFinalize 100 1
cciMbsToUcs 3514 143

Total time 357,070
Performance library time consumption 334,846

WMQI Broker plug-in APIs 14,956
Other CPN functions 40,224

Table 2: Result of processing the second message

ANALYSIS AND OPTIMIZATION
Looking at the results of the three tests it was noted that a lot of
time was spent retrieving the configuration data. As this process
is only carried out for the first message it was not deemed to be
a problem.
The measurements with a smaller and a larger number of messages
highlighted a couple of issues. The first point to note is that the
relationship between CPN processing and WMQI Broker is nearly
stable. The WMQI API calls indicate that the most time-consuming
calls and functions were called by the CPN in order to insert the
configuration information into the message. Most time is spent

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

with cniSearchNextSibling, cniSearchFirstChild, and
cniMbsToUCS.
Our analysis showed that this is because of the way the elements
are inserted. The CPN used a method that can be compared with
a SET ESQL statement:
 SET complete path 1 = value 1;
 SET complete path 2 = value 2;

This means that the complete path must always be navigated
before a single value is inserted. This was done to ensure that all
elements of the path exist. As the tables show, the time consumed
by navigating the message tree is considerable.

WMQI Broker API call Total execution Total number
time (µs) of calls

cniRootElement 2,875 528
cniCreateElementAsLastChild 4,291 463
cniSetElementType 3,807 985
cniSetElementName 3,439 598
cniSetElementcharacterValue 3,970 315
cniCopyElementTree 204 1
cniSearchNextSibling 51,764 10,560
cniSearchFirstChild 25,471 4,673
cniFinalize 100 1
cciMbsToUcs 17,828 737

Total time 3,179,895
Performance library time consumption 2,898,989

WMQI Broker plug-in APIs 115,406
Other CPN functions 280,906

Table 3: Results of processing the second message and inserting
more elements

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

To reduce this navigation expenditure we changed the coding in
the CPN to use relative addressing. Relative addressing can be
compared with reference variables that are navigated back and
forth as needed, eg:

DECLARE Cursor REFERENCE to OutputRoot.MQRFH2;
...
MOVE Cursor FIRSTCHILD;
MOVE Cursor NEXTSIBLING;
MOVE Cursor PARENT;
MOVE Cursor PREVIOUSSIBLING;

WMQI Broker API call Total execution Total number
time (µs) of calls

cniRootElement 67 1
cniCreateElementAsLastChild 929 105
cniSetElementType 676 209
cniSetElementName 592 122
cniSetElementcharacterValue 896 73
cniElementCharacterValue 3,166 448
cniCopyElementTree 352 1
cniSearchNextSibling 184 36
cniSearchFirstChild 1,186 236
cniFinalize 106 1
cniSqlCreateStatement 7,685 4
cniSqlSelect 366,747 4
cniSqlDeleteStatement 233 4
cciMbsToUcs 3,535 155

Total time 766,609
Performance Library time consumption 729,792

WMQ I Broker plug-in APIs 389,402
Other CPN functions 36,817

Table 4: Result of processing the first message with optimized
CPN

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

From the comparison of CPN processing in relation to the WMQI
processing for the node it was also obvious that the processing in
the CPN also needed optimization.
Our analysis showed that much of the time is utilized by WBI for
FN tracing calls. Tracing was not activated so the calls themselves
are not doing very much, it was just the overhead of the call itself.
A single call was not a problem but for the third measurement the
tracing function was called more than 75,000 times. In total these
calls used half of the total CPN processing time so the tracing has
been reworked and reduced. Having made these changes the
performance measurements were repeated for the CPN.

FINAL RESULTS
All three measurements as done for the non-optimized CPN have

WMQI Broker API call Total execution Total number
time (µs) of calls

cniRootElement 25 1
cniCreateElementAsLastChild 725 105
cniSetElementType 691 209
cniSetElementName 593 122
cniSetElementcharacterValue 815 73
cniCopyElementTree 193 1
cniSearchNextSibling 176 36
cniSearchFirstChild 1,076 215
cniFinalize 104 1
cciMbsToUcs 3,191 143

Total time 160,458
Performance library time consumption 141,806

WMQI Broker plug-in APIs 7,886
Other CPN functions 18,652

Table 5: Results gained from processing the second message with
optimized CPN

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

been repeated. The results for the first test, where the configuration
information is loaded, are shown in Table 4.
These results show a ratio of 1:10 between the CPN and WMQI
Broker API l .
Looking at the results it can be seen that loading the configuration
data still took most of the processing time. Nevertheless the
optimized CPN was now nearly 40% faster than the original CPN.
This is due to the fact that the number of calls to cniRootElement,
cniSearchNextSibling, and cniSearchFirstChild reduced
dramatically.
The effect of reducing the number of trace calls can be seen from

WMQI Broker API call Total execution Total number
time (µs) of calls

cniRootElement 23 1
cniCreateElementAsLastChild 3,191 463
cniSetElementType 3,483 985
cniSetElementName 2,981 598
cniSetElementcharacterValue 3,177 315
cniCopyElementTree 194 1
cniSearchNextSibling 6,142 1,278
cniSearchFirstChild 5,227 991
cniFinalize 102 1
cciMbsToUcs 166 8

Total time 787,523
Performance library time consumption 689,868

WMQI Broker plug-in APIs 26,090
Other CPN functions 97,655

Table 6: Results gained from processing the second message with
optimized CPN and inserting more elements

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the fact that now much more time is spent in the WMQI Broker API
function in relationship to the time in the CPN.
To understand whether the results for reducing the number of plug-
in API calls or the reduction of WBI for FN calls was more
significant the second test was repeated with the same message.
Using the available configuration information the results for this
processing are shown in Table 5.
This results in a ratio of 2.2:1 between the CPN and WMQI Broker
API l.
This is nearly the same as for the original CPN. This means that
both parts have been reduced by almost the same factor.
Nevertheless, the overall processing time for the CPN was
reduced by nearly 58%.
The last measurement for the CPN was made running the same
message with the configuration data preloaded but using the COS
that inserts 35 configuration objects. The results of this test are
shown in Table 6.
These results show a ratio of 10.1:3 between the CPN and WMQI
Broker API l.
From the results in Table 6 it can be seen that before this
measurement another change was implemented. An analysis of
the calls showed that most of the calls to cciMbsToUcs are done
for constants. The conversion of these constants was moved to
the initialization of the node. Therefore the time and the number of
calls were drastically reduced.
For this scenario the result of the optimization of the configuration
provider is an overall processing time reduction of nearly two-
thirds. The number of WBI for FN trace calls has been reduced by
nearly 80% to 15,800. The rest of the CPN processing time has
been reduced by 50%. The WMQI Broker processing time for the
API calls has been reduced by approximately 77%. This results in
an increase of 25% in the CPN:WMQI Broker API ratio. That is the
result of shifting a part of the message tree navigation task from
WMQI Broker to the CPN.

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION
Changing the way elements are inserted into the message tree
has significantly reduced the amount of time needed to perform the
task. Nevertheless, to understand whether this result is good or
not we coded a new message flow. This was a copy of the original
message flow but replaced the CPN node with a compute node.
In this compute node the operation of the CPN was simulated with
hard-coded ESQL SET ??? statements to insert all data elements
as was done for the third test for the 35 configuration objects. The
elapsed time for the compute node was determined using a WMQI
Broker user trace. This test showed the processing time of the
compute node to be 16.064 µs. This is much less than the time for
the WMQI Broker plug-in APIs in the CPN alone and indicates that
it would be very difficult to improve upon the compute node. The
results of our tests clearly show that the performance of WMQI-
delivered nodes is more efficient than that of plug-in nodes.
Michael Groetzner
IBM (Germany) © IBM 2003

MQ news

IBM has recently announced that it is to
introduce new versions of its WebSphere
Business Integration Event Broker and
WebSphere Business Integration Message
Broker solutions, formerly known as
WebSphere MQ Event Broker and
WebSphere MQ Integrator Broker.

WebSphere Business Integration Brokers are
designed to deliver real-time, highly
personalized information across a network,
the Internet, telemetry, and pervasive
devices. The software is claimed to secure
delivery of critical industry-specific
information, such as stock quotes or pressure
readings from gas pipelines.

For more information contact your local
IBM representative.

* * *
MQSoftware has recently announced
support for WebSphere MQ Everyplace
(WMQE) with Q Pasa! V3. WMQE is
designed to support secure wireless and
pervasive device solutions that extend
e-business communications across all
customer, employee, and partners.

MQSoftware claims that its support will give
users more powerful monitoring capabilities
across more WebSphere products that utilize
mobile devices.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.

Fax: +1 952 345 8721.
Web: http://www.mqsoftware.com

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *
Fiorano Software recently announced the
release of Tifosi 2002 ESB (TESB),
Enterprise Service Bus, a standards-based
solution for event-based distributed
computing.

The company claims that by using an ESB
organizations can avoid a ‘spaghetti’ of
application interconnections because
existing applications, services, and other data
sources need only to plug into the bus to
communicate.

Although it is implemented on top of
FioranoMQ, the company states that Tifosi can
leverage existing middleware investments such
as WebSphere MQ or any of the other JMS
servers on the market.

For more information contact:
Fiorano Software, 718 University Avenue,
Suite 212, Los Gatos, CA 95032, USA.
Tel: +1 408 354 3210.
Fax: +1 408 354 0846.
Web: http://www.fiorano.com

* * *

x
xephon

	WebSphere MQ and the IMS Bridge
	Quality-checking exported message flows
	WebSphere MQ high availability options
	WMQI Broker plug-in node: performance analysis
	MQ news

