

© Xephon plc 2003

August 2003

50

In this issue

MQ

3 Real time JMS server
implementation on WMQ

13 WMQ groups and segments
25 Architecting for performance
34 Using the MQRFH2 message

header
42 Delete channel start process in

WMQ 5.3 for z/OS
49 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200 lines
of original material. The remaining code is paid
for at the rate of £50 ($80) per 100 lines. In
addition, there is a flat fee of £30 ($50) per
article. For more information about contributing
an article you can download a copy of our Notes
for Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Real time JMS server implementation on WMQ

INTRODUCTION
This article illustrates the use of JMS (Java Messaging System),
in a WMQ environment, for large-scale file replication in a cross-
platform, cross-vendor environment. I will discuss the advantages
and potential pitfalls and provide practical instructions for
successfully implementing WMQ as a JMS server.

BACKGROUND
When we think of messaging solutions we probably envision a
system that integrates different applications within the enterprise
or even outside the enterprise (partner/customer applications)
by a remote message invocation mechanism. Classic examples
are homogeneous interfaces to heterogeneous backends and
portals that delegate back-end processing of user requests and
then reformat them for end-user presentation, or provide back-
office details for a customer on front-office applications to
provide a 360 degree view during customer interactions.
The common thread in messaging methods is the assumption
that the messaging solution, while providing robust, highly
available communication between systems, is fundamentally
inefficient and should be used only as a last resort when
communication to an outside system cannot be avoided. This
view of messaging has prevailed from the onset of remote
method calls (RMC) to more modern messaging solutions such
as CORBA and DCOM, and it has limited the type of problem that
messaging solutions are usually applied to.
Over the last decade there has been an increased understanding
of the requirements of distributed systems. Emerging
technologies, such as Java and .NET, have included code
distribution as part of their fundamental programming model. In
doing so, these technologies have incorporated high availability

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

and fault tolerance into messaging, encouraging solution providers
to deliver systems with performance characteristics applicable
to a wider variety of problems.
On the Navy Marketing and Advertisement System that our
company is building for Commander, Navy Recruiting Command,
US Navy, I was asked to implement a file distribution and
replication solution that previously would have required a custom
system, integrating secure FTP, database replication, and other
one-off solutions. Rather than choosing the custom development
path I explored the possibility of applying state-of-the art
messaging solutions to the problem. We found that not only did
JMS provide the necessary infrastructure for transferring
information but it also handled all of the infrastructure issues
relating to quality of service, security, reliability, and performance
that the system required. This article describes the challenges
our team faced and how JMS, in the form of MQSeries, let us
meet and exceed our customer requirements and expectations.

THE PROBLEM
Navy Recruiting Command had hired an outside firm to handle
telephone calls. This firm had a number of call centres around the
country where operators recorded interactions with leads. The
recordings had to be quickly and reliably indexed and archived
in remote data centres. The storage procedure was not allowed
to affect the ability of the operator’s system to record and store
ongoing interactions.
The customer services firm had an existing system that included
a combination of custom code, VPN, and other technologies. But
the existing solution was falling far short of the performance and
reliability goals and was a combination of technology that was
hard to understand and expensive to maintain.
While developing a replacement system we had to base the
messaging solution on WMQ as a part of the client’s standards.
Considering the security flaws with non-JMS solutions, particularly
those based on FTP and secure copy (SCP), our team concluded

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

that the development effort to base our solution on these non-
JMS methods would be prohibitive and, therefore, settled on the
JMS solution, which provided them ‘out of the box’.

THE SOLUTION
We developed a WMQ-based JMS system that:
• Provided reliable archiving for recorded multi-media files.
• Would allow extendibility to let multiple data centres receive

the files.
• Would allow additional data types to be archived.
The files that were in doubt were the larger ones (50K - 500K) that
we had transferred in previous projects and which involved
messaging solutions. Our first task was to ensure that the data
sizes would not preclude a JMS solution. We tested the
performance of the WMQ system’s delivery with message
payloads of various sizes. The results showed that, with
appropriate configuration, messages of up to 1MB did not have
a noticeable effect on overall system performance.
We laid out the system architecture; the existing infrastructure
had a system on each client that created multi-media files in
response to interactions between operators and users. These
files needed to be archived. Our system starts a process running
on each machine and looks for these files in known directories.
When new files are detected they are packaged into a JMS
payload and sent to a JMS server in one of the data centres for
delivery. Once the JMS server acknowledges receipt the files are
removed from the sender. The JMS server transfers the data to
one of the available handlers in the data centres for archiving.
The system we built relies on point-to-point destinations called
queues in JMS. The messages are actually delivered from the
JMS broker to the queue and the MQ receiver client retrieves
them from the queue.
It was important to our client to limit vendor lock-in, meaning we

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

needed to design our code to minimize the impact of changing
JMS vendors. Key advantages of JMS were the open standard
it was based on and the broad industry support it receives, so that
with properly designed code we could make the system work with
any JMS system. The platform independence was easily
accomplished by encapsulating all vendor-specific calls inside
classes we called JMSProviders. These providers handled such
vendor-specific issues as factory lookup, error handling,
connection creation, and message property setting (see below
for an example).

EXAMPLE ONE
 Public QueueConnection createConnection() throws JMSException()
 {
 Return
 GetConnectionFactory().createQueueConnection(getUserName(),
 getPassword();
 }

By leveraging the Java Naming and Directory Interface (JNDI)
we stored the vendor-specific references. There is a small
amount of vendor-specific code needed to handle some
idiosyncrasies but it can be limited to some ‘adaptor’ classes,
keeping it out of the application code. (Below is an example.)
Because JMS is designed to work easily with JNDI it was another
immediate advantage over other solutions – a centralized location
for configuration information that not only could hold text-based
information, but also could store configured objects.

EXAMPLE TWO
 public final static string
 CONNECTION_FACTORY_LOOKUP_NAME_KEY =
 "CONNECTION_FACTORY_LOOKUP_NAME";
 public final static
 String FILE_TRANSFER_QUEUE_LOOKUP_NAME_KEY =
 "FINAL_TRANSFER_QUEUE_LOOKUP_NAME";
 public final static String
 JMS_PROVIDER_CLASS_KEY = "JMS_PROVIDER_CLASS";
 public void init() throws NamingException {
 InitialContext jndi = createInitialContext();
 InitConnectionFactory(jndi);

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 InitFileTransferQueue(jndi);
 }
 public QueueConnection createConnection() throws JMSException {
 return
 GetConnectionFactory().createQueueConnection(getUserName(),getPassword());
 }
 public void initConnectionFactory(InitialContextjndi) throws
 NamingException {
 SetConnectionFactory((QueueConnectionFactory)jndi.lookup
 (getProperties().getProperty(CONNECTION_FACTORY_LOOKUP_NAME_KEY)));
 }
 public void initFileTransferQueue(InitialContext jndi) throws
 NamingException {
 SetFileTransferQueue((Queue) jndi.lookup
 (getProperties().getProperty(FILE_TRANSFER_QUEUE_LOOKUP_NAME_KEY)));
 }

Out of the box, JMS solutions allow messages to be sent with a
guarantee that, once a message is acknowledged as delivered
to the JMS server, it will be delivered to the destination (queue)
to which it was addressed. MQSeries is no exception. Once the
code to send the message to the server is executed the client can
be assured that the destination will eventually receive the
message even if the server in question has a failure during
processing (if the destination is temporarily unavailable, or the
JMS server dies, etc). (See example three below.) The Class in
the code below is responsible for actually executing the sending
of data once it has been determined that it’s necessary to send
the file.
By configuring the message as persistent we can guarantee that
once the message is received by the destination (queue) it will
remain there until it is retrieved from the queue – even across
system failures. Hence, once the message is safely delivered to
the local JMS server it can be deleted. The value of overcoming
system failures cannot be overestimated; handling of periodic
system outages and failures is one of the biggest problems with
developing distributed archiving solutions. The customer’s existing
system had complicated and brittle code to handle failure
scenarios and failures were costly in terms of processing and
maintenance. JMS allowed us to solve all these problems by
delegating them to a robust, battle-tested, commercial solution.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

EXAMPLE THREE
public void sendMessage(byte[] payload, Boolean persistent) throws
 SendFailedException {
 QueueSender sender = null;
 try {
 Message message = createMessage(payload);
 Sender = createSender
 (persistent ? DeliveryMode.PERSISTENT:DeliverMode.NON_PERSISTENT);
 sender.send(message);
 getClient().getLogService().logInfo(getName() +
 " sent message " + message.getJMSMessageID() + ".");
 } catch (JMSException exception {
 getClient().getLogService().logError
 ("JMS exception processing " + getName(), exception);
 stop();
 throw new SendFailedException ("JMS Message Send Failed");
 }
 try {
 sender.close();
 } catch (JMSException ignore) {
 getClient().getLogService().logInfo(getName()) + " failed
 to close sender.
 Processing will continue.");
 }

The key to this solution is configuring the JMS messages and
server to provide both adequate performance and quality of
service. The configuration options are defined by the JMS
specification and are implemented by all commercial solutions;
however, the exact method of configuration varies from vendor
to vendor.
The architecture and system we created is general and powerful.
However, there are a number of moving parts that must be
configured and hooked up in just the right way. Let’s now look at
some potential pitfalls and ways to circumvent them to ensure a
successful set-up of WMQ as a JMS server.

OVERVIEW
With MQSeries, first set up a JNDI server to retrieve the
implementation-specific settings, which in this case comprise
the JMS Connection Factory. There are many different ways to
do this but a good all-purpose choice is a Lightweight Directory
Access Protocol (LDAP) server. We chose to use Qualcomm

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SLAPD. Once the server is installed and running, the WMQ
admin tools can be set up to use it as the repository for WMQ
object information. Also, during set-up it’s important to pay close
attention to the IBM documentation for setting up JMS on top of
WMQ. The process involves creating queues and other objects
that are specific for JMS usage and not part of the standard WMQ
installation.
After setting up the JNDI/LDAP and JMS servers you are ready
to configure your clients. The first step is to understand how JMS
interacts with IBM’s MQSeries implementation. Java clients of
MQSeries can interact in one of two modes: client or bind mode.
Client can be used only by Java applets, and bind mode relies on
DLLs or object libraries on the client. Because of the peculiarities
of the implementation you can only use bind mode when using
an LDAP server for JMS connection information. Therefore, the
user login and password are stored in a global location
(com.ibm.mq.MQEnvironment.class) rather than passed in at
connection time. To accommodate these vendor issues we
created a subclass of our standard JmsProvider class called
MQSeriesProvider. The only thing this class will do is override the
way in which a connection is created. Instead of calling example
one:
 public QueueConnection createConnection() throws JMSException()
 {
 Return
 GetConnectionFactory().createQueueConnection(getUserName(),getPassword();
 }

we must call:
 newQueueConnection = getConnectionFactory().createQueueConnection();

Finally, you need to supply the JMS-specified elements to the
clients, such as the queues, queue managers, queue factories,
and so on. Now the reason for using LDAP and JNDI becomes
apparent: we use the LDAP server to store these elements and
use external files to hold the keys to those LDAP objects. The
LDAP server can act like a JNDI server and respond to name
lookups by returning the objects we stored. This is what allows
the code in example two to work. The name for a JMS element

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

is obtained from a class static variable (for the default name) or
an external file (to use something other than the default). In short,
the LDAP server is asked for the object that is stored at the key
in question and an object, in this case the JMS object that we are
interested in, is returned.
Our JMS-based solution facilitated a uniform, cross-platform,
and cross-vendor configuration environment, using off-the-shelf
components. Now our code is as isolated as possible from
platform-specific and vendor-specific settings.

HOW THE APPLICATION WORKS
There are two key components to the application: a sender and
a receiver. The sender launches a background that polls a
directory for files that need to be archived, while the receiver
simply waits for JMS messages to be delivered, then archives
the files contained in the messages. The JMS API lets us define
these components with almost no regard for the specific JMS
implementation that we are using. The sender consists of three
main parts:
• A JMSProvider for creating connections.
• A ConnectionPool for obtaining existing, idle connections

(which we will call JMSConnections).
• A poller to watch for files that need to be transferred.
At startup, the JMSProvider is used to create some ready
connections to the JMS server. The connections are placed in
the pool and then the poller is started. When the poller detects
a file that needs to be transferred it creates a separate thread to
process the file. In the separate thread the poller then obtains a
JMSConnection from the connection pool, uses it to create a
BytesMessage, and places the binary contents of the file into that
message. Finally, the message is addressed to the receiver, sent
to the JMS server, and then the JMSConnection is returned to the
ConnectionPool.
The receiver is a simpler component; it starts a number of

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

FileListeners that wait for messages to be placed in the receiver
queue. Example four below shows the code for setting up the
processing by the FileListeners. JMS guarantees that a queue
will deliver each message no more than once, so we can safely
start many different FileListener threads and know that each
message (and therefore each file) will be processed only once.
This guarantee is another important advantage of using a JMS-
based solution.
In our scenario the system screened the leads once they
responded to a Navy Job offer, and qualified lead information
was sent to the field recruiters using this mechanism, along with
a similar package that was sent to external fulfillment centres, to
provide appropriate material to the candidates.

EXAMPLE FOUR
 Public void startOn(Queue,queue) {
 SetQueue(queue);
 CreateConnection();
 Try {
 createSession();
 createReceiver();
 getConnection().start() ; // this starts the queue listener
 } catch (JMSException exception) {
 // handle the exception
 }
 }
 public void createReceiver() throws javax.jms.JMSException {
 try {
 QueueReceiver receiver = getSession().
 CreateReceiver(getQueue());
 Receiver.setMessageListener(this);
 } catch (JMSException exception) {
 // handle the exception
 }
 }
 public void createSession() throws JMSException {
 setSession(getConnection().
 CreateQueueSession(false, Session.AUTO_ACKNOWLEDGE));
 }
 public void createConnection() {
 while(!hasconnection()) {
 try {
 setConnection(getClient().createConnection());
 } catch (JMSException exception) {

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

 // Connections drop periodically on the internet, log and try again.
 try {
 Thread.sleep(2ØØØ);
 } catch
 (java.lang.InterruptedException ignored) {
 }
 }
 }
 }

The message handling code is written in a callback, a method
that JMS automatically invokes when a message is delivered to
the FileListener. The code for this message is shown in Example
five below.

EXAMPLE FIVE
 Public void on Message (Message message) {
 BytesMessage byteMessage = ((BytesMessage) message);
 OutputStream stream = new BufferedOutputStream(
 new FileOutputStream(getFilenameFor(message)));
 byte[] buffer = new byte[getFileBufferSize()];
 Int length = Ø;
 try {
 While((length = byteMessage.readBytes(buffer)) != -1) {
 Stream.write(buffer,Ø,length);
 }
 stream.close();
 } catch (JMSException exception) {
 // handle the JMSException
 } catch (IOException exception) {
 //handle the IOException
 }
 }

A trick to remember when setting up the receiver is to ensure that
the initial thread that launches all the FileListeners continues to
run after all of the FileListeners have started. This is necessary
because some JMS implementations start QueueListeners in
daemon threads. So the Java Virtual Machine might exit
unexpectedly early if the only threads that are running are
daemon threads. Example six below shows some simple code
to prevent this from occurring.

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

WMQ groups and segments

Many features have been added to MQSeries since its release
nearly a decade ago. Even for veteran MQSeries developers,
learning the details of how to use a particular feature can be
daunting. In my capacity as a senior middleware architect I am
responsible for directing developers on the proper way of using
the features of MQSeries. Features I often get asked about are
message groups and segmentation.

EXAMPLE SIX
 public static void main(String[]) args) {
 ReceiverClient newReceiverClient = new ReceiverClient();
 NewReceiverClient.init();
 SetSoleInstance(newReceiverClient);
 While(!finished) { // this prevents the VM from exiting early
 try {
 Thread.sleep(1ØØØ);
 } catch (InterruptedException ex) {
 }
 }
 }

CONCLUSION
After our initial implementation of the project we added features
such as message compression, auto-recovery when sites become
unreachable, federated message brokers, security, robust log-
in, administration, and more. The elements were easy to add
because of the open JMS model as well as the robustness of the
architecture and features of WMQ. In addition to exceeding our
customer expectations this messaging system proved that JMS
is a viable solution not only for small, message-oriented
applications but also for large-scale, mission-critical data transfer
operations. We are moving ahead with using JMS with WebSphere
in the EAI implementation in the Navy Marketing and
Advertisement System.
Vikas Baruah (vikas.baruah@ams.com)
American Management Systems (USA) © Xephon 2003

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

In this article my aim is to help developers quickly start using a
feature without getting bogged down in the Programmer Reference
and User Manual. This text is not meant to be a replacement for
reading the manuals. It is simply a quick tutorial on message
groups and segmentation. I’ll make some recommendations on
how to use them and point out some of the things you should look
out for. One general note is that, in all cases, these features
require the version field of the MQMD to be set to
MQMD_VERSION_2. I mention this because my examples are
written in Java, which defaults to this version, so you won’t see
it set in the code.

WHAT ARE MESSAGE GROUPS AND SEGMENTS?
A message group allows an application to group related messages
and ensure the retrieval order of messages. It is made up of one
or more logical messages.
A logical message is a single unit of application information
made up of one or more physical messages. When there are
multiple physical messages in a logical message they are
referred to as segments. A logical message does not need to be
part of a message group.
A segment is used to split large messages that may not be able
to be processed because of the configuration of a particular
queue or queue manager maximum message size or because
of application buffer limits.
A physical message is the smallest unit that you can PUT to or
GET from a queue.
Figure 1 depicts the relationship among groups, segments, and
physical messages. It shows a message group that contains two
logical messages, where the first logical message is made up of
a single physical message and the second logical message is
segmented into two physical messages. The figure also shows
a segmented logical message that is not a member of a group
and a single physical message, also not a member of a group.

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

WHY USE MESSAGE GROUPS?
Message groups allow the application to ensure that related
messages are processed together and in a particular order.
While you can implement this by using the Msg-ID and Correl-
ID fields in the message descriptor, message groups provide a
semi-automated and consistent mechanism for implementing
these capabilities. As we’ll see, using message groups can help
simplify design and reduce complexity.

HOW IS A MESSAGE GROUP SPECIFIED?
There are a number of fields in the MQMD that are used to
manage message groups:
• Group-ID.
• MsgSeqNumber.
• MsgFlags.

Figure 1: Message groups and segments

Physical
message

Logical message

Message group

Physical
message

Logical message

Physical
message

Physical
message

Logical message

Physical
message

Physical
message

Physical
message

Logical message

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

There are also values in the PMO and GMO options field that are
required for message groups.
To specify a message group the MsgFlags field in the MD
structure is set to MQMF_MSG_IN_GROUP or
MQMF_LAST_MSG_IN_GROUP. MQMF_MSG_IN_GROUP is
set for all logical messages in the group until the last logical
message, which is set to MQMF_LAST_MSG_IN_GROUP. It is
always up to the application to manage these flags when putting
messages to a queue. Once a group is started it must be
completed before starting a new group. If the application tries to
put a message to the queue that is not in the current group then
a MQRC_INCOMPLETE_GROUP error is returned. When getting
messages MsgFlags is an output field used to determine when
you have completely retrieved the messages in the group.
The Group-ID field in MQMD is used to identify a group. This field
can be manually set by the application or managed by the queue
manager.
The MsgSeqNum field plus the Group-ID field are used to identify
a logical message. The MsgSeqNum starts at 1 and increments
by 1 for each logical message in the group. It can be manually
set by the application or managed by the queue manager.
When putting message groups the recommended approach is to
have the queue manager take responsibility for managing the
Group-ID and MsgSeqNumber in the MD. This is accomplished
by setting the MQPMO_LOGICAL_ORDER flag in the PMO’s
options field. Example one is a simple Java code fragment
showing this method. In this example, the first PUT will generate
a unique Group-ID and set the MsgSeqNumber number to 1.
Subsequent calls will increment the value in MsgSeqNumber by
1.

Example one: PUT a message group to a queue
 MQMessage putMsg = new MQMessage();
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = MQC.MQPMO_NEW_MSG_ID |
 MQC.MQPMO_SYNCPOINT |
 MQC.MQPMO_LOGICAL_ORDER;

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 putMsg.messageFlags = MQC.MQMF_MSG_IN_GROUP;
 putMsg.clearMessage();
 putMsg.writeString(msgDataA);
 q1.put(putMsg,pmo);
 putMsg.messageFlags = MQC.MQMF_MSG_IN_GROUP;
 putMsg.clearMessage();
 putMsg.writeString(msgDataB);
 q1.put(putMsg,pmo);
 putMsg.messageFlags = MQC.MQMF_LAST_MSG_IN_GROUP;
 putMsg.clearMessage();
 putMsg.writeString(msgDataC);
 q1.put(putMsg,pmo);
 qMgr.commit();

It is also recommended that the application manage the syncpoint.
This way there won’t be a partial group on the queue if an error
occurs during processing. Now, there are ways to put a message
group onto a queue across multiple units of work, but the added
complexity of the recovery logic in the code just doesn’t warrant
the effort, so try to avoid it. If you can’t, then be aware that, when
using Java, the queue manager will throw an
MQRC_INCOMPLETE_GROUP exception on the close.
If the logical order flag is not specified it’s up to you to set and
manage Group-ID and MsgSeqNumber. If you must manage the
fields yourself, at the very least you should have the queue
manager generate a unique Group-ID for you. The potential for
having logically different groups on the queue with the same
group identifier can result in obvious problems when you attempt
to get the messages.
To generate an identifier set the Group-ID field to MQGI_NONE
for the first message put to the queue. If the PUT is successful
the queue manager will return a unique value in Group-ID. Use
this value on subsequent PUTs for the remaining messages in
the group.
The real opportunity to simplify design and reduce code by using
message groups comes when getting messages. Let’s say that
the requirement is to have a server application retrieve a number
of related messages from an input queue as one message and
that processing can only start when all the pieces of the transaction
have arrived. This is a fairly common requirement. Before

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

message groups you would have had to use Msg-ID and/or
Correl-ID to indicate the relationship among messages. You
would have also needed to identify the end of a group in some
way. This would have to have been designed into the message
in some way. Waiting for all the pieces to arrive before processing
would require some fairly sophisticated processing, eg excessive
browsing and moving data to temporary queues, etc.
What happens if the messages arrive out of order? This is not
impossible in a complicated MQ network and in a large
organization you can be sure that there would be a number of
totally different implementations solving the same problem. By
using message groups you can implement these requirements
with some fairly simple code. The Java fragment in example two
shows how this requirement could be implemented.
In example two the GMO options flag MQGMO_ALL_
MSGS_AVAILABLE is used to wait for all the messages in the
group to arrive before returning data from the get. The GMO
options flag MQGMO_LOGICAL_ORDER forces the queue
manager to retrieve the messages in MsgSeqNumber order, not
by their position on the queue. The reason for the other options
should be self-evident. Examine the ‘if-else’ after the get. Here,
we are trying to determine the group disposition of the message.
When it is the last message we commit the GETs. When in a
group we set the GMO match options to MQMO_GROUP_ID to
select the next message in the group. If not in a group, then
process a single message.
It is important to note that you should check for the
MQMF_LAST_MSG_IN_GROUP flag before checking the
MQMF_MSG_IN_GROUP flag. This is because on the last
message both flags are set. This is the case even if the message
was put to the queue with only the last message flag set. The
queue manager does this for some unknown reason, so be
aware of it.

Example two: GET a message group
 MQMessage getMsg = new MQMessage();
 // Set the get message options to retrieve only complete messages

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = MQC.MQGMO_ALL_MSGS_AVAILABLE |
 MQC.MQGMO_LOGICAL_ORDER |
 MQC.MQGMO_SYNCPOINT |
 MQC.MQGMO_WAIT;
 // Get any message
 gmo.matchOptions = MQC.MQMO_NONE;
 boolean done = false;
 do
 {
 try
 {
 // Get the message
 q1.get(getMsg,gmo);
 if ((getMsg.messageFlags & MQC.MQMF_LAST_MSG_IN_GROUP) ==
 MQC.MQMF_LAST_MSG_IN_GROUP)
 {
 // Reset the message flags to start getting
 // a new group or message.
 gmo.matchOptions = MQC.MQMO_NONE;
 qMgr.commit();
 }
 else if ((getMsg.messageFlags & MQC.MQMF_MSG_IN_GROUP) ==
 MQC.MQMF_MSG_IN_GROUP)
 {
 // Get the rest of the messages
 gmo.matchOptions = MQC.MQMO_MATCH_GROUP_ID;
 }
 else
 {
 // Message not in a group
 gmo.matchOptions = MQC.MQMO_NONE;
 qMgr.commit();
 }
 }
 catch (MQException ex)
 {
 if (ex.completionCode == MQException.MQCC_WARNING)
 {
 System.out.println("MQ warning: Completion code "+
 ex.completionCode +
 ", Reason code " + ex.reasonCode);
 done = true;
 }
 else
 {
 System.out.println("MQ error: Completion code "+
 ex.completionCode +
 ", Reason code " + ex.reasonCode);
 done = true;

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

 }
 }
 } while (!done);

WHY USE SEGMENTATION?
Segmentation allows large messages to be split up into smaller
ones so that they can be processed. This is generally required
when messages have to pass through an intermediate queue or
queue manager before arriving at the target queue. Segmentation
allows the applications on each end to send and receive messages
that are larger than those that can be handled by the pass-thru
nodes. Segmentation can also be used to provide target
applications with the ability to process large messages when
buffer space is limited. There are two types of segmentation
available:
• System segmentation.
• Application segmentation.

SYSTEM SEGMENTATION
System segmentation is the simplest form of segmentation. It
allows the application to put a large message to a queue and lets
the queue manager decide where to split the message. The
splitting of the message is transparent to the application. This is
also referred to as ‘arbitrary segmentation’ because the queue
manager splits the message on 16-byte boundaries without any
consideration to the data layout of the message.

How are system segments specified?
Few changes are required to implement system segmentation.
The code fragment in example three shows a simple PUT/GET
sequence. The putting application needs simply to set the
MsgFlags field in the MD to
MQMF_SEGMENTATION_ALLOWED. This tells the queue
manager to segment the message if it is too large for the queue
or the queue manager to handle.

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The get side of the example needs only to set the
MQGMO_COMPLETE_MSG flag in the GMO. This option tells
the queue manager to return only complete messages. The
queue manager will reassemble the segments for you. Using this
method assumes the application is capable of allocating a buffer
large enough to hold the entire message. It is useful when the
message has to pass through an intermediate that is not capable
of handling large messages. You may also want to use this
method to reduce the blocking effect on channel batching. Since
a large message still counts as one message in the channel
batch count but needs more time to transmit, a very large
message sent unsegmented may affect the response time of
other messages.

Example three: system segmentation
 // Open the target queue
 // NOTE: SMALL.MSG.QUEUE is defined with a
 // maximum message length of 16.
 MQQueue q1 =
 qMgr.accessQueue("SMALL.MSG.QUEUE",
 openOptions);
 System.out.println("Queue: " + q1.name +
 " has max msg len of " +
 q1.getMaximumMessageLength());
 System.out.println();
 // Define an MQ message and put message options
 String msgData = new String("123456789Ø123456789Ø123456789");
 MQMessage putMsg = new MQMessage();
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = MQC.MQPMO_NEW_MSG_ID;
 // Allow segmentation.
 // NOTE: If this is not specified, then the
 // put will fail with CompCode = 2Ø3Ø,
 // MQRC_MSG_TOO_BIG_FOR_Q
 putMsg.messageFlags = MQC.MQMF_SEGMENTATION_ALLOWED;
 putMsg.writeString(msgData);
 q1.put(putMsg,pmo);
 System.out.println("PUT message len: " + putMsg.getMessageLength());
 System.out.println("PUT message data: " + msgData);
 System.out.println();
 // Now, lets see how many physical messages are on the queue
 System.out.println("Current Queue Depth: " + q1.getCurrentDepth());
 System.out.println();
 // Get the logical message we just put to the queue
 MQMessage getMsg = new MQMessage();

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

 // Set the get message options to retrieve only complete messages
 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = MQC.MQGMO_COMPLETE_MSG;
 // Get the message
 q1.get(getMsg,gmo);
 System.out.println("GET message len: " + getMsg.getMessageLength());
 System.out.println("GET message data: " +
 getMsg.readString(getMsg.getMessageLength()));
 System.out.println();

APPLICATION SEGMENTATION
This is a more complicated form of segmentation. It allows the
application to control how the segments are put to and retrieved
from a queue. There are various reasons why you would want to
use this method. One case is when the sending or receiving
application is not capable of allocating a buffer large enough to
hold the entire message. Another case is when you need to
control the boundaries of where the message data is to be split.
Also, there is the case where you may want to begin sending
segments before all the message data is available. These are
the most likely reasons for using segmentation, though others
may exist as well. You can also combine system segmentation
with application segmentation. This way, one side can have the
queue manager transparently perform the segmentation or
reassembly, while the other side performs segmentation manually
in the application.

How are application segments specified?
As with message groups, segments are specified and controlled
by using fields in the MD and PMO/GMO structures. The two
main fields used to define a segment in the MD are MsgFlags and
Offset.
The offset field specifies the position of the data from the
beginning of the logical message. It is manually or automatically
set. Also, the options field in the PMO/GMO structures will be
used again.
To specify a segment the MsgFlags field in the MD structure is
set to MQMF_SEGMENT or MQMF_LAST_SEGMENT.

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQMF_SEGMENT is set for all segments in the message until
the last segment, when you set MQMF_LAST_SEGMENT. As
with message groups, once started, the segmented message
should be completed before starting a new one.
When getting messages MsgFlags is an output field used to
determine when you have completely retrieved the messages in
the group. Once again it is recommended that the application
manage the syncpoint. This way there won’t be a partial message
on the queue if an error occurs during processing.
It is recommended that you use automatic offset generation. To
do this, set the PMO options flag MQPMO_LOGICAL_ORDER.
This will instruct the queue manager to maintain the offset value
for you. The code fragment in example four shows this in a simple
sequence where the PUT side uses manual segmentation and
the get side uses automatic reassembly.

Example four: application segmentation on the PUT
 pmo.options = MQC.MQPMO_NEW_MSG_ID |
 MQC.MQPMO_SYNCPOINT |
 MQC.MQPMO_LOGICAL_ORDER;
 // PUT 4 segments on to the queue
 putMsg.messageFlags = MQC.MQMF_SEGMENT;
 putMsg.writeString(msgDataA);
 q1.put(putMsg,pmo);
 System.out.println("PUT message len: " + putMsg.getMessageLength());
 System.out.println("PUT message data: " + msgDataA);
 putMsg.clearMessage();
 putMsg.writeString(msgDataB);
 q1.put(putMsg,pmo);
 System.out.println("PUT message len: " + putMsg.getMessageLength());
 System.out.println("PUT message data: " + msgDataB);
 putMsg.clearMessage();
 putMsg.writeString(msgDataC);
 q1.put(putMsg,pmo);
 System.out.println("PUT message len: " + putMsg.getMessageLength());
 System.out.println("PUT message data: " + msgDataC);
 putMsg.messageFlags = MQC.MQMF_LAST_SEGMENT;
 putMsg.clearMessage();
 putMsg.writeString(msgDataD);
 q1.put(putMsg,pmo);
 System.out.println("PUT message len: " + putMsg.getMessageLength());
 System.out.println("PUT message data: " + msgDataD);
 System.out.println();

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

 qMgr.commit();
 // Get the logical message we just put to the queue
 MQMessage getMsg = new MQMessage();
 // Set the get message options to retrieve only complete messages
 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = MQC.MQGMO_COMPLETE_MSG;
 // Get the message
 q1.get(getMsg,gmo);
 System.out.println("GET message len: " + getMsg.getMessageLength());
 System.out.println("GET message data: " +
 getMsg.readString(getMsg.getMessageLength()));
 System.out.println();

If the logical order flag is not specified you must manually set the
offset value on each PUT. But be warned; if your offset calculations
are off, the queue manager will not indicate any problem when
you PUT the segments of the logical message. However, you will
not be able to retrieve the segments as a complete message by
using a single GET that sets the MQGMO_COMPLETE_MSG
flag. As I see it, the only reason for an application to maintain the
offset manually is if there is a requirement to PUT segments to
the queue out of sequence. Since this is such a rare situation,
stay away from maintaining the offset yourself.
In my opinion there is little reason for using application
segmentation. If you are going to implement application
segmentation on both sides just use message groups. Why add
the extra complexity of segmentation to the code? In this case
message groups provide the same level of functionality as
application segmentation. However, the use of system
segmentation is another story. It can easily be used to route
messages through intermediated systems and to reduce the
system requirements for storing and transmitting very large
messages.
Stephen L Marini
Information Infrastructures (USA) © Xephon 2003

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Architecting for performance

This article is aimed at two types of reader:
• Those new to WMQ who want to understand the design of

an WMQ system and who want to choose the best message
attributes for various message processing scenarios.

• Those who understand the essence and practicalities of
performance and want to improve the responsiveness of
their queue managers.

Solving business problems with MQSeries requires input from
various skilled MQ professionals, usually including a performance
architect, a system administrator, and an application programmer.
Successfully achieving a performance target with a suite of
MQSeries application programs depends on the performance
architect substituting lightweight resources (eg memory) for
heavyweight resources (eg CPU, disk, network communications,
and interprocess communication). Heavyweight resources should
only be used where absolutely necessary, otherwise performance
bottlenecks can occur.
All software systems have bottlenecks that ultimately limit their
performance. The performance architect aims to use both
lightweight and heavyweight resources, enabling the system to
process the workload as efficiently as possible and optimize the
utilization of those resources. To achieve this it is paramount that
the performance architect understands the relationships and
dependencies between resources labelled as lightweight and
heavyweight.

DESIGNING FOR PARALLELISM AND SCALABILITY
Running parts of the message processing scenario in parallel
can help increase utilization of CPUs, disks, and logical constructs
inside the software system, thus providing enhanced scalability.
In order for messages to be retrieved from a queue in the same

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

sequence as they were delivered to it (or to maintain integrity
when retrieving messages by priority) it is necessary for the
queue manager to service requests to that queue one at a time.
This is controlled by the queue manager and is referred to as
serialization. The required degree of serialization influences the
way in which additional hardware can provide scalability in the
number of messages per second that can be processed on a
queue.
A particular request on a queue may require exclusive access to
one or more system resources (this will be discussed later). The
time elapsed for exclusive access servicing the request directly
correlates to the performance limit of message throughput for
that queue. A performance limit can be exposed by just a few
message processing applications, according to the type of
resource necessary to service a request. However, this may not
be reached until thousands of messaging applications are
serialized by the queue manager when attempting to access the
same queue simultaneously. The MQSeries performance
architect tries to ensure that messaging applications are designed
to work in parallel with each other and with multiple instances of
applications. This helps to achieve the highest message
throughput that the system is capable of processing.
If an application processes messages synchronously, submitting
a request message to a queue and then waiting for a response
before submitting the next message, the application is serialized
on itself (it is perfectly legitimate to design an application in this
way). With the high degree of serialization in this scenario it is
only possible to improve performance by using faster processors,
faster disks, and/or faster network communications. This is
because there is little parallelism involved in the various stages
of processing the message.
As the message moves from one stage to the next the previous
stage becomes inactive and the message must flow through to
the last stage before a new message can be processed from the
beginning. If each processing stage is utilized constantly by
several new messages entering the system, all stages can

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

operate in parallel with each other and performance can be
improved significantly.
To sustain a high message throughput rate multiple instances of
the same application or multiple threads inside a single application
can be used. Either faster processors or more processors can
provide a performance enhancement and an expensive disk
subsystem (eg cached disks) may be unnecessary. For example,
if processing persistent messages, faster processors allow more
data to be written into the log buffer between successive updates
to the log (this will be discussed later). Each log update happens
more quickly and there can be a huge benefit in the responsiveness
of the existing disk hardware.
Similar scalability characteristics apply to both server and client
message processing applications. Multiple instances and/or
multiple threads can be more beneficial to server applications
since a single server application can be processing messages
from several thousand client applications located on different
workstations.

MESSAGE RECOVERY MODEL
MQSeries was first designed to advocate a ‘once-only assured
delivery’ paradigm. The message application was able to place
complete trust in MQSeries to deliver a mission-critical message
at some point in the future. The message was logged on each
and every MQSeries queue manager in the system as it flowed
through the queue manager network, such that the message
would survive a queue manager restart caused by either a
software or hardware failure. A message with these properties is
referred to as a persistent message.
An alternative type of message, which is less resource-intensive,
is the non-persistent message. Non-persistent messages will be
handled by the queue manager an order of magnitude quicker
since no logging of the message is performed. Non-persistent
messages do not survive a queue manager restart; however, the
messages will arrive at their destination provided the queue
manager continues to operate. Nevertheless, non-persistent

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

messages are entirely suitable for user-driven synchronous
applications where messages represent queries, and delays in
receiving a response do not inhibit other business processes.

PERFORMANCE COMPENSATION FOR NON-RECOVERABILITY
Non-persistent messages flow faster through a queue manager
system because they are not logged as they are moved between
queues or queue managers. The queue manager initially stores
non-persistent messages in volatile memory, overflowing the
messages to the file system (buffers and disk) when there is a
shortage of memory. Even if the message has been overflowed
to the file system it still does not survive a queue manager restart.
If the queue manager is operating normally and a non-persistent
message does not arrive at its expected destination it can always
be located en route on a transmission or dead letter queue, for
example.
Normally, non-persistent messages are also moved faster over
channels. The default non-persistent message speed
(NPMSPEED) over server channels is ‘FAST’ and it allows non-
persistent messages to be transmitted over the channel outside
of message channel agent (MCA) syncpoint control. The MCA
uses syncpoint control to guarantee the recoverability of persistent
messages.
Non-persistent messages transmitted outside of syncpoint control
appear on the destination queue as soon as the receiving MCA
takes them off the channel. Persistent messages are not available
to other application programs until the batch is closed. It should
be noted that non-persistent messages still contribute to the
number configured as the channel batch size attribute
(BATCHSZ).
The speed and number of processors in a queue manager
machine are the most important factors in message throughput.
However, if other resources are utilized to their limits (eg the
system is short of real memory, too much data is being written to
the disks, a maximum data rate is being transmitted over a
network interface, or network bandwidth is saturated by other

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

systems), message throughput can bottleneck and the CPU
resources cannot be used effectively.

PERFORMANCE OVERHEAD FOR RECOVERABILITY

Units of work
Persistent messages processed outside of syncpoint control (ie
they are not included in a unit of work) must wait for the log record
generated by the queue manager to be successfully written to
the disk and the message placed on or retrieved from a queue
before control is returned to the application.
The queue manager serializes requests on the queue while the
log record is written to the log disk and the message is written to
the queue file. This restricts a single queue to one update for
each log write. Several application instances or threads can still
process messages in parallel if they each use different queues.
The queue manager can then combine all generated log records,
for many queues, into a single write to the log disk.
Persistent messages processed inside of syncpoint control (ie
they are included in a unit of work with other messages) also
generate log records. However, the applications using syncpoint
control are permitted to continue processing messages until they
issue an MQCMIT call. Only then is the application blocked until
the log records from the messages in the unit of work have been
written to the log disk. Again, the queue manager can combine
all generated log records for all the messages into a single write.
The queue manager serializes requests on a single queue in the
same way for outside syncpoint control as inside syncpoint
control. Inside of syncpoint control the serialization is of a much
shorter duration. For each write to the log many updates can be
made to a single queue (by a single application) inside of
syncpoint control, whereas only one update to a queue is
possible (by any application) outside of syncpoint control.
The WMQ performance architect should ensure that persistent
messages are processed inside of syncpoint control where

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

possible, to optimize data transfer to the log disk, thereby
maximizing the utilization of this heavyweight resource.

Logging and checkpointing
The log records generated by processing persistent messages
are first written into the log buffer. Inside of syncpoint control the
MQCMIT call blocks the application from processing more
messages (and thus generating more log records) but does not
block other applications from processing messages. The new
log records are appended to the log buffer, which allows the
queue manager to continue collecting data to be written to the log
disk while it is writing the data previously collected. This buffering
allows the log disk to be used efficiently since the buffer is
accumulating data ready to be written to the disk each time it
completes a revolution.
The default number of log buffer pages (LogBufferPages) is only
practical for a queue manager processing very few persistent
messages each second when non-cached disks are holding the
log files. The size of the log buffer should normally be configured
to its maximum size of 2MB (512 pages).
Periodically, the queue manager rolls forward the point of recovery
(referred to as checkpointing) in case the queue manager should
need to be restarted. In order to restart as efficiently as possible,
the queue manager synchronizes the queue files with the log.
When the point of recovery is rolled forward log extents required
for recovery (which were marked active for this purpose) are
marked as inactive.
For circular logging the inactive log extents can then be reused.
For linear logging the inactive logs can be archived. By default,
checkpointing occurs every 10,000 log operations. Long running
units of work that span checkpoints may cause several log
extents to remain active. In these circumstances it may be
necessary to configure more than the default number of three
primary logs when the queue manager is created .

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Speed and number of processors
Each time a write to the log disk completes, all the applications
that were waiting for the log records in that I/O are unblocked.
The queue manager then continues with writing the next log write
for all the new log records accumulated during the previous log
I/O. The number of log records that can be written into the log
buffer each second is related to:
• The speed and number of processors.
• The number of application threads that are able to generate

log records in parallel.
• The number of messages processed by the application

instances or threads inside, as opposed to outside, of
syncpoint control.

The number of log buffer pages written to the log disk each
second is related to the speed and number of processors, the
latency of the log disk, and the I/O subsystem bandwidth. A
bottleneck in persistent messaging can be indicative of insufficient
or ineffective parallelism in the application design and may not
be attributable to either the queue manager or the log disk. Using
a performance monitoring tool and detecting a high disk utilization
(% busy) does not imply that disk throughput has reached a limit
or that it is not possible further to increase persistent message
throughput.
It is physically possible to perform only a certain number of I/Os
to a disk each second. If each time the disk rotates a small
amount of data is transferred there is maximum utilization but
minimal transfer. This will show a statistic of 100% busy but the
number of blocks written to the disk is small. A typical 10,000 rpm
SCSI disk can sustain 8MB data transfer per second and rotates
at a frequency of 166 times a second.
Persistent message throughput can be optimized by ensuring
that there are always log records waiting in the buffer each time
it is written to disk. To achieve this there must be CPU cycles
available for writing log records to the log buffer and for each disk

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

revolution there needs to be 50K of data in the log buffer. This
represents a target that is rarely achieved in practice.

PHYSICAL LOG DEVICE

Speed and latency of the log disk
During the rotation time period of the log disk the number of log
records written into the buffer primarily depends on the degree
of parallelism achieved by the application architecture. Using a
single application for processing messages outside of syncpoint,
special disk hardware (eg RAID and/or software striped SCSI
disks) does not help improve disk throughput. This is because
the total size of the log write is insignificant compared with the
minimum size of a stripe. However, cached disks (eg SSA with
fast-write cache) can reduce the latency to between one and two
milliseconds.

Unsuitability of IDE disks
IDE disks typically offer a non battery-backed cache, which gives
no provision for power failure. In these situations the reliability of
the message is severely restricted. The I/O latency is comparable
to that of SCSI disks but the application only has the resilience
offered by non-persistent messages, ie they are still delivered if
there is no system failure.

Suitability of solid-state disks
Solid-state disks can be used but nominally provide several
gigabytes of storage. In normal operation, with circular logs, the
log is a write-only device so the benefit of being able to read
information fast is not useful. They are more expensive than
write-cacheing disks in financial terms though they do give a
similar response time. They are useful for holding queue files if
messages are frequently flushed from the file system buffers
(when the non-persistent queue buffer overflows for example)
and must be retrieved from disk some time later. However, the
critical disk resource is normally the log, not the queue files.

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Linear logs have three contenders for the log file where the log
formatter and log archiver compete with the normal log data-
stream. Solid-state disks can allow the archiving of the log
extents to other media with minimum interference to the underlying
messaging.

QUEUE MANAGER QUEUES

Queue depth and utilization
Queues are not suitable as databases and are designed for short
term storage. A queue manager system can process the highest
rate of non-persistent messages when there are only a few
messages on the queue and they can all be contained inside the
non-persistent queue buffer (default size of 64KB). Additional
messages are overflowed to the file system buffers and onto the
physical queue files.
Persistent messages are contained in the persistent queue
buffer (default size of 128KB) and are always written to the
physical log. Associating an application thread with its own
private queue helps reduce contention on the queue at the
expense of real memory. A limited degree of sharing queues
processing a low throughput rate (eg ten persistent messages
per second per queue) outside of syncpoint control, or a higher
rate (eg 500 persistent messages per second per queue) inside
of syncpoint control, will give similar performance behaviour.

Dynamic queues
Dynamic queues used as reply queues are often used for
response messages only, and can have a very short lifetime. The
first time a dynamic queue is opened the queue structure has to
be constructed and typically involves many shared memory and
file system operations. Closing a dynamic queue normally turns
the object to a ‘ghost queue’. When the queue manager
subsequently receives a request to create a dynamic queue it
may be able to recreate one very quickly. If there is a suitable
structure in the pool of ghost queues the queue manager can

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

Using the MQRFH2 message header

WebSphere Business Integration for Financial Networks (WBI
for FN) is a financial network consolidation platform. It serves as
a single point through which financial applications gain access to
various networks and message processing services. WBI for FN
is based on the WebSphere MQ Integrator or Integrator Broker
(WMQI).

resurrect one and return a handle immediately. This allows
dynamic queues to be created at a much higher frequency than
prior to MQSeries V5.2.

Serialized I/O on queue files
It has been stated previously that persistent messages outside
of syncpoint control block activity on the queue for the duration
of the necessary I/O operations. This predicates that many
application instances or threads processing messages outside
of syncpoint control should be assigned their own dedicated
queue to allow arbitrary permutations of queue updates in the
same log I/O.

SUMMARY
We have shown how a queue manager system is sensitive to
various optimizations that have a direct impact on throughput. If
there are sufficient application instances or threads using the
processing power of the system between each forced log write,
contention can be reduced on the heavyweight log resource.
This is achieved either by processing messages inside of
syncpoint control and/or arranging for the application design to
use a large enough set of queues. Otherwise, the system may
not be able to exploit the CPU resources available. Furthermore,
CPU utilization may be at a maximum but the number of cycles
required to process each message may not be at a minimum.
Alexander Russell and Peter Toghill
IBM Hursley (UK) © IBM 2003

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

WMQI, the technological basis for the WebSphere Business
Integration solutions, works with WMQ messaging, extending its
basic connectivity and transport capabilities to provide a message
broker solution driven by message flows. WBI for FN provides
message processing services implemented using message
flows and an associated message model. All programs and
services external to WBI for FN communicate with WBI for FN
services by means of WBI for FN messages. In addition to the
mandatory control information in the message descriptor (MQMD)
these messages use the Version 2 rules and formatting header
(MQRFH2) to convey information that is not part of the message
body, for example, attributes of the message, service requests
and responses, and properties that represent configuration
parameters.
 This article provides a basic introduction to the MQRFH2
message header and its use, based on the experience gained
through the development of WBI for FN.

PURPOSE
The MQRFH2 evolved from the rules and formatting header
(MQRFH), which can be used to send string data in the form of
name/value pairs. Unlike its predecessor, the MQRFH2 allows
Unicode strings to be transported without translation and can
carry numeric data types. It uses a syntax similar to that of the
Extensible Markup Language (XML). A single message can
potentially contain more than one MQRFH2 structure, though
this is generally discouraged.
Currently, the MQRFH2 is exploited by the WMQI Broker and by
the WMQ implementation of the Java Messaging Service (JMS)
API. In conjunction with WMQI the MQRFH2 serves the following
purposes:
• To define the message set to which the message format for

the message body belongs.
• To define publish/subscribe flows.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

• Through custom extensions, to allow client applications to
define fields that can be accessed and processed by
customized message processing nodes (such as those
used in the WBI for FN services).

STRUCTURE
The MQRFH2 is composed of a fixed and a variable portion, each
containing multiple fields. In the C and C++ programming
languages its mandatory fixed component can be expressed
through the following data structure:
 struct tagMQRFH2 { MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Total length of MQRFH2 including all
 NameValueLength and NameValueData fields */
 MQLONG Encoding; /* Numeric encoding of data that follows last
 NameValueData field */
 MQLONG CodedCharSetId; /* Character set identifier of data that
 follows last NameValueData field */
 MQCHAR8 Format; /* Format name of data that follows last
 NameValueData field */
 MQLONG Flags; /* Flags */
 MQLONG NameValueCCSID; /* Character set identifier of NameValueData */
};

(This code fragment is taken from the WebSphere MQ Application
Programming Reference manual, which should be consulted for
further details.)
As with other MQ message headers, these fields are interpreted
in the character set and encoding given by the character set
identifier and numeric encoding specified in the preceding
header structure or message descriptor.

EXTENSIONS
The fixed part of MQRFH2 is followed by any number of name/
value pairs, meaning ordered pairs of the following fields in C/
C++ syntax:
 MQLONG NameValueLength; /* Length of NameValueData */
 MQCHARn NameValueData; /* Name/value data */

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Here, n is the length in bytes of the data in the NameValueData
field, as specified in NameValueLength. The MQCHARn data
type is only defined for the following values of n: 4, 8, 12, 20, 28,
32, 48, 64, 128, 256. If a different length is required, use a string
or array construct of type MQCHAR.
The length of bytes of the NameValueData string must always be
a multiple of four. If the size of the data that must be accommodated
is not a multiple, that data must be padded with blanks to fill the
string. You cannot use a null character to end the string prematurely
as is common practice in C.
Unlike the fixed part of the structure and other MQ message
headers, NameValueData is generally not interpreted in the
character set specified in the preceding structure. Rather, its
character set is given by the NameValueCCSID field in the fixed
part of the MQRFH2, which is currently limited to the values
1200, 1208, 13488, and 17584.
Except when using the UTF-8 character set (CCSID 1208),
which is independent of the numeric encoding, NameValueData,
like all MQRFH2 fields, is interpreted in the encoding specified
in the preceding structure. Although its encoding is observed,
NameValueData is not converted when the message is retrieved
from its local queue (for example, using the MQGET function
call) even if MQGMO_CONVERT is specified as a message-
data option.

FOLDER SYNTAX VERSUS XML
NameValueData is the most important and powerful MQRFH2
field because it contains structured data in a simple markup
language comparable to XML. Each NameValueData field
contains a folder, for example:
 <ComIbmDni> ... </ComIbmDni>

The folder’s boundaries, like those of an XML element, must be
delimited by XML start and end tags (in the example,
<ComIbmDni> and </ComIbmDni>). The XML empty-element
tag cannot be used, although empty folders are allowed. The

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

names of the start and end tags must match and denote the
name of the folder (in the example, ComIbmDni), similar to an
XML element type. In contrast, with an XML document the folder
cannot begin with an XML declaration; because there can also
be no document type declaration (and thus no document type)
a folder can never be a valid XML document, although it might be
well-formed.
The name of the folder used in the example (ComIbmDni) is
constructed from the top-level domain name ‘Com’, followed by
the company name ‘Ibm’ and the internal product identifier ‘Dni’.
Any characters following the end tag in the NameValueData
string must be blank. Therefore, each string cannot contain more
than one folder. Additional folders can be specified in separate
NameValueData fields, each preceded by its corresponding
NameValueLength field.
Each folder, between its start and end tags, can contain any
number of groups, properties, or both, in any order.
A group, like a folder, is delimited by XML start and end tags, for
example:
 <Dnf> ... </Dnf>

Again, the name of a group is determined by the name of its start
and end tags (in the example, Dnf). Like folders, groups can
contain properties or additional nested groups. Therefore, a
group can be regarded and used as a ‘sub-folder’ for properties
that are related by type or function. (In the example, the folder
contains properties used to control the WBI for FN Extension for
SWIFTNet, which has the component code Dnf.) There is no limit
to the nesting level of groups and any number of groups can
share the same name within an MQRFH2.
A property, like a folder or group, is delimited by start and end
tags that define its name, but can contain an optional value
(instead of groups or other properties), for example, where
‘Failed’ is the value:
 <Code>Failed</Code>

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

A property and a group within a folder cannot share the same
name independently of their relation. This restriction does not
apply to properties and groups within different folders, each of
which may be regarded as occupying a different name space.
A property value can consist of any characters in the character
set specified in NameValueCCSID. As in most XML character
data, the ampersand character (‘&’) and the left-angle bracket
(‘<’) must be escaped using the strings ‘&’ and ‘<’
respectively. Since XML CDATA sections are not supported in
folders there is no need to escape the right angle bracket (‘>’),
single quote (‘'’), or double quote (‘"’). However, the escape
sequences ‘>’, ‘'’, and ‘"’ are supported in values.
Blanks within values are considered significant and should not
be removed by WMQ or its applications when processing the
MQRFH2 structure. Other blanks within a folder are insignificant.
In addition to its value a property can contain an optional data
type; for example, where boolean is the data type:
 <IsStatus dt='boolean'>Ø</IsStatus>

The data type can be used to restrict the type of values that a
property can take or to signal to the application programmer or
user that a value is to be interpreted as being of a certain type.
In the example, explicitly specifying the boolean data type
elucidates the meaning of the value 0 to the reader although it will
generally not affect the behaviour of an application that uses this
property. Refer to the WebSphere MQ Application Programming
Reference or WebSphere MQ Integrator Programming Guide for
a complete list of supported data types and their use.
As in XML, a name (of a folder, group, or property) is a token
beginning with a letter or one of a few allowed punctuation
characters and continuing with letters, digits, hyphens,
underscores, or full stops. Note that the colon (‘:’), which in XML
is used for the namespace construct, is not allowed in a name.
As in XML , names are case-sensitive. Again, please refer to the
above publications for a detailed list of Unicode characters that
can be used in names.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

In spite of the similarity between folders and XML elements there
are several XML constructs that cannot be used within folders
and cannot easily be translated to the syntax allowed in folders.
These unsupported constructs include:
• Comments.
• Processing instructions.
• CDATA sections.
• Declarations.
• White space handling.
• Attribute value normalization.
• Language identification.
Compared with general XML it is another fundamental restriction
of the folder syntax that actual content can only be conveyed
using property values. Intermixed markup and content as used
in the XML element <tag1>value<tag2></tag2></tag1> does
not conform to the folder syntax, because tag1 cannot be
interpreted as a folder, group, or property.

USING THE MQRFH2 WITH WMQI
After receiving a message containing an MQRFH2, WMQI
invokes its MQRFH2 parser to interpret the header. In addition to
the fixed part of the MQRFH2 this parser lets you navigate and
manipulate the folder structures contained in NameValueData
fields. According to the conventions defined by WMQI the
MQRFH2 can also carry a description of the message contents
and publish/subscribe commands.
To refer to application data contained in a folder the logical
message model provided by WMQI can be used. According to
this model the MQRFH2 folders, groups, and properties are
syntax elements of the logical message. (More precisely, folders
and groups are name elements, whereas properties are value
elements.) Because the relationship between these syntax

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

elements is hierarchical the resulting structure is called the
message tree.
The WMQI message flow nodes provide an interface called
Extended Structured Query Language (ESQL) to query and
update the message tree. For example, a reference to the
ClientSend property in the folder shown in Listing one would be
R o o t . M Q R F H 2 . C o m I b m D n i . D n f .
SAG.SAGHeader.EnvMode.ClientSend (where Root is the root
of the message tree).

Listing one: a sample ComIbmDni folder as used with WBI for FN
 <ComIbmDni>
 <Version>1.Ø</Version>
 <OU>DNFSYSOU</OU>
 <Dnf>
 <Version>1.Ø</Version>
 <SAG>
 <SAGInstance>
 <QMgr></QMgr>
 <RequestQueue></RequestQueue>
 </SAGInstance>
 <SAGHeader>
 <EnvMode>
 <ClientSend>NoEnv</ClientSend>
 <ClientReceive>NoEnv</ClientReceive>
 </EnvMode>
 </SAGHeader>
 </SAG>
 </Dnf>
 </ComIbmDni>

A complete discussion of WMQI and ESQL is outside the scope
of this article. For details on using the MQRFH2 with WMQI
please refer to WebSphere MQ Integrator Working with Messages
and WebSphere MQ Integrator ESQL Reference.
Elmar Meyer zu Bexten
IBM Germany © IBM 2003

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

Delete channel start process in WMQ 5.3 for z/OS

With versions up to WebSphere MQ V5.2 a process definition
with APPLIDID('CSQX START') and USERDATA
('your.channel.name') is required for channel triggering.
By specifying this process and
INITQ(SYSTEM.CHANNEL.INITQ), together with
TRIGGER(YES), TRIGTYPE(FIRST) in the transmission queue
definition, the channel is started by the MQSeries channel
initiator (CHIN) when messages appear on the transmission
queue. With WMQ V5.3 the process definition is no longer
needed because the channel name can be specified directly in
the TRIGDATA field of the transmission queue. For example:
 DEFINE QLOCAL(your.xmit.queue) USAGE(XMITQ) TRIGTYPE(FIRST) +
 TRIGGER(YES) INITQ(SYSTEM.CHANNEL.INITQ) TRIGDATA(your.channel.name)

The old way using a process is still supported so there is no
essential need to change the definitions, except to get rid of
some process definitions. Depending on the number of
queuemanagers and channels there may be a lot of objects to
change, maybe too many to do it manually. So I wrote a REXX
program named CHLPROC to create the required commands
for purging processes and changing transmission queues.
CHLPROC processes the output produced by CSQUTIL display
commands and creates a ‘delete process’ and an ‘alter qlocal’
command when process and xmitq meet the following conditions:
• The process contains APPLICID(CSQX START) and a

nonempty USERDATA.
• The qlocal is of USAGE(XMITQ), INITQ(SYSTEM.

CHANNEL.INITQ), nonempty and existing PROCESS() that
matches the above process conditions, empty TRIGDATA.

If QSGDISP(COPY) is found in the process or the xmitq definition
the proper command will be created with QSGDISP(GROUP). In
the case of incomplete or missing definitions CHLPROC will
issue error messages. I recommend you do the following:

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Process the output of queue managers singly.
• Back up your object definitions using the CSQUTIL MAKEDEF

function before applying the commands created by
CHLPROC.

• Do not apply the commands if there is the chance of fallback
from V5.3 to the previously used version.

• Check the COMMANDS first before processing them.
For more information about channel triggering check the
WebSphere MQ Intercommunication manual, Chapter 24:
Preparing WebSphere MQ for z/OS.

CHLPROC REXX
/* REXX */
/* CREATE COMMANDS TO GET RID OF CHANNEL START PROCESSES */
/* COLLECT PROCESS INFORMATION FIRST */
/* */
SAY ''
PPROCESS = 1
PQSGDISP = 2
PAPPLICID = 3
PUSERDATA = 4
PARMP.Ø = 4
PARMP.PPROCESS = 'PROCESS('
PARMP.PQSGDISP = 'QSGDISP('
PARMP.PAPPLICID = 'APPLICID('
PARMP.PUSERDATA = 'USERDATA('
/* */
SAY 'READING PROCESS LIST'
ADDRESS MVS 'EXECIO * DISKR ' PROCESSL
IF RC <> Ø THEN DO
 SAY 'ERROR DURING READ - RC=' RC
 EXIT
END
SAY 'RECORDS READ: ' QUEUED()
/* */
INERR = Ø
DO QUEUED()
 PULL CARD
 W1 = STRIP(CARD)
 /* GET OBJECT ATTRIBUTES */
 DO I = 1 TO PARMP.Ø
 IF INDEX(W1,PARMP.I) > Ø THEN DO

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

 P1 = INDEX(W1,PARMP.I) + LENGTH(PARMP.I)
 P2 = LENGTH(W1)
 VALUE.I = STRIP(SUBSTR(W1,P1,P2-P1))
 /* LAST ATTRIBUTE FOUND? */
 IF I = PUSERDATA THEN DO
 PNAME = VALUE.PPROCESS
 /* IS THIS A CHANNEL START PROCESS? */
 IF VALUE.PAPPLICID = 'CSQX START' THEN DO
 /* IS A CHANNELNAME SPECIFIED? */
 IF VALUE.PUSERDATA <> '' THEN DO
 /* REMEMBER VALUES */
 QSGDISP.PNAME = VALUE.PQSGDISP
 APPLICID.PNAME = VALUE.PAPPLICID
 CHANNEL.PNAME = VALUE.PUSERDATA
 END
 ELSE DO
 /* CSQX START BUT NO CHANNELNAME IN PROCESS DEFINITION */
 SAY 'NO CHANNELNAME SPECIFIED IN PROCESS 'PNAME
 INERR = INERR + 1
 END
 END
 END
 END
 END
END
/* */
/* NOW GET THE XMIT QUEUES */
/* */
QQUEUE = 1
QQSGDISP = 2
QUSAGE = 3
QPROCESS = 4
QINITQ = 5
QTRIGDATA = 6
PARMQ.Ø = 6
PARMQ.QQUEUE = 'QUEUE('
PARMQ.QQSGDISP = 'QSGDISP('
PARMQ.QUSAGE = 'USAGE('
PARMQ.QPROCESS = 'PROCESS('
PARMQ.QINITQ = 'INITQ('
PARMQ.QTRIGDATA = 'TRIGDATA('
SAY 'READING QUEUE LIST'
ADDRESS MVS 'EXECIO * DISKR ' QUEUEL
IF RC <> Ø THEN DO
 SAY 'ERROR DURING READ - RC=' RC
 EXIT
END
SAY 'RECORDS READ: ' QUEUED()
CC = Ø
PURGE = Ø

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

ALTER = Ø
DO QUEUED()
 PULL CARD
 W1 = STRIP(CARD)
 /* GET OBJECT ATTRIBUTES */
 DO I = 1 TO PARMQ.Ø
 IF INDEX(W1,PARMQ.I) > Ø THEN DO
 P1 = INDEX(W1,PARMQ.I) + LENGTH(PARMQ.I)
 P2 = LENGTH(W1)
 VALUE.I = STRIP(SUBSTR(W1,P1,P2-P1))
 /* LAST ATTRIBUTE FOUND? */
 IF I = QTRIGDATA THEN DO
 /* IS THIS QLOCAL A XMITQ? */
 IF VALUE.QUSAGE = 'XMITQ' THEN DO
 QNAME = VALUE.QQUEUE
 /* DO NOT PROCESS THESE QUEUES (WILL RESULT IN ERROR MSGS) */
 IF QNAME = 'SYSTEM.CLUSTER.TRANSMIT.QUEUE' ! ,
 QNAME = 'SYSTEM.QSG.TRANSMIT.QUEUE' THEN DO
 ITERATE
 END
 /* IS THE INITQ SYSTEM.CHANNEL.INITQ FOR THIS XMITQ? */
 IF VALUE.QINITQ = 'SYSTEM.CHANNEL.INITQ' THEN DO
 /* IS THERE A PROCESS NAME? */
 IF VALUE.QPROCESS <> '' THEN DO
 /* IS THE TRIGGER DATA EMPTY? */
 IF VALUE.QTRIGDATA = '' THEN DO
 /* CHECK FOR RELATED PROCESS */
 PNAME = VALUE.QPROCESS
 IF APPLICID.PNAME = 'CSQX START' THEN DO
 /* BUILD COMMANDS */
 ZW3 = ''
 IF QSGDISP.PNAME = 'COPY' THEN DO
 ZW3 = ' QSGDISP(GROUP) '
 END
 CC = CC + 1
 CMD.CC = 'DELETE PROCESS('!!PNAME!!')'!!ZW3
 PURGE = PURGE + 1
 CC = CC + 1
 CMD.CC = 'ALTER QLOCAL('!!QNAME!!') FORCE + '
 CC = CC + 1
 CMD.CC = ' PROCESS('' '') + '
 ZW3 = ''
 IF VALUE.QQSGDISP = 'COPY' THEN DO
 ZW3 = ' QSGDISP(GROUP) '
 END
 ELSE DO
 IF VALUE.QQSGDISP = 'SHARED' THEN DO
 ZW3 = ' QSGDISP(SHARED) '
 END
 END

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

 CC = CC + 1
 CMD.CC = ' TRIGDATA('''!!CHANNEL.PNAME!!''')'!!ZW3
 CC = CC + 1
 CMD.CC = '*'
 ALTER = ALTER + 1
 END
 ELSE DO
 SAY 'NO VALID PROCESS FOUND FOR XMITQ '!!QNAME
 INERR = INERR + 1
 END
 END
 ELSE DO
 SAY 'TRIGDATA NOT EMPTY FOR XMITQ '!!QNAME
 INERR = INERR + 1
 END
 END
 ELSE DO
 SAY 'NO PROCESS SPECIFIED IN XMITQ '!!QNAME
 INERR = INERR + 1
 END
 END
 ELSE DO
 SAY 'SYSTEM.CHANNEL.INITQ NOT SPECIFIED IN XMITQ '!!QNAME
 INERR = INERR + 1
 END
 END
 END
 END
 END
END
/* */
SAY 'WRITING COMMAND FILE'
CMD.Ø = CC
'EXECIO * DISKW COMMANDS (STEM CMD. FINIS'
IF RC <> Ø THEN DO
 SAY ' ERROR DURING WRITE - RC = 'RC
 EXIT
END
/* */
SAY ''
SAY 'PROCESS PURGE COMMANDS CREATED: 'PURGE
SAY 'XMITQ ALTER COMMANDS CREATED: 'ALTER
SAY 'XMITQ/PROCESS IN ERROR 'INERR
SAY ''
EXIT

CHLPROC EXECUTION JCL
// your jobcard goes here
//PROCESS EXEC PGM=CSQUTIL,PARM='QMGR'

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

//SYSPRINT DD DSN=&&TEMPP,DISP=(NEW,PASS),SPACE=(CYL,(8,8))
//SYSIN DD *
COMMAND DDNAME(CMD) TGTQMGR(QMGR)
//CMD DD *
DISPLAY PROCESS(*) APPLICID USERDATA
//QUEUES EXEC PGM=CSQUTIL,PARM='QMGR'
//SYSPRINT DD DSN=&&TEMPQ,DISP=(NEW,PASS),SPACE=(CYL,(8,8))
//SYSIN DD *
COMMAND DDNAME(CMD) TGTQMGR(QMGR)
//CMD DD *
DISPLAY QLOCAL(*) USAGE PROCESS TRIGDATA INITQ
//CHLPROC EXEC PGM=IKJEFTØ1,DYNAMNBR=3Ø,REGION=ØM
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//PROCESSL DD DSN=&&TEMPP,DISP=(OLD,DELETE)
//QUEUEL DD DSN=&&TEMPQ,DISP=(OLD,DELETE)
//COMMANDS DD SYSOUT=*
//SYSTSIN DD *
 EXEC 'your.library(CHLPROC)'
/*

SAMPLE CHLPROC OUTPUT
READING PROCESS LIST
RECORDS READ: 26Ø
NO CHANNELNAME SPECIFIED IN PROCESS QMA.CHANNEL.PROCESS
READING QUEUE LIST
RECORDS READ: 3Ø55
SYSTEM.CHANNEL.INITQ NOT SPECIFIED IN XMITQ QMB
NO PROCESS SPECIFIED IN XMITQ QMC
NO VALID PROCESS FOUND FOR XMITQ QMD
WRITING COMMAND FILE
PROCESS PURGE COMMANDS CREATED: 3
XMITQ ALTER COMMANDS CREATED: 3
XMITQ/PROCESS IN ERROR 4
Sample COMMANDS output for local, group and shared definitions:
DELETE PROCESS(QM2.CHANNEL.PROCESS)
ALTER QLOCAL(QM2) FORCE +
 PROCESS(' ') +
 TRIGDATA('QM1.TO.QM2')
DELETE PROCESS(QM3.CHANNEL.PROCESS) QSGDISP(GROUP)
ALTER QLOCAL(QM3) FORCE +
 PROCESS(' ') +
 TRIGDATA('GROUP.TO.QM3') QSGDISP(GROUP)
DELETE PROCESS(QM4) QSGDISP(GROUP)
ALTER QLOCAL(QM4) FORCE +
 PROCESS(' ') +
 TRIGDATA('QSG.TO.QM4') QSGDISP(SHARED)

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 48

CSQUTIL EXECUTION WITH COMMANDS
// your jobcard goes here
//CSQ EXEC PGM=CSQUTIL,PARM='QMGR'
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(CMD) TGTQMGR(QMGR)
//CMD DD DISP=SHR,DSN=commands.file.created.by.chlproc
/*

Stefan Raabe (stefan.raabe@t-online.de)
Consultant (Germany) © Xephon 2003

MQ news

iWay, the Information Builders unit, has
announced expanded support for IBM’s
WebSphere product line, including
Application Server and the former MQSeries
products, WebSphere MQ and WebSphere
MQ Integrator (WMQI), with its Universal
Adapter Framework.

JCA 1.0-based adapters now support all
leading J2EE app servers (from BEA, IBM,
Fujitsu, Oracle, and Sun) and the company is
introducing JCA 1.5 support with the release
of iWay 5.5.

For more information contact:
iWay Software, Two Penn Plaza, New York,
NY 10121-2898, USA.
Tel: +1 212 330-1700
Fax: +1 212 564-1726
Web: http://www.iwaysoftware.com

* * *

IBM has launched a portfolio of offerings and
programs designed and priced specifically for
medium-sized business customers.

The portfolio, IBM says, will consist of new
hardware, software, services, solutions and
financing, all designed to meet specific
criteria for medium-sized businesses with
respect to function, ease of use and
management, and price – a set of brand
attributes delivered under the name Express.

WebSphere Commerce Express is a new
software offering which, claims the
company, makes it faster, easier, and less
expensive for medium-sized businesses to
create and manage an e-commerce site,
allowing businesses to start building an online
store in as little as one hour.

WebSphere MQ – Express is designed to
make it easy to connect a variety of different
applications together so businesses can
efficiently share critical data across their IT
infrastructure. A medium-size business can
install WebSphere MQ – Express in just five
clicks and can be up and running in as little as
10 minutes, says IBM.

For more information contact your local
IBM representative.

* * *

x
xephon

	Real time JMS server implementation on WMQ
	WMQ groups and segments
	Architecting for performance
	Using the MQRFH2 message header
	Delete channel start process in WMQ 5.3 for z/OS
	MQ news

