

© Xephon plc 2003

October 2003

52

In this issue

MQ

3 Trouble-shooting using output
channel status

7 Using WMQ in J2EE, part 1
24 Advanced MQ channel

configuration
28 WBI Message Broker V5.0

Toolkit: an introduction
35 WMQ clusters and shared

queues in z/OS
45 Using the XML Transform node

in WMQI
49 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Trouble-shooting using output channel status

In a distributed queueing environment encompassing lots of
Windows, Unix, and z/OS queue managers, the channel status is
a good source of information when trouble-shooting. Looking at
empty queues it is not possible to determine whether an application
has already processed the messages that were in the message
flow or whether there was ever a message flow at all.
The channel status log can help because it supplies information
about the number of messages that have been transferred, a start
date and time for the channel, the date and time for the last
message that was transferred, and other attributes.
Unfortunately most of the channel status information is available
only when the channel is ‘running’ and is lost when the channel is
terminated. Since many people work in international environments,
where different time zones are commonplace, it is probable that
many messages are transferred when no-one is in the office to
trap errors.
For these reasons I thought it would be useful to save some of the
channel status information at channel termination time to assist
with the analysis of potential errors.
I decided to use a security exit program because the security exit
is called for all types of channel. This applies to send and receive
exits as well, but these are also called during message transfer,
whereas the security exit is called only during channel connection
and termination.

CHLSTAT PROGRAM LOGIC
1 At channel termination the exit is driven with the exit reason

MQXR_TERM. You should check the proper exit point and the
MQCXP/MQCD fields.

2 Get the channel name and conname from MQCD and the
partner queue manager name from MQCXP.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

3 Open a temporary dynamic queue named
SYSTEM.CHLSTAT.*, which will be used as a reply queue for
commands, using the supplied model queue
SYSTEM.COMMAND.REPLY.MODEL.

4 Put a ‘DISPLAY CHSTATUS(channelname) ALL’ message to
the SYSTEM.COMMAND.INPUT. queue.

5 Read the replies and check for CSQM42 messages. If these
are found you should get the status information from the exit
and use wto to display the messages in the CHIN log if the
conname and queue manager name match the CD/CXP
values.

6 Repeat step 5 above, until the reply queue is empty.
7 Close the reply queue with the option ‘delete-purge, clean-up’.
Other solutions, aside from writing the channel status information
to the CHIN log, are possible, eg keeping the reply messages in
a queue without reading them or processing the reply messages
with message tools. Which method you use will depend upon your
own environment and preferences.
I prefer to have all related and required information available in one
place so I chose the CHIN log because it is checked for channel
start and stop messages.

Use
The exit can be used in any type of channel, regardless of whether
it is a sender or a receiver channel. I tested it with SDR, RCVR,
SVRCONN, CLUSSDR, and CLUSRCVR channels, but it should
work for other channel types too. There are some things to be
aware of when using the CHLSTAT exit:
• Seurity exits cannot be chained in the channel definition. If you

already use a security exit you have to handle the chaining
yourself.

• If there are multiple connections by a single application
(SupportPac MO71 works this way, using a type SVRCONN

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

channel) you get duplicate output because multiple channels
with the same name and the same conname (IP address) exist
during the termination of one channel.
The exit finds multiple reply messages as a result of the
display chstatus command and creates an output for each
one. Unfortunately I did not find a way to determine which
chstatus suppresses the duplication.

• If a sender channel is in retry state the exit is also driven. The
exit tries to find a channel status with a proper queue manager
name but because there was no connection it does not find
any and will issue an error message. Because there is no flag
to indicate that the channel is in retry state this error message
will be issued wrongly at every retry interval.
That’s why I decided not to show an error message when no
queue manager name is found in the channel status. If you
miss a channel status output for a terminating channel you
may switch on the trace (described later) to determine why it
is not shown. Maybe it was in error and suppressed because
of the reason described above.

• If you define the exit into a cluster receiver channel the
channel definition will be distributed to other cluster
queuemanagers, depending on your cluster setup and usage.
The exit is used to build implicit defined cluster sender
channels (CLUSSDRA) also holding the SECEXIT(CHLSTAT)
attribute. These implicit defined channels will only work if the
queue manager is on z/OS and if the exit is available. If the
exit is not available or the queue manager is running on a
different platform (eg Windows or Unix) the channel is unable
to start because the exit name is specified in a different format
and the exit program does not exist. You will need a channel
autodefinition exit to remove the security exit name.

• If you want to use the exit in implicit defined cluster sender
channels on z/OS you will need a channel autodefinition exit
to put the SECEXIT(CHLSTAT) attribute into the channel
definition (if it was not specified in the proper cluster receiver
channel).

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

• A ping channel(..) command will result in a channel status
output. You will also see messages CSQX500I and CSQX501I
(Channel ... started/is no longer active) in the CHIN log.

• I get a 2009 returncode (connection broken) in the security
exit when disconnecting from the queue manager during the
termination processing of a SVRCONN channel. I was not
able to find out why, so I just ignored it.

• For testing purposes I included a ‘trace’ function in the exit.
Just put the word ‘TRACE’ at the beginning of the channel
security exit user data and you will get additional information
in the CHIN log, such as MQCXP and MQCD areas,
returncodes, replyqname, and so on. To get rid of the trace
function within the loadmodule set the ‘&TRACE’ variable to
‘OFF’ at the beginning of the source program and create a new
load module. To eliminate the tracing from the source erase
all do_trc macro calls, the macro itself, and all source code
that is marked to be used only for tracing (check the comments
within the program source).

COMPILE AND LINK
There is nothing special to be aware of for compilation, just use
your favourite Assembler/MQ compile job. For linkedit you have to
include CSQXSTUB, which can be found in the SCSQLOAD
library.

My sample SYSLIN statements
 //SCSQLOAD DD DSN=........SCSQLOAD,DISP=SHR
 //SYSLIN DD *
 ENTRY CHLSTAT
 INCLUDE SCSQLOAD(CSQXSTUB)
 INCLUDE SYSLIB(CHLSTAT)
 MODE AMODE(31),RMODE(ANY)
 NAME CHLSTAT(R)
 /*

Sample output from CHLSTAT exit in the CHIN log
 +CHLSTATIØ1- >>>>> CHANNEL STATUS OUTPUT <<<<<

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 +CHLSTATIØ2- CHANNELNAME(QM1.TO.QMA)
 +CHLSTATIØ3- TYPE(RECEIVER) STATUS(STOPPING)
 +CHLSTATIØ4- CONNAME(19Ø.69.69.69)
 +CHLSTATIØ5- QMGRNAME(QM1)
 +CHLSTATIØ8- START TIME(14:47:3Ø) DATE(19.Ø3.2ØØ3)
 +CHLSTATIØ9- LASTMSGTIME(14:47:3Ø) DATE(19.Ø3.2ØØ3)
 +CHLSTATI1Ø- LSTSEQNO(11) CURSEQNO(11)
 +CHLSTATI11- INDOUBT(NO) MSGS(3)
 +CSQX545I MQFT CSQXRESP Channel QM1.TO.QMA closing because
 disconnect interval expired

For more information about channel exits please refer to MQSeries
Intercommunication, Chapter 38, Channel-exit programs.
The program CHLSTAT can be found at www.xephon.com/extras/
chlstat.txt.
Stefan Raabe
Consultant (Germany) © Xephon 2003

Using WMQ in J2EE, part 1

OVERVIEW
This article describes the use of WMQ in the Java 2 Enterprise
Environment (J2EE) and is part one of two. In this first part the
J2EE standard interface for messaging will be described as will
the WMQ implementation. In part two, which will be published in the
November issue of MQ Update, the J2EE will be discussed in
more detail as will the integration of WMQ with the messaging
options available in IBM’s J2EE platform, the WebSphere
Application Server.

THE JAVA MESSAGE SERVICE
The Java Message Service (JMS) is a vendor-independent
messaging API based on the Java programming language. The

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

specification is owned by Sun Microsystems and was developed
with input from all the major providers of messaging software,
including IBM. The JMS guarantees provider independence but
not provider interoperability.

JMS messaging domains
The JMS has two messaging domains:
• Point-to-point is the type of messaging familiar to all users of

WMQ, where the message is received in one location only,
from a defined sender.

• Publish/subscribe is more of a broadcast, where subscribers
register their interest in topics (a method of partitioning the
messages) with a central Broker. The topic space is hierarchical
in structure and the use of wildcards is supported when
specifying topics to publish or subscribe to.
Publishers send messages (on a specified topic) to the
Broker, which then forwards a copy of the message to every
subscriber that has registered an interest in that topic. A
message published by an application can, therefore, be
received by many subscribers and the subscribers do not
have a direct connection to the publisher.

The JMS is structured around a simple class hierarchy, where
abstract classes are extended into each messaging domain. This
ensures that the programming model for both point-to-point and
publish/subscribe is the same.

JMS Administered Objects
The JMS requires some kind of abstraction of the proprietary
nature of a provider’s messaging software and this is accomplished
using JMS Administered Objects:
• The JMS ConnectionFactory is the object that a JMS application

uses to create a connection to a JMS provider. The
ConnectionFactory is extended by the messaging domains to
the QueueConnectionFactory and the
TopicConnectionFactory.

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• The JMS Destination is the object that a JMS application uses
as a target for sending messages and a source for receiving
messages. The Destination is extended by the messaging
domains to the Queue and the Topic.

JMS Administered Objects are stored in a JNDI namespace by an
administrator who must have enough knowledge of the JMS
provider specifics to be able to configure them properly. A JMS
application will access and use these objects by looking them up
in JNDI and, therefore, the provider will remain transparent to the
application.

JMS class hierarchy
The JMS class hierarchy is very simple and cascades from the
ConnectionFactory:
• JMS Connections are created from JMS ConnectionFactory

objects once retrieved from JNDI. They are multi-threaded
and encapsulate an active connection to a JMS provider. The
Connection is extended by the messaging domains to the
QueueConnection and the TopicConnection.

• JMS Sessions are created from JMS Connections. They are
single-threaded and create the context for sending and
receiving messages with the various transactional and delivery
options that this entails. The Session is extended by the
messaging domains to the QueueSession and the
TopicSession.

• JMS MessageProducers and MessageConsumers are
created from JMS Sessions and are used for sending and
receiving messages respectively. Multiple producers and
consumers can be created from one Session but their
operations are serialized because of the single-threaded
nature of the Session.
The MessageProducer is extended by the messaging domains
to the QueueSender and the TopicPublisher. The
MessageConsumer is extended by the messaging domains to
the QueueReceiver and the TopicSubscriber.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

• JMS messages to be sent are created from JMS Sessions,
whereas Message objects are returned from the various
receive methods on the MessageConsumers.

JMS messages
Messages in JMS have a format similar to that of a WMQ
message in that specific portions of the message are allocated for
carrying context and data separately.
There are three sections to a JMS message:
• The header fields, which contain values used by both providers

and applications to identify and route messages.
• The properties, which are used to add optional header fields

to a message. There are some JMS standard properties and
applications, and providers can also add specific fields to the
message header.

• The data portion of the message.
Three of the most important message header fields (instantly
recognizable to a WMQ programmer) have been further centralized
to the programming model by giving them default values on the
MessageProducer. These are:
• DeliveryMode, which determines whether the message is

persistent or non-persistent. The JMS specification defines
‘persistent’ to mean that a JMS provider should take extra
care to ensure that the message is not lost due to a provider
failure. Persistent messages should also be delivered once
and only once.

• Priority, which determines whether the message should be
expedited over others. Priorities are in the range zero to nine
and the JMS specification specifies that messages of priority
five and above should be delivered before messages of
priority four and below.

• TimeToLive, which determines when the message will expire,
starting from the time the message was sent.

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

There are five types of JMS Message, extended from an abstract
message parent class:
• TextMessage, where the message body contains a Java

String.
• BytesMessage, where the message body contains raw bytes

(provided for legacy code compatibility).
• StreamMessage, where the message body contains an

ordered sequence of typed data fields.
• MapMessage, where the message body contains an indexed

array of typed data fields.
• ObjectMessage, where the message body contains a serialized

Java Object.

Message selectors
A selector can be specified when creating a JMS
MessageConsumer, which then retrieves only messages that
match the selector. Message selectors are strings containing
logical constructs based on the SQL92 syntax and expressions
for the examination of message header and property field values.
A message selector matches a message when the selector (with
the message header and property field identifiers substituted for
their values in the message) evaluates to ‘true’. The selector can
be empty, in which case all messages are matched.

Acknowledgement, transactions, and durability
A JMS Session can be created to be either non-transacted or
transacted. A transacted Session uses a series of transactions,
each of which groups messages’ send and receive operations
into an atomic unit of work. When a transaction is completed it can
be either committed or rolled back. In the first case all message
operations are finalized, whereas in the second case any messages
sent or received are moved back to their previous state. The
completion of a transaction is controlled by the application, with

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

the JMS provider maintaining integrity if the application terminates
unexpectedly.
If a JMS Session is non-transacted, another message receipt
control level is used, message acknowledgement, of which there
are three types:
• Automatic acknowledgement; each message received is

automatically acknowledged to the provider. This is transparent
to the application.

• Duplicates-OK acknowledgement; each message may be
received more than once. This is transparent to the application.

• Client acknowledgement; message acknowledgement is
controlled by the application. In this case, the application calls
an acknowledgement method on a received message, which
confirms the receipt of all messages (since the last
acknowledgement call) to the JMS provider.
The message acknowledgement is based on that point in time
not on message delivery order. The client can also call a
recovery method on the JMS Session, which will cause the
redelivery of all unacknowledged messages.

JMS work can also be encapsulated into distributed transactions,
according to the X/Open document Distributed Transaction
Processing: The XA Specification. Details of this will be covered
in the second part of this article, published next month.
There is also the concept of robustness – peculiar to JMS publish/
subscribe – the durable subscription. Normally in a publish/
subscribe framework a subscribing application will deregister its
subscriptions with the Broker when it is closed, thus ensuring that
no attempt is made to send messages to it while it is off-line. This
is a non-durable subscription.
A durable subscription is not deleted at the Broker when the
application is terminated (it must be explicitly closed). This means
that an application owning a durable subscription will not miss any
publications on the topic it is registered against during any
downtime.

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Asynchronous message delivery
Asynchronous message delivery is a feature of JMS that can be
misleading to WMQ practitioners because all WMQ messaging is
asynchronous. A better term for ‘asynchronous’ in this case would
be ‘passive’ and the reasons why will become clear in this section.
Asynchronous message delivery allows the JMS application to
register a class (which must implement the MessageListener
interface) with the JMS provider. The only method in the
MessageListener interface is the onMessage method, which is
called by the JMS provider when a message arrives for the
receiving application.
This is the passive nature of the message delivery; instead of the
application calling a synchronous blocking receiving method on
the MessageConsumer, the JMS provider passes the message
into the onMessage method of the MessageListener.
Another way of describing this would be to say that the JMS
provider drives the receiving application with messages, instead
of the receiving application looping an attempted message receive
operation.

THE WMQ IMPLEMENTATION OF THE JMS
An important point to be emphasized immediately is the fact that
the JMS specification defines no wire format for JMS
implementations, either in terms of messages or protocols. This
means that different JMS implementations will not communicate
directly, thus implying that while JMS applications are portable
between different JMS providers the different providers themselves
are not compatible at the implementation level.

Underlying WMQ technology
The WMQ implementation of the JMS is built upon the WMQ
Classes for Java, which is a proprietary Java API for WMQ. This
is transparent in WMQ JMS terms in that there is almost no WMQ
Java configuration that can be done through the WMQ JMS
interface.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

The only other point worth mentioning here is that WMQ Java
provides a Connection Pooling facility, which is used transparently
by WMQ JMS. WMQ Java Connection Pooling is turned on by
default in WMQ JMS but can be turned off at ConnectionFactory
level. The pool contains underlying queue manager MQHCONNs,
which are pooled and reused to improve performance. The WMQ
JMS Session is where the MQHCONN is located; see below for
more details of how MQI calls fit into WMQ JMS calls.
As has been previously stated, point-to-point messaging is familiar
to all WMQ practitioners and because of this the WMQ JMS point-
to-point implementation sits easily on top of standard WMQ.
However, using WMQ JMS publish/subscribe needs more in the
way of provider configuration.
There are several choices of publish/subscribe mechanism from
WMQ and these can all be used for WMQ JMS publish/subscribe:
• The MA0C WMQ Product Extension, which provides add-on

publish/subscribe Broker function to a WMQ queue manager.
• The WMQ Event Broker or Integrator Broker products both

provide publish/subscribe engines which can be used with
WMQ JMS publish/subscribe applications.

In product release terms the WMQ JMS implementation is included
in WMQ V5.3 and above and is available as the MA88 Product
Extension for MQSeries V5.2.

Underlying MQI calls
The JMS programming model is very simple when looking down
from the top but it is often the case that some knowledge is
required about the timing of the underlying WMQ calls. Table 1
describes when the standard MQI calls happen during JMS
operations.

WMQ JMS Administered Objects
JMS Administered Objects are where the JMS provider masks the
proprietary nature of the provider software from the JMS

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQI call JMS operation

MQCONN The MQHCONN is held at the WMQ JMS Session level, so the
MQCONN would normally occur when calling the createSession
method on the Connection. This may not be the case if WMQ
Java Connection Pooling is being used, in which case the
MQCONN will be called when the pool does not have a
connection available and has to create one.

MQDISC The use of the MQDISC call corresponds to the MQCONN call
above. The MQHCONN is held in the WMQ JMS Session so
when the Session is closed the MQDISC call would normally be
issued. If the Connection Pool is active the MQDISC will
happen when the pool is purged of active connections (either
through timeout or shutdown).

MQOPEN WMQ queues are opened either for send or receive (or both) and
the implication may (correctly) be drawn that the MQOPEN call is
issued when a WMQ JMS MessageProducer or
MessageConsumer is created.

MQCLOSE The converse of MQOPEN; when a WMQ JMS MessageProducer
or MessageConsumer is closed the MQCLOSE call will be
issued.

MQPUT MQPUT is called when the send or publish method of a WMQ
JMS MessageProducer is invoked.

MQGET MQGET is called when the receive method of a WMQ JMS
MessageConsumer is invoked or the onMessage method of a
WMQ JMS MessageListener is called.

MQCMIT MQCMIT is called when the current unit of work running in a WMQ
JMS Session is committed.

MQBACK MQBACK is called when the current unit of work running in a
WMQ JMS Session is rolled back.

Table 1: Timing of standard MQI calls during JMS operations

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

application. As previously stated, these objects are located in a
JNDI namespace (they can be created programmatically but this
will destroy the JMS portability of the application). WMQ JMS
provides a text-based tool called JMSAdmin for the administration
of WMQ JMS Administered Objects, which resembles the runmqsc
command line tool for WMQ queue manager administration. This
tool is driven using the configuration file JMSAdmin.config, which
contains the following three essential pieces of information to
access the JNDI namespace:
• PROVIDER_URL contains the location of the JNDI server in

standard format, which varies according to the Initial Context
Factory type.

• INITIAL_CONTEXT_FACTORY contains the name of the
class that will be used to instantiate the JNDI administration.
This will be provided by the JNDI implementation and can be
based on a basic file system context, an LDAP context, a
WebSphere CosNaming context, etc.

• SECURITY_AUTHENTICATION contains any user
authentication information required to access the JNDI server.

There are two useful JNDI tools available for download:
• A GUI interface for the JMSAdmin tool, the MS0N Product

Extension.
• A Queue Manager InitialContextFactory implementation, the

ME01 Product Extension.
WMQ implementations of the JMS Administered Objects are as
follows:
• MQQueue and MQTopic, representing the JMS Destination

objects.
• MQQueueConnectionFactory and

MQTopicConnectionFactory, representing the JMS
ConnectionFactory objects.

• Extensions of the ConnectionFactory objects required for

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

WAS V3.5.3 and V4.x (JMSAdmin is not required for WAS
V5.0):
– JMSWrapMQXAQueueConnectionFactory
– JMSWrapMQXATopicConnectionFactory.

WMQ JMS programming techniques
Before proceeding with WMQ-specific JMS programming there
are several very important provider-independent JMS programming
points that must be stressed. These are listed below.
• The JMS Session is the most important of the JMS classes.

It is an edict of the JMS specification that the Session is
single-threaded and this rule must be adhered to rigorously.

• The JMS Connection, Session, MessageProducer, and
MessageConsumer objects should all be closed by the
application programmer (in the reverse order to which they
were created) because they may use provider resources
whose automatic removal by garbage collection cannot be
guaranteed.

• If a JMS MessageListener object has been specified to
receive messages asynchronously, either with a JMS Session
or a JMS MessageConsumer, the entire Session is marked
for asynchronous delivery only.
Calling any of the synchronous methods for receiving
messages on any JMS MessageConsumer created from the
JMS Session in question is a programming error and will result
in an Exception. This does not affect the sending of messages.

• It is always recommended best practice to register a JMS
ExceptionListener against all JMS Connections but especially
when JMS MessageListeners are being used for passive
message delivery. In this case there will be no way for the
application to know if there is a serious JMS error because
there will be no synchronous method calls happening, and
hence no exceptions can be thrown. The ExceptionListener

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

allows the JMS provider to notify a passive application that
there has been a serious error on the JMS Connection.

• Message selectors can quickly become bloated and
cumbersome and this can severely affect performance. If the
header of every JMS Message has to be parsed and compared
with a complicated selector then message delivery rate will be
slowed. Careful planning of the use of selectors is
recommended to avoid this.

Some of the advice above becomes more obvious when put into
a WMQ-specific context. The first two points in particular should
be considered from the WMQ programming standpoint as well.
• The WMQ implementation of the JMS Session holds a base

WMQ MQMessage object (from the WMQ Java base classes).
This is reused for each message sent and received from all
MessageProducers and MessageConsumers created from
the Session.
This gives a considerable performance improvement (as
opposed to creating a new MQMessage object each time) and
is perfectly safe, providing that the Session is not accessed
from multiple threads at once. There is no safeguard against
this – no exception will be thrown if it is attempted – but if
operations on the Session are not serialized they will interfere
with each others’ use of the WMQ MQMessage object, with
unpredictable results.

• There is another facet to the single-threading of JMS Sessions
and this is to do with concurrent sending and receiving of
messages. If both senders and receivers are created from the
same JMS Session, calls to their methods must be serialized
– that is to say a message cannot be sent if a receive call is
underway and vice versa.
This is not a problem if synchronous receive is being used
because calls to the send and receive methods can be
controlled from within the application. However, if a JMS
MessageListener is being used it is recommended that
messages are not sent from that JMS Session because there

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

is no control (from the application) over when a message will
be received.

• As Table 1 illustrates, the WMQ implementations of all the JMS
objects contain handles to WMQ queue manager resources.
If the WMQ JMS objects are not closed correctly then these
WMQ resources will be left locked and will not be cleaned up
immediately. If the load on WMQ JMS is high it is not
uncommon, because of lack of care when closing JMS
objects, for the queue manager to overflow agent processes.
Closing a WMQ JMS Connection object should cause the
closure to cascade to all JMS objects created from that
Connection, but best practice is to close explicitly all JMS
objects in the reverse order to which they were created. This
is even more important when publish/subscribe is being used
because stale subscriptions will persist on the Brokers
indefinitely unless they are manually deleted.

There is a similarity between WMQ messages and JMS messages
in that there is a defined boundary between message context
information held in the header and the message payload. However,
an examination of the JMS specification will show that there are
some parts of the JMS message header that do not correspond
directly to fields in the MQMD.
The WMQ implementation of JMS messages uses the MQRFH2
extended header to hold the extra JMS information. As a result it
may be that WMQ JMS applications cannot communicate with
WMQ legacy applications if they are not designed to use the
MQRFH2.
This is resolved by a configuration option of the WMQ JMS
Destination, the ‘Target Client’ property, which can be set to either
of the following two values:
• MQJMS_CLIENT_JMS_COMPLIANT: this is the default value

and specifies that the messages should be put to the
Destination with the MQRFH2 (and hence all JMS information)
intact.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

• MQJMS_CLIENT_NONJMS_MQ: this specifies that the
messages should be put to the Destination with the MQRFH2
removed. This also removes some of the JMS information and
leads to the message either being output with an MQMD
Format of MQFMT_STRING (in the case of a JMS
TextMessage) or with an MQMD Format of MQFMT_NONE (in
the case of all other messages).

This parameter only affects messages being output from WMQ
JMS – it has no bearing on messages input into WMQ JMS. If
WMQ JMS receives a message that does not have an MQRFH2
a best effort is made to construct as much JMS information as
possible by extrapolation from the existing message data. For
instance, an incoming message with an MQMD Format of
MQFMT_STRING will be reconstituted with WMQ JMS as a JMS
TextMessage.

WMQ JMS Publish/Subscribe
There are many other options on the WMQ JMS Destination and
ConnectionFactory objects but the only other ones that will be
discussed here are those relating to publish/subscribe. There are
several WMQ implementations of the publish/subscribe function:
• WMQ Publish/Subscribe is a WMQ Product Extension (MA0C).

It is a set of programs that installs into the WMQ executable
directory and manages publications and subscriptions by
using specially defined system queues. This product will go
out of service at the end of 2004.

• WMQ Integrator Broker is a member of the WMQ product
family that provides application integration by offering message
transformation and routing. As part of the routing function it
implements publish/subscribe capability in the same manner
as the MA0C Broker (using special system queues on the
underlying queue manager).

• WMQ Event Broker is similar to Integrator Broker except that
the complex message transformation function is not included.
It offers the same publish/subscribe method as Integrator

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Broker and also offers direct IP connections to the Broker
from WMQ JMS. This offers much greater performance at the
expense of some reliability (the publish/subscribe paradigm
lends itself to this kind of messaging).

WMQ understands publication and subscription messages by
using the MQRFH and MQRFH2 extended messaging headers.
MA0C understands the MQRFH only, whereas WMQ Integrator
Broker and Event Broker understand the MQRFH2 directly
(although they are backwards-compatible with the MQRFH).
This means that the WMQ JMS TopicConnectionFactory must
have a configuration option to specify which header to use. This
is the ‘Broker Version’ parameter, which can take the following two
values:
• MQJMS_BROKER_V1: this is ‘compatibility mode’ and it

specifies that the Broker requires the MQRFH. In this case
WMQ JMS messages will contain an MQRFH with the
publication or subscription information immediately followed
by an MQRFH2 containing JMS information. This option must
be set if the MA0C Broker is to be used but it can also be used
for WMQ Integrator Broker or Event Broker.

• MQJMS_BROKER_V2: this is ‘native mode’ and it specifies
that the Broker requires the MQRFH2 only. In this case, WMQ
JMS messages will contain only the MQRFH2, which will
contain publication or subscription information as well as all
JMS information. This option cannot be used with the MA0C
Broker and is recommended for WMQ Integrator Broker or
Event Broker.

As previously mentioned, WMQ Event Broker offers a direct IP
connection for WMQ JMS Publish/Subscribe. This is configured
by the ‘Transport Type’ parameter on the WMQ
TopicConnectionFactory, which can take one of the following
three values:
• MQJMS_TP_BINDINGS_MQ: this specifies that the

application will connect directly to a queue manager (for
publish/subscribe or not) on the same machine.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

• MQJMS_TP_CLIENT_MQ_TCPIP: this specifies that the
application will connect to a remote queue manager (for
publish/subscribe or not) over a TCP/IP connection. If this
option is set, a channel name, a hostname, and a port also
need to be specified.

• MQJMS_TP_DIRECT_TCPIP: this specifies that the
application will connect directly to an Event Broker over TCP/
IP without using any intermediate queues. If this option is set,
a hostname and a port also need to be specified.

The direct IP connection with WMQ Event Broker does not
support durable subscriptions. This is because of the latency
possible with a durable subscription: if a durable subscriber is not
connected the messages it is to receive need to be held and this
requires a queue. Persistent messages are also not supported
with direct IP connections to Event Broker – this is because there
is no logging of the message involved and the message will not be
hardened to disk.
WMQ JMS also offers the option of shared or exclusive queues
for JMS subscribers. These can be mixed on the same Broker and
their use will be determined by a performance versus resources
assessment. If subscriptions share a queue for messages, less
resource will be used than if some (or all) subscriptions use one
queue exclusively. These options are configured at the WMQ JMS
TopicConnectionFactory and Topic levels. This function is not
relevant with direct IP connections to WMQ Event Broker.

WMQ JMS environment configuration
The environment for WMQ JMS can be fairly complicated. What
follows is a basic description of the minimum environment variable
settings on a Windows platform.
The PATH must contain the following:
• C:\Program Files\IBM\WebSphere MQ\Java\lib;
The CLASSPATH must contain the following:

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• C:\Program Files\IBM\WebSphere MQ\Java\lib;
• C:\Program Files\IBM\WebSphere MQ\Java\lib\jndi.jar;
• C:\Program Files\IBM\WebSphere

MQ\Java\lib\providerutil.jar;
• A path to a JNDI provider implementation, such as fscontext.jar

or ldap.jar.
• C:\Program Files\IBM\WebSphere MQ\Java\lib\jms.jar;
• C:\Program Files\IBM\WebSphere MQ\Java\lib\jta.jar;
• C:\Program Files\IBM\WebSphere MQ\Java\lib\connector.jar;
• C:\Program Files\IBM\WebSphere

MQ\Java\lib\com.ibm.mq.jar;
• C:\Program Files\IBM\WebSphere

M Q \ J a v a \ l i b \ c o m . i b m . m q j m s
.jar;

These all assume the default installation directory on the Windows
platform. On the Unix platforms the CLASSPATH has similar
settings but the inclusion to the PATH variable above should be
added to the LIBPATH or the LD_LIBRARY_PATH, depending on
the platform.

WMQ JMS problem determination
WMQ JMS offers tracing and logging to aid with problem
determination or debugging. These are both enabled from the
command line with the following options:
• MQJMS_TRACE_LEVEL: this can be set to ‘on’ or ‘base’.

The former will trace JMS calls only and the latter will trace
JMS calls and the underlying WMQ Java calls.

• MQJMS_TRACE_DIR: this determines the directory to store
the trace files.

• MQJMS_LOG_DIR: setting this parameter will redirect serious
errors (usually related to configuration rather than programming)

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

to a log file. These errors are usually written to standard error
output.

An example of using these options is as follows:
 C:> java -DMQJMS_TRACE_LEVEL=on -DMQJMS_TRACE_DIR=C:\temp -
 DMQJMS_LOG_DIR=C:\temp JmsProg

(This article continues next month, in the November issue of MQ
Update, with a more detailed discussion of the J2EE and the
integration of WMQ with the WebSphere Application Server
(WAS) messaging options.)
Ewan Withers
IBM Hursley (UK) © IBM 2003

Advanced MQ channel configuration

Channels are one of the first topics any new MQ administrator
encounters, and exchanging messages over a textbook case of
a receiver/sender channel pair is the MQ equivalent of ‘Hello
World’. Once this is mastered attention usually turns to the topics
of tuning, securing, and triggering the channels.
Well-tuned and triggered receiver/sender pairs are the workhorses
of the MQ world and in many cases these are all that are ever
needed. As a result requester and server channels are often
overlooked and misunderstood. This article will attempt to explain
some of the finer points of requester and server channels as well
as dispel some commonly held misconceptions about them.
So let’s clear the biggest hurdle right out of the gate; although it is
customary to discuss channels in terms of receiver/sender and
requester/server pairs it is perfectly acceptable to pair up a
receiver and a server or a requester and a sender. Feel free to mix
and match any inbound channel with any outbound channel as
required. The key is to understand exactly how the channel types
work in order to avoid any unintended consequences.

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

INBOUND CHANNELS
Receiver and requester channels are the same in most respects.
Both can be started remotely by either a sender or a server
channel and both support multiple simultaneous instances attached
to different remote nodes. The main difference is that a requester
channel can be used to start its remote partner definition, regardless
of whether that definition is of a sender or a server type. This is
a point that is often misunderstood so it bears repeating – a
requester channel can be used with and will start either a server
or a sender channel.
The advantages of requester channels are most obvious when the
MQ administrator has no access to the remote node. Perhaps the
remote node is in another department, inside the DMZ, or even at
a business partner site. In these cases when the channel refuses
to start it is difficult to diagnose the problem. The ability to start the
channel from the receiving side assists the diagnosis and, in the
case of a triggering problem, can provide a workaround to get the
messages quickly flowing again.
Functionally, a receiver channel is a subset of a requester
channel. If all the receivers in a shop were replaced with requesters
the network would operate exactly as before and it’s possible that
nobody would notice the difference. (If you do this remember to
reset the sequence numbers on all the senders and servers!) The
shop would gain the ability to start the channels from both ends and
the CONNAME parameters would provide an additional element of
documentation on the configuration of the network.

OUTBOUND CHANNELS
So if a requester can start either a sender or a server what is the
difference between them? Not much if they are started locally. In
this case both channel types will attempt to establish communication
to an MQ node at the address and port specified in the CONNAME.
Since they require exclusive use of their XMITQ both channel
types are limited to one running instance at a time. The real
difference between sender and server channels is observed when
a requester starts the channel from the remote node.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

To illustrate, consider three queue managers, QMA, QMB, and
QMC. One instance each of sender and server channel types are
created on QMA, each with CONNAME(QMB). Matching requester
channels with CONNAME(QMA) are created on both QMB and
QMC. The result of starting the channels on QMB is illustrated in
Figure 1. Both channels on QMA connect to QMB as expected.
The interesting behaviour occurs when we use a requester
channel on QMC to start the sender or server channels on QMA.
We’ll examine the two cases separately, beginning with the
sender.
When the QMA.QMB.SDR channel is started on QMC the channel
contacts QMA and passes the start request to it. When the
request comes in to QMA the sender channel is started using the
address defined locally in the CONNAME. Even though the
request came from QMC, the channel will connect to QMB.
Figure 2 shows the interaction between the channels. This
behaviour can be useful. For example, consider a shop with a
dozen queue managers and a requirement to start all the channels
every Monday morning at 7am. This would normally be
accomplished with scripted automation across all twelve queue
managers. Using requester channels the automation could be
consolidated onto a single queue manager.
Figure 3 shows what happens when the server channel is started
from QMC. Unlike the sender channel the server will respond to the
node that started it. In this case the server channel on QMA
connects to QMC despite the fact that the CONNAME points to
QMB. This characteristic allows the server channel to connect to
any number of remote nodes without a configuration change,
although it is limited to a single running instance at any given
moment.
This might be useful if QMC is a contingency server for QMB. In
the event that QMB dies, QMC can take over the server channel
at QMA. Be aware though that any queue manager can start that
server channel. A rogue queue manager could hijack the channel
and divert messages away from their intended destination.

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

QMA

Channels:
SDR: QMA.QMB.SDR
SVR: QMA.QMB.SVR
CONNAME(QMB)

QMA.QMB.SDR

QMA.QMB.SVR

QMB

Channels:
RQSTR: QMA.QMB.SDR
RQSTR.QMA.QMB.SVR
CONNAME(QMA)

QMC

Channels:
RQSTR: QMA.QMB.SDR
RQSTR:QMA.QMB.SVR
CONNAME(QMA)

Figure 1: Starting the QMB channels

!!!!!

!!!!!

QMA

Channels:
SDR: QMA.QMB.SDR
SVR: QMA.QMB.SVR
CONNAME(QMB)

(2) QMA
connects to QMB

(1) QMA.QMB.SVR
is started

QMB

Channels:
RQSTR: QMA.QMB.SDR
RQSTR.QMA.QMB.SVR
CONNAME(QMA)

QMC

Channels:
RQSTR: QMA.QMB.SDR
RQSTR:QMA.QMB.SVR
CONNAME(QMA)

Figure 2: Starting the sender channel from QMC

!!!!!

"""""

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

For this reason it is important to have a clear understanding of how
server channels work and to use them only in the specific
situations where they provide an advantage. Consider using SSL
or a channel exit to restrict server channels to authorized partner
nodes.
T Robert Wyatt (USA) © Xephon 2003

QMA

Channels:
SDR: QMA.QMB.SDR
SVR: QMA.QMB.SVR
CONNAME(QMB)

(2) QMA
connects to QMB

(1) QMA.QMB.SVR
is started

QMB

Channels:
RQSTR: QMA.QMB.SDR
RQSTR.QMA.QMB.SVR
CONNAME(QMA)

QMC

Channels:
RQSTR: QMA.QMB.SDR
RQSTR:QMA.QMB.SVR
CONNAME(QMA)

Figure 3: Starting the server channel from QMC

!!!!!

"""""

WBI Message Broker V5.0 Toolkit: an introduction

This article is aimed at users who have some working experience
and knowledge of WMQ Integrator V2.1.
The tooling for this Message Broker is based on the Eclipse
framework. Most entities created are stored as files and must

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

belong to a project of some kind. This leads to a major revamp in
the process of designing, creating, assigning, and deploying
message flows and message sets. Message Broker V5.0 also
sees the introduction of the Domain Connection to a Configuration
Manager, BAR File Editor, and Perspectives. Access to repositories
with version control is also another major addition to the toolkit’s
functionality.
This article is intended to provide a brief step-by-step guide to
creating and deploying a message flow. This will provide an insight
into the new tooling and some of its features.

REQUIREMENTS
The following setup is required before proceeding:
• Creation of a Configuration Manager with its queue manager

and listener running.
• Creation of a Broker with its queue manager and listener

running. (A simpler setup is required if the Configuration
Manager and Broker share the same queue manager and
listener, which is what we shall use in this example.)

PERSPECTIVES
All tasks that can be performed in Message Broker V5.0 are
grouped into views known as perspectives. For example, in order
to create and work with a Broker the user has to work in the Broker
Administration perspective (Broker Topology, Assignments, Topics,
Subscriptions, Operations, and Log Tabs for WMQI V2.1 users).
The perspectives categorically separate various related tasks
that can be performed in the toolkit, thereby providing an organized
structure. Some activities and tasks can overlap by being
accessible from more than one perspective. We go on to discuss
which perspectives to use for various tasks.
(Note: the following steps show only one way of performing a task
in the toolkit. There are a number of different methods available
that will perform the same task.)

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

CREATE A DOMAIN CONNECTION
Message Broker V5.0 requires the user to create a connection to
a domain, which is basically a connection to a Configuration
Manager running on the system or on a remote system. The
domain stores the values of the name of the Configuration
Manager’s queue manager, the hostname, port number, and also
any security exits, if needed. The Domain Connection created has
to be part of a Server Project and can be seen in the Broker
Administration perspective.
Once connected the Domain Connection is shown as a separate
entity in the Broker Administration Navigator pane in the Broker
Administration perspective, under Domain Connections, which
can be deleted and modified. In other words it can be seen as a
wire connecting the Message Broker V5.0 Toolkit and the
Configuration Manager.
(Note: the Domain Connection can also be seen and modified in
the Broker Application Development perspective within the
Resource Navigator pane.)
The following steps explain how to create a Domain Connection.
1 Start the Message Broker V5.0 Toolkit (known as the Control

Centre in WMQI V2.1).
2 Select Window, Open Perspective, Broker Administration. (If

Broker Administration is not in the list then select Other… and
select Broker Administration from the Select Perspective
window list that appears.)

3 Select File, New, Domain.
4 Enter the queue manager name, host name, and the port

number details used by the Configuration Manager on the
system. Click Next.

5 Enter a server project name, which the connection will belong
to, and then a name for the connection to the Configuration
Manager. Click Finish. (An existing server project can also be
selected from the drop-down list.)

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

6 The Domain Connection name will appear in the Broker
Administration Navigator pane under Domain Connections. It
will be a member of the server project created in step 5 with
.configmgr as the extension.

7 In the Domains pane the details of the Domain Connection
appear with the various editors.

The properties of the Domain Connection can be seen in the
Properties pane in the Broker Administration perspective.

CREATE A BROKER
The concept of a Broker is the same as with WMQI V2.1 although
the steps involved in creating a Broker in the toolkit differ. A Broker
can be created and seen in the Domains pane of the Broker
Administration perspective. Although a Broker can be created
using the File menu from any perspective it can only be modified
in the Broker Administration perspective. A Broker will be created
with one default Execution Group. The Broker will need at least
one Execution Group at all times. A user will not be allowed to
delete an Execution Group if it is the only one belonging to a
Broker.
(Note: a Broker created in the toolkit is merely a reference to a
Broker existing physically on the system. A Broker reference can
be created without the Broker existing physically on the system.
The actual Broker can be created from the command line using the
mqsicreateBroker command.)
The following steps explain how to create a Broker.
1 Select File, New, Broker.
2 Select the domain created in the previous section and enter

values for the Broker and Queue Manager Name fields. Click
Finish.

3 The Broker created will appear in the Domains pane under
Broker Topology with a default Execution Group.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

The properties of the Broker created can be viewed in the
Properties pane and its status in the Alerts pane.
(Note: the Alerts pane will show the Broker and Execution Group
with a status of ‘not running’ if the Broker and Execution Group
have not been deployed.)
These panes can be opened using the Window, Show View, Alerts
and the Window, Show View, Properties menus.

CREATE A MESSAGE FLOW
A message flow can be created in the Broker Application
Development perspective. The message flow has to belong to a
message flow project and should be within a schema. The concept
of a schema has been introduced to provide a structural grouping
for message flows. For example, in a scenario where there are
many message flows, flows based on a similar type of logic can
be grouped into one schema.
(Note: a message flow should not be created in a server or
message set project as it will not belong to a schema and hence
cannot be deployed.)
The following steps explain how to create a message flow.
1 Select Window, Open Perspective, Broker Application

Development. (If Broker Application Development is not in the
list then select Other… and select Broker Application
Development from the Select Perspective window list that
appears.)

2 Select File, New, Message Flow Project. Enter a name for
your project. Check the Use default box if it is not checked.
Click the Finish button. The project created will appear in the
Resource Navigator pane.

3 Select File, New, Message Flow. Enter the name of the
message flow project created in step 2 or look for it using the
Browse... button. Enter a name for the message flow. Leave
the schema field blank as the default schema will be used.

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Click Finish. The message flow created will appear in the
Resource Navigator pane as a member of a default schema
under the Message Flow Project name created in step 2
above.

4 The Message Flow Editor opens once the message flow is
created. Design a simple message flow consisting of an
MQInput and MQOutput node connected together. Make sure
the values for the queue names are correct and save the
message flow from the File menu.
Although this feature is similar to the V2.1 Message Flow
designer there are some changes. For example, in V5.0 the
user has to use the Selection option to drag and drop to put
nodes on the flow editor canvas as opposed to the drag and
drop feature in V2.1. Also, to connect nodes on the canvas the
user has to select the Connection option.

The properties of the message flow can be seen in the Properties
pane of the Broker Administration perspective.
(Note: a message flow cannot be deleted while in the Broker
Administration Perspective. The user has to switch to the Broker
Application Development Perspective to be able to delete the
message flow.)

PERFORM A UNIT DEPLOY (RUN ON SERVER)
A unit deploy is a quick method of deploying a unit of a project. This
method allows the user to deploy just one unit without having to
deploy the entire project or other related projects with it. This
method will dynamically create a server specified by the user to
run/deploy the unit to. This is also very useful in a scenario where
multiple developers are creating flows to be deployed to one
Broker. Each developer can then deploy their flows and message
sets separately. A deployable project can have multiple message
flows and message sets to deploy, which can be called units.
In the following steps a message flow will be deployed to illustrate
the working. This can be done from either the Broker Administration
perspective or the Broker Application Development perspective.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

(Note: a complete project can also be considered as a single unit
if desired, and deployed to by the Run On Server option.)
The following steps explain how to perform a unit deploy.
1 Right-click on the message flow created previously and select

Run on Server… from the list.
2 Click the Create a new Server radio button and highlight

Broker Unit Test Execution Group in the Server Type section.
Click Next.

3 Click on the Use an Existing Configuration Manager Connection
File radio button. The drop-down box will contain the name of
the connection to the Configuration Manager. Click Next.

4 Select the target Execution Group. Click Next. (A new target
Execution Group can also be created.)

5 Enter a name for the Execution Group to be deployed to if it
is blank. Click Next.

6 Click on the check box of the flow project created in the
previous section. To see the flow selected click on the flow
project. The message flow selected will be displayed in the
right hand pane. Click Finish.

7 A publishing dialogue appears, giving information about
publishing to a default server. Once the publishing is finished.
Click OK.

Check for the deploy outcome and then check the following to see
if the deploy was successful:
1 The message flow should appear under the Execution Group

it was deployed to under Broker Topology in the Domains pane
of the Broker Administration perspective.

2 Once deployed, the message flow is started so the alerts pane
should have no messages about the Execution Group not
running.

3 In the Domains pane open the Event Log editor by double-

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

clicking on it. There should be two successful deploy messages
indicating successful deploy; BIP4040I and BIP2056I.

4 Check the system event viewer for errors; fix them if found and
deploy again.

The above step-by-step routine will enable a user to become
familiar with the new tooling and the way it works. As mentioned
before, the tooling provides more than one way of performing a
task. One such example is a BAR (Broker Archive File) deploy,
which is another method of deploying to a Broker/Execution Group
in the toolkit (but is outside the scope of this article). The above
mentioned steps are an easier and quicker way to get started with
the Message Broker Toolkit for WebSphere Studio.
Rohit Basin
IBM Hursley (UK) © IBM 2003

WMQ clusters and shared queues in z/OS

This article examines how application architecture can be expanded
to exploit WMQ clusters or shared queues.
Figure 1is a simplified diagram of a WMQ and CICS configuration,
where:
• RQST.CICS represents a queue that receives messages to

be processed by CICS.
• A Queue Owning Region (QOR) monitors the queue depth.
• When messages arrive to the queue the QOR uses the

CICSPlex System Manager (CPSM) to schedule transactions
on the Application Owning Regions (AORs). CPSM will load
the AORs evenly.

The problem with this configuration is that the LPAR1 (Logically
Partitioned mode) constitutes a single point of failure. By using

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

Figure 1: A simplified WMQ and CICS configuration

QMGR 1

RQST.CICS

QOR

(CICS CPSM)

AOR

AOR

. . .

WMQ clusters it is possible to have a configuration that:
• Does not have a single point of failure (the application remains

available even if an LPAR is lost).
• Balances the workload across LPARs.

WMQ CLUSTERS
WMQ clusters, available with MQSeries for OS/390 V2.1, provide
two main functions:
• Automatic propagation of queue definitions.
• Workload balancing.

Automatic propagation of queue definitions
Referring to Figure 2, let’s assume that the z/OS queue managers
are in a cluster. Users can define a CICS bridge queue
(RQST.CICS) in each of queue managers QMGR1, QMGR2, and
QMGR3 (with a different CICS region accessing each queue), and
make the queue ‘shared’ in the cluster. In cluster terms, each
queue manager owns an instance of the queue.
Suppose that there is another queue manager, QMGR0. This
queue manager belongs to the cluster but does not own an
instance of the queue. Applications connect to this queue manager
and put messages to the CICS bridge queue.

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

When an application puts a message to the bridge queue for the
first time, the cluster automatically finds which queue managers
own instances of the queue. Users do not need to create remote
queue definitions in QMGR0. This illustrates the automatic
propagation of queue definitions.

Workload balancing in clusters
Because QMGR0 does not own an instance of the destination
queue the workload balancing mechanism distributes the load
evenly across the other three queue managers QMGR1, QMGR2,
and QMGR3. If QMGR0 owned an instance of the queue the
message would go to that local instance. This is the default

QMGR1

RQST.CICS

Cluster

C
L
U
S
C
H
L

C
L
U
S
C
H
L

QMGR2

RQST.CICS

QMG3

RQST.CICS

C
L
U
S
C
H
L

Figure 2: Automatic propagation of queue definitions

QMGR0

!!!!!

!!!!!

!!!!!
!!!!!

!!!!!

!!!!!

B
r
i
d
g
e

CICS1

B
r
i
d
g
e

CICS2

B
r
i
d
g
e

CICS3

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

behaviour of the cluster and does not require the coding of exits.
It is possible to alter the default behaviour of the workload
balancing mechanism by coding a Cluster Workload Exit. This
would eliminate the need for ‘extra’ queue managers that do not
own instances of target queues.

Cluster components

Repository
A cluster consists of at least one, preferably two, queue managers
that have a full repository containing information about the queue
managers, queues, and the channels that belong to that cluster.
They also hold additional update information on requests from the
other queue managers.
The other queue managers have a partial repository and hold
information for the subset of queues and queue managers with
which they need to communicate. A partial repository is created
by the queue manager making inquiries when it first needs to
access another queue or queue manager and subsequently
requesting that it be notified of any new information
concerning that queue or queue manager.
A full repository is updated when the queue manager that owns it
receives new information from one of the queue managers in the
cluster. This new information is also sent to the other repository
to reduce the single point of failure if a repository queue manager
breaks down.
The repository information is stored by each queue manager in
messages on the SYSTEM.CLUSTER.REPOSITORY.QUEUE
and the repository information is exchanged in messages on a
queue called SYSTEM.CLUSTER.COMMAND.QUEUE.

Channels
Each queue manager that joins the cluster only needs to define a
cluster sender channel (CLUSSDR) to one of the repositories.
Once it does this it immediately learns which other queue managers
in the cluster hold full repositories.

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

CLUSTER BENEFITS
Figures 3, 4, and 5 show examples of different WMQ clusters.

Remote queue managers
Figure 3 shows a WMQ cluster, where:
• The configuration achieves workload balancing and does not

have a single point of failure.
• Any remote queue managers that are part of the cluster will put

messages to the CICS queues in a ‘round-robin’ fashion,
spreading the workload evenly across all LPARs.

• Applications connected to the queue managers in the LPARs
(either locally or as clients) will put messages to the local
queues. That is, an application connected to QMGR1 will put
messages on the local queue instance that belongs to QMGR1.

The points above describe the default behaviour in a cluster. It is
possible to enforce a round-robin algorithm (even if an instance of
a local queue exists) by using a Workload Management Exit.
From a performance point of view it is better practice to allow the
default behaviour and achieve workload balancing by evenly
distributing the applications that connect to the LPAR queue
managers.

Clients
Figure 4 illustrates how WMQ client applications fit within a WMQ
cluster. There are two specific points to note regarding this
configuration:
• It is necessary to have logic in the applications that will select

a queue manager for connection in such a way that connections
are evenly distributed across all queue managers (the double
arrows represent connections).

• If a queue manager becomes unavailable the applications
must reconnect to one of the surviving queue managers.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

Figure 3: Remote queue managers

Cluster

QMGR1

RQST.CICS

QOR

(CICS
CPSM)

AOR

AOR
. . .

LPAR1

LPAR2

LPAR3

QMGR1

RQST.CICS

QOR

(CICS
CPSM)

AOR

AOR
. . .

QMGR1

RQST.CICS

QOR

(CICS
CPSM)

AOR

AOR
. . .

Remote
queue
manager

!!!!!

!!!!!

!!!!!

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The configuration shown in Figure 4 achieves workload balancing
and does not have a single point of failure but it does have two
disadvantages:

Cluster

QMGR1

RQST.CICS

QOR

(CICS
CPSM)

AOR

AOR
. . .

LPAR1

WMQ client
applications

WMQ client
applications

!!!!!"""""
!!!!!"""""
!!!!!"""""

QMGR2

RQST.CICS

QOR

(CICS
CPSM)

AOR

AOR
. . .

!!!!!"""""
!!!!!"""""
!!!!!"""""

WMQ client
applications

QMGR3

RQST.CICS

QOR

(CICS
CPSM)

AOR

AOR
. . .

!!!!!"""""
!!!!!"""""
!!!!!"""""

Figure 4: WMQ client applications within a WMQ cluster

LPAR2

LPAR3

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

• If a queue manager becomes unavailable any messages on
its queues will not be processed until it restarts.

• The applications need extra logic to connect (and reconnect)
to queue managers.

Two functions in WMQ V5.3 address these problems:
• Shared queues.
• Shared channels.

Queue-sharing groups
• Queue managers that can access the same set of shared

queues are known as a queue-sharing group (QSG).
• QSG names can be up to four characters in length. The name

must be unique, and different from any queue manager names.
• You put a message onto a shared queue on one queue

manager and get the same message from the queue from a
different queue manager.

• This facilitates a quick technique of interaction within a QSG
that eliminates the need for active channels between queue
managers.

• An application can connect to any of the queue managers
within the QSG.

• Because all queue managers in the QSG can access all
shared queues, an application does not depend on the
availability of a specific queue manager.

• Any queue manager in the QSG can interact with the queue.

Shared Queues
• WMQ for z/OS V5.3 supports Shared Queues.
• WMQ for z/OS V5.3 Shared Queues supports persistent

messages.

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• A shared queue is a type of local queue whereby messages
on that queue can be accessed by one or more queue
managers that are in a Parallel Sysplex.

• Shared queues reside on a Coupling Facility (CF). All queue
managers in a QSG can put and get messages from shared
queues.

• The use of Shared Queues ensures better availability because
all other queue managers in the QSG can continue processing
the queue if one of the queue managers fails.

• The shared queue definition is stored in a DB2 shared
database called the shared repository and because of this the
queue only has to be defined once. It follows, therefore, that
there are fewer definitions to generate.

• This is unlike the definition of a non-shared queue, which is
stored on page set zero of the queue manager that owns the
queue

• A shared queue cannot be defined if a queue with that name
has already been defined on the page sets of the defining
queue manager. Similarly, a local version of a queue cannot
be defined on the queue manager page set zero if a shared
queue with the same name already exists.

An example of how to use shared queues is illustrated in Figure 5.
This spreads the load among CICS members and provides
transparent recovery in the event of a queue manager or CICS
member outage.

Shared channels
WMQ for z/OS exploits Dynamic Domain Name Server (DDNS) for
channel connections.
In Figure 5 clients can dynamically connect to any available queue
manager in the QSG. The z/OS Workload Manager (WLM)
spreads the connections evenly across queue managers.
This feature greatly simplifies the recovery logic in client applications

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

(because recovery consists simply of reconnecting to the same
QSG).
Saida Davies
IBM (UK) © IBM 2003

QMGR1 QOR

(CICS
CPSM)

AOR

AOR
. . .

LPAR1

Appl QMGR2 QOR

(CICS
CPSM)

AOR

AOR
. . .

!!!!!
!!!!!
!!!!!

QMGR3 QOR

(CICS
CPSM)

AOR

AOR
. . .

LPAR2

LPAR3

Figure 5: How to use shared queues

Coupling Facility

!!!!!

!!!!!

!!!!!

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Using the XML Transform node in WMQI

XSLT (XML Stylesheet Language Transformation) is an XML
language that transforms XML documents from one format to
another. SupportPac IA0G provides a node that lets you use XSLT
instead of compute node ESQL for simple reformatting.
Why would you want another reformatting tool when you have
compute nodes? Here are some considerations:
• XSLT is a standardized and well-documented language. You

can find support for it both inside and outside of the integrator
community. ESQL on the other hand is a specialized language
written for a single product. It’s very difficult finding a book on
ESQL at even the biggest and best bookstores.

• XSLT changes do not require a redeploy, just a file copy.
• You can reuse the same XSLT document inside and outside

of WMQI.
• ESQL is the better language to use if you need to update

database tables, fetch additional information through table
look-ups, or do any kind of extensive computation.

• XSLT is best suited to taking data from one XML format and
putting it into another. It can do some simple string functions
but it is not well-suited to mathematical operations such as
adding, rounding, or incrementing.

The XMLTransform node is available as support pack IA0G, and
needs to be installed on both the WMQI server and on the
developer workstations.
WMQI uses the Xerces XML parser from Apache and the XSL
Transform node uses Apache’s Xalan XSLT processor. If you are
used to another parser, such as Microsoft’s, be careful not to use
proprietary parser extensions. Also, do not consider your XSLT to
be fully tested until you have tested it against Xalan. A Web search
should help you locate testing tools that use Xalan.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

PITFALLS TO WATCH FOR
• XML versus Blob. While it may seem counter-intuitive, the

XSL Transform node requires the message domain to be Blob,
not XML. You can use the ResetContentDescriptor node to
change message formats if you need to treat it as XML before
or after the transformation.

• XML encoding. In your XSLT stylesheet suppress the XML
declaration’s ENCODING attribute. If you do not, you risk
getting encoding conflicts when the message reaches your
application server or workstation client. To draw you a picture,
an attribute value such as encoding="utf-8" may prevent your
XML from parsing if the message is sent to another server
platform.
<?xml version="1.Ø" standalone="no" encoding="utf-8" ?>

• XML Declaration. The XMLTransform node expects your XML
to start with an XML declaration. If you do not include it, the
XML will still transform but your event log will fill up with
messages such as:

 (BrokerName.ExecutionGroupName) Java plug-in node error:
[com.ibm.xsl.mqsi.XMLTransformResources:
Error_Transformation_Engine]

 Error: The following error was received from the transformation
 engine: XML_PI_PARSING_FAILED.
 Error message generated by user Java plug-in node.
 Contact the node provider for further details.

• Wire the Failure Terminal. If you don’t, it won’t throw exceptions
when the transform fails.

Figure 1: XSLT subflow

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Node name Node type
IN Input Terminal
TO_XML_01 ResetContentDescriptor

Ensures that the incoming format is XML so that compute node
ADD_XML_PI will work.
Message Domain = XML
Reset Message Domain = True

ADD_XML_PI Compute
Adds an XML declaration to the message to avoid unnecessary error messages
in the event log.
SET OutputRoot = InputRoot;
SET "OutputRoot"."XML".(XML.XmlDecl).(XML.Version)='1.Ø';

TO_BLOB ResetContentDescriptor
Changes the message format to blob so the XMLTransform node can use it.
Message Domain = Blob
Reset Message Domain = True

XMLTransform XMLTransform
This node points to an XSLT stylesheet file on the Integrator server.
Promote the following properties so you can set them from the subflow level:
Stylesheet Name
Stylesheet Directory

TO_XML_02 ResetContentDescriptor
Resets the message format back to XML.
Message Domain = XML
Reset Message Domain = True

EDIT_XML_PI Compute
Removes the encoding attribute from the message’s XML declaration.
SET OutputRoot = InputRoot;
SET "OutputRoot"."XML".(XML.XmlDecl).(XML.Version)='1.Ø';

Failure Output terminal
Out Output terminal

Table 1: Subflow settings

SUGGESTED IMPLEMENTATION FOR XSLTRANSFORM
You can maximize the benefits and minimize the liabilities of the
XMLTransform node by putting it into a subflow containing additional
functionality. Figure 1 shows one way to do it. Configure the nodes
according to Table 1.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 48

CONCLUSION
XSLT may, in some cases, make more sense as a message
transformation solution than ESQL. While the XMLTransform
node may not be perfect, you can overcome the glitches by
wrapping it in a subflow.
Mills Perry
ZyQuest (USA) © Xephon 2003

MQ news

Candle Corporation has announced the
expansion of its offerings for Linux
environments by providing new Linux
support for WebSphere MQ management, as
well as 64-bit platform support, across its
Linux management solution portfolio.

Candle claims that its solution for
WebSphere MQ, PathWAI Monitor for
WebSphere MQ, delivers a high level of
control and availability across the
WebSphere MQ application infrastructure.

PathWAI Monitor for WebSphere MQ for
Linux will be available in October 2003.

For more information contact:
Candle, 100 N Sepulveda Blvd, El Segundo,
CA, 90245, USA.
Tel: +1 310 535 3600.
Fax: +1 310 727 4287.
Web: http://www.candle.com

Candle, 1 Archipelago, Lyon Way, Frimley,
Camberley, Surrey, GU16 7ER, UK.
Tel: +44 1276 414 700.
Fax: +44 1276 414 777.

* * *
PolarLake recently announced the launch of
its PolarLake Messaging Integrator product,
which is claimed to enable XML documents
to be received, transformed, and sent over

tried and trusted messaging systems, without
sacrificing the scalability, performance, and
reliability required for enterprise
deployment.

The company claims that the Integrator is
designed to be an attractive option in terms of
implementation cost and development time
for any application integration project;
particularly those using WebSphere MQ,
TIBCO ActiveEnterprise, or any JMS-based
messaging infrastructure.

Other features include support for content-
based and publish/subscribe-based routing,
message transformation and enrichment,
validation, exception handling,
transactionality, and activity monitoring.

For more information contact:
PolarLake USA, 39th Floor, 245 Park
Avenue, New York, NY 10167, USA.
Tel: +1 212 672 1773.
Fax: +1 212 792 4001.
Web: http://www.polarlake.com

PolarLake (UK), 1 Liverpool Street, London
EC2M 7QD, UK.
Tel: +44 20 7956 2090.
Fax: +44 20 7956 2001.

* * *

x
xephon

	Trouble-shooting using output channel status
	Using WMQ in J2EE, part 1
	Advanced MQ channel configuration
	WBI Message Broker V5.0 Toolkit: an introduction
	WMQ clusters and shared queues in z/OS
	Using the XML Transform node in WMQI
	MQ news

