
 

© Xephon plc 2003

September 2003

51

In this issue

MQ

3 Auto-starting WMQ on Unix
11 Design patterns for message-

oriented middleware
23 Migrating to the SSL support in

WMQ V5.3
30 Error handling in WMQ Integrator

message flows
47 MQ news

Current Support
 
Xephon magazine issues are now supported at www.cbttape.org.



Please go to www.cbttape.org if you have any support questions.



    2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies.  A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence).  To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.



    3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Auto-starting WMQ on Unix

INTRODUCTION
On Windows systems WebSphere MQ (WMQ) includes
components that automatically start the queue manager and
associated components during system reboot. On z/OS the
operating system can also automatically start the queue manager,
which in turn can be configured to automatically start the listener
and command server; however, there is no such capability
supplied with WMQ for Unix systems.
This article explains how queue manager processes can be
started when a Unix machine is booted, and stopped cleanly as
the machine shuts down. Information here can be applied to any
of the currently supported Unix platforms, including AIX, HP-UX,
Solaris, and Linux.

STARTING A UNIX MACHINE
A Unix system can operate in a number of different modes. It
might, for example, be set to start in a single-user maintenance
mode, or perhaps with a graphical log-in shell on the console, or
it might be a fully-functioning multi-user environment. The decision
about which mode to make the active one is called the ‘run-level’.
The system is configured to execute certain scripts depending
on the run-level. In maintenance mode most of the system
startup will not be needed. Configuring the network, for example,
should not be done for that particular run-level and so the network
scripts are not made available then.
The work to get queue managers started is primarily all about
writing the correct scripts and putting them in the right place so
that the system will run them during some but not all run-levels.
The actual numbers used will vary slightly by operating system.
On my AIX box the normal run-level is 2, on Solaris it is 3, and



    4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

on my Linux machine it is 6. The approach we use here allows
us easily to work with a selection of run-levels. The queue
managers are probably only needed for one or two of the modes
but we can change the list easily.

The /etc/rc.N directories
Most Unix versions today use the subdirectories named rc.<N>
for startup scripts, which are in the root filesystem. ‘N’ is the run-
level, a number between 0 and 9. So on Linux I can see /etc/rc.d/
rc.1, /etc/rc.d/rc.2, /etc/rc.d/rc.3, and so on. Linux also has an /
etc/rc.d/init.d directory, which is where the important code is
actually stored. I am going to assume the existence of the init.d
subdirectory in the later scripts so if your operating system does
not include one you can create it or modify the scripts to be called
from somewhere else.
HP-UX is slightly different in that it uses a root directory of /sbin
instead of /etc/rc.d but otherwise it is the same as Linux. Solaris
has its startup scripts in /etc/rc.<N> directly, but this too is very
similar to Linux.
If you look in /etc/rc.d/rc.2, you will see files such as:
   K1ØØdtlogin.rc      K2ØØtps.rc          K799ssh
   K9ØØnfs.server      S4ØØnfs.core        S54Øsendmail
   S12Øswconfig        S42Ønis.client      S73Øcron
   S2ØØclean_ex        S43Ønfs.client      S74Øsupprtinfo

As part of the system boot the initialization process goes into the
appropriate rc.N directory selected from the current run-level. It
lists all the files in that directory that begin with the letter ‘S’, sorts
them, and then executes the scripts in turn. The number in the
filename is the way to determine dependencies of one component
on another; starting up a Web server, for example, should only
be done after the TCP/IP network configuration has been carried
out.
Files that begin with ‘S’ are executed during startup, while files
beginning with ‘K’ are for killing processes during shutdown
(which is often regarded as run-level 0) or restarting at a different
run-level.



    5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

It may seem that you need to write a lot of similar scripts to startup
and shut down a component and then put copies in a directory
for each of the run-levels you want to work with, but that is not
what happens. Often you can write a single script, which handles
both startup and shutdown of your component, and put it in the
/etc/rc.d tree with a meaningful name. Scripts in this directory are
not directly executed. However, you then link the scripts into each
of the rc.N directories with both an ‘S’ and a ‘K’ name. The only
parameter passed to these scripts is a single word – either ‘start’
or ‘stop’ – so that scripts that implement both the ‘K’ and ‘S’
versions in a single file can tell which action is required.
People who have grown up with the AIX version of Unix might be
wondering about the /etc/inittab file. This is a different way of
achieving the same startup processing, with scripts executed for
a selection of run-levels. It used to be the only way on AIX for
running user code during startup. While we could use that, AIX
has also added the rc.N technique and for commonality we will
use that. If you look in /etc/inittab you will see it invoke an /etc/
rc.d/rc.N script for each run-level. AIX does not have many
scripts in these subdirectories as the system-supplied startup
code is called from its /etc/inittab processing, but the directories
are available for user-written scripts.
When the system is being shut down most Unix systems execute
‘K’ scripts in a new run-level – normally 0. AIX is a little different
in that run-level 0 is considered to be reserved. The only user-
modifiable script is /etc/rc.shutdown.

A SIMPLE BOOTSTRAP SCRIPT
It is best if all WMQ control commands are issued by the mqm
user because root is not treated as a special user-ID by WMQ
and it might not be in the mqm group. The startup and shutdown
scripts are run with root authority so we need to switch user-IDs
before running the WMQ commands.
I mentioned earlier that many subsystems will put both the start
and stop operations in the same script. We will do that for the
module that is directly executed by the operating system but will



    6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

separate the ‘real’ code that is run after switching the user-IDs.
Putting the working code in its own files will also make it easier
to reuse in other situations, such as manually starting queue
managers outside the automatic control given here.
This short script should be put in /etc/rc.d/init.d/WMQautostart.sh.
   #!/bin/ksh
   case "$1" in
   start)
      su mqm -c /etc/rc.d/init.d/startallqmgrs
      rc=$?
      ;;
   stop)
      su mqm -c /etc/rc.d/init.d/stopallqmgrs
      rc=$?
      ;;
   *)
     echo "Usage: $Ø (start | stop)"
     rc=1
     ;;
   esac
   exit $rc

Once it has been created make sure it is executable (use chmod
+x) then link it into the directories for execution during startup and
shutdown.
  ln -s /etc/rc.d/init.d/WMQautostart.sh /etc/rc.d/rc.2/S96WMQautostart
  ln -s /etc/rc.d/init.d/WMQautostart.sh /etc/rc.d/rc.2/K96WMQautostart
  ln -s /etc/rc.d/init.d/WMQautostart.sh /etc/rc.d/rc.Ø/K96WMQautostart

Repeat the above lines for each of the run-levels on your
operating system where you want the queue managers to be
started and stopped. I’ve picked 96 as a sequence number as it
is high enough that dependencies such as networking and
filesystems will have already been started. You can use any other
number provided those earlier components are available. I’ve
explicitly put a link into rc.0 for the shutdown script because most
Unixes process that directory.
On AIX you should add the following single line to /etc/rc.shutdown.
If that file does not exist, create it and ensure it is an executable
script.
   su mqm -c /etc/rc.d/init.d/stopallqmgrs



    7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

THE CONFIGURATION FILE
When designing an automatic startup script you need to determine
which items need to be configurable and which can be assumed
to take defaults. For the purposes of this article I have decided
on a very simple set of options. A file, /var/mqm/autostart.ini,
contains the names of the queue managers that are to be started,
the portnumber for a TCP/IP listener, and whether to start the
command server.
It should be obvious how to extend the format for additional
options. I will always start the default trigger monitor.
The configuration file on this machine has just two lines, one for
each of its queue managers:
   QMGR=apix;LSRPORT=1414;CMDSERV=YES
   QMGR=klein;LSRPORT=1415;CMDSERV=NO

NETWORK LISTENERS
On Unix systems the network protocols supported by WMQ are
TCP/IP and LU6.2, with the vast majority of installations using
only the former. There are two ways to configure a TCP/IP
listener on these machines: you can either use inetd or the
runmqlsr command. In earlier versions of WMQ I would normally
recommend using inetd; however, changes to the architecture
in V5.3 have made runmqlsr a much better choice. It is now
more scalable than using inetd, allowing many more channels
to run simultaneously.
Having made that choice you need to decide whether to have the
listener running only when the queue manager is running. My
preference is to keep the execution of the listener within  the
scope of the queue manager – it is started just after the queue
manager starts and it is stopped just before the queue manager
stops. I think this makes it clearer how the overall system is
running; it is also good discipline because you will know which
processes to stop when you want to apply maintenance.
You can if you wish run a listener completely independently of the
execution of the queue manager so that any connection requests



    8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

get a ‘queue manager not available’ return code instead of a
TCP/IP error that no-one is listening on the port. The scripts
below, however, will follow my preferred configuration.
The LU6.2 listener processing is handled by the SNA products
directly. If you are using LU6.2 you do not need to start an explicit
MQ listener in these scripts and you do not need the LSRPORT
clause in the configuration file.

STARTING QUEUE MANAGERS
This script should be put in /etc/rc.d/init.d/startallqmgrs. Once it
has been created make sure it is executable by the mqm user-
ID (use chmod a+rx). However, it does not need to be linked into
any of the /etc/rc.d/rc.N directories.
Note that some of the commands have an ampersand (‘&’) to run
them in the background, while others will end quickly once they
have started a daemon process.
The strmqm command does not run in the background as its job
is to start the queue manager daemons. I have seen some
scripts in the past which add a ‘sleep’ command after the
strmqm in order to ‘ensure the queue manager is properly
running’. That should not be necessary – by the time the strmqm
command exits, the queue manager is executing. It might still be
going through a recovery phase and, therefore, applications
cannot immediately get work done by the queue manager but
they should just be blocked in the MQCONN call until recovery
has succeeded.
   #!/bin/ksh
   rc=Ø
   config="/var/mqm/autostart.ini"
   if [ ! -r $config ]
   then
     echo "Config file not found"
     exit Ø
   fi
   qmgrlist=`cat $config | cut -d";" -f1 | cut -d"=" -f2`
   for qmgr in $qmgrlist
   do
     strmqm $qmgr



    9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

     if [ $? -eq Ø ]
     then
         lsrport=`cat $config |\

           grep "QMGR=$qmgr;LSRPORT=" |\
           cut -d";" -f2 |\
           cut -d"=" -f2 `

         if [ ! -z "$lsrport" ]
         then

   runmqlsr -t tcp -m $qmgr -p $lsrport &
         fi
         cmdserv=`cat $config |\

           grep "QMGR=$qmgr;" |\
           cut -d";" -f3 |\
           cut -d"=" -f2 `

         if [ "$cmdserv" = "YES" ]
         then

   strmqcsv $qmgr
         fi
         runmqtrm -m $qmgr &
     else
       rc=1
     fi
   done
   exit $rc

The bootstrap script is run with root authority. It switches into the
mqm user-ID for the WMQ control operations. If you want to run
additional commands, such as another trigger monitor, that do
not have mqm authority,  these should be started from the
bootstrap script (with another su call perhaps) and not from the
startallqmgrs script.

STOPPING QUEUE MANAGERS
This script should be put in /etc/rc.d/init.d/stopallqmgrs. Once it
has been created make sure it is executable by the mqm user-
ID (use chmod a+rx). It does not, however, need to be linked into
any of the /etc/rc.d/rc.N directories.
   #!/bin/ksh
   rc=Ø
   config="/var/mqm/autostart.ini"
   if [ ! -r $config ]
   then
     echo "Config file not found"
     exit Ø
   fi
   qmgrlist=`cat $config | cut -d";" -f1 | cut -d"=" -f2`



    10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

   for qmgr in $qmgrlist
   do
     cmdserv=`cat $config |\

       grep "QMGR=$qmgr;" |\
       cut -d";" -f3 |\
       cut -d"=" -f2 `

     if [ "$cmdserv" = "YES" ]
     then
       endmqcsv $qmgr
     fi
     # Do these together in background so we don't
     # delay overall shutdown. If they haven't finished
     # then it won't matter too much.
     ( endmqm -i $qmgr ; endmqlsr -w -m $qmgr) &
   done
   exit $rc

RELATIONSHIP TO THE HIGH AVAILABILITY SUPPORTPACS
There are several HA SupportPacs that you can download for
configuring WMQ resources inside products such as Veritas and
HA/CMP. These perform a similar job of automatically starting
and stopping queue managers although the scripts provided do
not include any consideration for processes other than the queue
manager itself; you have to edit the scripts for listeners, command
servers, etc.
If you are using the HA SupportPacs you should not use the
scripts from this article. Allow the HA product to control the queue
manager; it will know whether a stand-by machine needs to
invoke a startup script and whether disk partitions are online.
Mixing the rc.N scripts with an HA script is likely to lead to
confusion over the state of the queue manager.

SUMMARY
This article should have given you a good idea of how to
automate start-up and shut down of WMQ resources on a Unix
system. There are many extensions that could be made to them,
such as also starting WMQI brokers, but the basic framework will
always be the same as that presented here.
Mark E Taylor
IBM Hursley (UK) © IBM 2003



    11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Design patterns for message-oriented middleware

INTRODUCTION
Over the years design patterns have become the standard way
of defining and implementing a particular software technology in
applications. With the pervasive use of object-oriented technology,
design patterns have become especially popular among
developers. A design pattern can be defined as a standard way
of implementing a technology that has become generally
accepted; a design ‘best practice’ if you will.
Most message-oriented middleware applications generally fall
into one of a small number of scenarios so this lends itself well
to the generalization of the characteristics that make up the
scenario, in other words, the creation of design patterns.
Once the developer knows which scenario his application falls
into then the specific details of the implementation as well as
which features of the middleware to use become more or less
automatic based on the design pattern.
In this article I will take a look at five of the most common
middleware design patterns. They are:
• Synchronous inquiry.
• Asynchronous inquiry.
• Synchronous update.
• Asynchronous update.
• Fire and forget.
These five design patterns will cover the majority of the message-
oriented middleware application processing scenarios.
It should be noted that, although these design patterns can be
applied to any message-oriented middleware technology,



    12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

whenever I need to give specific details about an implementation
I will be referring to WebSphere MQSeries (WMQ).

PATTERN: SYNCHRONOUS INQUIRY

What it does
This pattern is generally used when the end users of an application
need to retrieve and display data from some server application,
eg customer service representatives using an application running
on a Windows workstation that accesses customer information
housed in a mainframe database system. Generally the client
cannot continue until the information is available. The client
application is said to be ‘blocked’ during this synchronous
request. Figure 1 illustrates the message flow of the synchronous
inquiry application.

Pattern highlights
There are two main characteristics of the synchronous inquiry
pattern. First and foremost the pattern is synchronous in nature.
This means that the client application is effectively blocked until
the request is resolved either by successfully returning the
requested data or by some error condition. Second, this pattern

Client application

Send request

Get reply

Database

Get request

Send reply

!!!!!

"""""

Request message

Reply message

#####

Figure 1: Message flow of a synchronous inquiry application

Server application



    13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

is simply an inquiry. Data on the server is not updated. If the
operation fails the user can simply retry until the desired response
is received. Because inquiry operations can be retried if they fail,
error-handling logic can be kept to a minimum. There is no need
to employ complex recovery logic or any kind of compensating
transaction.

Implementation
Two important considerations when implementing any messaging
design pattern are the message and queue attributes that will be
used. We have already said that since the synchronous inquiry
does not change any data we do not need messages to be
recoverable. For WMQ this means that we can use non-persistent
messages. This will benefit us in terms of performance  because
non-persistent messages do not need to be hardened to disk as
do their persistent counterparts.
With respect to the types of queue needed we can say that
request messages flowing into the server should be routed to a
predefined permanent queue and reply messages flowing back
to the client can be sent to a temporary dynamic queue. WMQ
creates temporary dynamic queues automatically and they are
deleted when the client application ends.
Another important factor to consider is the length of time that the
client application should wait for a response before considering
the request to have timed-out. As we have already mentioned,
during the request the client is blocked and cannot proceed so
waiting for a reply message indefinitely is out of the question. The
specific time value is very application-specific but values in the
range of 10-30 seconds are quite common.
We also need to remember that, although the client application
may have considered a request to be timed-out and gone on to
other work, the original request message could still very well be
in the system and may get processed at some later time. The
client application needs to account for these delayed responses.
The most common way to handle this is to use the Message-ID/
Correlation-ID feature of WMQ. In that way the client application



    14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

can simply discard responses for which there is no current
request.
When sending results back to the client the server application
can use the reply-to queue and queue manager information that
is carried in the WMQ message header.

PATTERN: ASYNCHRONOUS INQUIRY

What it does
On the surface the asynchronous request looks very similar to
the synchronous request (see Figure 2). From a message
queueing standpoint many of the design decisions are the same.
The major difference, however, is that with the asynchronous
inquiry the client application does not wait for replies to the
requests it has made before continuing to process other work. In
order to use this pattern effectively there must be some useful
work that the client application can do even though it has not yet
received a reply to the request. Because the client application
does not wait for replies our design must consider other ways to
process the replies when they do arrive.

Client application

Send request

Get reply

Database

Get request

Send reply

!!!!!

"""""

Request message

Reply message

Figure 2: Message flow of an asynchronous inquiry application

#####

Process Process request

Server application



    15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Pattern highlights
Like the synchronous inquiry this pattern also has two main
characteristics. First, the client is asynchronous, or non-blocked.
When a request is made the client continues with other work
without waiting for a reply.
Second, the pattern is an inquiry. This again means that data on
the server is not changed. There are no updates and the
operation can be repeated as many times as needed should it
fail.
A major design difference between the synchronous inquiry and
the asynchronous inquiry is that with the asynchronous inquiry
we do not discard responses that are delayed.

Implementation
The implementation of this pattern is quite similar to that of the
synchronous inquiry pattern. Since the messages are non-
recoverable we can again use WMQ non-persistent messages.
Similar queues can be used as well. For request messages
flowing into the server a predefined permanent queue can be
used and for reply messages flowing back into the client a
temporary dynamic queue can be used.
As I mentioned earlier, since the client application does not wait
for a single reply for each request our design must consider some
other way of processing replies as they arrive. The most common
way of handling this is to use a multi-threaded client application
where one thread is dedicated to reading and processing reply
messages as they arrive.
As in the synchronous inquiry pattern the server application can
use the reply-to queue and queue manager information carried
in the WMQ message header in order to know where to route
reply messages.

PATTERN: SYNCHRONOUS UPDATE

What it does
Of all the design patterns that we will look at in this article the



    16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

synchronous update pattern is perhaps the most tightly coupled.
In many ways it is also the least desirable of all of the patterns and
we shall see why later.
Figure 3 shows the message flow of this pattern. As with the
synchronous inquiry pattern the client application cannot continue
until a reply has been received from the server. As a result we can
encapsulate the messaging operations into a single routine that
sends the request and waits for a reply. On the server side we will
need separate routines to read the request and send the
acknowledgment back to the client as well as to process the
request.

Pattern highlights
Once again this design pattern has two main characteristics.
Again, the request is of a synchronous nature. The client sends
a request to the server and must wait for some acknowledgement
before continuing. The client will require some type of
acknowledgment from the server that the request has been
successfully processed. Second, this is an update operation.
Data will be changed at the server so it is important that the
update is not lost.

Client application

Send request

Process

Get request

Send ACK

!!!!!

"""""

Request message

Reply message

Figure 3: Message flow of a synchronous update application

Wait for ACK Process request

Database

$$$$$

Database

$$$$$

Server application



    17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

There is a problem with this pattern: what to do at the client if an
acknowledgment is not received from the server. In the case of
an inquiry we could just wait a pre-determined amount of time
and if we had not received a reply we could consider the request
to be timed-out.
We cannot take this approach with this pattern. Often the client
will modify some data on the client side based on an
acknowledgment of a successful completion of the operation on
the server. If the acknowledgment is delayed for any reason the
client application has no way of knowing whether or not the
operation succeeded on the server. Because the operation is of
a synchronous nature there is no opportunity for the server to
reply later. If no acknowledgment is received the client application
will assume that the operation failed, remember the failure, and
then take some action later in order to resolve it.
In order to handle this kind of issue there must be additional logic
coded into the application and/or the infrastructure must be
made more complex with the introduction of a distributed
transaction processing system such as CICS. The transaction-
processing monitor will guarantee that all updates on both the
client and the server happen within the same unit-of-work. Either
they all work and are committed or they all fail and are rolled back.
This added complexity and cost (transaction processing monitors
are not cheap) makes this design pattern less desirable than
another alternative that we will discuss later.

Implementation
While it is recommended that this design pattern be avoided
wherever possible, if it must be used it can be implemented in the
following way. We can use WMQ persistent messages to
guarantee once-and-only-once delivery of both the request
message and the acknowledgment. For most types of update
that replace data, duplicate updates are not an issue and will not
adversely affect the system; however, for those types of update
that cannot be duplicated, the ability to have once-and-only-once
message delivery is critical.



    18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The downside of using persistent messages is that it causes a
performance hit since, in order to guarantee delivery of the
message, the message queueing software must harden each
message to disk and this will result in extra processing time.
As with the inquiry design patterns, update request messages
can be sent to a predefined permanent queue on the server. This
time, however, on the client, acknowledgement messages must
be sent to a WMQ permanent dynamic queue as opposed to a
temporary dynamic queue as with the inquiry patterns. This is
because the messages are persistent, and temporary dynamic
queues do not have the capability to store persistent messages.
Although the messaging infrastructure affords us a good deal of
reliability in terms of transactional integrity it is still possible for
application failures to compromise this. For example, the server
application might read a request from a queue but then fail before
it has completed processing it. From the client’s perspective the
message was successfully delivered but, even so, now it has
been lost without the required updates being performed.
The obvious solution to this is to perform the messaging operation
along with the data update in the same transaction, or unit-of-

Client application

Send request

Process ACK

Database

Get request

Send ACK

!!!!!

"""""

Request message

Reply message

Figure 4: Message flow of an asynchronous update application

Process Process request

$$$$$

Server application



    19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

work. If the server application fails then data updates are backed
out and the original message is placed back on the queue ready
to be processed again after the error has been resolved. You can
use transactions on almost any WMQ queue and this is specified
at the message level.

PATTERN: ASYNCHRONOUS UPDATE

What it does
With this pattern the client application making the request is also
interested in the success or failure of the update but does not
need it to complete before continuing. Figure 4 shows the
message flow associated with the asynchronous update pattern.

Pattern highlights
Once again we have two main characteristics with this pattern.
First, it is asynchronous in nature. The client application sends
the request and can immediately continue with other work. The
client assumes that the request will be processed and still
requires some type of positive acknowledgement when the
update happens. The second characteristic of this pattern is that
it is an update. Data will be updated on the server and it is
important that the update is not lost. It may also be undesirable
inadvertently to repeat an update.
The topology of this pattern is very similar to that of the
asynchronous inquiry pattern that we looked at earlier, the major
difference being that we cannot lose the request or the
acknowledgment message.

Implementation
This pattern shares many of the same implementation issues as
the synchronous update pattern. The update and
acknowledgment messages require the same message delivery
guarantee so we must use WMQ persistent messages in order
to achieve once-and-only-once delivery. With respect to queues



    20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

we can once again use a predefined, permanent queue on the
server to accept the update messages. For acknowledgment
messages flowing back to the client we can use either a
permanent dynamic queue (because the messages are
persistent) or a predefined permanent queue. This choice is
mainly an administrative one.
The same transactional, or unit-of-work, issues apply to this
pattern as to the other update style patterns. It is beyond the
scope of this article to discuss this in detail; however, at a very
high level here is what needs to be considered:
• WMQ syncpoint processing.
• Implementation of distributed transaction processing

monitors, eg CICS.
• Transaction demarcation, or what constitutes a logical unit-

of-work.
• Additional application code and compensating transactions.

PATTERN: FIRE-AND-FORGET UPDATE

What it does
In the fire-and-forget design pattern the client application requests

Client application

Send request Get request

Process request

!!!!!
Request message

Figure 5: Message flow of a fire-and-forget application

Database

$$$$$

Server application



    21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

some type of update on the server but it does not need to wait for
an acknowledgement from the server before carrying on with
other work. By using the features of the underlying message
queueing system we can be assured that the update will eventually
take place. One of the key benefits of this pattern is that, by
removing the requirement for an acknowledgement, the workload
of the server application is greatly reduced. Figure 5 illustrates
the message flow of a fire-and-forget application.

Pattern highlights
With the fire-and-forget pattern we see two main characteristics.
First, the client application is asynchronous. The request message
is sent and then the client application continues immediately with
other work. The client trusts that the underlying message queueing
technology will process the update at some point in the future. No
acknowledgement from the server is required.
Second, this pattern is also an update. Data on the server will be
changed and it is important that these updates are not lost. It may
also be important not to inadvertently repeat updates. The once-
and-only-once delivery guarantee of WMQ ensures that this will
not happen.

Implementation
As with the other update patterns we require some guarantee
that our messages are delivered. Once again, with WMQ we
shall use persistent messages for the update requests. This
assures us of once-and-only-once delivery and even safeguards
the messages in the event of a failure of the message queueing
subsystem. With this pattern only one queue is needed. Update
requests can flow to a predefined permanent queue on the
server.
To avoid the possibility of application failures compromising
transactional integrity, as discussed previously, we need to
perform the messaging operation along with the data update in
the same transaction, or unit-of-work.



    22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A COUPLE OF GENERAL GUIDELINES
• I want to clarify that throughout this article I have always

associated persistent messages with update operations
because of the notion that since it is an update it must be
important and, therefore, I cannot afford to lose the message.
This is a good rule of thumb but in practice it is not always the
case. How many safeguards you build into a system is
always a trade-off between the costs to implement them
versus the importance of the data and what it would cost the
organization – in dollars and time – to recreate lost messages.

• Since all the design patterns we have discussed almost
always span multiple systems and these systems are often
likely to be different operating systems, a good general rule
is to use only character data in messages wherever possible.
Character data is the easiest to translate between different
machine representations and in fact WMQ can perform
these translations automatically on behalf of the application.

SUMMARY
In this article we have looked at five of the most common design
patterns used by message-oriented middleware applications.
We have seen that some patterns share many similarities but
that there can be subtle differences as well. By having a standard
set of design patterns to work with the developer needs only to
decide which one his application falls into. Once that decision
has been made many of the subsequent implementation decisions
are automatic, being derived from the characteristics of the
pattern. This standard ‘cookie-cutter’approach is sure to cut
development time – always a good thing – as well as providing
many other benefits within the organization.
Dale Eckert
Middleware Architect (Canada) © Xephon 2003



    23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Migrating to the SSL support in WMQ V5.3

INTRODUCTION
One of the new features of WMQ V5.3 is the ability to use SSL
to encrypt data on a WMQ channel and to do this both ends of
the channel must be running the latest level of WMQ. For existing
WMQ users this means upgrading all the WMQ components
within your network at the same time, so they all have the ability
to use SSL.
This article explains how WMQ Internet Pass-Thru (MQIPT) can
be used to simulate one end of the SSL channel, allowing an
older version of WMQ Client to connect to a WMQ V5.3 Queue
Manager using SSL. There are many configuration features
available to MQIPT but this article focuses only on the SSL
feature.

WHAT IS MQIPT?
MQIPT is a ‘category 3’ WMQ SupportPac, which means it is fully
supported and can be downloaded free of charge  from http://
www.ibm.com/webspheremq/supportpacs.
It was designed to be installed in the Demilitarized Zone (DMZ)
of a firewall and act as a ‘proxy’ for WMQ traffic but there is no
reason why it cannot be installed locally on the same machine as
a WMQ client. It will accept a connection request from the WMQ
client and route it to the desired destination based on its
predefined configuration data.
Once MQIPT has established the connection and the handshaking
process has completed, WMQ messages are sent and received
as on any other WMQ channel connection.
The only change required to use MQIPT is to the WMQ CONNAME
of the channel that’s being started. In this example the CONNAME
of the CLNTCONN channel must point to the local MQIPT



    24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

instead of the  target WMQ server. The local MQIPT will be
configured to connect to the destination queue manager, using
SSL.

SAMPLE SETUP
A typical WMQ client connection is illustrated in Figure 1.
To allow an older version of WMQ client to use an SSL connection
MQIPT needs to be inserted into the connection, as shown in
Figure 2.
This sample configuration shows how to use MQIPT to simulate
the client end of a CLNTCONN channel such that the QM will

WMQ client

WMQ
Internet
Pass-Thrunon-SSL

10.20.3.1
Client

10.20.9.2
WMQ Queue
Manager V5.3

Figure 2: Inserting MQIPT into the connection

#####

!!!!! !!!!!"""""

!!!!!

Figure 1: A typical WMQ client connection

SSL or non-SSL



    25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

think the WMQ client is using an SSL-defined channel.
This setup will use the sample SSL certificates supplied with
MQIPT but any valid certificate and its trusted CA certificate(s)
could be used instead. The certificates provided with MQIPT are
self-signed so a trusted CA certificate is not required. The same
self-signed certificate will be used by the QM and MQIPT.
For this example the following assumptions are made:
• You are familiar with defining queue managers, queues, and

channels on WMQ.
• You have already installed a WMQ client and server.
• The client and QM are installed on separate machines.
• MQIPT is installed in a directory called C:\mqipt on the same

machine as the client (note, they have the same IP address).
• You are familiar with putting messages on a queue using the

amqsputc command.
• You are familiar with getting messages from a queue using

the amqsgetc command.

CONFIGURING WMQ
On the WMQ server you need to do the following:
• Define a queue manager called MQIPT.QM1.
• Define a server connection channel called

MQIPT.CONN.CHANNEL.
• Define a local queue called MQIPT.LOCAL.QUEUE.
• Start a TCP/IP listener for MQIPT.QM1 on port 1414.
You will also need to follow these steps to assign the MQIPT self-
signed certificate to the queue manager MQIPT.QM1. These
instructions take you through the steps of importing the certificate
into Windows Internet Explorer and, from there, importing it into
WMQ Explorer and assigning it to MQIPT.QM1. The channel can
then be configured to use SSL.



    26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Importing into Windows Internet Explorer
• Start Internet Explorer.
• Select Internet Options from the Tools menu.
• Select the Content tab.
• Press the Certificates button.
• Press the Import button.
• Follow the instructions on the wizard to import the self-

signed certificate:
– located in c:\mqipt\ssl\sslSample.pfx
– enter the password ‘mqiptV1.3’ (without the quotes)
– leave all options unselected
– select ‘Automatically select the certificate store based

on the type of certificate’
– press Finish.

• Close the Internet Options dialogue.

Importing into WMQ Explorer
• Open up the properties dialogue for MQIPT.QM1.
• Select the SSL tab.
• Press the Manage SSL certificates button.
• Press the Add button.
• Scroll through the list and select the sample certificate (the

owner is Phil Blake).
• Press the Add button.

Assigning the certificate to the queue manager
• Select the sample certificate.



    27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Press the Assign button.
• Close the QM properties dialogue.

Defining the CipherSpec
• Open the properties dialogue for channel

MQIPT.CONN.CHANNEL.
• Select the SSL tab.
• From the standard settings drop down list select

RC4_MD5_EXPORT.
• Press the OK button.

CipherSpec CipherSuite

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA

DES_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA

NULL_MD5 SSL_RSA_WITH_NULL_MD5

NULL_SHA SSL_RSA_WITH_NULL_SHA

RC2_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

RC4_56_SHA_EXPORT1024 SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA

Table 1: Matching CipherSuites to CipherSpecs for use by
MQIPT and WMQ



    28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONFIGURING MQIPT
MQIPT needs a route to be defined and configured to act as an
SSL client. The CipherSuite used on the route must match the
CipherSpec used by the WMQ channel. Table 1 lists the matching
CipherSpecs and CipherSuites. (Various key exchange
mechanisms are supported in the SSL protocol that allow for the
sharing of secret keys. SSL can make use of a variety of
algorithms for encryption and hashing. Many cryptographic
algorithms are supported and they are specified by using an SSL
CipherSuite or CipherSpec.)
Note the Destination and DestinationPort properties need to
reflect your own server and port address.

Define a route to act as an SSL client
• edit c:\mqipt\mqipt.conf and add a route definition.
• [route].
• ListenerPort=1415.
• Destination=10.20.9.2.
• DestinationPort=1414.
• SSLClient=true.
• SSLClientKeyRing=c:\\mqipt\\ssl\\sslSample.pfx.
• SSLClientKeyRingPW=c:\\mqipt\\ssl\\sslSample.pwd.
•

SSLClientCipherSuite=SSL_RSA_EXPORT_WITH_RC4_40_MD5.

Start MQIPT
• Open a command prompt:

– c:
– cd \mqipt\bin



    29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

– mqipt ..
• The following messages will be seen on the MQIPT console:
     5639-L92 (C) Copyright IBM Corp. 2ØØØ, 2ØØ3 All Rights Reserved
     MQCPIØØ1 WMQ internet pass-thru Version 1.3.Ø starting
     MQCPIØØ4 Reading configuration information from
          C:\mqipt\mqipt.conf
     MQCPIØ11 The path C:\mqipt\logs will be used to store the log
          files
     MQCPIØØ6 Route 1415 has started and will forward messages to :
     MQCPIØ34 ....1Ø.2Ø.9.2(1414)
     MQCPIØ36 ....SSL Client side enabled with properties :
     MQCPIØ31 ......cipher suites SSL_RSA_WITH_RC4_128_MD5
     MQCPIØ32 ......keyring file c:\mqipt\ssl\sslSample.pfx
     MQCPIØ47 ......CA keyring file <null>
     MQCPIØ38 ......distinguished name(s) CN=* O=* OU=* L=* ST=* C=*
     MQCPIØ78 Route 1415 ready for connection requests

CONFIGURING WMQ CLIENT
The queue manager and MQIPT have both been configured and
are ready to accept connections. Note that the IP address
defined in MQSERVER needs  to reflect your own server
address. The WMQ client can be started as follows:
• Open a command prompt:

SET MQSERVER=TEST.CONN.CHANNEL/TCP/1Ø.2Ø.3.1

• To put a WMQ message on the queue issue the command:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1

• To get the message issue the command:
amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

Congratulations! You have now successfully configured an older
version MQ client application to communicate with a V5.3 queue
manager using SSL communications by making use of MQIPT.

CONCLUSIONS
• Using MQIPT allows each queue manager within an

enterprise to be upgraded in a controlled fashion.



    30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• MQIPT can be used at either end of the channel to emulate
an SSL connection.

• This scenario can be extended so MQIPT can be used for
QM to QM connections as well as client connections.

• To show an SSL connection has been made between
MQIPT and the queue manager turn on tracing in MQIPT by
setting Trace=5 for the defined route and then run the
sample put/get commands. The MQIPT trace file will show
the SSL handshaking process before any WMQ data flows.

Phil Blake
IBM Hursley (UK) © IBM 2003

Error handling in WMQ Integrator message flows

This article explains error handling in WMQ Integrator (WMQI)
message flows and discusses some strategies for making best
use of the facility. It applies to all products of the WMQI family.

INTRODUCTION
WMQI is a message broker. Application logic is implemented in
WMQI as a message flow. A message flow is a network of
interconnected nodes. A node fulfils a specific task and can be:
• An IBM primitive node (these are nodes delivered with

WMQI, eg a database node or a compute node).
• A user-defined node.
• A subflow node.

WMQI NODES
To understand the error handling in a message flow we will first
have a look at the error behaviour of the three different types of
WMQI node.



    31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

IBM primitive node
An IBM primitive node usually has one input terminal (in) and two
output terminals (out and failure); however:
• Some have more output terminals; for example, the filter

node has four (true, false, unknown, and failure).
• Some have fewer output terminals; for example, the trace

node has only one (out).
• Some, such as the throw node, have no output terminals.
All nodes that have more than one output terminal have a failure
terminal. Messages are received by the input terminal of the
node and are processed in the node.  If the processing is
successful the message is propagated to an output terminal
other than the failure terminal. If the processing results in an
exception, subsequent processing depends on whether the
failure terminal of the node is connected to another node. If it is
connected a new entry containing the reason for the exception
is added to the exception list of the input message and the
message is propagated to the failure terminal of the node. If the
node failure terminal is not connected to another node  the
processing is rolled back to the input terminal and a new entry
containing the reason for the exception is added to the exception
list of the message.

User-defined node
For a user-defined node it is recommended that you implement
the same error behaviour as that of an IBM primitive node with
a failure terminal. This means that a user-defined node should
have one input terminal (in) and at least two output terminals (out
and failure). In case of an error during node processing the
original input message is either propagated to the failure terminal
or rolled back to the input terminal and a new entry is added to
the exception list of the message.

Subflow node
For a subflow node the behaviour in case of an error depends on



    32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the implementation.  Behaviour similar to that of an IBM primitive
node is difficult to implement. The reason why is shown in Figure
1, which  illustrates a simple subflow consisting of three IBM
primitive or user-defined nodes, each of which contains one input
(in) and two output terminals (out and failure). The subflow itself
also holds one input (in) and two output terminals (out and
failure).
If, for example, an exception occurs in node 3, the message,
including the exception list,  is propagated to the failure terminal
of the node if the failure terminal of the subflow is connected to
another node. But MQ or database operations in the processing
of nodes 1 and 2 are not rolled back. The state of the subflow
processing is undefined because outside of the node it is not
known which node threw the exception and which part of the
subflow processing has already been performed and should not
be rolled back.
Adding a try-catch node to the beginning  of the subflow, as
shown in Figure 2, does not really implement the error behaviour
of an IBM primitive node with a failure terminal because a
disconnected catch path completes the processing of the subflow
successfully.
Connecting a user-defined node to the catch terminal of the try-
catch node to detect whether the failure terminal of the subflow
is connected to another node would be possible (see Figure 3),
but in the case of a disconnected failure terminal this node would
have to throw an additional exception to rollback the message to

Figure 1: A simple subflow with three IBM primitive nodes

Node 1

Node 2

Node 3

In

Subflow

Out

Failure

Out

Failure

Failure

Out

Failure
Out



    33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the in terminal of the subflow. This would add an exception to the
message exception list for something that is not a true processing
exception.
The only simple way to get a consistent state of the processing
in case of an exception in a node is to roll back the message to
the input terminal of the subflow. An alternative is to implement
a compensation method for the MQ and database operations in
the subflow but this is usually difficult to carry out.
The following sections describe ways to handle exceptions in a
typical message flow. They use the term ‘node network’ to mean
a network of interconnected WMQI nodes.

WMQI MESSAGE FLOW PROCESSING
Figure 4 shows a typical WMQI message flow. It starts with a
WMQI MQ input node that has a node network connected to
each of its output terminals. The dashed arrow shows the flow of
the‘normal’ processing path (N), which first passes the node
network A then routes the message to the node network B, which
is connected to the‘try’ terminal of a WMQI try-catch node. The
node network paths other than that shown by the dashed arrow
are the three main error paths (F1-F3) of a message flow,
whereby F1 can also be contained several times in any of the
node networks.

Figure 2: Adding a try-catch node to the subflow

Node 1
Node 2

Node 3

Subflow

Try
Catch

Out

Failure

Out
Failure

In Try-catch
node

Out

Out

Failure

Failure



    34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

To discuss and understand the processing in the message flow
in Figure 4, especially the error processing, we will first take a
closer look at the internal processing of the MQ input node, which
is shown in Figure 5.
If a message is processed in a transactional context it can be
specified by a node property of the MQ input node. The default
behaviour for processing messages in a message flow is in a
transactional context initiated and completed, either with a
commit or a rollback, by the input node. Whether the transaction
will be committed or rolled back depends on the result returned
from the node networks connected to the output terminals of the
input node.
In the following discussion we consider only the processing in a
transactional context.
Figure 5 shows the processing behaviour of the MQ input node.
The out and catch terminals can be seen as the terminals of an
internal try-catch node, which processes the first processing
path as transaction T1. If the try-catch path fails, the processing
and, therefore, transaction T1 are rolled back and started again
until the backout count of the message is equal to or exceeds the
backout threshold defined for the input queue. This is indicated
by the two arrows in the box for transaction T1, where x is the
backout threshold of the input queue.

Figure 3: Adding a user-defined connect/detect node

Node 1
Node 2

Node 3

Subflow

Try
Catch

Out

Failure

Failure

Try-catch
node

Out

Failure

In Connect/
detect

Out
Failure

Out Out



    35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567

12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567

Node
network E Node

network C

Node
network B

Node
network A

Node
network D

MQ input
node

F3

TryInput
queue

Try-catch

N

F1

Catch

Out

Failure

Catch

F2

!!!!!

!!!!!

Figure 4: A typical WMQI message flow

Node
network E

Node
network A

Node
network D

Input
queue

MQ input node

Figure 5: Processing behaviour of the MQ input node

Backout
processing

Catch

Out

Try-catch

Start

x - !

T2

T1

!!!!!
"""""

1 - x
!!!!!

"""""

!!!!!

Failure
!!!!!

Try
Catch



    36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If the backout count is equal to or greater than the backout
threshold a new transaction (T2) for the failure path is started.
This means that the message propagated to the failure terminal
of the MQ input node is the original message from the input
queue without an exception list but with the current backout
count. If the failure terminal is not connected the backout
processing, marked by the dashed arrow, is performed. If the
failure path fails, the transaction T2 is rolled back and started
again. For T2, unlike T1, there is no limit to the number of restarts;
the failure path is tried by the MQ input node until the transaction
completes successfully. This is indicated by the two arrows in the
box for T2, where x is the backout threshold of the input queue.
Figure 6 shows the processing of a message flow. The first
transaction (T1) is started by the MQ input node by getting a
message from the input queue and propagating it to the output
terminal. The message is processed in node network A and
routed to node network B, which is connected to the try terminal
of the try-catch node.
If the processing in node network B fails with an exception the
message is rolled back to the try-catch node and is processed by
node network C, which is connected to the catch terminal of the
try-catch node. This is the first error path, F1. Modifications in the
message performed by node network B are rolled back, but not
the database and MQ operations. This should be kept in mind
when implementing error path F1.
If the catch path also fails, the processing is rolled back to the MQ
input node and propagated to the catch terminal, the second
error path, F2. Note again that only the modifications to the
message performed in the node networks A, B, and C are rolled
back; database and MQSeries operations performed in these
node networks are still active until the catch path has finished.
If the error path F2 also fails (see Figure 7), the first transaction
T1 is rolled back and a new transaction is started. The roll-back
of a message automatically increases the backout count of that
message. All database and MQSeries operations performed in
transaction T1 are now also rolled back if they were not performed



    37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

outside transactional control (for example, if ‘Transaction No’
was specified for the MQ output node).
The message is again read from the input queue and the backout
count is compared with the backout threshold defined for the
input queue. If the backout count is lower than  the backout
threshold the started transaction is T1 (see Figure 8), where the

Node
network C

Node
network B

Catch

MQ input node

Input
queue

!!!!!
F1

Try

Try-catch

Node
network D

Node
network E

Start!!!!!

Failure

Catch

Node
network A

OutT1 Try-catch

!!!!! %%%%%

Node
network C

Node
network B

Catch

MQ input node

Input
queue Try

Try-catch

Node
network D

Node
network E

Start!!!!!

Failure

Catch

Node
network A

OutT1 Try-catch

!!!!!

%%%%%

Figure 6: The processing of a message flow

Figure 7: Error path F2 fails

F2

!!!!!

!!!!!



    38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

x in the parentheses ‘()’ following T1 represents the current
backout count of the message; otherwise the started transaction
is T2 for the failure terminal (see Figure 9) or the backout
processing.
If the node network D in the catch path finishes successfully,
transaction T1 is committed. This implies that all database and
MQSeries operations performed in this transaction (node networks
A, B, C, and D) are also committed.
Figure 9 shows the case where transaction T1 failed and the
backout count of the message read from the input queue within
the new started transaction T2 has reached the backout threshold
of the input queue. The message is now propagated to the failure
terminal of the MQ input node.
If the processing in node network E fails (see Figure 10),
transaction T2 is rolled back and started again until the processing
in node network E completes successfully and the transaction
can be committed.
If the failure terminal is not connected the backout processing is
performed. An attempt is then made to put the message into
either the backout queue, if one is defined for the input queue, or
the default dead-letter queue if one is defined for the queue

Node
Network C

Node
Network B

Catch

MQ input node

Input
queue

Try

Try-Catch

Node
Network D

Node
Network E

Start!!!!!

Failure

!!!!!%%%%%
F2

!!!!!

!!!!! N

T1

T1(x)
Catch

Try-
Catch

"""""

Node
Network A

Out



    39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

manager. If neither is specified, or if the put to the queues fails,
the transaction is rolled back and started again until either the put
succeeds or the broker ends.

Node
network C

Node
network B

Catch

MQ input node

Input
queue

Try

Try-catch

Node
network D

Node
network E

Start!!!!!

Failure

!!!!!%%%%%
Figure 9: Started transaction is T2 for the failure terminal

F3 !!!!!

!!!!!

T1
Catch

Try-
catch

"""""

Node
network A

Out

Node
network C

Node
network B

Catch

MQ input node

Input
queue

Try

Try-catch

Node
network D

Node
network E

Start!!!!!

Failure

!!!!!

%%%%%

Figure 10: Rolling back T2 until processing completes in node
network E

F2

!!!!!

!!!!!

Catch
Try-
catch

"""""

Node
network A

Out

T2

!!!!!

F3

T2
"""""

!!!!!



    40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Summary
If an error occurs in the processing of a message flow with a
WMQI MQ input node, one of the following occurs:
• If the failure terminal is not connected, the message is put

into the backout queue or the default dead-letter queue.
• If the failure terminal is not connected and if no backout or

default dead-letter queue is defined and if  the backout count
has reached or exceeded the backout threshold, the message
remains on the input queue until it is handled by another
application.

• In any other case the message flow tries to process the
message repeatedly.

If database or WMQ operations are performed in the normal
processing path and there is an exception in the processing,
transaction T1 should always be rolled back to get a consistent
processing state.

ERROR-HANDLING STRATEGIES
We have discussed the processing and error handling in a WMQI
message flow that begins with an MQ input node and we have
examined the special behaviour of MQ and database operations
within a transactional context in the case of a roll back of the
processing. Let’s now look at some strategies for dealing with
this special behaviour.

Strategy 1: perform error processing in failure path of MQ input
node
Figure 11 shows a message flow that makes use of this error-
handling strategy. The processing in the subflow connected to
the output terminal of the MQ input node failed with an exception
and is rolled back to the catch terminal.
To roll back possible MQ and database operations performed in
the subflow at the output terminal, the processing and, therefore,
transaction T1 are rolled back by a throw node at the catch



    41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

terminal of the MQ input node. A new process within a second
transaction, T2, is started for the failure terminal, where new
database and WMQ operations can be performed in node
network E for the error processing.
The disadvantage of this strategy is that the exception list and,
therefore, the reason for the error processing is not known to the
error processing in the failure path.

Strategy 2: perform error processing in a separate error-handling
message flow
This second strategy resolves the disadvantage of the first.
Figure 12 shows a message flow that uses this particular error-
handling strategy. The exception list is inserted, for example in
a folder of the MQRFH2, in the compute node in the catch path
of the MQ input node. The message is then put into the input
queue of the external error-processing message flow by an MQ
output node that is configured to perform its processing outside
transactional control. Transaction T1 is then rolled back. This
rollback is initiated by a throw node.
The WMQI trace node in the failure path of the MQ input node is

Node
network C

Node
network B

Catch

MQ input node

Input
queue

Try

Try-catch

Throw
node

Node
network E

Start!!!!!

Failure

!!!!!

!!!!!

!!!!!

T1
Catch

Try-
catch

"""""

Node
network A

Out

T2

!!!!!



    42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

configured with destination ‘None’ and is used to complete
transaction T2, which removes the message from the input
queue.
For most scenarios this behaviour would be sufficient. But there
are reasons why a message that has failed should not be
removed from the input queue and put into an error or backout
queue; it would also be preferable to avoid unnecessary use of
system resources in the case of repetitive errors with the same
message.
For these reasons it might be desirable to stop the message flow
from within the message flow. We now discuss several additional
error-handling strategies in a WMQI message flow that preserve
the message order from the input queue.

Strategy 3: set input queue backout threshold to the maximum
value
The simplest strategy is to set the backout threshold value of the

Node
Network C

Node
Network B

MQ input
node

Input
queue

Trace
node

!!!!!

!!!!!

Figure 12: Performing error processing in the failure path

Catch

Try-
CatchOut

Failure
Node
Network A

Catch
Try

N

Throw
node

Compute
node

MQ output
node

$$$$$ MQ input
nodeInput queue !!!!!

Catch
Out
Failure

Error handling message flow



    43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

input queue to its maximum value. This ensures that the message
flow tries to process the message in its normal processing path
until the processing completes successfully. The disadvantage
of this strategy is that the resource consumption in the case of
repetitive errors in the processing is high.

Strategy 4: use the failure path of the MQ input node as a main
path
With this strategy the failure path of the MQ input node is used
for the normal processing (see Figure 13). This ensures that the
message flow tries to process the message even after the
backout count has reached or exceeded the backout threshold.
The try-catch node connected to the failure terminal provides the
try-catch behaviour normally provided by the MQ input node. The
disadvantage of this strategy is that the resource consumption
in the case of a repetitive error in the processing is high, as in
strategy 3.

Strategy 5: user-defined node to switch queue attribute ‘Message
GET’ to inhibit
With this strategy, in the case of an error the user-defined inhibit
node disables the Message GET attribute of the input queue.
The next time the MQ input node tries to get a message from the
inhibited input queue it will get an error and will write a single entry

Node
network C

Node
network B

MQ
input
node

Input
queue

!!!!!

!!!!!

Figure 13: Using the failure path as a main path

Try-
catch

Out

Failure

Catch

Try

N

F1

Try
Catch

Node
network A

Node
network D

F2

Throw
node

Try-
catch



    44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

into the error log. After that the MQ input node tries to get a
message from the input queue, without issuing any further error
messages to the error log until the Message GET attribute is
enabled again.
Figure 14 shows a message flow containing a user-defined node
to disable the Message GET attribute of the input queue in the
catch path. The disadvantages of this strategy are:
• The broker needs specific access rights to the queue to

change the value for the Message GET attribute.
• The queue attribute has to be enabled again by either a

WMQ administrator or another message flow containing a
user-defined node that enables the Message GET attribute.

• An error entry is written to the system error log each time the
Message GET attribute of the queue is set to inhibit.

• The backout threshold of the input queue should be set to a
high value to ensure the processing of the failing message
when the root problem is removed.

Strategy 6: user-defined input node instead of WMQI MQ input
node
With this strategy (see Figure 15) a user-defined controlled input

Node
network C

Node
network B

MQ input
node

Input
queue

Node
network E

!!!!!

!!!!!

Figure 14: Using a user-defined node to disable Message Get

Catch

Try-
catchOut

Failure
Node
network A

Catch

Try

N

Throw
node

Node
network D

Inhibit
node

F1

F2



    45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Node
network C

Node
network B

Input
queue

Node
network E

!!!!!

Figure 15: Using a controlled input node instead of the WMQI
MQ input node

Try-
catch

Node
network A

Catch

Try

Node
network D

F1
!!!!!

%%%%%
Try-
catch

Control

T1

Controlled input node

!!!!!

Catch

Failure

Out
Process

Control
queue

!!!!!
Disable/
enable

!!!!!

node  is used instead of the WMQI MQ input node. It provides the
same functionality as the WMQI MQ input but can be controlled
via command messages on a second input queue, the control
queue. If the backout count reaches the backout threshold this
input node disables its normal processing until a restart command
message is received on the control queue. It then enables the
processing again and the failing message is retried.
The failure terminal is used only for messages containing syntax
errors but the broker also needs specific access rights to the
output queues in the message flow to set the security and
application context for the message. It is not possible to pass the
context of the message to the output queues because the queue
handle of the input queue is not known to the WMQI MQ output
node. The advantages are:
• There is no resource consumption in the case of a continuous

error.
• There is no limitation for retrying the processing of a message.
• The message flow can be disabled and enabled by control

messages.



    46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CONCLUSION
In the case of a repeating error in a WMQI message flow there
are three final states a message can have:
• The message is moved to a backout or failure queue.
• The message is processed until the transaction completes

successfully.
• The message remains on the input queue and is no longer

processed by the message flow and must be handled by
another application.

In message flows where database and WMQ operations are
performed there are several strategies for handling exceptions
and preserving a consistent processing state. It is sometimes
necessary to process the messages in the order they have
arrived on the input queue but in the case of repeating errors it
is not desirable to try repeatedly to process the message until the
processing completes successfully. For these cases, strategies
5 and 6 are preferable. The other strategies either do not
preserve the message order from the input queue (strategies 3
and 4), or result in an unnecessary resource consumption
because of repeatedly trying to process the message (strategies
5 and 6).
Christian Herrmann
IBM (Germany) © IBM 2003



MQ news

MQSoftware has announced an updated
version of its DataFlow Studio application
integration toolset along with a new Q
Gateway component that will provide secure
file store and forward capabilities via a Web-
based user interface.

The DataFlow Studio package enables the
transport, transformation, and orchestration
of data critical for application integration.

The idea is to provide a cost-effective and
secure means for optimizing the exchange of
data between a company’s secure internal
computer server and external users and
customers. Users are promised assured
delivery of files and centralized
administration and management of all
enterprise file transfers from one location.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.
Fax: +1 952 345 8721.
Web: http://www.mqsoftware.com

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *

ATG, a provider of software applications for
commerce and customer self-service, and
IBM have formed a relationship that enables
ATG to OEM IBM’s WebSphere Internet
infrastructure software as part of its
packaged solution offerings. Under the
agreement, ATG’s products will be enhanced
to pre-integrate with WebSphere
Application Server (WAS), WebSphere
Studio development tools, and WebSphere
MQ application integration software.

In a separate statement IBM recently
announced the release of WebSphere MQ
Extended Security Edition V5.3, which IBM
says is optimzied for regulated industries that
require a high level of security (such as
securities, banking, insurance, and
government). The company claims it enables
organizations to implement an end-to-end,
application-level data protection model and
lets administrators perform enterprise-wide,
remote management of security policies on
queues.

The produce combines WebSphere MQ and
Tivoli Access Manager for Business
Integration. According to IBM, the offering
provides customers with a secure messaging
environment that exchanges information
across multiple platforms via data messages.

For more information contact your local
IBM representative.

* * *

x
xephon


	Auto-starting WMQ on Unix 
	Design patterns for message-oriented middleware
	Migrating to the SSL support in WMQ V5.3
	Error handling in WMQ Integrator message flows
	MQ news

